Math 2213 Introduction to Analysis I

Homework 9 Due November 21 (Friday), 2025
P = & &I B12202004
November 22, 2025

Exercise 1 (15 points). Let > ° ja,z™ be a power series with radius of convergence R. Let
S, = ZZ:O ar, be the partial sums of  a,. Denote the radius of convergence of EZOZO Snz™ by r.

(a) Show that r < R.

(b) Show that min{1, R} < r. Hint: The power series Y - S,2™ can be seen as the Cauchy
product between ZZOZO anx™ and a specific power series that you need to choose.

Solution 1.

(a)

(b) Let (b,) = (1,1,...) be a sequence of all ones. Then

i Spx™ = i (i ak> " = (i anx"> * <i bn:c"> ,
n=0 n=0 \k=0 n=0 n=0

where * denotes the Cauchy product. Since the radius of convergence of fozo bpx™ is 1, we
have r > min{1, R}.

Exercise 2 (30 points). For each real ¢, define

xewt

ft(x): ea:_lv
1, z=0.

xeR, x#0,

(a) Show that there exists 6 > 0 such that f; admits a power series expansion in z for all |z| < 4.

Hint. Write
fi(z) = e"g(x),
where .
T b x # 07
glz)=q e —1
1, z = 0.

et —1

Both e™ and g(z) are analytic near 0. Also g(x) = ﬁ where h(z) = for z # 0 and

we can express it as an power series in . Then may use the fact that if A is analytic on R
and h(0) # 0, then 1/h is analytic on a smaller interval (—d,0).

(b) Define Py(t), Pi(t), P2(t),... by the equation

frlw) =" Pa(t) %T z € (—4,6),
n=0 '

and use the identity

oo " o0 "
P,(t) = =€y P,(0) —
7;) (>n' € HZ:O (>n'



to prove that
. B
Put)y=>" <k>Pk(O)t" k
k=0

(Hint: fi(x) = e fo(x) and fo(z) = g(x).) This shows that each function P, is a polynomial.
These are the Bernoulli polynomials. The numbers B,, :== P,(0) (n = 0,1,2,...) are called
the Bernoulli numbers. Derive the following further properties:

By=1, By=-1, ro (NBL=0, ifn=2,3,...
P/(t)=nP,_1(t), ifn=12,...

P,(t+1) = P,(t)=nt"t, ifn=12...

P,(1—1t) = (—=1)"Py,(t)

Bgn+1:0, lfﬂ:1,2,

n _ Pn-i-l(k) - Pn-‘rl (0)

1% L 9™ 4 ... E—1 =2.3,...).
+2" 4+ ( ) il ) (n=2,3,...)
Solution 2.
(a) Since both e and g(t) are analytic near 0, we have h(z) = ez;1 =3, (TLITRI)!’ which is

convergent for all © € R. Note that h(0) = 1 # 0, thus there exists some ¢ > 0 such that
g(z) = ﬁ is analytic on (=4, ). Therefore, f;(x) = e®'g(z) is analytic on (=4, 4).

(b) Using fi(z) = €' fo(z), by the Cauchy product formula, we have

fila) = gmt)fﬂ gpnw) -
(£ (o)
S ia)
E(EQ)

(¢) The Bernoulli numbers are given by

T > "
= = Bni-
9(z) er —1 nZ:() n!

Compare this with the Taylow expansion, we have lim,_,o g (z) = B,. The first few
derivatives and their limits are

g9(z) = ——, limg(x) =1,
fo efx—1)+1 . , __1
g (.’E) - (ex _ 1)2 9 ig%g (.’E) - 27



and so on. Hence, By = 1 and By = —%. Next, we will work in the ring of formal power
series R[[z]]. We have

oo m—+1

x
D e
"

= (m+1)!

thus, by the Cauchy product of power series,

> 2 > pmtl 00 k oi kit
“(ZBnm) (Z<m+m>zz D

n=0 m=0 k=0 \ j=0
o k o) k
(k+1)! okl k+1 ak+1
=> 2.5 -|(k_-+1)'(k+1);zz 2B (k+1)!
k=0j=0 J ’ " k=0 \y=o \ 7 :

Reindex K =n — 1 and j = k, then

o] n—1 n n—1
n x n

n=1 \k=0

k=0 k=0
n—1 n—1

=n Po(O) "1k =P, (¢
;( L )mo (0

(e) By the formula in (b), we have

Pp(t+1) i: ( ) )+ 1) Xn: (Z) P (0)t"k
k=

0

Z:: ( ) (t+1)"F —nk)

(f) Substitute 1 — ¢ into the generating function of Bernoulli polynomials, we have

e n (1-t)x —tx ( t( x) e "
x xre xe
nz::o ( )n! e’ —1 e —1 1—e z::

(g) Consider the function g(z) = g(x) — P;1(0)x = g(x) — Byx. We have

x r xz(e? e 2 g x
9@) = G743 = gz —emar) — 2 M3

is even, thus all odd derivatives of g at 0 are zero. Therefore, for n > 1, we have

Bang1 = g®"t(0) = g®" 1 (0) = 0.

(h) The first and third equalities follow from (e), and the second is due to the telescoping sum:

k—1

Z oS RO =P)  Pulh) = Pall) _ Palh) = Pa(0)

j=1




Exercise 3 (Tao IT Exercise 4.2.7., 15 points). Show that for every integer n > 3, we have

1 1 1
0 <
R RN ) T

(Hint: first show that (n + k)! > 2*n! for all k =1,2,3,....)

Conclude that nle is not an integer for every n > 3. Deduce from this that e is irrational.
(Hint: prove by contradiction.)

Solution 3. First, we show that (n + k)! > 2¥n! for all k € N and n > 3 by induction. For
k =1, we have (n + 1)! = (n+ 1)n! > 2n!l. Assume it holds for k, then for k + 1, we have
(m+k+1)!=Mn+k+1) - (n+1)n! > 28 1nl Thus, the inequality holds for all k € N. Then,

oo

= 1 <=1 1
Zn—Fk 22’“71':7727’“:;’

k=1 k=0

Suppose there exists some n > 3 such that nle is an integer. Then,

”'6—”'Zk;22”— )+l Z kl
k=0

k=n-+1
is an integer, and hence

'Oo 1 n!

k=n+1

is an integer, a contradiction. Therefore, nle is not an integer for any n > 3. If e were rational,
then ¢le is an integer, where g € N is the denominator of e, contradicting the previous result. Thus,
e is irrational.

Exercise 4 (Tao II Exercise 4.5.6, 10 points). Prove that the natural logarithm function Inz is
real analytic on (0,+00). Hint: For any a > 0, consider the change of variable y = x — a.

Solution 4. To show In is real analytic on (0, 00), it suffices to show that for every a > 0, there
is a power series centered at a that equals Inx on some interval around a. From Tao II Theorem
4.5.6 (e), we have In(1 4 ) is real analytic at z = 0, such that

oo n+1
n(l+z) E: ze(-1,1),
with radius of convergence 1. For any a > 0, let y = x — a, then

lnlen(a+y):1na+ln(1 ) lna—&—z n+1( )n, y € (—a,a),

with radius of convergence a. Switch back to z = a + y, we have

n+1 T —a\"
lnm—lna—kg ( ) , |z —a] <a.
a

Since a is arbitrary, for each a € (0,00), there is a neighborhood of x such that Inz is represented
by a convergent power series. Hence, Inx is real analytic on (0, 00).



Exercise 5 (Tao IT Exercise 4.5.7, 10 points). Let f : (0,00) — R be a positive, real analytic
function such that f’'(z) = f(x) for all x € R. Show that f(z) = Ce® for some positive constant
C'; justify your reasoning. (Hint: there are basically three different proofs available. One proof uses
the logarithm function, another proof uses the function e=*, and a third proof uses power series.
Of course, you only need to supply one proof.)

Solution 5. Since f(z) is analytic, it is infinitely differentiable and given exactly by its Taylor
series at any = € R. Since f’(z) = f(z), by induction f(x) = f(z) for any n > 1. Fix some
a > 0, then

flz) = i mx" = i f(a) 2" = f(a)e®, f(a) € Rsq is a constant.

Exercise 6 (Tao II Exercise 4.5.8, 10 points). Let m > 0 be an integer. Prove

x

lim — = +o0.
z—+oo ™

m-+1 gk

without using the L’'Hopital’s rule. Hint: e® > 7" " 2+ for > 0.

n

Solution 6. Since e” = > ° /% and each term in the series is nonnegative when = > 0, we

have e > EZ:_ol % for x > 0. Then, for any N > 0
e i " < o gnem - T - N
am o f=onl T =l (m+1)! " (m+1)!
whenever > N. Therefore, lim,_, f—; = 4-00.

Exercise 7 (Tao II Exercise 4.5.9, 10 points). Let P(x) be a polynomial, and let ¢ > 0. Show that
there exists a real number N > 0 such that e* > |P(x)| for all z > N; thus an exponentially growing
function, no matter how small the growth rate ¢, will eventually overtake any given polynomial
P(z), no matter how large. Hint: use Exercise 4.5.8.

Solution 7. Let P(z) = > ,_,arz® € R[z] be a polynomial of degree n. Then, for any z > 0,
we have

|P(2)] < lagla < Ma™,
k=0

cx

where M = |an| + |ap—1| + -+ + |ao|. From Exercise 4.5.8, we know that lim,_, . & = +o0.

T
Therefore, there exists some N > 0 such that for all z > N, we have

eCZ

xn

>M = = > Ma" > |P(z)|.

Thus, we conclude that there exists some real number N > 0 such that e“® > |P(z)| for all z > N.
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You can do the following problems to practice.
You don’t have to submit the following problems.

Exercise 8 (Tao II Exercise 4.5.4, Optional). Let f: R — R be the function defined by setting
f(x) := exp(—1/z) when & > 0, and f(z) := 0 when 2 < 0. Prove that f is infinitely differentiable,
and f*)(0) = 0 for every integer k > 0, but that f is not real analytic at 0.

Solution 8. Since both 0 and e~!/% are compositions of elementary functions, they are infinitely
differentiable on their respective domains. We only need to show that f is infinitely differentiable
at x =0 and f*)(0) = 0 for all k£ > 0.

Claim. For x > 0, the n-th derivative of e~ /% is

£ () = eV (—1)n zn: (Z j ’f) (” Zf; 1)(71 — k)l (= 1)Fg=(n+R),

=1

Proof. Forn =1, f'(z) = #e‘l/”‘, so the base case is satisfied. Suppose the formula holds for n,
then for n + 1, we have

7D (@) = L F0 )

d { 1w = ({n+k\[(n+k-1 n
:d:C(e /(-1 2 (n_k)< ok )(n—k)!(—n’“m <+’“>>

—1/% n+1 TL + k (n + k — 1)' AN ) (=1 k,.—(n+1+k)
Z =Rk 1T R k) (=1
14k n+k
71/:10 n+1 1— k) (=1 k f(n+1+k)'
Z<n+1— )(n+1—k>(n+ HD
Thus, the formula holds for all n > 1 by induction. O

By our claim, for any n > 1, we have

lm () = tim eV -1y <” - z> (” e 1) (n — k)l (—1)Fz= ()

z—0+t z—0t Pt n— n—k
o ~(n+k\[(n+k-1 k
_ wul_1\n o 1 (_ n+k
ukrfwe (-1) g:l (n B k) < ok )(n E)(—=1)"u
= 07

by Exercise 4.5.8, while lim,_,q- f(®) = 0. Therefore, f(™)(0) = 0 for all n > 0 and f is differen-
tiable. Since the Taylor series of f at 0 is identically zero, but f(z) > 0 for all z > 0, f is not real
analytic at 0.

Exercise 9 (Optional). In class, we proved that the function f(z) = a” is continuous on Q for
a > 1. Let n € N. Prove that f is uniformly continuous on the rational interval

[—n,n] N Q.

Remark. If this is true, then f(z) = a® admits a unique continuous extension to all real numbers
x € [-n,n].



Solution 9. Since f is continuous on Q, for any € > 0 and z € [—n,n] N Q, there exists some
d; > 0 such that for any y € Q with |z — y| < d,, we have |f(z) — f(y)| < e. The collection
of open intervals {(x — 0,/2,2 + 0,/2) : © € [-n,n] N Q} forms an open cover of the compact
set [-n,n]. Thus, there exists a finite subcover {(z; — 0,,/2,x; + 6,,/2) : ¢ = 1,2,...,m}. Let
0 = minj<;<m 04,/2 > 0. Then, for any z,y € [-n,n] N Q with |z — y| < 4, there exists some i
such that @ € (z; — 04, /2, ©; + 64, /2). Therefore,

5
ly—ail Sy -2l + |z —2i] <o+ 8 < ba.

Hence, by the triangle inequality, we have

[f (@) = FW) < |f (@) = [l + [ f(z) = f(y)] < e+e=2e

and f is uniformly continuous on [—n,n] N Q.

Exercise 10 (Optional). Define the sequence
Vn > 1, Sp=> Ink.
k=1

(a) Show that for every k > 2, we have

k k+1
/ Intdt < Ink < / Intdt.
k—1 k

Deduce that
Sp, =nlnn —n+ o(n).

(b) By considering the sequence (A,,)n>1, defined by

Vn > 1, A,=5,—nlnn+n,

1
show that 4,, — A, _1 ~ o and deduce that

n
1
A, ~ =Inn.
2
(¢) Let
1
Dn::Sn—nlnn—i—n—ilnn forn > 1.
Show that )
D,—Dj_1~——.
! 12n2

(d) Show that D,, converges to some D, when n — co. Deduce that there exists some constant

C' > 0 such that o
nl~C (7) NG
e

(e) Using the expression of I, = foﬂ/z sin®"rdr =% - % = /7% (1+0(1)) (proved in the
following), show that

C =+2m.

n! ~V2mn (E) (1 + i + O(l)> .
e 12n n

(f) Show that



Solution 10.

(a) For k > 2, since Int is increasing on (0, 00), we have

k k k+1
dt Int < dt lnkalnkg/ dt Int.
k—1 k—1 k

Summing over k = 2,3,...,n, we have

n n+1
/ dt lntSSnS/ dt Int
1 2

and hence

nlnn—n+1<S, <(n+1)lnn+1)—(n+1)4+1 = S, =nlnn—n+o(n).

(b) We have
Ap—An1=8,—Sp—1—nlnn+n+m—1)In(n—-1)—(n—1)
=lnn—nlnn+(n—-1)In(n—-1)+1
1
—1+(n—1)1n<1—g)

“1t ) (ko)) = o ),

n  2n?

where lim,,_, IZ(J? = (. Then we have
A, — A, _ 1
lim ST g L onR(n) =1 = A, — Ay~ —.
n— oo - 2n

2n

(¢c) We have
D, —D,_; = (Sn —nlnn+n— %lnn> - (Sn,l —(n—1)lnn—-1)+(n—-1)— %ln(nf 1))

1 1 1
:lnn—ln(n—l)—&—nln(l—f)+1+71n(1——)
n 2 n

1 1
:1+(n—§)ln(1——)

n
1 11 1 1 1
=1 (”*5) H*Tnz*%“(ﬁﬂ = gz T RO,
where lim,, o % = 0. Then we have
D, — D, _ 1
lim ~" " =1-120°R(n) =1 = Dy, — Dy ~ ———
n—o00 T2 12n

(d) Let G,, = D,, — D,,_1. Since D,, — D1 ~ L for any € > 0, there exists N € N such

T 1202

that |12n2Gn + 1| < ¢ whenever n > N. Then,

1
|G| < ‘Gn + == < <e¢e, whenever n > N.

12n2

_&
12n2
Hence, {D,}52 is a Cauchy sequence, and by completeness of the reals there is a unique
limit Dy, in R.By definition of D,,, we have
1
S,=Inn!=nlnn—n+ ilnn—&—Dn.

Exponentiating both sides gives n! = eP»\/n (%)n, and

| n
lim Ln: lim ePr =eP==C>0 = n!wC’(ﬁ) vn.

n—oo ,/n (%) n—00



(e)

Exercise 11 (Optional).

From the expression of I5,,, we have

Iy, = g : 22(3(7;3")2 - \/%(1 +o(1)).

Using the identity from part (d), we have

(2n)! T C(%")zn\/% 71'\/?

™
2 220(nl)2 2 g2n(n (2)"n 20

IQn =
Therefore, we have %\/% = /1, and hence C' = /2.
From part (e), we have Dy, =logC = %10g(27r). Then,
1
D,—Dy=5,—nlnhn+n-— §hr1n—DOC
1 1
=Ilnn!—nlnn+n — §1nn— 5111(277)

()

From part (c), we have

D,—D
D,—Dy~—-——s = lim /2 =1.
12n2 n—oo ——_l
12n2
Therefore, for any € > 0, there exists some N € N such that
D, — Dy 1 €
—— 1| <e = |D,—D — | < /=
- © n T P T 1007 | < 1o
n
whenever n > N. Hence, we have
1 n! i 1 < € n! -1
n — e 12n
Vo (@) | T Ve (2

whenever n > N. Since e* =1+ z + o(x) as x — 0, we have

12nZ 4 0

o D)o (L)
\/27rn(%)n_e n2/) 12n2 T \n2 )

Exponentiating both sides gives

n\" 1 1
n! =+v2mn (f) (1—&-—4—0(7)).
e 12n n

1
Z — is divergent.

peEP

(a)

(b)

Show that for s > 1, we have

— Z log(l — 2%) = log ((s).

pEP

Deduce that there exists M > 0 such that for any s > 1, we have

Z z% —log((s)| < M.

pEP

< e 12n2

Let P be the set of all the primes. In this exercise, we will prove that



(c) Show that as s — 17, we have ((s) — +oc.

(d) Conclude that

>

1
peEP p

is divergent.

Solution 11.

(a) The Riemann zeta function is defined as

()=~

ns
n=1

Fix s > 1 and N € N. Consider the finite product

1 11 1
Pv= ] = 11 (1+?+1§+“'):ZE7

pEP,p<N pEP,p<N neA

where A is the set of numbers all of whose prime factors are less than N. Let Sy be the
N-th partial sum of ((s), then since Py contains all terms of the form ni for n < N by
the Fundamental Theorem of Arithmetic, Sy < Py. On the other hand, Py < ((s) since
it is a sum of a subsequence of terms in ((s), which are all positive. Therefore, we have
Sy < Py <((s) forall N € N. Sy — ((s) as N — oo by definition, and Py is an increasing
sequence in N, so by the Squeeze Theorem Py — ((s) as N — oo. Hence, we have

z log (1 - —) = log {(s).

peEP

¢(s) = lim Py = H

peP 1= P

(b) Using the Taylor expansion of log(1 — ), we have

1 <1 1) L + ! + ! +
—1lo - | = = - R
2 ps ps 2p2s 3p35

Since p > 1, p~™* < 1 for all m > 0, so the Taylor series always converges. Therefore,

onc(s) =~ tox 1- 1) = 3 D 9)pp

peEP pEP k=2
and hence
1 =1 = 1
— —log((s < Py
gp E;;k ; ZPE:) I;pgk(l_p 5

: - —s _ 1
Since s >1,1-p *<1-27°< 3,50

o0
Zpi_logg <QZ 22_:1;25M<oo.

peP pGP

The series converges by comparison test with the convergent p-series > -, %

(¢) Near s = 1, uniform convergence fails so we cannot switch the order of limit and summation.
For s > 1, consider f(z) = 2%, which is positive decreasing on [1,00]. Then, by the integral
test, we have

(=3 == [ dvos = L

ns — Jy s—1

Therefore, as s — 17, ((s) = +o0.

10



(d) Suppose ZpEP 1% converges, then limg_,+ EpeP p—ls is bounded. Then, by (b),

lim log((s) is bounded = lim ((s) is bounded,
s—1+t s—1+

a contradiction to (c). Therefore, 35 p - diverges.

Exercise 12 (Optional).

Theorem 1 (Wallis Integrals — Factorial Version). For each integer n > 0, define

/2
I, = / sin” z dx.
0

Then:
(a)

(b) For all n > 2,

(¢) For each m € N,

(d) Foralln >1,

(e) Asn — oo,

(f) In particular,
(2n)!

™
Iop = — - .
T 22n(pl)?

Solution 12. Here we provide a proof for Theorem 1.

(a) By directly computing the integrals, we have
/2 /2
10:/ 1dx:z, 11:/ sinxdxz[—cosx}g/zzl.
0 2 0

(b) For n > 2, we have

w/2 w/2
I, = / dz sin"z = / dz sin” ! zsinz.
0 0

Do integration by parts with v = sin™~!

(n —1)sin" 2z cos x dz. Then,

r and dv = sinzdx, we have v = —cosx, du =

/2
I, = [—sin" 'z cos x]g/2 +(n—1) / dz sin"? zcos® x
0

/2
=(n— 1)/ dz sin"?z(1 —sin’z) = (n — 1)I,_s.
0

11



(¢) We should discuss the two cases where n is an odd or even integer, with Iy and I; from part
(a) as the base cases. For n = 2m — 1, where m € N, we have

_2m—2 2m—-4 2 22m=1(m — 1)Im!
S 2m—1 2m-3 3 (2m)! '

On the other hand, for n = 2m, we have

2m—1 2m —3 1 2m)!
o=l 2m=3 1w (2m)

e
om  2m—2 2 0 2 22m(ml)2’

(d) Again, we discuss the cases when n is an even or an odd number. For n = 2m + 1,

™
Iopiidom = ———— = —.
AT 90m 4+ 1) 2n
Thus,
I, = —.
2n

For n = 2m, a similar calculation gives

Bty = (3 22(322!!)2) (227”_1<(;nm;!1)!m!> REETRED

Hence, I,1,—1 = 5., for all n > 1.

(e) Notice that since sinz € [0, 1] for all z € [0,7/2],
/2 /2
I, = / sin” zdz < / sin" tadr =1I,_1,
0 0

and hence {I,,}52, is a positive, decreasing sequence. From the product identity in part (d)
and I,,_1 < I, < I,41, we have

2(n+1)

™
=TIy l, <I?<I,J, 1 =—.
= An = ™

2n

s

/n</2nI<1:>I s
n+1 -V g "~ " 2n’

or, equivalently, using the little-o notation gives

=/ 2 (14 0(1)

Everything is positive, so, multiplying by and taking square roots, we get

(f) Directly from part (c), we have

12



