
Math 2213 Introduction to Analysis I
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物理三 黃紹凱 B12202004

November 27, 2025

Corollary 1 (3.7.3). Let [a, b] be an interval, and for every integer n ≥ 1, let fn : [a, b] → R be a
continuously differentiable function. Suppose that the series

∑∞
n=1∥f ′

n∥∞ is absolute convergent.
Suppose also that

∑∞
n=1 fn(x0) is convergent for some x0 ∈ [a, b]. Then the series

∑∞
n=1 fn

converges uniformly on [a, b] to a differentiable function f : [a, b] → R, and

d

dx
f(x) =

∞∑
n=1

d

dx
fn(x).

Exercise 1 (Exercise 4.7.8, 15 points). Let tan : (−π/2, π/2) → R be the tangent function
tan(x) := sin(x)/ cos(x). Show that tan is differentiable and monotone increasing, with

d

dx
tan(x) = 1 + tan(x)2,

and that limx→π/2 tan(x) = +∞ and limx→−π/2 tan(x) = −∞. Conclude that tan is in fact a
bijection from (−π/2, π/2) → R, and thus has an inverse function

tan−1 : R → (−π/2, π/2)

(this function is called the arctangent function). Show that tan−1 is differentiable and

d

dx
tan−1(x) =

1

1 + x2
.

Solution 1. On (−π
2 ,

π
2 ), we have cosx > 0, so tanx is defined on all of its domain and

d

dx
tanx =

cos2 x+ sin2 x

cos2 x
= 1 + tan2 x > 0.

Hence tanx is differentiable and monotone increasing. Now we show the limits of tan as x → ±π
2 :

Since sin is continuous and sin π
2 = 1, there exists δ1 > 0 such that sinx > 1

2 whenever |x− π
2 | < δ1.

Since cos is continuous and cos π
2 = 0, for any ε > 0 there exists δ2 > 0 such that cosx < ε whenever

|x − π
2 | < δ2. Let M > 0 be arbitray, ε = 1

2M , and δ = min{δ1, δ2}. Then, for any x satisfying
0 < |x− π

2 | < δ, we have

tanx =
sinx

cosx
>

1
2

ε
= M =⇒ lim

x→π
2

tanx = +∞.

By an analogous argument but with sinx < − 1
2 and cosx < ε for x close to −π

2 , we have, for

arbitrary M > 0, ε = 1
2M , and δ̃ = min{δ̃1, δ̃2}, that for any x satisfying 0 < |x+ π

2 | < δ̃,

tanx =
sinx

cosx
<

− 1
2

ε
= −M =⇒ lim

x→−π
2

tanx = −∞.

Since tan is monotone increasing, it is injective. By the intermediate value theorem, it is also
surjective onto R. Thus tan is a bijection from

(
−π

2 ,
π
2

)
to R, and has an inverse function tan−1 :

R →
(
−π

2 ,
π
2

)
. Differentiating both sides of the identity tan

(
tan−1 x

)
= x, we have

sec2
(
tan−1 x

)
· d

dx
tan−1 x = 1,
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hence,
d

dx
tan−1 x = cos2

(
tan−1 x

)
=

1

1 + tan2
(
tan−1 x

) =
1

1 + x2
.

Exercise 2 (Exercise 4.7.9, 15 points). Recall the arctangent function tan−1 from Exercise
4.7.8. By modifying the proof of Theorem 4.5.6(e), establish the identity

tan−1(x) =

∞∑
n=0

(−1)nx2n+1

2n+ 1

for all x ∈ (−1, 1). Using Abel’s theorem (Theorem 4.3.1) to extend this identity to the case x = 1,
conclude in particular the identity

π = 4− 4

3
+

4

5
− 4

7
+ · · · = 4

∞∑
n=0

(−1)n

2n+ 1
.

(Note that the series converges by the alternating series test, Proposition 7.2.11.) Conclude in
particular that 4 − 4

3 < π < 4. (One can of course compute π = 3.1415926 . . . to much higher
accuracy, though if one wishes to do so it is advisable to use a different formula than the one above,
which converges very slowly.)

Solution 2. For x ∈ (−1, 1), we have that for any r < 1,

d

dx
tan−1 x =

1

1 + x2
⇒

∞∑
n=0

(−1)nx2n

on [−r, r]. Since tan−1(0) = 0, integrating both sides from 0 to x, we have

tan−1 x =

∫ x

0

dt

1 + t2
=

∫ x

0

∞∑
n=0

(−1)nt2ndt =

∞∑
n=0

(−1)nx2n+1

2n+ 1
,

since (−1)nt2n converges uniformly on compact subsets of (−1, 1) and is Riemann integrable for
each n. The resulting series converges by the alternating series test. Hence, by Abel’s Theorem,
we have

π

4
= tan−1 1 = lim

x→1−
tan−1 x =

∞∑
n=0

(−1)n

2n+ 1
.

Therefore,

π = 4− 4

3
+

4

5
− 4

7
+ · · · = 4

∞∑
n=0

(−1)n

2n+ 1
,

and 4− 4
3 < π < 4 since the series is alternating with decreasing terms.

Exercise 3 (Exercise 4.7.10, 30 points). Let f : R → R be the function

f(x) :=

∞∑
n=1

4−n cos(32nπx).

(a) Show that this series is uniformly convergent, and that f is continuous.

(b) Show that for every integer j and every integer m ≥ 1, we have∣∣∣∣fÅj + 1

32m

ã
− f

Å
j

32m

ã∣∣∣∣ ≥ 4−m.
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Hint: use the identity
∞∑

n=1

an =

(
m−1∑
n=1

an

)
+ am +

∞∑
n=m+1

an

for certain sequences an. Also, use the fact that the cosine function is periodic with period
2π, as well as the geometric series formula

∑∞
n=0 r

n = 1
1−r for any |r| < 1. Finally, you will

need the inequality | cos(x) − cos(y)| ≤ |x − y| for any real numbers x and y; this can be
proven by using the mean value theorem.

(c) Using (b), show that for every real number x0, the function f is not differentiable at x0.
Hint: for every x0 and every m ≥ 1, there exists an integer j such that j ≤ 32mx0 ≤ j + 1,
thanks to Exercise 5.4.3.

(d) Explain briefly why the result in (c) does not contradict Corollary 3.7.3.

Solution 3.

(a) Since | cos(32nπx)| ≤ 1, we have

|4−n cos(32nπx)| ≤ 4−n.

The series
∑∞

n=1 4
−n is a geometric series with ratio 1

4 , which converges. Hence, by the Weier-
strass M-test, the series defining f(x) converges uniformly. Since each term 4−n cos(32nπx)
is continuous, the uniform limit f is also continuous.

(b) We can write

f

Å
j + 1

32m

ã
− f

Å
j

32m

ã
=

∞∑
n=1

4−n

ï
cos

Å
32nπ

j + 1

32m

ã
− cos

Å
32nπ

j

32m

ãò
.

For n > m, we have

cos

Å
32nπ

j + 1

32m

ã
= cos

Å
32nπ

j

32m
+ 32n−mπ

ã
= cos

Å
32nπ

j

32m

ã
,

so we are left with only the first m terms, which can be split as

f

Å
j + 1

32m

ã
− f

Å
j

32m

ã
=

m−1∑
n=1

4−n

ï
cos

Å
32nπ

j + 1

32m

ã
− cos

Å
32nπ

j

32m

ãò
+ 4−m [cos (π(j + 1))− cos (jπ)]

≡ Rm(j) + 4−m [cos (π(j + 1))− cos (jπ)] .

The first sum Rm(j) can be bounded using the inequality | cos(x)− cos(y)| ≤ |x− y|:

Rm(j) =

∣∣∣∣∣
m−1∑
n=1

4−n

ï
cos

Å
π

j + 1

32m−n

ã
− cos

Å
π

j

32m−n

ãò∣∣∣∣∣
≤

m−1∑
n=1

4−n

∣∣∣∣π j + 1

32m−n
− π

j

32m−n

∣∣∣∣
=

m−1∑
n=1

4−nπ

32m−n
=

π

32m

m−1∑
n=1

8n

=
π

32m
· 8
7
(8m−1 − 1) =

π

7

Å
4−m+1 − 1

32m

ã
<

4π

7
4−m.

and since | cos ((j + 1)π)− cos(jπ)| = 2, we have∣∣∣∣f Åj + 1

32m

ã
− f

Å
j

32m

ã∣∣∣∣ ≥ ∣∣4−m [cos (π(j + 1))− cos (jπ)]
∣∣− |Rm(j)|

≥ 2 · 4−m − 4π

7
4−m =

Å
2− 4π

7

ã
4−m > 4−m.
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(c) For x0 ∈ R, by Exercise 5.4.3, for each m ≥ 1, there exists an integer j such that j ≤ 32mx0 ≤
j + 1. Then, ∣∣∣∣∣∣∣∣

f

Å
j + 1

32m

ã
− f

Å
j

32m

ã
j + 1

32m
− j

32m

∣∣∣∣∣∣∣∣ = 32m
∣∣∣∣f Åj + 1

32m

ã
− f

Å
j

32m

ã∣∣∣∣
≥ 32m · 4−m = 8m.

As 1
32m → 0, or, m → ∞, we have 8m → ∞. Thus, the difference quotient does not converge,

and by the definition of the derivative f is not differentiable at x0.

(d) Refer to the statement of Corollary 3.7.3 at the beginning of this document. The Corollary
requires that

∑∞
n=1∥f ′

n∥ converges absolutely. However,

|f ′
n| = |8nπ sin (32nπx)| =⇒ ∥f ′

n∥∞ = sup
x∈R

|8nπ sin (32nπx)| = 8nπ,

which is unbounded for n ∈ N, and hence
∑∞

n=1∥f ′
n∥∞ does not converge absolutely. There-

fore, the result in (c) does not contradict Corollary 3.7.3.

Exercise 4 (20 points).

(a) Prove that
(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

for all integers n and all real θ.This is the classical DeMoivre’s theorem.

(b) By equating imaginary parts in DeMoivre’s formula, prove that

sinnθ = sinn θ

®Ç
n

1

å
cotn−1 θ −

Ç
n

3

å
cotn−3 θ +

Ç
n

5

å
cotn−5 θ − · · ·

´
.

(c) If 0 < θ < π/2, prove that

sin(2m+ 1)θ = sin 2m+1θ Pm(cot2 θ)

where Pm is the polynomial of degree m given by

Pm(x) =

Ç
2m+ 1

1

å
xm −

Ç
2m+ 1

3

å
xm−1 +

Ç
2m+ 1

5

å
xm−2 − · · · .

Use this to show that Pm has zeros at the m distinct points

xk = cot2
Å

πk

2m+ 1

ã
, k = 1, 2, . . . ,m.

(d) Show that the sum of the zeros of Pm is given by

m∑
k=1

cot2
Å

πk

2m+ 1

ã
=

m(2m− 1)

3
.

Solution 4.

(a) By Theorem 4.7.2 (f), for θ ∈ R we have eiθ = cos θ+ i sin θ. Raising both sides to the power
n, we get (cos θ + i sin θ)n =

(
eiθ
)n

= einθ == cos(nθ) + i sin(nθ).
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(b) Expanding (cos θ + i sin θ)n using the binomial theorem gives

(cos θ + i sin θ)n =

n∑
k=0

Ç
n

k

å
cosn−k θ(i sin θ)k =

n∑
k=0

Ç
n

k

å
ik cosn−k θ sink θ.

The imaginary part is given by the sum over odd k, hence,

sin(nθ) =

n∑
k=1, k odd

Ç
n

k

å
(−1)

k−1
2 cosn−k θ sink θ

= sinn θ

n∑
k=1, k odd

Ç
n

k

å
(−1)

k−1
2 cotn−k θ

= sinn θ

®Ç
n

1

å
cotn−1 θ −

Ç
n

3

å
cotn−3 θ +

Ç
n

5

å
cotn−5 θ − · · ·

´
.

(c) For n = 2m+ 1, we have

sin(2m+ 1)θ = sin2m+1 θ

®Ç
2m+ 1

1

å
cot2m θ −

Ç
2m+ 1

3

å
cot2m−2 θ + · · ·

´
by the result of (b). Hence, by the definition of Pm(x), we have

sin(2m+ 1)θ = sin2m+1 θ Pm(cot2 θ).

Since 0 < θ < π
2 , we have sin(2m+1)θ = 0 when θ = πk

2m+1 for k = 1, 2, . . . ,m. Note that at

these points, sin θ ̸= 0. Thus, Pm(cot2 θ) = sin(2m + 1)θ/ sin2m+1 θ = 0 at these points, so
Pm has zeros at

xk = cot2
Å

πk

2m+ 1

ã
, k = 1, 2, . . . ,m.

(d) By Vieta’s formula (根與係數), the sum of the zeros of Pm(x) is given by

m∑
k=1

cot2
Å

πk

2m+ 1

ã
= −

Ç
−
Ç
2m+ 1

3

åå¬Ç
2m+ 1

1

å
=

m(2m− 1)

3
.

Exercise 5 (20 points). This exercise outlines a simple proof of the formula ζ(2) =
∑∞

n=1
1
n2 =

π2/6. Start with the inequality

sinx < x < tanx, 0 < x <
π

2
,

take reciprocals, and square each member to obtain

cot2 x <
1

x2
< 1 + cot2 x.

Now put x =
kπ

2m+ 1
, where k and m are integers with 1 ≤ k ≤ m, and sum on k to obtain

m∑
k=1

cot2
Å

kπ

2m+ 1

ã
<

(2m+ 1)2

π2

m∑
k=1

1

k2
< m+

m∑
k=1

cot2
Å

kπ

2m+ 1

ã
.

Use the formula in problem 4(d) to deduce the inequality

m(2m− 1)π2

3(2m+ 1)2
<

m∑
k=1

1

k2
<

2m(m+ 1)π2

3(2m+ 1)2
.

Now let m → ∞ to obtain ζ(2) = π2/6.
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Solution 5. Following the steps in the problem statement, we have

m∑
k=1

cot2
Å

kπ

2m+ 1

ã
<

(2m+ 1)2

π2

m∑
k=1

1

k2
< m+

m∑
k=1

cot2
Å

kπ

2m+ 1

ã
.

By Exercise 4(d), we have

m(2m− 1)

3
<

(2m+ 1)2

π2

m∑
k=1

1

k2
< m+

m(2m− 1)

3
.

Rearranging gives

m(2m− 1)π2

3(2m+ 1)2
<

m∑
k=1

1

k2
<

2m(m+ 1)π2

3(2m+ 1)2
.

Take the limit as m → ∞, we have

m(2m− 1)π2

3(2m+ 1)2
→ π2

6
,

2m(m+ 1)π2

3(2m+ 1)2
→ π2

6
,

hence by the Squeeze Theorem, we have that

ζ(2) = lim
m→∞

m∑
k=1

1

k2
=

∞∑
k=1

1

k2
=

π2

6
.
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