Math 2213 Introduction to Analysis I

Homework 3 Due September 25 (Thursday), 2025
W~ B Z 7 B12202004
September 27, 2025

Problem 1 (10 pts). (10 pts) Let (x(™)%, be a sequence of points in a metric space (X,d),
and let L € X. Show that if L is a limit point of the sequence (z(™)2° . then L is an adherent
point of the set

S ={z™ :n>ml.

Is the converse true?

Solution 1.

Problem 2 (20 pts). The following construction generalizes the construction of the reals from
the rationals in Chapter 5, allowing one to view any metric space as a subspace of a complete
metric space. In what follows we let (X, d) be a metric space.

(a) Given any Cauchy sequence (z,)52; in X, we introduce the formal limit
LIM,, 00 2p.
We say that two formal limits LIM,, o z,, and LIM,, . ¥, are equal if

lim d(zy,yn) = 0.

n—oo

Show that this equality relation obeys the reflexive, symmetry, and transitive axioms, i.e.
that it is an equivalence relation.

(b) Let X be the space of all formal limits of Cauchy sequences in X, modulo the above equiva-
lence relation. Define a metric d% : X x X — [0,00) by

d(LIMy, 00 T, LIMy, s o0 yp ) = lim d(zp, yn).

n— oo

Show that this function is well-defined (the limit exists and does not depend on the choice of
representatives) and that it satisfies the axioms of a metric. Thus (X, d+) is a metric space.

(c) Show that the metric space (X, ds) is complete.

(d) We identify an element z € X with the corresponding constant Cauchy sequence (z, z, z, ... ),
i.e. with the formal limit LIM,, .., . Show that this is legitimate: for z,y € X,

r=y <= LIM,,2=LIM,~xy.
With this identification, show that

d(.’l}, y) = d?(% y)a
and thus (X, d) can be thought of as a subspace of (X, dx).
(e) Show that the closure of X in X is X itself. (This explains the choice of notation.)

(f) Finally, show that the formal limit agrees with the actual limit: if (x,)52

>, is a Cauchy
sequence in X that converges in X, then

lim z, = LIM,, oo z,, in X.
n—oo



Solution 2.

(a)

We show that LIM,, sz, = lim,_ .~ =, is an equivalence relation.
(i) Reflexivity: lim, o d(zy,x,) = 0 by definition of a metric.
(ii) Symmetry: limy, oo d(Yn, Tn) = limy, 00 d(Tp, yn) = 0 by symmetry of a metric.
(iii) Transitivity: Suppose lim, oo d(2n,yn) = 0 and lim, o0 d(yn, 2,) = 0. By triangle
inequality, we have lim,,_, o0 d(2,, 2,) < limy, o0 d(@n, Yn) + limy s 00 d(Yn, 2n) = 0.

Since (z,)52; and (yn)52; are Cauchy sequences, for all € > 0, there exists N > 0 such that
d(zy, zm) < €/2 and d(yYn, ym) < €/2 for all n,m > N. Then

|d(xnayn) - d(mma ym)| < d(.In,’lZm) + d(ynaym) <e,

hence the sequence (d(zy, yn))22 is Cauchy in R. Since R is complete, lim;, oo d(2n, Yn) €x-
ists. Next, suppose LIM,, ooy, = LIM,, 00, LIMy, S 00yn = LIM,, 00y, , then limy, o0 d(2y, 2]) =
0 and lim,, o d(yn,y,) = 0. By triangle inequality, we have

Jimd(wn,yn) < lim d(zn, 2,) + lm d(z),y,) + lim d(y,, yn) = lim d(z;,, ;).

Similarly, we can show that lim,,_, o d(,, y},) < limy, o0 d(zp, yn). Hence lim,, o0 d(zn, yn) =
limy, o d(},,y;,), and d is well-defined.

Next, we check the metric definition. For clarity we will use the following notation: =
LIMp s o0n, ¥ = LIMp s 00yn, 2 = LIMp 002y € X.

(i) dx (z,9) = limy o0 d(2n,yn) = 0 if and only if £ = §. Otherwise d (Z,7) > 0 by
positivity of d.

(i) dw(2,9) = limp— oo d(Tn, Yn) = liMp 00 d(Yn, Tn) = dx (7§, &), by symmetry of d.

(ili) dw(Z,9) = limpoo d(@n,Yn) < limy oo d(Tn, 2n) + limp o0 d(2n,yn) = dx(Z,2) +
d<(Z,9), by triangle inequality of d and the fact that both lim, . d(zp,2,) and
limy, o0 d(2n, Yn) exist.

o0
A metric space is complete if every Cauchy sequence converges. Let (LIMn_,OOx%m)) . be
m=

a Cauchy sequence in X. Then for all € > 0, there exists N € N such that
dx(LIM,, 0o z{™  LIM,, 00z < €

whenever m,k > N. Hence there exists M > 0 such that d(x%m),x%k)) < eforalln> M,
(oo}
and (m%m)) _ is Cauchy in X for some fixed n > M. By definition of d+, we have

lim d(z(™,z®) < e.
n—o0

Thus, for each fixed n, (xﬁf” ));’nozl is a Cauchy sequence in X and hence converges to some
limit 27 € X, i.e.

LIMn_MX)acSLm) = .’L‘(()ZL) for all m.

For all € > 0, there exists N > 0 such that

(LM, ey, LM af!Y) = lim d (2,2() < e

n ren
n—oo

Hence lim,, o LIM,,_,o2™ € X, and (X, d) is complete.

Suppose z,y € X. Then x = y if and only if d(z,y) = 0 if and only if lim, o d(2p,yn) =0
for (,)22; = (z,,...) and (y)52 = (v,y,...) if and only if LIM,,c0zn = LIM,00yn.
Therefore, dv (LIMy— 00, LIMy, 00 ¥n) = limy o0 (20, yn) = d(z,y).



(e) Denote the closure as X. Let # € X, then for all € > 0, there exists y € X such that
d<(z,y) < €. Since y € X, the Cauchy sequence (y,)52; = (y,¥,...) satisfies LIM,,_,oc¥yn =
y. Then

dx(z,y) = lim d(zn,,yn) <e,
n— oo

where z, y here stand for the constant sequences (z,z,...) and (y,y, ... ) respectively. Hence
x € X. Conversely, let z € X, then x = LIM,,_, o, for some Cauchy sequence (x,,)%; in X.
Since (z,,)22; is a Cauchy sequence, for all € > 0, there exists N € N such that d(z,, ;) < €
whenever n,m > N. Take y = xny41 € X, then by definition of d+, we have

dw(z,y) = nl;n;o d(xn,y) = nl;rr;o d(xp, TN41) < €

Hence z € X. Therefore, X = X.

(f) Suppose (z,),-, is a Cauchy sequence in X converging in X. Then there exists z € X such
that for all € > 0, there exists N € N such that d(z,,z) < ¢ whenever n > N. By definition
of d+, we have

dw (LIMy 00, ) = lim d(z,,z) =0,

n— oo

where z in d+ stands for the constant sequence (z,x,...). Hence LIM,, ooz, =z in X.

Problem 3 (20 pts). In the following, all the sets are subsets of a metric space (X, d).

(a) If ANB = @, then
0(AUB) =0AU0B.

(b) For a finite family {4,}?_; C X, show that
i=1 i=1

(c) For an arbitrary (possibly infinite) family {As}aer C X, prove that

int( ﬂ Aa) C ﬂ int(Aq).

ackF aEF

(d) Give an example where the inclusion in part (c) is strict (i.e., equality fails).

(e) For any family {A,}aer C M, prove that

U int(A4,) C int( U Aa).

acF a€F

(f) Give an example of a finite collection F' in which equality does not hold in part (e).

Solution 3.

Problem 4 (10 pts). Let (X, d) be a metric space and Y C X be an open subset. For any subset
A C Y, show that A is open in Y if and only if it is open in X.

Solution 4.



Problem 5 (20 pts). On the space (0,1], we may consider the topology induced by the metric

space (R, d) defined by d(x,y) = |z — y| . Alternatively, we may also define a distance d’ on (0, 1],
given by

1 1

d(z,y) = |- -~

@ =]

, v,y € (0,1].

(a) Show that d’ is a metric on (0, 1]

(b) Let € (0,1] and € > 0. Let B = By(x,¢) = {y|ly —z| < e} N (0, 1] be the open ball centered
at x of radius ¢ for the metric d in (0, 1]. Show that for any y € B, we may find &’ > 0 such
that

Ba(y,e') € B = Ba(,¢).
(c¢) Show that an open ball in ((0, 1],d’) is also an open ball in ((0, 1], d).

(d) Conclude that the metric spaces ((0,1],d) and ((0,1],d’) are topologically equivalent, that
is, a set A is open in one space if and only if it is also open in the other one.

(e) Is ((0,1],d’) a complete metric space? How about ((0,1],d)?

Solution 5.
(a) We show that d’ satisifes the definition a metric on (0, 1].
(i) For all z,y € R, d'(x,z) = |1/x — 1/z| = 0.
(ii) For all distinct =,y € R, d'(x,y) > 0.
(iii) For all z,y € R, d'(z,y) = [1/x — 1/y| = |1/y — 1/z| = d'(y, z).
(iv) For all z,y,z e R, d'(x,y) = |1/x = 1/y| < |1/x—1/z|+|1/2—1/y| = d'(z,z) + d' (2, y).
(b) Let
(c) Let B = B(0,1),a)(,7) be an open ball in ((0,1],d’). Then for all y € B, we have d'(z,y) =
|1/x — 1/y| < r. By triangle inequality, we have

Ty @y

11
[z —yl = — | = lwyl- = — =] <faylr <r
Y Ty

Hence B is also an open ball in ((0,1],d).

(d) Conversely to (c), let S C (0,1] be an open set. We can find an open ball B = By(g,1},a)(%,7) C
S. Then for all y € S, we have d(z,y) = | — y| < r. By triangle inequality, we have

1 y—x

r Yy Ty

|lzy| lzy| —

Hence B is also an open ball in ((0,1],d"), and ((0,1],d) is topologically equivalent to
((0,1],d").

(e) ((0,1],d) is not complete since the Cauchy sequence (1/n)22; does not converge in (0, 1].
However, ((0,1],d') is complete since for any Cauchy sequence (x,)52; in ((0,1],d’), the
sequence (1/x,)52 is a Cauchy sequence in R and hence converges to some limit L € R.

oo

Since x,, € (0,1], we have 1/xz, > 1 for all n, and hence L > 1. Thus, the sequence (z,)5,
converges to 1/L € (0,1].

Problem 6 (20 pts).



(a) We say that a family of closed balls

(E(wm rn))n21

is a decreasing sequence of closed balls if the nesting condition

B(zp41,™m+1) C B(an,r,) forallneN

is satisfied. Give an example of a decreasing sequence of closed balls in a complete metric
space with empty intersection.

(b) We say that a family of closed balls

(E(wm rn))n21

is a decreasing sequence of closed balls with radii tending to zero if

r, — 0 asn — oo,

and the nesting condition

B(xnt1,mn4+1) € B(xp,r,) forallneN

is satisfied.

Show that a metric space (M, d) is complete if and only if every decreasing sequence of closed
balls with radii going to zero has a nonempty intersection.

Solution 6.

(a) Consider the metric space (N, d), where

0 m=n,

d(m,n) = {1 n

1
min{m,n} m 7& n.

This is a metric space since it satisfies the definition of a metric:

(i) For all m,n € N, we have d(m,n) > 0 and d(m,n) = 0 if and only if m = n by
construction.

(ii) For all m,n € N, we have d(m,n) = d(n,m) by symmetry of min(,-).
(iii) For all m,n,p € N, we have

1
min{m,n} ~ min{m, p} LR min{p, n}
= d(m, p) +d(p,n),

dim,n) =1+

since we can check that the inequality holds for all the cases: p < min{m,n}, min{m,n} <
p < max{m,n}, max{m,n} < p.

Only same point sequences (z,z,z, . ..) are Cauchy sequences in (N, d), hence they converge
in N and (N, d) is complete. Take (B(n,ry)) where 7, = 1+ 2. Then

n>1’

B(n+1,741) = [n+1,00) C [n,00) = B(n,ry,),

so nesting property is satisfied. However, the intersection is empty since

D)

ﬂ B(n,r,) =

n=1 n

[n,0) = 2.

1



(b) Suppose (M,d) is a complete metric space. Let (E(mn, T"))n>1 be a decreasing sequence of

closed balls with radii going to zero. Take x,, € B(x,,,) for all n, and for all € > 0, there
exists N € N such that r,, < ¢/2 whenever n > N. Notice that

d(Tn, xm) < d(@p,zn) +d@n,zm) <rNn +ry <€

80 (7 )pe; is a convergent Cauchy sequence in (M, d), and thus there exists z € M such that
Zn — x. For all n, since z,, € B(xy,r,), we have d(z,,z) < r,, hence x € B(z,,r,), and
the intersection is non-empty.

Conversely, suppose every decreasing sequence of closed balls with radii going to zero has a
nonempty intersection. Let ()52, be a Cauchy sequence in (M,d). Then for all € > 0,
there exists N € N such that d(x,, ;) < € whenever n,m > N. By assumption for all € > 0,
7, < € whenever n > N’ for some N’ € N.

Notice that in (a) the radii do not tend to zero.



