2025 Fall Introduction to Geometry

Homework 2 (Due Sep 19, 2025)
WA~ HFE = FHB I B12202004
September 19, 2025

Remark (1). In the particular case of a plane curve o : I — R2?, it is possible to give the
curvature k a sign. For that, let {e1,ea} be the natural basis (see Sec. 1-4) of R? and define the
normal vector n(s), s € I, by requiring the basis {¢(s),n(s)} to have the same orientation as the
basis {e1,e2}. The curvature k is then defined by

dt
&k
ds "

and might be either positive or negative. It is clear that |k| agrees with the previous definition and
that k changes sign when we change either the orientation of o or the orientation of R? (Fig. 1-16).

Problem 1 (Do Carmo 1.5.7). Let a : I — R? be a regular parametrized plane curve (arbitrary
parameter), and define n = n(¢) and k = k(t) as in Remark 1. Assume that k(t) #0,t € I. In
this situation, the curve

B(t) = alt) + k—n(t), tel, (1)

is called the evolute of « (Fig. 1-17).

a. Show that the tangent at t of the evolute of « is the normal to « at t.

b. Consider the normal lines of a at two neighboring points ¢y, ts, t1 # to. Let t; approach to
and show that the intersection points of the normals converge to a point on the trace of the
evolute of a.

Solution 1.

a. Let 8 be the evolute. By the chain rule, we have

_dnds
T ds t

n'(t)

By direct differentiation of 3, we get

Hence, the tangent at ¢ of 3 is precisely n(t).

b. Let the normal be given by n(t) = (a(t),b(t)), then a'(t) # 0 or ¥'(t) # 0 for all ¢ since
a is regular. Take some to € I, assume without loss of generality that a/(t2) # 0. For
teJ=(ty —0,t2 + §), we have

/ ag, — g 1, Nty — Q¢ 1,
to)] — t < 2ld(t2)],
| (t2)] - < |d'(t2) — 2\0(2)\
and ,
to) —al(t t
oltz) — 0] _ W _
to —t 2




hence a(t) # a(tz) for any ¢ in a neighborhood of t5. Therefore, if we fix t; € J, 1 # t2, then
the normal lines N1, N of a at t1,ts will have a unique intersection. Lq, Lo are well-defined
given that n(t) # 0 for all ¢ € I. Let h € R? be the intersection point, then

h = a(ty) + pin(ty) = a(ta) + pan(ta),

where p1,p2 € I are constants. We shall show that as t; — {2, po — 1/k(t2). The area
spanned by n(t;) and «(ty) is

det(a(t1),n(t1)) = det(a(ta), n(t1)) + p1 det(n(ta), n(t1)),

hen
k _det(a(ty) — afta), n(t1))
P2 = T et (nlta), n(ty))
Taking the limit t; — to gives, by L’Hopital’s rule,
i py = det(a/(t2), n(t2)) _ 1
totat o det(n(ta),n'(t2))  k(ts)
i det(/(02), n(t2) ~ det(a(t) — afta). ~k(tr) a'(12)
t1—=t2 det(n(t2), —k(t1) o/ (t1))
o @ det(() o'(1), alt) — a(t2)
ti—ts k(t)) || 1>t k(ty) | (t1)]
1
" k()
Therefore,
tlhgg h = a(ty) + @n(tz) = B(t2),

which is a point on the evolute of a.

Problem 2 (Do Carmo 1.5.8). The trace of the parametrized curve (arbitrary parameter)
a(t) = (t,cosht), t eR, (2)
is called the catenary.

a. Show that the signed curvature (cf. Remark 1) of the catenary is

h) = coslhzt' ¥

b. Show that the evolute (cf. Exercise 7) of the catenary is

B(t) = (t —sinht cosht, 2cosht). (4)

Solution 2.

To keep the notation unambiguous, we will denote the (unit) tangent vector by T. Recall
that n(t) = T'(t)/|T"(t)|, by remark 1, the signed curvature is given by
dar  dT/dt  T'(t)
W) =75 = G/ar = o) 5)

Plugging in the expression for n(t) simplifies it to

7" (1)]
o/ (B)]

k(t) =



a. We have o/(t) = (1,sinht), |o/(t)] = V/1+sinh®t = cosht. Then T(t) = o/(t)/|/(t)| =
secht(1,sinh¢) and
T'(t) = sech®t (—sinht, 1),
|T"(t)| = sech® t\/sinh®t + 1 = secht,
By equation @, we have

secht 9 1
k(t) = =sech”“t = .
() cosht See cosh?t

b. By definition in Exercise 7, the evolute is given by
1
t) = ot —n(t
(1) = a(t) + g
= (t,cosht) 4 cosh®t secht(—sinht, 1) (8)
= (t — sinh t cosh ¢, 2 cosht).

Problem 3 (Do Carmo 1.5.9). Given a differentiable function k(s), s € I, show that the
parametrized plane curve having k(s) = k as curvature is given by

as) = (/ ds cosf(s) + a, /ds sinf(s) + b> , (9)

where

0(s) = /dsk(s) +o (10)

and that the curve is determined up to a translation of the vector (a,b) and a rotation of the angle
©.

Solution 3. Let a(s) be as given, we have

o/(s) = (cosf(s),sinf(s)) = <cos (/ k(s)ds + <p> ,sin (/k;(s) ds + gp)) , (11)

and
a'(s) = k(s) (—sin0(s), cos6(s)), (12)
hence |a”(s)| = k(s). By the definition of translation, the curve is determined up to a translation

of the vector (a,b), so suppose a = b = 0. Now suppose we rotate the curve by an angle ¢
counterclockwise, then the new curve &(s) is given by

G(s) = <cos<p —sin <p> a(s)

sing  cosy

B (cosgafds cosf(s) —siny [ ds sin 9(8))
~ \singp [ ds cosf(s) + cosp [ ds sinf(s)

_ (f ds cos(0(s) + g@))
[ ds sin(6(s) + )/

Thus, the curve is determined up to an arbitrary rotation of the angle .
Remark. This exercises shows how to construct a curve with any given curvature functions k(s),

up to a translation and rotation. This is a special case of the Fundamental Theorem of the
Local Theory of Curves.



Problem 4 (Do Carmo 1.5.11). One often gives a plane curve in polar coordinates by p = p(6),
a<0<hb.

a. Show that the arc length is
b
| oo (13
a

where the prime denotes the derivative relative to 6.

b. Show that the curvature is
2(p')* — pp" + p*

(242"

k(0) =

Solution 4.
a. Calculate the curve vector in Cartesian coordinates:
a(0) = (p(6) cos 0, p(0) sin0),

Then
a'(0) = (p'(0) cos O — p(0) sin b, p'(0)sind + p(#) cosb),

and computing the norm gives
o/ (0) =/ (¢'(0))? + p*(0).

The arclength is defined to be
b b
s(a,b) = / a0 o/ (6)] = / 40\/p 1 (7). (15)

b. The unit tangent is

_ 2O _ L '(6) cos 8 — sin '(6) sin cos

Then we calculate T7”(6) and its magnitude, where prime denotes derivative with respect to
0. After some cumbersome algebra, we get

T'(0) = 575 ((20)? = ppl" + p*)(~ sin), cost))

((p)? +p?)
By equation @, we have

_1T'O)] _ 2(p')? = pp" +p?
@] (P 1o

k(6)

Problem 5 (Do Carmo 1.5.14). Let a : (a,b) — R? be a regular parametrized plane curve.
Assume that there exists tg, a < to < b, such that the distance |«(t)| from the origin to the trace
of o will be a maximum at ty. Prove that the curvature k of « at t( satisfies

[k (to)| >

|au(to)|

Solution 5. Notice that f(t) = |a(t)| is nonnegative, so f2(t) = a(t)-a(t) also attains a maximum
at tg. Then

%fQ(t) = 2a(tg) - o/ (ty) = 0,

t=to



differentiating again gives

d2
ﬁ]ﬁ(t) = o (to) - o (to) + a(to) - & (to) <0,

since f(t) attains a maximum at to. We also have o/(tg) - o/(tp) = 1 since it is a parametrization
by arclength, and o (to) = k(to)n(to). Then let 6 be the angle between «(ty) and o, we have

k(to)n(to)a(to) = [k(to)|In(to)l[ex(to)] cos 6 < —1.

Notice that |n(tg)| = 1 and cosf < 0, we have

1
k(to) > lau(to) cos b = lau(to)]”



