

Math 2213 Introduction to Analysis I

Homework 2 Due September 17 (Thursday), 2025

物理、數學三 黃紹凱 B12202004

September 20, 2025

Definition 1 (metric). A function $d : X \times X \rightarrow [0, \infty)$ is called a metric on X if, for all $x, y, z \in X$, the following properties hold:

- (i) For any $x \in X$, we have $d(x, x) = 0$.
- (ii) (Positivity) For any distinct $x, y \in X$, we have $d(x, y) > 0$.
- (iii) (Symmetry) For any $x, y \in X$, we have $d(x, y) = d(y, x)$.
- (iv) (Triangle Inequality) For any $x, y, z \in X$, we have $d(x, z) \leq d(x, y) + d(y, z)$.

Definition 2 (Interior, exterior, boundary points). Let (X, d) be a metric space, let $E \subseteq X$, and let $x_0 \in X$. We say that x_0 is an interior point of E if there exists a radius $r > 0$ such that $B(x_0, r) \subseteq E$. We say that x_0 is an exterior point of E if there exists a radius $r > 0$ such that $B(x_0, r) \cap E = \emptyset$. We say that x_0 is a boundary point of E if it is neither an interior point nor an exterior point of E .

Definition 3 (Closure). Let (X, d) be a metric space, let $E \subseteq X$, and let $x_0 \in X$. We say that x_0 is an adherent point of E if for every radius $r > 0$, the ball $B(x_0, r)$ has a non-empty intersection with E ; i.e., $B(x_0, r) \cap E \neq \emptyset$. The set of all adherent points of E is called the closure of E and is denoted \overline{E} .

Definition 4 (Open and closed sets). Let (X, d) be a metric space, and let E be a subset of X . We say that E is closed if it contains all of its boundary points, i.e., $\partial E \subseteq E$. We say that E is open if it contains none of its boundary points, i.e., $\partial E \cap E = \emptyset$. If E contains some of its boundary points but not others, then it is neither open nor closed.

Problem 1 (11 pts). If (X, d) is a metric space, define

$$d'(x, y) = \frac{d(x, y)}{1 + d(x, y)}. \quad (1)$$

Prove that d' is also a metric on X . Note that $0 \leq d'(x, y) < 1$ for all $x, y \in X$.

Solution 1. We shall verify that d' satisfies the definition of a metric (1).

- (i) For any $x \in X$, we have $d'(x, x) = d(x, x)/(1 + d(x, x)) = 0$.
- (ii) For any distinct $x, y \in X$, $d'(x, y) = d(x, y)/(1 + d(x, y)) > 0$ since $d(x, y) > 0$.
- (iii) For any $x, y \in X$, $d'(x, y) = d(x, y)/(1 + d(x, y)) = d(y, x)/(1 + d(y, x)) = d'(y, x)$ by the symmetry of d .
- (iv) For any $x, y, z \in X$, we have

$$\begin{aligned} d'(x, z) &= \frac{d(x, z)}{1 + d(x, z)} \leq \frac{d(x, y) + d(y, z)}{1 + d(x, y) + d(y, z)} \\ &= \frac{d(x, y)}{1 + d(x, y) + d(y, z)} + \frac{d(y, z)}{1 + d(x, y) + d(y, z)} \\ &\leq \frac{d(x, y)}{1 + d(x, y)} + \frac{d(y, z)}{1 + d(y, z)} \\ &= d'(x, y) + d'(y, z). \end{aligned} \quad (2)$$

The first inequality follows from the triangle inequality of d :

$$\begin{aligned} d'(x, z) &= \frac{d(x, z)}{1 + d(x, z)} = \left(1 + \frac{1}{d(x, z)}\right)^{-1} \\ &\leq \left(1 + \frac{1}{d(x, y) + d(y, z)}\right)^{-1} \\ &= \frac{d(x, y) + d(y, z)}{1 + d(x, y) + d(y, z)}. \end{aligned} \quad (3)$$

Problem 2 (Exercise 1.2.4 (12 pts)). Let (X, d) be a metric space, x_0 be a point in X , and $r > 0$. Let B be the open ball

$$B \equiv B(x_0, r) = \{x \in X : d(x, x_0) < r\}, \quad (4)$$

and let C be the closed ball

$$C \equiv \{x \in X : d(x, x_0) \leq r\}. \quad (5)$$

- (a) Show that $\overline{B} \subseteq C$.
- (b) Give an example of a metric space (X, d) , a point x_0 , and a radius $r > 0$ such that $\overline{B} \neq C$.

Solution 2.

- (a) Following definition (3), let $x \in \overline{B}$, then $B(x, r') \cap B \neq \emptyset$ for any $r' > 0$. Thus, there exists some $y \in B(x, r') \cap B(x_0, r)$, y satisfies $d(x, y) < r'$ and $d(y, x_0) < r$. By the triangle inequality, $d(x, x_0) \leq d(x, y) + d(y, x_0) < r' + r$ for any $r' > 0$, so $d(x, x_0) \leq r$. Therefore, $x \in C$, and $\overline{B} \subseteq C$.
- (b) Let d be the discrete metric and X be any set with $|X| \geq 2$. Then for any $x \in X$ and $r = 1$, $B_{(X,d)}(x, r) = \{x\}$, $\overline{B} = \{x\}$. However, the closed ball $C = \overline{B}(x_0, r)$ is all of X . We may conclude that the closure of an open ball is not always the corresponding closed ball, i.e. $\overline{B(x, r)} \neq \overline{B}(x, r)$.

Problem 3 (21 pts). Two metrics d_1 and d_2 on a set X are said to be Lipschitz equivalent if there exist constants $C_1 > 0$ and $C_2 > 0$ such that

$$C_1 d_2(x, y) \leq d_1(x, y) \leq C_2 d_2(x, y) \quad \text{for all } x, y \in X. \quad (6)$$

Let $E \subset X$.

- (a) Prove that E is open in (X, d_1) if and only if E is open in (X, d_2) .
- (b) Prove that E is closed in (X, d_1) if and only if E is closed in (X, d_2) .
- (c) Two metrics d_1 and d_2 on a set X are said to be topologically equivalent if they induce the same topology on X . That is, a set $U \subset X$ is open in (X, d_1) if and only if it is open in (X, d_2) . Give examples of topologically equivalent metrics that are not Lipschitz equivalent.

Solution 3.

- (a) Suppose E is open in (X, d_1) , then by Proposition 1.2.15 (a), there exists $r > 0$ such that $B_{d_1}(x, r) \subseteq E$ for any $x \in E$. By the left inequality of equation (6), we have

$$d_2(x, y) \leq \frac{1}{C_1} d_1(x, y) < \frac{r}{C_1}, \quad (7)$$

Thus, $x \in B_{(X, d_2)}(x, r/C_1) \subseteq B_{(X, d_2)}(x, r) \subseteq E$ and E is open in (X, d_2) . Conversely, suppose E is open in (X, d_2) , then there exists $r > 0$ such that $B_{d_2}(x, r) \subseteq E$ for any $x \in E$. By the right inequality of equation (6), we have

$$d_1(x, y) \leq C_2 d_2(x, y) < C_2 r, \quad (8)$$

Thus, $x \in B_{(X, d_1)}(x, C_2 r) \subseteq B_{(X, d_1)}(x, r) \subseteq E$ and E is open in (X, d_1) .

- (b) By Proposition 1.2.15 (e), E is open if and only if $E^c \equiv X/E$ is closed. Thus, by part (a), E is closed in (X, d_1) if and only if E^c is open in (X, d_1) if and only if E^c is open in (X, d_2) if and only if E is closed in (X, d_2) .
- (c) Consider the metrics $d_1(x, y) = |x - y|$ and $d_2(x, y) = |\tan x - \tan y|$ on $S = (0, \pi/2) \subseteq \mathbb{R}$. Let $U \subseteq S$ be d_1 -open, then for any $x \in U$, there exists $r_x > 0$ such that $B_{(S, d_1)}(x, r_x) \subseteq U$. Then

$$|\tan y - \tan x| = \frac{|\tan(y - x)|}{1 + \tan x \tan y} \leq |\tan(y - x)| = \tan |y - x| < \tan r_x, \quad (9)$$

so $B_{(S, d_2)}(x, \tan r_x) \subseteq U$. Conversely, suppose $U \in S$ is d_2 -open, then there exists $r_x > 0$ such that $B_{(S, d_2)}(x, r_x) \subseteq U$. Then

$$|y - x| = |\arctan(\tan y) - \arctan(\tan x)| = \left| \int_{\tan x}^{\tan y} \frac{1}{1 + t^2} dt \right| \leq |\tan y - \tan x| < r_x, \quad (10)$$

so $B_{(S, d_1)}(x, r_x) \subseteq U$. Therefore, d_1 and d_2 are topologically equivalent. However, d_1 is bounded on S while d_2 is unbounded, so they cannot be Lipschitz equivalent.

Problem 4 (15 pts). Let $\mathcal{M}_n = M_n(\mathbb{R})$ denote the set of all $n \times n$ real matrices. Define a function on $\mathcal{M}_n \times \mathcal{M}_n$ by

$$\rho(A, B) = \text{rank}(A - B). \quad (11)$$

Then ρ is a metric on \mathcal{M}_n and it is topologically equivalent to the discrete metric on \mathcal{M}_n .

Solution 4. First we verify that ρ is a metric on \mathcal{M}_n by verifying the four properties of definition (1).

- (i) $\rho(A, A) = 0$ since the rank of the zero matrix is zero.
- (ii) For any distinct $A, B \in \mathcal{M}_n$, we have $\rho(A, B) = \text{rank}(A - B) > 0$ since $A - B$ is a non-zero matrix and the rank of a non-zero matrix is positive.
- (iii) For any $A, B \in \mathcal{M}_n$, we have $\rho(A, B) = \text{rank}(A - B) = \text{rank}((-1)(B - A)) = \text{rank}(B - A) = \rho(B, A)$, since multiplication by a nonzero scalar does not change the rank.
- (iv) For any $X, Y \in \mathcal{M}_n$, let $\{e_i\}$ and $\{f_j\}$ be the bases for the columns of X and Y , respectively, then $\{e_i\} \cup \{f_j\}$ spans the columns of $X + Y$. Hence $\text{rank}(X + Y) \leq |\{e_i\} \cup \{f_j\}| \leq |\{e_i\}| + |\{f_j\}| = \text{rank}(X) + \text{rank}(Y)$. Therefore, for any $A, B, C \in \mathcal{M}_n$, we have $\rho(A, C) = \text{rank}(A - C) = \text{rank}((A - B) + (B - C)) \leq \text{rank}(A - B) + \text{rank}(B - C) = \rho(A, B) + \rho(B, C)$.

Denote the discrete metric by d . Any $U \subseteq \mathcal{M}_n$ is d -open in \mathcal{M}_n , since for any $A \in U$, we have $B_d(A, 1) = \{A\} \subseteq U$. Conversely, $\rho(A, B) = \text{rank}(A - B) \geq 1$ if and only if $A \neq B$, so $B_\rho(A, 1) = \{A\}$. Thus, any $U \subseteq \mathcal{M}_n$ is ρ -open in \mathcal{M}_n . All subsets are d - and ρ -open, so a subset is open in (\mathcal{M}_n, d) if and only if it is open in (\mathcal{M}_n, ρ) . Therefore, d and ρ are topologically equivalent.

Problem 5 (20 pts). Let E be a subset of a metric space (X, d) . Prove the following:

- (a) The boundary of E is a closed set.
- (b) $\partial E = \overline{E} \cap \overline{X \setminus E}$
- (c) If E is clopen (closed and open), what is ∂E ?
- (d) Give an example of $S \subset \mathbb{R}$ such that $\partial(\partial S) \neq \emptyset$, and infer that **"the boundary of the boundary $\partial \circ \partial$ is not always zero."**

Solution 5.

- (a) By the result of (b), ∂E is closed since it is the intersection of two closed sets by Proposition 1.2.15.
- (b) Suppose $x \in \partial E$, then x is not interior to E , so $B(x, r) \cap X \setminus E \neq \emptyset$ for all $r > 0$, hence $x \in \overline{E}$; x is not exterior to E , so $B(x, r) \cap E \neq \emptyset$ for all $r > 0$, hence $x \in \overline{X \setminus E}$. Therefore, $\partial E \subseteq \overline{E} \cap \overline{X \setminus E}$. Conversely, suppose $x \in \overline{E} \cap \overline{X \setminus E}$, then for all $r > 0$, $B(x, r) \cap E \neq \emptyset$ and $B(x, r) \cap X \setminus E \neq \emptyset$, so x is neither interior nor exterior to E , hence $x \in \partial E$. Therefore, $\partial E = \overline{E} \cap \overline{X \setminus E}$.
- (c) If E is clopen, then by definition (4) $\partial E \subseteq E$ and $\partial E \cap E = \emptyset$. Thus $\partial E = \emptyset$.
- (d) Consider the set $S = \{x \in \mathbb{Q} \mid 2 \leq x \leq 4\} \subset \mathbb{R}$. Since \mathbb{Q} is dense in \mathbb{R} , $\partial S = [2, 4] \subseteq \mathbb{R}$. Thus, $\partial(\partial S) = \{2, 4\} \neq \emptyset$, giving an example where $\partial \circ \partial$ is not zero.

Problem 6. Let (X, d) be a metric space. If subsets satisfy $A \subseteq S \subseteq \overline{A}^S$, where \overline{A}^S denotes the closure of A with respect to the subspace metric on S , then A is said to be *dense in S* . Recall that the closure of A in the subspace $(S, d|_{S \times S})$ is defined by

$$\overline{A}^S \equiv \{s \in S : \forall r > 0, B_S(s, r) \cap A \neq \emptyset\},$$

where $B_S(s, r) = B_X(s, r) \cap S$ is the open ball in S relative to X . Equivalently, A is dense in S if for every $s \in S$ and $r > 0$ one has

$$B_X(s, r) \cap S \cap A \neq \emptyset.$$

(a) Suppose $A \subseteq S \subseteq T$. If A is dense in S and S is dense in T , prove that A is dense in T . Equivalently,

$$\overline{A}^S = S \quad \text{and} \quad \overline{S}^T = T \quad \Rightarrow \quad \overline{A}^T = T,$$

where \cdot^Y denotes closure in the subspace Y .

(b) If A is dense in S and B is open in S , prove that $B \subseteq \overline{A \cap B}^S$.

Note: B is open in S iff $B = V \cap S$ for some open $V \subseteq X$, equivalently, for every $b \in B$ there exists $r > 0$ such that

$$B_S(b, r) = B_X(b, r) \cap S \subseteq B.$$

(c) If A and B are both dense in S and B is open in S , prove that $A \cap B$ is dense in S .

Solution 6.

(a) Suppose A is dense in S and S is dense in T , then for any $s \in S$, $t \in T$, and $r_A, r_S > 0$, we have $B_X(s, r_S) \cap S \cap A \neq \emptyset$ and $B_X(t, r_T) \cap T \cap S \neq \emptyset$. For any $t \in T$, $r > 0$, there exists some $s \in S$ such that $d(t, s) < r/2$, and there exists some $a \in A$ such that $d(s, a) < r/2$. By the triangle inequality, $d(t, a) \leq d(t, s) + d(s, a) < r$, so $a \in B_X(t, r) \cap T \cap A$. Therefore, A is dense in T .

(b) Suppose A is dense in S and B is open in S . Let $x \in B$, then there exists $r > 0$ such that $B_S(x, r) \subseteq B$. By the density of A in S , since $x \in B \subseteq S$, for any $r' > 0$, $B_X(x, r') \cap S \cap A = B_S(x, r') \cap A \neq \emptyset$. Since $B_S(x, r') \subseteq B$ whenever $r' < r$, we have $\emptyset \neq B_S(x, r) \cap A \subseteq B_S(x, r) \cap A \cap B$ whenever $r' < r$, hence the desired result.

(c) Suppose A and B are dense in S and B is open in S . Then by the left inclusion, $A \cap B \subseteq S$, and by (b), $S \subseteq \overline{B} \subseteq \overline{A \cap B}$. Therefore, $A \cap B \subseteq S \subseteq \overline{A \cap B}$, and $A \cap B$ is dense in S .