
Math 2213 Introduction to Analysis I

Homework 7 Due November 7 (Friday), 2025

物理、數學三 黃紹凱 B12202004

November 7, 2025

Exercise 1 (15 pts). Assume that (S, d) is a metric space, and let fn, f : S → R be real-valued
functions. Suppose that fn → f uniformly on S, and there exists a constant M > 0 such that

|fn(x)| ≤ M for all x ∈ S and all n.

Let g : B(0;M) → R be continuous, where

B(0;M) = {y ∈ R : |y| < M}.

Define
hn(x) = g(fn(x)), h(x) = g(f(x)), x ∈ S.

Prove that hn → h uniformly on S.

Solution 1. Since g is continuous on the closed interval B(0;M), by previous homework it is
uniformly continuous on this interval. Therefore, for the given ε > 0, there exists a δ > 0 such
that whenever |y1 − y2| < δ for any y1, y2 ∈ B(0;M), we have |g(y1) − g(y2)| < ε. Since fn ⇒ f
uniformly on S, for any δ > 0, there exists N ∈ N such that for all n ≥ N and all x ∈ S, we have
|fn(x)− f(x)| < δ. Hence, for all n ≥ N and all x ∈ S, we have

|hn(x)− h(x)| = |g(fn(x))− g(f(x))| < ε,

since |fn(x)− f(x)| < δ. Therefore, hn ⇒ h on S.

Exercise 2 (15 pts). Let fn(x) = xn. The sequence {fn} converges pointwise but not uniformly
on [0, 1]. Let g be continuous on [0, 1] with g(1) = 0. Prove that the sequence {g(x)xn} converges
uniformly on [0, 1].

Solution 2. The sequence {fn} converges to the function

f(x) =

®
0, 0 ≤ x < 1,

1, x = 1.

We claim that g(x)xn ⇒ 0, and by continuity of g at 1, for ε > 0 there exists δ > 0 such that
|g(x)− g(1)| < ε whenever |x− 1| < δ. We have

|g(x)xn − 0| = |g(x)xn| ≤ |g(x)| = |g(x)− g(1)| < ε

whenever |x − 1| ≤ δ. Next, consider the case when x ∈ [0, 1 − δ]. Since g is continuous on [0, 1],
it is bounded by M = max{g} > 0 on [0, 1]. Thus, for x ∈ [0, 1− δ], we have

|g(x)xn − 0| = |g(x)xn| ≤ M(1− δ)n.

Since 0 < 1− δ < 1, we can choose N ∈ N such that M(1− δ)N < ε. Therefore, for all n ≥ N and
all x ∈ [0, 1 − δ], we have |g(x)xn − 0| < ε. Combining both cases proves uniform convergence of
the sequence {g(x)xn}.
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Exercise 3 (15 pts). Assume that gn+1(x) ≤ gn(x) for each x in T and each n = 1, 2, . . ., and
suppose that gn → 0 uniformly on T . Prove that∑

(−1)n+1gn(x)

converges uniformly on T .

Solution 3. Since gn ⇒ 0 and gn+1(x) ≤ gn(x), for all n, we have gn(x) ≥ 0 for all x ∈ T . Fix
x ∈ T , the n-th partial sum Sn =

∑n
k=1 gk(x) satisfies the following inequalities:

S2m+1(x) ≤ S2m+3(x) ≤ S2m+2(x), S2m(x) ≤ S2m+2(x) ≤ S2m+1(x).

Hence, every later partial sum Sm≥n+1 lies in the interval [Sn+1(x), Sn(x)] or [Sn(x), Sn+1(x)].
Therefore, for all m > n, we have

|Sm(x)− Sn(x)| ≤ |Sn+1(x)− Sn(x)| = gn+1(x).

Since gn ⇒ 0 on T , for any ε > 0, there exists N ∈ N such that for all n ≥ N and all x ∈ T , we
have gn+1(x) < ε. Therefore, for all m > n ≥ N and all x ∈ T , we have |Sm(x)− Sn(x)| < ε.
Hence (Sn) is Cauchy on T , and the pointwise limit S(x) = limn→∞ Sn(x) exists for each x ∈ T .
Then

|S(x)− Sn(x)| = lim
m→∞

|Sm(x)− Sn(x)| ≤ gn+1(x) < ε, as m → ∞,

for all n ≥ N and all x ∈ T . Therefore, Sn ⇒ S on T .

Exercise 4 (15 pts). Let

fn(x) =
x

1 + nx2
, x ∈ R, n = 1, 2, . . .

Find the limit function f of the sequence {fn} and the limit function g of the sequence {f ′
n}.

(a) Prove that f ′(x) exists for every x but that f ′(0) ̸= g(0). For what values of x is f ′(x) = g(x)?

(b) In what subintervals of R does fn → f uniformly?

(c) In what subintervals of R does f ′
n → g uniformly?

Solution 4. Since fn(0) = 0 for all n, suppose x ̸= 0, so

0 ≤ |fn(x)| =
∣∣∣∣ x

1 + nx2

∣∣∣∣ ≤ ∣∣∣∣ 1

nx

∣∣∣∣ → 0 as n → ∞.

By the Squeeze Theorem, the sequence {fn} converges to f = 0. On the other hand, we have

f ′
n(x) =

1− nx2

(1 + nx2)2
.

Since f ′
n(0) = 1, suppose x ̸= 0, then

|f ′
n(x)| =

∣∣∣∣ 1− nx2

(1 + nx2)2

∣∣∣∣ ≤ ∣∣∣∣ nx2

n2x4

∣∣∣∣ = ∣∣∣∣ 1

nx2

∣∣∣∣ → 0 as n → ∞.

By the Squeeze Theorem, the sequence {f ′
n} converges to g(x) = 0 for x ̸= 0 and g(0) = 1.

(a) By the above calculation, since 1 + nx2 > 0 for all x ∈ R, f ′(x) exists for every x. However,
f ′(0) = 0 ̸= g(0) = 1. For x ̸= 0, we have f ′(x) = g(x) = 0.
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(b) We have

|fn(x)− f(x)| =
∣∣∣∣ x

1 + nx2

∣∣∣∣ ≤ sup
x∈R

∣∣∣∣ x

1 + nx2

∣∣∣∣ ≤ |x|
1 + nx2

∣∣∣∣
x=n−1/2

=
1

2
√
n
,

Given ε > 0, choose N = 1
4ε2 , then for all n > N we have 1

2
√
n
< ε. Therefore, fn ⇒ f on R.

(c) For any interval [a, b] not containing the origin, where without loss of generality we set
0 < a < b. For all ε > 0, let N = 1

εa2 , then for all n ≥ N and all x ∈ [a, b], we have

|f ′
n(x)− g(x)| =

∣∣∣∣ 1− nx2

(1 + nx2)2

∣∣∣∣ ≤ 1

nx2
≤ 1

na2
< ε.

Therefore, f ′
n ⇒ g on any interval not containing 0. Next, consider an open interval with 0

as an end point. Without loss of generality, let it be (0, b), b > 0. Since limx→0+ f ′
n(x) = 1

for all n, for every ε > 0 there exists δ > 0 such that for all x ∈ (0, δ), we have∣∣∣∣ 1− nx

(1 + nx2)2

∣∣∣∣ > 1− ε =⇒ sup
x∈(0,b)

|f ′
n(x)− g(x)| = 1

for all n. Hence, convergence is not uniform on (0, b). Therefore, f ′
n ⇒ g exactly on the

intervals I ⊆ R where infx∈I |x| > 0.

Exercise 5 (15 pts). Prove that ∑
xn(1− x)

converges pointwise but not uniformly on [0, 1], whereas∑
(−1)nxn(1− x)

converges uniformly on [0, 1]. This illustrates that uniform convergence of
∑

fn(x) along with
pointwise convergence of

∑
|fn(x)| does not necessarily imply uniform convergence of

∑
|fn(x)|.

Solution 5.

1.
∑

xn(1− x): If x = 0 or x = 1, then
∑

xn(1− x) = 0 for all n. Suppose x ∈ (0, 1), let

fn =

n∑
k=1

xk(1− x) =
x(1− x)(1− xn)

1− x
= x(1− xn) → x as n → ∞.

be the n-th partial sum. Then, for some x ∈ R and ε > 0, let Nx = log ε
log x − 1, we have

|fn(x)− x| = |xn+1| < ε, whenever n > Nx.

Since Nx is unbounded for x ∈ R, the convergence is not uniform on [0, 1].

2.
∑

(−1)nxn(1− x): If x = 0 or x = 1, then
∑

xn(1− x) = 0 for all n. Suppose x ∈ (0, 1), let

gn(x) =

n∑
k=1

(−1)kxk(1− x) = x(1− x)
1− (−x)n+1

1 + x
→ x(1− x)

1 + x
as n → ∞.

Then, for all ε > 0, let N = 1/(eε)− 2, then whenever n > N , we have∣∣∣∣gn(x)− x(1− x)

1 + x

∣∣∣∣ = ∣∣∣∣x(1− x)

1 + x
xn+1

∣∣∣∣ < (1− x)xn+1 <
1

(n+ 2)
Ä
1 + 1

n+1

än+1 < ε.

Here we used

d

dx

(
(1− x)xn+1

)
= xn (n+ 1− (n+ 2)x) = 0 =⇒ x =

n+ 1

n+ 2
.
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Exercise 6 (15 pts). Let

fn(x) =
1

n
e−n2x2

, x ∈ R, n = 1, 2, . . .

Prove that fn → 0 uniformly on R, that f ′
n → 0 pointwise on R, but that the convergence of {f ′

n}
is not uniform on any interval containing the origin.

Solution 6.

1. fn ⇒ 0 on R: For any x ∈ R and ε > 0, let N = ε−1, then for all n > N we have

|fn(x)− 0| =
∣∣∣∣ 1ne−n2x2

∣∣∣∣ ≤ 1

n
< ε.

2. f ′
n → 0 on R: For any x ∈ R, we have f ′

n(x) = −2xe−n2x2

. When x = 0, fn = 0. So consider
x ∈ R \ {0}, let Nx = 1

x

√
log(2|x|/ε) if |x| > ε

2 and Nx = 1
|x| otherwise. Then for all n > Nx

we have
|f ′

n(x)− 0| =
∣∣∣2xe−n2x2

∣∣∣ < ε.

Hence f ′
n → 0 pointwise. However, if zero is contained in the interval, limx→0 Nx = limx→0

1
x2

does not exist, so convergence is not uniform.

Exercise 7 (10 pts). Let {fn} be a sequence of real-valued continuous functions defined on [0, 1]
and assume that fn → f uniformly on [0, 1]. Prove or disprove

lim
n→∞

∫ 1−1/n

0

fn(x) dx =

∫ 1

0

f(x) dx.

Solution 7. For each n, notice that∫ 1−1/n

0

fn =

∫ 1−1/n

0

f +

∫ 1−1/n

0

(fn − f).

Hence, ∣∣∣∣∣
∫ 1−1/n

0

fn −
∫ 1

0

f

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ 1−1/n

0

(fn − f)

∣∣∣∣∣+
∣∣∣∣∣
∫ 1

1−1/n

f

∣∣∣∣∣ .
Since fn ⇒ f on [0, 1], for any ε > 0, there exists N1 ∈ N such that for all n ≥ N1 and all x ∈ [0, 1],
we have |fn(x)− f(x)| < ε/2. Therefore, for all n ≥ N1, we have∣∣∣∣∣

∫ 1−1/n

0

(fn − f)

∣∣∣∣∣ ≤
∫ 1−1/n

0

|fn − f | < ε

2
.

On the other hand, since f is continuous on [0, 1], it is integrable on [0, 1]. Thus, there exists
N2 ∈ N such that for all n ≥ N2, we have∣∣∣∣∣

∫ 1

1−1/n

f

∣∣∣∣∣ < ε

2
.

Therefore, for all n ≥ max{N1, N2}, we have∣∣∣∣∣
∫ 1−1/n

0

fn −
∫ 1

0

f

∣∣∣∣∣ < ε =⇒ lim
n→∞

∫ 1−1/n

0

fn =

∫ 1

0

f.
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You can do the following problems to practice.
You don’t have to submit the following problems.

Exercise 8 (Optional). Prove that the series

ζ(s) =

∞∑
n=1

n−s

converges uniformly on every half-infinite interval

1 + h ≤ s < +∞,

where h > 0. Show that the equation

ζ ′(s) = −
∞∑

n=1

log n

ns

is valid for each s > 1, and obtain a similar formula for the kth derivative ζ(k)(s).

Solution 8.

Exercise 9 (Optional). If r is the radius of convergence of∑
an(x− x0)

n,

where each an ̸= 0, show that

lim inf
n→∞

∣∣∣∣ an
an+1

∣∣∣∣ ≤ r ≤ lim sup
n→∞

∣∣∣∣ an
an+1

∣∣∣∣ .
Solution 9.

Exercise 10 (Optional). Prove that the series

∞∑
n=0

Å
x2n+1

2n+ 1
− xn+1

2n+ 2

ã
converges pointwise but not uniformly on [0, 1].

Solution 10.

Exercise 11 (Optional). Prove that

∞∑
n=1

an sinnx and

∞∑
n=1

an cosnx

are uniformly convergent on R if
∞∑

n=1

|an|

converges.

Solution 11.
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Exercise 12 (Optional). Let {an} be a decreasing sequence of positive terms. Prove that the
series ∑

an sinnx

converges uniformly on R if and only if nan → 0 as n → ∞.

Solution 12.
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