Math 2213 Introduction to Analysis I

Homework 11 Due December 5 (Friday), 2025
Y= & &I B12202004
December 5, 2025

Exercise 1 (Exercise 5.2.6, 20 points). Let f € C(R/Z,C), and let (f,,)22; be a sequence of
functions in C(R/Z;C).

(a) Show that if f,, converges uniformly to f, then f,, also converges to f in the L? metric.

(b) Give an example where f, converges to f in the L? metric, but does not converge to f
uniformly. (Hint: take f = 0. Try to make the functions f, large in sup norm.)

(c) Give an example where f, converges to f in the L? metric, but does not converge to f
pointwise. (Hint: take f = 0. Try to make the functions f, large at one point.)

(d) Give an example where f,, converges to f pointwise, but does not converge to f in the L?
metric. (Hint: take f = 0. Try to make the functions f, large in L? norm.)

Solution 1.

(a) Suppose f, = f, then for any € > 0, there exists N € N such that for all n > N and for all
x € R/Z, we have |f(x) — frn(2)|eo < € whenever n > N. Then, for n > N, we have

1 1/2 L 1/2
IIfn—f|2=</o dtlfn(t)—f(t)2> g(/ dteZ) _.

so f, — f in the L? metric.

n, xé€ |0, #]

777, Then, for any n € N, we have
0, otherwise

(b) Consider the sequence of functions f,(x) = {

1/2

1 1/2 1/n3
[fn = Oll2 = (/O dt | fa(t) - 0l2) = </0 dtnz) =1/v/n =0,

but f,, does not converge to 0 uniformly since |f, — f|looc =n — 00 as n — oo.
(c) The same example as in (b) works here. We have f, — f in the L? metric, but for z = 0,
|fn(0) =0 =n — o0 as n — 0.

1
Vi 2 €031 yen £(0)
0, otherwise

z € (0,1], there exists N € N such that for all n > N, we have = ¢ [0, 1], so f,(z) = 0.
Thus, f,(x) — 0 pointwise. However, we have

1 1/2 1/n 1/2
[fn = 0ll2 = (/0 dt [ fa(t) —0l2> = (/0 dtn) =1,

so f, does not converge to 0 in the L? metric.

(d) Consider the sequence of functions f,(z) = { = 0, and for any

Exercise 2 (20 points). Let {¢n} : R — R be a sequence of continuous, periodic functions on R
(with period 1) which satisfy

1 1
/ on(t)dt=1  and / o ()| dt < M < o0
0 0



for all N € N, and
1-5

lim o ()| dt = 0

N—oo /s
for each 0 < § < 1. Suppose that f: R — R is continuous and periodic with period 1. Prove that

lim / fle— ) on(t) dt = f(z)

N —oc0

uniformly for z € R.

Solution 2. Since f is continuous on the compact set [0, 1], it is uniformly continuous. Thus, for
any € > 0, there exists 6 > 0 such that for all z,y € R with |z —y| < J, we have |f(z) — f(y)] <
€/(83M). For any x € R, let F(z,t) = f(x —t) — f(z), the triangle inequality gives

1

dt F(z,t)pn(t)

1
A<ﬁﬂx—w@wﬂ—f@)

[e'e
1

. dt F(z,t)pn(t)

F) 1-0
< /Oth(a:,t)¢N(t) +/5 dt F(z,t)én(t)|| +

oo oo o0

For the first and third integrals, since |F'(z,t)| < ¢/(3M) for |t| < 8, which for ¢t € R/Z is
equivalent to t < § and ¢ > 1 — 4, we have

)
/ dt F(z, D (1)
O o0

and
1

<< o t)|dt <
S el <

/1 4 F (e )én()

-8

Since f is uniformly continuous, it is also bounded, so there exists B > 0 such that |f(x)| < B for
all x € R. By assumption, there exists Ny € N such that for all N > Ny, we have

1-46 e
| lexlae< o5

Thus, for the second integral, we have

= <
6B

1-6 1-6
| areoeno| <28 [ lowold<2s-
) )

w | m

Therefore, given any € > 0, for all z € R and N > Ny, we have

9 9 9
<z+z4z=¢

/0 dt f(z — t)on(t) — f(2) 3T3t3

oo

and hence on R, we have

1
/O dt f(z — Do (t) = f(a).

Exercise 3 (Exercise 5.2.3, 15 points). If f € C(R/Z;C) is a non-zero function, show that

0<fll2 < I fllco-
Conversely, if 0 < A < B are real numbers, show that there exists a non-zero function f €
C(R/Z;C) such that
[fla=A and  |fllc = B.

(Hint: let g be a non-constant non-negative real-valued function in C(R/Z;C), and consider func-
tions of the form f = (¢ + dg)'/? for some constant real numbers c,d > 0.)



Solution 3. If f is nonzero, by the definition of the norm we must have | f|z > 0. For each
x € R/Z, we have f(x) < || f]lco- Therefore,

1 1
||f|\§=/0 d?flf(t)|2§/0 dt 1% = I£112-

Conversely, suppose 0 < A < B are real numbers. If A = B, then let f = A be the constant
function and we are done. If A < B, let g(x) = sin®(27z) < 1, then g € C(R/Z; C) is non-constant
and non-negative. Consider the function f(z) = (c + dg(z))'/?, where ¢,d > 0 are constants to be
determined. We have
Ifloc = max (¢ +dg())'/* = (¢ +d)'/2,
2€ER/Z

and . )
d
I1£113 :/ dt (e+dg(t)) =c+ d/ dt sin®(27t) = ¢ + ok

0 0

Thus, we want to solve for ¢, d such that (c 4+ d)'/? = B and (c + %)1/2 = A. The solution is
c=2A% - B% d=2(B?—- A?), and hence the function

f(z) = (24> - B> + 2 (B — 4?) s1112(27r:r))1/2

works.

Exercise 4 (15 points). A square wave function is a Z-periodic function defined by

1, wzelk k+3),
f(z) = keZ.
-1, z€lk+3i,k+1),

Thus f alternates between 1 and —1 on each half-interval, repeating the same pattern on every
interval of length 1.

Find a sequence of continuous periodic functions which converges in L? to the square wave
function.

Ya
-2 -1 0 1 2 3 7
O O— —1 O O O
/—/%
|
period =1

Solution 4. The square wave function has a discontinuity at x = k + % Thus, we can do the
following approximation of it. Let

[ 1 1
1, T € k,k—l—f—f),
L 2 n
1 [ 1 1 1
—n(m—k—f), T € k‘—i-*—f,k—i—*),
2 L 2 n 2
-1, T € k+f,k+1——>,
L 2 n
[ 1
n(z—k—-1)+1, z¢€ k—l—l—f?k—f—l),
L n




Then, f is periodic since f(x + 1) = f(z) by construction, and f is continuous since the limits
of fat & = k+ § + + exists and are equal to £1. To check the L2-convergence of f,, to f, by

periodicity we focus on the intervals Y = [% - IL, 5] and 12 = 1 - %7,1], since f, = f on
[07% — %] U [%,1— %] We have \L(ll)| = |I,(L2)\ = E’ and for any x € I,(lz), i = 1,2, we have

|fn(z) — f(z)| < 2. Therefore, for all € > 0, take N = 8/¢, and we have

an(x) - f(x)Hg = /(1) |f”( ) o f(t)|2 < /I(l)ul(z) dtd = % <&

whenever n > N. Thus, f, — f in the L? metric.

Exercise 5 (15 points).
(a) Evaluate

= Z sin(k0).
k=1

(b) Show that
1S,,(0)] < me™! on [g, 2mr —¢| for all n > 1.

Solution 5.

(a) Recall that sinz = eim_f%z. Thus, by the geometric series formula, we have

n_ _ik6 efike

Su(6) = sin(kg) = 6’271

k=1 k=1

1 n n
_ ko —ike
(e

k=1 k=1

_ i ei@ 1— eme e 1— e—zm‘)

2i 1— et 1—e
B i z(n+1)0/2 ein0/2 _ e*inG/Q B e*i(n+1)0/2 ein0/2 _ efinG/Q
~ 9 0i0/2 _ o—i0/2 0i0/2 _ o—i0/2

B ez(n+1)0/2 7i(n+1)0/2 ein0/2 _ efin9/2
- 2 ei0/2 _ o—ib/2

(b) Let @ € [e,2m — €]. Then, since sinz is increasing on [0, 7/2] and decreasing on [7/2, 7], we

have
in(2) = i 3)

. . . 1 .
On [0, 7], since smx passes through (g ), and is concave because (sinz)” = —sinz < 0,

we have sinx > ﬁx. Thus, by part (a), we have

(n+1)0
19 (0)] = sin (257

)S (5) < 1 1 7
2) T sin(5)] T Isin(§)] T e

sin (

Remark. This implies that S,,(#) is uniformly bounded for all n on any compact subset of
the interval (0, 27).



Exercise 6 (15 points). Let f,g € C(R/Z;R). We define their periodic convolution fxg: R — R

by
(f * 9)a /f

Prove that (f * g) is smooth whenever f is smooth. (Remark: A function is called smooth if it has
derivatives of all orders.)

Solution 6. First consider z = x — y, then let h = f % g, we have

x+1 1
)= [ sl =296e) = [ e flo—2)alo)

since both f and g are periodic with period 1. For each fixed y € [0,1], by the Mean Value
Theorem, there exists & € (0,t) such that

h(m—i—t /d x—l—t—zz (x —2) /dzg o= 24 E).

Since z — z € [—1,1], we have x — z + & € [-1 — ¢,1 + ¢]. Since f is smooth, f’ is continuous on
the compact set [—1 —¢,1+1], so f’ is uniformly continuous there. Thus, for all € > 0, there exists
0 > 0 such that when |(x — 2z + &) — (z — 2)| = |&]| < t < §, we have

If(x—24&)—f(z—2)| <e.

Since g is continuous on the compact set [0,1], it is bounded, so there exists M > 0 such that
lg(z)] < M for all z € [0,1]. Therefore, for all t < §, we have

h(xz +t) — h(x)

- / dzg(2)f'(z - 2)| < / dz1g(2)| [f (@ = 2+ &) — f'(x — )| < Me,
0 0

and hence the first derivative exists:

W (z) = lim Mz +1) — h(z)

t—0

_ /01 dzg(2)f (@ — 2).

We can show the higher-order derivatives similarly by induction. The base case n = 1 is done
above. Suppose the n-th derivative exists and is given by

1

W) = [ dzg(a) ™o - 2),
0

Then, for the (n 4 1)-th derivative, we have

B 0 1 (n) R T
(:17+t1 (z)—/odzg(z)f (x+t Zi f(z—2)

1
= / dzg(z)f("+1)(x —z+&),
0

for some & € (0,t). By the same argument as above, we may switch the order of limit and
integration, and thus

R (g / dz g(2)f" ) (@ — 2).

Therefore, by induction, h has derivatives of all orders, so h is smooth.



