
Density Functional Theory (蔡政達 2024 Fall)

Jonathan Huang (Giant Water Bird)

January 9, 2025

Contents
1 Introduction 3

1.1 What is Density Functional Theory? . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Born-Oppenheimer Approximation 4
2.1 Formulation of Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Variational Methods 5
3.1 Functionals and Their Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Rayleigh-Ritz Variational Principle . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Short Introduction to Quantum Monte Carlo Methods . . . . . . . . . . . . . . 7

4 Hartree-Fock Method 8
4.1 Single-Particle Wavefunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Hartree’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Slater-Condon Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 Hartree-Fock Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.5 Iterative Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Post Hartree-Fock Methods 16
5.1 Perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Full Configuration Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Electron Density 19
6.1 Two Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Deriving the Electron Density Relation . . . . . . . . . . . . . . . . . . . . . . . 20

7 Thomas-Fermi Model 25
7.1 Solving the variational problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8 Hohenberg-Kohn Theorem 28
8.1 Levy Constrained-Search Formulation . . . . . . . . . . . . . . . . . . . . . . . . 31

9 Kohn-Sham Method 32

1



Density Functional Theory Jonathan Huang 黃紹凱

9.1 Exchange-Correlation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.2 Solving the Kohn-Sham Equations . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.3 Hellmann-Feynman Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.4 Revisiting Correlation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.5 Levy approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10 Discussion of DFT functional approximations 40
10.1 Jacob’s Ladder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10.2 Local Density Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.3 Generalised Gradient Approximation . . . . . . . . . . . . . . . . . . . . . . . . 43
10.4 Meta Generalised Gradient Approximation . . . . . . . . . . . . . . . . . . . . . 44
10.5 Hybrid Exchange-Correlation Functional . . . . . . . . . . . . . . . . . . . . . . 49

11 Van der Waals Interaction 51

12 Papers 52

13 Other References 53

2



Density Functional Theory Jonathan Huang 黃紹凱

1 Introduction
Lecturer: 蔡政達教授

Time: 2024 Fall, R304.

1.1 What is Density Functional Theory?
Wikipedia: ”Density functional theory (DFT) is a computational quantum mechanical

modelling method used in physics, chemistry and materials science to investigate the electronic
structure (or nuclear structure) (principally the ground state) of many-body systems, in partic-
ular atoms, molecules, and the condensed phases.”

Density functional theory (DFT) was developed by Walter Kohn, (1998 Nobel Prize in
Chemistry laureate), and Pierre Hohenberg to study the ground-state (GS) properties of large
systems using first principle methods. DFT can be used to study electronic systems, including
atoms, molecules, and solids…

In order to solve the system for the electronic wavefunction Ψe, we keep (R𝑘, 𝑍𝑘) fixed
and solve for the time-independent Schrödinger equation (TISE) of the system. Then we can
find the energy of the system by computing

𝐸 = ⟨Ψe ∣ 𝐻̂ ∣ Ψe⟩ . (1)

The methodologies described in this lecture note will focus on using various computational
methods to achieve this incredible goal.

1.2 Notation
For future reference, this note will adhere to the following notation conventions.

• The units in use are either SI international units or atomic units , which one of
them is in use will be obvious from context and dimensionality. Note: it is usually for the
sake of taking notes faster that I resort to atomic units, otherwise I think it is of great
pedagogical value to keep the dimensional constants.

• An iterated integral or volume integral over a domain Ω is denoted

∫
Ω
dr ( ⋯ ) or ∫

Ω
d3𝑟 ( ⋯ ) ,

but never with a power and boldface font at the same time:

∫
Ω
d3r ( ⋯ ) .

• Operators may or may not be notated with a hat symbol, and may be written in calli-
graphic font, so 𝐻, 𝐻̂, and ℋ represent equally well the Hamiltonian operator.

3
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2 Born-Oppenheimer Approximation
2.1 Formulation of Problem

Consider the following electronic system of 𝑀 nuclei of atomic number 𝑍𝑘 and 𝑁 electrons.
The positions of the 𝑘-th nuclei is denoted R𝑘. Our system is then described by the (position
- atomic no.) tuples (R𝑘, 𝑍𝑘), 𝑘 = 1, 2, … , 𝑀 .

2.2 The Approximation
The Born-Oppenheimer approximation allows the separate treatment of nuclear and

electronic parts of the time-independent Schrödinger equation. Recall the fact that a
proton is approximately 1836 times heavier than an electron, and the 𝑗-th nucleus is made of
𝑍𝑗 protons and neutrons in total, making it approximately

1840𝑍𝑗 ∼ 105

times heavier than the electrons. This means the nucleus moves slowly compared to the electron,
so we have the Born-Oppenheimer approximation :

1. The velocities of the particles (as seen quantum mechanically) satisfy

velocity(nucleus) ≪ velocity(electron), (2)

where we can safely assume the electrons respond ”instantaneously” to nuclei movement.

2. The neclear positions {R𝑘}, 𝑘 = 1, 2, … , 𝑀 are fixed.

We can separete the total Hamiltonian 𝐻̂ into its electronic and nuclear parts:

𝐻̂ = 𝐻̂e + ̂𝑉nuc,
where

𝐻̂e = ̂𝑇 + ̂𝑉 + ̂𝑈 =
𝑁

∑
𝑖=1

(− ℏ2

2𝑚∇2
𝑖 ) +

𝑁
∑
𝑖=1

𝑉 (r𝑖) + ( 𝑒2

4𝜋𝜖0
)

𝑁
∑
𝑖=1

𝑁
∑
𝑗<𝑖

1
|r𝑖 − r𝑗|

. (3)

is the electronic Hamiltonian, and

̂𝑉nuc = ( 𝑒2

4𝜋𝜖)
𝑁

∑
=1

𝑁
∑
𝑗<𝑖

𝑍𝑖𝑍𝑗
|r𝑖 − r𝑗|

(4)

is the nuclear Hamiltonian.

2.3 Method Overview
Let the electronic wavefunction Ψe,𝑛 be defined as Ψ𝑛 (𝑥1, … , 𝑥𝑁), where 𝑥𝑘 = (r𝑘, 𝜎𝑘) is

the (spatial + spin) coordinate of each electron. Similarly we can define the nucleaer wavefunc-
tion Φ𝑛 = Φ𝑛 (𝑋1, … , 𝑋𝑀), where 𝑋𝑙 = (R𝑙, Σ𝑙). The TISE reads

𝐻̂eΨ𝑛 = 𝐸𝑛Ψ𝑛, ̂𝑉nucΦ𝑛 = 𝐸nucΦ𝑛. (5)

The total energy is simply their sum, by the B-O approximation:

𝐸total = 𝐸𝑛 + 𝐸nuc ≡ 𝑈𝑛, (6)

with
𝐸0(GS energy) ≤ 𝐸1 ≤ 𝐸2 ≤ 𝐸3 ≤ ⋯ .

4
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Remark. The goal of DFT is to find the ground state (GS) energy.

We solve the above TISE for a fixed initial {R(1)
1 , R(1)

2 , … , R(1)
𝑀 }, giving the total energy

of the configuration 𝑈 (1)
𝑛 = 𝑈 (1)

𝑛 (R(1)
1 , … , R(1)

𝑀 ). Here we postpone the detailed methodology
for solving the equation to later sections. Following this computation, the next natural step
to take is to vary {R𝑘} and repeat the computation, and for each iteration we get a potential
𝑈 (𝑟)

𝑛 , giving us after many iterations a potential energy surface (PES)

𝑈𝑛 = 𝑈𝑛 (R1, … , R𝑀) .

Remark. Shouldn’t this be simply called the energy surface instead, since it includes the
kinetic energy contribution?

3 Variational Methods
3.1 Functionals and Their Derivatives

In physics, we are often confronted with optimisation problems with complex functional
dependencies. A famous example would be extremising the action with respect to position in
the Lagrangian formalism of physics:

𝛿𝑆
𝛿r(𝑡) = 𝛿

𝛿r [∫ dr 𝐿(𝑡, r(𝑡), ̇r(𝑡))] = 0.

But before going on any further, we shall put the concept of a ”functional derivative”
on a firm mathematical footing. To define rigorously what a functional derivative is, first we
introduce the idea of a functional differential, or first variation.

Definition 3.1 (Functional differential). The functional differential can be defined in various
ways. Here we introduce two of the most common definitions:

1. As a Frechet derivative: Let 𝐹 be a functional defined on a Banach space 𝐵. The
differential of 𝐹 at a point 𝜌 ∈ 𝐵 is the linear functional 𝛿𝐹 [𝜌; ⋅] on 𝐵 satisfying the
condition

𝐹[𝜌 + 𝛿𝜌] − 𝐹[𝜌] = 𝛿𝐹 [𝜌; 𝛿𝜌] + 𝜂 ‖𝛿𝜌‖ ,
where ‖⋅‖ is the norm associated with 𝐵, 𝜂 ∈ ℝ, and 𝜂 → 0 as ‖𝛿𝜌‖ → 0.

Remark. A Banach space is a complete normed vector space.

2. As a Gateaux derivative: Let 𝐹 be a functional defined on a vector space. The functional
differential of 𝐹 at point 𝜌 with respect to variation 𝛿𝜌 is defined as

𝛿𝐹 [𝜌; 𝛿𝜌] = lim
𝜂→0

𝐹[𝜌 + 𝜂𝛿𝜌] − 𝐹 [𝜌]
𝜂 = [ d

d𝜂𝐹 [𝜌 + 𝜂𝛿𝜌]]
𝜂=0

.

Remark. The definition of functional differential as a Frechet derivative on a Banach space
is so strong that sometimes it does not exist at all. This is a problem, because we need the
functional differential in order to proceed with a sensible definition of functional derivatives,
which is widely used in physics. The Gateaux derivative definition is a lot weaker, and used
for practical applications.

5
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Definition 3.2 (Functional derivative). For a functional 𝐹 defined on a space of differentiable
functions over some space Ω, a function 𝜌 ∈ Ω, and some scalar 𝜂, there exists some function

𝛿𝐹
𝛿𝜌 (r) ≡ 𝛿𝐹

𝛿𝜌(r) ≡ 𝐷(r),

such that

lim
𝜂→0

𝐹[𝜌 + 𝜂𝛿𝜌] − 𝐹 [𝜌]
𝜂 = ∫

Ω
d3𝑟 𝐷(r)𝛿𝜌(r).

We call 𝛿𝐹/𝛿𝜌(r) the functional derivative or first variation of 𝐹 at 𝜌.

Now that we have a definition of a functional derivative, we can apply it to a common
class of functionals that often appear in physics: ”action-like” functionals (I have not heard of
similar terms for this integral, so I’ll go with what name I came up with).

Example 3.1 (Lagrangian formalism). Recall that in the Lagrangian formalism, we can write
the Lagrangian 𝐿 of a system as a functional of position r(𝑡), velocity ṙ(𝑡), and the independent
variable time 𝑡, i.e. 𝐿 = 𝐿(r, ̇r, 𝑡).

The action is defined as the following integral on some time interval [𝑡1, 𝑡2]:

𝑆 = 𝑆[r(𝑡)] ≡ ∫
𝑡2

𝑡1

dr 𝐿(r, ̇r, 𝑡).

Hamilton’s principle tells us that the first variation of action vanishes on the true path of
evolution of the system. So

𝛿𝑆
𝛿r(𝑡) = 0.

In a moment we will see that solving this functional equation is equivalent to solving the
well-known Euler-Lagrange equation:

𝜕𝐿
𝜕r(𝑡) − d

d𝑡
𝜕𝐿

𝜕 ̇r(𝑡) = 0.

Theorem 3.1 (Euler-Lagrange equation). Consider an ”action-like” functional 𝐹 of some
function 𝜌, given by

𝐹[𝜌] = ∫ dr 𝑓 (r, 𝜌(r), ∇𝜌(r)) .

Then the first variation of 𝐹 at 𝜌 is

𝛿𝐹
𝛿𝜌(r) = 𝜕𝑓

𝜕𝜌(r) − ∇ ⋅ ( 𝜕𝑓
𝜕∇𝜌(r)) .

6
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Proof. Use the definition of 𝛿𝐹
𝛿𝜌 as a Gateaux derivative:

∫ dr 𝛿𝐹
𝛿𝜌(r)𝛿𝜌(r) = d

d𝜂 [∫ dr 𝑓 (r, 𝜌 + 𝜂𝜌, ∇𝜌 + 𝜂∇𝛿𝜌)]
𝜂=0

= [∫ dr ( 𝜕
𝜕𝜂

𝜕𝜌
𝜕𝜂 + 𝜕

𝜕∇𝜌
𝜕∇𝜌
𝜕𝜂 ) 𝑓 (r, 𝜌 + 𝜂𝛿𝜌, ∇𝜌 + 𝜂∇(𝛿𝜌))]

𝜂=0

= ∫ dr [𝜕𝑓
𝜕𝜌𝛿𝜌 + 𝜕𝑓

𝜕∇𝜌∇(𝛿𝜌)]

= ∫ dr [𝜕𝑓
𝜕𝜌𝛿𝜌 − (∇ ⋅ 𝜕𝑓

𝜕∇𝜌) 𝛿𝜌 + ∇ ⋅ ( 𝜕𝑓
𝜕∇𝜌𝛿𝜌)]

= ∫ dr [𝜕𝑓
𝜕𝜌 − ∇ ⋅ ( 𝜕𝑓

𝜕∇𝜌)] 𝛿𝜌(r).

Then
𝛿𝐹
𝛿𝜌 = 𝜕𝑓

𝜕𝜌 − ∇ ⋅ ( 𝜕𝑓
𝜕∇𝜌)

by the fundamental lemma of calculus of variation .

Remark. For an action-like functional of higher-order derivatives, the generalisation is the
Euler-Poisson equation . Let

𝐹[𝜌] = ∫
Ω
dr 𝑓 (r, 𝜌(r), ∇𝜌(r), … , ∇(𝑁)𝜌(r)) ,

where r ∈ Ω ⊆ ℝ𝑛, and

[∇𝑖]𝛼1𝛼2⋯𝛼𝑁
= 𝜕𝑖

𝜕𝑟𝛼1
𝜕𝑟𝛼2

⋯ 𝜕𝑟𝛼𝑖

is a rank 𝑖 tensor. Then

𝛿𝐹
𝛿𝜌(r) = 𝜕𝑓

𝜕𝜌 +
𝑁

∑
𝑖=1

∇(𝑖) ( 𝜕𝑓
𝜕∇(𝑖)𝜌(r)) .

3.2 Rayleigh-Ritz Variational Principle
Consider the trial function Φ, and define the corresponding energy 𝐸[Φ] = ⟨Φ ∣ 𝐻̂ ∣ Φ⟩.

This trial function has to satisfy

1. Normalisation: ⟨Φ | Φ⟩.
2. Antisymmetrisation: Φ(… 𝑥𝑖, … , 𝑥𝑗, … ) = −Φ (… 𝑥𝑗, … , 𝑥𝑖, … ).

The object 𝐸[Φ] ∶ Φ ↦ ⟨Φ ∣ 𝐻̂ ∣ Φ⟩ is a functional from the Hilbert space ℋ to R.

3.3 Short Introduction to Quantum Monte Carlo Methods
From Wikipedia: ”Quantum Monte Carlo encompasses a large family of computational

methods whose common aim is the study of complex quantum systems. One of the major
goals of these approaches is to provide a reliable solution (or an accurate approximation) of the
quantum many-body problem.”

7
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4 Hartree-Fock Method
Remark. This method is one of many iterative schemes called self-consistent field methods
(SCF) .

4.1 Single-Particle Wavefunction
Definition 4.1. (Non-interacting Hamiltonian)

1. Single-particle wavefunctions 𝜙𝑖 are solutions to the TISE

ℎ̂𝜙𝑖 = 𝜖𝑖𝜙𝑖, (7)

where ℎ̂𝑖 = ̂𝑇 + ̂𝑉𝑖 is the 𝑖-th Hamiltonian without interaction. We call 𝜙𝑖 the orbital
wavefunctions.

2. The non-interacting Hamiltonian 𝐻̂NI is then simply

𝐻̂NI =
𝑁

∑
𝑖=1

ℎ̂𝑖. (8)

To clarify, the TISE becomes

ℎ̂(x)𝜙𝑖(x) = 𝜀𝑖𝜙𝑖(x) ⟹ [(− ℏ2

2𝑚) ∇2 + ̂𝑉 (r)] 𝜙𝑖(x) = 𝜀𝑖𝜙𝑖(x),

we can drop the subscript for x and r because the Hamiltonian is the same when seen from
different electrons when there are no interaction.

The non-interacting Hamiltonian is the result of letting 𝑈 → 0, so 𝐻̂ → 𝐻̂HF.

Now the total TISE is

𝐻̂NIΦNI
𝑛 (x1, … , x𝑁) = 𝐸NIΦNI

𝑛 (x1, … , x𝑁), x𝑖 ≡ (r𝑖, 𝜎𝑖).

A natural choice to construct ΦNI
𝑛 (x1, … , x𝑁) from the orbitals is

ΦNI
𝑛 (x1, … , x𝑁) = 𝜙1(x1)𝜙2(x2) ⋯ 𝜙𝑁(x𝑁), (9)

but sadly this does not satisfy Pauli’s well-known antisymmetrisation property for fermions.
So we shall resort to the Slater determinant construction:

ΦNI = 1√
𝑁!

∣
∣
∣
∣
∣
∣
∣
∣

𝜙1(𝑥1) 𝜙1(𝑥2) ⋯ 𝜙1(𝑥𝑁)

𝜙2(𝑥1) 𝜙2(𝑥2) ⋯ 𝜙2(𝑥𝑁)

⋮ ⋮ ⋱ ⋮

𝜙𝑁(𝑥1) 𝜙𝑁(𝑥2) ⋯ 𝜙𝑁(𝑥𝑁)

∣
∣
∣
∣
∣
∣
∣
∣

= 1√
𝑁!

det (𝜙1, 𝜙2, … , 𝜙𝑁) .

(10)

The energy is simply
𝐸NI = ⟨ΦNI ∣ 𝐻̂NI ∣ ΦNI⟩ .

8
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4.2 Hartree’s Equation
Although we just debunked the ansatz equ. (9) as not physical, it still helps to use it as

an initial value for simple calculations. This is where Hartree’s equation comes from. We write
the Hartree product of orbitals as

ΦNI
𝑛 (x1, … , x𝑁) = 𝜙1(x1)𝜙2(x2) ⋯ 𝜙𝑁(x𝑁),

and define the inner product as

⟨𝜙𝑖 ∣ 𝜙𝑗⟩ ≡ ∫ d𝑥𝑘𝜙𝑖(x𝑘)∗𝜙𝑗(x𝑘)

= ∑
𝜎𝑘

∫ d3r𝑘𝜙𝑖(r𝑘) ∗ 𝜙𝑗(x𝑘).

Then
⟨𝜙𝑖 ∣ 𝜙𝑗⟩ = 𝛿𝑖𝑗.

By explicit calculation as detailed below, we have the first significant result of Hartree’s theory:

𝐸H = ⟨ΦH ∣ 𝐻̂ ∣ ΦH⟩ =
𝑁

∑
𝑖=1

⟨𝑖 ∣ 𝐻̂ ∣ 𝑖⟩ +
𝑁

∑
𝑖=1

𝑁
∑
𝑗<1

[𝑖𝑖|𝑗𝑗] , (11)

where ℎ̂𝑖 is the 𝑖-th single particle Hamiltonian. In the above equation, we introduce the
following abbreviations for some terms that shall show up frequently in our analysis:

Definition 4.2 (Orbital brakets). Given the finite set of (approximate) orbitals {𝜙𝑘} for an
𝑁 -electron system, we define

1. The braket with respect to orbitals:

⟨𝑖 ∣ 𝐻̂ ∣ 𝑗⟩ ≡ ⟨𝜙𝑖 ∣ 𝐻̂ ∣ 𝜙𝑗⟩ , (12)

2. The inner-product like four-component braket:

[𝑖𝑗|𝑘𝑙] ≡ ∫ d𝑥1 ∫ d𝑥2 𝜙𝑖(x1)𝜙𝑗(x1) ( 1
|r1 − r2|) 𝜙𝑘(x2)𝜙𝑙(x2)

≡ ∑
𝜎1

∑
𝜎2

∫ d3𝑟1 ∫ d3𝑟2 𝜙𝑖(r1)𝜙𝑗(r1) ( 1
|r1 − r2|) 𝜙𝑘(r2)𝜙𝑙(r2).

(13)

Exercise 4.1 (Hartree energy functional). Derive equation (11) by explictly computing the
inner product.

By varying with respect to the orbitals 𝜙∗
𝑘(x𝑘), under the constraint that orbitals be

orthonormal, we can derive the Hartree equation

[ℎ̂(r) + ∑
𝑗≠𝑘

∫ d3𝑥′ 𝜙∗
𝑗(x′) ( 1

|r − r′|) 𝜙𝑗(x′)] 𝜙𝑘(x) = 𝜀𝑘𝜙𝑘(x). (14)

The summation in the square brackets will be defined as the Coulomb operator in the next
section, where we will talk about the Hartree-Fock method.

Exercise 4.2 (Hartree energy). Derive equation (14) by variational methods. Hint: notice
that orbitals must be orthonormalised, then vary equation (11) with respect to some orbital.

9
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4.3 Slater-Condon Rules
Before dealing with the Hartree-Fock equation itself, we need to acquire a more thorough

understanding of the Hartree-Fock wavefunction, and develop the necessary tools to analyse
various operations on it. To do this, we need to first discuss the Slater determinant .

The Slater determinant is a natural way to construct fermionic wavefunctions that obey
antisymmetry with respect to particle interchange. Not every wavefunction can be written as
a Slater determinant, in fact, only a small subset of them can be written as a single Slater
determinant, but those form an important and useful subset because of their simplicity.

4.4 Hartree-Fock Hamiltonian
Given a set of 𝑁 initial orbital wavefunctions (𝜙1, 𝜙2, … , 𝜙𝑁), we can construct the initial

total (electronic) wavefunction, which we call ΦHF, using a Slater determinant :

ΦHF = 1√
𝑁!

∣
∣
∣
∣
∣
∣
∣
∣

𝜙1(𝑥1) 𝜙1(𝑥2) ⋯ 𝜙1(𝑥𝑁)

𝜙2(𝑥1) 𝜙2(𝑥2) ⋯ 𝜙2(𝑥𝑁)

⋮ ⋮ ⋱ ⋮

𝜙𝑁(𝑥1) 𝜙𝑁(𝑥2) ⋯ 𝜙𝑁(𝑥𝑁)

∣
∣
∣
∣
∣
∣
∣
∣

= 1√
𝑁!

det (𝜙1, 𝜙2, … , 𝜙𝑁) .

(15)

This formulation means that ΦHF trivially satisfies Pauli’s antisymmetry principle.

Remark (Slater determinant for a symmetric system). Following the example above, a symmet-
ric system (i.e. a bosonic system) should be described by a permanent , that is:

Φboson ?= 1√
𝑁!

perm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜙1(𝑥1) 𝜙1(𝑥2) ⋯ 𝜙1(𝑥𝑁)

𝜙2(𝑥1) 𝜙2(𝑥2) ⋯ 𝜙2(𝑥𝑁)

⋮ ⋮ ⋱ ⋮

𝜙𝑁(𝑥1) 𝜙𝑁(𝑥2) ⋯ 𝜙𝑁(𝑥𝑁)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

However, this is not it, as the permanent wavefunction is not normalised. To normalise
the function, consider the counting variable 𝑛𝑚 that counts the number of particles in state
𝜙𝑚, 1 ≤ 𝑚 ≤ 𝑁 . Then we can write the normalised bosonic wavefunction

Φboson = √∏𝑁
𝑚=1 𝑛𝑚!

𝑁! perm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜙1(𝑥1) 𝜙1(𝑥2) ⋯ 𝜙1(𝑥𝑁)

𝜙2(𝑥1) 𝜙2(𝑥2) ⋯ 𝜙2(𝑥𝑁)

⋮ ⋮ ⋱ ⋮

𝜙𝑁(𝑥1) 𝜙𝑁(𝑥2) ⋯ 𝜙𝑁(𝑥𝑁)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (16)

10
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Such an object can be more compactly represented as an antysymmetriser (for fermionic
systems) or a symmetriser (for bosonic systems).

Continuing with the Hartree-Fock method, we note that the orbital wavefunctions should
be orthonormal, i.e.

⟨𝜙𝑖 ∣ 𝜙𝑗⟩ = 𝛿𝑖𝑗.

By expanding the inner products with respect to the determinant, we derive the Hartree-Fock
energy

𝐸HF = 𝐸[ΦHF] = ⟨ΦHF ∣ 𝐻̂ ∣ ΦHF⟩

=
𝑁

∑
𝑖=1

⟨𝑖 ∣ ℎ̂ ∣ 𝑗⟩ + 1
2

𝑁
∑
𝑖=1

𝑁
∑
𝑖≠𝑗

{[𝑖𝑖|𝑗𝑗] − [𝑖𝑗|𝑗𝑖]} .
(17)

Furthermore, by variational methods we have the Hartree-Fock equation

̂ℱ(x)𝜙x ≡ [ℎ̂(r) + ̂𝒥(x) + 𝒦̂(x)] 𝜙𝑘(x) = 𝜀𝑘𝜙𝑘(x) (18)

for single-electron orbitals. Here we have defined the Coulomb and exchange operators as
follows:

̂𝒥(x) ≡
𝑁

∑
𝑗=1

∫ d𝑥′ 𝜙∗
𝑗(x′) ( 1

|r − r′|) 𝜙𝑗(x′), (19)

𝒦̂(x)𝜙𝑘(x) ≡
𝑁

∑
𝑗=1

𝜙𝑗(x) ∫ d𝑥′ 𝜙∗
𝑗(x′) ( 1

|r − r′|) 𝜙𝑘(x′). (20)

In the HF scheme, the following approximations are assumed:

• Born-Oppenheimer approximation.

• Non-relativistic momentum operator is used in the Hartree-Fock Hamiltonian, that is, all
relativistic effects are ignored.

• Energy eigenfunction is assumed to be describable by a single Slater determinant con-
structed from the orbitals. This is in general not true.

• Mean-field approximation. The effects of any deviation from this is collectively defined
to be the electron correlation, where

electron correlation = Coulomb correlation + Fermi (exchange) correlation.

The Hartree-Fock method only accounts for the exchange-correlation (XC) term.

Remark. Precisely because of the mean-field approximation, the Hartree-Fock method does not
predict any nonlocal interaction such as the London dispersion force.

Now we will give a derivation of equations (17) and (18), and in the process flesh out
details of the proof of two of the aforementioned Slater-Condon Rules. The following proof is
taken from my solution to Problem 1 of Homework 1 of the course.

11
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Proof. Assume the Hartree-Fock energy eigenfunction is of the form

ΦHF = 1√
𝑁!

∣
∣
∣
∣
∣
∣
∣
∣

𝜙1(𝑥1) 𝜙1(𝑥2) ⋯ 𝜙1(𝑥𝑁)

𝜙2(𝑥1) 𝜙2(𝑥2) ⋯ 𝜙2(𝑥𝑁)

⋮ ⋮ ⋱ ⋮

𝜙𝑁(𝑥1) 𝜙𝑁(𝑥2) ⋯ 𝜙𝑁(𝑥𝑁)

∣
∣
∣
∣
∣
∣
∣
∣

= 1√
𝑁!

det (𝜙1, 𝜙2, … , 𝜙𝑁) .

(21)

For simplicity we call it Φ from now on. We give another expression of the determinant,
in terms of permutations:

det𝐴 = ∑
𝜎∈𝑆𝑁

sgn(𝜎)
𝑁

∏
𝑖=1

𝑎𝑖,𝜎(𝑖), (22)

where 𝐴 is an 𝑁 ×𝑁 matrix, with 𝑎𝑖𝑗 denoting the 𝑖𝑗-th entry, and 𝜎 ∶ {1, … , 𝑁} ↔ {1, … , 𝑁}
is a permutation, which is bijective.

(I) Energy expression: Recall that the Hartree-Fock Hamiltonian is

𝐻 =
𝑁

∑
𝑖=1

ℎ(r𝑖) + 1
2

𝑁
∑
𝑖=1

𝑁
∑
𝑗≠𝑖

1
∣r𝑖 − r𝑗∣

, (23)

The energy as a functional of Φ (and therefore of {𝜙𝑘}1≤𝑘≤𝑁) is, using equation (22):

𝐸[{𝜙𝑘}] = ⟨Φ ∣ 𝐻̂ ∣ Φ⟩

= ∫ d𝑥1 ⋯ ∫ d𝑥𝑁 ( 1√
𝑁!

∑
𝜎

sgn(𝜎)
𝑁

∏
𝑖=1

𝜙𝜎(𝑖)(x𝑖))

× (
𝑁

∑
𝑖=1

ℎ̂𝑘 +
𝑁

∑
𝑘=1

𝑁
∑
𝑙≠𝑘

1
|r𝑘 − r𝑙|

) ( 1√
𝑁!

∑
𝜎′

sgn(𝜎′)
𝑁

∏
𝑗=1

𝜙𝜎′(𝑗)(x𝑗)) .

(24)

We will discuss the braket of one- and two-electron operators separately. Notation: 𝜎𝑖
with subscripts denotes spin coordinate, while 𝜎 without subscripts denotes elements of the
symmetric group 𝑆𝑁 .

1. The expectation value of the one-electron operator ℎ̂𝑘 does not distinguish between elec-

12
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trons, so we can pick a representative (say 1) to do the calculation:

⟨Φ ∣
𝑁

∑
𝑘=1

ℎ̂𝑘 ∣ Φ⟩ = 𝑁 ⟨Φ ∣ ℎ̂1 ∣ Φ⟩

= 1
𝑁! ⋅ 𝑁 ⋅ ∫ d𝑥1 ⋯ ∫ d𝑥𝑁 (∑

𝜎
sgn(𝜎)

𝑁
∏
𝑖=1

𝜙∗
𝜎(𝑖)(x1)) ℎ̂1

× (∑
𝜎′

sgn(𝜎)
𝑁

∏
𝑗=1

𝜙∗
𝜎′(𝑗)(x1))

= 1
(𝑁 − 1)! ∑

𝜎1,…,𝜎𝑁

∫ d3𝑟1 ⋯ ∫ d3𝑟𝑁 ∑
𝜎

∑
𝜎′

sgn(𝜎) sgn(𝜎′)

×
𝑁

∏
𝑖=1

𝑁
∏
𝑗=1

𝜙∗
𝜎(𝑖)ℎ̂1(x1)𝜙𝜎′(𝑗)(x𝑗)

†= 1
(𝑁 − 1)! ∑

𝜎1,… 𝜎𝑁

∫ d3𝑟1 ⋯ ∫ d3𝑟𝑁 ∑
𝜎

𝑁
∏
𝑖=1

𝜙∗
𝜎(𝑖)(x𝑖)ℎ̂1(r1)𝜙𝜎(𝑖)(x𝑖)

‡= 1
(𝑁 − 1)! ⋅ (𝑁 − 1)! ∑

𝜎1

∫ d3𝑟1
𝑁

∑
𝑘=1

𝜙∗
𝑘(x1)ℎ̂(r1)𝜙𝑘(x1)

=
𝑁

∑
𝑘=1

∑
𝜎1

∫ d3𝑟1 𝜙∗
𝑘(x1)ℎ̂(r1)𝜙𝑘(r1) =

𝑁
∑
𝑖=1

⟨𝑖 ∣ ℎ̂ ∣ 𝑖⟩ .

(25)

†: {𝜙𝑘} is orthonormal, so the integrals over 𝑟2 to 𝑟𝑁 multiply to zero unless the electrons
occupy the same orbital in the two products, i.e. for each 𝜎(𝑖) in the first product, we have
𝜎′(𝑗) = 𝜎(𝑖) in the second. By the bijectivity of 𝜎 ∶ {1, … , 𝑁} ↔ {1, … , 𝑁}, we know
that 𝜎(1) = 𝜎′(1). 𝑗 is just a dummy variable, so we rename it to be 𝜙𝜎′(𝑗)(x𝑗) = 𝜙𝜎(𝑖)(x𝑖).

‡: Electron 1 occupies each orbital exactly (𝑁 − 1)! times, since fixing 1, the remaining
𝑁 − 1 electrons can be permuted in (𝑁 − 1)! ways, the integral of each of which multiply
to 1.

2. The determinant does not differentiate between different electrons, so we can use 1 and
2 as the representative. We use the shorthand 𝑂̂ for the two-electron term to get

⟨Φ ∣ 𝑂̂ ∣ Φ⟩ = ⟨Φ ∣ 1
2

𝑁
∑
𝑖=1

𝑁
∑
𝑗≠𝑖

( 1
∣r𝑖 − r𝑗∣

) ∣ Φ⟩

= 𝑁(𝑁 − 1)
2 ⟨Φ ∣ ( 1

|r1 − r2|) ∣ Φ⟩ .
(26)

13
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Then

⟨Φ ∣ 𝑂̂ ∣ Φ⟩ ≡ 𝑁(𝑁 − 1)
2 ∫ d𝑥1 ⋯ ∫ d𝑥𝑁 ( 1√

𝑁!
∑

𝜎
sgn(𝜎)

𝑁
∏
𝑖=1

𝜙∗
𝜎(𝑖)(x1))

× ( 1
|r1 − r2|) ( 1√

𝑁!
∑
𝜎′

sgn(𝜎)
𝑁

∏
𝑗=1

𝜙∗
𝜎′(𝑗)(x1))

†= (𝑁(𝑁 − 1)
2 ) 1

𝑁! ∑
𝜎1,…,𝜎𝑁

∫ d3𝑟1 ⋯ ∫ d3𝑟𝑁 ∑
𝜎∈𝑆𝑁

(
𝑁

∏
𝑖=3

𝜙∗
𝜎(𝑖)(x𝑖)𝜙𝜎(𝑖)(x𝑖))

× (𝜙∗
𝜎(1)(x1)𝜙∗

𝜎(2)(x2)) ( 1
|r1 − r2|)

× [𝜙𝜎(1)(x1)𝜙𝜎(2)(x2) + (−1)𝜙𝜎(1)(x2)𝜙𝜎(2)(x1)]

‡= 1
2(𝑁 − 2)! ∑

𝜎1,𝜎2

∫ d3𝑟1 ∫ d3𝑟2 (𝑁 − 2)! {
𝑁

∑
𝑘=1

𝑁
∑
𝑙=1

𝜙∗
𝑘(x1)𝜙∗

𝑙 (x2)

× ( 1
|r1 − r2|) [𝜙𝑘(x1)𝜙𝑙(x2) − 𝜙𝑘(x2)𝜙𝑙(x1)]} .

(27)

†: Again, electrons 3 to 𝑁 must occupy the same orbital in the 𝜎 and 𝜎′ permutations
for the integral to not vanish. So 𝜎(𝑖) = 𝜎′(𝑗) for 3 ≤ 𝑖, 𝑗 ≤ 𝑁 , sgn(𝜎) sgn(𝜎′) = 1.
Electrons 1 and 2 may be in the same orbital or related by an exchange of coordinates.

‡: Each orbital combination of electrons 1 and 2 (interchanged and not interchanged)
occurs (𝑁 −2)! times, because there are (𝑁 −2)! ways to permute the remaining electrons,
such that the product gives 1.
Continuing with the simplication, we get

⟨Φ ∣ 𝑂̂ ∣ Φ⟩ = 1
2 ∑

𝜎1,𝜎2

𝑁
∑
𝑘=1

𝑁
∑
𝑙=1

{∫ d3𝑟1 ∫ d3𝑟2 𝜙∗
𝑘(x1)𝜙𝑘(x1) ( 1

|r1 − r2|) 𝜙∗
𝑙 (x2)𝜙𝑙(x2)

− ∫ d3𝑟1 ∫ d3𝑟2 𝜙∗
𝑘(x1)𝜙𝑙(x1) ( 1

|r1 − r2|) 𝜙∗
𝑙 (x2)𝜙𝑘(x2)}

†= 1
2

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

{[𝑖𝑖|𝑗𝑗] − [𝑖𝑗|𝑗𝑖]} .

(28)

†: The 𝑖 = 𝑗 term cancels out in the sum, so for symmetry reasons we include this zero
term.

Combining the result of equs. (25) and (28), we have the Hartree-Fock energy functional:

𝐸[{𝜙𝑘}] =
𝑁

∑
𝑖

⟨𝑖 ∣ ℎ̂ ∣ 𝑖⟩ + 1
2

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

{[𝑖𝑖|𝑗𝑗] − [𝑖𝑗|𝑗𝑖]} . (29)

(II) Variation: We have to minimise the energy function 𝐸[𝜙𝑘(x1)] (again using 1 as a
representative) subject to the constraint that the orbitals are orthonormal:

𝛿𝐸[𝜙∗
𝑘(x𝑘)] = 𝛿 {⟨ΦHF ∣ 𝐻̂ ∣ ΦHF⟩ − [

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

𝜆𝑖𝑗 (⟨𝜙𝑖|𝜙𝑗⟩ − 𝛿𝑖𝑗)]} ∶= 0, (30)

14
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where
⟨𝜙𝑖 ∣ 𝜙𝑗⟩ ≡ ∫ d𝑥𝜙∗

𝑖(x)𝜙𝑗(x). (31)

We can choose a basis in which the Lagrange multiplier 𝜆𝑖𝑗 is diagonal, i.e. 𝜆𝑖𝑗 = 𝜀𝑖𝛿𝑖𝑗. Then
the constraint term becomes

𝑁
∑
𝑖=1

𝜀𝑖 ∫ d𝑥1 |𝜙𝑖(x1)|2 . (32)

Recall the fact that
𝛿𝜙𝑘(x𝑖)
𝛿𝜙𝑘(x𝑖)

= 𝛿(x𝑖 − x𝑗), (33)

since
𝜙𝑘(x𝑖) = ∫ d𝑥𝑗 𝜙𝑘(x𝑗)𝛿(x𝑖 − x𝑗). (34)

Then

𝛿
𝛿𝜙∗

𝑘(x1)𝐸[𝜙∗
𝑘(x1)] = 𝛿

𝛿𝜙∗
𝑘(x1){⟨Ψ ∣ 𝐻̂ ∣ Ψ⟩ −

𝑁
∑
𝑖=1

𝜀𝑖 ∫ d𝑥1 |𝜙𝑖(x1)|2}

= 𝛿
𝛿𝜙∗

𝑘(x1) {
𝑁

∑
𝑖=1

∫ d𝑥1𝜙∗
𝑖(x1)ℎ(r1)𝜙𝑖(x1)

+ 1
2

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

∫ d𝑥1 ∫ d𝑥2𝜙∗
𝑖(x1)𝜙𝑖(x1) ( 1

|r1 − r2|) 𝜙∗
𝑗(x2)𝜙𝑗(x2)

− 1
2

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

∫ d𝑥1 ∫ d𝑥2𝜙∗
𝑖(x1)𝜙𝑗(x1) ( 1

|r1 − r2|) 𝜙∗
𝑗(x2)𝜙𝑖(x2)

−
𝑁

∑
𝑖=1

𝜀𝑖 ∫ d𝑥1 𝜙∗
𝑖(x1)𝜙𝑖(x1)} .

(35)

So

𝛿
𝛿𝜙∗

𝑘(x1)𝐸[𝜙∗
𝑘(x1)] =

𝑁
∑
𝑖=1

∫ d𝑥1ℎ(r1)𝜙𝑖(x1)𝛿(x1 − x𝑘)𝛿1,𝑘

+
𝑁

∑
𝑖=1

𝑁
∑
𝑗=1

∫ d𝑥1 ∫ d𝑥2𝜙𝑖(x1) ( 1
|r1 − r2|) 𝜙∗

𝑗(x2)𝜙𝑗(x2)𝛿(x1 − x𝑘)𝛿1,𝑘

−
𝑁

∑
𝑖=1

𝑁
∑
𝑗=1

∫ d𝑥1 ∫ d𝑥2𝜙𝑗(x1) ( 1
|r1 − r2|) 𝜙∗

𝑗(x2)𝜙𝑖(x2)𝛿(x1 − x𝑘)𝛿1,𝑘

−
𝑁

∑
𝑖=1

𝜀𝑖 ∫ d𝑥1 𝜙𝑖(x1)𝛿(x1 − x𝑘)𝛿1,𝑘

= ℎ(r1)𝜙𝑘(x1) +
𝑁

∑
𝑗=1

∫ d𝑥2𝜙1(x1) ( 1
|r1 − r2|) 𝜙∗

𝑗(x2)𝜙𝑗(x2)

−
𝑁

∑
𝑗=1

∫ d𝑥2𝜙𝑗(x𝑘) ( 𝑘
|r𝑘 − r2|) 𝜙∗

𝑗(x2)𝜙𝑘(x2) − 𝜀𝑘𝜙𝑘(x𝑘).

(36)

Observe that the first and second terms correspond to equations (19) and (20), as desired.
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The Hartree-Fock method, despite its physically more accurate picture, was little used
until the advent of electronic computers. Before then, Hartree’s method and other empirical
models were favoured for their small computational cost.

Note that technically Hartree-Fock is not a density functional theory (DFT), as the term
specifically refers to orbital-free (orbital-independent) methods, such as the Thomas-Fermi
model.

4.5 Iterative Scheme
The iterative scheme of the Hartree-Fock method is illustrated in the figure 1, taken from

Wikipedia, Hartree-Fock Method.

5 Post Hartree-Fock Methods
In the last section we have devised a way to formulate the problem of solving our TISE

using a recursive scheme. Now we build on the previous method and make corrections to
approximate the true value even better, using the Hartree-Fock wavefunction as our new initial
value. We call these methods Post Hartree-Fock methods.

To remove any ambiguity, from now on we shall call write the Hartree-Fock wavefunction
as ΦHF, and recall that it should satisfy

ΦHF = 1√
𝑁!

det (𝜙1, 𝜙2, … , 𝜙𝑁) ,

⟨ΦHF
𝑖 ∣ ΦHF

𝑗 ⟩ .

The orbital wavefunctions (𝜙1, 𝜙2, … , 𝜙𝑁) can be separated into their spatial and spin
components (why?), so that

𝜙𝑖,𝛼𝑗
(x) = 𝜙𝑖,𝛼𝑗

(r)𝛼𝑗(𝜎). (37)

Example 5.1 (Two-spin systems). In a two spin system, the spin function only takes on two
values, namely 𝛼𝑗 = {𝛼, 𝛽}, representing spin-up and spin-down respectively. Then we can
write

𝜙𝑖,𝛼(x) = 𝜙𝑖,𝛼(r)𝛼(𝜎), 𝜙𝑖,𝛽(x) = 𝜙𝑖,𝛽(r)𝛽(𝜎).

Example 5.2 (Spin channel). Calculate spin channel?

Using a known complete basis {𝜒𝜇(r)}, 𝜇 = 1, 2, … , 𝜇𝑀 we can expand 𝜙𝑖,𝜎 as

𝜙𝑖,𝜎(r) =
𝑀

∑
𝜇=1

𝐶𝜇
𝑖,𝜎𝜒𝜇(r).

By definition of the ground state energy 𝐸0, we have

𝐸0 ≤ 𝐸HF ≡ 𝐸GHF ≤ 𝐸UHF ≤ 𝐸RHF, (38)

where the superscripts refer to the following specific SCF methods:

• GHF: Generalised Hartree-Fock method.
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• UHF: Unrestricted Hartree-Fock method.

• RHF: Restricted Hartree-Fock method.

We set 𝐸0 = 𝐸HF + 𝐸C, where 𝐸C is the correlation energy such that 𝐸C = 𝐸0−𝐸HF ≤ 0.
Remark. 𝐸C can be obtained systematically in post Hartree-Fock methods with a cost that
also increases systematically (what does this mean?).

5.1 Perturbation theory
When defining the non-interacting particles Hamiltonian, we let

𝐻̂NI =
𝑁

∑
𝑖=1

̂𝑓(𝑥𝑖).

In a similar light, we define a many particle Fock operator by

̂𝐹 ≡
𝑁

∑
𝑖=1

̂𝑓(𝑥𝑖) =
𝑁

∑
𝑖=1

{ℎ̂(r𝑖) +
𝑁

∑
𝑗=1

[𝒥𝑗(x𝑖) − 𝒦𝑗(×,𝑖 )]} .

Remark. ̂𝐹 is Hermitian.

Exercise 5.1. Check the above remark.

This is the Hartree-Fock Hamiltonian for the whole system. Note that the HF wavefunction
is in general not a eigenfunction of the electronic Hamiltonian 𝐻̂e, but it is an eigenfunction of

̂𝐹 i.e.
̂𝐹ΨHF = 𝛼ΨHF.

Then we have
̂𝐹ΨHF = (

𝑁
∑
𝑖=1

̂𝑓) ΨHF =
𝑁

∑
𝑖=1

𝜀𝑖ΨHF.

Following the time-independent perturbation method of quantum mechanics, we define the
unperturbed Hamiltonian 𝐻̂0 to be ̂𝐹 , and treat the external potential as our perturbation:

̂𝑉 = 𝐻̂ − ̂𝑇 − ̂𝑈
= 𝐻̂ − 𝐻̂0 = 𝐻̂ − ̂𝐹 ,

𝐻̂ = 𝐻̂NI + ( 𝑒2

4𝜋𝜖0
)

𝑁
∑
𝑖=1

1
|r𝑖 − r𝑗|

.

Set up the following perturbation problem:

(1) 𝐻̂ = 𝐻̂0 + 𝜆 ̂𝑉 + ⋯ ,
(2) Ψ = Ψ(0) + 𝜆Ψ(1) + 𝜆2Ψ(2) + ⋯ ,
(3) 𝐸 = 𝐸(0) + 𝜆𝐸(1) + 𝜆2𝐸(2) + ⋯ .

(39)

Christian Møller and Milton S. Plesset (1934) developed a systematic way to treat quantum
chemical systems using the perturbation method. This is called the Møller-Plesset perturbation
theory (MP). Matching coefficients, we get:
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• Level 0 (𝜆0 ):
𝐻̂0Ψ(0) = 𝐸(0)Ψ(0)

⟹ Ψ(0) = ΨHF, 𝐸MP 0 ≡ 𝐸(0) =
𝑁

∑
𝑖=1

𝜀𝑖.

Remark. This can be used for systems of up to 𝑁 ∼ 500 electrons.

• Level 1 (𝜆1 ):

𝐸MP 1 ≡ 𝐸(1) = ⟨ΨHF ∣ ̂𝑉 ∣ ΨHF⟩ = 𝐸HF − (
𝑁

∑
𝑖=1

𝜀𝑖) .

Then
𝐸(0) + 𝐸(1) = 𝐸MP 0 + 𝐸MP1 = 𝐸HF.

• Higher levels:
MP2, MP3, MP4, …

The computational cpomplexity for solving for 2nd-order (MP2), 3rd-order(MP3), etc.
are, respectively, Θ(𝑁5), Θ(𝑁6) (??), Θ(𝑁7). Carrying up to 𝑛-th order gives the exact
solution.

5.2 Full Configuration Interaction
In the full configuration interacting (FCI) method, we use HF orbitals to generate all

possible (or, as many as computationally effective) ΨHF. This produces configuration state
functions (CSFs) {ΨHF

𝑛 }.
From perturbative methods:

̂𝐹ΨHF
𝑛 = 𝐸(0)

𝑛 ΨHF
𝑛 = (

𝑁
∑
𝑖=1

𝜀𝑖) ΨHF
𝑛 .

Example 5.3 (Transition wavefunctions). We can actually construct wavefunctions that de-
scribe the transition of electrons between different orbitals.

• Single excitation (𝑖 → 𝑎 ):

Ψ𝑎
𝑖 = 1√

𝑁!
det (𝜙1, … , 𝜙𝑖−1, 𝜙𝑎, 𝜙𝑖+1, … , 𝜙𝑁) .

• Double excitation (𝑖 → 𝑎, 𝑗 → 𝑏 ):

Ψ𝑎𝑏
𝑖𝑗 = 1√

𝑁!
det (𝜙1, … , 𝜙𝑖−1, 𝜙𝑎, 𝜙𝑖+1, … , 𝜙𝑗−1, 𝜙𝑏, 𝜙𝑗+1, … , 𝜙𝑁) .

And so on and so forth. The states (𝑖, 𝑗, 𝑘, … ) describe occupied states: 1, 2, … , 𝑁 , while the
states (𝑎, 𝑏, 𝑐, … ) describe unoccupied or virtual states: 𝑁 + 1, 𝑁 + 2, … .

Finding the exact solution of FCI determinants is an NP-complete problem , i.e. solutions
can be verified quickly (in polynomial time) but not found quickly.
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Definition 5.1 (NP-complete).

Remark. NP-complete problems also include

Since ̂𝐹 is Hermitian, {ΨHF}𝑛 is a complete basis. This means we can calculate the exact
electronic wavefunction using the expansion

Ψ = ∑
𝑛

𝐶𝑛ΨHF
𝑛 ,

so in principle we can obtain exact solutions to Ψ0 and 𝐸0 using FCI. However, the cost goes
like Θ(𝑒𝛼𝑁), and the limit is around 𝑁 ∼ 20.

Example 5.4 (FCI in practice). We consider the singlet state of the water molecule H2O:

1. Using the 6 − 31𝐺(𝑑) basis (𝑀 = 19) requires ∼ 30 × 106 CSFs.

2. Using the 6 − 311𝐺(2𝑑, 2𝑝) basis (𝑀 = 41 ) requires ∼ 106 × 109 CSFs. This is already
over limit for classical computers and even quantum computers!

3. Take the limit 𝑀 → ∞ gives the exact result and the lowest 𝐸HF prediction.

Remark. The Hartree-Fock energy is an upperbound of the true GS energy, i.e. 𝐸0 ≤ 𝐸HF.

In the above example, we found that it is unfeasible to use FCI to solve even a small
system. In order to make computation easier, we introduce the truncation of FCI, at the cost
of accuracy:

𝐶𝐼𝑆𝐷, 𝐶𝐼𝑆𝐷𝑇 , 𝐶𝐼𝑆𝐷𝑇 𝑄, 𝐶𝐼𝑆𝐷𝑇 𝑄5, … , 𝐶𝐼(𝑆𝐷𝑇 𝑄56 ⋯ 𝑁).

The truncated configuration interaction (TCI) method has size-onconsistency issues. When
solving for the helium dimer. This problem is solved by introducing the coupled-cluster
(CC) theory .

6 Electron Density
Problem of storing wavefunction information: a system of 𝑁 particles has 3𝑁 degrees of

freedom, so it lives in a 3𝐷-dimensional configuration space. There are

(103)𝑁 = 103𝑁

states, so for a small system of 𝑁 ∼ 10 there are ∼ 1030 states to consider. This is beyond any
modern computation capacity.

To solve the problem, we look for another quantity that also uniquely encodes the infor-
mation we need, i.e. ground state energy, and minimise with respect to that quantity. The
quantity is electron (number) density.

The electron density is given by 𝜌 = 𝜌(r), which is 3 dimensional. Question: can we
minimise 𝐸0 as a function of 𝜌, namely,

𝐸0 = min
𝜌

𝐸[𝜌]

subject to ∫ d3𝑟 𝜌(r) = 𝑁?
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6.1 Two Theorems
Theorem 6.1. Given the wavefunction Ψ, electron density 𝜌(r) is determined as a functional
of Ψ.

Theorem 6.2. Given the electron density 𝜌(r), energy 𝐸 is determined as a functional of 𝜌.

6.2 Deriving the Electron Density Relation
Definition 6.1 (density operator). The electron density is, according to quantum mechanics,
the expectation value of some corresponding operator, which we call the electron density operator

̂𝜌. Then

𝜌(r) = ⟨Ψ | ̂𝜌 | Ψ⟩ ,

where

̂𝜌 =
𝑁

∑
𝑖=1

𝛿(r − r𝑖).

Example 6.1 (One-electron system). For a one-electron system,

𝜌(r1) = ∑
𝜎

|Ψ(x1)|2 .

By definition, it is easy to check that

∫ d3𝑟1 𝜌(r) = ∫ d3𝑟 ∑
𝜎

|Ψ(x1)|2 = 1.

Example 6.2 (𝑁 -electron system ). For an 𝑁 -electron system,

𝜌(x1) = 𝑁 ∑
𝜎1,𝜎2,…,𝜎𝑁

∫ d3𝑟2 ∫ d3𝑟3 ⋯ ∫ d3𝑟𝑁 |Ψ(x1, x2, … , x𝑁)|2 .

Then the normalisation is

∫ d3𝑟1 𝜌(r1) = 𝑁 ⋅ 1 = 𝑁,

as expected. This equation can be used to compute 𝜌(r) given some wavefunction Ψ(x1, x2, … , x𝑁).

Recall the definition of the energy functional from Hartree’s method:

𝐸[Φ] ≡ ⟨Φ ∣ 𝐻̂ ∣ Φ⟩
= ⟨Φ ∣ ̂𝑇 ∣ Φ⟩ + ⟨Φ ∣ ̂𝑉 ∣ Φ⟩ + ⟨Φ ∣ ̂𝑈 ∣ Φ⟩
≡ 𝑇 + 𝑉ex + 𝑉int.

(40)
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We will show that the external potential term in 𝐻̂ can be written as a functional of 𝜌(r).

𝑉ex = 𝑉 [Ψ] = ⟨Ψ ∣ ̂𝑉 ∣ Ψ⟩

= ∑
𝜎1,𝜎2,…,𝜎𝑁

∫ d3𝑟1 ∫ d3𝑟2 ⋯ ∫ d3𝑟𝑁 Ψ(x1, … , x𝑁)∗ (
𝑁

∑
𝑖=1

𝑉 (r𝑖)) Ψ(x1, … , x𝑁)

=
𝑁

∑
𝑖=1

∫ d3𝑟𝑖𝑉 (r𝑖) { ∑
𝜎1,𝜎2,…,𝜎𝑁

∫ d3𝑟1 ⋯ ∫ d3𝑟𝑖−1 ∫ d3𝑟𝑖+1 ⋯ ∫ d3𝑟𝑁 |Ψ(x1, … , x𝑁)|2}

=
𝑁

∑
𝑖=1

∫ d3𝑟𝑖𝑉 (r𝑖) { 1
𝑁 𝜌(x𝑖)} = 𝑁 ∫ d3r 𝑉 (r) { 1

𝑁 𝜌(x)}

= ∫ d3r 𝜌(r)𝑉 (r) ≡ 𝑉 [𝜌].

This way, the external potential 𝑉ex is also a functional of 𝜌(r). This is the reason DFT
succeeds.

Example 6.3 (Electron density for an 𝑁 -electron system with SD wavefunction). Given a set
of wavefunctions 𝜙1, 𝜙2, … , 𝜙𝑁 , suppose the wavefunction can be represented as a single Slater
determinant. We obtain

𝜌(r1) =
𝑁

∑
𝑖=1

∑
𝜎𝑖

|𝜙𝑖(x𝑖)|
2 .

Showing that this (kind of intuitive) relation holds is actually not trivial, and requires exmploy-
ing the Slater-Condon rules. The below derivation is my solution to Problem 2 of Homework
1.

Proof. Again assume the 𝑁 -electron wave function is of the form

ΨSL(x1, … , x𝑁) = 1√
𝑁!

∣
∣
∣
∣
∣
∣
∣
∣

𝜙1(𝑥1) 𝜙1(𝑥2) ⋯ 𝜙1(𝑥𝑁)

𝜙2(𝑥1) 𝜙2(𝑥2) ⋯ 𝜙2(𝑥𝑁)

⋮ ⋮ ⋱ ⋮

𝜙𝑁(𝑥1) 𝜙𝑁(𝑥2) ⋯ 𝜙𝑁(𝑥𝑁)

∣
∣
∣
∣
∣
∣
∣
∣

= 1√
𝑁!

det (𝜙1, 𝜙2, … , 𝜙𝑁) .

(41)

For simplicity we denote ΦSL with Ψ from now on.

Again using equ. (22), we can express the determinant more compactly in its expansion
form, which has 𝑁! terms and is organised as follows:

Ψ(x1, … , x𝑁) = 1√
𝑁!

∑
𝜎∈𝑆𝑁

sgn(𝜎)
𝑁

∏
𝑖=1

𝜙𝜎(𝑖)(x𝑖), (42)

where 𝜎 ∈ 𝑆𝑁 is a permutation of the indices (belonging to the permutation group 𝑆𝑁 ), and
sgn accounts for antisymmetry.
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By definition we have

𝜌(r) = ⟨Ψ ∣
𝑁

∑
𝑖=1

𝛿(r − r𝑘) ∣ Ψ⟩

= ∫ d𝑥2 ⋯ ∫ d𝑥𝑁 Ψ∗(x, x2 … , x𝑁)
𝑁

∑
𝑖=1

𝛿(r − r𝑘)Ψ(x, x2, … , x𝑁),
(43)

Since non-interacting operators do not distinguish between electrons, we take 1 as a represen-
tative to get

𝜌(r) = 𝑁 ⟨Ψ | 𝛿(r − r1) | Ψ⟩

= 𝑁 ∫ d𝑥1 ⋯ ∫ d𝑥𝑁 ( 1√
𝑁!

∑
𝜎

sgn(𝜎)
𝑁

∏
𝑖=1

𝜙∗
𝜎(𝑖)(x𝑖)) (𝛿(r − r1)) ( 1√

𝑁!
∑
𝜎′

sgn(𝜎′)
𝑁

∏
𝑗=1

𝜙∗
𝜎′(𝑗)(x𝑗))

= 1
(𝑁 − 1)! ∑

𝜎1,…,𝜎𝑁

∫ d3𝑟1𝛿(r − r1) ∫ d3𝑟2 ⋯ ∫ d3𝑟𝑁 ∑
𝜎

∑
𝜎′

sgn(𝜎) sgn(𝜎′)
𝑁

∏
𝑖=1

𝑁
∏
𝑗=1

𝜙∗
𝜎(𝑖)(x𝑖)𝜙𝜎′(𝑗)(x𝑗)

†= 1
(𝑁 − 1)! ∑

𝜎1,…,𝜎𝑁

∫ d3𝑟1𝛿(r − r1) ∫ d3𝑟2 ⋯ ∫ d3𝑟𝑁 ∑
𝜎

𝑁
∏
𝑖=1

∣𝜙𝜎(𝑖)(x𝑖)∣
2

‡= 1
(𝑁 − 1)! ∑

𝜎1

(𝑁 − 1)! ∫ d3𝑟1 𝛿(r − r1)
𝑁

∑
𝑘=1

|𝜙𝑘(r1)|2

=
𝑁

∑
𝑘=1

∑
𝜎1

∫ d3𝑟1 𝛿(x − x1) |𝜙𝑘(x1)|2 =
𝑁

∑
𝑖=1

∑
𝜎

|𝜙𝑘(x)|2 .

(44)

†: As in problem 1, since {𝜙𝑘} is orthonormal, the integrals over 𝑟2 to 𝑟𝑁 multiply to zero
unless the electrons occupy the same orbital in the two products, i.e. for each 𝜎(𝑖) in the first
product, we have 𝜎′(𝑗) = 𝜎(𝑖) in the second. By the bijectivity of 𝜎 ∶ {1, … , 𝑁} ↔ {1, … , 𝑁},
we know that 𝜎(1) = 𝜎′(1). 𝑗 is just a dummy variable, so we rename it to be 𝜙𝜎′(𝑗)(x𝑗) =
𝜙𝜎(𝑖)(x𝑖).

‡: Electron 1 can occupy each orbital exactly (𝑁 − 1)! times, since with 1 fixed, the
remaining can be permuted in (𝑁 − 1)! ways, giving

∑
𝜎2,…,𝜎𝑁

𝑁
∏
𝑖=1

∫ d3𝑟2 ⋯ ∫ d3𝑟𝑁 ∣𝜙𝜎(𝑖)(x𝑖)∣
2 = 1, (45)

where 𝜎 ∈ 𝑆𝑁−1 is a permutation of 𝑁 − 1 elements.

Example 6.4 (Spin-unrestricted system). The system is described by an 𝛼-channel and a
𝛽-channel, which don’t necessarily share the same spatial wavefunction.

𝜙𝑖(x1) = 𝜙𝑖,𝛼(r𝑖)𝛼(𝜎1), 𝑖 = 1, … , 𝑁𝛼,

or
𝜙𝑖(x1) = 𝜙𝑖,𝛽(r𝑖), 𝑖 = 1, … , 𝑁𝛽.
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Using the formula in example 6.2, we get

𝜌(r1) =
𝑁𝛼

∑
𝑖=1

∑
𝜎1

∣𝜙𝑖,𝛼(r𝑖)𝛼(𝜎1)∣2 +
𝑁𝛽

∑
𝑖=1

∑
𝜎1

∣𝜙𝑖,𝛽(r𝑖)𝛽(𝜎1)∣2 , 𝜎1 = {±1
2}

=
𝑁𝛼

∑
𝑖=1

∣𝜙𝑖,𝛼(r1)∣2 +
𝑁𝛽

∑
𝑖=1

∣𝜙𝑖,𝛽(r1)∣2 ≡ 𝜌𝛼(r1) + 𝜌𝛽(r1)

= ∑
𝜎={𝛼,𝛽}

𝑁𝜎

∑
𝑖=1

∣𝜙𝑖,𝜎(r1)∣2 ≡ ∑
𝜎={𝛼,𝛽}

𝜌𝜎(r1).

Recall that
∑

𝜎1={±1/2}
|𝛼(𝜎1)|2 = 1 + 0 = 1, ∑

𝜎1={±1/2}
|𝛽(𝜎1)|2 = 0 + 1 = 1.

Question: Can we do the same for ̂𝑇 and ̂𝑈?

1. Kinetic energy: In atomic units,

𝑇 = ⟨Ψ ∣ ̂𝑇 ∣ Ψ⟩ =
𝑁

∑
𝑖=1

⟨𝜙𝑖 ∣ ̂𝑇𝑖 ∣ 𝜙𝑖⟩ = ⟨𝜙𝑖 ∣ −∇2

2 ∣ 𝜙𝑖⟩ = 𝑇 [{𝜙𝑖}] ,

as appears in Hartree-Fock theory. Then

𝑇 =
𝑁

∑
𝑖=1

⟨𝜙𝑖 ∣ −∇2

2 ∣ 𝜙𝑖⟩

=
𝑁

∑
𝑖=1

∫ d3𝑥 𝜙𝑖(x)∗ (−∇2

2 ) 𝜙𝑖(x)

= ∑
𝜎={𝛼,𝛽}

𝑁
∑
𝑖=1

⟨𝜙𝑖,𝜎 ∣ −∇2

2 ∣ 𝜙𝑖,𝜎⟩ ,

where the last equality holds if it is a spin-unrestricted system.

Kinetic energy is functional of Ψ, and if Ψ = ΨSD, ⟨𝜙𝑖|𝜙𝑗⟩ = 𝛿𝑖𝑗, it is a funtional of the
orbitals. But in general it is not a functional of 𝜌(r).

2. Interaction potential energy: Again, in atomic units,

𝑈 = 𝑈[Φ] = ⟨Ψ ∣ ̂𝑈 ∣ Ψ⟩ ,
where

̂𝑈 =
𝑁

∑
𝑖<𝑗

1
∣r𝑖 − r𝑗∣

.

If Ψ = ΨSD (single-Slater determinant) and ⟨𝜙𝑖|𝜙𝑗⟩ = 𝛿𝑖𝑗, then

𝑈 = 1
2

𝑁
∑
𝑖,𝑗

{[𝑖𝑖|𝑗𝑗] − [𝑖𝑗|𝑗𝑖]} ≡ 𝐸H + 𝐸X.

Here we define the Hartree energy 𝐸H and the exchange energy 𝐸X , and we shall show
that they are determined by 𝜌 and {𝜙𝑖}, respectively:

𝐸H = 𝐸H[𝜌], 𝐸X = 𝐸X [{𝜙𝑖}] .
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The square braket defines a certain inner product-like integral between the states in
position 1 and position 2:

[𝑖𝑗|𝑘𝑙] ≡ ∫ d𝑥1 ∫ d3𝑥2 𝜙1(x1)∗𝜙𝑗(x1) ( 1
|r1 − r2|) 𝜙𝑘(x2)∗𝜙𝑙(x2).

Then

𝐸H = 1
2

𝑁
∑
𝑖,𝑗

∫ d𝑥1 ∫ d𝑥2
𝜙𝑖(x1)∗𝜙𝑖(x1)𝜙𝑗(x2)∗𝜙𝑗(x2)

|r1 − r2|

= 1
2 ∫ d𝑥1 ∫ d𝑥2

∑𝑁
𝑖=1 |𝜙𝑖(x1)|2 ∑𝑁

𝑗=1 ∣𝜙𝑗(x2)∣2

|r1 − r2|

= 1
2 ∫ d3𝑟1 ∫ d3𝑟2

(∑𝑁
𝑖=1 ∑𝜎2

|𝜙𝑖(x1)|2) (∑𝑁
𝑗=1 ∑𝜎2

∣𝜙𝑗(x2)∣2)
|r1 − r2|

= 1
2 ∫ d3𝑟1 ∫ d3𝑟2

𝜌(r1)𝜌(r2)
|r1 − r2| ≡ 𝐸H[𝜌].

Remark. This is analogous to the classical picture of electrostatic charge density 𝜌(r).
Remark. Hartree energy includes an unphysical self-interaction term. For 𝑖 = 𝑗, we have

1
2

𝑁
∑
𝑖=1

[𝑖𝑖|𝑖𝑖] =
𝑁

∑
𝑖=1

{1
2 ∫ d3𝑟1 ∫ d3𝑟2

𝜌𝑖(r1)𝜌𝑖(r2)
|r1 − r2| }

=
𝑁

∑
𝑖=1

𝐸H[𝜌𝑖] = self-interaction energy.

This will be cancelled by a corresponding term in exchange energy (again, the 𝑖 = 𝑗
term).

Now we work on the exchange term, 𝐸X:

𝐸X = −1
2

𝑁
∑
𝑖,𝑗

[𝑖𝑗|𝑗𝑖] = −1
2

𝑁
∑

,𝑗
∫ d𝑥1 ∫ d𝑥2

𝜙𝑖(x1)∗𝜙𝑗(x1)𝜙𝑗(x2)∗𝜙𝑖(x2)
|r1 − r2|

= −1
2 ∫ d𝑥1 ∫ d𝑥2

{∑𝑁
𝑖 𝜙𝑖(x1)∗𝜙𝑖(x2)} {∑𝑁

𝑗=1 𝜙𝑗(x1)∗𝜙𝑗(x2)}
|r1 − r2| .

For the spin-unrestricted (spin-polarised) case, we let 𝜙𝑖(x) = 𝜙𝑖(r, 𝜎), and 𝜙𝑖(r, 𝜎) =
𝜙𝑖,𝛼(r)𝛼(𝜎) or 𝜙(r, 𝜎) = 𝜙𝑖,𝛽(r)𝛽(𝜎). Here 𝜎 is the electron spin. Then

𝐸X = −1
2 ∑

𝜎∈{𝛼,𝛽}
∫ d3𝑟1 ∫ d3𝑟2

∣∑𝑁
𝑖=1 𝜙𝑖,𝜎(r1)∗𝜙𝑖,𝜎(r2)∣

2

|r1 − r2|

= −1
2 ∑

𝜎∈{𝛼,𝛽}
∫ d3𝑟1 ∫ d3𝑟2

|𝛾𝜎(r1, r2)|2
|r1 − r2| ,

where

𝛾𝜎(r1, r2) =
𝑁𝜎

∑
𝑖=1

𝜙𝑖,𝜎(r1)∗𝜙𝑖,𝜎(r2)

is the 𝜎-spin one-electron reduced density matrix (1-RDM).
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Remark.

Definition 6.2 (RDM in terms of wavefunctions).

(a) One-electron spin-orbital RDM:

𝛾(x1, x′
1) ≡ 𝑁 ∫ d𝑥2 ⋯ ∫ d𝑥𝑁 Ψ(𝑥′

1, x2, … , x𝑁)∗Ψ(x1, x2, … , x𝑁). (46)

(b) One-electron RDM (1-RDM):

𝛾(x1, x′
1) ≡ 𝑁 ∑

𝜎1

∫ d𝑥2 ⋯ ∫ d𝑥𝑁 Ψ(r′
1, 𝜎1, x2, … , x𝑁)∗Ψ(r1, 𝜎1, x2, … , x𝑁). (47)

(c) Two-electron RMD (2-RDM): Might need extra constraints. Otherwise the model
may not be variational, since 𝐸2−RDM may be lower than 𝐸0.

(d) Pair-density functional theory.

What is the physical interpretation of these functions?

Similarly, we can define the 𝑁 -electron spin-orbital density matrix:

𝛾𝑁(x1, … , x𝑁 , x′
1, … , x′

𝑁) = Ψ(x1, … , x𝑁)Ψ∗(x′
1, … , x′

𝑁)
= ⟨x1, … , x𝑁 | Ψ⟩ ⟨Ψ | x′

1, … , x′
𝑁⟩

= ⟨x1, … , x𝑁 | ̂𝜌𝑁 |x′
1, … , x′

𝑁⟩ .
(48)

Conclusion: The interaction potential energy can be separated into two parts: Hartree
energy and exchange energy. We have shown that Hartree energy is a functional of 𝜌.

7 Thomas-Fermi Model
The Thomas-Fermi model was separately developed by Thomas and Fermi around 1927.

It is the first density functional theory. In this section we also employ atomic units.

𝐸 = 𝐸[Ψ] = ⟨Ψ ∣ 𝐻̂ ∣ Ψ⟩
= 𝑇 [Ψ] + 𝑉 [Ψ] + 𝑈[Ψ].

When is it possible to write

𝐸 = 𝐸[𝜌] = 𝑇 [𝜌] + 𝑉 [𝜌] + 𝑈[𝜌], (49)

as a sole functional of 𝜌?
In a moment, we will se that while no analytic solution exists for 𝑇 and 𝑈 , we can achieve

this approximately in the Thomas-Fermi model.

For the interaction energy, use the classical picture:

𝑈[𝜌] ≈ 𝐸H[𝜌] = 1
2 ∫ d3𝑟1 ∫ d3𝑟2

𝜌(r1)𝜌(r2)
|r1 − r2| .

Note that in the Thomas-Fermi model they ignored the exchange energy. Fock only introduced
the idea of exchange energy when he formulated the Hartree-Fock theory in 1928. Until then,
Hartree’s equation was the main theory for multi-electron systems.
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For the kinetic energy term, consider a large amount of non-interacting electrons in the
presence of no external fields (𝑉 (r) = 0 ) at absolute zero. This is the ideal Fermi gas
approximation.

Consider a box of free electrons in a square box of length 𝐿, so 𝑉 = 𝐿3. Then we write
the density of uniform electron gas as 𝜌0 = 𝑁

𝑉 . For the spin unpolarised case, we have

𝐸0
𝑁 = 𝑇

𝑁 = 3
5𝜖F = 3

5 (1
2) (3𝜋2𝜌0)2/3 .

But also 𝑇
𝑁 = (𝑇

𝑉 ) ( 𝑉
𝑁 ) = 𝑡

𝜌0
,

where
𝑡 = 𝑇

𝑉 = 3
10 (3𝜋2)2/3 𝜌5/3

0 = 𝐶𝐹 𝜌5/3
0

is the kinetic energy density.

Then we assume that 𝑡(r) depends only on the local density 𝜌(r) . This is the local
density (LD) approximation, i.e.

𝑡TF(r) ≡ 𝑡UEG(𝜌(r)) = 𝐶𝐹 𝜌(r)5/3.

Then
𝑇 TF[𝜌] = ∫ d3𝑟 𝑡TF(r) = 𝐶𝐹 ∫ d3𝑟 𝜌(r)5/3.

Remark. The TF model is also the first LDA model.

For the spin-unrestricted case, we can make the following alterations, called the spin-scaling
relation:

𝑇 TF[𝜌𝛼, 𝜌𝛽] = 1
2 (𝑇 TF[2𝜌𝛼] + 𝑇 TF[2𝜌𝛽]) .

Collecting the result of the above approximations, we have the full funtional 𝐸[𝜌] written as

𝐸[𝜌] = 𝑇 TF[𝜌] + ∫ d3𝑟 𝜌(r)𝑉 (r) + 𝐸H[𝜌]

= 𝐶𝐹 ∫ d3𝑟 𝜌(r)5/3 + ∫ d3𝑟 𝜌(r)𝑉 (r) + 1
2 ∫ d3𝑟1 ∫ d3𝑟2

𝜌(r1)𝜌(r2)
|r1 − r2| .

(50)

7.1 Solving the variational problem
We have the following variation problem to solve:

𝛿
𝛿𝜌(r) {𝐸[𝜌] − 𝜇 [∫ d3𝑟 𝜌(r) − 𝑁]} = 0.

Here we give an example calculation for the kinetic energy functional.

Example 7.1 (Kinetic energy functional). Let 𝐹[𝜌] = 𝑇 TF[𝜌] = 𝐶𝐹 ∫ d3𝑟 𝜌(r)5/3.

Solving the above variational equation (use the Euler-Lagrange equation), we get

𝜇 = 𝛿𝐸[𝜌]
𝛿𝜌(r) ,
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which is exactly the chemical potential, as shown here: Recall the definition of the chemical
potential:

(chemical potential) = ( 𝜕𝐸
𝜕𝑁 ) = (𝜕𝐸[𝜌(r)]

𝜕𝑁 )

= ∫ d3𝑟 𝛿𝐸[𝜌]
𝛿𝜌(r)

𝜕𝜌(r)
𝜕𝑁

= 𝜇 ∫ d3𝑟 𝜕𝜌(r)
𝜕𝑁

= 𝜇 𝜕
𝜕𝑁 (∫ d3𝑟𝜌(r)) = 𝜇,

where the second equality follows from the first Hohenberg-Kohn theorem, which states that
GS energy is uniquely determined by electron number density.

This is an orbital-free density functional theory, which is the original DFT (notice
that the derivation does not refer to orbitals).

Remark. The complexity of this method is said to be 𝑂(𝑁).
The interaction integral appears at first sight to be of order 𝑂(𝑀2), where 𝑀 is the number

of grid points. However, we can approximately lower it to 𝑂(𝑀) using the following methods:

1. Fourier transform: The integral is in the form of a convolution integral, so we can do the
following procedure:

Fourier transform → scalar multiplication → Inverse Fourier transform

Using fast Fourier transform we can reduce the cost to ∼ 𝑂(𝑀 log𝑀) ≈ 𝑂(𝑀).
2. Poisson equation:

Thus TF theory has very low computational complexity 𝑂(𝑁) , but it is not accurate
enough for most applications in condensed state physics. For example, the TF model predicts
no binding between electrons, and the inter-atomic force is repulsive regardless of distance
(Teller’s theorem, Rev. Mod. Phys. 34, 627 (1962)).

Example 7.2 (Coulomb potential). Consider the potential as a functional of electron density:

𝑉 [𝜌] = ∫ d3𝑟′ 𝜌(r′)
|r′| .

Example 7.3 (Electron-electron interaction energy). Consider the functional

𝐽[𝜌] = 1
2 ∫ d3𝑟 ∫ d3𝑟′ 𝜌(r)𝜌(r′)

|r − r′| .

Example 7.4 (One-electron system). The kinetic energy of a single-electron system can be
written in its von Weizsacker form:

𝑇 = 𝑇 W = 1
8 ∫ d3𝑟 |∇𝜌(r)|2

𝜌(r) . (51)
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This may be regarded as the energy of a bosonic ground state, since all particles are condensed
into the same orbital. Define the kinetic energy density 𝑡W to be

𝑡W ≡ 1
8

|∇𝜌(r)|2
𝜌(r) ⟹ 𝑇 W = ∫ d3𝑟 𝑡W.

After some calculation, it can be shown that

𝛿𝑇 W

𝛿𝜌(r) = 1
8

|∇𝜌(r)|2
𝜌(r) − 1

4
∇2𝜌(r)

𝜌(r) .

However, the von Weizsäcker kinetic energy is not accurate. To make more accurate
predictions, we can make the following modification to the kinetic energy density term, called
the TFW model.

Example 7.5 (TFW model). Define the kinetic energy as

𝑇 TFW ≡ 𝑇 TF + 𝑇 W.
Here 𝑇 W is the von Weizsäcker kinetic energy functional. This form binds atoms. Disappointly,
the kinetic energy predicted by this approach is not much better than the original TF model,
e.g. the results for Ar dimers are 29% below the experimental value.

Example 7.6 (TF1
9W model). Another similar kinetic energy functional that has been shown

to bind atoms is given by
𝑇 TF 1

9 W ≡ 𝑇 TF + 1
9𝑇 W.

This model is exact for long-wavelength perturbations, and gives the correct second-order gra-
dient expansion correction to the TF functional. However, energy predictions are again inac-
curate.

Similarly, the more general combination

𝑇 TF𝜆W ≡ 𝑇 TF + 𝜆𝑇 W

has been investigated. All TF𝜆W models predict a finite 𝜌 at the nucleus, and exponential
decay far away. However, only at 𝜆 = 1 is the correct exponential decay constant predicted
(Cf. Jeng-Da Chai; Weeks, John D. (2004). Modified statistical treatment of kinetic energy in
the Thomas-Fermi model.)

8 Hohenberg-Kohn Theorem
Recall the various assumptions used in the Thomas-Fermi model of section 7:

1. We assumed 𝐸 is a sole functional of 𝜌.
2. We assumed the desired ground state energy is 𝐸0 = min𝜌 𝐸[𝜌] subject to ∫ d3𝑟 𝜌(r) = 𝑁 .

3. The expression for energy

𝐸[𝜌] = ∫ d3𝑟 𝜌(r)𝑉 (r) + 𝑇 TF[𝜌] + 𝐸H[𝜌]

is approximate.
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In the Thomas-Fermi model, we used the uniform Fermi gas approximation (a delocalised
picture) to treat the kinetic energy, but assumed LDA on 𝜌(r) to carry out the calculation.
This is inherently contradictory.

The Hohenberg-Kohn theorems put DFT on firm theoretical footing. We state the Hohenberg-
Kohn theorems as follows:

Theorem 8.1 (First Hohenberg-Kohn theorem). Suppose the ground state wavefunction Ψ is
nondegenerate for a system of 𝑁 electrons in the presence of an external potential 𝑉 (r). Then
there is a one-to-one correspondence between the ground state density 𝜌(r) and the external
potential 𝑉 (r), up to a constant. That is,

𝜌(r) one−to−one←−−−−−→ 𝑉 (r) up to a constant.

Proof. We show the two directions of the mapping:

( ⟸ ) Given 𝑉 (r), the Hamiltonian is determined, so we have a Schrödinger equation to
solve. Solving

𝐻̂Ψ = [ ̂𝑇 + ̂𝑉 + ̂𝑈] Ψ
gives the wavefunction Ψ uniquely up to a phase factor, so

𝜌(r) = 𝑁 ∫ d3𝑟2 ⋯ ∫ d3𝑟𝑁 Ψ∗(r1, … , r𝑁)Ψ(r1, … , r𝑁)

is uniquely determined up to an integration constant. Here we used the fact that the ground
state is non-degenerate.

( ⟹ ) Assume by way of contradition that there are two potentials 𝑉𝑎(r), 𝑉𝑏(r) differing
by more than a constant that produce the same 𝜌(r).

Let 𝐻̂𝑎 ≡ ̂𝑇 + ̂𝑉𝑎 + ̂𝑈 , 𝐻̂𝑏 = ̂𝑇 + ̂𝑉𝑏 + ̂𝑈 . Then assume their ground state energy is 𝐸𝑎,
𝐸𝑏, given by

𝐻̂𝑎 |Ψ𝑎⟩ = 𝐸𝑎 |Ψ𝑎⟩ , 𝐻̂𝑏 |Ψ𝑏⟩ = 𝐸𝑏 |Ψ𝑏⟩ .

Assume again by way of contradiction that |Ψ𝑎⟩ is an eigenstate of 𝐻̂𝑏, and 𝐻̂𝑏 |Ψ𝑎⟩ =
̃𝐸𝑎 |Ψ𝑎⟩. Subtracting gives

(𝐻̂𝑎 − 𝐻̂𝑏) |Ψ𝑎⟩ = ( ̂𝑉𝑎 − ̂𝑉𝑏) |Ψ𝑎⟩ = (𝐸𝑎 − ̃𝐸𝑎) |Ψ𝑎⟩ .
So

[
𝑁

∑
𝑖=1

𝑉𝑎(r𝑖) −
𝑁

∑
𝑖=1

𝑉𝑏(r𝑖)] Ψ𝑎(x1, … , x𝑁) = (𝐸𝑎 − ̃𝐸𝑎)Ψ𝑎(x1, … , x𝑁),

which is a contradiction since the left hand side is a function of r while the right hand side
isn’t. Thus |Ψ𝑎⟩ is not an eigenstate of 𝐻̂𝑏. By the same reasoning, |Ψ𝑏⟩ is not an eigenstate
of 𝐻̂𝑎.

By the Rayleigh-Ritz variational principle,

𝐸𝑎 = ⟨Ψ𝑎 ∣ 𝐻̂𝑎 ∣ Ψ𝑎⟩ < ⟨Ψ𝑏 ∣ 𝐻̂𝑎 ∣ Ψ𝑏⟩
= ⟨Ψ𝑏 ∣ 𝐻̂𝑏 + ̂𝑉𝑏 − ̂𝑉𝑎 ∣ Ψ𝑏⟩

= 𝐸𝑏 + ∫ d3𝑟 𝜌(r)𝑉𝑏(r) − ∫ d3𝑟 𝜌(r)𝑉𝑎(r)

= 𝐸𝑏 + ∫ d3𝑟 𝜌(r) [𝑉𝑏(r) − 𝑉𝑎(r)] .
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Exchanging the role of 𝑎 and 𝑏:

𝐸𝑏 < 𝐸𝑎 + ∫ d3𝑟 𝜌(r) [𝑉𝑎(r) − 𝑉𝑏(r)] .

Add the two inequalities to get
𝐸𝑎 + 𝐸𝑏 < 𝐸𝑏 + 𝐸𝑎,

thus the contradiction.

Remark. The proof seems very general. Can we extend the result to any functional of the
wavefunction Ψ, as 𝜌(r) = 𝜌[Ψ(r)] itself is?

By the first Hohenberg-Kohn theorem, we get the following result: the external potential
𝑉 (r), the wavefunction Ψ, and the density 𝜌(r) are equally capable of representing a physical
system. That 𝜌(r) can fully characterise a system is the foundation of density functional theory.

The first Hohenberg-Kohn theorem isn’t enough to determine the ground state density in
practice, since it only applies if we could guess at the correct 𝜌(r). The second Hohenberg-Kohn
theorem gives a way to find the correct ground state energy.

Theorem 8.2 (Second Hohenberg-Kohn theorem). The electron density that minimises the
energy of the overall functional 𝐸[𝜌] is the true ground state electron density corresponding to
the full solutions of the Schrödinger equation. That is,

𝐸[𝜌] ≥ min
𝜌

𝐸[𝜌] = 𝐸0.

where the minimisation is subject to ∫ d3𝑟 𝜌(r) = 1.

Proof. Suppose 𝜌T(r) is a trial density, and 𝜌(r) is the true ground state density. By theorem
8.1, if 𝜌T(r) ≠ 𝜌(r), their corresponding potentials 𝑉T(r) and 𝑉 (r) differ by more than a
constant, and their corresponding states |ΨT⟩ and |Ψ⟩ differ by more than a phase factor.

Then

𝐸[𝜌T] = 𝐸[ΨT] = ⟨ΨT ∣ 𝐻̂ ∣ ΨT⟩
≤ ⟨Ψ ∣ 𝐻̂ ∣ Ψ⟩ = 𝐸 = 𝐸[𝜌]

= 𝑇 [𝜌] + ∫ d3𝑟 𝜌(r)𝑉 (r) + 𝑈[𝜌].

So, for all possible 𝜌(r), we have

𝐸[𝜌] ≥ min
𝜌′

𝐸[𝜌′] = 𝐸[𝜌] = 𝐸0.

In theorem 8.1 and theorem 8.2, 𝜌(r) must be the ground state density of some external
potential 𝑉 (r).
Remark. Noticce that the second Hohenberg-Kohn theorem is very much like the Rayleigh-Ritz
variational method, but now we are confining the search to only a subset of the space of all
possible 𝜌(r). In particular, we are searching under the condition that 𝜌(r) is normalised.

Definition 8.1 (𝑣-representability). In the above discussion, 𝜌 must be the non-degenerate
ground state density of some external potential. Such a density 𝜌(r) is called 𝑣-representable.
However, not all 𝜌 has to be 𝑣-representable.
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8.1 Levy Constrained-Search Formulation
This method is based on the Rayleigh-Ritz variational method, and was developed in 1982.

Consider the following optimisation problem:

𝐸0 = min
Φ

𝐸[Φ] = min
Φ

⟨Φ ∣ ̂𝑇 + ̂𝑉 + ̂𝑈 ∣ Φ⟩ .

This can be written as a minimisation problem with respect to 𝜌:

𝐸0 = min
𝜌

{min
Φ→𝜌

[⟨Φ ∣ ̂𝑉 ∣ Φ⟩ + ⟨Φ ∣ ̂𝑇 + ̂𝑈 ∣ Φ⟩]} . (52)

Here we search for all possible trial 𝑁 -electron wavefunction Φ that yield a given 𝑁 -representable
𝜌, and minimise {⋯}. Then we search for all possible 𝑁 -representable density 𝜌 that minimises
[⋯]. The inner minimisation is possible because given 𝜌, Φ = Φ[𝜌] is a functional of 𝜌. Then

𝐸0 = min
𝜌

{min
Φ→𝜌

[∫ d3𝑟 𝜌(r)𝑉 (r) + ⟨Φ ∣ ̂𝑇 + ̂𝑈 ∣ Φ⟩]}

= min
𝜌

{∫ d3𝑟 𝜌(r)𝑉 (r) + min
Φ→𝜌

[⟨Φ ∣ ̂𝑇 + ̂𝑈 ∣ Φ⟩]}

≡ min
𝜌

{∫ d3𝑟 𝜌(r)𝑉 (r) + 𝐹 [𝜌]}

= 𝐸[𝜌].

The 𝜌 does not have to be the non-degenerate ground state of some external potential.
That is, 𝜌 does not have to be 𝑣-representable, but only 𝑁 -representable. Practicality of this
method is limited.

If the exact universal functional 𝐹[𝜌] can be found, we can minimise 𝐸[𝜌] subject to the
constraint ∫ d3𝑟 𝜌(r)𝑉 (r) = 𝑁 :

𝛿
𝛿𝜌(r) [𝐸𝜌 − 𝜇 (∫ d3𝑟 𝜌(r)𝑉 (r) − 𝑁)] = 0,

⟹ 𝜇 = 𝛿𝐸[𝜌]
𝛿𝜌(r) = 𝑉 (r) + 𝛿𝐹 [𝜌]

𝛿𝜌(r) .

The physical significance of 𝜇 is simply

⟹ 𝜌0(r), 𝐸0 = 𝐸[𝜌0].

The main problem of determining the 𝐹[𝜌] lies in the difficulty of finding the correct kinetic
energy functional. Now we can restate the two HK theorems as follows: If the ground state
wavefunction is nondegenerate, then

1. 𝐸 = 𝐸[𝜌] = ∫ d3𝑟 𝜌(r)𝑉 (r) + 𝐹 [𝜌].
2. The ground state energy is given by 𝐸0 = min𝜌 𝐸[𝜌], and the Lagrange multiplier is

𝜇 = 𝛿𝐸[𝜌]
𝛿𝜌(r) = 𝑉 (r) + 𝛿𝐹 [𝜌]

𝛿𝜌(r) .
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9 Kohn-Sham Method
The Kohn-Sham method was developed in 1965 in a paper by Walter Kohn and Lu Jeu

Sham. ”Kohn received a Nobel Prize in Chemistry in 1998 for the Kohn-Sham equations and
other work related to density functional theory (DFT).”

In my opinion, it is unfortunate that Sham and Hohenberg were not awarded that year’s
Nobel prize alongside Kohn. Instead, the other half of that year’s prize was awarded to John
Pople, for the development of ab initio calculations in quantum chemistry. I think this is a good
start of a conversation on the scientific culture shaped by the Nobel Prize Committee, which
almost too often exemplifies the image of individual genius and undermines the importance of
the collective scientific machinery.

9.1 Exchange-Correlation Energy
The principle goes as follows: for a physical system with external potential 𝑉 (r), we find a

Kohn-Sham reference system, which is an 𝑁 -particle non-interacting system. We suppose
that we can find an effective potential 𝑉eff for the reference system such that the ground state
density 𝜌S(r) is the same as that of the physical system 𝜌(r) .

A natural question to ask now is: what is 𝑉eff? This question may be answered as follows:
Since the Hohenberg-Kohn theorems are applicable to both systems, for the reference system
we have

𝐸S[𝜌S] = ∫ d3𝑟 𝜌S(r)𝑉 (r) + 𝐹S[𝜌S].

Here 𝐹S[𝜌S] = ⟨Φ ∣ ̂𝑇 ∣ Φ⟩ ≡ 𝑇S[𝜌S] is the non-interacting kinetic energy functional. Then by
the Euler equation we have

𝜇S = 𝛿𝐸S[𝜌S]
𝛿𝜌S(r) = 𝑉eff(r) + 𝛿𝑇S[𝜌S]

𝛿𝜌S(r) .

For the physical system, we have

𝐸 = 𝐸[𝜌] = ∫ d3𝑟 𝜌(r)𝑉 (r) + 𝐹 [𝜌],

where 𝐹[𝜌] = ⟨Ψ ∣ ̂𝑇 + ̂𝑈 ∣ Ψ⟩ = 𝑇 S[𝜌] + 𝐸H[𝜌] + (𝐹 [𝜌] − 𝑇 S[𝜌] − 𝐸H[𝜌]), and we define the
term in parenthesis as the exchange-correlation energy functional 𝐸XC[𝜌]. By the Euler
equation, we get

𝜇 = 𝛿𝐸[𝜌]
𝛿𝜌(r) = 𝑉 (r) + 𝛿𝑇 S[𝜌]

𝛿𝜌(r) + 𝛿𝐸H[𝜌]
𝛿𝜌(r) + 𝛿𝐸XC[𝜌]

𝛿𝜌(r) .

By our assumption, 𝜌(r) = 𝜌S(r), so subtracting gives

𝜇S − 𝜇 = 𝑉eff(r) − [𝑉 (r) + 𝛿𝐸H[𝜌]
𝛿𝜌(r) + 𝛿𝐸XC[𝜌]

𝛿𝜌(r) ]

⟹ 𝑉eff(r) = 𝑉 (r) + 𝛿𝐸H[𝜌]
𝛿𝜌(r) + 𝛿𝐸XC[𝜌]

𝛿𝜌(r) + const.

Here we can without loss of generality (really!) set that constant equal to 0, since there is a
degree of freedom induced by (*). Note that without the assumption that 𝜌 = 𝜌S, it is not even
guaranteed that 𝐸XC[𝜌] is defined.

There are three assumptions used in the identification of the physical system with the
chosen Kohn-Sham reference system:
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• The Hohenberg-Kohn theorems hold for the physical system

• The Hohenberg-Kohn theorems hold for the reference system

• The ground state density of the reference system 𝜌S(r) is equal to that of the physical
system 𝜌(r).

Remark. The Kohn-Sham scheme relies on the construction of reliable exchange-correlation
(XC) functionals for accuracy.

Definition 9.1 (Exchange-correlation energy functional). The exchange-correlation energy
functional 𝐸XC[𝜌] of a system under the Kohn-Sham scheme quantifies the deviation of the
system from the Hartree energy functional. It is given by

𝐸XC[𝜌] ≡ 𝐹 [𝜌] − 𝑇 S[𝜌] − 𝐸H[𝜌]
= ⟨Ψ ∣ ̂𝑇 + ̂𝑈 ∣ Ψ⟩ − ⟨Φ ∣ ̂𝑇 ∣ Φ⟩ − 𝐸H. (53)

9.2 Solving the Kohn-Sham Equations
The upside of using a . So now we instead solve the Schrödinger equation for the Kohn-

Sham reference system, which is composed of single-electron wavefunctions. Consider the
Hamiltonian

𝐻̂S = ̂𝑇 + ̂𝑉eff =
𝑁

∑
𝑗=1

(−∇2
𝑗

2 ) +
𝑁

∑
𝑗=1

𝑉eff(r𝑗). (54)

We introduce the single-particle Hamiltonian, as in section (), and write

𝐻̂S =
𝑁

∑
𝑗=1

ℎ̂(r𝑗), (55)

where
ℎ̂(r) ≡ −∇2

2 + 𝑉eff(r), (56)

and ℎ̂ satisfies the Schrödinger-like equation (this is not actually a Schrödinger equation in
the usual sense, since the wavefunctions are Kohn-Sham orbitals, and do not correspond to
anything physical)

ℎ̂(r)𝜙𝑖(x) = 𝜖𝑖𝜙𝑖(x). (57)
Here x = (r, 𝜎), and the orbital energy 𝜖𝑖 is ordered as 𝜖1 ≤ 𝜖2 ≤ 𝜖3 ≤ ⋯.

To sum up, the three steps to carry out the calculations are:

(A) Effective potential:

𝑉eff(r) = 𝑉 (r) + 𝛿𝐸H[𝜌]
𝛿𝜌(r) + 𝛿𝐸XC[𝜌]

𝛿𝜌(r) .

(B) Solve the Kohn-Sham equations with the given Hamiltonian:

{−∇2

2 + 𝑉eff(r)} 𝜙𝑖(x) = 𝜖𝑖𝜙𝑖(x),

where 𝜖1 ≤ 𝜖2 ≤ ⋯.

(C) Calculate density as

𝜌(r) =
𝑁

∑
𝑖=1

∑
𝜎

|𝜙𝑖|
2 .
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The goal is to avoid solving Schrödinger’s equation for the physical system, which may
include interactions, but it is alright to solve the Schrödinger equation for the Kohn-Sham
system.

Search for all possible effective potential, we get the non-interacting Hamiltonian. Then
we can diagonalise the Hamiltonian for the 𝑛 orbitals with smallest eigenvalues. Then we can
calculate the Kohn-Sham ground state density 𝜌 with the corresponding orbitals.

Chai: ”𝜌 must come from some 𝑣-representable, non-inetracting orbitals.”

Chai: ”the need for nondegeneracy is manifest here: because of the nondegeneracy of
ground state wavefunction, we can write Φ as one single Slater determinant.”

9.3 Hellmann-Feynman Theorem
Proposed independently in 1937 by Hellman and R. P. Feynman (Phys Rev 56, 340 (1939)

Force in Molecules). For a Hamiltonian dependent on some continuous variable 𝜆, the theorem
gives the expectation value of the derivative of the Hamiltonian with respect to 𝜆.
Theorem 9.1 (Hellmann-Feynman theorem). Let 𝐻̂𝜆 be a Hamiltonian operator depending
upon a continuous parameter 𝜆, satisfying

𝐻̂𝜆 |Ψ𝜆⟩ = 𝐸𝜆 |Ψ𝜆⟩ .
Then

𝑑𝐸𝜆
𝑑𝜆 = ⟨Ψ𝜆 ∣ 𝑑𝐻̂𝜆

𝑑𝜆 ∣ Ψ𝜆⟩ . (58)

Proof. First notice that ⟨Ψ𝜆 | Ψ𝜆⟩ is normalised at all times, so

⟨Ψ𝜆 | Ψ𝜆⟩ = 1 ⟹ d
d𝜆 ⟨Ψ𝜆 | Ψ𝜆⟩ = 0.

For simplicity of notation, from now on 𝜆-dependence of the Hamiltonian 𝐻̂𝜆 and wave-
function Ψ𝜆 is implied, so all 𝜆 subscripts are neglected. Differentiate the energy expectation
value with respect to 𝜆:

d𝐸𝜆
d𝜆 = d

d𝜆 ⟨Ψ ∣ 𝐻̂ ∣ Ψ⟩

= ⟨dΨ
d𝜆 ∣ 𝐻̂ ∣ Ψ⟩ + ⟨Ψ ∣ d𝐻̂

d𝜆 ∣ Ψ⟩ + ⟨Ψ ∣ 𝐻̂ ∣ dΨ
d𝜆 ⟩

= 𝐸 (⟨dΨ
d𝜆 ∣ Ψ⟩ + ⟨Ψ ∣ dΨ

d𝜆 ⟩) + ⟨Ψ ∣ d𝐻̂
d𝜆 ∣ Ψ⟩

= ⟨Ψ ∣ d𝐻̂
d𝜆 ∣ Ψ⟩ .

Example 9.1 (Appliaction of the Hellmann-Feynman theorem). Consider a system whose
energy changes as a function of some continuous variable 𝜆. Then we have

𝐸𝜆=1 − 𝐸𝜆=0 = ∫
1

0
d𝜆 d𝐸𝜆

d𝜆 = ∫
1

0
d𝜆 ⟨Ψ𝜆 ∣ 𝐻̂𝜆 ∣ Ψ𝜆⟩ .
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By the Hellmann-Feynman theorem, we then deduce that

𝐸𝜆=1 − 𝐸𝜆=0 = ⟨Ψ𝜆 ∣ 𝐻̂𝜆 ∣ Ψ𝜆⟩
𝜆=1

− ⟨Ψ𝜆 ∣ 𝐻̂𝜆 ∣ Ψ𝜆⟩
𝜆=0

.

It is useful to introduce the following correlation function.

Definition 9.2 (Pair correlation function). The electron pait correlation function (PCF) is
given by

Π(r1, r2) = 𝑁(𝑁 − 1) ∑
𝜎1,𝜎2

∫ d𝑥3 ∫ d𝑥4 ⋯ ∫ d𝑥𝑁 Ψ∗(x1, x2, … , x𝑁)Ψ(x1, x2, … , x𝑁). (59)

The Π(r1, r2) thus defined is proportional to the probability density of finding one electrom at
r1 and another at r2.

Remark. We will introduce the following fun notation convention for dealing with these inte-
grals of many variables, where we leave out integration with respect to certain indices in the
sequences.

For an integral with respect to all subscripts except the 𝑖- and 𝑗-th indices, we shall write

∫ d𝑥1 ⋯ ∫ d𝑥𝑖−1 ∫ d𝑥𝑖+1 ⋯ ∫ d𝑥𝑗−1 ∫ d𝑥𝑗+1 ⋯ ∫ d𝑥𝑁 ≡ ∫ ⋯ ∫ (d𝑥1d𝑥2 ⋯ d𝑥𝑁
d𝑥𝑖d𝑥𝑗

) . (60)

For example, in the above definition of the pair correlation function (equ. (59)), we can
instead write

Π(r1, r2) = 𝑁(𝑁 − 1) ∑
𝜎1,𝜎2

∫ ⋯ ∫ (d𝑥1d𝑥2 ⋯ d𝑥𝑁
d𝑥1d𝑥2

) Ψ∗(x1, x2, … , x𝑁)Ψ(x1, x2, … , x𝑁)

= 𝑁(𝑁 − 1) ∑
𝜎1,𝜎2

∫ ⋯ ∫ (d𝑥3d𝑥4 ⋯ d𝑥𝑁) Ψ∗(x1, x2, … , x𝑁)Ψ(x1, x2, … , x𝑁).

Now, we will work on the interaction potential term using the pair correlation function.
The interaction potential is given by

𝑈 = 𝑈[Ψ] = ⟨Ψ ∣ ̂𝑈 ∣ Ψ⟩ ,

where

̂𝑈 =
𝑁

∑
𝑖<𝑗

1
|r1 − r2| ≡

𝑁
∑
𝑖<𝑗

1
𝑟𝑖𝑗

= 1
2

𝑁
∑
𝑖=1

𝑁
∑
𝑗≠𝑖

1
𝑟𝑖𝑗

.

We will do the following manipulation to express the interaction energy in terms of the pair
correlation function:

𝑈 = ⟨Ψ ∣ ̂𝑈 ∣ Ψ⟩ = 1
2

𝑁
∑
𝑖=1

𝑁
∑
𝑗≠𝑖

⟨Ψ ∣ 1
𝑟𝑖𝑗

∣ Ψ⟩

= 1
2

𝑁
∑
𝑖=1

𝑁
∑
𝑗≠𝑖
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Remark. A note on the notation: it is difficult to type out big-sigma summation (Σ) with a
prime, i.e. Σ′, in math mode, so the abbreviation

Σ′ ≡
𝑁

∑
𝑖=1

𝑁
∑
𝑗≠𝑖

will be written out in its full form.

If we know 2-RDN, then we can derive everything (?). But the problem is how to get the
2-RDN in the first place -> search for all 2-RDN that come from 𝑁 -electron wave fcuntions.
So: Exact functional of PCF.

Remark. Does a Kohn-Sham model system exist for all physical electron systems? This (open)
question is equivalent to asking whether electron densities of real physical systems are always
noninteracting 𝑣-representable.

9.4 Revisiting Correlation Energy
We can rephrase the problem of solving the Schrödinger equation in the language of per-

turbation theory. That is, we introduce the interaction energy as a perturbation to the nonin-
teracting Hamiltonian.

𝐻̂𝜆 = ̂𝑇 + ̂𝑉𝜆 + 𝜆 ̂𝑈, (61)
where

𝐻̂𝜆 |Ψ𝜆⟩ = 𝐸𝜆 |Ψ𝜆⟩ , 0 ≤ 𝜆 ≤ 1.

Recall that we define the exchange-correlation energy functional 𝐸XC[𝜌] as the deviation
of the interaction energy from the Hartree energy, i.e.

𝐸XC[𝜌] = ∫
1

0
d𝜆 ⟨Ψ𝜆 ∣ ̂𝑈 ∣ Ψ𝜆⟩ − 𝐸H[𝜌].

Define the quantity

∫
1

0
d𝜆 Π𝜆(r1, r2)

to be the average pair correlation function,

∫
1

0
d𝜆 Π𝜆(r1, r2) ≡ Π𝑎𝑣𝑒(r1, r2). (62)

Using the notation from last section, we have

𝐸XC[𝜌] = 1
2 ∫ d3𝑟1 ∫ d3𝑟2

1
𝑟12

{∫
1

0
d𝜆 Π𝜆(r1, r2) − 𝜌(x1)𝜌(x2)}

= 1
2 ∫ d3𝑟1 ∫ d3𝑟2

1
𝑟12

{Πave(r1, r2) − 𝜌(r1)𝜌(r2)}

= 1
2 ∫ d3𝑟1 ∫ d3𝑟2

𝜌(r1)ℎXC(r1, r2)
𝑟12

,

where we further define
ℎXC(r1, r2) = Πave(r1, r2)

𝜌(r1) − 𝜌(r2).

This quantity has many interesting properties, so we give it a name.
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Definition 9.3 (Exchange hole). Given the electron density 𝜌(r) and the electron pair corre-
lation function Π(r1, r2), we first define the average pair correlation function

∫
1

0
d𝜆 Π𝜆(r1, r2). (63)

Then we can define the exchange-correlation hole, written as

ℎXC(r1, r2) = Πave(r1, r2)
𝜌(r1) − 𝜌(r2). (64)

The exchange-correlation (XC) hole describes the reduction in the probability of finding
two electrons at the same position in space due to exchange and correlation effects. I.e. since
the electron is a fermion, the probability of finding an electron is affected by the presence of
another electron.

In the spin-polarised case, we consider the decomposition of 𝜌(r) into its spatial part and
its spin part, where unlike previous notation we leave out the overline of 𝜌𝜎:

𝜌(r) = ∑
𝜎∈{𝛼,𝛽}

𝜌𝜎(r).

Then

𝜌(r1)𝜌(r2) = ⎛⎜
⎝

∑
𝜎∈{𝛼,𝛽}

𝜌𝜎(r1)⎞⎟
⎠

⎛⎜
⎝

∑
𝜎′∈{𝛼,𝛽}

𝜌𝜎′(r2)⎞⎟
⎠

= ∑
𝜎,𝜎′∈{𝛼,𝛽}

𝜌𝜎(r1)𝜌𝜎′(r2).

Also,

Π𝜆(r1, r2) = ∑
𝜎1,𝜎2∈{± 1

2 }
[𝑁(𝑁 − 1) ∫ d3𝑟3 ⋯ ∫ d3𝑟𝑁 |Ψ(x1, x2, … , x𝑁)|2]

= ∑
𝜎1,𝜎2

Π𝜆(x1, x2)

= ∑
𝜎1,𝜎2

Π𝜆((r1, 𝜎1), (r2, 𝜎2))

= ∑
𝜎,𝜎′∈{𝛼,𝛽}

Π𝜎,𝜎′

𝜆 (r1, r2).

In our derivation above, we find that it makes things easier if we define a more general
form of the exchange-correlation hole in equation (64), so we introduce the following definition:

Π𝜆(r1, r2) = ∑
𝜎,𝜎′

Π𝜎,𝜎′

𝜆 (r1, r2).

The average pair correlation function can in turn be given a more general form in terms
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of its spin-polarised components:

Πave(r1, r2) = ∫
1

0
d𝜆 Π𝜆(r1, r2)

= ∫
1

0
d𝜆 ∑

𝜎,𝜎′
Π𝜎,𝜎′

𝜆 (r1, r2)

≡ ∑
𝜎,𝜎′

Π𝜎,𝜎′
ave (r1, r2).

Finally, we are ready to give a spin-polarised version of the exchange-correlation hole:

𝐸XC = 1
2 ∑

𝜎,𝜎′
∫ d3𝑟1 ∫ d3𝑟2

Π𝜎,𝜎′
ave (r1, r2) − 𝜌𝜎(r1)𝜌𝜎′(r2)

𝑟12

= 1
2 ∑

𝜎,𝜎′
∫ d3𝑟1 ∫ d3𝑟2

𝜌𝜎(r1)ℎ𝜎,𝜎′

XC (r1, r2)
𝑟12

,

where we define the spin-polarised hole (since Chai doesn’t mention an already-established
name for this quantity, this is my own terminology) as

ℎ𝜎,𝜎′

XC = Π𝜎,𝜎′
ave (r1, r2)
𝜌𝜎(r1) − 𝜌𝜎′(r2). (65)

Remark. This is an unfortunate instance of bypassing cumbersome notation at the sacrifice of
notational consistency: ℎXC,𝜎,𝜎′ does not look good, while ℎ𝜎,𝜎′

XC does, so we temporarily forget
our subscript-superscript convention for text descriptions.

Here we list some computation rules for the above-defined exchange-correlation hole func-
tion.

Sum rules:
∫ d3𝑟2 ℎ𝛼,𝛼

XC (r1, r2) = ∫ d3𝑟2 ℎ𝛽,𝛽
XC (r1, r2) = −1,

∫ d3𝑟2 ℎ𝛼,𝛽
XC (r1, r2) = ∫ d3𝑟2 ℎ𝛽,𝛼

XC (r1, r2) = 0,

Therefore
∫ d3𝑟2 ℎ𝜎,𝜎′

XC (r1, r2) = −𝛿𝜎,𝜎′. (66)

Furthermore, from Pauli’s exclusion principle we get

Π𝛼,𝛼
𝜆 (r, r) = Π𝛽,𝛽

𝜆 (r, r) = 0.

This is because the pair correlation function gives the probablity of finding another electron
at place 2 given that an electron already exists at position 1. By Pauli’s exclusion principle,
two electrons cannot occupy the same quantum state (position).

Therefore
ℎ𝜎,𝜎

XC (r, r) = −𝜌𝜎(r). (67)
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The exchange-correlation energy is then

𝐸X = 1
2 ∑

𝜎,𝜎′
∫ d3𝑟1 ∫ d3𝑟2

𝜌𝜎(r1)ℎ𝜎𝜎′
𝑋𝐶(r1, r2)
𝑟12

,

and

ℎ𝜎,𝜎′

X (r1, r2) = 𝛿𝜎,𝜎′ {−|𝛾𝜎(r1, r2)|2
𝜌𝜎(r1) } .

A rough translation of Chai’s quote from the 4/11/2024 lecture: ”DFT is popular definitely
not because it finds an exact expression for the Hamiltonian of electron systems. It is popular
because it strikes a balance between being efficient and being approximately exact.”

9.5 Levy approach
The Levy approach gives us a way to bypass 𝑣-representibility requirements. This in turn

gives us a 𝜆-generalised universal functional:

𝐹𝜆[𝜌] ≡ min
Ψ→𝜌

⟨Ψ[𝜌] ∣ ̂𝑇 + 𝜆 ̂𝑈 ∣ Ψ[𝜌]⟩ = ⟨Ψ𝜆[𝜌] ∣ ̂𝑇 + 𝜆 ̂𝑈 ∣ Ψ𝜆[𝜌]⟩ .

Here Ψ𝜆[𝜌] is the 𝑁 -electron wavefunction that yields a given 𝑁 -representible density 𝜌 and
minimises

⟨Ψ ∣ ̂𝑇 + 𝜆 ̂𝑈 ∣ Ψ⟩ ,
while satisfying the normalisation condition

⟨Ψ𝜆[𝜌] | Ψ𝜆[𝜌]⟩ = 1.

Now we can (partial) differentiate with respect to 𝜆:
𝜕𝐹𝜆[𝜌]

𝜕𝜆 = 𝜕
𝜕𝜆 (⟨Ψ ∣ ̂𝑇 + 𝜆 ̂𝑈 ∣ Ψ⟩)

= ⟨Ψ𝜆 ∣ ̂𝑈 ∣ Ψ𝜆⟩ + 𝜕
𝜕𝜆′ (⟨Ψ𝜆′ ∣ ̂𝑇 + 𝜆 ̂𝑈 ∣ Ψ𝜆′⟩)∣

𝜆′=𝜆
= ⟨Ψ𝜆 ∣ ̂𝑈 ∣ Ψ𝜆⟩ .

In the last equality, the second term vanishes because

⟨Ψ𝜆′ ∣ ̂𝑇 + 𝜆 ̂𝑈 ∣ Ψ𝜆′⟩

attains its minimum at 𝜆′ = 𝜆, so the derivative becomes zero.

Then by integrating we have

∫
1

0
d𝜆 𝜕𝐹𝜆[𝜌]

𝜕𝜆 = 𝐹𝜆=1[𝜌] − 𝐹𝜆=0[𝜌]

= 𝐹 [𝜌] − 𝑇 s[𝜌]
= 𝐸H[𝜌] + 𝐸XC[𝜌]

= ∫
1

0
d𝜆 ⟨Ψ𝜆[𝜌] ∣ ̂𝑈 ∣ Ψ𝜆[𝜌]⟩ .

To proceed with our discussion, we define a density for the energy functional in question,
along the lines of previous methods (refer: Thomas-Fermi enegry).
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Definition 9.4 (Exchange correlation energy density). Given an exchange correlation energy
functional 𝐸XC[𝜌], the corresponding XC energy density is the functional

𝜀XC(r) = 𝜀XC[𝜌(r)]

such that
𝐸XC[𝜌] = ∫ d3𝑟 𝜀XC(r). (68)

Then we can express the density in terms of the exchange-correlation hole we previously
defined.

𝜖XC(r1) = 1
2 ∫ d3𝑟2

𝜌(r1)ℎXC(r1, r2)
𝑟12

= 𝜌(r1)
2 ∫ d3𝑟21

ℎXC(r1, r21)
𝑟21

where in the second equality we defined r21 ≡ r2 − r1 and 𝑟21 ≡ |r21|. Then

𝜀XC(r1) = 𝜌(r1)
2 ∫

∞

0
d3𝑟21 𝑟2

21
∫ dΩ21 ℎXC(r1, r21)

𝑟21

= 𝜌(r1)
2 ∫

∞

0
d3𝑟21 𝑟21ℎAA

XC(r1, r21).

Note that the quantity ℎAA
XC(r1, r21) in the final expression is the angular averaged exchange-

correlation hole, so
ℎAA

XC(r1, r21) ≡ ∫ dΩ21 ℎXC(r1, r21). (69)

10 Discussion of DFT functional approximations
In this section, we list a few approximations to exchange-correlation functionals, and dis-

cuss various aspects of their usefulness and application.

10.1 Jacob’s Ladder
The various approximation methods for the exchange-correlation energy density functoinal

can be summarised in a table which we call ”Jacob’s ladder”.

In Jacob’s Ladder (table 1), the higher up the ladder the higher the accuracy, but lower
the efficiency. The following is a list of comments on and notes for content of the table:

• Density functional approximations on rung 1 and 2 are explicit (pure) density functionals.

• Density functional approximations on rung 1 to 3 are called semilocal functionals. We
will give the precise mathematical definition of local and semilocal functionals in the
paragraph immediately following this section.

• For the MGGA (meta generalised gradient approximation) energy density functional,
we introduce the term 𝜏(r), which stands for the Kohn-Sham kinetic energy density
functional.

• In the fully nonlocal energy density functional, the term {𝜙𝑝} refers to all the Kohn-Sham
orbitals of the system.
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Heaven

Rung 5 Fully Nonlocal 𝜀FNL
XC (𝜌(r), ∇𝜌(r), ∇2𝜌(r), 𝜏(r), 𝜀exact

X (r), {𝜙𝑝(r)})

Rung 4 Hybrid 𝜀hybrid
XC (𝜌(r), ∇𝜌(r), ∇2𝜌(r), 𝜏(r), 𝜀exact

X (r))

Rung 3 MGGA 𝜀MGGA
XC (𝜌(r), ∇𝜌(r), ∇2𝜌(r), 𝜏(r))

Rung 2 GGA 𝜀GGA
XC (𝜌(r), ∇𝜌(r))

Rung 1 LDA 𝜀LDA
XC (𝜌(r))

Earth Hartree Theory 𝜀XC (r) = 0

Table 1: Jacob’s Ladder

• Some functionals do not fit into any of the rungs. The Hartree functional is the most
simple example, but a more sophisticated example will be given later in this section.

Remark. We adopt the following conventoin for naming variables:

Following the comments on the table, it seems now the right time to define preciesly what
we mean by ”local” and ”semilocal” functionals in DFT.

Definition 10.1 (Local and semilocal functionals). Consider a functional Φ, and functions
𝑓 ∶ 𝐴 → 𝐴 ∈ domΦ, then

1. The functional Φ is called local if it can be written as an explicit function of the inde-
pendent variable and 𝑓, i.e.

Φ[𝑓(𝑥)] = Φ (𝑥, 𝑓(𝑥)) . (70)

2. The functional Π is called semilocal if it can be written as an explicit function of the
independent variable and finitely many derivatives of 𝑓, i.e.

Φ[𝑓(𝑥)] = Φ (𝑥, 𝑓(𝑥), 𝑓 ′(𝑥), … , 𝑓 (𝑁)(𝑥)) . (71)

10.2 Local Density Approximation
The local density approximation (LDA) for spin-unpolarised systems was first derived by

Dirac (1930). Refer to Jacob’s Ladder (table (1)), this is rung 1 on the ladder. Consider a
uniform electron gas (from now on denoted by the abbreviation UEG in superscripts) of density
𝑁 inside a volume 𝑉 . The density of UEG is then

𝜌0 = 𝑁
𝑉 , (72)

and similarly we define the exchange energy density as

𝜀UEG
X = 𝐸X

𝑉 . (73)

Remark. As the name itself suggests, in the LDA scheme, we define energy density functionals
as local functionals, whose definition was given in equation (70).
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In the spin-unpolarised case, we have

𝜀UEG
X (𝜌0) = 𝐶X𝜌4/3

0 , 𝐶X = −3
4 ( 3

𝜋)
1/3

.

Then we define the LDA exchange density as

𝜀LDA
X (r) ≡ 𝜀UEG

X (𝜌(r)) = 𝐶X𝜌4/3(r), (74)

and
𝐸LDA

X [𝜌] = ∫ d3𝑟 𝜀LDA
X (r) = 𝐶X ∫ d3𝑟 𝜌4/3(r).

The spin-unpolarised case corresponds to

𝜌𝛼 = 𝜌𝛽 = 𝜌
2,

where 𝜌𝛼 and 𝜌𝛽 are the densities of spins 𝜎 = 𝛼 and 𝜎 = 𝛽. In the case of general spins, i.e.
spin-polarised systems, we can use the following spin-scaling relations

⎧{
⎨{⎩

𝐸X[𝜌𝛼, 𝜌𝛽] = 1
2 (𝐸X[2𝜌𝛼] + 𝐸X[2𝜌𝛽]) , (exchange energy)

𝑇S[𝜌𝛼, 𝜌𝛽] = 1
2 (𝑇S[2𝜌𝛼] + 𝑇S[2𝜌𝛽]) . (kinetic energy)

(75)

Now we consider the correlation energy 𝐸C, and note that the exchange-correlation energy
is just the sum of 𝐸X and 𝐸C. Chai: For 𝜀LDA

C , use quantum Monte Carlo (QMC) for UEG.

Remark. This remark needs some clarification, and as of now I am not sure what it means.
Also, for more details on the quantum Monte Carlo method, refer to section (**).

Now we introduce a model for the external potential in the setting of LDA, using the
Jellium model. The jellium model, also known as the uniform electron gas (UEG) model, is a
quantum mechanical model of interacting electrons in a solid, where we approximate the positive
nuclei as being uniformly distributed in space (i.e. by ”smearing out” the positive charges) and
assume the electrons behave like a uniform electron gas. Per the latter approximation, we have

𝜌(r) = const. (76)

throughout all of space. Let R denote the position of the (smeared out) nuclei, then the external
potential operator is

̂𝑉ext = −𝑁
𝑉

𝑁
∑
𝑖=1

∫
𝒱
d3𝑅 1

|r𝑖 − R| . (77)

Then the potential is

𝑉 = ∫
𝒱
d3𝑟 ∫ d3𝑟2 ⋯ ∫ d3𝑟𝑁 Ψ∗(r, r1, … , r𝑁) ̂𝑉 Ψ(r, r1, … , r𝑁)

= ∫
𝒱
d3𝑟 𝜌(r)𝑉ext(r) = − (𝑁

𝑉 )
2

∫
𝒱
d3𝑟 ∫

𝒱
d3𝑅 1

|r − R| .

We write the background potential 𝑉background as 𝑉NN, and

𝑉NN = 1
2 (𝑁

𝑉 )
2

∫
𝒱
d3𝑅 ∫

𝒱
d3𝑅′ 1

|R − R′| ,
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𝐸H = 1
2 (𝑁

𝑉 )
2

∫
𝒱
d3𝑟 ∫

𝒱
d3𝑟′ 1

|r − r′| .

The external potential 𝑉 , background potential 𝑉NN, and the Hartree energy 𝐸H, are related
via the following equation:

𝑉 + 𝑉NN + 𝐸H = 0.

Finally, in the LDA approximation, the ground state energy 𝐸0 is

𝐸0 = 𝑇s + 𝑉 + 𝐸H + 𝐸X + 𝐸C + 𝑉NN
= 𝑇s + 𝐸X + 𝐸C

≡ 𝑇TF + 𝐸LDA
X + 𝐸C.

Note that in the above formula, we set 𝑇s = 𝑇TF and 𝐸X to 𝐸LDA
X . Notice that 𝐸0 can be

obtained by the QMC method.

Due to the simplicity of this model, there are various caveats to using the LDA. Things
that do not work in LDA:

• Van der Waals interactions: nonlocal interactions due to mutual dynamical charge polar-
isation of the atoms not properly included in any existing approximations to 𝐸XC. This
is further detailed in the final section.

• Excited states: DFT is a ground state theory. To extend the theory to include excited
states, we may use time-dependent DFT or GW.

• Non Born-Oppenheimer processes. This includes non-radiative transitions between elec-
tronic states.

• Self-interaction problem: each electron lives in the field created by all electrons including
itself, and the self-interaction problem is the spurious interaction of the electron with its
own field. Recall that self-interaction exactly cancels out in Hartree-Fock, but in LDA it
does not. Solutions include SIC and hybrid DFT.

10.3 Generalised Gradient Approximation
Again refer to table (1), this is rung 2 on the ladder. Consider the following generalisation

of the LDA method:

LDA ⟶ GEA (Gradient Expansion Approximation). (78)

This gives
𝐸XC = 𝐸LDA

XC + 𝐸2nd-GEA
XC , (79)

where 𝐸2nd-GEA
XC includes the terms 𝜌(r) and ∇𝜌(r).

Example 10.1 (Thomas-Fermi model with von Weizsacker correction). The von Weizsacker
kinetic energy functional is exact in the single-electron limit. The functional is given by equation
(51):

𝑇 W[𝜌] = 1
8 ∫ d3𝑟 |∇𝜌(r)|2

𝜌(r) .

This is an example of an energy functional which not only depends on 𝜌(r), but also on its
first derivative. The complete Thomas-Fermi-von Weizsacker kinetic energy functional is the
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approximation given by

𝑇 TF 1
9 W = 𝑇 TF + 𝑇 2nd-GEA

= 𝑇 TF + 1
9𝑇 W

= 𝐶𝐹 ∫ d3𝑟 𝜌(r)(5/3) + 1
72 ∫ d3𝑟 |∇𝜌(r)|2

𝜌(r) .

(80)

The GGA method works well for nearly uniform systems, i.e. systems with slowly varying
density. To quantify this idea, we need something that would quantitatively describe how ”fast”
the density is changing. The desired quantity is the reduced density gradient:

𝑆(r) ≡ |𝜌(r)|
𝜌(r)4/3 . (81)

Notice that the reduced density gradient 𝑆(r) is a dimensionless quantity. Using the reduce
density gradient, we can rephrase the statement ”slowly varying density” mathematically as

𝑆(r) ≈ 0. (82)

GEA improves upon LDA for nearly uniform systems in which equation ((82)) is satisfied.
However, GEA can be less accurate than LDA for atoms and molecules, where 𝑆(r) can be very
large (why?).

A careful analysis gives the following limits for the GGA method:

1. For small 𝑠, GGA approaches GEA. Representative: PBE (PRL 77, 3865 (1996)).

2. For large 𝑠, GGA can be very different. Representative: BLYP (B88 (PR A38, 3078
(1988)) × LYPC (PR B37, 785 (1988))).

10.4 Meta Generalised Gradient Approximation
Refer to table (1), this is rung 3 of the ladder. Consider the kinetic energy functional with

spin:
𝑇 s = ∑

𝜎∈{𝛼,𝛽}
∫ d3𝑑 𝜏𝜎(r), (83)

where 𝜏𝜎(r) is the 𝜎-spin kinetic energy density (KED), and we can write it as

𝜏𝜎(r) =
𝑁𝜎

∑
𝑖=1

𝜙∗
𝑖,𝜎(r) (−∇2

2 𝜙𝑖,𝜎(r)) .

Sometimes 𝜏𝜎 is called the type-one kinetic energy density, and denoted

𝜏𝜎(r) = 𝜏L
𝜎 (r) = 𝜏 I

𝜎(r).

This is the ”canonical” formulation of the kinetic enegry density, and is natural (as Chai said)
in its derivation. Although the kinetic energy is well-defined and unique for any given system,
the corresponding kinetic energy density is not, for it is acceptable as long as its integral over
all space gives the correct kinetic energy functional.
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We can give a second formulation for the energy density, called the type-two kinetic
energy density:

𝜏 II
𝜎 (r) = 1

2
𝑁𝜎

∑
𝑖=1

|∇𝜙𝜎(r)|2

= 𝜏 I
𝜎(r) + 1

4∇2𝜌(r).
(84)

Notice that by a version of the divergence theorem†, giving us

∫
Ω
d3𝑟 ∇2𝜌(r) = ∫

Ω
d3𝑟 ∇ ⋅ (∇𝜌(r))

= ∮
𝜕Ω

d𝑆 ̂𝑏𝑣𝑒𝑐𝑛 ⋅ ∇𝜌(r)

= 0

both for isolated boundary conditions and periodic boundary conditions.
†: The version of the divergence theorem we are using states that

∫
Ω
d3𝑟 ∇ ⋅ u(r) = ∫

𝜕Ω
d𝐴 n ⋅ u. (85)

Then
∫

Ω
d3𝑟 ∇ ⋅ (Ψ∗∇Ψ) = ∫

𝜕Ω
d𝐴 n ⋅ (Ψ∗∇Ψ) , (86)

which goes to zero as we let Ω → ℝ3 if we assume Ψ → 0 faster than 1/√𝑟 as 𝑟 → ∞.

Remark. Why do we need two formulations for the kinetic energy density functional? Because
even though both types integrate to the kinetic energy, which is nonnegative, only the type-two
KED is nonnegatvie locally at every point (as seen by its expression as a sum of squares). On
the other hand, type-one KED is more natural, even though it does not guarantee nonnegaivity
locally.

Remark. For a discussion of different kinetic energy densities, refer to the International Journal
of Quantum Chemistry IJQC 75, 889 (1999).

For 𝑁 -electron systems, we have

𝜏 II
𝜎 (r) ≥ 𝜏W

𝜎 (r) (87)

(e.g. see PR A38, 625 (1988). and IJQC 75, 889 (1999).) Call the ratio of the two densities
𝜔𝜎(r), then

𝜏UEG(r) = 0 ≤ 𝜔𝜎(r) ≡ 𝜏W
𝜎 (r)
𝜏 II

𝜎(r)
≤ 1.

Since for a one-electron system we know von Weizsacker formulation gives the exact solu-
tion, 𝜔𝜎(r) → 1 in the one-electron region (e.g. in the asymptotic region (what?)).

Notable examples of the MGGA method are

1. TPSS (PRL 91, 146401 (2003).)

2. SCAN (PRL 115, 036402 (2015).)

45



Density Functional Theory Jonathan Huang 黃紹凱

Remark. Taking functional derivatives of the MGGA energy density can be difficult, because
it include the Kohn-Sham kinetic energy term 𝜏(r). For examples of dealing with functional
derivatives like

𝛿𝐸MGGA
XC

𝛿𝜌(r) , 𝛿𝐸MGGA
XC

𝛿𝜙∗
𝑖(r) ,

refer to e.g. JCP 138, 244108 (2013).

From a result due to Becke, IJQC 23, 1915 (1983), the exact exchange functional 𝐸X

involves
|𝛾𝜎(r1, r2)|2 = |𝛾𝜎(r1, r1)|2 + Θ(𝑟21)2 ⋅ 𝑓 (𝜌𝜎(r1), 𝜏𝜎(r1), ∇2𝜌𝜎(r1)) , (88)

where 𝛾𝜎(r1, r1) = 𝜌𝜎(r1), 𝑓 is some function, and the result holds for small 𝑟12.

As mentioned in the comments after table (1), the above methods consisting rungs 1
to 3 are semilocal functionals, in the sense of equation (71). These functionals model the
exchange-correlation density functional semilocally, and they are computationally efficient, even
comparable to Hartree theory! Semilocal functionals capture the short-range (i.e. small 𝑟12)
part of the exchange-correlation hole (on average) reasonably well. However, it does not account
for the long-range part as accurately. Examples of long-range, nonlocal interactions include the
van der Waals interaction, which is discussed in section ** in detail.

Three qualitative errors of semilocal functionals are:

1. Self-Interaction Error (SIE)

2. Non-Covalent Interaction Error (NCE)

3. Static-Correlation Error (SCE)

Below we will discuss each of these in detail:

1. SIE (due to the lack of nonlocal exchange)

Example 10.2 (One-electron system). In this example, we shall consider the case for a
one-electron system. In one-electron systems the equation

𝐸X = −𝐸H = −1
2 ∫ d3𝑟1 ∫ d3𝑟2

𝜌(r1)𝜌(r2)
𝑟12

(89)

cannot be satisfied by any semilocal functional.

Notice that in this case
𝐹 = 𝑇 + 𝑈 = 𝑇

= 𝑇 s = 𝑇 W = 1
8 ∫ d3𝑟 |∇; 𝑟(r)|2

𝜌(r) .

Then the exchange-correlation is

𝐸XC = 𝐸X + 𝐸C = −𝐸H + 𝐸C

= 𝐹 − 𝑇 s − 𝐸H

= 𝑇 s − 𝑇 s − 𝐸H = −𝐸H

So 𝐸C = 0. Furthermore, we remakr that the Hartree energy functional is a fully nonlocal
functional, becauseit is given by

𝐸H = ∫ d3𝑟1 𝜀H(r1),
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where we see from equation (89) that

𝜀H(r1) = 𝜌(r1)
2 ∫ d3𝑟2

𝜌(r2)
𝑟12

. (90)

Then since 𝜀X(r1) = −𝜀H(r1), we have

𝜀X = −𝜌(r1)
2 ∫ d3𝑟2

𝜌(r2)
𝑟12

,

and
ℎX(r1, r2) = −𝜌(r2). (91)

In Hartree-Fock theory, the problem of self-energy blowing up is accounted for by a
symmetry in the expression of the HF energy. The 𝑖 = 𝑗 terms in 𝑈 correspond to self
energy, so in the Hartree-Fock energy expression (equation (17)) we get

𝐸self =
𝑁

∑
𝑖=1

{1
2[𝑖𝑖|𝑖𝑖] − 1

2[𝑖𝑖|𝑖𝑖]} = 0. (92)

PZ81 SIC (PRB 23, 5048 (1981)) gives the self-interaction energy as

𝐸self ≡
𝑁

∑
𝑖=1

{𝐸H[𝜌𝑖] + 𝐸XC[𝜌𝑖, 𝜎]} . (93)

For the spin-polarised case this is

𝐸self = ∑
𝜎

𝑁𝜎

∑
𝑖=1

{𝐸H[𝜌𝑖,𝜎] + 𝐸XC[𝜌𝑖,𝜎, 𝜎]} . (94)

The one-electron density if given by 𝜌𝑖,𝜎(r) = ∣𝜙𝑖,𝜎(r)∣2, subject to the condition

∫ d3𝑟 𝜌𝑖,𝜎(r),

therefore
𝐸X[𝜌𝑖,𝜎, 𝜎] = −𝐸H[𝜌𝑖,𝜎],
𝐸C[𝜌𝑖,𝜎, 𝜎] = 0. (95)

For exact exchange-correlation energy 𝐸XC, we have

𝐸XC
self = 0.

For semilocal functionals, however, we in general have 𝐸XC
𝑠𝑒𝑙𝑓 ≠ 0. In this case, in order

to compensate for the self-interaction error, we define the self-interaction-free exchange-
correlation functional

̃𝐸XC ≡ 𝐸XC − 𝐸XC
self . (96)

The pro of this definiton is that this is by construction self-interaction-free for a one-
electron system. The con is that it is difficult to find the corresponding potential using
equation (*), since it is in general difficult to evaluate

̃𝑉 XC(r) = 𝛿 ̃𝐸XC

𝛿𝜌(r) .

This is the end of the one-electron system example.
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Now we can consider the general case. Asymmetric region:

Refer to PRB 31, 3231 (1985) and JCP 115, 4438 (2001). Recall the form of the Hartree
potential energy, where we use an approximation:

𝑉 H(r) = ∫ d3𝑟′ 𝜌(r′)
|r − r′|

≈ ∫ d3𝑟′ 𝜌(r′)
|r| = 𝑁

𝑟 .

Thus we have 𝑉XC ∼ −1
𝑟 . For a neutral atom with 𝑍 = 𝑁 , we have in the case 𝑟 ≫ 1

𝑉eff(r) ≈ −𝑍
𝑟 + 𝑁

𝑟 − 1
𝑟 = −1

𝑟 .
For general atoms in the region 𝑟 ≫ 1 , PRA 16, 1782 (1977) tells us

𝜌(r) ≈ 𝑒−𝜆𝑟. (97)
Finally, for LDA and most GGAs, we have

𝑉 XC ≈ −𝑎𝑒−𝑏𝑟

in the 𝑟 ≫ 1 region. For example, the exchange energy in LDA is given by

𝑉 LDA
X (r) = 4

3𝐶X𝜌1/3(r). (98)

Example 10.3 (Comparison between LDA and exact predictions). 𝑉 LDA
eff is less attrac-

tive than the exact 𝑉eff. Thus,
𝜀LDA

HOMO > 𝜀exact
HOMO.

For the hydrogen atom,
𝜀LDA

HOMO ≈ −0.26, 𝜀exact
HOMO ≈ −0.5,

in accordance with the claim above. As another example, in exact KS-DFT, the ionisation
energy 𝐼 is given by

𝐼 ≡ 𝐸𝑁−1 − 𝐸𝑁 = −𝜀exact
HOMO, (99)

where the last equality is due to PRB 18, 7165 (1978) and PRL 49, 1691 (1982).

2. NCE (due to the lack of long-range dynamical correlation):

It is helpful to note that here long-range dynamical correlation is the van der Waals force.
A few methods have been developed to acconut for this qualitative error:

(a) Van der Waals functional (PRL 92, 24640 (2004)): this is a fully nonlocal functional.
(Question: what does fully nonlocal mean precisely?)

(b) Dispersion correction (J Comput. Chem. 27, 1787 (2006)).

(c) Double0hybrid (DH) (e.g. MP2 correction).

(d) Random phase approximation (RPA) (PRA 88, 030501 (2013)).

In the above list, the first two methods are the most widely adopted. Chai: The same
result may come from different physical considerations.

3. SCE (due to the near degeneracy of KS orbitals at the Fermi level) Occurs in rungs 1 to
4. The problem may only be lifted on rung 5.

Remark. Optimised potential method.
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10.5 Hybrid Exchange-Correlation Functional
A hybrid functional is obtained by mixing a fraction of Hartree-Fock exchange energy into

a semilocal functional. It was mentioned in JCP 98, 1372 (1993). For the last time, refer back
to table (1), this is rung 4 of the ladder.

The Hartree-Fock exact exchange functional is given by

𝐸HF
X = −1

2 ∑
𝑖,𝑗

∫ d3𝑟1 ∫ d3𝑟2 𝜙∗
𝑖(r1)𝜙𝑗(r1) ( 1

|r1 − r2|) 𝜙∗
𝑗(r2)𝜙𝑖(r2)

= −1
2 ∑

𝑖,𝑗
[𝑖𝑗|𝑗𝑖].

(100)

Using the adiabatic connection formula, we have

𝐸XC[𝜌] = ∫
1

0
d𝜆 𝑈XC

𝜆 , (101)

where
𝑈XC

𝜆 ≡ ⟨Ψ𝜆 ∣ ̂𝑉 ∣ Ψ𝜆⟩ − 𝐸H = 𝐸exact
X ≈ 𝐸HF

X . (102)

Using the density functional approximation (DFA), we have

𝐸LDA
XC [𝜌] = ∫

1

0
d𝜆 𝑈LDA

XC,𝜆, (103)

due to PRA 32, 2010 (1985) and JCP 83, 2334 (1985).

⟨Ψ𝜆=1 ∣ ̂𝑉 ∣ Ψ𝜆=1⟩ − 𝐸H = 𝑈XC
𝜆=1 ≈ 𝑈LDA

XC,𝜆=1.

The approximation is because of the fact that the XC hole is deeper and thus more localised
at the reference electron at 𝜆 = 1 than at 𝜆 = 0. This remark is due to JCP 105, 9982 (1996)
and CPL 265, 115 (1997). The exchange-correlation functional is then

𝐸XC[𝜌] ≈ 1
2 {𝑈XC

𝜆=0 + 𝑈XC
𝜆=1}

≈ 1
2 {𝐸HF

X + 𝐸DFA
X [𝜌] + 2𝐸DFA

C [𝜌]}

= 1
2𝐸HF

X + 1
2𝐸DFA

X [𝜌] + 𝐸DFA
C [𝜌],

(104)

which fits the description of a hybrid functional.

In general, we have

𝐸XC = 𝑎0𝐸HF
X + (1 − 𝑎0)𝐸DFA

X + 𝐸DFA
C , (105)

where 0 ≤ 𝑎0 ≤ 1. Then we can write

{−∇2

2 + 𝑉 loc
eff (r) − 𝑎0

𝑁
∑
𝑗=1

𝐾𝑗(x)} 𝜙𝑖(x) = 𝜀𝑖𝜙𝑖(x), (106)

where
𝑉 loc

eff (r) = 𝑉 (r) + 𝛿𝐸H[𝜌]
𝛿𝜌(r) + (1 − 𝑎0)𝛿𝐸DFA

X [𝜌]
𝛿𝜌(r) + 𝛿𝐸DFA

C [𝜌]
𝛿𝜌(r) , (107)
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and we say equation (106) is the generalised Kohn-Sham equation.

Here, again,

𝜌(r) =
𝑁

∑
𝑖=1

∑
𝜎

|𝜙𝑖(x)|2 .

If 𝑎0 can reach 1, then asymptotics will be correct. Here we review a few related compu-
tation models.

• B3PV91 (JCP 98, 5648 (1993)): The exchange-correlation is given by

𝐸XC = 𝐸LDA
XC + 𝑎0 (𝐸HF

X − 𝐸LDA
X ) + 𝑎XΔ𝐸B88

X + 𝑎CΔ𝐸PW91
C ,

where
Δ𝐸B88

X ≡ 𝐸B88
X − 𝐸LDA

X , Δ𝐸PW91
C ≡ 𝐸PW91

C − 𝐸LDA
C ,

and the parameters are 𝑎0 = 0.2, 𝑎X = 0.72, 𝑎C = 0.81.
• B3LYP (JPC 98, 11623 (1994)): The XC functional is the same as that of B3PV91, but

with 𝐸PW91
C replaced with 𝐸LYP

C .

• PBE0 (JCP 110, 6158 (1999)): Note the relation

PBE ∣ PBE ⟶ PBE1 ⟶ PBE0.

The XC functional is given by

𝐸XC = 𝑎0𝐸HF
X + (1 − 𝑎0)𝐸PBE

X + 𝐸PBE
C .

In the paper JCP 105, 9982 (1996), the value 𝑎0 = 1
4 was derived using a perturbation

theory argument (by whom? Probably Purdue).

Remark. From Chai: ”so the conclusion is that B3LYP does not have B as an author, while
PBE0 does not have Purdue as an author. (repeats) (repeats)”

Next we will discuss Double-hybrid (DH) functionals. These are functionals obtained by
mixing a fraction of Hartree-Fock exchange functional and a fraction of MP2 correlation into a
semilocal functional. In the context of Görling-Levy (GL) perturbation theory (), we have

𝐸𝜆
XC ≈ 𝐸exact

X + 2𝐸GL2
C 𝜆 (108)

in the 𝜆 → 0 limit, and

𝐸GL2
C = 𝐸MP2

C + Δ𝐸HF
C

≈ 𝐸MP2
C

for most cases. The MP2 correlation energy in the above formula is given by

𝐸MP2
C = ∑

𝑖<𝑗
∑
𝑎<𝑏

|⟨𝑖𝑗 ∣∣ 𝑎𝑏⟩|2
𝜀𝑖 + 𝜀𝑗 − 𝜀𝑎 − 𝜀𝑏

, (109)

where
⟨𝑖𝑗 ∣∣ 𝑎𝑏⟩ ≡ [𝑖𝑎|𝑗𝑏] − [𝑗𝑎|𝑖𝑏].

In general, a Double-Hybrid functional is given by

𝐸DH
XC = 𝑎X𝐸HF

X + (1 − 𝑎X)𝐸DFA
X + (1 − 𝑎C)𝐸DFA

C + 𝑎C𝐸MD2
C . (110)
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In the above equation, the term 𝐸MP2
C is evaluated by the generalised Kohn-Sham (GKS)

orbitals ** by the first three terms and added to toal energy. Notice that if 𝑎X = 𝑎C = 1, then

𝐸DH
XC = 𝐸HF

X + 𝐸MD2
C .

The corresponding Kohn-Sham equation to be solved in order to obtain orbitals is

{−∇2

2 + 𝑉 loc
eff (r) − 𝑎X

𝑁
∑
𝑗=1

𝐾𝑗(x)} 𝜙𝑖(x) = 𝜀𝑖𝜙𝑖(x),

where 𝜀1 ≤ 𝜀2 ≤ ⋯, and the local effective potential is

𝑉 loc
eff (r) ≡ 𝑉 (r) + 𝑉 H(r) + (1 − 𝑎X)𝛿𝐸DFA

X
𝛿𝜌(r) + (1 − 𝑎C)𝛿𝐸DFA

C
𝛿𝜌(r) .

Chai: The computation cost of hybrid XC methods is about the same as that of the
Hartree-Fock method.

11 Van der Waals Interaction
This section is a detour into the van der Waals interaction, which is the main topic of my

final report. In the paper by Dion et al., they have demonstrated that it is possible to deal
with van der Waals interaction for arbitrary geometries in the framework of DFT.

Example 11.1 (Basic theory of van der Waals interaction). In 1930, London derived a general
formula for the van der Waals interaction, which we now call the London dispersion force.
Given two particles with first ionisation energies 𝐼𝐴 and 𝐼𝐵, polarisability volumes 𝛼′

𝐴 and 𝛼′
𝐵,

and intermolecular distance 𝑅, the dispersion energy is

𝐸disp
𝐴𝐵 ≈ −3

2 ( 𝐼𝐴𝐼𝐵
𝐼𝐴 + 𝐼𝐵

) 𝛼′
𝐴𝛼′

𝐵
𝑅6 . (111)

The main goal of the paper is to construct an explicit nonlocal correlation functional of
the form

𝐸nl
c [𝜌] = ∫ d3𝑟′ ∫ d3𝑟 𝜌(r)𝜙(r, r′)𝜌(r′), (112)

where 𝜙(r, r′) = 𝜙(|r − r′|). It will be shown that their functional is applicable to general
geometries. This construction is important because

By a choice of suitable variables with respect of which the energy functional is expanded,
we arrive at the result

𝜙(r, r′) = 2𝑚𝑒4

𝜋2 ∫
∞

0
d𝑎 𝑎2 ∫

∞

0
d𝑏 𝑏2𝑊(𝑎, 𝑏)𝑇 (𝜈(𝑎), 𝜈(𝑏), 𝜈′(𝑎), 𝜈′(𝑏)) , (113)

where
𝑇 (𝑤, 𝑥, 𝑦, 𝑧) = 1

2 [ 1
𝑤 + 𝑥 + 1

𝑦 + 𝑧] [ 1
(𝑤 + 𝑦)(𝑥 + 𝑧) + 1

(𝑤 + 𝑧)(𝑦 + 𝑥)] ,

and

𝑊(𝑎, 𝑏) = 2 [(3 − 𝑎2)𝑏 cos 𝑏 sin 𝑎 + (3 − 𝑏2)𝑎 cos 𝑎 sin 𝑏
+(𝑎2 + 𝑏2 − 3) sin 𝑎 sin 𝑏 − 3𝑎𝑏 cos 𝑎 cos 𝑏] /𝑎3𝑏3.
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Here the quantites 𝜈 and 𝜈′ are given respectively by

𝜈(𝑦) = 𝑦2

2ℎ(𝑦/𝑑), 𝜈′(𝑦) = 𝑦2

2ℎ(𝑦/𝑑′) ,

where 𝑑 = |r − r′|𝑞0(r), 𝑑′ = |r − r′|𝑞0(r′), and 𝑞0 is given by

𝑞0(r) = 𝜀0
XC(r)

𝜀LDA
x (r)𝑘F(r) ≈ [𝜀LDA

XC (r)
𝜀LDA

X (r) − 𝑍𝑎𝑏
9 ( ∇𝑛

2𝑘F𝑛)
2
] 𝑘F(r).

Notice that the kernel 𝜙(r, r′) depends on 𝑟 and 𝑟′ only through 𝑑 and 𝑑′, so 𝜙 can be
tabulated in advance. For large separation 𝑑 and 𝑑′, we have the familiar (?) asymptotic form

𝜙 ∼ − 𝐶
𝑑2𝑑′2(𝑑2 + 𝑑′2).

12 Papers
List of interesting papers from professor Chai and part of a list of possible choices for the

final report:

• Perdew, J. P.; Burke, Kieron; Ernzerhof, Matthias (1996). Generalised gradient approx-
imation made simple

• Reining, Lucia et al. (2002). Excitonic effects in solids described by time-dependent
density-functional theory

• Dion, M. et al. (2004). Van der Waals density functional for general geometries

• Tsuneda, Takao et al. (2010). On Koopmans’ theorem in density functional theory

• Cohen, Aron J.; Mori-Sanchez, Paula; Yang, Weitao (2008). Insights into current limita-
tions of density functional theory

• Chai, Jeng-Da (2012). Density functional theory with fractional orbital occupations

• Brockherde, Felix et al. (2017). Bypassing the Kohn-Sham equations with machine
learning

• Bosko, Ivan P.; Staroverov, Viktor N. (2023). Exchange energies and density functionals
for systems of fermions of arbitrary spin

• Wang, Lin-Wang (1992). Kinetic-energy functional of the electron density

• Witt, William C. (2017). Orbital-free density functional theory for materials research

• Yeh, Chia-Nan; Lee, Pei-Yin; Chai, Jeng-Da (2016). Electronic and optical properties of
the narrowest armchair graphene nanoribbons studied by density functional methods

Final report subject and related papers:

• Dion, M. et al. (2004). Van der Waals density functional for general geometries

• Rydberg, H. et al. (2003). Van der Waals density functional for layered structures

• Langreth, D. C. et al. (2004). Van der Waals density functional theory with application
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13 Other References
• Szabo, Attila; Ostlund, N. S. (1996). Modern Quantum Chemistry Introduction to Ad-

vanced Electronic Structure Theory

• Pathria, R. K.; Beale, Paul D. (2011). Statistical Mechanics 3e

• Baer, Roi Density functional theory
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Figure 1: Iterative scheme of the Hartree-Fock method.
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