
Math 2213 Introduction to Analysis I

Homework 5 Due October 10 (Friday), 2025

物理、數學三 黃紹凱 B12202004

October 14, 2025

Problem 1 (15 pts).

(a) Let (X, ddisc) be a metric space with the discrete metric. Let E be a subset of X which
contains at least two elements. Show that E is disconnected.

(b) Let f : X → Y be a function from a connected metric space (X, d) to a metric space (Y, ddisc)
with the discrete metric. Show that f is continuous if and only if it is constant. (Hint: use
part (a))

Solution 1.

1. All subsets of X are closed since all subsets of X are open with respect to ddisc, so E contains
a proper subset that is open and closed. By [Tao II] definition 2.4.1, X is disconnected.

2. Suppose f is continuous and not constant, then there exists x1, x2 ∈ X such that f(x1) ̸=
f(x2). The set {f(x1)} ⊆ Y is a proper subset that is open and closed with respect to ddisc.
Note that x2 /∈ f−1({f(x1)}), so f−1({f(x1)}) is a proper subset of X that is open and
closed by continuity of f . By [Tao II] definition 2.4.1, X is disconnected, a contradiction.
Thus, f is constant. Conversely, suppose f is a constant, let U be open in X, then f(U) is
either empty or {y} for some y ∈ Y , both of which are open in Y . Thus, f is continuous.

Problem 2 (15 pts). Let (X, d) be a metric space, and let (Eα)α∈I be a collection of connected
sets in X with I non-empty. Suppose also that

⋂
α∈I Eα is non-empty. Show that

⋃
α∈I Eα is

connected.

Solution 2. Suppose
⋃

α∈E Eα is disconnected. Then there exist non-empty disjoint open sets
U, V ⊆ X such that (U ∩

⋃
α∈I Eα), (V ∩

⋃
α∈I Eα) ̸= ∅ and (U ∩

⋃
α∈I Eα) ∪ (V ∩

⋃
α∈I Eα) =⋃

α∈I Eα. Since
⋂

α∈I Eα ̸= ∅, there exists x ∈
⋂

α∈I Eα. Without loss of generality, suppose
x ∈ U , and so x /∈ V . For some β ∈ I, we have V ∩ Eβ ̸= ∅. Notice that

(U ∩ Eβ) ∪ (V ∩ Eβ) = Eβ , (U ∩ Eβ) ∩ (V ∩ Eβ) = ∅,

and both U ∩ Eβ and V ∩ Eβ are non-empty since x ∈ U ∩ Eβ . By [Tao II] definition 2.4.1, Eβ is
disconnected, a contradiction. Therefore,

⋃
α∈I Eα is connected.

Problem 3 (20 pts). Let (X, d) be a metric space, and let E be a subset of X. We say that E
is path-connected iff, for every x, y ∈ E, there exists a continuous function

γ : [0, 1] → E

from the unit interval [0, 1] to E such that γ(0) = x and γ(1) = y. Show that every non-empty
path-connected set is connected. (The converse is false, but is a bit tricky to show and will not be
detailed here.)

Solution 3. Suppose E is path-connected but disconnected. Then there exist non-empty open
sets U, V ⊆ X such that U ∩ V = ∅, U ∪ V = E. Let x ∈ U ∩E and y ∈ V ∩E. Since E is path-
connected, there exists a continuous function γ : [0, 1] → E such that γ(0) = x and γ(1) = y. Note
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that γ−1(U) and γ−1(V ) are non-empty disjoint open sets in [0, 1], and γ−1(U) ∪ γ−1(V ) = [0, 1].
By [Tao II] definition 2.4.1, [0, 1] is disconnected, contradicting [Tao II] theorem 2.4.5. Therefore,
E is connected.

Problem 4 (15 pts). Let (X, d) be a metric space, and let E be a subset of X. Show that if E
is connected, then the closure E of E is also connected. Is the converse true?

Solution 4. Suppose E is connected but E is disconnected. Then there exist disjoint, non-empty
open sets U, V ⊆ X such that U ∪V = E. Then, E = (U ∩E)∪(V ∩E) and (U ∩E)∩(V ∩E) = ∅.
Since E is connected, one of U ∩E or V ∩E must be empty, so suppose V ∩E = ∅. Then E ⊆ U ,
and V ⊆ E \ E is an open set containing a limit point of E. Hence for x ∈ V , there exists a
neighborhood W ⊆ V such that W ∩ E ̸= ∅, hence V ∩ E ̸= ∅, contradiction. Therefore, E is
connected. The converse is false. Let E = (0, 1) ∪ (1, 2) ⊆ R, then E = [0, 2] is connected since it
is an interval but E is disconnected.

Problem 5 (20 pts). Let (X, d) be a metric space. Let us define a relation x ∼ y on X by
declaring x ∼ y iff there exists a connected subset of X which contains both x and y. Show that
this is an equivalence relation (i.e., it obeys the reflexive, symmetric, and transitive axioms). Also,
show that the equivalence classes of this relation (i.e., the sets of the form {y ∈ X : y ∼ x} for
some x ∈ X are all closed and connected. These sets are known as the connected components of
X.

Solution 5. We check the relation axioms:

(i) For any x ∈ X, the set {x} is connected since it is not disconnected, so x ∼ x.

(ii) If x ∼ y, then there exists a connected set E ⊆ X such that x, y ∈ E. Then y, x ∈ E, so
y ∼ x.

(iii) If x ∼ y and y ∼ z, then there exist connected sets E1, E2 ⊆ X such that x, y ∈ E1 and
y, z ∈ E2. Since y ∈ E1 ∩ E2, E1 ∪ E2 is connected by Problem 2, and thus x ∼ z.

Let C be an equivalence class of this relation. For any x, y ∈ C, there exists a connected set E ⊆ X
such that x, y ∈ E. Since E ⊆ C by definition of equivalence class, C is connected. By Problem 4,
C is connected. Hence, for all x ∈ C, x ∈ C. Therefore, C ⊆ C, hence C is closed.

Problem 6 (15 pts). Let f : S → T be a function from a metric space S to another metric space
T . Assume f is uniformly continuous on a subset A of S and that T is complete. Prove that there
is a unique extension of f to A which is uniformly continuous on A.

Solution 6. For each x ∈ A, there exists a sequence (xn)
∞
n=1 in A such that xn → x. Since

f is uniformly continuous on A and (xn) is Cauchy, (f(xn))
∞
n=1 is a Cauchy sequence in T by

Problem 7. Since T is complete, there exists y ∈ T such that f(xn) → y. Define f : A → T ,
f(x) = y, which is a valid extension since f |A = f = f |A. Let (yn)

∞
n=1 → x be another sequence

and let (cn)
∞
n=1 be such that c2n−1 = xn, c2n = yn. Then cn → x and (f(cn))

∞
n=1 is Cauchy in T

with f(cn) → y. Since (f(xn)), f(yn) are subsequences pf f(cn), they both converge to y, hence
f is well-defined. Since f is uniformly continuous on A, f is uniformly continuous on A. Suppose
f1, f2 are two uniform extensions of f on A, and let I = {x ∈ A | f1(x) = f2(x)}. We claim I is
closed. Let b ∈ Ic, then f1(b) ̸= f2(b) and there exist non-empty disjoint open sets in T such that
f1(b) ∈ U, f2(b) ∈ V . Since f1, f2 are continuous, W ≡ f−1(U)∩f−1(V ) is open in Ic. Let x ∈ W ,
then f1(x) ∈ U , f2(x) ∈ V , so f1(x) ̸= f2(x) and x ∈ I, hence W ⊆ Ic. Ic is the union of all such
sets, hence open, hence I is closed. Then A ⊆ I ⊆ A, hence A ⊆ I ⊆ A, hence I = I = A and the
uniform extension is unique.
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Problem 7 (Optional). Assume f : S → T is uniformly continuous on S, where S and T are
metric spaces. If {xn} is a Cauchy sequence in S, prove that {f(xn)} is a Cauchy sequence in T .

Solution 7. Let ε > 0. By uniform continuity, there exists δ > 0 such that for all x, y ∈ S with
dS(x, y) < δ, we have dT (f(xn), f(xm)) < ε. Since (xn) is a Cauchy sequence in S, there exists N ∈
N such that for all m,n ≥ N , we have dS(xm, xn) < δ. Therefore, we have dT (f(xn), f(xm)) < ε
whenever m,n ≥ N . This shows that {f(xn)} is a Cauchy sequence in T .

Problem 8 (Optional). Given a function f : Rn → Rm which is one-to-one and continuous on
Rn. If A is open and disconnected in Rn, prove that f(A) is open and disconnected in f(Rn).

Solution 8. The statement is incorrect for n ̸= m. Consider the map f : R → R2 given by

t 7→
Å

t

1 + t2
,− t(1− t2)

1 + t4

ã
.

f is one-to-one and continuous, since its components are continuous. However, f(R \ {1}) is the
whole curve minus the rightmost point and hence connected. Also, (−0.1, 0.1) is mapped to a line
segment in R2, which is not open.

Let’s assume n = m. Recall the Invariance of Domain Theorem: if U is an open subset of Rn

and f : U → Rn is a continuous injective map, then f(U) is open in Rn and f is a homeomorphism
between U and f(U). Since A ⊆ Rn is open, by the theorem, f(A) is open in Rn. Suppose f(A) is
connected. Since f is a homeomorphism, f−1 is continuous and preserves connectedness. Hence,
by injectivity, f−1(f(A)) = A is connected. Therefore, f(A) is disconnected by contrapositive.

Solution from TA: Suppose A ⊆ U ∪ V , where U, V are open in Rn, U ∩ V = ∅, and
A ∩ U,A ∩ V = ∅. For any closed (and bounded) set C ⊆ Rn, C is compact in Rn. Since f is
continuous, f(C) is compact in f(Rn). Hence f(C) is closed (and bounded) in f(Rn). Therefore,
f−1 is continuous, and for all open set U ⊆ Rn, f(U) is open in f(Rn). We have f((A∩U)∪ (A∩
V )) = f(A ∩ U) ∪ f(A ∩ V ) is disconnected and open.

Problem 9 (Optional). Let S be an open connected set in Rn. Let T be a connected component
of Rn \ S. Prove that Rn \ T is connected.

Solution 9. For any connected component V , by Problem 5 V is relatively closed in Rn\S. Write
Rn \ T = S ∩ ∪V ∈Rn\S,V ̸=TV , where V is a connected component. Since V is open, ∂V ⊆ Rn \ S,
hence V ∩ ∂S ̸= ∅ for all V ̸= T . Recall that if S is connected, then any S′ such that S ⊆ S′ ⊆ S
is connected. Therefore, V ∪ S is connected. Since Rn \ T is the union of S and the connected
components that have non-empty intersection with S, it is connected.

Problem 10 (Optional). Let (S, d) be a connected metric space which is not bounded. Prove
that for every a ∈ S and every r > 0, the set

{x : d(x, a) = r}

is nonempty.

Solution 10. Suppose (S, d) is not bounded. Then there does not exist x ∈ S,R > 0 such
that S ⊆ B(S,d)(x,R). Let a ∈ S and r > 0. Suppose {x : d(x, a) = r} = ∅, then S =

B(S,d)(a, r)∪ (S \B(S,d)(a, r)), where both sets are non-empty since S is not bounded. Since both
sets are open in S, by [Tao II] definition 2.4.1, S is disconnected, a contradiction. Therefore,
{x : d(x, a) = r} ≠ ∅.
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