Math 2213 Introduction to Analysis I

Homework 10 Due November 28 (Friday), 2025
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November 27, 2025

Corollary 1 (3.7.3). Let [a,b] be an interval, and for every integer n > 1, let f, : [a,b] = R be a
continuously differentiable function. Suppose that the series Y || f/ |« is absolute convergent.
Suppose also that Y7, f,(z) is convergent for some zy € [a,b]. Then the series Y -, fn
converges uniformly on [a, b] to a differentiable function f : [a,b] — R, and

d = d
@f(x) = ; afn(if)-

Exercise 1 (Exercise 4.7.8, 15 points). Let tan : (—7/2,7/2) — R be the tangent function
tan(z) = sin(x)/ cos(z). Show that tan is differentiable and monotone increasing, with

% tan(z) = 1 + tan(z)?,

and that lim,_,, /o tan(z) = +oo and lim, ,_ ./ tan(z) = —oo. Conclude that tan is in fact a
bijection from (—m/2,7/2) — R, and thus has an inverse function

tan™' R — (—7/2,7/2)

(this function is called the arctangent function). Show that tan~?! is differentiable and

4 tan™!(z) =

dx

Solution 1. On (-7, %), we have cosz > 0, so tanz is defined on all of its domain and

d cos?x +sin? x
—tanz = — = 1+ tan?z > 0.
dx cos? x

Hence tan z is differentiable and monotone increasing. Now we show the limits of tan as © — £7:

Since sin is continuous and sin 3 = 1, there exists d; > 0 such that sinz > 1 whenever [z —Z| < ;.

Since cos is continuous and cos 5 = 0, for any € > 0 there exists d > 0 such that cosz < & whenever

|x — 5| < 02. Let M > 0 be arbitray, ¢ = ﬁ7 and § = min{d;,d2}. Then, for any = satisfying
0 < |z — 5| <4, we have

=M = lim tanz = +o0.

>

. 1
sinx 5
tanx = =
€

CoS T

By an analogous argument but with sinz < —% and cosx < ¢ for x close to —7, we have, for

arbitrary M > 0, € = 71, and 6 = min{dy, 0>}, that for any z satisfying 0 < |z + 3l < 5,

—= =—-M — lim tanz = —o0.
Ccos T € P

Since tan is monotone increasing, it is injective. By the intermediate value theorem, it is also

surjective onto R. Thus tan is a bijection from (—g, g) to R, and has an inverse function tan~1 :
R — (=%, %). Differentiating both sides of the identity tan (tan~!z) = x, we have
2 -1 -1
sec” (tan™ " z) - —tan” "z =1,
( )



hence,
1 1

1+ tan? (tan_lx) T 1ia?

o tan~! z = cos® (tan_1 :C) =

Exercise 2 (Exercise 4.7.9, 15 points). Recall the arctangent function tan™! from Exercise
4.7.8. By modifying the proof of Theorem 4.5.6(e), establish the identity

el (_1)nx2n+1

1 o
tan~ () = ) 5

n=0

for all z € (—1,1). Using Abel’s theorem (Theorem 4.3.1) to extend this identity to the case v = 1,
conclude in particular the identity

4 4 4 = (=Dn
=4 4+ - 4...=4 .
m 35 7t nz::OQn—&-l

(Note that the series converges by the alternating series test, Proposition 7.2.11.) Conclude in

particular that 4 — % < 7 < 4. (One can of course compute m = 3.1415926... to much higher
accuracy, though if one wishes to do so it is advisable to use a different formula than the one above,

which converges very slowly.)

Solution 2. For z € (—1,1), we have that for any r < 1,

[e.o]

d —1 1 n,.2n

on [—r,7]. Since tan~!(0) = 0, integrating both sides from 0 to z, we have

o0
T _l)nx2n+1
tan la = tQ"dt (7
ato= [* - / > St

since (—1)"t?" converges uniformly on compact subsets of (—1,1) and is Riemann integrable for
each n. The resulting series converges by the alternating series test. Hence, by Abel’s Theorem,
we have

n

T _ 19 _ 1 -1 _OO (=
Z—tan 1= lim tan x—z

x—1—
Therefore,

T=4—

4 4 4 = (=Dn

T S |

3 + 5 7 + T;O 2n+1’

and 4 — % < m < 4 since the series is alternating with decreasing terms.

Exercise 3 (Exercise 4.7.10, 30 points). Let f: R — R be the function
flx) = Z 47" cos(32" 7).

n=1

(a) Show that this series is uniformly convergent, and that f is continuous.

(b) Show that for every integer j and every integer m > 1, we have

J+1 (J) m
)| >4
‘f 32m RACTIIE



()

(d)

Hint: use the identity

00 m—1 00

o= (Lon)tant 3

n=1 n=1 n=m+1
for certain sequences a,. Also, use the fact that the cosine function is periodic with period
2, as well as the geometric series formula ) 7 jr™ = ﬁ for any |r| < 1. Finally, you will

need the inequality | cos(x) — cos(y)| < |z — y| for any real numbers  and y; this can be
proven by using the mean value theorem.

Using (b), show that for every real number g, the function f is not differentiable at zg.
Hint: for every xy and every m > 1, there exists an integer j such that j < 32™zg < j + 1,
thanks to Exercise 5.4.3.

Explain briefly why the result in (c) does not contradict Corollary 3.7.3.

Solution 3.

(a)

Since | cos(32"7x)| < 1, we have
[47" cos(32"mx)| < 47"

The series ZZL 47" is a geometric series with ratio %, which converges. Hence, by the Weier-
strass M-test, the series defining f(x) converges uniformly. Since each term 4" cos(32"mx)
is continuous, the uniform limit f is also continuous.

We can write

)~ (ggm) = 47 o (s ) —eos (3277 )
o) (=) =Y"4 ral ) 2w |.
f < 3om f 3om 7;1 cos | 32"m 3om cos (3 7732m

For n > m, we have

5 | 32 =cos | 32" T —=— 2"~ =cos | 32" T ——
cos (3 T o cos | 3 7732 +3 cos | 3 7r32m ,

so we are left with only the first m terms, which can be split as

() =1 (5hm) = S on () o (sn3 )
+ 4 ™ cos (m(j + 1)) — cos (jm)]
= Ry (j) +47" [cos (w(j + 1)) — cos (jm)].
The first sum R,,(j) can be bounded using the inequality | cos(z) — cos(y)| < |z — y|:

i j+1 j
) = | 32477 [eos (i) —eos (s )|
R (5) nz::l cos Tagm—n cos T Sgm=n
piy j+1 j
< 4="m —
- ggm—n " 3gmon
m—1 m—1
47" T n
n=1 n=1
™ 8 s 1 47
_ - .=z 8m71 1 —— <47m+1 7) 747771
32™m 7( ) 7 32m 7

and since | cos ((§ + 1)7) — cos(jm)| = 2, we have

()~ ()| 2 1 eos a +1) = cos Gml| = 1 ()

32m 32m
_ 4 ( 47r) _ _
>2.47M — —4™™ 2— — |47 >4
- 7 7



(¢) For zg € R, by Exercise 5.4.3, for each m > 1, there exists an integer j such that j < 32™z¢ <

j+ 1. Then,
)~ ()
f(32m / 32m —32mf<j+1>—f<i)
J+1 g N 32m 32m
32m  32m

>32™M .47 =8,
As 32% — 0, or, m — 0o, we have 8™ — oo. Thus, the difference quotient does not converge,
and by the definition of the derivative f is not differentiable at x.

(d) Refer to the statement of Corollary 3.7.3 at the beginning of this document. The Corollary
requires that Y7 ||| converges absolutely. However,

If1] = |87 sin (32" mx)| = || f]llec = sgﬁ |8" 7 sin (32" 7x)| = 8™,

which is unbounded for n € N, and hence > 7, || f/,||oc does not converge absolutely. There-
fore, the result in (c) does not contradict Corollary 3.7.3.

Exercise 4 (20 points).

(a) Prove that
(cosO + isin )" = cos(nf) + isin(nd)

for all integers n and all real #.This is the classical DeMoivre’s theorem.

(b) By equating imaginary parts in DeMoivre’s formula, prove that

sinnf = sin™ 0 {(T) cot™ g — (Z) cot™ 30 + (g) cot™ %9 — } )

(c) If 0 < 0 < 7/2, prove that
sin(2m + 1)0 = sin >0 Py, (cot? 0)

where P,, is the polynomial of degree m given by

Po(z) = 2m+1 o 2m +1 el 2m+1 o2
1 3 5

Use this to show that P, has zeros at the m distinct points

k
xkzcot2(2 W+1), k=1,2,...,m.
m

(d) Show that the sum of the zeros of P,, is given by

Solution 4.

(a) By Theorem 4.7.2 (f), for # € R we have ¢ = cosf + isin §. Raising both sides to the power
n, we get (cosf +isind)" = ()" = ei? == cos(nf) + i sin(n#).



(b) Expanding (cosf + isin )™ using the binomial theorem gives

cosf +isinf)" = s k@ zs1n0 = " i* cos™ F 9 sin” 6.
k:

k=0 k=0

The imaginary part is given by the sum over odd k, hence,

sin(nf) = Z <Z) (—1)% cos"F fsin* 0

k=1, k odd

=sin" 0 Z (Z) (71)% cot" kg

k=1, k odd

i n n—1p __ n n—3 n n—=5gng _ ...
= sin 0{<1> cot 0 (3) cot 9+<5> cot 0 }

(¢) For n =2m + 1, we have
2 1 2 1
Sin(?m + 1)9 — Sin277l+1 9 {( m1+ ) COt2m 0 _ ( m3+ > Cot2m—2 0 + . }

by the result of (b). Hence, by the definition of P,,(z), we have
sin(2m + 1)0 = sin®™ ' 9 P, (cot? 0).

Since 0 < 6 < 7, we have sin(2m +1)0 = 0 when 6 = 57 +1 for k =1,2,...,m. Note that at
these points, sinf # 0. Thus, P,,(cot?#) = sin(2m 4 1)8/sin®™*1 § = 0 at these points, so

P, has zeros at
wk
= t2( ) k=1,2,...,m.
Ty = CO o+ 1 m

(d) By Vieta’s formula (#3214 %(), the sum of the zeros of P,,(x) is given by

N o Tk 2m + 1 2m+1\  m(2m—1)
;‘m (2m—|—1>__<_< 3 ))/( 1 )_ 3

Exercise 5 (20 points). This exercise outlines a simple proof of the formula ((2) = >, & =
72 /6. Start with the inequality

T
sinz < x < tanzx, O<z<§,
take reciprocals, and square each member to obtain

1
cot’x < — < 1+ cot?z
T

Now put = = where k& and m are integers with 1 < k < m, and sum on k to obtain

km
2m +1’
i kr 2m+1 U | o
?(grg) < = omii)
k;co om + 1 Z::k z:: om+ 1

Use the formula in problem 4(d) to deduce the inequality

m(2m — 1)r ii 2mm+1)
3(2m + 1)2 k2 7 3(2m +1)2

Now let m — oo to obtain ((2) = 72/6.



Solution 5. Following the steps in the problem statement, we have
- km (2m + 1 i km
¢ (gm1) < " *(gmr1):
;CO 2m + 1 E::k +;CO 2m + 1

By Exercise 4(d), we have

m(2m — 1 2m+1)2 < 1 m2m —1
(3 )<( ;)Z* ( )_

Rearranging gives
2m—r? .1 2 1
m(2m — 1)m <Z* m(m+ 1)x
3(2m +1)2

Take the limit as m — oo, we have

m(2m — 1)7? ﬂj 2m(m + 1)7? 7'('72
3em+12 67 3@2m+12 6’

hence by the Squeeze Theorem, we have that



