
Math 2213 Introduction to Analysis I

Homework 2 Due September 17 (Thursday), 2025

物理、數學三 黃紹凱 B12202004

September 20, 2025

Definition 1 (metric). A function d : X×X → [0,∞) is called a metric onX if, for all x, y, z ∈ X,
the following properties hold:

(i) For any x ∈ X, we have d(x, x) = 0.

(ii) (Positivity) For any distinct x, y ∈ X, we have d(x, y) > 0.

(iii) (Symmetry) For any x, y ∈ X, we have d(x, y) = d(y, x).

(iv) (Triangle Inequality) For any x, y, z ∈ X, we have d(x, z) ≤ d(x, y) + d(y, z).

Definition 2 (Interior, exterior, boundary points). Let (X, d) be a metric space, let E ⊆ X,
and let x0 ∈ X. We say that x0 is an interior point of E if there exists a radius r > 0 such that
B(x0, r) ⊆ E. We say that x0 is an exterior point of E if there exists a radius r > 0 such that
B(x0, r)∩E = ∅. We say that x0 is a boundary point of E if it is neither an interior point nor an
exterior point of E.

Definition 3 (Closure). Let (X, d) be a metric space, let E ⊆ X, and let x0 ∈ X. We say that x0

is an adherent point of E if for every radius r > 0, the ball B(x0, r) has a non-empty intersection
with E; i.e., B(x0, r) ∩ E ̸= ∅. The set of all adherent points of E is called the closure of E and
is denoted E.

Definition 4 (Open and closed sets). Let (X, d) be a metric space, and let E be a subset of
X. We say that E is closed if it contains all of its boundary points, i.e., ∂E ⊆ E. We say that
E is open if it contains none of its boundary points, i.e., ∂E ∩ E = ∅. If E contains some of its
boundary points but not others, then it is neither open nor closed.
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Problem 1 (11 pts). If (X, d) is a metric space, define

d′(x, y) =
d(x, y)

1 + d(x, y)
. (1)

Prove that d′ is also a metric on X. Note that 0 ≤ d′(x, y) < 1 for all x, y ∈ X.

Solution 1. We shall verify that d′ satisfies the definition of a metric (1).

(i) For any x ∈ X, we have d′(x, x) = d(x, x)/(1 + d(x, x)) = 0.

(ii) For any distnct x, y ∈ X, d′(x, y) = d(x, y)/(1 + d(x, y)) > 0 since d(x, y) > 0.

(iii) For any x, y ∈ X, d′(x, y) = d(x, y)/(1 + d(x, y)) = d(y, x)/(1 + d(y, x)) = d′(y, x) by the
symmetry of d.

(iv) For any x, y, z ∈ X, we have

d′(x, z) =
d(x, z)

1 + d(x, z)
≤ d(x, y) + d(y, z)

1 + d(x, y) + d(y, z)

=
d(x, y)

1 + d(x, y) + d(y, z)
+

d(y, z)

1 + d(x, y) + d(y, z)

≤ d(x, y)

1 + d(x, y)
+

d(y, z)

1 + d(y, z)

= d′(x, y) + d′(y, z).

(2)

The first inequality follows from the triangle inequality of d:

d′(x, z) =
d(x, z)

1 + d(x, z)
=

Å
1 +

1

d(x, z)

ã−1

≤
Å
1 +

1

d(x, y) + d(y, z)

ã−1

=
d(x, y) + d(y, z)

1 + d(x, y) + d(y, z)
.

(3)

Problem 2 (Exercise 1.2.4 (12 pts)). Let (X, d) be a metric space, x0 be a point in X, and r > 0.
Let B be the open ball

B ≡ B(x0, r) = {x ∈ X : d(x, x0) < r}, (4)

and let C be the closed ball
C ≡ {x ∈ X : d(x, x0) ≤ r}. (5)

(a) Show that B ⊆ C.

(b) Give an example of a metric space (X, d), a point x0, and a radius r > 0 such that B ̸= C.

Solution 2.

(a) Following definition (3), let x ∈ B, then B(x, r′) ∩ B ̸= ∅ for any r′ > 0. Thus, there
exists some y ∈ B(x, r′) ∩ B(x0, r), y satisfies d(x, y) < r′ and d(y, x0) < r. By the triangle
inequality, d(x, x0) ≤ d(x, y) + d(y, x0) < r′ + r for any r′ > 0, so d(x, x0) ≤ r. Therefore,
x ∈ C, and B ⊆ C.

(b) Let d be the discrete metric and X be any set with |X| ≥ 2. Then for any x ∈ X and r = 1,
B(X,d)(x, r) = {x}, B = {x}. However, the closed ball C = B(x0, r) is all of X. We may
conclude that the closure of an open ball is not always the corresponding closed ball, i.e.
B(x, r) ̸= B(x, r).
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Problem 3 (21 pts). Two metrics d1 and d2 on a set X are said to be Lipschitz equivalent if
there exist constants C1 > 0 and C2 > 0 such that

C1d2(x, y) ≤ d1(x, y) ≤ C2d2(x, y) for all x, y ∈ X. (6)

Let E ⊂ X.

(a) Prove that E is open in (X, d1) if and only if E is open in (X, d2).

(b) Prove that E is closed in (X, d1) if and only if E is closed in (X, d2).

(c) Two metrics d1 and d2 on a set X are said to be topologically equivalent if they induce the
same topology on X. That is, a set U ⊂ X is open in (X, d1) if and only if it is open in
(X, d2). Give examples of topologically equivalent metrics that are not Lipschitz equivalent.

Solution 3.

(a) Suppose E is open in (X, d1), then by Proposition 1.2.15 (a), there exists r > 0 such that
Bd1

(x, r) ⊆ E for any x ∈ E. By the left inequality of equation (6), we have

d2(x, y) ≤
1

C1
d1(x, y) <

r

C1
, (7)

Thus, x ∈ B(X,d2)(x, r/C1) ⊆ B(X,d2)(x, r) ⊆ E and E is open in (X, d2). Conversely,
suppose E is open in (X, d2), then there exists r > 0 such that Bd2

(x, r) ⊆ E for any x ∈ E.
By the right inequality of equation (6), we have

d1(x, y) ≤ C2d2(x, y) < C2r, (8)

Thus, x ∈ B(X,d1)(x,C2r) ⊆ B(X,d1)(x, r) ⊆ E and E is open in (X, d1).

(b) By Proposition 1.2.15 (e), E is open if and only if Ec ≡ X/E is closed. Thus, by part (a), E
is closed in (X, d1) if and only if Ec is open in (X, d1) if and only if Ec is open in (X, d2) if
and only if E is closed in (X, d2).

(c) Consider the metrics d1(x, y) = |x − y| and d2(x, y) = | tanx − tan y| on S = (0, π/2) ⊆ R.
Let U ⊆ S be d1-open, then for any x ∈ U , there exists rx > 0 such that B(S,d1)(x, rx) ⊆ U .
Then

| tan y − tanx| = | tan(y − x)|
1 + tanx tan y

≤ | tan(y − x)| = tan |y − x| < tan rx, (9)

so B(S,d2)(x, tan rx) ⊆ U . Conversely, suppose U ∈ S is d2-open, then there exists rx > 0
such that B(S,d2)(x, rx) ⊆ U . Then

|y − x| = |arctan(tan y)− arctan(tanx)| =
∣∣∣∣∣
∫ tan y

tan x

1

1 + t2
dt

∣∣∣∣∣ ≤ | tan y − tanx| < rx, (10)

so B(S,d1)(x, rx) ⊆ U . Therefore, d1 and d2 are topologically equivalent. However, d1 is
bounded on S while d2 is unbounded, so they cannot be Lipschitz equivalent.

Problem 4 (15 pts). Let Mn = Mn(R) denote the set of all n × n real matrices. Define a
function on Mn ×Mn by

ρ(A,B) = rank(A−B). (11)

Then ρ is a metric on Mn and it is topologically equivalent to the discrete metric on Mn.

Solution 4. First we verify that ρ is a metric on Mn by verifying the four properties of definition
(1).
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(i) ρ(A,A) = 0 since the rank of the zero matrix is zero.

(ii) For any distinct A,B ∈ Mn, we have ρ(A,B) = rank(A−B) > 0 since A−B is a non-zero
matrix and the rank of a non-zero matrix is positive.

(iii) For any A,B ∈ Mn, we have ρ(A,B) = rank(A−B) = rank((−1)(B−A)) = rank(B−A) =
ρ(B,A), since multiplication by a nonzero scalar does not change the rank.

(iv) For any X,Y ∈ Mn, let {ei} and {fj} be the bases for the columns of X and Y , respectively,
then {ei} ∪ {fj} spans the columns of X + Y . Hence rank(X + Y ) ≤ |{ei} ∪ {fj}| ≤ |{ei}|+
|{fj}| = rank(X)+ rank(Y ). Therefore, for any A,B,C ∈ Mn, we have ρ(A,C) = rank(A−
C) = rank((A−B) + (B − C)) ≤ rank(A−B) + rank(B − C) = ρ(A,B) + ρ(B,C).

Denote the discrete metric by d. Any U ⊆ Mn is d-open in Mn, since for any A ∈ U , we
have Bd(A, 1) = {A} ⊆ U . Conversely, ρ(A,B) = rank(A − B) ≥ 1 if and only if A ̸= B, so
Bρ(A, 1) = {A}. Thus, any U ⊆ Mn is ρ-open in Mn. All subsets are d- and ρ-open, so a
subset is open in (Mn, d) if and only if it is open in (Mn, ρ). Therefore, d and ρ are topologically
equivalent.

Problem 5 (20 pts). Let E be a subset of a metric space (X, d). Prove the following:

(a) The boundary of E is a closed set.

(b) ∂E = E ∩X \ E

(c) If E is clopen (closed and open), what is ∂E?

(d) Give an example of S ⊂ R such that ∂(∂S) ̸= ∅, and infer that ”the boundary of the
boundary ∂ ◦ ∂ is not always zero.”

Solution 5.

(a) By the result of (b), ∂E is closed since it is the intersection of two closed sets by Proposition
1.2.15.

(b) Suppose x ∈ ∂E, then x is not interior to E, so B(x, r) ∩ X\E ̸= ∅ for all r > 0, hence
x ∈ E; x is not exterior to E, so B(x, r) ∩ E ̸= ∅ for all r > 0, hence x ∈ X\E. Therefore,
∂E ⊆ E ∩ X\E. Conversely, suppose x ∈ E ∩ X\E, then for all r > 0, B(x, r) ∩ E ̸= ∅
and B(x, r)∩X\E ̸= ∅, so x is neither interior nor exterior to E, hence x ∈ ∂E. Therefore,
∂E = E ∩X\E.

(c) If E is clopen, then by definition (4) ∂E ⊆ E and ∂E ∩ E = ∅. Thus ∂E = ∅.

(d) Consider the set S = {x ∈ Q | 2 ≤ x ≤ 4} ⊂ R. Since Q is dense in R, ∂S = [2, 4] ⊆ R.
Thus, ∂(∂S) = {2, 4} ≠ ∅, giving an example where ∂ ◦ ∂ is not zero.

Problem 6. Let (X, d) be a metric space. If subsets satisfy A ⊆ S ⊆ A
S
, where A

S
denotes the

closure of A with respect to the subspace metric on S, then A is said to be dense in S. Recall that
the closure of A in the subspace (S, d|S×S) is defined by

A
S ≡ {s ∈ S : ∀r > 0, BS(s, r) ∩A ̸= ∅},

where BS(s, r) = BX(s, r) ∩ S is the open ball in S relative to X. Equivalently, A is dense in S if
for every s ∈ S and r > 0 one has

BX(s, r) ∩ S ∩A ̸= ∅.
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(a) Suppose A ⊆ S ⊆ T . If A is dense in S and S is dense in T , prove that A is dense in T .
Equivalently,

A
S
= S and S

T
= T ⇒ A

T
= T,

where ·Y denotes closure in the subspace Y .

(b) If A is dense in S and B is open in S, prove that B ⊆ A ∩B
S
.

Note: B is open in S iff B = V ∩S for some open V ⊆ X, equivalently, for every b ∈ B there
exists r > 0 such that

BS(b, r) = BX(b, r) ∩ S ⊆ B.

(c) If A and B are both dense in S and B is open in S, prove that A ∩B is dense in S.

Solution 6.

(a) Suppose A is dense in S and S is dense in T , then for any s ∈ S, t ∈ T , and rA, rS > 0, we
have BX(s, rS) ∩ S ∩ A ̸= ∅ and BX(t, rT ) ∩ T ∩ S ̸= ∅. For any t ∈ T , r > 0, there exists
some s ∈ S such that d(t, s) < r/2, and there exists some a ∈ A such that d(s, a) < r/2. By
the triangle inequality, d(t, a) ≤ d(t, s) + d(s, a) < r, so a ∈ BX(t, r) ∩ T ∩ A. Therefore, A
is dense in T .

(b) Suppose A is dense in S and B is open in S. Let x ∈ B, then there exists r > 0 such that
BS(x, r) ⊆ B. By the density of A in S, since x ∈ B ⊆ S, for any r′ > 0, BX(x, r′)∩S ∩A =
BS(x, r

′) ∩ A ̸= ∅. Since BS(x, r
′) ⊆ B whenever r′ < r, we have ∅ ̸= BS(x, r) ∩ A ⊆

BS(s, r) ∩A ∩B whenever r′ < r, hence the desired result.

(c) Suppose A and B are dense in S and B is open in S. Then by the left inclusion, A∩B ⊆ S,
and by (b), S ⊆ B ⊆ A ∩B. Therefore, A ∩B ⊆ S ⊆ A ∩B, and A ∩B is dense in S.
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