
Math 2213 Introduction to Analysis I

Homework 11 Due December 5 (Friday), 2025

物理三 黃紹凱 B12202004

December 5, 2025

Exercise 1 (Exercise 5.2.6, 20 points). Let f ∈ C(R/Z,C), and let (fn)
∞
n=1 be a sequence of

functions in C(R/Z;C).

(a) Show that if fn converges uniformly to f , then fn also converges to f in the L2 metric.

(b) Give an example where fn converges to f in the L2 metric, but does not converge to f
uniformly. (Hint: take f = 0. Try to make the functions fn large in sup norm.)

(c) Give an example where fn converges to f in the L2 metric, but does not converge to f
pointwise. (Hint: take f = 0. Try to make the functions fn large at one point.)

(d) Give an example where fn converges to f pointwise, but does not converge to f in the L2

metric. (Hint: take f = 0. Try to make the functions fn large in L2 norm.)

Solution 1.

(a) Suppose fn ⇒ f , then for any ε > 0, there exists N ∈ N such that for all n ≥ N and for all
x ∈ R/Z, we have |f(x)− fn(x)|∞ < ε whenever n > N . Then, for n > N , we have

∥fn − f∥2 =

Ç∫ 1

0

dt |fn(t)− f(t)|2
å1/2

≤
Ç∫ 1

0

dt ε2
å1/2

= ε,

so fn → f in the L2 metric.

(b) Consider the sequence of functions fn(x) =

®
n, x ∈ [0, 1

n3 ]

0, otherwise
. Then, for any n ∈ N, we have

∥fn − 0∥2 =

Ç∫ 1

0

dt |fn(t)− 0|2
å1/2

=

Ç∫ 1/n3

0

dt n2

å1/2

= 1/
√
n → 0,

but fn does not converge to 0 uniformly since |fn − f |∞ = n → ∞ as n → ∞.

(c) The same example as in (b) works here. We have fn → f in the L2 metric, but for x = 0,
|fn(0)− 0| = n → ∞ as n → ∞.

(d) Consider the sequence of functions fn(x) =

®√
n, x ∈ [0, 1

n ]

0, otherwise
. Then f(0) = 0, and for any

x ∈ (0, 1], there exists N ∈ N such that for all n ≥ N , we have x /∈ [0, 1
n ], so fn(x) = 0.

Thus, fn(x) → 0 pointwise. However, we have

∥fn − 0∥2 =

Ç∫ 1

0

dt |fn(t)− 0|2
å1/2

=

Ç∫ 1/n

0

dt n

å1/2

= 1,

so fn does not converge to 0 in the L2 metric.

Exercise 2 (20 points). Let {ϕN} : R → R be a sequence of continuous, periodic functions on R
(with period 1) which satisfy∫ 1

0

ϕN (t) dt = 1 and

∫ 1

0

|ϕN (t)| dt ≤ M < ∞
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for all N ∈ N, and

lim
N→∞

∫ 1−δ

δ

|ϕN (t)| dt = 0

for each 0 < δ < 1. Suppose that f : R → R is continuous and periodic with period 1. Prove that

lim
N→∞

∫ 1

0

f(x− t)ϕN (t) dt = f(x)

uniformly for x ∈ R.

Solution 2. Since f is continuous on the compact set [0, 1], it is uniformly continuous. Thus, for
any ε > 0, there exists δ > 0 such that for all x, y ∈ R with |x − y| < δ, we have |f(x) − f(y)| <
ε/(3M). For any x ∈ R, let F (x, t) = f(x− t)− f(x), the triangle inequality gives∥∥∥∥∥

∫ 1

0

dt f(x− t)ϕN (t)− f(x)

∥∥∥∥∥
∞

=

∥∥∥∥∥
∫ 1

0

dt F (x, t)ϕN (t)

∥∥∥∥∥
∞

≤
∥∥∥∥∥
∫ δ

0

dt F (x, t)ϕN (t)

∥∥∥∥∥
∞

+

∥∥∥∥∥
∫ 1−δ

δ

dt F (x, t)ϕN (t)

∥∥∥∥∥
∞

+

∥∥∥∥∥
∫ 1

1−δ

dt F (x, t)ϕN (t)

∥∥∥∥∥
∞

.

For the first and third integrals, since |F (x, t)| < ε/(3M) for |t| < δ, which for t ∈ R/Z is
equivalent to t < δ and t > 1− δ, we have∥∥∥∥∥

∫ δ

0

dt F (x, t)ϕN (t)

∥∥∥∥∥
∞

<
ε

3M

∫ δ

0

|ϕN (t)| dt ≤ ε

3
,

and ∥∥∥∥∥
∫ 1

1−δ

dt F (x, t)ϕN (t)

∥∥∥∥∥
∞

<≤ ε

3M

∫ 1

1−δ

|ϕN (t)| dt ≤ ε

3
.

Since f is uniformly continuous, it is also bounded, so there exists B > 0 such that |f(x)| ≤ B for
all x ∈ R. By assumption, there exists N0 ∈ N such that for all N ≥ N0, we have∫ 1−δ

δ

|ϕN (t)| dt < ε

6B

Thus, for the second integral, we have∥∥∥∥∥
∫ 1−δ

δ

dt F (x, t)ϕN (t)

∥∥∥∥∥
∞

≤ 2B

∫ 1−δ

δ

|ϕN (t)| dt < 2B · ε

6B
<

ε

3
.

Therefore, given any ε > 0, for all x ∈ R and N ≥ N0, we have∥∥∥∥∥
∫ 1

0

dt f(x− t)ϕN (t)− f(x)

∥∥∥∥∥
∞

<
ε

3
+

ε

3
+

ε

3
= ε,

and hence on R, we have ∫ 1

0

dt f(x− t)ϕN (t) ⇒ f(x).

Exercise 3 (Exercise 5.2.3, 15 points). If f ∈ C(R/Z;C) is a non-zero function, show that

0 < ∥f∥2 ≤ ∥f∥∞.

Conversely, if 0 < A ≤ B are real numbers, show that there exists a non-zero function f ∈
C(R/Z;C) such that

∥f∥2 = A and ∥f∥∞ = B.

(Hint: let g be a non-constant non-negative real-valued function in C(R/Z;C), and consider func-
tions of the form f = (c+ dg)1/2 for some constant real numbers c, d > 0.)
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Solution 3. If f is nonzero, by the definition of the norm we must have ∥f∥2 > 0. For each
x ∈ R/Z, we have f(x) ≤ ∥f∥∞. Therefore,

∥f∥22 =

∫ 1

0

dt |f(t)|2 ≤
∫ 1

0

dt ∥f∥2∞ = ∥f∥2∞.

Conversely, suppose 0 < A ≤ B are real numbers. If A = B, then let f = A be the constant
function and we are done. If A < B, let g(x) = sin2(2πx) ≤ 1, then g ∈ C(R/Z;C) is non-constant
and non-negative. Consider the function f(x) = (c+ dg(x))1/2, where c, d > 0 are constants to be
determined. We have

∥f∥∞ = max
x∈R/Z

(c+ dg(x))1/2 = (c+ d)1/2,

and

∥f∥22 =

∫ 1

0

dt (c+ dg(t)) = c+ d

∫ 1

0

dt sin2(2πt) = c+
d

2
.

Thus, we want to solve for c, d such that (c + d)1/2 = B and (c + d
2 )

1/2 = A. The solution is
c = 2A2 −B2, d = 2

(
B2 −A2

)
, and hence the function

f(x) =
(
2A2 −B2 + 2

(
B2 −A2

)
sin2(2πx)

)1/2
works.

Exercise 4 (15 points). A square wave function is a Z-periodic function defined by

f(x) =

{
1, x ∈ [k, k + 1

2 ),

−1, x ∈ [k + 1
2 , k + 1),

k ∈ Z.

Thus f alternates between 1 and −1 on each half-interval, repeating the same pattern on every
interval of length 1.

Find a sequence of continuous periodic functions which converges in L2 to the square wave
function.

x

y

1

−1

−2 −1 0 1 2 3

period = 1

Solution 4. The square wave function has a discontinuity at x = k + 1
2 . Thus, we can do the

following approximation of it. Let

f(x) =



1, x ∈
ï
k, k +

1

2
− 1

n

ã
,

−n

Å
x− k − 1

2

ã
, x ∈

ï
k +

1

2
− 1

n
, k +

1

2

ã
,

−1, x ∈
ï
k +

1

2
, k + 1− 1

n

ã
,

2n(x− k − 1) + 1, x ∈
ï
k + 1− 1

n
, k + 1

ã
,
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Then, f is periodic since f(x + 1) = f(x) by construction, and f is continuous since the limits
of f at x = k + 1

2 ± 1
n exists and are equal to ±1. To check the L2-convergence of fn to f , by

periodicity we focus on the intervals I
(1)
n = [ 12 − 1

n ,
1
2 ] and I

(2)
n = [1 − 1

n , 1], since fn = f on[
0, 1

2 − 1
n

]
∪
[
1
2 , 1−

1
n

]
. We have |I(1)n | = |I(2)n | = 1

n , and for any x ∈ I
(i)
n , i = 1, 2, we have

|fn(x)− f(x)| ≤ 2. Therefore, for all ε > 0, take N = 8/ε, and we have

∥fn(x)− f(x)∥22 =

∫
I
(1)
n ∪I

(2)
n

dt |fn(t)− f(t)|2 ≤
∫
I
(1)
n ∪I

(2)
n

dt 4 =
8

n
< ε,

whenever n > N . Thus, fn → f in the L2 metric.

Exercise 5 (15 points).

(a) Evaluate

Sn(θ) =

n∑
k=1

sin(kθ).

(b) Show that
|Sn(θ)| ≤ πε−1 on [ε, 2π − ε] for all n ≥ 1.

Solution 5.

(a) Recall that sinx = eix−e−ix

2i . Thus, by the geometric series formula, we have

Sn(θ) =

n∑
k=1

sin(kθ) =

n∑
k=1

eikθ − e−ikθ

2i

=
1

2i

(
n∑

k=1

eikθ −
n∑

k=1

e−ikθ

)

=
1

2i

Ç
eiθ

1− einθ

1− eiθ
− e−iθ 1− e−inθ

1− e−iθ

å
=

1

2i

Ç
ei(n+1)θ/2 e

inθ/2 − e−inθ/2

eiθ/2 − e−iθ/2
− e−i(n+1)θ/2 e

inθ/2 − e−inθ/2

eiθ/2 − e−iθ/2

å
=

Ç
ei(n+1)θ/2 − e−i(n+1)θ/2

2i

åÇ
einθ/2 − e−inθ/2

eiθ/2 − e−iθ/2

å
=

sin
Ä
(n+1)θ

2

ä
sin
(
nθ
2

)
sin
(
θ
2

) .

(b) Let θ ∈ [ε, 2π − ε]. Then, since sinx is increasing on [0, π/2] and decreasing on [π/2, π], we
have ∣∣∣∣sinÅθ2ã∣∣∣∣ ≥ ∣∣∣sin(ε2)∣∣∣ .
On [0, π

2 ], since sinx passes through
(
π
2 , 1
)
, and is concave because (sinx)

′′
= − sinx < 0,

we have sinx ≥ 2
πx. Thus, by part (a), we have

|Sn(θ)| =

∣∣∣∣∣∣ sin
Ä
(n+1)θ

2

ä
sin
(
nθ
2

)
sin
(
θ
2

)
∣∣∣∣∣∣ ≤ 1∣∣sin ( ε2)∣∣ ≤ 1

| sin
(
θ
2

)
|
≤ π

ε
.

Remark. This implies that Sn(θ) is uniformly bounded for all n on any compact subset of
the interval (0, 2π).
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Exercise 6 (15 points). Let f, g ∈ C(R/Z;R). We define their periodic convolution f ∗g : R → R
by

(f ∗ g)(x) :=
∫ 1

0

f(y) g(x− y) dy.

Prove that (f ∗ g) is smooth whenever f is smooth. (Remark: A function is called smooth if it has
derivatives of all orders.)

Solution 6. First consider z = x− y, then let h = f ∗ g, we have

h(x) =

∫ x+1

x

dz f(x− z)g(z) =

∫ 1

0

dz f(x− z)g(z),

since both f and g are periodic with period 1. For each fixed y ∈ [0, 1], by the Mean Value
Theorem, there exists ξt ∈ (0, t) such that

h(x+ t)− h(x)

t
=

∫ 1

0

dz g(z)
f(x+ t− z)− f(x− z)

t
=

∫ 1

0

dz g(z)f ′(x− z + ξt).

Since x − z ∈ [−1, 1], we have x − z + ξt ∈ [−1 − t, 1 + t]. Since f is smooth, f ′ is continuous on
the compact set [−1− t, 1+ t], so f ′ is uniformly continuous there. Thus, for all ε > 0, there exists
δ > 0 such that when |(x− z + ξt)− (x− z)| = |ξt| < t < δ, we have

|f ′(x− z + ξt)− f ′(x− z)| < ε.

Since g is continuous on the compact set [0, 1], it is bounded, so there exists M > 0 such that
|g(z)| ≤ M for all z ∈ [0, 1]. Therefore, for all t < δ, we have∣∣∣∣∣h(x+ t)− h(x)

t
−
∫ 1

0

dz g(z)f ′(x− z)

∣∣∣∣∣ ≤
∫ 1

0

dz |g(z)| |f ′(x− z + ξt)− f ′(x− z)| ≤ Mε,

and hence the first derivative exists:

h′(x) = lim
t→0

h(x+ t)− h(x)

t
=

∫ 1

0

dz g(z)f ′(x− z).

We can show the higher-order derivatives similarly by induction. The base case n = 1 is done
above. Suppose the n-th derivative exists and is given by

h(n)(x) =

∫ 1

0

dz g(z)f (n)(x− z).

Then, for the (n+ 1)-th derivative, we have

h(n)(x+ t)− h(n)(x)

t
=

∫ 1

0

dz g(z)
f (n)(x+ t− z)− f (n)(x− z)

t

=

∫ 1

0

dz g(z)f (n+1)(x− z + ξt),

for some ξt ∈ (0, t). By the same argument as above, we may switch the order of limit and
integration, and thus

h(n+1)(x) =

∫ 1

0

dz g(z)f (n+1)(x− z).

Therefore, by induction, h has derivatives of all orders, so h is smooth.
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