2025 Fall Introduction to Geometry

Homework 11 (Due Dec 5, 2025)
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Theorem 1 (Theorema Egregium). The Gaussian curvature K of a surface is invariant under
local isometries. Explicitly, for a parametrization x(u,v), we have

—EK = (F%)u - (Ffl)v + T}, + 5,0, - THI3, — T T,

Lemma 1 (Gaussian curvature). The Gaussian curvature K of a regular surface is given by
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Proof. Let x: U C R? = S C R? be a parametrization of a regular surface S. Then, we have

E = <XU7XU>) F = <XuaXU>7 G = <XU7X’U>3
€:<qu,N>, f:<xuv7N>a gz(xw,N>,

where N is the unit normal. In the basis {x,, x,}, the first and second fundamental forms are

_(E F (e f)
0=(r o) 4= 1)
The shape operator S : T,,S — T,S is defined by S(v) = —dN,,, with the principal curvatures ki,

ko being its eigenvalues. It has been shown that S = g~=!A, so

_detA eg — f?
~detg EG-—F?

K =detS = det (g_lA)



Exercise 4.3.1. Show that if x is an orthogonal parametrization, that is, F' = 0, then

* =7 (7m), (7).}

Solution 4.3.1. From the definition of the Christoffel symbols, we have

Xy = 11Xy +T2,x, + L1 N,
Xuy = DloXy + T25%, + Lo N,
Xov = F%QXu + F%QX'U + L3N7

we can compute the relations satisfied by the Christoffel symbols by taking inner product with x,
and x, for each of the three equations above. Then, we get

E, E,
ML E+THE = 50 F%1F+F%1G:Fu_77

E, Gy
ILE+THLF = >0 [ F +T1,G = 5

Gu Gy
[WE+T35,F=F, — - [y, F +135,G = 5

Since F' = 0 and F;k = I‘};j, we have

E, E, E,
Fh:TE’ %1:_726" F12: %1:72E’

2 2 Gy 1 Gu 9 G,
=T =55 Te=—5p Inm=5a

and taking inner product with N gives L1 = e, Lo = f, L3 = g. Thus, we have

E, E,
Xuu = ﬁxu - ﬁxv + BN,
E G
uv — — u — v Na
Xuo = opXut ogXe tf
Gy +G”x LN
Xpy = ———Xqy + — )
v op u T 5% g
Next, use equation (1) in Section 4.3 to get
N fF —eG eF—fEX € . <
= X = T nXu T AXu
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Y = =X, Xy.

X X - =
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Since the parametrization is continuously differentiable, the partial derivatives commute, and we
have X4y — Xypw = 0. First, let’s compute the following partial derivatives:
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Next, we will compute Xy :

FE, E,
Xuuv = (xuu)u = (ﬁxu - ﬁxv + BN) ,
FE, FE, FE,
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In a similar manner, we have
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Combining the two results above, we have
E E, E.f—E,e FE,g—G
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Since {xy,X,, N} is an orthonormal basis, each coefficient is equal to zero. Set the coefficient of
X, to zero and recall the formula for the Gaussian curvature:
o 9= _eg—f?
EG — F? EG
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Remark. The above formual for the Gaussian curvature of orthogonal parametrizations is known

as the Brioschi formula.




Exercise 4.3.2. Show that if x is an isothermal parametrization, that is, E = G = A(u,v) and
F =0, then

1
K=-—A(
2)\ ( Og A)?
where A denotes the Laplacian (0%¢/0u?) + (0%¢/0v?) of the function ¢. Conclude that when
E=G=@W?+v*4+¢)™? and F=0,

then K = const. = 4c.

Solution 4.3.2. Suppose x is an isothermal parametrization, that is, £ = G = A(u,v) and
F = 0. Then we have

Ev = )\va Gu = Aua
Evv = )\vm Guu = >\uu

From the proof of Exercise 4.3.1, since an isothermal parametrization is orthogonal, we have

_ 1 {Guu _ EuGu _ (Gu)2 + Evv _ (Ev)2 _ Eva
2WEG \WEG 2EVEG 2GVEG VEG 2EVEG 2GVEG
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since
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Let E =G = (u? +v? +¢)~2 and F = 0, then we have \(u,v) = (u? + v? 4 ¢)~2. Then,

aau(log A) = —23% log (u® + v +¢) = _ﬁ’
ai;(logA) = —4% (ﬁ) _ 4 m7
e = i () = ‘4<(5+_:>)

This surface has constant Gaussian curvature K = 4c.

Remark. For ¢ > 0, this correponds to the stereographic projection of a sphere of radius 1/+/c
minus the north pole; for ¢ = 0, this corresponds to the Euclidean plane; and for ¢ < 0, this
corresponds to the stereographic projection of a hyperbolic plane.

Exercise 4.3.3. Verify that the surfaces
x(u,v) = (ucosv, usinv, logu), u >0,

x(u,v) = (ucosv, usinv, v),

have equal Gaussian curvature at the points x(u,v) and %X(u,v), but that the mapping X o x~! is
not an isometry. This shows that the ”converse” of the Gauss theorem is not true.



Solution 4.3.3. First, we compute the first fundamental form of x(u,v) and x(u, v):

. 1 .
Xy = (cosv,smv, -], x,=(—usinv,ucosv,0),
u

. 1 1

E:(xu,xu>:cos2v+sm21)+—:1+—,
u2 u?

F = (xy,%Xy) = —ucosvsinv + usinvcosv + 0 = 0,
G = (X4, %,) = u?sin? v + u? cos® v + 0 = u?.

Similarly, we have
cosv, sinw, 0), X, = (—usinv, ucosv, 1),
Ky, Xu) = cos?v +sinv+0 =1,

= (Ry, Xy) = —ucosvsinv + usinvcosv + 0 = 0,

Qo m S
|

= (Xy, Xp) =u?sin?v+ulcos?v+1=0u?+1.
Notice that for orthogonal parametrizations, the Gaussian curvature only depends on the following
quantities:

_ _ 1 _
E,=E,=0, G,=G,=2u, EG:<1+E)U2:u2+1:EG.

Since F = F = 0, both parametrizations are orthogonal, so by Exercise 4.3.1 the Gaussian curva-

ture at the points x(u, v) and X(u, v) are equal. Consider the map ® : S — S defined by ® = Xox ™1,

where S and S are the images of x and X, respectively. Since ® satisfies ®(x(u,v)) = X(u,v), we
have

0 _ _ 0 _ _
APy (y,0) (Xu) = %x(u,v) =Xy, APy(u,0)(X0) = %x(u,v) =X,.

Then, we compute the first fundamental form at x(u,v) under the map ®:

_ — 1
<d¢)x(u,v) (Xu)7 dq)x(u,'u)(xu>> = <Xu; Xu> =F=1 7é 1+ ? =F= <XU7 Xu>7

so @ is not an isometry.

Remark. Two regular surfaces with identical Gaussian curvature at corresponding points are not
necessarily isometric.

Exercise 4.3.8. Compute the Christoffel symbols for an open set of the plane
a. In Cartesian coordinates.
b. In polar coordinates.

Use the Gauss formula to compute K in both cases.

Solution 4.3.8.

a. An open set of the plane can be parametrized in Cartesian coordinates as x(u,v) = (u, v, 0).
Then, we have

E= <Xuaxu> = 17 = <Xu7X1)> = Oa G = <X7,,XU> =1.

Since F =0 and F,G # 0, we have

E, E, E,
Fh:TE:O’ F%lz_%zov I‘b:l“%l:ﬁ:O,
G G G
2 _ 12 _ u — 1 R u — 2 — v =
Tz =T = 2G 0, I o5~ T2 2G 0.



Hence, all Christoffel symbols are zero. Next, compute
Xuu = Xup = Xy = 0,
so with the unit normal N = (0,0,1), we have
e = (Xuu, N) =0, f=(Xu, N) =0, g=(Xpp, N) =0.
Therefore, since EG — F? # 0, the Gaussian curvature is given by the Gauss formula as

K eg — f?

oz v

b. An open set of the plane can also be parametrized in polar coordinates, given by the
parametrization x(u,v) = (ucosv,usinv,0). Then, we have

F=(x,,x,) =1 F=(x4,%,)=0G=(x,,%x,) =1’
Since F' = 0, we have the following Christoffel symbols whenever u # 0:
E

) E E,

Fh:ﬁ:o, Fu:—ﬁzov F%QZF%:@:O,
Gu 1 Gu GU
I‘ﬂ:r%l:ﬁza, F%zz_ﬁ:_ua I‘%Z:%:Q

Unlike in the Cartesian coordinates, not all Christoffel symbols are zero. Next, compute
Xuu = (0,0,0), Xyup = (—sinv,cosv,0), Xup = (—ucosv, —usinv,0),
so with the unit normal N = (0,0,1), we have
e = (Xuus N) =0, f= (X, N) =0, g = (xp, N) = 0.
Therefore, since EG — F? # 0, the Gaussian curvature is given by the Gauss formula as

K- eg— f?

“Ba-p "

Exercise 4.3.9. Justify why the surfaces below are not pairwise locally isometric:
a. Sphere.
b. Cylinder.
c. Saddle z = 2% — ¢2.

Solution 4.3.9.

a. The sphere has constant positive Gaussian curvature. Let a sphere of radius r be centered
about the origin, and let x(6, ¢) = (rsinf cos ¢, rsin 0 sin @, r cos #) be a parametrization of
the sphere. Then,

xp = (rcos @ cos ¢, rcosfsin ¢, —rsin ),
Xp = (—rsin@sin¢, 'f'SingCOS(j)v O)’

and we have
E=r% F=0, G=r%sin?0.

We can compute
Ey=0, Gg= 2r?sinfcos, FEG =r*sin?é.



Then,

(\;;%)4) =0, (\/C;LG)(; = (cosf)g = —sinb.

Since F' = 0, the parametrization is orthogonal. By Exercise 4.3.1 we have

1 1
K=-—(—sinf) = — > 0.
272 Sin9( sin.) 272 -

b. The cylinder has zero Gaussian curvature. Let a cylinder of radius r be centered about the
z-axis, and let x(6, z) = (rcos@,rsinf, z) be a parametrization of the cylinder. Then,

xg = (—rsinf, rcosh, 0), x, = (0,0, 1),

and we have
We can compute

Then,

() o ().

Since F' = 0, the parametrization is orthogonal. By Exercise 4.3.1 we have

1
K=—3(0+0)=0.

c. The saddle has negative Gaussian curvature. Let the saddle be given by the parametrization
x(u,v) = (u,v,u? — v?). Then,

x, = (1,0,2u), x,=(0,1,—2v),
qu = (07072)7 Xu’U = (07070)7 X’UU = (0707 _2)7

and we have E = 1 + 4u?, F = —4uv, and G = 1 + 4v2. The normal vector of the surface is
given by
Xy A Xy (—2u,2v,1)

N = — .
%o AXoll 1+ 4uZ + 402

Then, we have
(s N) = f = s N) =0, g = (x0, N) 2
€ = (Xyu, =, = (Xuv» =0, = (Xypov, _——_—
e V14 4u? + 402 " g v V14 4u? + 402

Since EG — F? = (1 + 4u?)(1 + 4v?) — 16u%v? = 1 + 4u? + 4v? # 0, the Gaussian curvature
is given by the Gauss formula as

—0
o c9- 1 :(\/1+4u2+4v2 VI +4u? + 402 _ —4 -0
EG — F? 1+ du? + 402 (1+4u? +402)2 =

Suppose a. to c. are pairwise locally isometric, then by the Theorema Egregium they must have
identical Gaussian curvature at corresponding points, a contradiction to our above calculation.




