Math 2213 Introduction to Analysis

Homework 1 Due September 10 (Thursday), 2025
W~ B Z 7 B12202004
September 10, 2025

Below is the definition of a metric from the lecture notes.

Definition (metric). A function d: X x X — [0, 00) is called a metric on X if, for all z,y,z € X,
the following properties hold:

(i) For any = € X, we have d(z,z) = 0.

(ii

) (Positivity) For any distinct x,y € X, we have d(z,y) > 0.
(iii) (Symmetry) For any x,y € X, we have d(z,y) = d(y, z).
)

(iv) (Triangle Inequality) For any z,y,z € X, we have d(z, z) < d(x,y) + d(y, 2).

Problem 1 ((10 pts) Dyadic density via the Archimedean property).

Let a < b be real numbers. Prove that there exists a dyadic rational
k
q=2—neQ (k€Z,n€N)

such that a < ¢ < b. Further show that there are infinitely many such dyadic rationals in (a,b).

Solution 1. Let L =b—a > 0. Notice that 2™ > n for all natural numbers n > 1, which derives
from induction as follows: 2! > 1 and 2"*! =2.2" >2.-n=n+n >n+1for alln > 1. By
the Archimedean property, there exists a natural number n > 1 such that 2"L > nL > 1, hence

1
A < L.

Let S,, = {m € Z | m > 2™a}. Since S,, is a nonempty set of integers bounded from below, it
has a minimal element, say k = inf(S,,) € Z. Then we have k > 2"a, k — 1 < 2"a, 2"a + 1 < 2™b,
S0

2"a <k <2"%a+1< 2",

Dividing by 2" gives the desired dyadic rational.

To show that there are infinitely many such dyadic rationals in (a,b), we note that we can
take any natural number n’ > n, where n is some natural number satisfying 1/2" < L found
above. Then by the same argument, we can find a dyadic rational ¢ = k'/2" € (a,b), where
k' = inf({m € Z | m > 2" a}). Since there are infinitely many natural numbers, hence infinitely
many choices of n', there are infinitely many such dyadic rationals in (a,b).

Problem 2 (A tour of the p-adic world).

The field Q inherits the Euclidean metric from R, but it also carries a very different metric:
the p-adic metric. Given a prime number p and an integer n, the p-adic norm of n is defined as
1
|n|P = ﬁv

where p* is the largest power of p dividing n. (We define [0, := 0.) The more factors of p appear
in n, the smaller the p-adic norm becomes.



For a rational number x = ¢ with a,b € Z, we may factor z as

Tr = pk : Ca
S
where k € Z and p divides neither r nor s. We then define

|z]p :p_k~

The p-adic metric on Q is given by

dp(9573/) = |$ - y|p~

1. To compute the 5-adic norm |z|5 of a rational number z, we examine how many factors of
5 occur in z (in either numerator or denominator). If z = 5% - % with a,b not divisible by 5
and k € Z, then the 5-adic norm is

|.7J|5 =57k,
For example:

(a) 30 =2-3-5. There is exactly one factor of 5, so

130[s =57" = L.
(b) 32 = 25. There is no factor of 5, so

132]5 = 5° = 1.

1
(¢) Compute |ﬁ|5.
250 = 2-5°.
So
1 1 1

%0 2.5 0 2

where % has no factor of 5 in numerator or denominator. Therefore,
1| _ =—(=3) _ &3 _
|ok5]s =53 =57 =125,

Hence,

ol =125

Now practice computing the following 5-adic norms: (6 pts)

(a) [75]5
(b) |55
(c) |_%|5

2. (9 pts) Further properties of the 5-adic norm.
(a) Determine all rational numbers x satisfying |z|5 < 1.
(b) Which rational numbers x satisfy |x|s = 17
(¢) What is lim,, o 5™ in (Q, d5) (the 5-adic metric)?
Hint: Compute d5(57,0).

3. (15 pts) Non-Archimedean absolute value and metric. Prove that | - |, satisfies

|33y|p = |$‘p|y|pa |z + ylp < max{|$|p, |y‘p}>

and show that d,, is a metric on Q.



Solution 2.

1. (a) |75]s =572 = 5.

0 [ =5 =
(c) |- =51 =25,
2. (a) Suppose |x| 1 = 5% Since

—#(factors of 5 in reduced form
|5 =57 ),

there must be no factors of 5 in the denominator of  when written as a reduced fraction.
Thus, = = 5'p/q, where [ > 0 and 5 does not divide either p or q.

(b) This is the I = 0 case from above. So & = p/q, where 5 does not divide either p or q.

(c) Notice that 5™ > n for all n > 1 by mathematical induction, since 5! > 1 and 5" =
5% 5" >5n>n+1. So for all € > 0, choose N = 1/¢, then

11
d5(5",0) = [5"s = - < <€

whenever n > N. Thus, lim,,_,., 5" = 0 in (Q, d5).

-2 and y = pl - % where k,l € Z, and

v

3. Suppose x and y can be expressed as z = pF
m,n,u,v € Z are not divisible by p. Then

|$‘P :pik7 |y|p :pil,

mu
zy =p"tt. —,
nv
and
lwyly = p~ D =p7F p7l = |z, - [y,

Without loss of generality, assume & < [. Then

u m _ u
k _’_pl';:pk(i_’_plk.i).

s|3

Since % + plk. = is not divisible by p, we have
&+ ylp = p~F = max{p~*, p~'} = max{|z[,, [yl,}.

Finally, we verify that d, is a metric on Q by checking the four properties of a metric:
(i) For x € Q, we have dy(z,z) = |z — x|, =|0] = 0.

(ii) For z,y € Q and = # y, we have dy,(z,y) = |z — y|, = a/b for some a,b € Z,a # 0.

(iii) For z,y € Q, we have d,(z,y) = dp(y, x).

(iv) For x,y,z € Q, we have

dp(z,2) =z =z =[x —y) + (y — 2)lp
< max{|z — ylp, ly — 2[p} (1)
Slz=ylp + 1y — 2lp = dp(2,9) + dp(y, 2),
since max{a,b} < a+b for all a,b > 0.
Thus, d, is a metric on Q. Furthermore, it is a non-Archimedean metric since it satisfies the

strong triangle inequality d,(z,z) < max{d,(z,v),dp(y, 2)}.

Problem 3 (Exercise 1.1.3 (20 pts)). Let X be a set, and let d : X x X — [0, 00) be a function.



(a) Give an example of a pair (X, d) which obeys axioms (bed) of Definition 1.1.2, but not (a).

(c)
(d)

(Hint: modify the discrete metric.)

(b) Give an example of a pair (X, d) which obeys axioms (acd) of Definition 1.1.2, but not (b).
)

Give an example of a pair (X, d) which obeys axioms (abd) of Definition 1.1.2, but not (c).

Give an example of a pair (X, d) which obeys axioms (abc) of Definition 1.1.2, but not (d).
(Hint: try examples where X is a finite set.)

Solution 3.  Recall the definition of a metric. We shall give examples for each case below.

(a)

Let X = R and define d such that d(z,y) = 0.5 if  # y and d(x,2) = 1. By construction (a) is
not satisfied. Furthermore, d(z,y) = d(y,x) = 0.5 for all distinct z,y € X, so (b) and (c) are
satisfied. Finally, for distinct z,y, z € X, we have d(z,z) = 0.5 < 0.5+0.5 = d(z, y) + d(y, 2);
for = z, we have d(z,2) =1 < 0.5+ 0.5 = d(z,y) + d(y,2); for z = y # z, we have
d(z,2z) =05 <1+40.5 =d(z,y) + d(y, z), so (d) is satisfied.

Let X = R and d(z,y) = 0 for all z,y € X. By construction (b) is not satisfied. Furthermore,
d(z,z) =0 for all x € X, d(z,y) = d(y,z) =0 for all z,y € X, and d(z,2) =0<0+0 =
d(z,y) + d(y, z), for any z,y,z € X, so (a), (¢) and (d) are satisfied.

Let X = S the unit circle, and d the shortest clockwise distance between two points on
the circle. Then d(z,z) = 0 for all z € X and d(z,y) > 0 for all distinct z,y € X.
Furthermore, for any z,y,z € X, if y lies between z and z, then d(x, z) = d(z,y) + d(y, 2),
and d(zx, z) < d(z,y) + d(y, z) otherwise. Thus (a), (b) and (d) are satisfied. However, unless
x,y lie on the antipodal points of the circle, d(x,y) # d(y, z), so (c) is not satisfied.

Let X =R and d(z,y) = (x —y)?. Then d(x,z) =0 for all z € X, d(x,y) > 0 for all distinct
xz,y € X, and d(z,y) = d(y,x) for all ,y € X, so (a), (b) and (c) are satisfied. However, for
z=0,y=1,2=2, we have d(z,z) =4 £ 1+ 1 =d(z,y) + d(y, 2), so (d) is not satisfied.

Problem 4 (20 pts). Let x = (x1,...,2,) and y = (y1,-..,Yyn) be vectors in R™.

(a)

(b)

The ¢' metric is defined by
di(z,y) = Z i — yil-
i1

Show that d; is a metric on R™

The £°° metric is defined by

doo(z,y) := nax |25 — yil-

Show that d, is a metric on R"

Solution 4.

(a) We verify the four properties of a metric:

(i) d(z,x) =0

(ii) Each absolute value in the sum is non-negative. Moreover, if x # y, there must exist
some i such that x; # y;, hence dy(z,y) > 0.

(iti) di(x,y) = >y |z — vl = 2oy lvi — il = da(y, @)



(iv) By the triangle inequality of real numbers, we have
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Hence d; is a metric on R™.
(b) We verify the four properties of a metric:
(i) doo(z,2) =0

(ii) Each absolute value in the maximum is non-negative. Moreover, if  # y, there must
exist some 4 such that z; # y;, hence do(z,y) > 0.

(iil) doo(®,y) = maxi<i<n [T — yi| = maxi<i<n |[Yi — 2i| = do(y, )

(iv) By the triangle inequality of real numbers, we have

doo(x,2) = max |x; — zi]

< max (|z; — yi| + |yi — zil)

1<i<n (3)
< —
mmax |z — gl + max [y; — z|

Hence d, is a metric on R”.

Problem 5 (10 pts). A vector space V over R s a set equipped with two operations:
1. Vector addition: +: V x V — V, written (u,v) — u + v.
2. Scalar multiplication: - : R x V — V written (o, v) — aw,

such that the following properties hold for all u,v,w € V and «, 8 € R:

(VS1) (u+v)+w=u+ (v+w) (associativity of addition)
(VS2) u+v=v+u (commutativity of addition)
(VS3) There exists 0 € V such that u +0=wu (additive identity)
(VS4) For each u € V, there exists —u € V such that u + (—u) =0 (additive inverse)
(VS5) a(u+v) =au+ av (distributivity I)
(VS6) (a+ Blu=au+ PBu (distributivity II)
(VST) (afB)u = af betau) (compatibility of scalar multiplication)
(VS8) 1-u=wu (identity element of scalar multiplication)
A function ||-|| : V' — [0, 00) is called a norm on V if, for all u,v € V and « € R, the following
properties hold:
(N1) ||v]l > 0, and |jv|]| = 0 if and only if v = 0. (positivity)
(N2) [lav]| = |af - [[o]]- (homogeneity)



(N3) flu+ || < Jull + (o]l (triangle inequality)
Given a norm || - || on V, define d: V x V — [0, 00) by

d(u,v) = [jlu —vl.

Prove that d is a metric on V, that is, for all z,y, z € V show that:
(i) d(z,y) > 0 and d(x,y) = 0 if and only if z = y.
(i) d(z,y) = d(y,z).
(ili) d(z, 2) < d(z,y) + d(y, 2).

(Thus we conclude that every normed vector space (V)| - ||) is also a metric space with metric
d(u,v) = [lu =)

Solution 5. We will show that the three properties of a metric are satisfied.

(i) The conditions that d(z,y) = ||z — y|| > 0 and d(z,y) = ||z — y|| = 0 if and only if x = y are
equivalent to (N1).

(i) d(a,y) = lle = yll = |~(y = 2)[| = |(~D)y —2)| = | = 1] - |}y — ]| = d(y.x) by (N2).
(it}) d(z,2) = 2 — 2] = Itz — ) + (g = 2| < & = yll + |y — 2]| = d(, ) + d(y, =) by (N3).

Thus every normed vector space (V.| - |) is also a metric space with metric d(u,v) = |ju — v|.

Problem 6. Let S be a bounded nonempty set of real numbers, and let a and b be fixed nonzero
real numbers. Define T = {as + b|s € S} Find formulas for sup T and inf T in terms of sup S and
inf S. Prove your formulas.

Solution 6.

Claim. The supremum and infimum of 7" are given by
supT =asupS+0b, inf7 =ainfS+b. (4)
Proof. Since S is a bounded nonempty set of real numbers, both sup S and inf .S exist. We consider

two cases based on the sign of a.

(a) If @ > 0, then for all s € S, we have as +b < a-supS + b, so a-sup S + b is an upper
bound of T'. By the definition of supremum, for any ¢ > 0 there exists some s’ € S such that
supS — e < s’ < supS. Multiplying by a > 0 and adding b gives

asupS+b—ae<as +b<asupS +b.

Hence supT = asup S + b.

(b) If @ < 0, similarly for all s € S, we have as + b < ainf S + b, so ainf S + b is an upper
bound of T'. By definition of the supremum, for any ¢ > 0 there exists some s’ € S such that
inf S < s’ <infS + e. Multiplying by a < 0 and adding b gives

ainfS+b<as'+b<ainfS+b— ae.

Hence supT = a -inf S + b.

Since a, b are nonzero, we are done. O



