

Math 2213 Introduction to Analysis I

Homework 3 Due September 25 (Thursday), 2025

物理、數學三 黃紹凱 B12202004

September 27, 2025

Problem 1 (10 pts). (10 pts) Let $(x^{(n)})_{n=m}^{\infty}$ be a sequence of points in a metric space (X, d) , and let $L \in X$. Show that if L is a limit point of the sequence $(x^{(n)})_{n=m}^{\infty}$, then L is an adherent point of the set

$$S = \{x^{(n)} : n \geq m\}.$$

Is the converse true?

Solution 1.

Problem 2 (20 pts). The following construction generalizes the construction of the reals from the rationals in Chapter 5, allowing one to view any metric space as a subspace of a complete metric space. In what follows we let (X, d) be a metric space.

(a) Given any Cauchy sequence $(x_n)_{n=1}^{\infty}$ in X , we introduce the formal limit

$$\text{LIM}_{n \rightarrow \infty} x_n.$$

We say that two formal limits $\text{LIM}_{n \rightarrow \infty} x_n$ and $\text{LIM}_{n \rightarrow \infty} y_n$ are equal if

$$\lim_{n \rightarrow \infty} d(x_n, y_n) = 0.$$

Show that this equality relation obeys the reflexive, symmetry, and transitive axioms, i.e. that it is an equivalence relation.

(b) Let \bar{X} be the space of all formal limits of Cauchy sequences in X , modulo the above equivalence relation. Define a metric $d_{\bar{X}} : \bar{X} \times \bar{X} \rightarrow [0, \infty)$ by

$$d_{\bar{X}}(\text{LIM}_{n \rightarrow \infty} x_n, \text{LIM}_{n \rightarrow \infty} y_n) := \lim_{n \rightarrow \infty} d(x_n, y_n).$$

Show that this function is well-defined (the limit exists and does not depend on the choice of representatives) and that it satisfies the axioms of a metric. Thus $(\bar{X}, d_{\bar{X}})$ is a metric space.

(c) Show that the metric space $(\bar{X}, d_{\bar{X}})$ is complete.
(d) We identify an element $x \in X$ with the corresponding constant Cauchy sequence (x, x, x, \dots) , i.e. with the formal limit $\text{LIM}_{n \rightarrow \infty} x$. Show that this is legitimate: for $x, y \in X$,

$$x = y \iff \text{LIM}_{n \rightarrow \infty} x = \text{LIM}_{n \rightarrow \infty} y.$$

With this identification, show that

$$d(x, y) = d_{\bar{X}}(x, y),$$

and thus (X, d) can be thought of as a subspace of $(\bar{X}, d_{\bar{X}})$.

(e) Show that the closure of X in \bar{X} is \bar{X} itself. (This explains the choice of notation.)
(f) Finally, show that the formal limit agrees with the actual limit: if $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence in X that converges in X , then

$$\lim_{n \rightarrow \infty} x_n = \text{LIM}_{n \rightarrow \infty} x_n \text{ in } \bar{X}.$$

Solution 2.

(a) We show that $\text{LIM}_{n \rightarrow \infty} x_n = \lim_{n \rightarrow \infty} x_n$ is an equivalence relation.

- (i) Reflexivity: $\lim_{n \rightarrow \infty} d(x_n, x_n) = 0$ by definition of a metric.
- (ii) Symmetry: $\lim_{n \rightarrow \infty} d(y_n, x_n) = \lim_{n \rightarrow \infty} d(x_n, y_n) = 0$ by symmetry of a metric.
- (iii) Transitivity: Suppose $\lim_{n \rightarrow \infty} d(x_n, y_n) = 0$ and $\lim_{n \rightarrow \infty} d(y_n, z_n) = 0$. By triangle inequality, we have $\lim_{n \rightarrow \infty} d(x_n, z_n) \leq \lim_{n \rightarrow \infty} d(x_n, y_n) + \lim_{n \rightarrow \infty} d(y_n, z_n) = 0$.

(b) Since $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ are Cauchy sequences, for all $\epsilon > 0$, there exists $N > 0$ such that $d(x_n, x_m) < \epsilon/2$ and $d(y_n, y_m) < \epsilon/2$ for all $n, m > N$. Then

$$|d(x_n, y_n) - d(x_m, y_m)| \leq d(x_n, x_m) + d(y_n, y_m) < \epsilon,$$

hence the sequence $(d(x_n, y_n))_{n=1}^{\infty}$ is Cauchy in \mathbb{R} . Since \mathbb{R} is complete, $\lim_{n \rightarrow \infty} d(x_n, y_n)$ exists. Next, suppose $\text{LIM}_{n \rightarrow \infty} x_n = \text{LIM}_{n \rightarrow \infty} x'_n$, $\text{LIM}_{n \rightarrow \infty} y_n = \text{LIM}_{n \rightarrow \infty} y'_n$, then $\lim_{n \rightarrow \infty} d(x_n, x'_n) = 0$ and $\lim_{n \rightarrow \infty} d(y_n, y'_n) = 0$. By triangle inequality, we have

$$\lim_{n \rightarrow \infty} d(x_n, y_n) \leq \lim_{n \rightarrow \infty} d(x_n, x'_n) + \lim_{n \rightarrow \infty} d(x'_n, y'_n) + \lim_{n \rightarrow \infty} d(y'_n, y_n) = \lim_{n \rightarrow \infty} d(x'_n, y'_n).$$

Similarly, we can show that $\lim_{n \rightarrow \infty} d(x'_n, y'_n) \leq \lim_{n \rightarrow \infty} d(x_n, y_n)$. Hence $\lim_{n \rightarrow \infty} d(x_n, y_n) = \lim_{n \rightarrow \infty} d(x'_n, y'_n)$, and $d_{\overline{X}}$ is well-defined.

Next, we check the metric definition. For clarity we will use the following notation: $\tilde{x} \equiv \text{LIM}_{n \rightarrow \infty} x_n$, $\tilde{y} \equiv \text{LIM}_{n \rightarrow \infty} y_n$, $\tilde{z} \equiv \text{LIM}_{n \rightarrow \infty} z_n \in \overline{X}$.

- (i) $d_{\overline{X}}(\tilde{x}, \tilde{y}) = \lim_{n \rightarrow \infty} d(x_n, y_n) = 0$ if and only if $\tilde{x} = \tilde{y}$. Otherwise $d_{\overline{X}}(\tilde{x}, \tilde{y}) > 0$ by positivity of d .
- (ii) $d_{\overline{X}}(\tilde{x}, \tilde{y}) = \lim_{n \rightarrow \infty} d(x_n, y_n) = \lim_{n \rightarrow \infty} d(y_n, x_n) = d_{\overline{X}}(\tilde{y}, \tilde{x})$, by symmetry of d .
- (iii) $d_{\overline{X}}(\tilde{x}, \tilde{y}) = \lim_{n \rightarrow \infty} d(x_n, y_n) \leq \lim_{n \rightarrow \infty} d(x_n, z_n) + \lim_{n \rightarrow \infty} d(z_n, y_n) = d_{\overline{X}}(\tilde{x}, \tilde{z}) + d_{\overline{X}}(\tilde{z}, \tilde{y})$, by triangle inequality of d and the fact that both $\lim_{n \rightarrow \infty} d(x_n, z_n)$ and $\lim_{n \rightarrow \infty} d(z_n, y_n)$ exist.

(c) A metric space is complete if every Cauchy sequence converges. Let $(\text{LIM}_{n \rightarrow \infty} x_n^{(m)})_{m=1}^{\infty}$ be a Cauchy sequence in \overline{X} . Then for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$d_{\overline{X}}(\text{LIM}_{n \rightarrow \infty} x_n^{(m)}, \text{LIM}_{n \rightarrow \infty} x_n^{(k)}) < \epsilon$$

whenever $m, k > N$. Hence there exists $M > 0$ such that $d(x_n^{(m)}, x_n^{(k)}) < \epsilon$ for all $n > M$, and $(x_n^{(m)})_{m=1}^{\infty}$ is Cauchy in X for some fixed $n > M$. By definition of $d_{\overline{X}}$, we have

$$\lim_{n \rightarrow \infty} d(x_n^{(m)}, x_n^{(k)}) < \epsilon.$$

Thus, for each fixed n , $(x_n^{(m)})_{m=1}^{\infty}$ is a Cauchy sequence in X and hence converges to some limit $x_{\infty}^{(m)} \in \overline{X}$, i.e.

$$\text{LIM}_{n \rightarrow \infty} x_n^{(m)} = x_{\infty}^{(m)} \quad \text{for all } m.$$

For all $\epsilon > 0$, there exists $N > 0$ such that

$$d_{\overline{X}}(\text{LIM}_{n \rightarrow \infty} x_n^{(m)}, \text{LIM}_{k \rightarrow \infty} x_k^{(k)}) = \lim_{n \rightarrow \infty} d(x_n^{(m)}, x_n^{(k)}) < \epsilon.$$

Hence $\lim_{m \rightarrow \infty} \text{LIM}_{n \rightarrow \infty} x_n^{(m)} \in \overline{X}$, and $(\overline{X}, \overline{d})$ is complete.

(d) Suppose $x, y \in X$. Then $x = y$ if and only if $d(x, y) = 0$ if and only if $\lim_{n \rightarrow \infty} d(x_n, y_n) = 0$ for $(x_n)_{n=1}^{\infty} = (x, x, \dots)$ and $(y_n)_{n=1}^{\infty} = (y, y, \dots)$ if and only if $\text{LIM}_{n \rightarrow \infty} x_n = \text{LIM}_{n \rightarrow \infty} y_n$. Therefore, $d_{\overline{X}}(\text{LIM}_{n \rightarrow \infty} x_n, \text{LIM}_{n \rightarrow \infty} y_n) = \lim_{n \rightarrow \infty} d(x_n, y_n) = d(x, y)$.

(e) Denote the closure as \tilde{X} . Let $x \in \tilde{X}$, then for all $\epsilon > 0$, there exists $y \in X$ such that $d_{\tilde{X}}(x, y) < \epsilon$. Since $y \in X$, the Cauchy sequence $(y_n)_{n=1}^{\infty} = (y, y, \dots)$ satisfies $\text{LIM}_{n \rightarrow \infty} y_n = y$. Then

$$d_{\tilde{X}}(x, y) = \lim_{n \rightarrow \infty} d(x_n, y_n) < \epsilon,$$

where x, y here stand for the constant sequences (x, x, \dots) and (y, y, \dots) respectively. Hence $x \in \overline{X}$. Conversely, let $x \in \overline{X}$, then $x = \text{LIM}_{n \rightarrow \infty} x_n$ for some Cauchy sequence $(x_n)_{n=1}^{\infty}$ in X . Since $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence, for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $d(x_n, x_m) < \epsilon$ whenever $n, m > N$. Take $y = x_{N+1} \in X$, then by definition of $d_{\tilde{X}}$, we have

$$d_{\tilde{X}}(x, y) = \lim_{n \rightarrow \infty} d(x_n, y) = \lim_{n \rightarrow \infty} d(x_n, x_{N+1}) < \epsilon.$$

Hence $x \in \tilde{X}$. Therefore, $\tilde{X} = \overline{X}$.

(f) Suppose $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence in X converging in X . Then there exists $x \in X$ such that for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $d(x_n, x) < \epsilon$ whenever $n > N$. By definition of $d_{\overline{X}}$, we have

$$d_{\overline{X}}(\text{LIM}_{n \rightarrow \infty} x_n, x) = \lim_{n \rightarrow \infty} d(x_n, x) = 0,$$

where x in $d_{\overline{X}}$ stands for the constant sequence (x, x, \dots) . Hence $\text{LIM}_{n \rightarrow \infty} x_n = x$ in \overline{X} .

Problem 3 (20 pts). In the following, all the sets are subsets of a metric space (X, d) .

(a) If $\overline{A} \cap \overline{B} = \emptyset$, then

$$\partial(A \cup B) = \partial A \cup \partial B.$$

(b) For a finite family $\{A_i\}_{i=1}^n \subseteq X$, show that

$$\text{int}\left(\bigcap_{i=1}^n A_i\right) = \bigcap_{i=1}^n \text{int}(A_i).$$

(c) For an arbitrary (possibly infinite) family $\{A_{\alpha}\}_{\alpha \in F} \subseteq X$, prove that

$$\text{int}\left(\bigcap_{\alpha \in F} A_{\alpha}\right) \subseteq \bigcap_{\alpha \in F} \text{int}(A_{\alpha}).$$

(d) Give an example where the inclusion in part (c) is strict (i.e., equality fails).

(e) For any family $\{A_{\alpha}\}_{\alpha \in F} \subseteq M$, prove that

$$\bigcup_{\alpha \in F} \text{int}(A_{\alpha}) \subseteq \text{int}\left(\bigcup_{\alpha \in F} A_{\alpha}\right).$$

(f) Give an example of a finite collection F in which equality does not hold in part (e).

Solution 3.

Problem 4 (10 pts). Let (X, d) be a metric space and $Y \subset X$ be an open subset. For any subset $A \subset Y$, show that A is open in Y if and only if it is open in X .

Solution 4.

Problem 5 (20 pts). On the space $(0, 1]$, we may consider the topology induced by the metric space (\mathbb{R}, d) defined by $d(x, y) = |x - y|$. Alternatively, we may also define a distance d' on $(0, 1]$, given by

$$d'(x, y) = \left| \frac{1}{x} - \frac{1}{y} \right|, \quad \forall x, y \in (0, 1].$$

- (a) Show that d' is a metric on $(0, 1]$
- (b) Let $x \in (0, 1]$ and $\varepsilon > 0$. Let $B = B_d(x, \varepsilon) = \{y \mid |y - x| < \varepsilon\} \cap (0, 1]$ be the open ball centered at x of radius ε for the metric d in $(0, 1]$. Show that for any $y \in B$, we may find $\varepsilon' > 0$ such that
$$B_{d'}(y, \varepsilon') \subseteq B = B_d(x, \varepsilon).$$
- (c) Show that an open ball in $((0, 1], d')$ is also an open ball in $((0, 1], d)$.
- (d) Conclude that the metric spaces $((0, 1], d)$ and $((0, 1], d')$ are topologically equivalent, that is, a set A is open in one space if and only if it is also open in the other one.
- (e) Is $((0, 1], d')$ a complete metric space? How about $((0, 1], d)$?

Solution 5.

- (a) We show that d' satisfies the definition a metric on $(0, 1]$.
 - (i) For all $x, y \in \mathbb{R}$, $d'(x, x) = |1/x - 1/x| = 0$.
 - (ii) For all distinct $x, y \in \mathbb{R}$, $d'(x, y) > 0$.
 - (iii) For all $x, y \in \mathbb{R}$, $d'(x, y) = |1/x - 1/y| = |1/y - 1/x| = d'(y, x)$.
 - (iv) For all $x, y, z \in \mathbb{R}$, $d'(x, y) = |1/x - 1/y| \leq |1/x - 1/z| + |1/z - 1/y| = d'(x, z) + d'(z, y)$.
- (b) Let
- (c) Let $B = B_{((0, 1], d')}(x, r)$ be an open ball in $((0, 1], d')$. Then for all $y \in B$, we have $d'(x, y) = |1/x - 1/y| < r$. By triangle inequality, we have

$$|x - y| = \left| \frac{xy}{y} - \frac{xy}{x} \right| = |xy| \cdot \left| \frac{1}{x} - \frac{1}{y} \right| < |xy|r \leq r.$$

Hence B is also an open ball in $((0, 1], d)$.

- (d) Conversely to (c), let $S \subseteq (0, 1]$ be an open set. We can find an open ball $B = B_{((0, 1], d)}(x, r) \subseteq S$. Then for all $y \in S$, we have $d(x, y) = |x - y| < r$. By triangle inequality, we have

$$\left| \frac{1}{x} - \frac{1}{y} \right| = \left| \frac{y - x}{xy} \right| = \frac{|y - x|}{|xy|} < \frac{r}{|xy|} \leq r.$$

Hence B is also an open ball in $((0, 1], d')$, and $((0, 1], d)$ is topologically equivalent to $((0, 1], d')$.

- (e) $((0, 1], d)$ is not complete since the Cauchy sequence $(1/n)_{n=1}^{\infty}$ does not converge in $(0, 1]$. However, $((0, 1], d')$ is complete since for any Cauchy sequence $(x_n)_{n=1}^{\infty}$ in $((0, 1], d')$, the sequence $(1/x_n)_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{R} and hence converges to some limit $L \in \mathbb{R}$. Since $x_n \in (0, 1]$, we have $1/x_n \geq 1$ for all n , and hence $L \geq 1$. Thus, the sequence $(x_n)_{n=1}^{\infty}$ converges to $1/L \in (0, 1]$.

Problem 6 (20 pts).

(a) We say that a family of closed balls

$$(\overline{B}(x_n, r_n))_{n \geq 1}$$

is a decreasing sequence of closed balls if the nesting condition

$$\overline{B}(x_{n+1}, r_{n+1}) \subseteq \overline{B}(x_n, r_n) \quad \text{for all } n \in \mathbb{N}$$

is satisfied. Give an example of a decreasing sequence of closed balls in a complete metric space with empty intersection.

(b) We say that a family of closed balls

$$(\overline{B}(x_n, r_n))_{n \geq 1}$$

is a decreasing sequence of closed balls with radii tending to zero if

$$r_n \rightarrow 0 \quad \text{as } n \rightarrow \infty,$$

and the nesting condition

$$\overline{B}(x_{n+1}, r_{n+1}) \subseteq \overline{B}(x_n, r_n) \quad \text{for all } n \in \mathbb{N}$$

is satisfied.

Show that a metric space (M, d) is complete if and only if every decreasing sequence of closed balls with radii going to zero has a nonempty intersection.

Solution 6.

(a) Consider the metric space (\mathbb{N}, d) , where

$$d(m, n) = \begin{cases} 0 & m = n, \\ 1 + \frac{1}{\min\{m, n\}} & m \neq n. \end{cases}$$

This is a metric space since it satisfies the definition of a metric:

- (i) For all $m, n \in \mathbb{N}$, we have $d(m, n) \geq 0$ and $d(m, n) = 0$ if and only if $m = n$ by construction.
- (ii) For all $m, n \in \mathbb{N}$, we have $d(m, n) = d(n, m)$ by symmetry of $\min(\cdot, \cdot)$.
- (iii) For all $m, n, p \in \mathbb{N}$, we have

$$\begin{aligned} d(m, n) &= 1 + \frac{1}{\min\{m, n\}} \leq 1 + \frac{1}{\min\{m, p\}} + 1 + \frac{1}{\min\{p, n\}} \\ &= d(m, p) + d(p, n), \end{aligned}$$

since we can check that the inequality holds for all the cases: $p \leq \min\{m, n\}$, $\min\{m, n\} < p < \max\{m, n\}$, $\max\{m, n\} \leq p$.

Only same point sequences (x, x, x, \dots) are Cauchy sequences in (\mathbb{N}, d) , hence they converge in \mathbb{N} and (\mathbb{N}, d) is complete. Take $(\overline{B}(n, r_n))_{n \geq 1}$, where $r_n = 1 + \frac{1}{n}$. Then

$$\overline{B}(n+1, r_{n+1}) = [n+1, \infty) \subseteq [n, \infty) = \overline{B}(n, r_n),$$

so nesting property is satisfied. However, the intersection is empty since

$$\bigcap_{n=1}^{\infty} \overline{B}(n, r_n) = \bigcap_{n=1}^{\infty} [n, \infty) = \emptyset.$$

(b) Suppose (M, d) is a complete metric space. Let $(\overline{B}(x_n, r_n))_{n \geq 1}$ be a decreasing sequence of closed balls with radii going to zero. Take $x_n \in \overline{B}(x_n, r_n)$ for all n , and for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $r_n < \epsilon/2$ whenever $n > N$. Notice that

$$d(x_n, x_m) \leq d(x_n, x_N) + d(x_N, x_m) < r_N + r_N < \epsilon,$$

so $(x_n)_{n=1}^\infty$ is a convergent Cauchy sequence in (M, d) , and thus there exists $x \in M$ such that $x_n \rightarrow x$. For all n , since $x_n \in \overline{B}(x_n, r_n)$, we have $d(x_n, x) \leq r_n$, hence $x \in \overline{B}(x_n, r_n)$, and the intersection is non-empty.

Conversely, suppose every decreasing sequence of closed balls with radii going to zero has a nonempty intersection. Let $(x_n)_{n=1}^\infty$ be a Cauchy sequence in (M, d) . Then for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $d(x_n, x_m) < \epsilon$ whenever $n, m > N$. By assumption for all $\epsilon > 0$, $r_n < \epsilon$ whenever $n > N'$ for some $N' \in \mathbb{N}$.

Notice that in (a) the radii do not tend to zero.