
Math 2213 Introduction to Analysis I

Homework 3 Due September 25 (Thursday), 2025

物理、數學三 黃紹凱 B12202004

September 27, 2025

Problem 1 (10 pts). (10 pts) Let (x(n))∞n=m be a sequence of points in a metric space (X, d),
and let L ∈ X. Show that if L is a limit point of the sequence (x(n))∞n=m, then L is an adherent
point of the set

S = {x(n) : n ≥ m}.

Is the converse true?

Solution 1.

Problem 2 (20 pts). The following construction generalizes the construction of the reals from
the rationals in Chapter 5, allowing one to view any metric space as a subspace of a complete
metric space. In what follows we let (X, d) be a metric space.

(a) Given any Cauchy sequence (xn)
∞
n=1 in X, we introduce the formal limit

LIMn→∞ xn.

We say that two formal limits LIMn→∞ xn and LIMn→∞ yn are equal if

lim
n→∞

d(xn, yn) = 0.

Show that this equality relation obeys the reflexive, symmetry, and transitive axioms, i.e.
that it is an equivalence relation.

(b) Let X be the space of all formal limits of Cauchy sequences in X, modulo the above equiva-
lence relation. Define a metric dX : X ×X → [0,∞) by

dX(LIMn→∞ xn,LIMn→∞ yn) := lim
n→∞

d(xn, yn).

Show that this function is well-defined (the limit exists and does not depend on the choice of
representatives) and that it satisfies the axioms of a metric. Thus (X, dX) is a metric space.

(c) Show that the metric space (X, dX) is complete.

(d) We identify an element x ∈ X with the corresponding constant Cauchy sequence (x, x, x, . . . ),
i.e. with the formal limit LIMn→∞ x. Show that this is legitimate: for x, y ∈ X,

x = y ⇐⇒ LIMn→∞ x = LIMn→∞ y.

With this identification, show that

d(x, y) = dX(x, y),

and thus (X, d) can be thought of as a subspace of (X, dX).

(e) Show that the closure of X in X is X itself. (This explains the choice of notation.)

(f) Finally, show that the formal limit agrees with the actual limit: if (xn)
∞
n=1 is a Cauchy

sequence in X that converges in X, then

lim
n→∞

xn = LIMn→∞ xn in X.

1



Solution 2.

(a) We show that LIMn→∞xn = limn→∞ xn is an equivalence relation.

(i) Reflexivity: limn→∞ d(xn, xn) = 0 by definition of a metric.

(ii) Symmetry: limn→∞ d(yn, xn) = limn→∞ d(xn, yn) = 0 by symmetry of a metric.

(iii) Transitivity: Suppose limn→∞ d(xn, yn) = 0 and limn→∞ d(yn, zn) = 0. By triangle
inequality, we have limn→∞ d(xn, zn) ≤ limn→∞ d(xn, yn) + limn→∞ d(yn, zn) = 0.

(b) Since (xn)
∞
n=1 and (yn)

∞
n=1 are Cauchy sequences, for all ϵ > 0, there exists N > 0 such that

d(xn, xm) < ϵ/2 and d(yn, ym) < ϵ/2 for all n,m > N . Then

|d(xn, yn)− d(xm, ym)| ≤ d(xn, xm) + d(yn, ym) < ϵ,

hence the sequence (d(xn, yn))
∞
n=1 is Cauchy in R. Since R is complete, limn→∞ d(xn, yn) ex-

ists. Next, suppose LIMn→∞xn = LIMn→∞x′
n, LIMn→∞yn = LIMn→∞y′n, then limn→∞ d(xn, x

′
n) =

0 and limn→∞ d(yn, y
′
n) = 0. By triangle inequality, we have

lim
n→∞

d(xn, yn) ≤ lim
n→∞

d(xn, x
′
n) + lim

n→∞
d(x′

n, y
′
n) + lim

n→∞
d(y′n, yn) = lim

n→∞
d(x′

n, y
′
n).

Similarly, we can show that limn→∞ d(x′
n, y

′
n) ≤ limn→∞ d(xn, yn). Hence limn→∞ d(xn, yn) =

limn→∞ d(x′
n, y

′
n), and dX is well-defined.

Next, we check the metric definition. For clarity we will use the following notation: x̃ ≡
LIMn→∞xn, ỹ ≡ LIMn→∞yn, z̃ ≡ LIMn→∞zn ∈ X.

(i) dX (x̃, ỹ) = limn→∞ d(xn, yn) = 0 if and only if x̃ = ỹ. Otherwise dX (x̃, ỹ) > 0 by
positivity of d.

(ii) dX(x̃, ỹ) = limn→∞ d(xn, yn) = limn→∞ d(yn, xn) = dX(ỹ, x̃), by symmetry of d.

(iii) dX(x̃, ỹ) = limn→∞ d(xn, yn) ≤ limn→∞ d(xn, zn) + limn→∞ d(zn, yn) = dX(x̃, z̃) +
dX(z̃, ỹ), by triangle inequality of d and the fact that both limn→∞ d(xn, zn) and
limn→∞ d(zn, yn) exist.

(c) A metric space is complete if every Cauchy sequence converges. Let
Ä
LIMn→∞x

(m)
n

ä∞
m=1

be

a Cauchy sequence in X. Then for all ϵ > 0, there exists N ∈ N such that

dX(LIMn→∞x(m)
n ,LIMn→∞x(k)

n ) < ϵ

whenever m, k > N . Hence there exists M > 0 such that d(x
(m)
n , x

(k)
n ) < ϵ for all n > M ,

and
Ä
x
(m)
n

ä∞
m=1

is Cauchy in X for some fixed n > M . By definition of dX , we have

lim
n→∞

d(x(m)
n , x(k)

n ) < ϵ.

Thus, for each fixed n, (x
(m)
n )∞m=1 is a Cauchy sequence in X and hence converges to some

limit x
(m)
∞ ∈ X, i.e.

LIMn→∞x(m)
n = x(m)

∞ for all m.

For all ϵ > 0, there exists N > 0 such that

dX(LIMn→∞x(m)
n ,LIMk→∞x

(k)
k ) = lim

n→∞
d
Ä
x(k)
n , x(n)

n

ä
< ϵ.

Hence limm→∞ LIMn→∞x
(m)
n ∈ X, and (X, d) is complete.

(d) Suppose x, y ∈ X. Then x = y if and only if d(x, y) = 0 if and only if limn→∞ d(xn, yn) = 0
for (xn)

∞
n=1 = (x, x, . . . ) and (yn)

∞
n=1 = (y, y, . . . ) if and only if LIMn→∞xn = LIMn→∞yn.

Therefore, dX (LIMn→∞xn,LIMn→∞yn) = limn→∞ d(xn, yn) = d(x, y).
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(e) Denote the closure as X̃. Let x ∈ X̃, then for all ϵ > 0, there exists y ∈ X such that
dX(x, y) < ϵ. Since y ∈ X, the Cauchy sequence (yn)

∞
n=1 = (y, y, . . . ) satisfies LIMn→∞yn =

y. Then
dX(x, y) = lim

n→∞
d(xn, yn) < ϵ,

where x, y here stand for the constant sequences (x, x, . . . ) and (y, y, . . . ) respectively. Hence
x ∈ X. Conversely, let x ∈ X, then x = LIMn→∞xn for some Cauchy sequence (xn)

∞
n=1 in X.

Since (xn)
∞
n=1 is a Cauchy sequence, for all ϵ > 0, there exists N ∈ N such that d(xn, xm) < ϵ

whenever n,m > N . Take y = xN+1 ∈ X, then by definition of dX , we have

dX(x, y) = lim
n→∞

d(xn, y) = lim
n→∞

d(xn, xN+1) < ϵ.

Hence x ∈ X̃. Therefore, X̃ = X.

(f) Suppose (xn)
∞
n=1 is a Cauchy sequence in X converging in X. Then there exists x ∈ X such

that for all ϵ > 0, there exists N ∈ N such that d(xn, x) < ϵ whenever n > N . By definition
of dX , we have

dX (LIMn→∞xn, x) = lim
n→∞

d(xn, x) = 0,

where x in dX stands for the constant sequence (x, x, . . . ). Hence LIMn→∞xn = x in X.

Problem 3 (20 pts). In the following, all the sets are subsets of a metric space (X, d).

(a) If A ∩B = ∅, then
∂(A ∪B) = ∂A ∪ ∂B.

(b) For a finite family {Ai}ni=1 ⊆ X, show that

int
( n⋂
i=1

Ai

)
=

n⋂
i=1

int(Ai).

(c) For an arbitrary (possibly infinite) family {Aα}α∈F ⊆ X, prove that

int
( ⋂
α∈F

Aα

)
⊆

⋂
α∈F

int(Aα).

(d) Give an example where the inclusion in part (c) is strict (i.e., equality fails).

(e) For any family {Aα}α∈F ⊆ M , prove that⋃
α∈F

int(Aα) ⊆ int
( ⋃
α∈F

Aα

)
.

(f) Give an example of a finite collection F in which equality does not hold in part (e).

Solution 3.

Problem 4 (10 pts). Let (X, d) be a metric space and Y ⊂ X be an open subset. For any subset
A ⊂ Y , show that A is open in Y if and only if it is open in X.

Solution 4.
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Problem 5 (20 pts). On the space (0, 1], we may consider the topology induced by the metric
space (R, d) defined by d(x, y) = |x− y| . Alternatively, we may also define a distance d′ on (0, 1],
given by

d′(x, y) =

∣∣∣∣ 1x − 1

y

∣∣∣∣ , ∀x, y ∈ (0, 1].

(a) Show that d′ is a metric on (0, 1]

(b) Let x ∈ (0, 1] and ε > 0. Let B = Bd(x, ε) = {y||y−x| < ε}∩ (0, 1] be the open ball centered
at x of radius ε for the metric d in (0, 1]. Show that for any y ∈ B, we may find ε′ > 0 such
that

Bd′(y, ε′) ⊆ B = Bd(x, ε).

(c) Show that an open ball in ((0, 1], d′) is also an open ball in ((0, 1], d).

(d) Conclude that the metric spaces ((0, 1], d) and ((0, 1], d′) are topologically equivalent, that
is, a set A is open in one space if and only if it is also open in the other one.

(e) Is ((0, 1], d′) a complete metric space? How about ((0, 1], d)?

Solution 5.

(a) We show that d′ satisifes the definition a metric on (0, 1].

(i) For all x, y ∈ R, d′(x, x) = |1/x− 1/x| = 0.

(ii) For all distinct x, y ∈ R, d′(x, y) > 0.

(iii) For all x, y ∈ R, d′(x, y) = |1/x− 1/y| = |1/y − 1/x| = d′(y, x).

(iv) For all x, y, z ∈ R, d′(x, y) = |1/x− 1/y| ≤ |1/x− 1/z|+ |1/z− 1/y| = d′(x, z)+d′(z, y).

(b) Let

(c) Let B = B((0,1],d′)(x, r) be an open ball in ((0, 1], d′). Then for all y ∈ B, we have d′(x, y) =
|1/x− 1/y| < r. By triangle inequality, we have

|x− y| =
∣∣∣∣xyy − xy

x

∣∣∣∣ = |xy| · | 1
x
− 1

y
| < |xy|r ≤ r.

Hence B is also an open ball in ((0, 1], d).

(d) Conversely to (c), let S ⊆ (0, 1] be an open set. We can find an open ball B = B((0,1],d)(x, r) ⊆
S. Then for all y ∈ S, we have d(x, y) = |x− y| < r. By triangle inequality, we have

| 1
x
− 1

y
| =

∣∣∣∣y − x

xy

∣∣∣∣ = |y − x|
|xy|

<
r

|xy|
≤ r.

Hence B is also an open ball in ((0, 1], d′), and ((0, 1], d) is topologically equivalent to
((0, 1], d′).

(e) ((0, 1], d) is not complete since the Cauchy sequence (1/n)∞n=1 does not converge in (0, 1].
However, ((0, 1], d′) is complete since for any Cauchy sequence (xn)

∞
n=1 in ((0, 1], d′), the

sequence (1/xn)
∞
n=1 is a Cauchy sequence in R and hence converges to some limit L ∈ R.

Since xn ∈ (0, 1], we have 1/xn ≥ 1 for all n, and hence L ≥ 1. Thus, the sequence (xn)
∞
n=1

converges to 1/L ∈ (0, 1].

Problem 6 (20 pts).
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(a) We say that a family of closed balls (
B(xn, rn)

)
n≥1

is a decreasing sequence of closed balls if the nesting condition

B(xn+1, rn+1) ⊆ B(xn, rn) for all n ∈ N

is satisfied. Give an example of a decreasing sequence of closed balls in a complete metric
space with empty intersection.

(b) We say that a family of closed balls (
B(xn, rn)

)
n≥1

is a decreasing sequence of closed balls with radii tending to zero if

rn → 0 as n → ∞,

and the nesting condition

B(xn+1, rn+1) ⊆ B(xn, rn) for all n ∈ N

is satisfied.

Show that a metric space (M,d) is complete if and only if every decreasing sequence of closed
balls with radii going to zero has a nonempty intersection.

Solution 6.

(a) Consider the metric space (N, d), where

d(m,n) =

®
0 m = n,

1 + 1
min{m,n} m ̸= n.

This is a metric space since it satisfies the definition of a metric:

(i) For all m,n ∈ N, we have d(m,n) ≥ 0 and d(m,n) = 0 if and only if m = n by
construction.

(ii) For all m,n ∈ N, we have d(m,n) = d(n,m) by symmetry of min(·, ·).

(iii) For all m,n, p ∈ N, we have

d(m,n) = 1 +
1

min{m,n}
≤ 1 +

1

min{m, p}
+ 1 +

1

min{p, n}
= d(m, p) + d(p, n),

since we can check that the inequality holds for all the cases: p ≤ min{m,n}, min{m,n} <
p < max{m,n}, max{m,n} ≤ p.

Only same point sequences (x, x, x, . . . ) are Cauchy sequences in (N, d), hence they converge
in N and (N, d) is complete. Take

(
B(n, rn)

)
n≥1

, where rn = 1 + 1
n . Then

B(n+ 1, rn+1) = [n+ 1,∞) ⊆ [n,∞) = B(n, rn),

so nesting property is satisfied. However, the intersection is empty since

∞⋂
n=1

B(n, rn) =

∞⋂
n=1

[n,∞) = ∅.
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(b) Suppose (M,d) is a complete metric space. Let
(
B(xn, rn)

)
n≥1

be a decreasing sequence of

closed balls with radii going to zero. Take xn ∈ B(xn, rn) for all n, and for all ϵ > 0, there
exists N ∈ N such that rn < ϵ/2 whenever n > N . Notice that

d(xn, xm) ≤ d(xn, xN ) + d(xN , xm) < rN + rN < ϵ,

so (xn)
∞
n=1 is a convergent Cauchy sequence in (M,d), and thus there exists x ∈ M such that

xn → x. For all n, since xn ∈ B(xn, rn), we have d(xn, x) ≤ rn, hence x ∈ B(xn, rn), and
the intersection is non-empty.

Conversely, suppose every decreasing sequence of closed balls with radii going to zero has a
nonempty intersection. Let (xn)

∞
n=1 be a Cauchy sequence in (M,d). Then for all ϵ > 0,

there exists N ∈ N such that d(xn, xm) < ϵ whenever n,m > N . By assumption for all ϵ > 0,
rn < ϵ whenever n > N ′ for some N ′ ∈ N.

Notice that in (a) the radii do not tend to zero.
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