
Math 2213 Introduction to Analysis I

Homework 6 Due October 17 (Friday), 2025

物理、數學三 黃紹凱 B12202004

October 23, 2025

Problem 1 (20 pts).

Definition 1 (Totally ordered set). A totally ordered set (or linearly ordered set) is a pair (X,≤)
consisting of a nonempty set X together with a binary relation ≤ on X satisfying the following
properties:

1. Reflexivity: For all x ∈ X, x ≤ x.

2. Antisymmetry: For all x, y ∈ X, if x ≤ y and y ≤ x, then x = y.

3. Transitivity: For all x, y, z ∈ X, if x ≤ y and y ≤ z, then x ≤ z.

4. Totality (or Comparability): For all x, y ∈ X, either x ≤ y or y ≤ x.

A relation ≤ satisfying only (1)–(3) is called a partial order. If, in addition, (4) holds, the order is
said to be total, meaning that any two elements of X can be compared.

Definition 2 (Hausdorff space). A topological space (X,F) is called a Hausdorff space (or T2

space) if for every pair of distinct points x, y ∈ X there exist neighborhoods U, V ∈ F such that

x ∈ U, y ∈ V, and U ∩ V = ∅.

(a) Given any totally ordered set X with order relation ≤, declare a set V ⊆ X to be open if for
every x ∈ V there exists a set I, which is an interval {y ∈ X : a < y < b} for some a, b ∈ X,
or {y ∈ X : a < y} for some a ∈ X, or {y ∈ X : y < b} for some b ∈ X, or the whole space
X, which contains x and is contained in V . Let F be the set of all open subsets of X. Show
that (X,F) is a topology (this is the order topology on the totally ordered set (X,≤) which
is Hausdorff in the sense of Definition 2.5.4-2 or the definition above).

(b) Show that on the real line R (with the standard ordering ≤), the order topology matches the
standard topology (i.e., the topology arising from the standard metric).

(c) If instead one defines V to be open if the extended real line R∪ {±∞} has an open set with
boundary {±∞}. Let {xn}∞n=1 be a sequence of numbers in R∪{±∞}. Show that xn → +∞
if and only if infn≥N xn → +∞, and xn → −∞ if and only if supn≥N xn → −∞.

Solution 1. For each case below, we show that the topology axioms are satisfied.

(i) X and ∅ are in F .

(ii) The union of any collection of sets in F is also in F .

(iii) The intersection of any finite number of sets in F is also in F .

(a) The empty set and X are subsets of X, so they are both in F . Let C be a collection of open
sets in F , and let U =

⋃
V ∈C V . For any x ∈ U , there exists some V ∈ C such that x ∈ V .

Since V is open, there exists an interval I containing x such that I ⊆ V ⊆ U . Thus, U is
open, and hence in F . Now, let V1, V2, . . . , Vn be a finite collection of open sets in F , and let
W =

⋂n
i=1 Vi. For any x ∈ W , since each Vi is open, there exists an interval Ii containing x

such that Ii ⊆ Vi. Letting I =
⋂n

i=1 Ii, we have that I is also an interval containing x, and
since the intersection of a finite number of intervals is still an interval, we have that I ⊆ W .
Thus, W is open, and hence in F . Therefore, (X,F) is a topology. The order topology is
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also Hausdorff: Let x, y ∈ X and assume x < y. If there is some z ∈ X such that x < z < y,
where a < b if and only a ≤ b and a ̸= b, then the intervals (−∞, z) and (z,+∞) are disjoint
neighborhoods of x and y, respectively. If there is no such z, then the intervals (−∞, y) and
(x,+∞) are disjoint neighborhoods of x and y, respectively.

(b) We will show that a set U ∈ R is open in the order topology if and only if it is open in the
standard topology. Suppose U is open in (R, | · |), then for all x ∈ U , there exists ε > 0 such
that B(c, ε) = (x − ε, x + ε) ⊆ U , and hence U is open in the order topology. COnversely,
suppose V is open in the order topology. Then there exists an interval I ⊆ V containing x.
An interval is of the form (−∞, a), (a, b), (b,∞), or X, so it is open in (R, | · |). Hence V is
open in the standard topology.

(c)

Problem 2 (15 pts).

Definition 3 (Metrizable space). A topological space (X,F) is said to be metrizable if there
exists a metric d : X × X → [0,∞) such that the topology F coincides with the topology Fd

induced by d. That is,

F = Fd := {U ⊆ X : ∀x ∈ U,∃ ε > 0 such that Bd(x, ε) ⊆ U },

where Bd(x, ε) := { y ∈ X : d(x, y) < ε } denotes the open ball centered at x with radius ε. If no
such metric d exists, then (X,F) is said to be not metrizable. In other words, its topology cannot
arise from any metric on X.

(a) Let X be an uncountable set, and let F be the collection of all subsets E in X which are
either empty or cofinite (which means that X \ E is finite). Show that (X,F) is a topology
(this is called the cofinite topology on X) which is not Hausdorff and is compact.

(b) Show that if {Vi : i ∈ I} is any countable collection of open sets containing x, then
⋂

i Vi ̸= ∅.
Use this to show that the cofinite topology cannot be derived from any metric (i.e., (X,F)
is not metrizable). (Hint: what is the set

⋂∞
n=1 B(x, 1/n) equal to in a metric space?)

Solution 2.

(a) The complement of X in X is empty, so ∅, X ∈ F . Let C be a collection of open sets in F ,
and let U =

⋃
V ∈C V . If U = ∅, then U ∈ F . If U ̸= ∅, then there exists some V ∈ C such

that V ̸= ∅. Since V is cofinite, the complement of V in X, denoted by X \ V , is finite.
Since U ⊇ V , we have that

X \ U =
⋂
V ∈C

(X \ V )

is a subset of X \ V , and hence is finite. Thus, U is cofinite, and hence in F . Now, let
V1, V2, . . . , Vn be a finite collection of open sets in F , and let W =

⋂n
i=1 Vi. If W = ∅, then

W ∈ F . If W ̸= ∅, then for each i = 1, 2, . . . , n, the complement of Vi in X, denoted by
X \ Vi, is finite. Since

X \W =

n⋃
i=1

(X \ Vi),

we have thatX\W is a finite union of finite sets, and hence is finite. Thus, W ∈ F . Therefore,
(X,F) is a topology. Let x, y ∈ X and assume x ̸= y. For any neighborhoods U of x and V
of y, X \U and X \V are finite. Since x ̸= y, we have that X \ (U ∩V ) = (X \U)∪ (X \V ) is
finite, and hence U ∩ V ̸= ∅. Therefore, (X,F) is not Hausdorff. Let {Vi|i ∈ I} be an open
cover of X. Since X ∈ F , there exists some i0 ∈ I such that Vi0 ̸= ∅. Since Vi0 is cofinite,
the complement of Vi0 in X, denoted by X \ Vi0 , is finite. For each x ∈ X \ Vi0 , there exists
some ix ∈ I such that x ∈ Vix . Letting J = {ix|x ∈ X \ Vi0}, we have that J is a finite set,
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and
X = Vi0 ∪

⋃
i∈J

Vi.

Thus, (X,F) is compact.

(b) Let {Vi|i ∈ I} be a countable collection of open sets containing x. If there exists some i0 ∈ I
such that Vi0 = ∅, then

⋂
i∈I Vi = ∅. If for each i ∈ I, Vi ̸= ∅, then for each i ∈ I, the

complement of Vi in X, denoted by X \ Vi, is finite. Since

X \
⋂
i∈I

Vi =
⋃
i∈I

(X \ Vi),

we have that X \
⋂

i∈I Vi is a countable union of finite sets, and hence is countable. Since X
is uncountable, we have that

⋂
i∈I Vi ̸= ∅. Therefore, for any countable collection of open

sets containing x,
⋂

i Vi ̸= ∅.

Suppose (X,F) were metrizable, then there exists a metric d : X × X → [0,∞) such that
F = Fd. For any x ∈ X, the collection of open balls {Bd(x, 1/n)|n = 1, 2, . . .} satisfies⋂∞

n=1 Bd(x, 1/n) = {x}. By the definition of a metric, we have
⋂∞

n=1 B(x, 1
n ) = {x}, which

is a finite intersection of a countable collection of open sets, a contradiction. Hence, (X,F)
is not metrizable.

Remark. The cofinite topology is compact but not Hausdorff. Since every metric space is Haus-
dorff, the result of (b) follows trivially from the contrapositive. In fact, in any infinite set with the
cofinite topology, every sequence converges to every point in the space.

Problem 3 (15 pts). Let (X,F) be a compact topological space. Assume that this space is
first countable, which means that for every x ∈ X there exist countable collections of open sets
V1, V2, . . . of neighborhoods of x, such that every neighborhood of x contains one of the Vn. Show
that every sequence in X has a convergent subsequence (see Exercise 1.5.11).

Solution 3. Let (X,F) be a compact first-countable space, and let (xn)
∞
n=0 be a sequence in X.

Assume (xn) does not have a convergent subsequence, then by the sequence lemma it does not have
a limit point in X. Then for each x ∈ X, we may an open neighborhood Ux of x containing only
finitely many terms of (xn). The set U =

⋃
x∈X Ux is an open cover of X, by compactness there

exists a finite subcover {Uxi
}mi=1. Since each Uxi

contains only finitely many terms of (xn), the
union

⋃m
i=1 Uxi also contains only finitely many terms of (xn), a contradiction since

⋃m
i=1 Uxi = X

is at least countable. Therefore, (xn) has a convergent subsequence.

Lemma 1 (sequence lemma). Given a subset A of a first-countable space, a point x lies in A if
and only if there exists a sequence (xn)

∞
n=0 in A such that xn → x.

Proof. Suppose the sequence (xn)
∞
n=0 converges to x ∈ X. For any open neighborhood of x, there

exists N ∈ N such that for all n > N , xn ∈ U . Thus, every open neighborhood of x intersects A,
and hence x ∈ A. Conversely, suppose x ∈ A. Since X is first-countable, there exists a countable
collection of open neighborhoods {Vn}∞n=1 of x such that every neighborhood of x contains one of
the Vn. For each n ∈ N, since Vn is a neighborhood of x, we have that Vn ∩ A ̸= ∅. Thus, we
may pick xn ∈ V1 ∩ V2 ∩ · · · ∩ Vn ∩ U for all n. For every open neighborhood U of x, there exists
some N ∈ N such that VN ⊆ U . Then for all n > N , xn ∈ VN ∩ VN+1 ∩ · · · ∩ VM ⊆ VN ⊆ U with
M > N . Therefore, xn → x.

Problem 4 (15 pts). Let (X,F) be a compact topological space and (Y,G) be a Hausdorff
topological space. If f : X → Y is continuous, then f is a closed map; i.e., for every closed subset
F ⊆ X, the image f(F ) is closed in Y .
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Solution 4. Suppose f is continuous. Then for all A ⊆ X, f(A) is compact in Y since the
continuous image of a compact set is compact. Let K ⊆ X be a closed subset, then K is compact
since given any open cover of K, we may extend it to an open cover of X by adding the open set
X \ K, and since X is compact, there exists a finite subcover which also covers K. Thus, K is
compact, and f(K) is compact in Y . Suppose f(K) is not closed, then there exists some y /∈ f(K)
such that all neighborhoods of y have nonempty intersection with f(K). Since Y is Hausdorff, for
any z ∈ Y and fixed y, there exist neighborhoods Uy, Uz such that Uy ∩Uz = ∅. Then (Uz)z∈f(K)

is an open cover of f(K), and we may pick a finite subcover
(
Uzj

)n
j=1

. However, U =
⋂n

j=1 Uyj is

a neighborhood of y such that U ∩
⋂n

j=1 Uzj = U ∩ f(K) = ∅, a contradiction. Therefore, f(K) is
closed in Y , and hence f is a closed map.

Problem 5 (20 pts). Let {fn} be a sequence of real-valued continuous functions defined on a
compact metric space S and assume that {fn} converges pointwise on S to a limit function f .
Prove that fn → f uniformly on S if, and only if, the following two conditions hold:

(i) The limit function f is continuous on S.

(ii) For every ε > 0, there exist m > 0 and δ > 0 such that n > m and

|fk(x)− f(x)| < δ =⇒ |fk+n(x)− f(x)| < ε

for all x ∈ S and all k = 1, 2, . . . .

Hint. To prove the sufficiency of (i) and (ii), show that for each x0 ∈ S there is a neighborhood
B(x0, R) and an integer k (depending on x0) such that

|fk(x)− f(x)| < δ if x ∈ B(x0, R).

By compactness, a finite set of integers, say A = {k1, . . . , kr}, has the property that for each x ∈ S,
some k ∈ A satisfies |fk(x)− f(x)| < δ. Uniform convergence is an easy consequence of this fact.

Solution 5. Suppose fn → f uniformly on S. Then for any ε
3 > 0, there exists N ∈ N such that

for all n > N and all x, y ∈ S, |f(x) − f(y)| < ε
3 . Since fn is continuous, for each ε

3 and y ∈ S,
there exists δ such that |fn(x)− fn(y)| < ε

3 whenever |x− y| < δ. Then, for all ε > 0 and x ∈ S,
we have |f(x) − f(y)| ≤ |f(x) − fn(x)| + |fn(x) − fn(y)| + |fn(y) − f(y)| < ε

3 + ε
3 + ε

3 = ε for all
y ∈ S, whenever |x− y| < δ. Therefore, f is continuous on S. Now, for any ε > 0, let m = N and
let δ = ε. Then for all n > m, if |fk(x) − f(x)| < δ, then |fk+n(x) − f(x)| < ε for all x ∈ S and
all k ∈ N.

Conversely, suppose (i) and (ii) hold. For each x0 ∈ S, since f and fk are continuous, for
any δ

3 > 0, there exists rx > 0 such that |f(x) − f(x0)| < δ
3 and |fk(x) − fk(x0)| < δ

3 whenever

|x− x0| < Rx0
. Also, for δ

3 > 0, there exists kx0
such that |fkx

(x0)− f(x0)| < δ
3 . Then for δ > 0,

|fk(x) − f(x)| ≤ |fk(x) − fk(x0)| + |fk(x0) − f(x0)| + |f(x0) − f(x)| < δ
3 + δ

3 + δ
3 = δ whenever

|x − x0| < Rx0
(hence x ∈ B(x0, Rx0

)) and k > kx0
. Then

⋃
x∈S B(x,Rx) is an open cover of

X, and by compactness there is a finite subcover {B(xj , Rxj )}nj=1. For all x ∈ S, there exists
1 ≤ k ≤ n such that |fk(x) − f(x)| < δ. Then for all ε > 0, by (ii) there exist m > 0 such that
|fn+k(x)− f(x)| < ε for all n > m. Therefore, fn → f uniformly on S.

Problem 6 (15 pts). The purpose of this exercise is to demonstrate a concrete relationship
between continuity and pointwise convergence, and between uniform continuity and uniform con-
vergence.

Let f : R → R be a function. For any a ∈ R, let fa : R → R be the shifted function defined
by

fa(x) := f(x− a).

(a) Show that f is continuous if and only if, whenever (an)
∞
n=0 is a sequence of real numbers

which converges to zero, the shifted functions fan converge pointwise to f .
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(b) Show that f is uniformly continuous if and only if, whenever (an)
∞
n=0 is a sequence of real

numbers which converges to zero, the shifted functions fan
converge uniformly to f .

Solution 6.

(a) Suppose f is continuous. Let (an)
∞
n=0 be a sequence of real numbers which converges to zero,

so there exists N ∈ N such that for all n > N , |an| < δ. For any ε > 0 and x ∈ R, since f is
continuous at x, there exists δ > 0 such that |f(x−an)−f(x)| < ε whenever |an| < δ. Thus,
for all n > N , |fan

(x)− f(x)| = |f(x− an)− f(x)| < ε, and fan
→ f pointwise. Conversely,

let (an)
∞
n=0 be a sequence of real numbers converging to zero such that fan

→ f pointwise.
Consider a rearrangement

(
aϕ(n)

)∞
n=0

of the original sequence such that ai+1 ≤ ai for all i,
where ϕ : N → N is a bijection. We still have aϕ(n) → 0, so for any δ > 0, there exists N ∈ N
such that |aϕ(n)| < δ if and only if n > N . For any ε > 0 and x ∈ R, there exists N ′ ∈ N
such that for all n > N ′, |fan

(x)− f(x)| < ε. Let M = max(N,N ′), then for all ε > 0, there
exists δ > 0 such that |f(x − an) − f(x)| < ε whenever n > M whenever |aϕ(n)| < δ. Since(
aϕ(n)

)∞
n=0

is an arrangement and (an)
∞
n=0 is arbitrary, f is continuous.

(b) The proof follows the same logic as above. Suppose f is uniformly continuous. Let (an)
∞
n=0

be a sequence of real numbers which converges to zero, so there exists N ∈ N such that for
all n > N , |an| < δ. For any ε > 0, since f is uniformly continuous, there exists δ > 0
such that |f(x − an) − f(x)| < ε whenever |an| < δ for all x ∈ R. Thus, for all n > N ,
|fan

(x) − f(x)| = |f(x − an) − f(x)| < ε for all x ∈ R, and fan
→ f uniformly. Conversely,

let (an)
∞
n=0 be a sequence of real numbers converging to zero such that fan → f uniformly.

Consider a rearrangement
(
aϕ(n)

)∞
n=0

of the original sequence such that ai+1 ≤ ai for all i,
where ϕ : N → N is a bijection. We still have aϕ(n) → 0, so for any δ > 0, there exists N ∈ N
such that |aϕ(n)| < δ if and only if n > N . For any ε > 0, there exists N ′ ∈ N such that
for all n > N ′, and all x ∈ R, we have |fan

(x) − f(x)| < ε. Let M = max(N,N ′), then
for all ε > 0, there exists δ > 0 such that for all x ∈ R, |f(x − an) − f(x)| < ε whenever
n > M whenever |aϕ(n)| < δ. Since

(
aϕ(n)

)∞
n=0

is an arrangement and (an)
∞
n=0 is arbitrary,

f is uniformly continuous.
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You can do the following problems to practice. You don’t have to submit the following problems.

Problem 7 (Optional). Let (X,F) be a topological space and let B be a subset of X. Prove the
following set equality:

X \B = X \ Int(B).

Solution 7. Notice that

X \B = (X \B) ∪ ∂(X \B)

= X \ (intB ∪ ∂B) ∪ ∂(X \B)

= (X \ intB) ∩ (X \ ∂B) ∪ ∂B

= X \ intB.

Problem 8 (Optional). Let (X,F) be a topological space and (Y,G) be a Hausdorff topological
space. Suppose f, g : X → Y are continuous maps. Show that the set Z = {x ∈ X|f(x) = g(x)}
is closed in X. Give a counterexample if Y is not Hausdorff. Hint: Show X \ Z is open.

Solution 8. Consider x ∈ Zc = {x ∈ X | f(x) ̸= g(x)}. Since f(x) ̸= g(x) and Y is Hausdorff,
there exist open neighborhoods Vf , Vg ⊆ Y of f(x), g(x), respectively, such that Vf ∩Vg = ∅. Then
x ∈ f−1(Vf ) ∩ g−1(Vg) ⊆ Zc is contained in an open set in Xc. Since this is true for all x ∈ Zc,
we have that Zc is open, and hence Z is closed in X.

Problem 9 (Optional). Suppose X is a topological space, and for every p ∈ X there exists a
continuous function f : X → R such that fpre(0) = {p}. Show that X is Hausdorff.

Solution 9.

Problem 10 (Optional). Define two sequences {fn} and {gn} as follows:

fn(x) = x

Å
1 +

1

n

ã
, x ∈ R, n = 1, 2, . . .

and

gn(x) =


1

n
, if x = 0 or x is irrational,

b+
1

n
, if x is rational, say x =

a

b
, b > 0.

Let hn(x) = fn(x)gn(x).

(a) Prove that both {fn} and {gn} converge uniformly on every bounded interval.

(b) Prove that {hn} does not converge uniformly on any bounded interval.

Solution 10.

Problem 11 (Optional). Let (X, dX) be a metric space, and for every integer n ≥ 1, let fn : X →
R be a real-valued function. Suppose that fn converges pointwise to another function f : X → R
on X (in this question we give R the standard metric d(x, y) = |x− y|).

Let h : R → R be a continuous function. Show that the functions h ◦ fn converge pointwise
to h ◦ f on X, where h ◦ fn : X → R is defined by h ◦ fn(x) := h(fn(x)), and similarly for h ◦ f .
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Solution 11.

Problem 12 (Optional).

(a) Use Problem 5 in the first part to prove the following theorem of Dini:

Theorem 2 (Dini’s Theorem). If {fn} is a sequence of real-valued continuous functions
converging pointwise to a continuous limit function f on a compact set S in a metric space,
and if

fn(x) ≥ fn+1(x) for each x ∈ S and every n = 1, 2, . . . ,

then fn → f uniformly on S.

(b) Let

fn(x) =
1

nx+ 1
, 0 < x < 1, n = 1, 2, . . .

Prove that {fn} converges pointwise but not uniformly on (0, 1).

(c) Use the sequence in part (b) to show that compactness of S is essential in Dini’s theorem.
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