
Math 2213 Introduction to Analysis I

Homework 9 Due November 21 (Friday), 2025

物理三 黃紹凱 B12202004

November 22, 2025

Exercise 1 (15 points). Let
∑∞

n=0 anx
n be a power series with radius of convergence R. Let

Sn =
∑n

k=0 ak be the partial sums of
∑

an. Denote the radius of convergence of
∑∞

n=0 Snx
n by r.

(a) Show that r ≤ R.

(b) Show that min{1, R} ≤ r. Hint: The power series
∑∞

n=0 Snx
n can be seen as the Cauchy

product between
∑∞

n=0 anx
n and a specific power series that you need to choose.

Solution 1.

(a)

(b) Let (bn) = (1, 1, . . . ) be a sequence of all ones. Then

∞∑
n=0

Snx
n =

∞∑
n=0

(
n∑

k=0

ak

)
xn =

( ∞∑
n=0

anx
n

)
∗

( ∞∑
n=0

bnx
n

)
,

where ∗ denotes the Cauchy product. Since the radius of convergence of
∑∞

n=0 bnx
n is 1, we

have r ≥ min{1, R}.

Exercise 2 (30 points). For each real t, define

ft(x) =


xext

ex − 1
, x ∈ R, x ̸= 0,

1, x = 0.

(a) Show that there exists δ > 0 such that ft admits a power series expansion in x for all |x| < δ.

Hint. Write
ft(x) = extg(x),

where

g(x) =


x

ex − 1
, x ̸= 0,

1, x = 0.

Both ext and g(x) are analytic near 0. Also g(x) = 1
h(x) where h(x) =

ex − 1

x
for x ̸= 0 and

we can express it as an power series in x. Then may use the fact that if h is analytic on R
and h(0) ̸= 0, then 1/h is analytic on a smaller interval (−δ, δ).

(b) Define P0(t), P1(t), P2(t), . . . by the equation

ft(x) =

∞∑
n=0

Pn(t)
xn

n!
, x ∈ (−δ, δ),

and use the identity
∞∑

n=0

Pn(t)
xn

n!
= etx

∞∑
n=0

Pn(0)
xn

n!
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to prove that

Pn(t) =

n∑
k=0

Ç
n

k

å
Pk(0) t

n−k.

(Hint: ft(x) = etxf0(x) and f0(x) = g(x).) This shows that each function Pn is a polynomial.
These are the Bernoulli polynomials. The numbers Bn := Pn(0) (n = 0, 1, 2, . . .) are called
the Bernoulli numbers. Derive the following further properties:

(c) B0 = 1, B1 = − 1
2 ,

∑n−1
k=0

(
n
k

)
Bk = 0, if n = 2, 3, . . .

(d) P ′
n(t) = nPn−1(t), if n = 1, 2, . . .

(e) Pn(t+ 1)− Pn(t) = n tn−1, if n = 1, 2, . . .

(f) Pn(1− t) = (−1)nPn(t)

(g) B2n+1 = 0, if n = 1, 2, . . .

(h)

1n + 2n + · · ·+ (k − 1)n =
Pn+1(k)− Pn+1(0)

n+ 1
, (n = 2, 3, . . .).

Solution 2.

(a) Since both ext and g(t) are analytic near 0, we have h(x) = ex−1
x =

∑∞
n=0

xn

(n+1)! , which is

convergent for all x ∈ R. Note that h(0) = 1 ̸= 0, thus there exists some δ > 0 such that
g(x) = 1

h(x) is analytic on (−δ, δ). Therefore, ft(x) = extg(x) is analytic on (−δ, δ).

(b) Using ft(x) = etxf0(x), by the Cauchy product formula, we have

ft(x) =

∞∑
n=0

Pn(t)
xn

n!
= etx

∞∑
n=0

Pn(0)
xn

n!

=

( ∞∑
m=0

(tx)m

m!

)( ∞∑
n=0

Pn(0)
xn

n!

)

=

∞∑
n=0

(
n∑

k=0

Pk(0)
xk

k!

(tx)n−k

(n− k)!

)

=

∞∑
n=0

(
n∑

k=0

Ç
n

k

å
xn

n!

)
Pk(0)t

n−k.

Comparing the coefficients of xn in the sense of a formal power series, we have

Pn(t) =

n∑
k=0

Ç
n

k

å
Pk(0)t

n−k.

(c) The Bernoulli numbers are given by

g(x) =
x

ex − 1
=

∞∑
n=0

Bn
xn

n!
.

Compare this with the Taylow expansion, we have limx→0 g
(n)(x) = Bn. The first few

derivatives and their limits are

g(x) =
x

ex − 1
, lim

x→0
g(x) = 1,

g′(x) =
ex(x− 1) + 1

(ex − 1)2
, lim

x→0
g′(x) = −1

2
,
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and so on. Hence, B0 = 1 and B1 = − 1
2 . Next, we will work in the ring of formal power

series R[[x]]. We have

ex − 1 =

∞∑
m=0

xm+1

(m+ 1)!
,

thus, by the Cauchy product of power series,

x =

( ∞∑
n=0

Bn
xn

n!

)( ∞∑
m=0

xm+1

(m+ 1)!

)
=

∞∑
k=0

Ñ
k∑

j=0

Bj
xj

j!

xk−j+1

(k − j + 1)!

é
=

∞∑
k=0

k∑
j=0

Bj
(k + 1)!

j!(k − j + 1)!

xk+1

(k + 1)!
=

∞∑
k=0

Ñ
k∑

j=0

Ç
k + 1

j

å
Bj

é
xk+1

(k + 1)!

Reindex k = n− 1 and j = k, then

x =

∞∑
n=1

(
n−1∑
k=0

Ç
n

k

å
Bk

)
xn

n!
=⇒

n−1∑
k=0

Ç
n

k

å
Bk = 0, n = 2, 3, . . . .

(d) Differentiating both sides of (b) in R[[t]], we have

P ′
n(t) =

n∑
k=0

Ç
n

k

å
Pk(0)(n− k)tn−k−1 =

n∑
k=0

n!

k!(n− k − 1)!
tn−k−1

= n

n−1∑
k=0

Ç
n− 1

k

å
Pk(0)t

n−1−k = nPn−1(t).

(e) By the formula in (b), we have

Pn(t+ 1)− Pn(t) =

n∑
k=0

Ç
n

k

å
Pk(0)(t+ 1)n−k −

n∑
k=0

Ç
n

k

å
Pk(0)t

n−k

=

n∑
k=0

Ç
n

k

å
Pk(0)

(
(t+ 1)n−k − tn−k

)
(f) Substitute 1− t into the generating function of Bernoulli polynomials, we have

∞∑
n=0

Pn(1− t)
xn

n!
=

xe(1−t)x

ex − 1
=

xe−tx

e−x − 1
=

(−x)et(−x)

1− e−x
=

∞∑
n=0

(−1)nPn(t)
xn

n!
.

(g) Consider the function g̃(x) = g(x)− P1(0)x = g(x)−B1x. We have

g̃(x) =
x

ex − 1
+

x

2
=

x(ex/2 + e−x/2)

2(ex/2 − e−x/2)
=

x

2
coth

(x
2

)
is even, thus all odd derivatives of g̃ at 0 are zero. Therefore, for n ≥ 1, we have

B2n+1 = g(2n+1)(0) = g̃(2n+1)(0) = 0.

(h) The first and third equalities follow from (e), and the second is due to the telescoping sum:

k−1∑
j=1

jn =

k−1∑
j=1

Pn(j + 1)− Pn(j)

n
=

Pn(k)− Pn(1)

n
=

Pn(k)− Pn(0)

n
,
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Exercise 3 (Tao II Exercise 4.2.7., 15 points). Show that for every integer n ≥ 3, we have

0 <
1

(n+ 1)!
+

1

(n+ 2)!
+ · · · < 1

n!
.

(Hint: first show that (n+ k)! > 2kn! for all k = 1, 2, 3, . . ..)

Conclude that n!e is not an integer for every n ≥ 3. Deduce from this that e is irrational.
(Hint: prove by contradiction.)

Solution 3. First, we show that (n + k)! > 2kn! for all k ∈ N and n ≥ 3 by induction. For
k = 1, we have (n + 1)! = (n + 1)n! > 2n!. Assume it holds for k, then for k + 1, we have
(n+ k + 1)! = (n+ k + 1) · · · (n+ 1)n! > 2k+1n!. Thus, the inequality holds for all k ∈ N. Then,

0 <

∞∑
k=1

1

(n+ k)!
<

∞∑
k=1

1

2kn!
=

1

n!

∞∑
k=0

1

2k
=

1

n!
.

Suppose there exists some n ≥ 3 such that n!e is an integer. Then,

n!e = n!

∞∑
k=0

1

k!
=

n∑
k=0

(n− k)! + n!

∞∑
k=n+1

1

k!

is an integer, and hence

0 < n!

∞∑
k=n+1

1

k!
<

n!

n!
= 1

is an integer, a contradiction. Therefore, n!e is not an integer for any n ≥ 3. If e were rational,
then q!e is an integer, where q ∈ N is the denominator of e, contradicting the previous result. Thus,
e is irrational.

Exercise 4 (Tao II Exercise 4.5.6, 10 points). Prove that the natural logarithm function lnx is
real analytic on (0,+∞). Hint: For any a > 0, consider the change of variable y = x− a.

Solution 4. To show ln is real analytic on (0,∞), it suffices to show that for every a > 0, there
is a power series centered at a that equals lnx on some interval around a. From Tao II Theorem
4.5.6 (e), we have ln(1 + x) is real analytic at x = 0, such that

ln(1 + x) =

∞∑
n=1

(−1)n+1

n
xn, x ∈ (−1, 1),

with radius of convergence 1. For any a > 0, let y = x− a, then

lnx = ln(a+ y) = ln a+ ln
(
1 +

y

a

)
= ln a+

∞∑
n=1

(−1)n+1

n

(y
a

)n
, y ∈ (−a, a),

with radius of convergence a. Switch back to x = a+ y, we have

lnx = ln a+

∞∑
n=0

(−1)n+1

n

(x− a

a

)n
, |x− a| < a.

Since a is arbitrary, for each a ∈ (0,∞), there is a neighborhood of x such that lnx is represented
by a convergent power series. Hence, lnx is real analytic on (0,∞).
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Exercise 5 (Tao II Exercise 4.5.7, 10 points). Let f : (0,∞) → R be a positive, real analytic
function such that f ′(x) = f(x) for all x ∈ R. Show that f(x) = Cex for some positive constant
C; justify your reasoning. (Hint: there are basically three different proofs available. One proof uses
the logarithm function, another proof uses the function e−x, and a third proof uses power series.
Of course, you only need to supply one proof.)

Solution 5. Since f(x) is analytic, it is infinitely differentiable and given exactly by its Taylor
series at any x ∈ R. Since f ′(x) = f(x), by induction f (n)(x) = f(x) for any n ≥ 1. Fix some
a > 0, then

f(x) =

∞∑
n=0

f (n)(a)

n!
xn =

∞∑
n=0

f(a)

n!
xn = f(a)ex, f(a) ∈ R>0 is a constant.

Exercise 6 (Tao II Exercise 4.5.8, 10 points). Let m > 0 be an integer. Prove

lim
x→+∞

ex

xm
= +∞.

without using the L’Hopital’s rule. Hint: ex ≥
∑m+1

k=0
xk

k! for x > 0.

Solution 6. Since ex =
∑∞

n=0
xn

n! and each term in the series is nonnegative when x > 0, we

have ex ≥
∑m+1

n=0
xn

n! for x > 0. Then, for any N > 0

ex

xm
=

∞∑
n=0

xn−m

n!
≥

m+1∑
n=0

xn−m

n!
>

x

(m+ 1)!
>

N

(m+ 1)!

whenever x > N . Therefore, limx→+∞
ex

xm = +∞.

Exercise 7 (Tao II Exercise 4.5.9, 10 points). Let P (x) be a polynomial, and let c > 0. Show that
there exists a real numberN > 0 such that ex > |P (x)| for all x > N ; thus an exponentially growing
function, no matter how small the growth rate c, will eventually overtake any given polynomial
P (x), no matter how large. Hint: use Exercise 4.5.8.

Solution 7. Let P (x) =
∑n

k=0 akx
k ∈ R[x] be a polynomial of degree n. Then, for any x > 0,

we have

|P (x)| ≤
n∑

k=0

|ak|xk ≤ Mxn,

where M = |an| + |an−1| + · · · + |a0|. From Exercise 4.5.8, we know that limx→+∞
ecx

xn = +∞.
Therefore, there exists some N > 0 such that for all x > N , we have

ecx

xn
> M =⇒ ecx > Mxn ≥ |P (x)|.

Thus, we conclude that there exists some real number N > 0 such that ecx > |P (x)| for all x > N .
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物理三 黃紹凱 B12202004
November 21, 2025

You can do the following problems to practice.
You don’t have to submit the following problems.

Exercise 8 (Tao II Exercise 4.5.4, Optional). Let f : R → R be the function defined by setting
f(x) := exp(−1/x) when x > 0, and f(x) := 0 when x ≤ 0. Prove that f is infinitely differentiable,
and f (k)(0) = 0 for every integer k ≥ 0, but that f is not real analytic at 0.

Solution 8. Since both 0 and e−1/x are compositions of elementary functions, they are infinitely
differentiable on their respective domains. We only need to show that f is infinitely differentiable
at x = 0 and f (k)(0) = 0 for all k ≥ 0.

Claim. For x > 0, the n-th derivative of e−1/x is

f (n)(x) = e−1/x(−1)n
n∑

k=1

Ç
n+ k

n− k

åÇ
n+ k − 1

n− k

å
(n− k)! (−1)kx−(n+k).

Proof. For n = 1, f ′(x) = 1
x2 e

−1/x, so the base case is satisfied. Suppose the formula holds for n,
then for n+ 1, we have

f (n+1)(x) =
d

dx
f (n)(x)

=
d

dx

(
e−1/x(−1)n

n∑
k=1

Ç
n+ k

n− k

åÇ
n+ k − 1

n− k

å
(n− k)! (−1)kx−(n+k)

)

= e−1/x(−1)n+1
n∑

k=1

(n+ k)!

(n− k)!(2k)!

(n+ k − 1)!

(n− k)!(2k − 1)!
(n− k)!(n+ k) (−1)kx−(n+1+k)

= e−1/x(−1)n+1
n+1∑
k=1

Ç
n+ 1 + k

n+ 1− k

åÇ
n+ k

n+ 1− k

å
(n+ 1− k)! (−1)kx−(n+1+k).

Thus, the formula holds for all n ≥ 1 by induction.

By our claim, for any n ≥ 1, we have

lim
x→0+

f (n)(x) = lim
x→0+

e−1/x(−1)n
n∑

k=1

Ç
n+ k

n− k

åÇ
n+ k − 1

n− k

å
(n− k)! (−1)kx−(n+k)

= lim
u→+∞

e−u(−1)n
n∑

k=1

Ç
n+ k

n− k

åÇ
n+ k − 1

n− k

å
(n− k)! (−1)kun+k

= 0,

by Exercise 4.5.8, while limx→0− f (n) = 0. Therefore, f (n)(0) = 0 for all n ≥ 0 and f is differen-
tiable. Since the Taylor series of f at 0 is identically zero, but f(x) > 0 for all x > 0, f is not real
analytic at 0.

Exercise 9 (Optional). In class, we proved that the function f(x) = ax is continuous on Q for
a > 1. Let n ∈ N. Prove that f is uniformly continuous on the rational interval

[−n, n] ∩Q.

Remark. If this is true, then f(x) = ax admits a unique continuous extension to all real numbers
x ∈ [−n, n].
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Solution 9. Since f is continuous on Q, for any ϵ > 0 and x ∈ [−n, n] ∩ Q, there exists some
δx > 0 such that for any y ∈ Q with |x − y| < δx, we have |f(x) − f(y)| < ϵ. The collection
of open intervals {(x − δx/2, x + δx/2) : x ∈ [−n, n] ∩ Q} forms an open cover of the compact
set [−n, n]. Thus, there exists a finite subcover {(xi − δxi/2, xi + δxi/2) : i = 1, 2, . . . ,m}. Let
δ = min1≤i≤m δxi/2 > 0. Then, for any x, y ∈ [−n, n] ∩ Q with |x − y| < δ, there exists some i
such that x ∈ (xi − δxi

/2, xi + δxi
/2). Therefore,

|y − xi| ≤ |y − x|+ |x− xi| < δ +
δxi

2
≤ δxi .

Hence, by the triangle inequality, we have

|f(x)− f(y)| ≤ |f(x)− f(xi)|+ |f(xi)− f(y)| < ϵ+ ϵ = 2ϵ,

and f is uniformly continuous on [−n, n] ∩Q.

Exercise 10 (Optional). Define the sequence

∀n ≥ 1, Sn =

n∑
k=1

ln k.

(a) Show that for every k ≥ 2, we have∫ k

k−1

ln t dt ≤ ln k ≤
∫ k+1

k

ln t dt.

Deduce that
Sn = n lnn− n+ o(n).

(b) By considering the sequence (An)n≥1, defined by

∀n ≥ 1, An = Sn − n lnn+ n,

show that An −An−1 ∼ 1

2n
and deduce that

An ∼ 1

2
lnn.

(c) Let

Dn := Sn − n lnn+ n− 1

2
lnn for n ≥ 1.

Show that

Dn −Dn−1 ∼ − 1

12n2
.

(d) Show that Dn converges to some D∞ when n → ∞. Deduce that there exists some constant
C > 0 such that

n! ∼ C
(n
e

)n √
n.

(e) Using the expression of I2n =
∫ π/2

0
sin2n x dx = π

2 · (2n)!
22n(n!)2 =

√
π
4n (1 + o(1)) (proved in the

following), show that

C =
√
2π.

(f) Show that

n! ∼
√
2πn

(n
e

)n Å
1 +

1

12n
+ o

Å
1

n

ãã
.
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Solution 10.

(a) For k ≥ 2, since ln t is increasing on (0,∞), we have∫ k

k−1

dt ln t ≤
∫ k

k−1

dt ln k = ln k ≤
∫ k+1

k

dt ln t.

Summing over k = 2, 3, . . . , n, we have∫ n

1

dt ln t ≤ Sn ≤
∫ n+1

2

dt ln t

and hence

n lnn− n+ 1 ≤ Sn ≤ (n+ 1) ln(n+ 1)− (n+ 1) + 1 =⇒ Sn = n lnn− n+ o(n).

(b) We have

An −An−1 = Sn − Sn−1 − n lnn+ n+ (n− 1) ln(n− 1)− (n− 1)

= lnn− n lnn+ (n− 1) ln(n− 1) + 1

= 1 + (n− 1) ln

Å
1− 1

n

ã
= 1 + (n− 1)

Å
− 1

n
− 1

2n2
+ o

Å
1

n2

ãã
=

1

2n
+R(n),

where limn→∞
R(n)
n−3 = 0. Then we have

lim
n→∞

An −An−1
1
2n

= 1 + 2nR(n) = 1 =⇒ An −An−1 ∼ 1

2n
.

(c) We have

Dn −Dn−1 =

Å
Sn − n lnn+ n− 1

2
lnn

ã
−
Å
Sn−1 − (n− 1) ln(n− 1) + (n− 1)− 1

2
ln(n− 1)

ã
= lnn− ln(n− 1) + n ln

Å
1− 1

n

ã
+ 1 +

1

2
ln

Å
1− 1

n

ã
= 1 + (n− 1

2
) ln

Å
1− 1

n

ã
= 1 +

Å
n− 1

2

ãï
− 1

n
− 1

2n2
− 1

3n3
+ o

Å
1

n3

ãò
= − 1

12n2
+R(n),

where limn→∞
R(n)
n−4 = 0. Then we have

lim
n→∞

Dn −Dn−1
1

12n2

= 1− 12n2R(n) = 1 =⇒ Dn −Dn−1 ∼ − 1

12n2

(d) Let Gn = Dn −Dn−1. Since Dn −Dn−1 ∼ − 1
12n2 , for any ε > 0, there exists N ∈ N such

that
∣∣12n2Gn + 1

∣∣ < ε whenever n > N . Then,

|Gn| <
∣∣∣∣Gn +

1

12n2

∣∣∣∣ < ε

12n2
< ε, whenever n > N.

Hence, {Dn}∞n=1 is a Cauchy sequence, and by completeness of the reals there is a unique
limit D∞ in R.By definition of Dn, we have

Sn = lnn! = n lnn− n+
1

2
lnn+Dn.

Exponentiating both sides gives n! = eDn
√
n
(
n
e

)n
, and

lim
n→∞

n!
√
n
(
n
e

)n = lim
n→∞

eDn = eD∞ ≡ C > 0 =⇒ n! ∼ C
(n
e

)n √
n.
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(e) From the expression of I2n, we have

I2n =
π

2
· (2n)!

22n(n!)2
=

…
π

4n
(1 + o(1)).

Using the identity from part (d), we have

I2n =
π

2
· (2n)!

22n(n!)2
∼ π

2
·
C
(
2n
e

)2n √
2n

22nC2
(
n
e

)2n
n
=

π

2C

…
2

n
.

Therefore, we have π
2C

»
2
n =

√
π
4n , and hence C =

√
2π.

(f) From part (e), we have D∞ = logC = 1
2 log(2π). Then,

Dn −D∞ = Sn − n lnn+ n− 1

2
lnn−D∞

= lnn!− n lnn+ n− 1

2
lnn− 1

2
ln(2π)

= ln

Ç
n!√

2πn
(
n
e

)nå .

From part (c), we have

Dn −D∞ ∼ − 1

12n2
=⇒ lim

n→∞

Dn −D∞

− 1
12n2

= 1.

Therefore, for any ε > 0, there exists some N ∈ N such that∣∣∣∣∣Dn −D∞

− 1
12n2

− 1

∣∣∣∣∣ < ε =⇒
∣∣∣∣Dn −D∞ +

1

12n2

∣∣∣∣ < ε

12n2

whenever n > N . Hence, we have∣∣∣∣∣ln
Ç

n!√
2πn

(
n
e

)nå+
1

12n2

∣∣∣∣∣ < ε

12n2
=⇒

∣∣∣∣∣ n!√
2πn

(
n
e

)n − e−
1

12n2

∣∣∣∣∣ < e−
1

12n2

Ä
e

ε
12n2 − 1

ä
whenever n > N . Since ex = 1 + x+ o(x) as x → 0, we have

n!√
2πn

(
n
e

)n = e−
1

12n2 + o

Å
1

n2

ã
= 1− 1

12n2
+ o

Å
1

n2

ã
.

Exponentiating both sides gives

n! =
√
2πn

(n
e

)n Å
1 +

1

12n
+ o

Å
1

n

ãã
.

Exercise 11 (Optional). Let P be the set of all the primes. In this exercise, we will prove that∑
p∈P

1

p
is divergent.

(a) Show that for s > 1, we have

−
∑
p∈P

log

Å
1− 1

p s

ã
= log ζ(s).

(b) Deduce that there exists M > 0 such that for any s > 1, we have∣∣∣∣∣∣∑p∈P

1

p s
− log ζ(s)

∣∣∣∣∣∣ < M.
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(c) Show that as s → 1+, we have ζ(s) → +∞.

(d) Conclude that ∑
p∈P

1

p

is divergent.

Solution 11.

(a) The Riemann zeta function is defined as

ζ(s) =

∞∑
n=1

1

ns
.

Fix s > 1 and N ∈ N. Consider the finite product

PN ≡
∏

p∈P,p≤N

1

1− p−s
=

∏
p∈P,p≤N

Å
1 +

1

ps
+

1

p2s
+ · · ·

ã
=
∑
n∈A

1

ns
,

where A is the set of numbers all of whose prime factors are less than N . Let SN be the
N -th partial sum of ζ(s), then since PN contains all terms of the form 1

ns for n ≤ N by
the Fundamental Theorem of Arithmetic, SN ≤ PN . On the other hand, PN ≤ ζ(s) since
it is a sum of a subsequence of terms in ζ(s), which are all positive. Therefore, we have
SN ≤ PN ≤ ζ(s) for all N ∈ N. SN → ζ(s) as N → ∞ by definition, and PN is an increasing
sequence in N , so by the Squeeze Theorem PN → ζ(s) as N → ∞. Hence, we have

ζ(s) = lim
N→∞

PN =
∏
p∈P

1

1− p−s
=⇒ −

∑
p∈P

log

Å
1− 1

ps

ã
= log ζ(s).

(b) Using the Taylor expansion of log(1− x), we have

− log

Å
1− 1

ps

ã
=

1

ps
+

1

2p2s
+

1

3p3s
+ · · · .

Since p > 1, p−ms < 1 for all m > 0, so the Taylor series always converges. Therefore,

log ζ(s) = −
∑
p∈P

log

Å
1− 1

ps

ã
=
∑
p∈P

1

ps
+
∑
p∈P

∞∑
k=2

1

kpks
,

and hence ∣∣∣∣∣∣∑p∈P

1

ps
− log ζ(s)

∣∣∣∣∣∣ =
∣∣∣∣∣∣∑p∈P

∞∑
k=2

1

kpks

∣∣∣∣∣∣ ≤ ∑
p∈P

∞∑
k=2

1

pks
=
∑
p∈P

1

p2s(1− p−s)
.

Since s > 1, 1− p−s ≤ 1− 2−s < 1
2 , so∣∣∣∣∣∣∑p∈P

1

ps
− log ζ(s)

∣∣∣∣∣∣ ≤ 2
∑
p∈P

1

p2s
< 2

∞∑
n=1

1

n2
≡ M < ∞.

The series converges by comparison test with the convergent p-series
∑∞

n=1
1
n2 .

(c) Near s = 1, uniform convergence fails so we cannot switch the order of limit and summation.
For s > 1, consider f(x) = x−s, which is positive decreasing on [1,∞]. Then, by the integral
test, we have

ζ(s) =

∞∑
n=1

1

ns
≥
∫ ∞

1

dxx−s =
1

s− 1
.

Therefore, as s → 1+, ζ(s) → +∞.
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(d) Suppose
∑

p∈P
1
p converges, then lims→1+

∑
p∈P

1
ps is bounded. Then, by (b),

lim
s→1+

log ζ(s) is bounded =⇒ lim
s→1+

ζ(s) is bounded,

a contradiction to (c). Therefore,
∑

p∈P
1
p diverges.

Exercise 12 (Optional).

Theorem 1 (Wallis Integrals — Factorial Version). For each integer n ≥ 0, define

In :=

∫ π/2

0

sinn x dx.

Then:

(a)

I0 =
π

2
, I1 = 1.

(b) For all n ≥ 2,
nIn = (n− 1)In−2.

(c) For each m ∈ N,

I2m−1 =
2 2m−1(m− 1)!m!

(2m)!
, I2m =

π

2
· (2m)!

2 2m(m!)2
.

(d) For all n ≥ 1,

InIn−1 =
π

2n
.

(e) As n → ∞,

In =

…
π

2n
(1 + o(1)).

(f) In particular,

I2n =
π

2
· (2n)!

2 2n(n!)2
.

Solution 12. Here we provide a proof for Theorem 1.

(a) By directly computing the integrals, we have

I0 =

∫ π/2

0

1 dx =
π

2
, I1 =

∫ π/2

0

sinx dx = [− cosx]
π/2
0 = 1.

(b) For n ≥ 2, we have

In =

∫ π/2

0

dx sinn x =

∫ π/2

0

dx sinn−1 x sinx.

Do integration by parts with u = sinn−1 x and dv = sinxdx, we have v = − cosx, du =
(n− 1) sinn−2 x cosxdx. Then,

In =
[
− sinn−1 x cosx

]π/2
0

+ (n− 1)

∫ π/2

0

dx sinn−2 x cos2 x

= (n− 1)

∫ π/2

0

dx sinn−2 x(1− sin2 x) = (n− 1)In−2.

11



(c) We should discuss the two cases where n is an odd or even integer, with I0 and I1 from part
(a) as the base cases. For n = 2m− 1, where m ∈ N, we have

I2m−1 =
2m− 2

2m− 1
· 2m− 4

2m− 3
· · · 2

3
· I1 =

2 2m−1(m− 1)!m!

(2m)!
.

On the other hand, for n = 2m, we have

I2m ==
2m− 1

2m
· 2m− 3

2m− 2
· · · 1

2
· I0 =

π

2
· (2m)!

2 2m(m!)2
.

(d) Again, we discuss the cases when n is an even or an odd number. For n = 2m+ 1,

I2m+1I2m =
π

2(2m+ 1)
=

π

2n
.

Thus,

InIn−1 =
π

2n
.

For n = 2m, a similar calculation gives

I2mI2m−1 =

Å
π

2
· (2m)!

22m(m!)2

ãÅ
22m−1(m− 1)!m!

(2m)!

ã
=

π

2(2m)
=

π

2n
.

Hence, InIn−1 = π
2n , for all n ≥ 1.

(e) Notice that since sinx ∈ [0, 1] for all x ∈ [0, π/2],

In =

∫ π/2

0

sinn x dx ≤
∫ π/2

0

sinn−1 x dx = In−1,

and hence {In}∞n=0 is a positive, decreasing sequence. From the product identity in part (d)
and In−1 ≤ In ≤ In+1, we have

π

2(n+ 1)
= In+1In ≤ I2n ≤ InIn−1 =

π

2n
.

Everything is positive, so, multiplying by 2n
π and taking square roots, we get…

n

n+ 1
≤
…

2n

π
In ≤ 1 =⇒ In ∼

…
π

2n
,

or, equivalently, using the little-o notation gives

In =

…
π

2n
(1 + o(1))

(f) Directly from part (c), we have

I2n =
π

2
· (2n)!

2 2n(n!)2
.
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