Math 2213 Introduction to Analysis I

Homework 6 Due October 17 (Friday), 2025
WA~ HFE = FHB I B12202004
October 23, 2025

Problem 1 (20 pts).

Definition 1 (Totally ordered set). A totally ordered set (or linearly ordered set) is a pair (X, <)
consisting of a nonempty set X together with a binary relation < on X satisfying the following
properties:

1.
2.
3.
4.

Reflexivity: Forall z € X, z < x.
Antisymmetry: For all z,y € X, if x <y and y < z, then z = .
Transitivity: For all z,y,z € X, if xt <y and y < z, then z < 2.

Totality (or Comparability): For all z,y € X, either z <y or y < z.

A relation < satisfying only (1)—(3) is called a partial order. If, in addition, (4) holds, the order is
said to be total, meaning that any two elements of X can be compared.

Definition 2 (Hausdorff space). A topological space (X, F) is called a Hausdorff space (or Th
space) if for every pair of distinct points z,y € X there exist neighborhoods U, V' € F such that

zelU, yeV, andUNV =g.

(a) Given any totally ordered set X with order relation <, declare a set V' C X to be open if for

every & € V there exists a set I, which is an interval {y € X : a <y < b} for some a,b € X
or {y € X :a <y} for somea€ X, or {ye€ X :y<b} for some b € X, or the whole space
X, which contains x and is contained in V. Let F be the set of all open subsets of X. Show
that (X, F) is a topology (this is the order topology on the totally ordered set (X, <) which
is Hausdorff in the sense of Definition 2.5.4-2 or the definition above).

Show that on the real line R (with the standard ordering <), the order topology matches the
standard topology (i.e., the topology arising from the standard metric).

If instead one defines V to be open if the extended real line R U {+o00} has an open set with
boundary {+oco0}. Let {z,,}52; be a sequence of numbers in RU{+oco}. Show that x,, — +0o0
if and only if inf, >y x, — +00, and z;,, = —o0 if and only if sup,,> 5 x, — —o0.

Solution 1. For each case below, we show that the topology axioms are satisfied.

(i) X and @ are in F.

(ii

(iii

)
)
)

The union of any collection of sets in F is also in F.

The intersection of any finite number of sets in F is also in F.

(a) The empty set and X are subsets of X, so they are both in F. Let C be a collection of open

sets in F, and let U = (Jy,co V. For any = € U, there exists some V' € C such that z € V.
Since V' is open, there exists an interval I containing x such that I C V C U. Thus, U is
open, and hence in F. Now, let V4, V5, ..., V,, be a finite collection of open sets in F, and let
W =(._, Vi. For any z € W, since each V; is open, there exists an interval I; containing x
such that I; C V;. Letting I = (;_, I;, we have that I is also an interval containing z, and
since the intersection of a finite number of intervals is still an interval, we have that I C W.
Thus, W is open, and hence in F. Therefore, (X, F) is a topology. The order topology is



()

also Hausdorff: Let z,y € X and assume x < y. If there is some z € X such that x < z < y,
where a < b if and only a < b and a # b, then the intervals (—oo, z) and (z, +00) are disjoint
neighborhoods of z and y, respectively. If there is no such z, then the intervals (—oo,y) and
(z, +00) are disjoint neighborhoods of  and y, respectively.

We will show that a set U € R is open in the order topology if and only if it is open in the
standard topology. Suppose U is open in (R, |- |), then for all z € U, there exists £ > 0 such
that B(c,e) = (x —e,x +¢) C U, and hence U is open in the order topology. COnversely,
suppose V is open in the order topology. Then there exists an interval I C V containing .
An interval is of the form (—o0,a), (a,b), (b,00), or X, so it is open in (R, |- |). Hence V is
open in the standard topology.

Problem 2 (15 pts).

Definition 3 (Metrizable space). A topological space (X, F) is said to be metrizable if there
exists a metric d : X x X — [0,00) such that the topology F coincides with the topology Fy
induced by d. That is,

F=Fqg:={UCX :¥YoxeUIJe >0 such that By(z,e) CU },

where By(z,¢) := {y € X : d(z,y) < €} denotes the open ball centered at x with radius €. If no
such metric d exists, then (X, F) is said to be not metrizable. In other words, its topology cannot
arise from any metric on X.

(a)

(b)

Let X be an uncountable set, and let F be the collection of all subsets F in X which are
either empty or cofinite (which means that X \ E is finite). Show that (X, F) is a topology
(this is called the cofinite topology on X) which is not Hausdorff and is compact.

Show that if {V; : i € I'} is any countable collection of open sets containing z, then (), V; # @.
Use this to show that the cofinite topology cannot be derived from any metric (i.e., (X, F)
is not metrizable). (Hint: what is the set (2, B(z,1/n) equal to in a metric space?)

Solution 2.

(a)

The complement of X in X is empty, so @, X € F. Let C be a collection of open sets in F,
and let U = {Jy o V. f U =g, then U € F. If U # @, then there exists some V' € C such
that V' # @. Since V is cofinite, the complement of V' in X, denoted by X \ V, is finite.
Since U D V, we have that
X\U=[)(X\V)
vec

is a subset of X \ V, and hence is finite. Thus, U is cofinite, and hence in F. Now, let
V1, Va,...,V, be a finite collection of open sets in F, and let W =, V;. If W = &, then
W e F. If W # @, then for each i = 1,2,...,n, the complement of V; in X, denoted by
X \ Vi, is finite. Since

X\W = [Jx\ V),
i=1
we have that X \W is a finite union of finite sets, and hence is finite. Thus, W € F. Therefore,
(X, F) is a topology. Let z,y € X and assume x # y. For any neighborhoods U of x and V

of y, X\ U and X \ V are finite. Since = # y, we have that X\ (UNV) = (X\U)U(X\V)is
finite, and hence U NV # @. Therefore, (X, F) is not Hausdorff. Let {V;|i € I} be an open
cover of X. Since X € F, there exists some iy € I such that V;, # @. Since V;, is cofinite,
the complement of V;, in X, denoted by X \ V;,, is finite. For each 2z € X \ V;,, there exists
some i, € I such that x € V;,. Letting J = {iy|x € X \ V;,}, we have that J is a finite set,




and
X:%UUW
ieJ

Thus, (X, F) is compact.

(b) Let {V;]i € I'} be a countable collection of open sets containing x. If there exists some ig € T
such that V;, = @, then (),.; Vi = @. If for each i € I, V; # @, then for each i € I, the
complement of V; in X, denoted by X \ V;, is finite. Since

xX\vi=Ux\w),
i€l i€l

we have that X \ [;c; V; is a countable union of finite sets, and hence is countable. Since X
is uncountable, we have that (,.; Vi # @. Therefore, for any countable collection of open
sets containing z, (), V; # @.

i€l

Suppose (X, F) were metrizable, then there exists a metric d : X x X — [0,00) such that
F = F4. For any z € X, the collection of open balls {By(z,1/n)ln = 1,2,...} satisfies
Mo’y Ba(z,1/n) = {z}. By the definition of a metric, we have (\,”; B(z, 1) = {z}, which
is a finite intersection of a countable collection of open sets, a contradiction. Hence, (X, F)
is not metrizable.

Remark. The cofinite topology is compact but not Hausdorff. Since every metric space is Haus-
dorff, the result of (b) follows trivially from the contrapositive. In fact, in any infinite set with the
cofinite topology, every sequence converges to every point in the space.

Problem 3 (15 pts). Let (X,F) be a compact topological space. Assume that this space is
first countable, which means that for every = € X there exist countable collections of open sets
V1, Vs, ... of neighborhoods of x, such that every neighborhood of = contains one of the V,,. Show
that every sequence in X has a convergent subsequence (see Exercise 1.5.11).

Solution 3. Let (X, F) be a compact first-countable space, and let (z,),-, be a sequence in X.
Assume (x,,) does not have a convergent subsequence, then by the sequence lemma it does not have
a limit point in X. Then for each z € X, we may an open neighborhood U, of z containing only
finitely many terms of (x,). The set U = |J, x U, is an open cover of X, by compactness there
exists a finite subcover {Uy, }I™,. Since each U,, contains only finitely many terms of (x,), the
union | J!; Uy, also contains only finitely many terms of (z,), a contradiction since |J/*, Uy, = X
is at least countable. Therefore, (z,,) has a convergent subsequence.

Lemma 1 (sequence lemma). Given a subset A of a first-countable space, a point x lies in A if
and only if there exists a sequence (z,,),_, in A such that z,, — x.

Proof. Suppose the sequence (xn)zozo converges to z € X. For any open neighborhood of z, there
exists N € N such that for all n > N, x,, € U. Thus, every open neighborhood of x intersects A,
and hence x € A. Conversely, suppose € A. Since X is first-countable, there exists a countable
collection of open neighborhoods {V;,}22; of = such that every neighborhood of x contains one of
the V,,. For each n € N, since V,, is a neighborhood of x, we have that V,, N A # @. Thus, we
may pick z, e Vi NVon--- NV, NU for all n. For every open neighborhood U of z, there exists
some N € N such that Viy C U. Then for alln > N, z,, € Vy N Vi1 N---NVy CVy CU with

M > N. Therefore, x, — x. O

Problem 4 (15 pts). Let (X, F) be a compact topological space and (Y,G) be a Hausdorff
topological space. If f: X — Y is continuous, then f is a closed map; i.e., for every closed subset
F C X, the image f(F) is closed in Y.



Solution 4. Suppose f is continuous. Then for all A C X, f(A) is compact in Y since the
continuous image of a compact set is compact. Let K C X be a closed subset, then K is compact
since given any open cover of K, we may extend it to an open cover of X by adding the open set
X \ K, and since X is compact, there exists a finite subcover which also covers K. Thus, K is
compact, and f(K) is compact in Y. Suppose f(K) is not closed, then there exists some y ¢ f(K)
such that all neighborhoods of y have nonempty intersection with f(K). Since Y is Hausdorff, for
any z € Y and fixed y, there exist neighborhoods U,,, U, such that U, NU, = @. Then (Uz)zef(K)

is an open cover of f(K), and we may pick a finite subcover (Uzj);zl. However, U = (;_, Uy, is

a neighborhood of y such that U N 0?21 U., =UnN f(K) = 9, a contradiction. Therefore, f(K) is
closed in Y, and hence f is a closed map.

Problem 5 (20 pts). Let {f,} be a sequence of real-valued continuous functions defined on a
compact metric space S and assume that {f,} converges pointwise on S to a limit function f.
Prove that f,, — f uniformly on S if, and only if, the following two conditions hold:

(i) The limit function f is continuous on S.

(ii) For every € > 0, there exist m > 0 and § > 0 such that n > m and

[fe(@) = f(@)] <0 = [frqn(z) — f(2)] <e
forallz € Sand all k=1,2,....

Hint. To prove the sufficiency of (i) and (ii), show that for each xy € S there is a neighborhood
B(zg, R) and an integer k (depending on x() such that

|f(x) — f(x)] <6 if z € B(zg, R).

By compactness, a finite set of integers, say A = {kq, ..., k.}, has the property that for each z € S,
some k € A satisfies |fi(z) — f(«)| < . Uniform convergence is an easy consequence of this fact.

Solution 5. Suppose f, — f uniformly on S. Then for any £ > 0, there exists N € N such that
for all n > N and all z,y € S, [f(z) — f(y)| < §. Since f, is continuous, for each 5 and y € S,
there exists ¢ such that |f,,(z) — fn(y)| < § whenever |z —y| < §. Then, for all ¢ > 0 and x € S,
we have | £(z) — F@)] < 1F(2) — fal@)] + |fa@) — fuly)| + faly) — F@)l < 5+ 5+ 5 = for all
y € S, whenever |x — y| < 0. Therefore, f is continuous on S. Now, for any € > 0, let m = N and
let 6 = e. Then for all n > m, if |fi(x) — f(z)] <, then |frtn(z) — f(x)| < € for all z € S and
all k € N.

Conversely, suppose (i) and (ii) hold. For each 2y € S, since f and f; are continuous, for
any g > 0, there exists r, > 0 such that |f(z) — f(zo)] < % and | fr(x) — fr(zo)| < % whenever
|x — xo| < Ry,. Also, for g > 0, there exists ks, such that |fi, (zo) — f(z0)] < g. Then for 6 > 0,
(@) — F@) < (@) — filwo)| + filzo) — Flwo)l + |f(z0) — f(z)] < 2+ &+ % = & whenever
|z — 20| < Ry, (hence 2 € B(xo, Ry,)) and k > kg,. Then |J,.g B(z, R;) is an open cover of
X, and by compactness there is a finite subcover {B(z;, Ry;)}7_;. For all z € S, there exists
1 < k < n such that |fi(z) — f(z)| < . Then for all € > 0, by (ii) there exist m > 0 such that
| fntk(z) — f(x)] < e for all n > m. Therefore, f, — f uniformly on S.

Problem 6 (15 pts). The purpose of this exercise is to demonstrate a concrete relationship
between continuity and pointwise convergence, and between uniform continuity and uniform con-
vergence.

Let f : R — R be a function. For any a € R, let f, : R — R be the shifted function defined
by
fo(x) :== f(z — a).
(a) Show that f is continuous if and only if, whenever (a,)5%, is a sequence of real numbers
which converges to zero, the shifted functions f,, converge pointwise to f.



(b)

Show that f is uniformly continuous if and only if, whenever (a,)%2 is a sequence of real
numbers which converges to zero, the shifted functions f,, converge uniformly to f.

Solution 6.

(a)

Suppose f is continuous. Let (a,)22, be a sequence of real numbers which converges to zero,
so there exists N € N such that for all n > N, |a,| < §. For any ¢ > 0 and = € R, since f is
continuous at z, there exists 6 > 0 such that |f(z —a,) — f(x)| < & whenever |a,| < §. Thus,
for all n > N, |fa, (x) — f(z)| = |f(x — an) — f(z)| <e, and f,, — f pointwise. Conversely,
let (an),-—, be a sequence of real numbers converging to zero such that f,, — f pointwise.
Consider a rearrangement (a¢(n)):f:0 of the original sequence such that a;,41 < a; for all 7,
where ¢ : N — N is a bijection. We still have ag(,,) — 0, so for any ¢ > 0, there exists N € N
such that |agn)| < ¢ if and only if n > N. For any € > 0 and = € R, there exists N’ € N
such that for all n > N'| |f,, () — f(z)| < e. Let M = max(N, N’), then for all € > 0, there
exists § > 0 such that |f(z — a,) — f(z)| < € whenever n > M whenever [ag,,)| < J. Since

(a¢(n))n:0 is an arrangement and (a,),_, is arbitrary, f is continuous.

The proof follows the same logic as above. Suppose f is uniformly continuous. Let (a,)52,
be a sequence of real numbers which converges to zero, so there exists NV € N such that for
all n > N, |ay| < 0. For any € > 0, since f is uniformly continuous, there exists 6 > 0
such that |f(z — a,) — f(x)| < & whenever |a,| < ¢ for all x € R. Thus, for all n > N,
| fa, () — f(x)] = |f(x —an) — f(x)] < e for all z € R, and f,, — f uniformly. Conversely,
let (an)zozo be a sequence of real numbers converging to zero such that f, — f uniformly.
Consider a rearrangement (a¢(n))ff:0 of the original sequence such that a;y; < a; for all 4,
where ¢ : N — N is a bijection. We still have ag(,,) — 0, so for any ¢ > 0, there exists N € N
such that |age,)| < ¢ if and only if n > N. For any € > 0, there exists N’ € N such that
for all n > N’, and all z € R, we have |f,, () — f(z)| < e. Let M = max(N,N'), then
for all € > 0, there exists ¢ > 0 such that for all x € R, |f(z — an) — f(z)| < € whenever
n > M whenever |ag,)| < 0. Since (a¢(n))zo:0 is an arrangement and (a,), ., is arbitrary,
f is uniformly continuous.



You can do the following problems to practice. You don’t have to submit the following problems.

Problem 7 (Optional). Let (X, F) be a topological space and let B be a subset of X. Prove the
following set equality:

X\ B =X\ Int(B).

Solution 7. Notice that

X\B=(X\B)UJX\B)
=X\ (int BUIB)UOI(X \ B)
— (X \int B)N (X \ 8B) U OB
=X \int B.

Problem 8 (Optional). Let (X,F) be a topological space and (Y, G) be a Hausdorff topological
space. Suppose f,g: X — Y are continuous maps. Show that the set Z = {z € X|f(z) = g(2)}
is closed in X. Give a counterexample if Y is not Hausdorff. Hint: Show X \ Z is open.

Solution 8. Consider x € Z¢ = {x € X | f(x) # g(x)}. Since f(x) # g(x) and Y is Hausdorft,
there exist open neighborhoods Vi, V, C Y of f(z), g(x), respectively, such that VyNV, = @. Then
ze fHVy) Nng 1 (V,) C Z¢ is contained in an open set in X¢. Since this is true for all z € Z¢,
we have that Z¢ is open, and hence Z is closed in X.

Problem 9 (Optional). Suppose X is a topological space, and for every p € X there exists a
continuous function f : X — R such that fP"¢(0) = {p}. Show that X is Hausdorff.

Solution 9.

Problem 10 (Optional). Define two sequences {f,} and {g,} as follows:

1
fn(x):x<1+—>, reR, n=12,...
n
and .
-, if x =0 or «x is irrational,
n
gn(@) = 1 a
b+ —, if x is rational, say z = 7 b>0.
n

Let hn(x) = fn(w)gn(x)
(a) Prove that both {f,} and {g,} converge uniformly on every bounded interval.

(b) Prove that {h,,} does not converge uniformly on any bounded interval.

Solution 10.

Problem 11 (Optional). Let (X,dx) be a metric space, and for every integer n > 1, let f,, : X —
R be a real-valued function. Suppose that f,, converges pointwise to another function f: X — R
on X (in this question we give R the standard metric d(z,y) = |z — y|).

Let h: R — R be a continuous function. Show that the functions h o f, converge pointwise
to ho f on X, where ho f, : X — R is defined by h o f,(x) := h(f,(z)), and similarly for ho f.



Solution 11.

Problem 12 (Optional).

(a) Use Problem 5 in the first part to prove the following theorem of Dini:

Theorem 2 (Dini’s Theorem). If {f,} is a sequence of real-valued continuous functions
converging pointwise to a continuous limit function f on a compact set S in a metric space,

and if
fn(®) > fus1(x) for each x € S and every n=1,2,...,

then f,, — f uniformly on S.

(b) Let
1

fn(z) = ma

Prove that {f,} converges pointwise but not uniformly on (0, 1).

O<z<l, n=12,...

(¢) Use the sequence in part (b) to show that compactness of S is essential in Dini’s theorem.



