Math 2213 Introduction to Analysis I

Homework 2 Due September 17 (Thursday), 2025
W~ B Z 7 B12202004
September 20, 2025

Definition 1 (metric). A functiond : X x X — [0, c0) is called a metric on X if, for all 2, y, z € X,
the following properties hold:

(i) For any z € X, we have d(z,z) = 0.
(ii

) (Positivity) For any distinct z,y € X, we have d(x,y) > 0.
(ili) (Symmetry) For any =,y € X, we have d(z,y) = d(y, ).
)

(iv) (Triangle Inequality) For any z,y,z € X, we have d(z, z) < d(x,y) + d(y, 2).

Definition 2 (Interior, exterior, boundary points). Let (X,d) be a metric space, let E C X,
and let zg € X. We say that x( is an interior point of FE if there exists a radius r > 0 such that
B(zg,7) C E. We say that z( is an exterior point of E if there exists a radius r > 0 such that
B(zg,7)NE = &. We say that ¢ is a boundary point of E if it is neither an interior point nor an
exterior point of F.

Definition 3 (Closure). Let (X, d) be a metric space, let E C X, and let o € X. We say that x
is an adherent point of F if for every radius r > 0, the ball B(x,r) has a non-empty intersection
with F; i.e., B(zo,7) N E # &. The set of all adherent points of E is called the closure of E and
is denoted E.

Definition 4 (Open and closed sets). Let (X,d) be a metric space, and let E be a subset of
X. We say that E is closed if it contains all of its boundary points, i.e., 0F C E. We say that
E is open if it contains none of its boundary points, i.e., 0OF N E = &. If E contains some of its
boundary points but not others, then it is neither open nor closed.



Problem 1 (11 pts). If (X,d) is a metric space, define

¢ = Tt o

Prove that d’ is also a metric on X. Note that 0 < d'(z,y) < 1 for all z,y € X.

Solution 1. We shall verify that d’ satisfies the definition of a metric (1.
(i) For any z € X, we have d'(x,z) = d(x,z)/(1 + d(z,z)) = 0.
(ii) For any distnct z,y € X, d'(z,y) = d(z,y)/(1 + d(z,y

(ili) For any =,y € X, d'(z,y) = d(z,y)/(1 + d(z,y)) = d(y,z)/(1 + d(y,z)) = d'(y,z) by the
symmetry of d.

)
)

) > 0 since d(z,y) > 0.

(iv) For any z,y,z € X, we have

d(l’,Z) < d(x,y) +d(y7z)
1+d(z,2) — 1+d(z,y) +d(y, 2)
d(.%‘, y) d(yv Z)
1+d(z,y)+dy,z) 1+d(z,y)+d(y,z) (2)
d(z,y) d(y, z)
= 14d(z,y)  1+d(y,2)
=d'(z,y) +d'(y, 2).

d(z,z) =

The first inequality follows from the triangle inequality of d:

d(@,2) = % - <1 i d(xl,z))_l

1 -1

O i) Y
d(z,y) +d(y, 2)

1+d(x,y)+d(y, 2)

Problem 2 (Exercise 1.2.4 (12 pts)). Let (X, d) be a metric space, g be a point in X, and r > 0.
Let B be the open ball
B = B(zg,7) ={z € X : d(z,z0) < r}, (4)
and let C be the closed ball
C={zeX:dzz) <r} (5)
(a) Show that B C C.

(b) Give an example of a metric space (X,d), a point zg, and a radius r > 0 such that B # C.

Solution 2.

(a) Following definition (3)), let = € B, then B(z,r') N B # @ for any ' > 0. Thus, there
exists some y € B(z,r’") N B(xg,r), y satisfies d(x,y) < r’ and d(y,xo) < r. By the triangle
inequality, d(z,zo) < d(z,y) + d(y,xz0) < v’ + r for any ' > 0, so d(z,z9) < r. Therefore,
x€C,and BCC.

(b) Let d be the discrete metric and X be any set with |X| > 2. Then for any = € X and r = 1,
B(x,a)(z,7) = {z}, B = {z}. However, the closed ball C' = B(zo,) is all of X. We may
conclude that the closure of an open ball is not always the corresponding closed ball, i.e.
B(x,7r) # B(z,7r).




Problem 3 (21 pts). Two metrics d; and dp on a set X are said to be Lipschitz equivalent if
there exist constants C7; > 0 and C5 > 0 such that

Cida(z,y) < di(x,y) < Cody(z,y) for all z,y € X. (6)

Let E C X.
(a) Prove that E is open in (X, d;) if and only if E is open in (X, ds).
(b) Prove that E is closed in (X, d;) if and only if F is closed in (X, ds).

(¢) Two metrics d; and dy on a set X are said to be topologically equivalent if they induce the
same topology on X. That is, a set U C X is open in (X, d;) if and only if it is open in
(X, ds2). Give examples of topologically equivalent metrics that are not Lipschitz equivalent.

Solution 3.

(a) Suppose E is open in (X,d;), then by Proposition 1.2.15 (a), there exists > 0 such that
By, (z,7) C E for any « € E. By the left inequality of equation @, we have

1 r
< _
d2($,y) = Cl dl(x7y) < Clv (7)

Thus, 2 € Bx,4,)(7,7/C1) C Bix,a,)(z,r) € E and E is open in (X,ds). Conversely,
suppose FE is open in (X, dz), then there exists r > 0 such that Bg,(x,r) C E for any x € E.
By the right inequality of equation (6]), we have

dl (xvy) S C2d2<xay) < 027"7 (8)

Thus, x € B(x,4,)(x,Cor) C B(x,a,)(z,7) € E and E is open in (X, d;).

(b) By Proposition 1.2.15 (e), E is open if and only if E° = X/F is closed. Thus, by part (a), E
is closed in (X, d;) if and only if E€ is open in (X, d;) if and only if E° is open in (X, ds) if
and only if E is closed in (X, d2).

(¢) Consider the metrics dy(z,y) = |x — y| and d2(x,y) = |tanx — tany| on S = (0,7/2) C R.
Let U C S be dy-open, then for any x € U, there exists r, > 0 such that Bg 4,)(x,r;) C U.
( ) 1)
Then
t —
|[tany — tan x| = tan(y = @) < |tan(y — x)| = tan |y — x| < tanry, (9)

1+ tanztany

so B(g,q4,)(x,tanr,) € U. Conversely, suppose U € S is ds-open, then there exists 7, > 0
such that B(g g4,)(z,7,) € U. Then
tany 1
[
tanx 1 +1

s0 B(s,ay)(®,72) € U. Therefore, d; and dy are topologically equivalent. However, d; is
bounded on S while dy is unbounded, so they cannot be Lipschitz equivalent.

|y — x| = |arctan(tany) — arctan(tan z)| = < |tany —tanz| < 7., (10)

Problem 4 (15 pts). Let M,, = M,(R) denote the set of all n x n real matrices. Define a
function on M,, x M,, by
p(A, B) =rank(4A — B). (11)

Then p is a metric on M,, and it is topologically equivalent to the discrete metric on M,,.

Solution 4. First we verify that p is a metric on M,, by verifying the four properties of definition

().



(i) p(A, A) = 0 since the rank of the zero matrix is zero.

(ii) For any distinct A, B € M,,, we have p(A, B) = rank(A — B) > 0 since A — B is a non-zero
matrix and the rank of a non-zero matrix is positive.

(iii) For any A, B € M,,, we have p(A, B) = rank(A — B) = rank((—1)(B — A)) = rank(B— A) =
p(B, A), since multiplication by a nonzero scalar does not change the rank.

(iv) For any X,Y € M,,, let {e;} and {f;} be the bases for the columns of X and Y, respectively,
then {e;} U{f;} spans the columns of X +Y. Hence rank(X +Y) < |{e;} U{f;} < [{e:}| +
[{f;}l = rank(X) +rank(Y"). Therefore, for any A, B,C € M,,, we have p(A,C) = rank(A —
C) =rank((A — B) 4+ (B — C)) <rank(A — B) +rank(B — C) = p(A, B) + p(B,C).

Denote the discrete metric by d. Any U C M, is d-open in M, since for any A € U, we
have B4(A,1) = {A} C U. Conversely, p(A4, B) = rank(A — B) > 1 if and only if A # B, so
B,(A,1) = {A}. Thus, any U C M,, is p-open in M,,. All subsets are d- and p-open, so a
subset is open in (M, d) if and only if it is open in (M,,, p). Therefore, d and p are topologically
equivalent.

Problem 5 (20 pts). Let E be a subset of a metric space (X, d). Prove the following:
(a) The boundary of E is a closed set.
(b) 0E=ENX\E
(c) If E is clopen (closed and open), what is OE?
)

(d) Give an example of S C R such that 9(0S) # @, and infer that ”the boundary of the
boundary 0o d is not always zero.”

Solution 5.

(a) By the result of (b), OF is closed since it is the intersection of two closed sets by Proposition
1.2.15.

(b) Suppose z € JF, then z is not interior to E, so B(x,r) N X\E # & for all » > 0, hence
x € E; x is not exterior to E, so B(x,r)N E # @ for all » > 0, hence € X\ E. Therefore,
OE C EN X\E. Conversely, suppose x € EN X\FE, then for all r > 0, B(x,7) N E # @
and B(xz,r) N X\E # @, so z is neither interior nor exterior to E, hence x € E. Therefore,

0E =ENX\E.
(¢) If E is clopen, then by definition OFE CE and OENE = @. Thus OF = &.

(d) Consider the set S = {z € Q|2 <z <4} C R. Since Q is dense in R, 95 = [2,4] C R.
Thus, 0(9S) = {2,4} # &, giving an example where 0 o 9 is not zero.

Problem 6. Let (X,d) be a metric space. If subsets satisfy A C S C 257 where ZS denotes the
closure of A with respect to the subspace metric on S, then A is said to be dense in S. Recall that
the closure of A in the subspace (S, d|sxg) is defined by

ZSE{SES:Vr>0,Bs(s,r)ﬂA5£®},

where Bg(s,r) = Bx(s,r) NS is the open ball in S relative to X. Equivalently, A is dense in S if
for every s € S and r > 0 one has

Bx(s,r)NSNA#0.



(a) Suppose A C S CT. If Ais densein S and S is dense in T, prove that A is dense in 7.
Equivalently,

A°=8 and § =T = 4 =T,
where 7Y denotes closure in the subspace Y.

(b) If Ais dense in S and B is open in S, prove that B C AN B

Note: Bisopenin S iff B =V NS for some open V C X, equivalently, for every b € B there
exists r > 0 such that
Bs(b,T’) = Bx(b,’/‘) ns - B.

(c) If A and B are both dense in S and B is open in S, prove that AN B is dense in S.

Solution 6.

(a) Suppose A is dense in S and S is dense in T, then for any s € S, t € T, and r4, rg > 0, we
have Bx(s,rs) N SN A # & and Bx(t,rr)NT NS # &. For any t € T, r > 0, there exists
some s € S such that d(t,s) < r/2, and there exists some a € A such that d(s,a) < r/2. By
the triangle inequality, d(t,a) < d(t,s) + d(s,a) <, so a € Bx(t,r) NT N A. Therefore, A
is dense in T

(b) Suppose A is dense in S and B is open in S. Let € B, then there exists r > 0 such that
Bg(xz,7) C B. By the density of Ain S, since z € B C S, for any ' > 0, Bx(z,7")NSNA =
Bs(xz,r)N A # &. Since Bg(x,r’) C B whenever ' < r, we have @ # Bg(z,r) N A C
Bs(s,7) N AN B whenever r’ < r, hence the desired result.

(c) Suppose A and B are dense in S and B is open in S. Then by the left inclusion, ANB C S,
and by (b), S C B C AN B. Therefore, ANBC S C ANB, and AN B is dense in S.




