
Math 2213 Introduction to Analysis I

Homework 4 Due September 26 (Friday), 2025

物理、數學三 黃紹凱 B12202004

October 13, 2025

Problem 1 (16 pts).

(a) Let

X :=

{
(an)

∞
n=0 :

∞∑
n=0

|an| < ∞

}
be the space of absolutely convergent sequences. Define the ℓ1 and ℓ∞ metrics on this space
by

dℓ1
(
(an)

∞
n=0, (bn)

∞
n=0

)
:=

∞∑
n=0

|an − bn|,

dℓ∞
(
(an)

∞
n=0, (bn)

∞
n=0

)
:= sup

n∈N
|an − bn|.

Show that these are both metrics on X, but show that there exist sequences

x(1), x(2), . . .

of elements of X (i.e. sequences of sequences) which are convergent with respect to the dℓ∞

metric but not with respect to the dℓ1 metric. Conversely, show that any sequence which
converges in the dℓ1 metric automatically converges in the dℓ∞ metric.

(b) Let (X, dℓ1) be the metric space from part (a). For each natural number n, let e(n) = (e
(n)
j )∞j=0

be the sequence in X such that

e
(n)
j :=

®
1, if n = j,

0, if n ̸= j.

Show that the set
{e(n) : n ∈ N}

is a closed and bounded subset of X, but is not compact.

(This is despite the fact that (X, dℓ1) is even a complete metric space—a fact which we will
not prove here. The problem is not that X is incomplete, but rather that it is “infinite-
dimensional,” in a sense that we will not discuss here.)

Solution 1.

(a) We will check the metric axioms for both dℓ1 and dℓ∞ . For brevity, we shall denote an element
of X by (a) instead of (an)

∞
n=0.

(i) For all (a), (b) ∈ X, dℓ1((a), (b)) = 0 whenever (a) = (b), and dℓ1((a), (b)) > 0 whenever
(a) ̸= (b), since there exists some i ∈ N such that |ai − bi| > 0.

(ii) For all (a), (b) ∈ X, dℓ1((a), (b)) = dℓ1((b), (a)) since |ai − bi| = |bi − ai| for all i ∈ N.

(iii) For all (a), (b), (c) ∈ X, by triangle inequality of real numbers with respect to |·, ·| , we
have

dℓ1((a), (c)) ≤ dℓ1((a), (b)) + dℓ1((b), (c)).

Similarly for dℓ∞ :
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(i) For all (a), (b) ∈ X, dℓ∞((a), (b)) = 0 whenever (a) = (b), and dℓ∞((a), (b)) > 0 whenever
(a) ̸= (b), since there exists some i ∈ N such that |ai − bi| > 0.

(ii) For all n ∈ N, we have |an − bn| = |bn − an|, so dℓ∞((a), (b)) = dℓ∞((b), (a)).

(iii) For all (a), (b), (c) ∈ X, we have

dℓ∞((a), (c)) = sup
n∈N

|an − cn|

≤ sup
n∈N

(|an − bn|+ |bn − cn|)

≤ sup
n∈N

|an − bn|+ sup
n∈N

|bn − cn|

≤ dℓ∞((a), (b)) + dℓ∞((b), (c)),

(1)

where we used the triangle inequality of real numbers with respect to | · |.

Suppose the sequence (of sequences) (x(m)) ∈ X converges with respect to the metric dℓ1 .
Then there exists x ∈ X such that for all ε > 0, there exists some N ∈ N such that for all
m > N we have

dℓ1((x
(m)), (x)) =

∞∑
n=0

|an − bn| < ε.

Then for all m > N , we have

dℓ∞((x(m)), (x)) = sup
n∈N

|an − bn| ≤
∞∑

n=0

|an − bn| < ε,

so (x(m)) also converges with respect to the metric dℓ∞ . However, consider the sequence

(x
(m)
n )∞n=1 in R defined by

x(m)
n =

®
1
m , 0 ≤ n < m,

0, n ≥ m,

where
∑∞

m=1 x
(m)
n = 1 < ∞. This sequence converges to the zero sequence (0) in (R, dℓ∞)

since for all ε > 0 and m ∈ N, let N = 1/ε, then

dℓ∞((x(m)), (0)) = sup
0≤n<m

1

m
<

1

N
= ε

whenever n > N . However, this sequence does not converge to in (R, dℓ1) since for all n ∈ N,
pick i, j ∈ N such that i < j, we have

dℓ1((x
(i)), (x(j))) =

i−1∑
r=0

1

i
+

j−1∑
r=i

1

j
= 1 +

j − i− 1

j
> 1.

(b) For all distinct i, j ∈ N, we have dℓ1(e
(i), e(j)) =

∑∞
k=1

∣∣∣e(i)k − e
(j)
k

∣∣∣ = 2. Then for all x ∈ X

and n ∈ N, we have

dℓ1(x, e
(n)) =

∞∑
k=1

∣∣∣ak − e
(n)
k

∣∣∣ ≤ ∞∑
k=1

|ak|+
∞∑
k=1

∣∣∣e(n)k

∣∣∣ = ∞∑
k=1

|ak|+ 1 < ∞.

For all x ∈ X, the sequence
(
e(n)

)
is contained in B(x, ε) with ε = dℓ1

(
e(0), x

)
+ 3, hence it

is bounded. For some x ∈ X\{e(n) |n ∈ N}, hence the complement of {e(n) |n ∈ N} is open,
and the set itself is closed. Finally, notice that dℓ1

(
e(i), e(j)

)
= 2 for any pair of distinct

i, j, so the sequence
(
e(n)

)
has no convergent subsequence, hence the {e(n) |n ∈ N} is not

compact.
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Problem 2 (24 pts). A metric space (X, d) is called totally bounded if for every ε > 0, there
exists a natural number n and a finite number of balls

B(x(1), ε), B(x(2), ε), . . . , B(x(n), ε)

which cover X (i.e. X =
⋃n

i=1 B(x(i), ε)).

(a) Show that every totally bounded space is bounded.

(b) Show the following stronger version of Proposition 1.5.5: if (X, d) is compact, then it is
complete and totally bounded.

Hint: if X is not totally bounded, then there is some ε > 0 such that X cannot be covered by
finitely many ε-balls. Then use Exercise 8.5.20 (on page 182 of Analysis I) to find an infinite
sequence of balls B(x(n), ε/2) which are disjoint from each other. Use this to construct a
sequence which has no convergent subsequence.

(c) Conversely, show that if X is complete and totally bounded, then X is compact.

Hint: if (x(n))∞n=1 is a sequence in X, use the total boundedness hypothesis to recursively
construct a sequence of subsequences (x(n;j))∞n=1 of (x(n))∞n=1 for each positive integer j,
such that for each j the elements of the sequence (x(n;j))∞n=1 are contained in a single ball
of radius 1/j. Also ensure that each sequence (x(n;j+1))∞n=1 is a subsequence of the previous
one (x(n;j))∞n=1. Then show that the “diagonal” sequence (x(n;n))∞n=1 is a Cauchy sequence,
and then use the completeness hypothesis.

Solution 2.

(a) Let (X, d) be totally bounded . Then for all ε > 0, there exists some n ∈ N and a sequence(
x(n)

)∞
n=1

in X such that

X =

n⋃
i=1

B(x(i), ϵ).

Then for all x, y ∈ X, there exists some i, j ∈ {1, 2, . . . , n} such that x ∈ B(x(i), ε) and
y ∈ B(x(j), ε). Let R = max{d(x(i), x(j)) : i, j ∈ {1, 2, . . . , n}}, by triangle inequality we
have

d(x, y) ≤ d(x, x(i)) + d(x(i), x(j)) + d(x(j), y) < 2ε+R.

Hence (X, d) is bounded.

(b) Suppose (X, d) is compact. Then by [Tao II] theorem 1.5.7, (X, d) is complete and bounded.
Suppose (X, d) is not totally bounded, then there exists ε > 0 such that X cannot be covered
by finitely many ε-balls. Fix such ε, choose x1 ∈ X and write B1 = B(x1, ε/2), then we may
choose x2 ∈ X\B1 and write B2 = B(x2, ε/2), and so on. Note that X\Bi ̸= ∅ since they
do not cover X. By induction, we obtain a sequence (xn) ∈ X such that d(xi, xj) ≥ ε for all
distinct i, j ∈ N. Then for all N ∈ N, there exists some m,n > N such that d(xm, xn) ≥ ε,
so (xn) has no convergent subsequence, a contradiction. Hence (X, d) is totally bounded.

(c) For each εn = 1
n , there exists finitely many εn-balls that cover X. Collect them into a

sequence (Bn;k)
mn

k=1. Let (x(n)) ⊆ X be a sequence, then x(1) ∈ B1;k1
for some k1 ∈

{1, 2, . . . ,m1}. Since (x(n)) is infinite, there exists some subsequence (x(n;1)) ⊆ (x(n)) such
that x(n;1) ∈ B1;k1

for all n. Next, since x(n;1) ∈ X, there exists some k2 ∈ {1, 2, . . . ,m2}
such that x(n;1) ∈ B2;k2

. Again, since (x(n;1)) is infinite, there exists some subsequence
(x(n;2)) ⊆ (x(n;1)) such that x(n;2) ∈ B2;k2

for all n. Continuing this process, we obtain a
sequence of subsequences (x(n;j))∞n=1 for each j ∈ N such that for all n, x(n;j) ∈ Bj;kj for

some kj ∈ {1, 2, . . . ,mj}, and (x(n;j+1)) ⊆ (x(n;j)). Consider the diagonal sequence (x(n;n)),
then for all ε > 0, let N = floor

(
1
ε

)
, and for all k, l > N , we have d

(
x(k;k), x(l;l)

)
≤ 1

N < ε.

Hence (x(n;n)) is Cauchy, and by completeness of (X, d), there exists some x ∈ X such that
x(n;n) → x. Thus (X, d) is compact.
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Remark. The sub-problems (b) and (c) becomes easy if we use the fact from Problem 3: a metric
space is compact if and only if every open cover has a finite subcover.

Problem 3 (16 pts).

(a) A metric space (X, d) is compact if and only if every sequence in X has at least one limit
point in X.

(b) Let (X, d) have the property that every open cover of X has a finite subcover. Show that X
is compact. Hint: If X is not compact, then by part (a) there is a sequence (x(n))∞n=1 with
no limit points. Then for every x ∈ X there exists a ball B(x, ε) containing x which contains
at most finitely many elements of this sequence. Now use the hypothesis.

Solution 3.

(a) Suppose every sequence in X has at least one limit point in X. Let (x(n)) ∈ X be a sequence,
then for all ε > 0 and N ∈ N, there exists some limit pointx ∈ X and n > N such that
d(x(n), x) < ε. For allN , collect the corresponding nN , so (x(n)) has a convergent subsequence
(x(nN )) → x ∈ X. Conversely, suppose (X, d) is compact. Then for all sequence (x(n)) ∈ X,
there exists some subsequence (x(nk)) which converges to some x ∈ X. Then for all ε > 0,
there exists M ∈ N such that d(x(nk), x) < ε whenever k > M . Hence x is a limit point of
(x(n)).

(b) Suppose that X is not compact. Then by part (a), there exists some sequence (x(n))∞n=1 ∈ X
with no limit points in X. For all x ∈ X, there exists some ε > 0 such that B(x, ε) contains
finitely many elements of this sequence. Consider the collection of open sets

R = {B(x, ε) : x ∈ X}, X =
⋃
U∈R

U.

R is an open cover of X, hence there exists some finite subcover R0 ⊆ R such that

X =
⋃

U∈R0

U.

However, since each U ∈ R0 contains finitely many elements of (x(n)), we conclude there are
only finitely many elements of (x(n)) in X, a contradiction. Thus X is compact.

Remark. We have shown one direction of the result, where the other direcrtion is [Tao II]
Theorem 1.5.8: a metric space is compact if and only if every open cover has a finite subcover.

Problem 4 (10 pts). Let (X, d) be a compact metric space. Suppose that (Kα)α∈I is a collection
of closed sets in X with the property that any finite subcollection of these sets necessarily has non-
empty intersection, thus ⋂

α∈F

Kα ̸= ∅ for all finite F ⊆ I.

(This property is known as the finite intersection property.)

Show that the entire collection has non-empty intersection, thus⋂
α∈I

Kα ̸= ∅.

Show by counterexample that this statement fails if X is not compact.
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Solution 4. Since (X, d) is compact, every open cover of X has a finite subcover. Suppose R is
a collection of open sets that cover X, then

X =
⋃

U∈R0

U,

for some R0 ⊆ R which is a finite subcollection. Take the complement of the above equation, we
have

∅ = Xc =

( ⋃
U∈R0

U

)c

=
⋂

U∈R0

U c.

Since U is open, U c is closed. Thus the claim is true.

The statement fails if X is not compact. Consider the metric space (N, d) where d(x, y) =
|x− y|. Since N is not complete, it is not compact. Let Kn = [n,∞), then for all finite F ⊆ N, we
have ⋂

n∈F

Kn =
⋂
n∈F

[n,∞) = [maxF,∞) ̸= ∅.

However, the entire collection has empty intersection:

∞⋂
n=1

Kn =
∞⋂

n=1

[n,∞) = ∅.

Problem 5. (a) Let (X, d) be a metric space, and let (E, d|E×E) be a subspace of (X, d). Let
ιE→X : E → X be the inclusion map, defined by setting

ιE→X(x) := x for all x ∈ E.

Show that ιE→X is continuous.

(b) Let f : X → Y be a function from one metric space (X, dX) to another (Y, dY ). Let E be
a subset of X (which we give the induced metric dX |E×E), and let f |E : E → Y be the
restriction of f to E, thus

f |E(x) := f(x) when x ∈ E.

If x0 ∈ E and f is continuous at x0, show that f |E is also continuous at x0. (Is the converse
of this statement true? Explain.)

Conclude that if f is continuous, then f |E is continuous. Thus restriction of the domain of
a function does not destroy continuity.

Hint: use part (a).

(c) Let f : X → Y be a function from one metric space (X, dX) to another (Y, dY ). Suppose
that the image f(X) of X is contained in some subset E ⊆ Y of Y . Let g : X → E be
the function which is the same as f but with the codomain restricted from Y to E, thus
g(x) = f(x) for all x ∈ X.

Note on codomain: The codomain of a function is the declared target set of the function,
in contrast to the image (or range), which is the set of values the function actually takes.
So while f is originally defined with codomain Y , its values all lie in the smaller set E ⊆ Y .
Therefore, one can equivalently regard f as a function g : X → E. The metric on E is the
one induced from Y , i.e. dY |E×E .

Show that for any x0 ∈ X, f is continuous at x0 if and only if g is continuous at x0. Conclude
that f is continuous if and only if g is continuous.

(Thus the notion of continuity is not affected if one restricts the codomain of the function.)
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Solution 5.

(a) The preimage of an open ball in X is ι−1
(
B(X,d) (x, ε)

)
= B(E,d|E×E) (x, ε), hence it is open.

By [Tao II] theorem 2.1.5, ι is continuous.

(b) Suppose f is continuous at x0 ∈ E, then for all ε > 0, there exists δ > 0 such that for
all x ∈ E, dY (f(x), f(x0)) < ε whenever dX(x, x0) < δ. Since ιE→X is continuous, we
have dY (f |E(x), f |E(x0)) = dY (f(ι(x)), f(ι(x0))) < ε whenever dX(x, x0) < δ, hence f |E is
continuous at x0. Conversely, suppose f |E is continuous at x0 ∈ E, then for all ε > 0, there
exists δ > 0 such that for all x ∈ E, dX(x, x0) < δ =⇒ dY (f |E(x), f |E(x0)) < ε. Since
ιE→X is continuous, we have dX(x, x0) < δ =⇒ dY (f(x), f(x0)) < ε, hence f is continuous
at x0. The converse is not true, however, since the floor function ⌊·⌋ : R → R is continuous
on E = [0, 1) but not on R.

(c) Suppose f is continuous at x0 ∈ X. Then for all ε > 0, there exists δ > 0 such that
for all x ∈ X, dY (f(x), f(x0)) < ε whenever dX(x, x0) < δ. Then dY |E×E(g(x), g(x0)) =
dY (f(x), f(x0)) < ε, hence g is continuous at x0. Conversely, suppose g is continuous at
x0 ∈ E. Then for all ε > 0, there exists δ > 0 such that for all x ∈ E, dY (g(x), g(x0)) < ε
whenever dX(x, x0) < δ. Since g(x) = f(x) for all x ∈ E, we have dY (f(x), f(x0)) < ε
whenever dX(x, x0) < δ, hence f is continuous at x0.

Problem 6. Let (X, dX) and (Y, dY ) be metric spaces and f : X 7→ Y is a function from X to
Y .

(a) Prove that f is continuous on X if, and only if,

f(A) ⊆ f(A)

for every subset A of X.

(b) Prove that f is continuous on X if and only if f is continuous on every compact subset of X.

Hint: If xn → p in X, the set {p, x1, x2, . . . } is compact.

Solution 6.

(a) Suppose f is continuous on X. Let A ⊆ X, for all x ∈ A, there exists some sequence (x(n)) ∈
A such that x(n) → x under dX . Then by continuity of f and [Tao II] theorem 2.1.4, we
have f(x(n)) → f(x) under dY . Since f(x(n)) ∈ f(A), we have f(x(n)) → f(x) ∈ f(A). Thus
f(A) ⊆ f(A). Conversely, suppose f(A) ⊆ f(A) for all A ⊆ X. Let F ⊆ Y be a closed subset,

then F = F and f(f−1(F )) ⊆ F . Then by assumption f
Ä
f−1(F )

ä
⊆ f(f−1(F )) ⊆ F = F ,

and f−1(F ) ⊆ f−1(F ). Hence f−1(F ) is closed, and f is continuous by [Tao II] theorem
2.1.5.

(b) Suppose f is continuous on X, then for all compact subset K ⊆ X, the restriction of f to
K is continuous on K. Conversely, suppose f is continuous on every compact subset of X.
Let F ⊆ Y be closed and let x ∈ f−1(F ), then there exists a sequence (x(n)) ∈ X such that
x(n) → x ∈ X. The set K = {x, x(1), x(2), . . . } is compact since every sequence in K has a
convergent subsequence. By assumption, f is continuous on K, so by [Tao II] theorem 2.1.4,
we have f(x(n)) → f(x) ∈ F , hence x ∈ f−1(F ). Thus f−1(F ) is closed, and by the same
theorem f is continuous on X.
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