
2025 Fall Introduction to Geometry

Homework 11 (Due Dec 5, 2025)

物理三 黃紹凱 B12202004

December 4, 2025

Theorem 1 (Theorema Egregium). The Gaussian curvature K of a surface is invariant under
local isometries. Explicitly, for a parametrization x(u, v), we have

−EK =
(
Γ2
12

)
u
−
(
Γ2
11

)
v
+ Γ1

12Γ
2
11 + Γ2

12Γ
2
12 − Γ2

11Γ
2
22 − Γ1

11Γ
2
12.

Lemma 1 (Gaussian curvature). The Gaussian curvature K of a regular surface is given by

K =
eg − f2

EG− F 2
.

Proof. Let x : U ⊂ R2 → S ⊂ R3 be a parametrization of a regular surface S. Then, we have

E = ⟨xu,xu⟩, F = ⟨xu,xv⟩, G = ⟨xv,xv⟩,
e = ⟨xuu, N⟩, f = ⟨xuv, N⟩, g = ⟨xvv, N⟩,

where N is the unit normal. In the basis {xu, xv}, the first and second fundamental forms are

g =

Å
E F
F G

ã
, A =

Å
e f
f g

ã
.

The shape operator S : TpS → TpS is defined by S(v) = −dNv, with the principal curvatures k1,
k2 being its eigenvalues. It has been shown that S = g−1A, so

K = detS = det
(
g−1A

)
=

detA

det g
=

eg − f2

EG− F 2
.
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Exercise 4.3.1. Show that if x is an orthogonal parametrization, that is, F = 0, then

K = − 1

2
√
EG

ßÅ
Ev√
EG

ã
v

+

Å
Gu√
EG

ã
u

™
.

Solution 4.3.1. From the definition of the Christoffel symbols, we have

xuu = Γ1
11xu + Γ2

11xv + L1N,

xuv = Γ1
12xu + Γ2

12xv + L2N,

xvv = Γ1
22xu + Γ2

22xv + L3N,

we can compute the relations satisfied by the Christoffel symbols by taking inner product with xu

and xv for each of the three equations above. Then, we get

Γ1
11E + Γ2

11F =
Eu

2
, Γ1

11F + Γ2
11G = Fu − Ev

2
,

Γ1
12E + Γ2

12F =
Ev

2
, Γ1

12F + Γ2
12G =

Gu

2
,

Γ1
22E + Γ2

22F = Fv −
Gu

2
, Γ1

22F + Γ2
22G =

Gv

2
.

Since F = 0 and Γi
jk = Γi

kj , we have

Γ1
11 =

Eu

2E
, Γ2

11 = −Ev

2G
, Γ1

12 = Γ1
21 =

Ev

2E
,

Γ2
12 = Γ2

21 =
Gu

2G
, Γ1

22 = −Gu

2E
, Γ2

22 =
Gv

2G
.

and taking inner product with N gives L1 = e, L2 = f , L3 = g. Thus, we have

xuu =
Eu

2E
xu − Ev

2G
xv + eN,

xuv =
Ev

2E
xu +

Gu

2G
xv + fN,

xvv = −Gu

2E
xu +

Gv

2G
xv + gN.

Next, use equation (1) in Section 4.3 to get

Nu =
fF − eG

EG− F 2
xu +

eF − fE

EG− F 2
xv = − e

E
xu − f

G
xv,

Nv =
gF − fG

EG− F 2
xu +

fF − gE

EG− F 2
xv = − f

E
xu − g

G
xv.

Since the parametrization is continuously differentiable, the partial derivatives commute, and we
have xuuv − xuvu = 0. First, let’s compute the following partial derivatives:Å

Ev

2G

ã
v

=
Evv

2G
− EvGv

2G2
,

Å
Gu

2G

ã
u

=
Guu

2G
− (Gu)

2

2G2
.
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Next, we will compute xuuv:

xuuv = (xuu)v =

Å
Eu

2E
xu − Ev

2G
xv + eN

ã
v

=

Å
Eu

2E

ã
v

xu +
Eu

2E
xuv −

Å
Ev

2G

ã
v

xv −
Ev

2G
xvv + evN + eNv

=

Å
Eu

2E

ã
v

xu +
Eu

2E

ï
Ev

2E
xu +

Gu

2G
xv + fN

ò
−
Å
Ev

2G

ã
v

xv

− Ev

2G

ï
−Gu

2E
xu +

Gv

2G
xv + gN

ò
+ evN + e

Å
− f

E
xu − g

E
xv

ã
=

ïÅ
Eu

2E

ã
v

+
EuEv

4E2
+

EvGu

4EG
− ef

E

ò
xu +

ï
−
Å
Ev

2G

ã
v

+
EuGu

4EG
− EvGv

4G2
− eg

G

ò
xv

+

ï
Euf

2E
− Evg

2G
+ ev

ò
N.

In a similar manner, we have

xuvu = (xuv)u =

Å
Ev

2E
xu +

Gu

2G
xv + fN

ã
u

=

Å
Ev

2E

ã
u

xu +
Ev

2E
xuu +

Å
Gu

2G

ã
u

xv +
Gu

2G
xuv + fuN + fNu

=

Å
Ev

2E

ã
u

xu +
Ev

2E

ï
Eu

2E
xu − Ev

2G
xv + eN

ò
+

Å
Gu

2G

ã
u

xv +
Gu

2G

ï
Ev

2E
xu +

Gu

2G
xv + fN

ò
+ fuN + f

Å
− e

G
xu − f

G
xv

ã
=

ïÅ
Ev

2E

ã
u

+
EuEv

4E2
+

EvGu

4EG
− ef

E

ò
xu +

ïÅ
Gu

2G

ã
u

− (Ev)
2

4EG
+

(Gu)
2

4G2
− f2

G

ò
xv

+

ï
Eve

2E
+

Guf

2G
+ fu

ò
N.

Combining the two results above, we have

xuuv − xuvu =

ïÅ
Eu

2E

ã
v

−
Å
Ev

2E

ã
u

ò
xu +

ï
Euf − Eve

2E
− Evg −Guf

2G
+ ev − fu

ò
N

+

ï
EuGu + (Ev)

2

4EG
− EvGv + (Gu)

2

4G2
− eg − f2

G
−
Å
Ev

2G

ã
v

−
Å
Gu

2G

ã
u

ò
xv = 0.

Since {xu,xv, N} is an orthonormal basis, each coefficient is equal to zero. Set the coefficient of
xv to zero and recall the formula for the Gaussian curvature:

K =
eg − f2

EG− F 2
=

eg − f2

EG

=
EuGu + (Ev)

2

4E2G
− EvGv + (Gu)

2

4EG2
− 1

E

Å
Ev

2G

ã
v

− 1

E

Å
Gu

2G

ã
u

=
EuGu

4E2G
+

(Ev)
2

4E2G
− EvGv

4EG2
− (Gu)

2

4EG2
− Evv

2EG
+

EvGv

2EG2
− Guu

2EG
+

(Gu)
2

2EG2

= − 1

2
√
EG

ï
Guu√
EG

− EuGu

2E
√
EG

− (Gu)
2

2G
√
EG

+
Evv√
EG

− (Ev)
2

2E
√
EG

− EvGv

2G
√
EG

ò
= − 1

2
√
EG

ßÅ
Ev√
EG

ã
v

+

Å
Gu√
EG

ã
u

™
.

Remark. The above formual for the Gaussian curvature of orthogonal parametrizations is known
as the Brioschi formula.
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Exercise 4.3.2. Show that if x is an isothermal parametrization, that is, E = G = λ(u, v) and
F = 0, then

K = − 1

2λ
∆(log λ),

where ∆φ denotes the Laplacian (∂2φ/∂u2) + (∂2φ/∂v2) of the function φ. Conclude that when

E = G = (u2 + v2 + c)−2 and F = 0,

then K = const. = 4c.

Solution 4.3.2. Suppose x is an isothermal parametrization, that is, E = G = λ(u, v) and
F = 0. Then we have

Ev = λv, Gu = λu,

Evv = λvv, Guu = λuu.

From the proof of Exercise 4.3.1, since an isothermal parametrization is orthogonal, we have

K = − 1

2
√
EG

ï
Guu√
EG

− EuGu

2E
√
EG

− (Gu)
2

2G
√
EG

+
Evv√
EG

− (Ev)
2

2E
√
EG

− EvGv

2G
√
EG

ò
= − 1

2λ

ï
λuu

λ
− λ2

u

2λ2
− λ2

u

2λ2
+

λvv

λ
− λ2

v

2λ2
− λ2

v

2λ2

ò
= − 1

2λ

ï
λuu + λvv

λ
− λ2

u + λ2
v

λ2

ò
= − 1

2λ
∆(log λ),

since

∆ (log λ) =

Å
∂2

∂u2
+

∂2

∂v2

ã
(log λ) =

∂

∂u

Å
λu

λ

ã
+

∂

∂v

Å
λv

λ

ã
=

λuu + λvv

λ
− λ2

u + λ2
v

λ2
.

Let E = G = (u2 + v2 + c)−2 and F = 0, then we have λ(u, v) = (u2 + v2 + c)−2. Then,

∂

∂u
(log λ) = −2

∂

∂u
log

(
u2 + v2 + c

)
= − 4u

u2 + v2 + c
,

∂2

∂u2
(log λ) = −4

∂

∂u

Å
u

u2 + v2 + c

ã
= −4

(−u2 + v2 + c)

(u2 + v2 + c)2
,

∂

∂v
(log λ) = −2

∂

∂v
log

(
u2 + v2 + c

)
= − 4v

u2 + v2 + c
,

∂2

∂v2
(log λ) = −4

∂

∂v

Å
v

u2 + v2 + c

ã
= −4

(u2 − v2 + c)

(u2 + v2 + c)2
.

=⇒ K = − 1

2λ
∆(log λ) = −1

2
(u2 + v2 + c)2

Å
− 8c

(u2 + v2 + c)2

ã
= 4c.

This surface has constant Gaussian curvature K = 4c.

Remark. For c > 0, this correponds to the stereographic projection of a sphere of radius 1/
√
c

minus the north pole; for c = 0, this corresponds to the Euclidean plane; and for c < 0, this
corresponds to the stereographic projection of a hyperbolic plane.

Exercise 4.3.3. Verify that the surfaces

x(u, v) = (u cos v, u sin v, log u), u > 0,

x̄(u, v) = (u cos v, u sin v, v),

have equal Gaussian curvature at the points x(u, v) and x̄(u, v), but that the mapping x̄ ◦ x−1 is
not an isometry. This shows that the ”converse” of the Gauss theorem is not true.
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Solution 4.3.3. First, we compute the first fundamental form of x(u, v) and x̄(u, v):

xu =

Å
cos v, sin v,

1

u

ã
, xv = (−u sin v, u cos v, 0) ,

E = ⟨xu,xu⟩ = cos2 v + sin2 v +
1

u2
= 1 +

1

u2
,

F = ⟨xu,xv⟩ = −u cos v sin v + u sin v cos v + 0 = 0,

G = ⟨xv,xv⟩ = u2 sin2 v + u2 cos2 v + 0 = u2.

Similarly, we have

xu = (cos v, sin v, 0), xv = (−u sin v, u cos v, 1),

E = ⟨xu, xu⟩ = cos2 v + sin2 v + 0 = 1,

F = ⟨xu, xv⟩ = −u cos v sin v + u sin v cos v + 0 = 0,

G = ⟨xv, xv⟩ = u2 sin2 v + u2 cos2 v + 1 = u2 + 1.

Notice that for orthogonal parametrizations, the Gaussian curvature only depends on the following
quantities:

Ev = Ev = 0, Gu = Gu = 2u, EG =

Å
1 +

1

u2

ã
u2 = u2 + 1 = EG.

Since F = F = 0, both parametrizations are orthogonal, so by Exercise 4.3.1 the Gaussian curva-
ture at the points x(u, v) and x(u, v) are equal. Consider the map Φ : S → S defined by Φ = x◦x−1,
where S and S are the images of x and x, respectively. Since Φ satisfies Φ(x(u, v)) = x(u, v), we
have

dΦx(u,v)(xu) =
∂

∂u
x(u, v) = xu, dΦx(u,v)(xv) =

∂

∂v
x(u, v) = xv.

Then, we compute the first fundamental form at x(u, v) under the map Φ:

⟨dΦx(u,v)(xu), dΦx(u,v)(xu)⟩ = ⟨xu, xu⟩ = E = 1 ̸= 1 +
1

u2
= E = ⟨xu, xu⟩,

so Φ is not an isometry.

Remark. Two regular surfaces with identical Gaussian curvature at corresponding points are not
necessarily isometric.

Exercise 4.3.8. Compute the Christoffel symbols for an open set of the plane

a. In Cartesian coordinates.

b. In polar coordinates.

Use the Gauss formula to compute K in both cases.

Solution 4.3.8.

a. An open set of the plane can be parametrized in Cartesian coordinates as x(u, v) = (u, v, 0).
Then, we have

E = ⟨xu,xu⟩ = 1, F = ⟨xu,xv⟩ = 0, G = ⟨xv,xv⟩ = 1.

Since F = 0 and E,G ̸= 0, we have

Γ1
11 =

Eu

2E
= 0, Γ2

11 = −Ev

2G
= 0, Γ1

12 = Γ1
21 =

Ev

2E
= 0,

Γ2
12 = Γ2

21 =
Gu

2G
= 0, Γ1

22 = −Gu

2E
= 0, Γ2

22 =
Gv

2G
= 0.
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Hence, all Christoffel symbols are zero. Next, compute

xuu = xuv = xvv = 0,

so with the unit normal N = (0, 0, 1), we have

e = ⟨xuu, N⟩ = 0, f = ⟨xuv, N⟩ = 0, g = ⟨xvv, N⟩ = 0.

Therefore, since EG− F 2 ̸= 0, the Gaussian curvature is given by the Gauss formula as

K =
eg − f2

EG− F 2
= 0.

b. An open set of the plane can also be parametrized in polar coordinates, given by the
parametrization x(u, v) = (u cos v, u sin v, 0). Then, we have

E = ⟨xu,xu⟩ = 1, F = ⟨xu,xv⟩ = 0, G = ⟨xv,xv⟩ = u2.

Since F = 0, we have the following Christoffel symbols whenever u ̸= 0:

Γ1
11 =

Eu

2E
= 0, Γ2

11 = −Ev

2G
= 0, Γ1

12 = Γ1
21 =

Ev

2E
= 0,

Γ2
12 = Γ2

21 =
Gu

2G
=

1

u
, Γ1

22 = −Gu

2E
= −u, Γ2

22 =
Gv

2G
= 0.

Unlike in the Cartesian coordinates, not all Christoffel symbols are zero. Next, compute

xuu = (0, 0, 0), xuv = (− sin v, cos v, 0), xvv = (−u cos v,−u sin v, 0),

so with the unit normal N = (0, 0, 1), we have

e = ⟨xuu, N⟩ = 0, f = ⟨xuv, N⟩ = 0, g = ⟨xvv, N⟩ = 0.

Therefore, since EG− F 2 ̸= 0, the Gaussian curvature is given by the Gauss formula as

K =
eg − f2

EG− F 2
= 0.

Exercise 4.3.9. Justify why the surfaces below are not pairwise locally isometric:

a. Sphere.

b. Cylinder.

c. Saddle z = x2 − y2.

Solution 4.3.9.

a. The sphere has constant positive Gaussian curvature. Let a sphere of radius r be centered
about the origin, and let x(θ, ϕ) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ) be a parametrization of
the sphere. Then,

xθ = (r cos θ cosϕ, r cos θ sinϕ, −r sin θ),

xϕ = (−r sin θ sinϕ, r sin θ cosϕ, 0),

and we have
E = r2, F = 0, G = r2 sin2 θ.

We can compute
Eϕ = 0, Gθ = 2r2 sin θ cos θ, EG = r4 sin2 θ.
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Then, Å
Eϕ√
EG

ã
ϕ

= 0,

Å
Gθ√
EG

ã
θ

= (cos θ)θ = − sin θ.

Since F = 0, the parametrization is orthogonal. By Exercise 4.3.1 we have

K = − 1

2r2 sin θ
(− sin θ) =

1

2r2
> 0.

b. The cylinder has zero Gaussian curvature. Let a cylinder of radius r be centered about the
z-axis, and let x(θ, z) = (r cos θ, r sin θ, z) be a parametrization of the cylinder. Then,

xθ = (−r sin θ, r cos θ, 0), xz = (0, 0, 1),

and we have
E = r2, F = 0, G = 1.

We can compute
Ez = 0, Gθ = 0, EG = r2.

Then, Å
Ez√
EG

ã
z

= 0,

Å
Gθ√
EG

ã
θ

= 0.

Since F = 0, the parametrization is orthogonal. By Exercise 4.3.1 we have

K = − 1

2r
(0 + 0) = 0.

c. The saddle has negative Gaussian curvature. Let the saddle be given by the parametrization
x(u, v) = (u, v, u2 − v2). Then,

xu = (1, 0, 2u), xv = (0, 1,−2v),

xuu = (0, 0, 2), xuv = (0, 0, 0), xvv = (0, 0,−2),

and we have E = 1 + 4u2, F = −4uv, and G = 1 + 4v2. The normal vector of the surface is
given by

N =
xu ∧ xv

∥xu ∧ xv∥
=

(−2u, 2v, 1)√
1 + 4u2 + 4v2

.

Then, we have

e = ⟨xuu, N⟩ = 2√
1 + 4u2 + 4v2

, f = ⟨xuv, N⟩ = 0, g = ⟨xvv, N⟩ = −2√
1 + 4u2 + 4v2

.

Since EG− F 2 = (1 + 4u2)(1 + 4v2)− 16u2v2 = 1 + 4u2 + 4v2 ̸= 0, the Gaussian curvature
is given by the Gauss formula as

K =
eg − f2

EG− F 2
=

Å
2√

1 + 4u2 + 4v2

ãÅ −2√
1 + 4u2 + 4v2

ã
− 0

1 + 4u2 + 4v2
=

−4

(1 + 4u2 + 4v2)2
< 0.

Suppose a. to c. are pairwise locally isometric, then by the Theorema Egregium they must have
identical Gaussian curvature at corresponding points, a contradiction to our above calculation.
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