
Math 2213 Introduction to Analysis I

Homework 8 Due November 14 (Friday), 2025

物理、數學三 黃紹凱 B12202004

November 16, 2025

Exercise 1 (25 points). Give examples of a formal power series

∞∑
n=0

cnx
n

centered at 0 with radius of convergence 1, which

(a) diverges at both x = 1 and x = −1;

(b) diverges at x = 1 but converges at x = −1;

(c) converges at x = 1 but diverges at x = −1;

(d) converges at both x = 1 and x = −1;

(e) converges pointwise on (−1, 1), but does not converge uniformly on (−1, 1).

Solution 1.

(a) The series
∞∑

n=0

x2n = 1 + x2 + x4 + x6 + · · · = 1

1− x2

has radius of convergence 1 and diverges at both x = 1 and x = −1.

(b) The series
∞∑

n=0

xn = 1 + x+ x2 + x3 + · · · = 1

1− x

has radius of convergence 1, diverges at x = 1 but converges at x = −1.

(c) The series
∞∑

n=0

(−1)nxn = 1− x+ x2 − x3 + · · · = 1

1 + x

has radius of convergence 1, diverges at x = 1 but converges at x = −1.

(d) The series
∞∑

n=0

(−1)nx2n = 1− x2 + x4 − x6 + · · · = 1

1 + x2

has radius of convergence 1 and converges at both x = 1 and x = −1.

(e) The series
∞∑

n=0

xn = 1 + x+ x2 + x3 + · · · = 1

1− x

converges pointwise on (−1, 1) as shown above. However, since it is unbounded, it does not
converge uniformly on (−1, 1).
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Exercise 2 (Tao II Ex. 4.2.7., 25 points). Let m ≥ 0 be a positive integer, and let 0 < r be
real numbers. Prove the identity

r

r − x
=

∞∑
n=0

xnr−n

for all x ∈ (−r, r). Using Proposition 4.2.6, conclude the identity

r

(r − x)m+1
=

∞∑
n=m

n!

m!(n−m)!
xn−mr−n

for all integers m ≥ 0 and all x ∈ (−r, r). Also explain why the series on the right-hand side is
absolutely convergent.

Solution 2. First we show that the identity is true:

r

r − x
=

1

1− x
r

=

∞∑
n=0

(x
r

)n
=

∞∑
n=0

xnr−n,

for −1 < x
r < 1, which is equivalent to x ∈ (−r, r). By Proposition 4.2.6, there exists r > 0 such

that the power series on the right is m times differentiable on (−r, r). Differentiate both sides m
times, we have

dm

dxm

Å
r

r − x

ã
= m!

r

(r − x)m+1
,

dm

dxm

( ∞∑
n=0

xnr−n

)
=

∞∑
n=0

r−(n+m) (n+m)!

n!
xn =

∞∑
n=m

n!

m!(n−m)!
xn−mr−n.

Equating both sides gives the desired identity for all m ≥ 0 and x ∈ (−r, r).

Exercise 3 (25 points). Let E be a subset of R, let a be an interior point of E, and let f : E → R
be a function which is real analytic at a and has a power series expansion

f(x) =

∞∑
n=0

cn(x− a)n

at a which converges on the interval (a−r, a+r). Let (b−s, b+s) be any subinterval of (a−r, a+r)
for some s > 0.

(a) Prove that |a− b| ≤ r − s, so in particular |a− b| < r.

(b) Show that for every 0 < ε < r, there exists a C > 0 such that |cn| ≤ C(r − ε)−n for
all integers n ≥ 0. (Hint: what do we know about the radius of convergence of the series∑∞

n=0 cn(x− a)n?)

(c) Show that the numbers d0, d1, . . ., given by the formula

dm :=

∞∑
n=m

n!

m!(n−m)!
(b− a)n−mcn for all integers m ≥ 0,

are well-defined, in the sense that the above series is absolutely convergent. (Hint: use (b)
and the comparison test, Corollary 7.3.2, followed by Exercise 4.2.7.)

(d) Show that for every 0 < ε < s there exists a C > 0 such that

|dm| ≤ C(s− ε)−m

for all integers m ≥ 0. (Hint: use the comparison test, and Exercise 4.2.7.)
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(e) Show that the power series
∑∞

m=0 dm(x− b)m is absolutely convergent for x ∈ (b− s, b+ s)
and converges to f(x). (You may need Fubini’s theorem for infinite series, Theorem 8.2.2 of
Analysis I, as well as Exercise 4.2.5. One may also need to use a variant of the dm in which
the cn are replaced by |cn|.) Note. You can use Exercise 4.2.5. Let a, b be real numbers, and
let n ≥ 0 be an integer. Prove the identity

(x− a)n =

n∑
m=0

n!

m!(n−m)!
(b− a)n−m(x− b)m

for any real number x.

(f) Conclude that f is real analytic at b, and thus analytic at every point in (a− r, a+ r).

Solution 3.

Exercise 4 (25 points).

(a) If each an ≥ 0 and if
∑

an diverges, show that
∑

anx
n → +∞ as x → 1−. (Assume

∑
anx

n

converges for |x| < 1.)

(b) If each an ≥ 0 and if limx→1−
∑

anx
n exists and equals A, prove that

∑
an converges and

has sum A.

Solution 4.
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You can do the following problems to practice.
You don’t have to submit the following problems.

Exercise 5 (Optional). Let the power series

f(x) =

∞∑
n=0

anx
n

converge for −1 < x < 1. For each n, define the partial sum

sn =

n∑
k=0

ak, σn =

n∑
k=0

k|ak|.

Suppose that lim
x→1−

f(x) = S and lim
n→∞

nan = 0. In this problem, you will show that the series∑∞
n=0 an converges and that its sum is S.

(a) Preliminary Identity. Show that for any x ∈ (0, 1),

sn − f(x) =

n∑
k=0

ak(1− xk)−
∞∑

k=n+1

akx
k.

(b) Bounding the First Sum. Show that for all m ≥ 1 and x ∈ (0, 1),

1 + x+ · · ·+ xm−1 ≤ 1

1− x
,

and deduce that
|1− xk| = (1− x)(1 + x+ · · ·+ xk−1) ≤ k(1− x).

(c) Application of the Bound. Use part (b) to prove that for x ∈ (0, 1),∣∣∣∣∣
n∑

k=0

ak(1− xk)

∣∣∣∣∣ ≤ (1− x)σn.

(d) Estimate of the Tail. Use the assumption that limn→∞ n|an| = 0 to show that for any
ε > 0, there exists N such that for all n ≥ N ,

n|an| <
ε

3
.

Then prove that for such n and all x ∈ (0, 1),∣∣∣∣∣∣
∞∑

k=n+1

akx
k

∣∣∣∣∣∣ ≤ ε

3(1− x)
.

(e) Putting the Estimates Together. Combine parts (a)–(d) to show that for all n ≥ N and
x ∈ (0, 1),

|sn − S| ≤ |f(x)− S|+ (1− x)σn +
ε

3(1− x)
.

(f) Strategic Choice of x. Let x = xn = 1− 1
n . Use part (e) to show that when n is sufficiently

large,
|sn − S| < ε.

Conclude that sn → S, and therefore

∞∑
n=0

an = S.
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Solution 5.

Exercise 6 (Optional).

(1) Let
∑∞

n=0 anx
n be a power series with radius of convergence R > 0. Show that the radius of

convergence of
∑∞

n=0
an

n! x
n is +∞.

(2) Suppose that the power series
∑∞

n=0
an

n! x
n has radius of convergence R < +∞. What can we

say about the radius of convergence of
∑∞

n=0 anx
n?

Solution 6.

Exercise 7 (Optional). Let (an)n≥1 be a sequence of nonzero real numbers such that

|an+2|
|an|

−−−−→
n→∞

2.

Show that the radius of convergence of the power series
∑∞

n=0 anx
n is 1√

2
.

Solution 7.
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