

Math 2213 Introduction to Analysis I

Homework 10 Due November 28 (Friday), 2025

物理三 黃紹凱 B12202004

November 27, 2025

Corollary 1 (3.7.3). Let $[a, b]$ be an interval, and for every integer $n \geq 1$, let $f_n : [a, b] \rightarrow \mathbb{R}$ be a continuously differentiable function. Suppose that the series $\sum_{n=1}^{\infty} \|f'_n\|_{\infty}$ is absolute convergent. Suppose also that $\sum_{n=1}^{\infty} f_n(x_0)$ is convergent for some $x_0 \in [a, b]$. Then the series $\sum_{n=1}^{\infty} f_n$ converges uniformly on $[a, b]$ to a differentiable function $f : [a, b] \rightarrow \mathbb{R}$, and

$$\frac{d}{dx} f(x) = \sum_{n=1}^{\infty} \frac{d}{dx} f_n(x).$$

Exercise 1 (Exercise 4.7.8, 15 points). Let $\tan : (-\pi/2, \pi/2) \rightarrow \mathbb{R}$ be the tangent function $\tan(x) := \sin(x)/\cos(x)$. Show that \tan is differentiable and monotone increasing, with

$$\frac{d}{dx} \tan(x) = 1 + \tan(x)^2,$$

and that $\lim_{x \rightarrow \pi/2} \tan(x) = +\infty$ and $\lim_{x \rightarrow -\pi/2} \tan(x) = -\infty$. Conclude that \tan is in fact a bijection from $(-\pi/2, \pi/2) \rightarrow \mathbb{R}$, and thus has an inverse function

$$\tan^{-1} : \mathbb{R} \rightarrow (-\pi/2, \pi/2)$$

(this function is called the arctangent function). Show that \tan^{-1} is differentiable and

$$\frac{d}{dx} \tan^{-1}(x) = \frac{1}{1+x^2}.$$

Solution 1. On $(-\frac{\pi}{2}, \frac{\pi}{2})$, we have $\cos x > 0$, so $\tan x$ is defined on all of its domain and

$$\frac{d}{dx} \tan x = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = 1 + \tan^2 x > 0.$$

Hence $\tan x$ is differentiable and monotone increasing. Now we show the limits of \tan as $x \rightarrow \pm\frac{\pi}{2}$: Since \sin is continuous and $\sin \frac{\pi}{2} = 1$, there exists $\delta_1 > 0$ such that $\sin x > \frac{1}{2}$ whenever $|x - \frac{\pi}{2}| < \delta_1$. Since \cos is continuous and $\cos \frac{\pi}{2} = 0$, for any $\varepsilon > 0$ there exists $\delta_2 > 0$ such that $\cos x < \varepsilon$ whenever $|x - \frac{\pi}{2}| < \delta_2$. Let $M > 0$ be arbitrary, $\varepsilon = \frac{1}{2M}$, and $\delta = \min\{\delta_1, \delta_2\}$. Then, for any x satisfying $0 < |x - \frac{\pi}{2}| < \delta$, we have

$$\tan x = \frac{\sin x}{\cos x} > \frac{\frac{1}{2}}{\varepsilon} = M \implies \lim_{x \rightarrow \frac{\pi}{2}} \tan x = +\infty.$$

By an analogous argument but with $\sin x < -\frac{1}{2}$ and $\cos x < \varepsilon$ for x close to $-\frac{\pi}{2}$, we have, for arbitrary $M > 0$, $\varepsilon = \frac{1}{2M}$, and $\tilde{\delta} = \min\{\tilde{\delta}_1, \tilde{\delta}_2\}$, that for any x satisfying $0 < |x + \frac{\pi}{2}| < \tilde{\delta}$,

$$\tan x = \frac{\sin x}{\cos x} < \frac{-\frac{1}{2}}{\varepsilon} = -M \implies \lim_{x \rightarrow -\frac{\pi}{2}} \tan x = -\infty.$$

Since \tan is monotone increasing, it is injective. By the intermediate value theorem, it is also surjective onto \mathbb{R} . Thus \tan is a bijection from $(-\frac{\pi}{2}, \frac{\pi}{2})$ to \mathbb{R} , and has an inverse function $\tan^{-1} : \mathbb{R} \rightarrow (-\frac{\pi}{2}, \frac{\pi}{2})$. Differentiating both sides of the identity $\tan(\tan^{-1} x) = x$, we have

$$\sec^2(\tan^{-1} x) \cdot \frac{d}{dx} \tan^{-1} x = 1,$$

hence,

$$\frac{d}{dx} \tan^{-1} x = \cos^2(\tan^{-1} x) = \frac{1}{1 + \tan^2(\tan^{-1} x)} = \frac{1}{1 + x^2}.$$

Exercise 2 (Exercise 4.7.9, 15 points). Recall the arctangent function \tan^{-1} from Exercise 4.7.8. By modifying the proof of Theorem 4.5.6(e), establish the identity

$$\tan^{-1}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$$

for all $x \in (-1, 1)$. Using Abel's theorem (Theorem 4.3.1) to extend this identity to the case $x = 1$, conclude in particular the identity

$$\pi = 4 - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \cdots = 4 \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}.$$

(Note that the series converges by the alternating series test, Proposition 7.2.11.) Conclude in particular that $4 - \frac{4}{3} < \pi < 4$. (One can of course compute $\pi = 3.1415926\ldots$ to much higher accuracy, though if one wishes to do so it is advisable to use a different formula than the one above, which converges very slowly.)

Solution 2. For $x \in (-1, 1)$, we have that for any $r < 1$,

$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1 + x^2} \Rightarrow \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

on $[-r, r]$. Since $\tan^{-1}(0) = 0$, integrating both sides from 0 to x , we have

$$\tan^{-1} x = \int_0^x \frac{dt}{1+t^2} = \int_0^x \sum_{n=0}^{\infty} (-1)^n t^{2n} dt = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1},$$

since $(-1)^n t^{2n}$ converges uniformly on compact subsets of $(-1, 1)$ and is Riemann integrable for each n . The resulting series converges by the alternating series test. Hence, by Abel's Theorem, we have

$$\frac{\pi}{4} = \tan^{-1} 1 = \lim_{x \rightarrow 1^-} \tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}.$$

Therefore,

$$\pi = 4 - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \cdots = 4 \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1},$$

and $4 - \frac{4}{3} < \pi < 4$ since the series is alternating with decreasing terms.

Exercise 3 (Exercise 4.7.10, 30 points). Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be the function

$$f(x) := \sum_{n=1}^{\infty} 4^{-n} \cos(32^n \pi x).$$

- (a) Show that this series is uniformly convergent, and that f is continuous.
- (b) Show that for every integer j and every integer $m \geq 1$, we have

$$\left| f\left(\frac{j+1}{32^m}\right) - f\left(\frac{j}{32^m}\right) \right| \geq 4^{-m}.$$

Hint: use the identity

$$\sum_{n=1}^{\infty} a_n = \left(\sum_{n=1}^{m-1} a_n \right) + a_m + \sum_{n=m+1}^{\infty} a_n$$

for certain sequences a_n . Also, use the fact that the cosine function is periodic with period 2π , as well as the geometric series formula $\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$ for any $|r| < 1$. Finally, you will need the inequality $|\cos(x) - \cos(y)| \leq |x - y|$ for any real numbers x and y ; this can be proven by using the mean value theorem.

(c) Using (b), show that for every real number x_0 , the function f is not differentiable at x_0 . Hint: for every x_0 and every $m \geq 1$, there exists an integer j such that $j \leq 32^m x_0 \leq j+1$, thanks to Exercise 5.4.3.

(d) Explain briefly why the result in (c) does not contradict Corollary 3.7.3.

Solution 3.

(a) Since $|\cos(32^n \pi x)| \leq 1$, we have

$$|4^{-n} \cos(32^n \pi x)| \leq 4^{-n}.$$

The series $\sum_{n=1}^{\infty} 4^{-n}$ is a geometric series with ratio $\frac{1}{4}$, which converges. Hence, by the Weierstrass M-test, the series defining $f(x)$ converges uniformly. Since each term $4^{-n} \cos(32^n \pi x)$ is continuous, the uniform limit f is also continuous.

(b) We can write

$$f\left(\frac{j+1}{32^m}\right) - f\left(\frac{j}{32^m}\right) = \sum_{n=1}^{\infty} 4^{-n} \left[\cos\left(32^n \pi \frac{j+1}{32^m}\right) - \cos\left(32^n \pi \frac{j}{32^m}\right) \right].$$

For $n > m$, we have

$$\cos\left(32^n \pi \frac{j+1}{32^m}\right) = \cos\left(32^n \pi \frac{j}{32^m} + 32^{n-m} \pi\right) = \cos\left(32^n \pi \frac{j}{32^m}\right),$$

so we are left with only the first m terms, which can be split as

$$\begin{aligned} f\left(\frac{j+1}{32^m}\right) - f\left(\frac{j}{32^m}\right) &= \sum_{n=1}^{m-1} 4^{-n} \left[\cos\left(32^n \pi \frac{j+1}{32^m}\right) - \cos\left(32^n \pi \frac{j}{32^m}\right) \right] \\ &\quad + 4^{-m} [\cos(\pi(j+1)) - \cos(j\pi)] \\ &\equiv R_m(j) + 4^{-m} [\cos(\pi(j+1)) - \cos(j\pi)]. \end{aligned}$$

The first sum $R_m(j)$ can be bounded using the inequality $|\cos(x) - \cos(y)| \leq |x - y|$:

$$\begin{aligned} R_m(j) &= \left| \sum_{n=1}^{m-1} 4^{-n} \left[\cos\left(\pi \frac{j+1}{32^{m-n}}\right) - \cos\left(\pi \frac{j}{32^{m-n}}\right) \right] \right| \\ &\leq \sum_{n=1}^{m-1} 4^{-n} \left| \pi \frac{j+1}{32^{m-n}} - \pi \frac{j}{32^{m-n}} \right| \\ &= \sum_{n=1}^{m-1} \frac{4^{-n} \pi}{32^{m-n}} = \frac{\pi}{32^m} \sum_{n=1}^{m-1} 8^n \\ &= \frac{\pi}{32^m} \cdot \frac{8}{7} (8^{m-1} - 1) = \frac{\pi}{7} \left(4^{-m+1} - \frac{1}{32^m} \right) < \frac{4\pi}{7} 4^{-m}. \end{aligned}$$

and since $|\cos((j+1)\pi) - \cos(j\pi)| = 2$, we have

$$\begin{aligned} \left| f\left(\frac{j+1}{32^m}\right) - f\left(\frac{j}{32^m}\right) \right| &\geq |4^{-m} [\cos(\pi(j+1)) - \cos(j\pi)]| - |R_m(j)| \\ &\geq 2 \cdot 4^{-m} - \frac{4\pi}{7} 4^{-m} = \left(2 - \frac{4\pi}{7}\right) 4^{-m} > 4^{-m}. \end{aligned}$$

(c) For $x_0 \in \mathbb{R}$, by Exercise 5.4.3, for each $m \geq 1$, there exists an integer j such that $j \leq 32^m x_0 \leq j + 1$. Then,

$$\left| \frac{f\left(\frac{j+1}{32^m}\right) - f\left(\frac{j}{32^m}\right)}{\frac{j+1}{32^m} - \frac{j}{32^m}} \right| = 32^m \left| f\left(\frac{j+1}{32^m}\right) - f\left(\frac{j}{32^m}\right) \right| \geq 32^m \cdot 4^{-m} = 8^m.$$

As $\frac{1}{32^m} \rightarrow 0$, or, $m \rightarrow \infty$, we have $8^m \rightarrow \infty$. Thus, the difference quotient does not converge, and by the definition of the derivative f is not differentiable at x_0 .

(d) Refer to the statement of Corollary 3.7.3 at the beginning of this document. The Corollary requires that $\sum_{n=1}^{\infty} \|f'_n\|$ converges absolutely. However,

$$|f'_n| = |8^n \pi \sin(32^n \pi x)| \implies \|f'_n\|_{\infty} = \sup_{x \in \mathbb{R}} |8^n \pi \sin(32^n \pi x)| = 8^n \pi,$$

which is unbounded for $n \in \mathbb{N}$, and hence $\sum_{n=1}^{\infty} \|f'_n\|_{\infty}$ does not converge absolutely. Therefore, the result in (c) does not contradict Corollary 3.7.3.

Exercise 4 (20 points).

(a) Prove that

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$$

for all integers n and all real θ . This is the classical DeMoivre's theorem.

(b) By equating imaginary parts in DeMoivre's formula, prove that

$$\sin n\theta = \sin^n \theta \left\{ \binom{n}{1} \cot^{n-1} \theta - \binom{n}{3} \cot^{n-3} \theta + \binom{n}{5} \cot^{n-5} \theta - \dots \right\}.$$

(c) If $0 < \theta < \pi/2$, prove that

$$\sin(2m+1)\theta = \sin^{2m+1}\theta P_m(\cot^2 \theta)$$

where P_m is the polynomial of degree m given by

$$P_m(x) = \binom{2m+1}{1} x^m - \binom{2m+1}{3} x^{m-1} + \binom{2m+1}{5} x^{m-2} - \dots.$$

Use this to show that P_m has zeros at the m distinct points

$$x_k = \cot^2\left(\frac{\pi k}{2m+1}\right), \quad k = 1, 2, \dots, m.$$

(d) Show that the sum of the zeros of P_m is given by

$$\sum_{k=1}^m \cot^2\left(\frac{\pi k}{2m+1}\right) = \frac{m(2m-1)}{3}.$$

Solution 4.

(a) By Theorem 4.7.2 (f), for $\theta \in \mathbb{R}$ we have $e^{i\theta} = \cos \theta + i \sin \theta$. Raising both sides to the power n , we get $(\cos \theta + i \sin \theta)^n = (e^{i\theta})^n = e^{in\theta} = \cos(n\theta) + i \sin(n\theta)$.

(b) Expanding $(\cos \theta + i \sin \theta)^n$ using the binomial theorem gives

$$(\cos \theta + i \sin \theta)^n = \sum_{k=0}^n \binom{n}{k} \cos^{n-k} \theta (i \sin \theta)^k = \sum_{k=0}^n \binom{n}{k} i^k \cos^{n-k} \theta \sin^k \theta.$$

The imaginary part is given by the sum over odd k , hence,

$$\begin{aligned} \sin(n\theta) &= \sum_{k=1, k \text{ odd}}^n \binom{n}{k} (-1)^{\frac{k-1}{2}} \cos^{n-k} \theta \sin^k \theta \\ &= \sin^n \theta \sum_{k=1, k \text{ odd}}^n \binom{n}{k} (-1)^{\frac{k-1}{2}} \cot^{n-k} \theta \\ &= \sin^n \theta \left\{ \binom{n}{1} \cot^{n-1} \theta - \binom{n}{3} \cot^{n-3} \theta + \binom{n}{5} \cot^{n-5} \theta - \dots \right\}. \end{aligned}$$

(c) For $n = 2m + 1$, we have

$$\sin(2m+1)\theta = \sin^{2m+1} \theta \left\{ \binom{2m+1}{1} \cot^{2m} \theta - \binom{2m+1}{3} \cot^{2m-2} \theta + \dots \right\}$$

by the result of (b). Hence, by the definition of $P_m(x)$, we have

$$\sin(2m+1)\theta = \sin^{2m+1} \theta P_m(\cot^2 \theta).$$

Since $0 < \theta < \frac{\pi}{2}$, we have $\sin(2m+1)\theta = 0$ when $\theta = \frac{\pi k}{2m+1}$ for $k = 1, 2, \dots, m$. Note that at these points, $\sin \theta \neq 0$. Thus, $P_m(\cot^2 \theta) = \sin(2m+1)\theta / \sin^{2m+1} \theta = 0$ at these points, so P_m has zeros at

$$x_k = \cot^2 \left(\frac{\pi k}{2m+1} \right), \quad k = 1, 2, \dots, m.$$

(d) By Vieta's formula (根與係數), the sum of the zeros of $P_m(x)$ is given by

$$\sum_{k=1}^m \cot^2 \left(\frac{\pi k}{2m+1} \right) = - \left(- \binom{2m+1}{3} \right) / \binom{2m+1}{1} = \frac{m(2m-1)}{3}.$$

Exercise 5 (20 points). This exercise outlines a simple proof of the formula $\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \pi^2/6$. Start with the inequality

$$\sin x < x < \tan x, \quad 0 < x < \frac{\pi}{2},$$

take reciprocals, and square each member to obtain

$$\cot^2 x < \frac{1}{x^2} < 1 + \cot^2 x.$$

Now put $x = \frac{k\pi}{2m+1}$, where k and m are integers with $1 \leq k \leq m$, and sum on k to obtain

$$\sum_{k=1}^m \cot^2 \left(\frac{k\pi}{2m+1} \right) < \frac{(2m+1)^2}{\pi^2} \sum_{k=1}^m \frac{1}{k^2} < m + \sum_{k=1}^m \cot^2 \left(\frac{k\pi}{2m+1} \right).$$

Use the formula in problem 4(d) to deduce the inequality

$$\frac{m(2m-1)\pi^2}{3(2m+1)^2} < \sum_{k=1}^m \frac{1}{k^2} < \frac{2m(m+1)\pi^2}{3(2m+1)^2}.$$

Now let $m \rightarrow \infty$ to obtain $\zeta(2) = \pi^2/6$.

Solution 5. Following the steps in the problem statement, we have

$$\sum_{k=1}^m \cot^2\left(\frac{k\pi}{2m+1}\right) < \frac{(2m+1)^2}{\pi^2} \sum_{k=1}^m \frac{1}{k^2} < m + \sum_{k=1}^m \cot^2\left(\frac{k\pi}{2m+1}\right).$$

By Exercise 4(d), we have

$$\frac{m(2m-1)}{3} < \frac{(2m+1)^2}{\pi^2} \sum_{k=1}^m \frac{1}{k^2} < m + \frac{m(2m-1)}{3}.$$

Rearranging gives

$$\frac{m(2m-1)\pi^2}{3(2m+1)^2} < \sum_{k=1}^m \frac{1}{k^2} < \frac{2m(m+1)\pi^2}{3(2m+1)^2}.$$

Take the limit as $m \rightarrow \infty$, we have

$$\frac{m(2m-1)\pi^2}{3(2m+1)^2} \rightarrow \frac{\pi^2}{6}, \quad \frac{2m(m+1)\pi^2}{3(2m+1)^2} \rightarrow \frac{\pi^2}{6},$$

hence by the Squeeze Theorem, we have that

$$\zeta(2) = \lim_{m \rightarrow \infty} \sum_{k=1}^m \frac{1}{k^2} = \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$