

# 2025 Fall Introduction to Geometry

Homework 10 (Due Nov 28, 2025)

物理三 黃紹凱 B12202004

December 2, 2025

**Definition 1** (isometry). A diffeomorphism  $\varphi : S \rightarrow \bar{S}$  is an isometry if for all  $p \in S$  and all pairs  $w_1, w_2 \in T_p(S)$  we have

$$\langle w_1, w_2 \rangle_p = \langle d\varphi_p(w_1), d\varphi_p(w_2) \rangle_{\varphi(p)}.$$

The surfaces  $S$  and  $\bar{S}$  are then said to be isometric.

*Remark.* An isometry is a diffeomorphism that preserves the first fundamental form.

**Proposition 1** (Do Carmo Proposition 4.2.1). Assume the existence of parametrizations  $\mathbf{x} : U \rightarrow S$  and  $\bar{\mathbf{x}} : U \rightarrow \bar{S}$  such that  $E = \bar{E}$ ,  $F = \bar{F}$ ,  $G = \bar{G}$  in  $U$ . Then  $\bar{\mathbf{x}} \circ \mathbf{x}^{-1} : \mathbf{x}(U) \rightarrow \bar{S}$  is a local isometry.

**Exercise 1** (Do Carmo 4.2.5). Let  $\alpha_1 : I \rightarrow \mathbb{R}^3$ ,  $\alpha_2 : I \rightarrow \mathbb{R}^3$  be regular parametrized curves, where the parameter is the arc length. Assume that the curvatures  $k_1$  of  $\alpha_1$  and  $k_2$  of  $\alpha_2$  satisfy

$$k_1(s) = k_2(s) \neq 0, \quad s \in I.$$

Let

$$\mathbf{x}_1(s, v) = \alpha_1(s) + v\alpha'_1(s), \quad \mathbf{x}_2(s, v) = \alpha_2(s) + v\alpha'_2(s)$$

be their (regular) tangent surfaces (cf. Example 5, Sec. 2-3) and let  $V$  be a neighborhood of  $(s_0, v_0)$  such that  $\mathbf{x}_1(V) \subset \mathbb{R}^3$ ,  $\mathbf{x}_2(V) \subset \mathbb{R}^3$  are regular surfaces (cf. Prop. 2, Sec. 2-3). Prove that

$$\mathbf{x}_1 \circ \mathbf{x}_2^{-1} : \mathbf{x}_2(V) \longrightarrow \mathbf{x}_1(V)$$

is an isometry.

**Solution 1.** To show that  $\mathbf{x}_1 \circ \mathbf{x}_2^{-1}$  is an isometry, we need to show that it is a diffeomorphism and preserves the first fundamental form. From Example 2.3.5, the tangent surface of a regular curve  $\alpha$  is a regular surface, since for all  $(t, v) \subseteq U = \{(t, v) \in I \times \mathbb{R} \mid v \neq 0\}$ , we have

$$k(s) = \frac{|\alpha'(s) \wedge \alpha''(s)|}{|\alpha'(s)|^3} \neq 0 \implies \frac{\partial \mathbf{x}}{\partial s} \wedge \frac{\partial \mathbf{x}}{\partial v} = v\alpha''(s) \wedge \alpha'(s) \neq 0.$$

Thus, both  $\mathbf{x}_1$  and  $\mathbf{x}_2$  are regular parametrizations, and hence homeomorphisms on a small neighborhood  $V \subseteq \mathbb{R}^3$ . Since  $\mathbf{x}$  is differentiable and  $d\mathbf{x}_i$  has full rank,  $\mathbf{x}_i^{-1}$  is differentiable for  $i = 1, 2$  by the Inverse Function Theorem. Therefore,  $\mathbf{x}_1 \circ \mathbf{x}_2^{-1}$  is a diffeomorphism. In the Frenet frames of  $\alpha_i$ ,  $i = 1, 2$ , we have  $\mathbf{x}_i(s, v) = \alpha_i(s) + v\alpha'_i(s)$ , and

$$\mathbf{x}_{i,s} = \alpha'(s) + v\alpha''(s) = T_i(s) + v k_i(s) N_i(s), \quad \mathbf{x}_{i,v} = \alpha'(s) = T_i(s).$$

The first fundamental form coefficients are computed to be

$$E_i = \langle \mathbf{x}_{i,s}, \mathbf{x}_{i,s} \rangle = 1 + v^2 k_i^2(s), \quad F_i = \langle \mathbf{x}_{i,s}, \mathbf{x}_{i,v} \rangle = 1, \quad G_i = \langle \mathbf{x}_{i,v}, \mathbf{x}_{i,v} \rangle = 1.$$

Since  $k_1(s) = k_2(s)$  for all  $s \in I$ , we have  $E_1 = E_2$ ,  $F_1 = F_2$ ,  $G_1 = G_2$ . By Proposition 4.2.1,  $\mathbf{x}_1 \circ \mathbf{x}_2^{-1}$  is a local isometry. Since  $\mathbf{x}_1 \circ \mathbf{x}_2^{-1}$  is also a diffeomorphism,  $\mathbf{x}_1 \circ \mathbf{x}_2^{-1}$  is an isometry.

**Exercise 2** (Do Carmo 4.2.6\*). Let  $\alpha : I \rightarrow \mathbb{R}^3$  be a regular parametrized curve with  $k(t) \neq 0$ ,  $t \in I$ . Let  $\mathbf{x}(t, v)$  be its tangent surface. Prove that, for each  $(t_0, v_0) \in I \times (\mathbb{R} - \{0\})$ , there exists a neighborhood  $V$  of  $(t_0, v_0)$  such that  $\mathbf{x}(V)$  is isometric to an open set of the plane (thus, tangent surfaces are locally isometric to planes).

**Solution 2.** We will construct the desired local isometry. First reparametrize by arc length to get  $\alpha(s)$ , and define  $\mathbf{x}(s, v) = \alpha(s) + v\alpha'(s)$ . Let  $k(s)$  be the curvature of  $\alpha(s)$ . As in a previous exercise, let

$$\theta(s) = \int_{s_0}^s du k(u), \quad s_0 \in I$$

be the angle function, and define a plane curve  $\beta(s)$  by

$$\beta(s) = \left( \int_{s_0}^s du \cos \theta(u), \int_{s_0}^s du \sin \theta(u), 0 \right),$$

$$\beta'(s) = (\cos \theta(s), \sin \theta(s), 0) \implies |\beta'(s)| = 1,$$

$$\beta''(s) = \theta'(s) (-\sin \theta(s), \cos \theta(s), 0) = k(s) (-\sin \theta(s), \cos \theta(s), 0).$$

Then, the curvature of  $\beta(s)$  is exactly  $k(s)$ , and hence  $\beta(s)$  is a unit-speed curve with the same curvature as  $\alpha$ . Since both  $\beta$  and  $\beta'$  lie in the plane  $z = 0$ , the image of the tangent surface  $\bar{\mathbf{x}}(s, v) = \beta(s) + v\beta'(s)$  is an open subset of the  $xy$ -plane. For  $\mathbf{x}$  and  $\bar{\mathbf{x}}$ , we have

$$\mathbf{x}_s = T(s) + v k(s) N(s), \quad \mathbf{x}_v = T(s),$$

$$\bar{\mathbf{x}}_s = \bar{T}(s) + v k(s) \bar{N}(s), \quad \bar{\mathbf{x}}_v = \bar{T}(s),$$

where  $T, N, \bar{T}, \bar{N}$  are the tangent vector and normal vector of  $\mathbf{x}$  and  $\bar{\mathbf{x}}$ , respectively. The first fundamental form coefficients of  $\mathbf{x}$  and  $\bar{\mathbf{x}}$  are, respectively,

$$E = 1 + v^2 k^2(s), \quad F = 1, \quad G = 1,$$

$$\bar{E} = 1 + v^2 k^2(s), \quad \bar{F} = 1, \quad \bar{G} = 1.$$

Since the coefficients agree, by Proposition 4.2.1, the map  $\bar{\mathbf{x}} \circ \mathbf{x}^{-1}$  is a local isometry from  $\mathbf{x}(V)$  to an open set of the plane for some neighborhood  $V$  of  $(s_0, v_0)$ . Therefore, the tangent surface is locally isometric to an open set of the plane.

**Exercise 3** (Do Carmo 4.2.7). Let  $V$  and  $W$  be  $n$ -dimensional vector spaces with inner products denoted by  $\langle \cdot, \cdot \rangle$  and let  $F : V \rightarrow W$  be a linear map. Prove that the following conditions are equivalent:

- a.  $\langle F(v_1), F(v_2) \rangle = \langle v_1, v_2 \rangle$  for all  $v_1, v_2 \in V$ .
- b.  $|F(v)| = |v|$  for all  $v \in V$ .
- c. If  $\{v_1, \dots, v_n\}$  is an orthonormal basis in  $V$ , then  $\{F(v_1), \dots, F(v_n)\}$  is an orthonormal basis in  $W$ .
- d. There exists an orthonormal basis  $\{v_1, \dots, v_n\}$  in  $V$  such that  $\{F(v_1), \dots, F(v_n)\}$  is an orthonormal basis in  $W$ .

If any of these conditions is satisfied,  $F$  is called a linear isometry of  $V$  into  $W$ . (When  $W = V$ , a linear isometry is often called an orthogonal transformation.)

**Solution 3.**

- a.  $\implies$  b. Suppose  $\langle F(v_1), F(v_2) \rangle = \langle v_1, v_2 \rangle$  for all  $v_1, v_2 \in V$ . Then for all  $v \in V$ ,

$$|v| = \sqrt{\langle v, v \rangle} = \sqrt{\langle F(v), F(v) \rangle} = |F(v)|.$$

- **b.  $\implies$  c.** Suppose  $|F(v)| = |v|$  for all  $v \in V$ . Let  $\{v_1, \dots, v_n\}$  be an orthonormal basis of  $V$ . Then, for all  $i, j = 1, \dots, n$ , since the inner product is induced by a norm  $|\cdot|$ , we have

$$\begin{aligned}\langle F(v_i), F(v_j) \rangle &= \frac{1}{2} (|F(v_i) + F(v_j)|^2 - |F(v_i)|^2 - |F(v_j)|^2) \\ &= \frac{1}{2} (|v_i + v_j|^2 - |v_i|^2 - |v_j|^2) = \langle v_i, v_j \rangle = \delta_{ij}.\end{aligned}$$

Thus,  $\{F(v_1), \dots, F(v_n)\}$  is an orthonormal set in  $W$ . Since  $F$  is linear,  $\{F(v_1), \dots, F(v_n)\}$  spans  $\text{Im}(F)$ . Since  $\dim(\text{Im}(F)) \leq n$ , we have  $\dim(\text{Im}(F)) = n$ , and hence  $\{F(v_1), \dots, F(v_n)\}$  is an orthonormal basis of  $W$ .

- **c.  $\implies$  d.** Since  $V$  is finite-dimensional, just pick any orthonormal basis of  $V$ .
- **d.  $\implies$  a.** Suppose there exists an orthonormal basis  $\{v_1, \dots, v_n\}$  of  $V$  such that  $\{F(v_1), \dots, F(v_n)\}$  is an orthonormal basis of  $W$ . For all  $v_1, v_2 \in V$ , we can write

$$v_1 = \sum_{i=1}^n a_i v_i, \quad v_2 = \sum_{j=1}^n b_j v_j,$$

where  $a_i, b_j \in \mathbb{R}$ . Then,

$$\begin{aligned}\langle F(v_1), F(v_2) \rangle &= \left\langle F\left(\sum_{i=1}^n a_i v_i\right), F\left(\sum_{j=1}^n b_j v_j\right) \right\rangle \\ &= \left\langle \sum_{i=1}^n a_i F(v_i), \sum_{j=1}^n b_j F(v_j) \right\rangle \\ &= \sum_{i=1}^n \sum_{j=1}^n a_i b_j \langle F(v_i), F(v_j) \rangle \\ &= \sum_{i=1}^n \sum_{j=1}^n a_i b_j \delta_{ij} = \sum_{i=1}^n a_i b_i = \left\langle \sum_{i=1}^n a_i v_i, \sum_{j=1}^n b_j v_j \right\rangle = \langle v_1, v_2 \rangle.\end{aligned}$$

**Exercise 4** (Do Carmo 4.2.8\*). Let  $G : \mathbb{R}^3 \rightarrow \mathbb{R}^3$  be a map such that

$$|G(p) - G(q)| = |p - q| \quad \text{for all } p, q \in \mathbb{R}^3$$

(that is,  $G$  is a distance-preserving map). Prove that there exists  $p_0 \in \mathbb{R}^3$  and a linear isometry  $F$  of the vector space  $\mathbb{R}^3$  such that

$$G(p) = F(p) + p_0 \quad \text{for all } p \in \mathbb{R}^3.$$

**Solution 4.** Let  $p_0 = G(0)$ , and let  $F(p) = G(p) - p_0$ . Then, for all  $p, q \in \mathbb{R}^3$ , we have

$$|F(p) - F(q)| = |G(p) - G(q)| = |p - q|, \quad F(0) = G(0) - p_0 = 0.$$

Hence  $F$  is a distance-preserving map that fixes the origin. Let  $\{e_1, e_2, e_3\}$  be the standard basis of  $\mathbb{R}^3$ , and  $v_i = F(e_i)$  for  $i = 1, 2, 3$ . Since  $F$  is distance-preserving, we have

$$|v_i|^2 = |F(e_i) - F(0)|^2 = |e_i - 0|^2 = 1, \quad |v_i - v_j|^2 = |F(e_i) - F(e_j)|^2 = |e_i - e_j|^2 = 2,$$

squaring both sides gives

$$\langle v_i, v_j \rangle = 0 \text{ for } i \neq j \implies \{v_1, v_2, v_3\} \text{ is an orthonormal basis for } \mathbb{R}^3.$$

Let  $L : \mathbb{R}^3 \rightarrow \mathbb{R}^3$  be defined by  $L(e_i) = v_i$  for  $i = 1, 2, 3$ . Then  $L$  is linear by construction, and  $L(e_i) = v_i = F(e_i)$ ,  $i = 1, 2, 3$ . For any  $p \in \mathbb{R}^3$ , since  $L(0) = 0$ , by the distance-preserving property of  $F$ , we have  $|F(p)| = |p| = |L(p)|$ . Then, for all  $i = 1, 2, 3$ , we have

$$|F(p) - F(e_i)| = |p - e_i| = |L(p) - L(e_i)|.$$

Squaring both sides, then using  $|F(p)| = |L(p)|$  and  $F(e_i) = L(e_i)$ , we have  $\langle F(p) - L(p), F(e_i) \rangle = 0$ . Hence,  $F = L$ , and  $F$  is linear. By Exercise 4.3.7,  $F$  is a linear isometry. Therefore, there exists a linear isometry  $F$  such that  $G(p) = F(p) + p_0$  for all  $p \in \mathbb{R}^3$ .

**Exercise 5** (Do Carmo 4.2.9). Let  $S_1$ ,  $S_2$ , and  $S_3$  be regular surfaces. Prove that

- a. If  $\varphi : S_1 \rightarrow S_2$  is an isometry, then  $\varphi^{-1} : S_2 \rightarrow S_1$  is also an isometry.
- b. If  $\varphi : S_1 \rightarrow S_2$ ,  $\psi : S_2 \rightarrow S_3$  are isometries, then  $\psi \circ \varphi : S_1 \rightarrow S_3$  is an isometry.

This implies that the isometries of a regular surface  $S$  constitute in a natural way a group, called the group of isometries of  $S$ .

**Solution 5.**

- a. Since  $\varphi$  is an isometry, for all  $p \in S_1$  and all pairs  $w_1, w_2 \in T_p(S_1)$  we have

$$\langle w_1, w_2 \rangle_p = \langle d\varphi_p(w_1), d\varphi_p(w_2) \rangle_{\varphi(p)}.$$

Let  $q = \varphi(p) \in S_2$  and  $u_1, u_2 \in T_q(S_2)$ . Since  $\varphi$  is a diffeomorphism,  $d\varphi$  is injective. Since the differential  $d\varphi$  is a linear transformation between finite-dimensional spaces, it is also surjective. Thus, there exist  $w_1, w_2 \in T_p(S_1)$  such that  $d\varphi_p(w_i) = u_i$  for  $i = 1, 2$ . Thus,

$$\langle d\varphi_p^{-1}(u_1), d\varphi_p^{-1}(u_2) \rangle_q = \langle w_1, w_2 \rangle_p = \langle u_1, u_2 \rangle_{\varphi(p)}.$$

Therefore,  $\varphi^{-1}$  is an isometry.

- b. Suppose  $\varphi : S_1 \rightarrow S_2$  and  $\psi : S_2 \rightarrow S_3$  are isometries. Since diffeomorphism between regular surfaces is an equivalence relation (by previous exercise),  $\psi \circ \varphi$  is a diffeomorphism. For all  $p \in S_1$  and all pairs  $w_1, w_2 \in T_p(S_1)$ , we have

$$\begin{aligned} \langle w_1, w_2 \rangle_p &= \langle d\varphi_p(w_1), d\varphi_p(w_2) \rangle_{\varphi(p)} \\ &= \langle d\psi_{\varphi(p)}(d\varphi_p(w_1)), d\psi_{\varphi(p)}(d\varphi_p(w_2)) \rangle_{\psi(\varphi(p))} \\ &= \langle d(\psi \circ \varphi)_p(w_1), d(\psi \circ \varphi)_p(w_2) \rangle_{(\psi \circ \varphi)(p)}, \end{aligned}$$

where the chain rule is used in the last equality. Therefore,  $\psi \circ \varphi$  is an isometry.

*Remark.* Since function composition is associative and the identity map  $\text{id} : S_1 \rightarrow S_1$  is an isometry, by a. and b., the set of isometries on  $S$  forms a group.