
Math 2213 Introduction to Analysis

Homework 1 Due September 10 (Thursday), 2025

物理、數學三 黃紹凱 B12202004

September 10, 2025

Below is the definition of a metric from the lecture notes.

Definition (metric). A function d : X×X → [0,∞) is called a metric on X if, for all x, y, z ∈ X,
the following properties hold:

(i) For any x ∈ X, we have d(x, x) = 0.

(ii) (Positivity) For any distinct x, y ∈ X, we have d(x, y) > 0.

(iii) (Symmetry) For any x, y ∈ X, we have d(x, y) = d(y, x).

(iv) (Triangle Inequality) For any x, y, z ∈ X, we have d(x, z) ≤ d(x, y) + d(y, z).

Problem 1 ((10 pts) Dyadic density via the Archimedean property).

Let a < b be real numbers. Prove that there exists a dyadic rational

q =
k

2n
∈ Q (k ∈ Z, n ∈ N)

such that a < q < b. Further show that there are infinitely many such dyadic rationals in (a, b).

Solution 1. Let L = b− a > 0. Notice that 2n > n for all natural numbers n ≥ 1, which derives
from induction as follows: 21 > 1 and 2n+1 = 2 · 2n > 2 · n = n + n > n + 1 for all n ≥ 1. By
the Archimedean property, there exists a natural number n ≥ 1 such that 2nL > nL > 1, hence
1
2n < L.

Let Sn = {m ∈ Z | m > 2na}. Since Sn is a nonempty set of integers bounded from below, it
has a minimal element, say k = inf(Sn) ∈ Z. Then we have k > 2na, k − 1 ≤ 2na, 2na+ 1 < 2nb,
so

2na < k ≤ 2na+ 1 < 2nb.

Dividing by 2n gives the desired dyadic rational.

To show that there are infinitely many such dyadic rationals in (a, b), we note that we can
take any natural number n′ ≥ n, where n is some natural number satisfying 1/2n < L found
above. Then by the same argument, we can find a dyadic rational q′ = k′/2n

′ ∈ (a, b), where
k′ = inf({m ∈ Z | m > 2n

′
a}). Since there are infinitely many natural numbers, hence infinitely

many choices of n′, there are infinitely many such dyadic rationals in (a, b).

Problem 2 (A tour of the p-adic world).

The field Q inherits the Euclidean metric from R, but it also carries a very different metric:
the p-adic metric. Given a prime number p and an integer n, the p-adic norm of n is defined as

|n|p =
1

pk
,

where pk is the largest power of p dividing n. (We define |0|p := 0.) The more factors of p appear
in n, the smaller the p-adic norm becomes.
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For a rational number x = a
b with a, b ∈ Z, we may factor x as

x = pk · r
s
,

where k ∈ Z and p divides neither r nor s. We then define

|x|p = p−k.

The p-adic metric on Q is given by

dp(x, y) := |x− y|p.

1. To compute the 5-adic norm |x|5 of a rational number x, we examine how many factors of
5 occur in x (in either numerator or denominator). If x = 5k · a

b with a, b not divisible by 5
and k ∈ Z, then the 5-adic norm is

|x|5 = 5−k.

For example:

(a) 30 = 2 · 3 · 5. There is exactly one factor of 5, so

|30|5 = 5−1 = 1
5 .

(b) 32 = 25. There is no factor of 5, so

|32|5 = 50 = 1.

(c) Compute
∣∣ 1
250

∣∣
5
.

250 = 2 · 53.

So
1

250
=

1

2 · 53
= 5−3 · 1

2
,

where 1
2 has no factor of 5 in numerator or denominator. Therefore,∣∣ 1

250

∣∣
5
= 5−(−3) = 53 = 125.

Hence, ∣∣ 1
250

∣∣
5
= 125.

Now practice computing the following 5-adic norms: (6 pts)

(a) |75|5
(b)

∣∣ 10
9

∣∣
5

(c)
∣∣− 20

375

∣∣
5

2. (9 pts) Further properties of the 5-adic norm.

(a) Determine all rational numbers x satisfying |x|5 ≤ 1.

(b) Which rational numbers x satisfy |x|5 = 1?

(c) What is limn→∞ 5n in (Q, d5) (the 5-adic metric)?
Hint: Compute d5(5

n, 0).

3. (15 pts) Non-Archimedean absolute value and metric. Prove that | · |p satisfies

|xy|p = |x|p|y|p, |x+ y|p ≤ max{|x|p, |y|p},

and show that dp is a metric on Q.
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Solution 2.

1. (a) |75|5 = 5−2 = 1
25 .

(b)
∣∣ 10
9

∣∣
5
= 5−1 = 1

5 .

(c)
∣∣− 20

375

∣∣
5
= 51 = 25.

2. (a) Suppose |x|5 ≤ 1 = 50. Since

|x|5 = 5−#(factors of 5 in reduced form),

there must be no factors of 5 in the denominator of x when written as a reduced fraction.
Thus, x = 5lp/q, where l ≥ 0 and 5 does not divide either p or q.

(b) This is the l = 0 case from above. So x = p/q, where 5 does not divide either p or q.

(c) Notice that 5n > n for all n ≥ 1 by mathematical induction, since 51 ≥ 1 and 5n+1 =
5× 5n ≥ 5n ≥ n+ 1. So for all ϵ > 0, choose N = 1/ϵ, then

d5(5
n, 0) = |5n|5 =

1

5n
<

1

n
< ϵ

whenever n > N . Thus, limn→∞ 5n = 0 in (Q, d5).

3. Suppose x and y can be expressed as x = pk · m
n and y = pl · u

v , where k, l ∈ Z, and
m,n, u, v ∈ Z are not divisible by p. Then

|x|p = p−k, |y|p = p−l,

xy = pk+l · mu

nv
,

and
|xy|p = p−(k+l) = p−k · p−l = |x|p · |y|p.

Without loss of generality, assume k ≤ l. Then

x+ y = pk · m
n

+ pl · u
v
= pk

(m
n

+ pl−k · u
v

)
.

Since m
n + pl−k · u

v is not divisible by p, we have

|x+ y|p = p−k = max{p−k, p−l} = max{|x|p, |y|p}.

Finally, we verify that dp is a metric on Q by checking the four properties of a metric:

(i) For x ∈ Q, we have dp(x, x) = |x− x|p = |0| ≡ 0.

(ii) For x, y ∈ Q and x ̸= y, we have dp(x, y) = |x− y|p = a/b for some a, b ∈ Z, a ̸= 0.

(iii) For x, y ∈ Q, we have dp(x, y) = dp(y, x).

(iv) For x, y, z ∈ Q, we have

dp(x, z) = |x− z|p = |(x− y) + (y − z)|p
≤ max{|x− y|p, |y − z|p}
≤ |x− y|p + |y − z|p = dp(x, y) + dp(y, z),

(1)

since max{a, b} ≤ a+ b for all a, b ≥ 0.

Thus, dp is a metric on Q. Furthermore, it is a non-Archimedean metric since it satisfies the
strong triangle inequality dp(x, z) ≤ max{dp(x, y), dp(y, z)}.

Problem 3 (Exercise 1.1.3 (20 pts)). Let X be a set, and let d : X ×X → [0,∞) be a function.
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(a) Give an example of a pair (X, d) which obeys axioms (bcd) of Definition 1.1.2, but not (a).
(Hint: modify the discrete metric.)

(b) Give an example of a pair (X, d) which obeys axioms (acd) of Definition 1.1.2, but not (b).

(c) Give an example of a pair (X, d) which obeys axioms (abd) of Definition 1.1.2, but not (c).

(d) Give an example of a pair (X, d) which obeys axioms (abc) of Definition 1.1.2, but not (d).
(Hint: try examples where X is a finite set.)

Solution 3. Recall the definition of a metric. We shall give examples for each case below.

(a) LetX = R and define d such that d(x, y) = 0.5 if x ̸= y and d(x, x) = 1. By construction (a) is
not satisfied. Furthermore, d(x, y) = d(y, x) = 0.5 for all distinct x, y ∈ X, so (b) and (c) are
satisfied. Finally, for distinct x, y, z ∈ X, we have d(x, z) = 0.5 ≤ 0.5+0.5 = d(x, y)+d(y, z);
for x = z, we have d(x, z) = 1 ≤ 0.5 + 0.5 = d(x, y) + d(y, z); for x = y ̸= z, we have
d(x, z) = 0.5 ≤ 1 + 0.5 = d(x, y) + d(y, z), so (d) is satisfied.

(b) Let X = R and d(x, y) = 0 for all x, y ∈ X. By construction (b) is not satisfied. Furthermore,
d(x, x) = 0 for all x ∈ X, d(x, y) = d(y, x) = 0 for all x, y ∈ X, and d(x, z) = 0 ≤ 0 + 0 =
d(x, y) + d(y, z), for any x, y, z ∈ X, so (a), (c) and (d) are satisfied.

(c) Let X = S1 the unit circle, and d the shortest clockwise distance between two points on
the circle. Then d(x, x) = 0 for all x ∈ X and d(x, y) > 0 for all distinct x, y ∈ X.
Furthermore, for any x, y, z ∈ X, if y lies between x and z, then d(x, z) = d(x, y) + d(y, z),
and d(x, z) < d(x, y)+d(y, z) otherwise. Thus (a), (b) and (d) are satisfied. However, unless
x, y lie on the antipodal points of the circle, d(x, y) ̸= d(y, x), so (c) is not satisfied.

(d) Let X = R and d(x, y) = (x− y)2. Then d(x, x) = 0 for all x ∈ X, d(x, y) > 0 for all distinct
x, y ∈ X, and d(x, y) = d(y, x) for all x, y ∈ X, so (a), (b) and (c) are satisfied. However, for
x = 0, y = 1, z = 2, we have d(x, z) = 4 ≰ 1 + 1 = d(x, y) + d(y, z), so (d) is not satisfied.

Problem 4 (20 pts). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be vectors in Rn.

(a) The ℓ1 metric is defined by

d1(x, y) :=

n∑
i=1

|xi − yi|.

Show that d1 is a metric on Rn

(b) The ℓ∞ metric is defined by

d∞(x, y) := max
1≤i≤n

|xi − yi|.

Show that d∞ is a metric on Rn

Solution 4.

(a) We verify the four properties of a metric:

(i) d(x, x) = 0

(ii) Each absolute value in the sum is non-negative. Moreover, if x ̸= y, there must exist
some i such that xi ̸= yi, hence d1(x, y) > 0.

(iii) d1(x, y) =
∑n

i=1 |xi − yi| =
∑n

i=1 |yi − xi| = d1(y, x)
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(iv) By the triangle inequality of real numbers, we have

d1(x, z) =

n∑
i=1

|xi − zi|

≤
n∑

i=1

(|xi − yi|+ |yi − zi|)

=

n∑
i=1

|xi − yi|+
n∑

i=1

|yi − zi|

= d1(x, y) + d1(y, z).

(2)

Hence d1 is a metric on Rn.

(b) We verify the four properties of a metric:

(i) d∞(x, x) = 0

(ii) Each absolute value in the maximum is non-negative. Moreover, if x ̸= y, there must
exist some i such that xi ̸= yi, hence d∞(x, y) > 0.

(iii) d∞(x, y) = max1≤i≤n |xi − yi| = max1≤i≤n |yi − xi| = d∞(y, x)

(iv) By the triangle inequality of real numbers, we have

d∞(x, z) = max
1≤i≤n

|xi − zi|

≤ max
1≤i≤n

(|xi − yi|+ |yi − zi|)

≤ max
1≤i≤n

|xi − yi|+ max
1≤i≤n

|yi − zi|

= d∞(x, y) + d∞(y, z).

(3)

Hence d∞ is a metric on Rn.

Problem 5 (10 pts). A vector space V over R s a set equipped with two operations:

1. Vector addition: + : V × V → V , written (u, v) 7→ u+ v.

2. Scalar multiplication: · : R× V → V , written (α, v) 7→ αv,

such that the following properties hold for all u, v, w ∈ V and α, β ∈ R:

(VS1) (u+ v) + w = u+ (v + w) (associativity of addition)

(VS2) u+ v = v + u (commutativity of addition)

(VS3) There exists 0 ∈ V such that u+ 0 = u (additive identity)

(VS4) For each u ∈ V , there exists −u ∈ V such that u+ (−u) = 0 (additive inverse)

(VS5) α(u+ v) = αu+ αv (distributivity I)

(VS6) (α+ β)u = αu+ βu (distributivity II)

(VS7) (αβ)u = α( betau) (compatibility of scalar multiplication)

(VS8) 1 · u = u (identity element of scalar multiplication)

A function ∥·∥ : V → [0,∞) is called a norm on V if, for all u, v ∈ V and α ∈ R, the following
properties hold:

(N1) ∥v∥ ≥ 0, and ∥v∥ = 0 if and only if v = 0. (positivity)

(N2) ∥αv∥ = |α| · ∥v∥. (homogeneity)
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(N3) ∥u+ v∥ ≤ ∥u∥+ ∥v∥. (triangle inequality)

Given a norm ∥ · ∥ on V , define d : V × V → [0,∞) by

d(u, v) = ∥u− v∥.

Prove that d is a metric on V , that is, for all x, y, z ∈ V show that:

(i) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y.

(ii) d(x, y) = d(y, x).

(iii) d(x, z) ≤ d(x, y) + d(y, z).

(Thus we conclude that every normed vector space (V, ∥ · ∥) is also a metric space with metric
d(u, v) = ∥u− v∥. )

Solution 5. We will show that the three properties of a metric are satisfied.

(i) The conditions that d(x, y) = ∥x− y∥ ≥ 0 and d(x, y) = ∥x− y∥ = 0 if and only if x = y are
equivalent to (N1).

(ii) d(x, y) = ∥x− y∥ = ∥−(y − x)∥ = ∥(−1)(y − x)∥ = | − 1| · ∥y − x∥ = d(y, x) by (N2).

(iii) d(x, z) = ∥x− z∥ = ∥(x− y) + (y − z)∥ ≤ ∥x− y∥+ ∥y − z∥ = d(x, y) + d(y, z) by (N3).

Thus every normed vector space (V, ∥ · ∥) is also a metric space with metric d(u, v) = ∥u− v∥.

Problem 6. Let S be a bounded nonempty set of real numbers, and let a and b be fixed nonzero
real numbers. Define T = {as+ b|s ∈ S} Find formulas for supT and inf T in terms of supS and
inf S. Prove your formulas.

Solution 6.

Claim. The supremum and infimum of T are given by

supT = a supS + b, inf T = a inf S + b. (4)

Proof. Since S is a bounded nonempty set of real numbers, both supS and inf S exist. We consider
two cases based on the sign of a.

(a) If a > 0, then for all s ∈ S, we have as + b ≤ a · supS + b, so a · supS + b is an upper
bound of T . By the definition of supremum, for any ϵ > 0 there exists some s′ ∈ S such that
supS − ϵ ≤ s′ ≤ supS. Multiplying by a > 0 and adding b gives

a supS + b− aϵ ≤ as′ + b ≤ a supS + b.

Hence supT = a supS + b.

(b) If a < 0, similarly for all s ∈ S, we have as + b ≤ a inf S + b, so a inf S + b is an upper
bound of T . By definition of the supremum, for any ϵ > 0 there exists some s′ ∈ S such that
inf S ≤ s′ < inf S + ϵ. Multiplying by a < 0 and adding b gives

a inf S + b ≤ as′ + b < a inf S + b− aϵ.

Hence supT = a · inf S + b.

Since a, b are nonzero, we are done.
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