Math 2213 Introduction to Analysis I

Homework 4 Due September 26 (Friday), 2025
W~ BEZ K E I B12202004
October 13, 2025

Problem 1 (16 pts).

(a)

Let
X = {(an);’o_o : Z lan| < oo}
n=0

be the space of absolutely convergent sequences. Define the ¢! and ¢*° metrics on this space
by

dp ((an)ff:m (bn)?zozo) = Z |an - bn‘v
n=0

dypeo ((an)?f:m (bn)?f:o) := sup |a, — by|.
neN

Show that these are both metrics on X, but show that there exist sequences

ARG
of elements of X (i.e. sequences of sequences) which are convergent with respect to the dge
metric but not with respect to the d,» metric. Conversely, show that any sequence which
converges in the dy1 metric automatically converges in the dy~ metric.

oo

Let (X, dy1) be the metric space from part (a). For each natural number n, let (™) = (e§n))j:0

be the sequence in X such that
(n) 1, if n = j,
e;’ =
J 0, ifn#j.
Show that the set
{e™ :neN}
is a closed and bounded subset of X, but is not compact.

(This is despite the fact that (X, dp) is even a complete metric space—a fact which we will
not prove here. The problem is not that X is incomplete, but rather that it is “infinite-
dimensional,” in a sense that we will not discuss here.)

Solution 1.

(a)

We will check the metric axioms for both dy1 and dye. For brevity, we shall denote an element
of X by (a) instead of (a,)22,.

(i) For all (a), (b) € X, d¢, ((a), (b)) = 0 whenever (a) = (b), and dy, ((a), (b)) > 0 whenever
(a) # (b), since there exists some ¢ € N such that |a; — b;| > 0.

(ii) For all (a), (b) € X, d¢, ((a), (b)) = de, ((b), (a)) since |a; — b;| = |b; — a;] for all i € N.
(iii) For all (a), (b), (¢) € X, by triangle inequality of real numbers with respect to |, | , we

have
dfl ((a)v (C)) < dll ((a)7 (b)) + dfl ((b)v (C>)

Similarly for dyee:



(i) Forall (a), (b) € X, d¢_((a), (b)) = 0 whenever (a) = (b), and dy__ ((a), (b)) > 0 whenever
(a) # (b), since there exists some i € N such that |a; — b;| > 0.

(ii) For all n € N, we have |a, — by| = |bn, — an|, so de__((a), (b)) = de_ ((b), (a)).
(iii) For all (a), (b), (c) € X, we have

diso((a), (¢)) = sup |a, — ¢y
neN

< sup(lan — bu| + [bn — cnl)

neN (1)
<Sup|an_b |+Sup|b _cn‘

neN

< d&w((a%(b))+-dzm((b%(0)%

where we used the triangle inequality of real numbers with respect to | - |.

Suppose the sequence (of sequences) (z("™) € X converges with respect to the metric d, .
Then there exists x € X such that for all ¢ > 0, there exists some N € N such that for all
m > N we have

dg, (™), ( E:mn—b|<5

Then for all m > N, we have

d@m((g;(m)),( )) = sup|a, — by |<Z|an—b | <e,

neN n—0

SO (x(m)) also converges with respect to the metric dy.. However, consider the sequence
(z ,(zm)) ° , in R defined by

1
x(m): m O§n<m,
" 0, n>m,

where Y, 2™ =1 < co. This sequence converges to the zero sequence (0) in (R, dp<)
since for all ¢ > 0 and m € N, let N = 1/¢, then

1 1
d (m)y(0)) = < —=

whenever n > N. However, this sequence does not converge to in (R, dy1) since for all n € N|
pick 7,5 € N such that i < j, we have

. . Ut | j—i—1

or all distinct 7,7 € N, we have 416',6' =S el — e =2 en for all x €
b) For all distinct i,/ € N, we have dg (e(?), et) > el — D) =2, Then for all 2 € X
and n € N, we have

délgzje i‘ak—eé")‘SiMH-i—i‘eé)
k=1 k=1

k=1

oo
:Z|ak|—|—l<oo.
k=1

For all « € X, the sequence (e(™) is contained in B(z,e) with € = dpn (e(®, ) + 3, hence it
is bounded. For some x € X\{e(™ |n € N}, hence the complement of {e(™ |n € N} is open,
and the set itself is closed. Finally, notice that dp, (e(i),e(j)) = 2 for any pair of distinct
1,7, so the sequence (e(”)) has no convergent subsequence, hence the {e(™ |n € N} is not
compact.



Problem 2 (24 pts). A metric space (X,d) is called totally bounded if for every £ > 0, there
exists a natural number n and a finite number of balls

B(zW,¢), B(z@,¢), ..., B(z™,¢)

which cover X (i.e. X =, B(z(¥,¢)).

(a)
(b)

()

Show that every totally bounded space is bounded.

Show the following stronger version of Proposition 1.5.5: if (X,d) is compact, then it is
complete and totally bounded.

Hint: if X is not totally bounded, then there is some € > 0 such that X cannot be covered by
finitely many e-balls. Then use Exercise 8.5.20 (on page 182 of Analysis I) to find an infinite
sequence of balls B(x(™,¢/2) which are disjoint from each other. Use this to construct a
sequence which has no convergent subsequence.

Conversely, show that if X is complete and totally bounded, then X is compact.

Hint: if (2(™)22, is a sequence in X, use the total boundedness hypothesis to recursively
construct a sequence of subsequences (x("9))%2, of (x(")22, for each positive integer 7,
such that for each j the elements of the sequence (z(%7))2 | are contained in a single ball
of radius 1/;j. Also ensure that each sequence (z("7+1))22_ | is a subsequence of the previous
one (z(™7))2° . Then show that the “diagonal” sequence (x("™)2 is a Cauchy sequence,
and then use the completeness hypothesis.

Solution 2.

(a)

Let (X, d) be totally bounded . Then for all ¢ > 0, there exists some n € N and a sequence
(™)’ in X such that

Then for all z,y € X, there exists some 4,7 € {1,2,...,n} such that z € B(z¥,¢) and
y € B(zY),¢). Let R = max{d(z®,z) : 4,5 € {1,2,...,n}}, by triangle inequality we
have

d(z,y) < d(z, D)+ dzD,29)) + d(z),y) < 26 + R.

Hence (X, d) is bounded.

Suppose (X, d) is compact. Then by [Tao II] theorem 1.5.7, (X, d) is complete and bounded.
Suppose (X, d) is not totally bounded, then there exists € > 0 such that X cannot be covered
by finitely many e-balls. Fix such €, choose z1 € X and write B; = B(z1,£/2), then we may
choose 2 € X\ By and write By = B(x2,£/2), and so on. Note that X\B; # @ since they
do not cover X. By induction, we obtain a sequence (z,,) € X such that d(x;,z;) > ¢ for all
distinct ¢, € N. Then for all N € N, there exists some m,n > N such that d(z,,,z,) > ¢,
so (z,,) has no convergent subsequence, a contradiction. Hence (X, d) is totally bounded.

For each ¢, = %, there exists finitely many e,-balls that cover X. Collect them into a
sequence (By);". Let (z(™) C X be a sequence, then ) € Byy, for some ki €
{1,2,...,mq}. Since (z(™) is infinite, there exists some subsequence (z(™1) C (2(™) such
that (1 ¢ Bi.j, for all n. Next, since (™D € X there exists some ky € {1,2,...,my}
such that z(™1 ¢ Bs.k,. Again, since (m(";l)) is infinite, there exists some subsequence
(z™2)) C ((™Y) such that x("?) € By, for all n. Continuing this process, we obtain a
sequence of subsequences (z("7))22, for each j € N such that for all n, (") € By, for
some k; € {1,2,...,m;}, and (D)) C (x("7)). Consider the diagonal sequence (z(™™)),
then for all € > 0, let N = floor (1), and for all k,l > N, we have d (z(*%) z(0) < L < ¢
Hence (z(™™) is Cauchy, and by completeness of (X, d), there exists some x € X such that
(") — 2. Thus (X, d) is compact.



Remark. The sub-problems (b) and (c) becomes easy if we use the fact from Problem 3: a metric
space is compact if and only if every open cover has a finite subcover.

Problem 3 (16 pts).

(a)

(b)

A metric space (X, d) is compact if and only if every sequence in X has at least one limit
point in X.

Let (X, d) have the property that every open cover of X has a finite subcover. Show that X
is compact. Hint: If X is not compact, then by part (a) there is a sequence (z(™)%, with
no limit points. Then for every x € X there exists a ball B(x,¢) containing x which contains
at most finitely many elements of this sequence. Now use the hypothesis.

Solution 3.

(a)

Suppose every sequence in X has at least one limit point in X. Let (x(")) € X be a sequence,
then for all ¢ > 0 and NV € N, there exists some limit pointz € X and n > N such that
d(z(™),z) < e. For all N, collect the corresponding ny, so ((™) has a convergent subsequence
(z("¥)) = x € X. Conversely, suppose (X, d) is compact. Then for all sequence (z(™) € X,
there exists some subsequence (x(”k)) which converges to some z € X. Then for all £ > 0,
there exists M € N such that d(z("*), x) < & whenever k > M. Hence z is a limit point of
(z(™).

Suppose that X is not compact. Then by part (a), there exists some sequence (2(™)%2, € X
with no limit points in X. For all € X, there exists some ¢ > 0 such that B(z,¢) contains
finitely many elements of this sequence. Consider the collection of open sets

R={B(z,e):2 € X}, X= U U.
UEcR
R is an open cover of X, hence there exists some finite subcover Ry C R such that

x=|Ju

UeRy

However, since each U € R contains finitely many elements of (m(")), we conclude there are
only finitely many elements of (z(™) in X, a contradiction. Thus X is compact.

Remark. We have shown one direction of the result, where the other direcrtion is [Tao II]
Theorem 1.5.8: a metric space is compact if and only if every open cover has a finite subcover.

Problem 4 (10 pts). Let (X, d) be a compact metric space. Suppose that (K, )aer is a collection
of closed sets in X with the property that any finite subcollection of these sets necessarily has non-
empty intersection, thus

(] Ka # @ for all finite F C I.
acF

(This property is known as the finite intersection property.)

Show that the entire collection has non-empty intersection, thus

(] Ko # 2.

acl

Show by counterexample that this statement fails if X is not compact.



Solution 4. Since (X, d) is compact, every open cover of X has a finite subcover. Suppose R is
a collection of open sets that cover X, then

x=u

UeRy

for some Ry C R which is a finite subcollection. Take the complement of the above equation, we

have .
@:XC:<U U) = () v-

U€Ry U€eRy
Since U is open, U€ is closed. Thus the claim is true.
The statement fails if X is not compact. Consider the metric space (N, d) where d(z,y) =

|z — y|. Since N is not complete, it is not compact. Let K, = [n,00), then for all finite FF C N, we
have

ﬂ K, = ﬂ [n,00) = [max F,00) # @.

neFr nel

However, the entire collection has empty intersection:

K, = ﬂ[moo):@.

1 n=1

D)

n

Problem 5. (a) Let (X, d) be a metric space, and let (E,d|gxg) be a subspace of (X, d). Let
tg_—x : E — X be the inclusion map, defined by setting

tg—x(x) =z forallxz € F.

Show that tp_, x is continuous.

(b) Let f: X — Y be a function from one metric space (X, dx) to another (Y,dy). Let E be
a subset of X (which we give the induced metric dx|gpxg), and let f|g : E — Y be the
restriction of f to E, thus

fle(x) := f(z) whenx € E.

If xg € E and f is continuous at xg, show that f|g is also continuous at xg. (Is the converse
of this statement true? Explain.)

Conclude that if f is continuous, then f|g is continuous. Thus restriction of the domain of
a function does not destroy continuity.

Hint: use part (a).

(¢) Let f: X — Y be a function from one metric space (X,dx) to another (Y,dy). Suppose
that the image f(X) of X is contained in some subset £ C Y of Y. Let g : X — E be
the function which is the same as f but with the codomain restricted from Y to E, thus
g(z) = f(x) for all x € X.

Note on codomain: The codomain of a function is the declared target set of the function,
in contrast to the image (or range), which is the set of values the function actually takes.
So while f is originally defined with codomain Y, its values all lie in the smaller set £ C Y.
Therefore, one can equivalently regard f as a function g : X — E. The metric on E is the
one induced from Y, i.e. dy|pxE.

Show that for any xg € X, f is continuous at xg if and only if g is continuous at xy. Conclude
that f is continuous if and only if g is continuous.

(Thus the notion of continuity is not affected if one restricts the codomain of the function.)



Solution 5.

(a)

(b)

The preimage of an open ball in X is ¢ ™! (B(x.,q) (%,€)) = B(g,d/ ) (¢, €), hence it is open.
By [Tao II] theorem 2.1.5, ¢ is continuous.

Suppose f is continuous at zg € F, then for all € > 0, there exists § > 0 such that for
all x € E, dy(f(z), f(zo)) < & whenever dx(z,z9) < §. Since tg_,x is continuous, we
have dy (f|g(z), fle(x0)) = dy (f(c(x)), f(t(x0))) < € whenever dx (x,z9) < d, hence f|g is
continuous at zg. Conversely, suppose f|g is continuous at xg € E, then for all € > 0, there
exists 6 > 0 such that for all z € E, dx(z,z9) < 0 = dy(fle(x), fle(xo)) < €. Since
tE—x 1s continuous, we have dx (z,z9) < 0 = dy(f(x), f(z0)) < €, hence f is continuous
at 2g. The converse is not true, however, since the floor function |-| : R — R is continuous
on E =[0,1) but not on R.

Suppose f is continuous at xg € X. Then for all € > 0, there exists § > 0 such that
for all z € X, dy(f(z), f(z9)) < € whenever dx(x,z9) < 0. Then dy|pxr(g(x),g(xo)) =
dy (f(z), f(zo)) < €, hence g is continuous at zy. Conversely, suppose g is continuous at
29 € E. Then for all £ > 0, there exists § > 0 such that for all x € E, dy(g(z),g(z0)) < €
whenever dx (z,z9) < §. Since g(z) = f(x) for all x € E, we have dy(f(z), f(z0)) < €
whenever dx (z, ) < 0, hence f is continuous at xo.

Problem 6. Let (X,dx) and (Y,dy) be metric spaces and f : X — Y is a function from X to

Y.
(a)

(b)

Prove that f is continuous on X if, and only if|

f(A) C f(4)
for every subset A of X.
Prove that f is continuous on X if and only if f is continuous on every compact subset of X.

Hint: If x,, — p in X, the set {p, z1,z2,...} is compact.

Solution 6.

(a)

Suppose f is continuous on X. Let A C X, for all z € A, there exists some sequence (x(")) €
A such that (™ — z under dx. Then by continuity of f and [Tao II] theorem 2.1.4, we
have f(2(™) — f(x) under dy. Since f(z(™) € f(A), we have f(z(™) — f(z) € f(A). Thus
f(A) C f(A). Conversely, suppose f(A) C f(A)forall A C X. Let F C Y be a closed subset,
then F = F and f(f~'(F)) C F. Then by assumption f (f_l(F)) Cf(fY(F)CF=F,

and f~1(F) C f~Y(F). Hence f~1(F) is closed, and f is continuous by [Tao II] theorem
2.1.5.

Suppose f is continuous on X, then for all compact subset K C X, the restriction of f to
K is continuous on K. Conversely, suppose f is continuous on every compact subset of X.
Let F CY be closed and let € f~1(F), then there exists a sequence (z(™)) € X such that
2™ — 2 € X. The set K = {x,x(l),m@), ...} is compact since every sequence in K has a
convergent subsequence. By assumption, f is continuous on K, so by [Tao II] theorem 2.1.4,
we have f(z(™) — f(z) € F, hence z € f~'(F). Thus f~'(F) is closed, and by the same
theorem f is continuous on X.




