
2025 Fall Introduction to Geometry

Homework 10 (Due Nov 28, 2025)

物理三 黃紹凱 B12202004

December 2, 2025

Definition 1 (isometry). A diffeomorphism φ : S → S is an isometry if for all p ∈ S and all
pairs w1, w2 ∈ Tp(S) we have

⟨w1, w2⟩p = ⟨dφp(w1),dφp(w2)⟩φ(p).

The surfaces S and S are then said to be isometric.

Remark. An isometry is a diffeomorphism that preserves the first fundamental form.

Proposition 1 (Do Carmo Proposition 4.2.1). Assume the existence of parametrizations x :
U → S and x : U → S such that E = E, F = F , G = G in U . Then x ◦ x−1 : x(U) → S is a local
isometry.

Exercise 1 (Do Carmo 4.2.5). Let α1 : I → R3, α2 : I → R3 be regular parametrized curves,
where the parameter is the arc length. Assume that the curvatures k1 of α1 and k2 of α2 satisfy

k1(s) = k2(s) ̸= 0, s ∈ I.

Let
x1(s, v) = α1(s) + vα′

1(s), x2(s, v) = α2(s) + vα′
2(s)

be their (regular) tangent surfaces (cf. Example 5, Sec. 2-3) and let V be a neighborhood of (s0, v0)
such that x1(V ) ⊂ R3, x2(V ) ⊂ R3 are regular surfaces (cf. Prop. 2, Sec. 2-3). Prove that

x1 ◦ x−1
2 : x2(V ) −→ x1(V )

is an isometry.

Solution 1. To show that x1 ◦ x−1
2 is an isometry, we need to show that it is a diffeomorphism

and preserves the first fundamental form. From Example 2.3.5, the tangent surface of a regular
curve α is a regular surface, since for all (t, v) ⊆ U = {(t, v) ∈ I × R | v ̸= 0}, we have

k(s) =
|α′(s) ∧ α′′(s)|

|α′(s)|3
̸= 0 =⇒ ∂x

∂s
∧ ∂x

∂v
= vα′′(s) ∧ α′(s) ̸= 0.

Thus, both x1 and x2 are regular parametrizations, and hence homeomorphisms on a small neigh-
borhood V ⊆ R3. Since x is differentiable and dxi has full rank, x−1

i is differentiable for i = 1, 2
by the Inverse Function Theorem. Therefore, x1 ◦ x−1

2 is a diffeomorphism. In the Frenet frames
of αi, i = 1, 2, we have xi(s, v) = αi(s) + vα′(s), and

xi,s = α′(s) + vα′′(s) = Ti(s) + vki(s)Ni(s), xi,v = α′(s) = Ti(s).

The first fundamental form coefficients are computed to be

Ei = ⟨xi,s,xi,s⟩ = 1 + v2k2i (s), Fi = ⟨xi,s,xi,v⟩ = 1, Gi = ⟨xi,v,xi,v⟩ = 1.

Since k1(s) = k2(s) for all s ∈ I, we have E1 = E2, F1 = F2, G1 = G2. By Proposition 4.2.1,
x1 ◦ x−1

2 is a local isometry. Since x1 ◦ x−1
2 is also a diffeomorphism, x1 ◦ x−1

2 is an isometry.
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Exercise 2 (Do Carmo 4.2.6*). Let α : I → R3 be a regular parametrized curve with k(t) ̸= 0,
t ∈ I. Let x(t, v) be its tangent surface. Prove that, for each (t0, v0) ∈ I × (R− {0}), there exists
a neighborhood V of (t0, v0) such that x(V ) is isometric to an open set of the plane (thus, tangent
surfaces are locally isometric to planes).

Solution 2. We will construct the desired local isometry. Fir reparametrize by arc length to
get α(s), and define x(s, v) = α(s) + vα′(s). Let k(s) be the curvature of α(s). As in a previous
exercise, let

θ(s) =

∫ s

s0

du k(u), s0 ∈ I

be the angle function, and define a plane curve β(s) by

β(s) =

Å∫ s

s0

du cos θ(u),

∫ s

s0

du sin θ(u), 0

ã
,

β′(s) = (cos θ(s), sin θ(s), 0) =⇒ |β′(s)| = 1,

β′′(s) = θ′(s) (− sin θ(s), cos θ(s), 0) = k(s) (− sin θ(s), cos θ(s), 0) .

Then, the curvature of β(s) is exactly k(s), and hence β(s) is a unit-speed curve with the same
curvature as α. Since both β and β′ lie in the plane z = 0, the image of the tangent surface
x(s, v) = β(s) + vβ′(s) is an open subset of the xy-plane. For x and x, we have

xs = T (s) + vk(s)N(s), xv = T (s),

xs = T (s) + vk(s)N(s), xv = T (s),

where T,N, T ,N are the tangent vector and normal vector of x and x, respectively. The first
fundamental form coefficients of x and x are, respectively,

E = 1 + v2k2(s), F = 1, G = 1,

E = 1 + v2k2(s), F = 1, G = 1.

Since the coefficients agree, by Proposition 4.2.1, the map x ◦ x−1 is a local isometry from x(V )
to an open set of the plane for some neighborhood V of (s0, v0). Therefore, the tangent surface is
locally isometric to an open set of the plane.

Exercise 3 (Do Carmo 4.2.7). Let V and W be n-dimensional vector spaces with inner products
denoted by ⟨ , ⟩ and let F : V → W be a linear map. Prove that the following conditions are
equivalent:

a. ⟨F (v1), F (v2)⟩ = ⟨v1, v2⟩ for all v1, v2 ∈ V .

b. |F (v)| = |v| for all v ∈ V .

c. If {v1, . . . , vn} is an orthonormal basis in V , then {F (v1), . . . , F (vn)} is an orthonormal basis
in W .

d. There exists an orthonormal basis {v1, . . . , vn} in V such that {F (v1), . . . , F (vn)} is an or-
thonormal basis in W .

If any of these conditions is satisfied, F is called a linear isometry of V into W . (When W = V , a
linear isometry is often called an orthogonal transformation.)

Solution 3.

• a. =⇒ b. Suppose ⟨F (v1), F (v2)⟩ = ⟨v1, v2⟩ for all v1, v2 ∈ V . Then for all v ∈ V ,

|v| =
»

⟨v, v⟩ =
»
⟨F (v), F (v)⟩ = |F (v)|.
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• b. =⇒ c. Suppose |F (v)| = |v| for all v ∈ V . Let {v1, . . . , vn} be an orthonormal basis of V .
Then, for all i, j = 1, . . . , n, since the inner product is induced by a norm | · |, we have

⟨F (vi), F (vj)⟩ =
1

2

(
|F (vi) + F (vj)|2 − |F (vi)|2 − |F (vj)|2

)
=

1

2

(
|vi + vj |2 − |vi|2 − |vj |2

)
= ⟨vi, vj⟩ = δij .

Thus, {F (v1), . . . , F (vn)} is an orthonormal set in W . Since F is linear, {F (v1), . . . , F (vn)}
spans Im(F ). Since dim(Im(F )) ≤ n, we have dim(Im(F )) = n, and hence {F (v1), . . . , F (vn)}
is an orthonormal basis of W .

• c. =⇒ d. Since V is finite-dimensional, just pick any orthonormal basis of V .

• d. =⇒ a. Suppose there exists an orthonormal basis {v1, . . . , vn} of V such that {F (v1), . . . , F (vn)}
is an orthonormal basis of W . For all v1, v2 ∈ V , we can write

v1 =

n∑
i=1

aivi, v2 =

n∑
j=1

bjvj ,

where ai, bj ∈ R. Then,

⟨F (v1), F (v2)⟩ =

∞
F

(
n∑
i=1

aivi

)
, F

Ñ
n∑
j=1

bjvj

é∫
=

∞
n∑
i=1

aiF (vi),

n∑
j=1

bjF (vj)

∫
=

n∑
i=1

n∑
j=1

aibj⟨F (vi), F (vj)⟩

=

n∑
i=1

n∑
j=1

aibjδij =

n∑
i=1

aibi =

∞
n∑
i=1

aivi,

n∑
j=1

bjvj

∫
= ⟨v1, v2⟩.

Exercise 4 (Do Carmo 4.2.8*). Let G : R3 → R3 be a map such that

|G(p)−G(q)| = |p− q| for all p, q ∈ R3

(that is, G is a distance-preserving map). Prove that there exists p0 ∈ R3 and a linear isometry
(cf. Exercise 7) F of the vector space R3 such that

G(p) = F (p) + p0 for all p ∈ R3.

Solution 4. Let p0 = G(0), and let F (p) = G(p)− p0. Then, for all p, q ∈ R3, we have

|F (p)− F (q)| = |G(p)−G(q)| = |p− q|, F (0) = G(0)− p0 = 0.

Hence F is a distance-preserving map that fixes the origin. Let {e1, e2, e3} be the standard basis
of R3, and vi = F (ei) for i = 1, 2, 3. Since F is distance-preserving, we have

|vi|2 = |F (ei)− F (0)|2 = |ei − 0|2 = 1, |vi − vj |2 = |F (ei)− F (ej)|2 = |ei − ej |2 = 2,

squaring both sides gives

⟨vi, vj⟩ = 0 for i ̸= j =⇒ {v1, v2, v3} is an orthonormal basis for R3.
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Let L : R3 → R3 be defined by L(ei) = vi for i = 1, 2, 3. Then L is linear by construction, and
L(ei) = vi = F (ei), i = 1, 2, 3. For any p ∈ R3, since L(0) = 0, by the distance-preserving property
of F , we have |F (p)| = |p| = |L(p)|. Then, for all i = 1, 2, 3, we have

|F (p)− F (ei)| = |p− ei| = |L(p)− L(ei)| .

Squaring both sides, then using |F (p)| = |L(p)| and F (ei) = L(ei), we have ⟨F (p)−L(p), F (ei)⟩ = 0.
Hence, F = L, and F is linear. By Exercise 4.3.7, F is a linear isometry. Therefore, there exists a
linear isometry F such that G(p) = F (p) + p0 for all p ∈ R3.

Exercise 5 (Do Carmo 4.2.9). Let S1, S2, and S3 be regular surfaces. Prove that

a. If φ : S1 → S2 is an isometry, then φ−1 : S2 → S1 is also an isometry.

b. If φ : S1 → S2, ψ : S2 → S3 are isometries, then ψ ◦ φ : S1 → S3 is an isometry.

This implies that the isometries of a regular surface S constitute in a natural way a group, called
the group of isometries of S.

Solution 5.

a. Since φ is an isometry, for all p ∈ S1 and all pairs w1, w2 ∈ Tp(S1) we have

⟨w1, w2⟩p = ⟨dφp(w1),dφp(w2)⟩φ(p).

Let q = φ(p) ∈ S2 and u1, u2 ∈ Tq(S2). Since φ is a diffeomorphism, dφ is injective. Since
the differential dφ is a linear transformation between finite-dimensional spaces, it is also
surjective. Thus, there exist w1, w2 ∈ Tp(S1) such that dφp(wi) = ui for i = 1, 2. Thus,

⟨dφ−1
p (u1),dφ

−1
p (u2)⟩q = ⟨w1, w2⟩p = ⟨u1, u2⟩φ(p).

Therefore, φ−1 is an isometry.

b. Suppose φ : S1 → S2 and ψ : S2 → S3 are isometries. Since diffeomorphism between regular
surfaces is an equivalence relation (by previous exercise), ψ ◦ φ is a diffeomorphism. For all
p ∈ S1 and all pairs w1, w2 ∈ Tp(S1), we have

⟨w1, w2⟩p = ⟨dφp(w1),dφp(w2)⟩φ(p)
= ⟨dψφ(p)(dφp(w1)),dψφ(p)(dφp(w2))⟩ψ(φ(p))
= ⟨d(ψ ◦ φ)p(w1),d(ψ ◦ φ)p(w2)⟩(ψ◦φ)(p),

where the chain rule is used in the last equality. Therefore, ψ ◦ φ is an isometry.

Remark. Since function composition is associative and the identity map id : S1 → S1 is an isometry,
by a. and b., the set of isometries on S forms a group.
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