
Math 2213 Introduction to Analysis I

Homework 12 Due December 12 (Friday), 2025

物理三 黃紹凱 B12202004

December 11, 2025

Exercise 1 (Exercise 5.4.1, 20 points). Show that if f : R → C is both compactly supported
and Z–periodic, then it is identically zero. Hint: A function f : R → C is said to be compactly
supported if the set

supp(f) := {x ∈ R : f(x) ̸= 0 }

is a compact subset of R. Equivalently, f is compactly supported if there exists a bounded closed
interval [a, b] ⊂ R such that

f(x) = 0 whenever x /∈ [a, b].

Solution 1.

Exercise 2 (Exercise 5.5.1, 20 points). Let f be a function in C(R/Z;C), and define the
trigonometric Fourier coefficients an, bn for n = 0, 1, 2, . . . by

an := 2

∫ 1

0

f(x) cos(2πnx) dx, bn := 2

∫ 1

0

f(x) sin(2πnx) dx.

(a) Show that the series

1

2
a0 +

∞∑
n=1

(
an cos(2πnx) + bn sin(2πnx)

)
converges to f in the L2-metric.

(b) Show that if
∑∞

n=1 |an| and
∑∞

n=1 |bn| are absolutely convergent, then the above series actu-
ally converges uniformly to f (and not just in L2).

Solution 2.

(a) By the Fourier Theorem (Theorem 5.5.1), for any f ∈ C (R/Z,C), we have

lim
N→∞

∥∥∥∥∥f −
N∑

n=−N

f̂(n)en

∥∥∥∥∥
2

= 0.

That is, the Fourier series FN =
∑N

n=−N f̂(n)en converges to f in the L2-metric. We have

en = e2πinx = cos 2πnx+ i sin 2πnx.

FN =

N∑
n=−N

f̂(n)en = f̂(0) +

N∑
n=1

Ä
f̂(n)en + f̂(−n)e−n

ä
= f̂(0) +

N∑
n=1

Ä
f̂(n)(cos 2πnx+ i sin 2πnx) + f̂(−n)(cos 2πnx− i sin 2πnx)

ä
= f̂(0) +

N∑
n=1

Ä
(f̂(n) + f̂(−n)) cos 2πnx+ i(f̂(n)− f̂(−n)) sin 2πnx

ä
.

1



Finally note that the given series is exactly FN :

f̂(n) + f̂(−n) =

∫
[0,1]

dx f(x)
(
e2πinx + e−2πnx

)
= 2

∫
[0,1]

dx f(x) cos 2πnx = an, n ≥ 2,

f̂(0) =

∫
[0,1]

dx f(x) =
a0
2
,

i(f̂(n)− f̂(−n)) = i

∫
[0,1]

dx f(x)
(
e2πinx − e−2πnx

)
= −2

∫
[0,1]

dx f(x) sin 2πnx = bn, n ≥ 1.

(b) Theorem 5.5.3 states that for f ∈ C (R/Z,C), if
∑∞

n=−∞ |f̂(n)| < ∞, then the Fourier series
converges uniformly to f . I.e.

lim
N→∞

∥∥∥∥∥f −
N∑

n=−N

f̂(n)en

∥∥∥∥∥
∞

= 0.

Suppose (an) and (bn) converge absolutely, then

Sn =

n∑
k=1

|ak|, Tn =

n∑
k=1

|bk|, n = 1, 2, . . .

N∑
n=−N

|f̂(n)| =
N∑

n=−N

∣∣∣∣∣
∫
[0,1]

dx f(x)e−2πinx

∣∣∣∣∣ ≤
N∑

n=−N

∫
[0,1]

dx |f(x)||e−2πinx| = (2N+1)∥f∥∞ < ∞.

N∑
n=−N

|f̂(n)en| = |f̂(0)|+
N∑

n=1

Ä
|f̂(n)|+ |f̂(−n)|

ä
=

|a0|
2

+

N∑
n=1

Å |an|
2

+
|bn|
2

ã
.

Exercise 3 (Exercise 5.5.2, 20 points). Let f(x) be the function defined by f(x) = (1 − 2x)2

when x ∈ [0, 1], and extended to be Z–periodic on R.

(a) Using Exercise 5.5.1, show that the series

1

3
+

∞∑
n=1

4

π2n2
cos(2πnx)

converges uniformly to f . Hint: You may use the fact that∫ 1

0

x e−2πinx dx = − 1

2πin
, (n ̸= 0),

∫ 1

0

x2 e−2πinx dx = − 1

2πin
+

2

(2πn)2
, (n ̸= 0).

(b) Conclude that
∞∑

n=1

1

n2
=

π2

6
.
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(c) Conclude that
∞∑

n=1

1

n4
=

π4

90
.

Hint: expand the cosines in terms of exponentials and use Plancherel’s theorem.

Solution 3.

(a) Following Exercise 5.5.1, we compute the Fourier coefficients of f . For n ≥ 1, we have∫ 1

0

dxxe−2πinx =
i

2πn
=

∫ 1

0

dxx cos 2πnx− i

∫ 1

0

dxx sin 2πnx,

∫ 1

0

dxx2e−2πinx =
1

2π2n2
− i

2πn
=

∫ 1

0

dxx2 cos 2πnx− i

∫ 1

0

dxx2 sin 2πnx.

Then,

an = 2

∫ 1

0

(1− 2x)2 cos(2πnx) dx

= 2

∫ 1

0

(1− 4x+ 4x2) cos(2πnx) dx

= −8(0) + 8

Å
1

2π2n2

ã
=

4

π2n2
, n ≥ 2,

a0 = 2

∫ 1

0

(1− 2x)2 dx =
2

3
,

bn = 2

∫ 1

0

(1− 2x)2 sin(2πnx) dx

= 2

∫ 1

0

(1− 4x+ 4x2) sin(2πnx) dx

= 0− 8

Å
1

2πn

ã
+ 8(0) = 0, n ≥ 1.

Hence, the Fourier series of f is

1

3
+

∞∑
n=1

4

π2n2
cos(2πnx).

Since
∑∞

n=1

∣∣ 4
π2n2

∣∣ converges, by Exercise 5.5.1(b), the series converges uniformly to f .

(b) Plugging in x = 0 gives

f(0) = 1 =
1

3
+

∞∑
n=1

4

π2n2
=⇒

∞∑
n=1

1

n2
=

π2

6
.

(c) We can write

FN =
1

3
+

∞∑
n=1

4

π2n2
cos(2πnx) =

1

3
+

∞∑
n=1

2

π2n2
(e2πinx + e−2πinx),

and so the complex Fourier coefficients are

f̂(0) =
1

3
, f̂(n) =

2

π2n2
, n ≥ 1.
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By Plancherel’s theorem, we have∫ 1

0

dx |f(x)|2 =

∞∑
n=−∞

|f̂(n)|2 =
1

9
+

8

π4

∞∑
n=1

1

n4
.

On the other hand, we have∫ 1

0

dx (1− 2x)4 =

∫ 1

0

dx (1− 8x+ 24x2 − 32x3 + 16x4) =
1

5
.

Hence,

1

5
=

1

9
+

8

π4

∞∑
n=1

1

n4
=⇒

∞∑
n=1

1

n4
=

π4

90
.

Exercise 4 (Exercise 5.5.3, 20 points). If f ∈ C(R/Z;C) and P is a trigonometric polynomial,
show that ’f ∗ P (n) = f̂(n) cn = f̂(n) “P (n)

for all integers n, where cn are the Fourier coefficients of P . More generally, if f, g ∈ C(R/Z;C),
show that ‘f ∗ g(n) = f̂(n) ĝ(n) for all n ∈ Z.

Solution 4.

Exercise 5 (Exercise 5.5.4, 20 points). Let f ∈ C(R/Z;C) be differentiable, and assume its
derivative f ′ is also continuous. Show that

∞∑
n=−∞

|n f̂(n)|2 < ∞

and that the Fourier coefficients of f ′ satisfy“f ′(n) = 2πin f̂(n) for all n ∈ Z.

Solution 5.
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You can do the following problems to practice.
You don’t have to submit the following problems.

Exercise 6 (Exercise 5.5.5, Optional). Let f, g ∈ C(R/Z;C). Prove the Parseval identity

ℜ
∫ 1

0

f(x)g(x) dx = ℜ
∑
n∈Z

f̂(n) ĝ(n).

Hint: apply the Plancherel theorem to f + g and f − g, and subtract the two. Then conclude that
the real parts can be removed, i.e.∫ 1

0

f(x)g(x) dx =
∑
n∈Z

f̂(n) ĝ(n).

Hint: apply the first identity with f replaced by if .

Solution 6.

Exercise 7 (Exercise 5.5.6, Optional). In this exercise we develop Fourier series for functions
of an arbitrary period L > 0. Let L > 0 and let f : R → C be a continuous L-periodic function.
For each integer n define

cn :=
1

L

∫ L

0

f(x) e−2πinx/L dx.

(a) Show that the series
∞∑

n=−∞
cn e

2πinx/L

converges to f in L2-metric. More precisely, prove that

lim
N→∞

∫ L

0

∣∣∣f(x)− N∑
n=−N

cn e
2πinx/L

∣∣∣2dx = 0.

Hint: apply the Fourier theorem to the function f(Lx).

(b) If the series
∑∞

n=−∞ |cn| is absolutely convergent, show that

∞∑
n=−∞

cn e
2πinx/L

converges uniformly to f .

(c) Show that

1

L

∫ L

0

|f(x)|2 dx =

∞∑
n=−∞

|cn|2.

Hint: apply the Plancherel theorem to the function f(Lx).

Solution 7.
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