
2025 Fall Introduction to Geometry

Homework 2 (Due Sep 19, 2025)

物理、數學三 黃紹凱 B12202004

September 19, 2025

Remark (1). In the particular case of a plane curve α : I → R2, it is possible to give the
curvature k a sign. For that, let {e1, e2} be the natural basis (see Sec. 1-4) of R2 and define the
normal vector n(s), s ∈ I, by requiring the basis {t(s), n(s)} to have the same orientation as the
basis {e1, e2}. The curvature k is then defined by

dt

ds
= kn

and might be either positive or negative. It is clear that |k| agrees with the previous definition and
that k changes sign when we change either the orientation of α or the orientation of R2 (Fig. 1-16).

Problem 1 (Do Carmo 1.5.7). Let α : I → R2 be a regular parametrized plane curve (arbitrary
parameter), and define n = n(t) and k = k(t) as in Remark 1. Assume that k(t) ̸= 0, t ∈ I. In
this situation, the curve

β(t) = α(t) +
1

k(t)
n(t), t ∈ I, (1)

is called the evolute of α (Fig. 1–17).

a. Show that the tangent at t of the evolute of α is the normal to α at t.

b. Consider the normal lines of α at two neighboring points t1, t2, t1 ̸= t2. Let t1 approach t2
and show that the intersection points of the normals converge to a point on the trace of the
evolute of α.

Solution 1.

a. Let β be the evolute. By the chain rule, we have

n′(t) =
dn

ds

ds

t
= −k(t)

α′(t)

|α′(t)|
|α′(t)| = −k(t)α′(t).

By direct differentiation of β, we get

β′(t) = α′(t) +
−k(t)2 α′(t)− n(t) k(t)

k(t)2
= − k′(t)

k(t)2
n(t).

Hence, the tangent at t of β is precisely n(t).

b. Let the normal be given by n(t) = (a(t), b(t)), then a′(t) ̸= 0 or b′(t) ̸= 0 for all t since
α is regular. Take some t2 ∈ I, assume without loss of generality that a′(t2) ̸= 0. For
t ∈ J = (t2 − δ, t2 + δ), we have

|a′(t2)| −
∣∣∣∣at2 − at
t2 − t

∣∣∣∣ ≤ ∣∣∣∣a′(t2)at2 − at
t2 − t

∣∣∣∣ < 1

2
|a′(t2)|,

and ∣∣∣∣a(t2)− a(t)

t2 − t

∣∣∣∣ > |a′(t2)|
2

> 0,
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hence a(t) ̸= a(t2) for any t in a neighborhood of t2. Therefore, if we fix t1 ∈ J , t1 ̸= t2, then
the normal lines N1, N2 of α at t1, t2 will have a unique intersection. L1, L2 are well-defined
given that n(t) ̸= 0 for all t ∈ I. Let h ∈ R2 be the intersection point, then

h = α(t1) + p1n(t1) = α(t2) + p2n(t2),

where p1, p2 ∈ I are constants. We shall show that as t1 → t2, p2 → 1/k(t2). The area
spanned by n(t1) and α(t1) is

det(α(t1), n(t1)) = det(α(t2), n(t1)) + p1 det(n(t2), n(t1)),

then

p2 =
det(α(t1)− α(t2), n(t1))

det(n(t2), n(t1))
.

Taking the limit t1 → t2 gives, by L’Hôpital’s rule,

lim
t1→t2

p2 =
det(α′(t2), n(t2))

det(n(t2), n′(t2))
=

1

k(t2)

= lim
t1→t2

det(α′(t1), n(t1))− det(α(t1)− α(t2), −k(t1)α
′(t1))

det(n(t2),−k(t1)α′(t1))

= lim
t1→t2

|α′(t1)|
k(t1) ||

+ lim
t1→t2

det(k(t1)α
′(t1), α(t1)− α(t2))

k(t1) |α′(t1)|

=
1

k(t2)
.

Therefore,

lim
t1→t2

h = α(t2) +
1

k(t2)
n(t2) = β(t2),

which is a point on the evolute of α.

Problem 2 (Do Carmo 1.5.8). The trace of the parametrized curve (arbitrary parameter)

α(t) = (t, cosh t), t ∈ R, (2)

is called the catenary.

a. Show that the signed curvature (cf. Remark 1) of the catenary is

k(t) =
1

cosh2 t
. (3)

b. Show that the evolute (cf. Exercise 7) of the catenary is

β(t) =
(
t− sinh t cosh t, 2 cosh t

)
. (4)

Solution 2.

To keep the notation unambiguous, we will denote the (unit) tangent vector by T . Recall
that n(t) = T ′(t)/|T ′(t)|, by remark 1, the signed curvature is given by

k(t)n(t) =
dT

ds
=

dT/dt

ds/dt
=

T ′(t)

|α′(t)|
. (5)

Plugging in the expression for n(t) simplifies it to

k(t) =
|T ′(t)|
|α′(t)|

. (6)
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a. We have α′(t) = (1, sinh t), |α′(t)| =
√
1 + sinh2 t = cosh t. Then T (t) = α′(t)/|α′(t)| =

sech t(1, sinh t) and
T ′(t) = sech2 t (− sinh t, 1) ,

|T ′(t)| = sech2 t
√
sinh2 t+ 1 = sech t,

By equation (6), we have

k(t) =
sech t

cosh t
= sech2 t =

1

cosh2 t
. (7)

b. By definition in Exercise 7, the evolute is given by

β(t) = α(t) +
1

k(t)
n(t)

= (t, cosh t) + cosh2 t sech t(− sinh t, 1)

= (t− sinh t cosh t, 2 cosh t).

(8)

Problem 3 (Do Carmo 1.5.9). Given a differentiable function k(s), s ∈ I, show that the
parametrized plane curve having k(s) = k as curvature is given by

α(s) =

Å∫
ds cos θ(s) + a,

∫
ds sin θ(s) + b

ã
, (9)

where

θ(s) =

∫
ds k(s) + φ, (10)

and that the curve is determined up to a translation of the vector (a, b) and a rotation of the angle
φ.

Solution 3. Let α(s) be as given, we have

α′(s) = (cos θ(s), sin θ(s)) =

Å
cos

Å∫
k(s) ds+ φ

ã
, sin

Å∫
k(s) ds+ φ

ãã
, (11)

and
α′′(s) = k(s) (− sin θ(s), cos θ(s)) , (12)

hence |α′′(s)| = k(s). By the definition of translation, the curve is determined up to a translation
of the vector (a, b), so suppose a = b = 0. Now suppose we rotate the curve by an angle φ
counterclockwise, then the new curve α̃(s) is given by

α̃(s) =

Å
cosφ − sinφ
sinφ cosφ

ã
α(s)

=

Å
cosφ

∫
ds cos θ(s)− sinφ

∫
ds sin θ(s)

sinφ
∫
ds cos θ(s) + cosφ

∫
ds sin θ(s)

ã
=

Å∫
ds cos(θ(s) + φ)∫
ds sin(θ(s) + φ)

ã
.

Thus, the curve is determined up to an arbitrary rotation of the angle φ.

Remark. This exercises shows how to construct a curve with any given curvature functions k(s),
up to a translation and rotation. This is a special case of the Fundamental Theorem of the
Local Theory of Curves.
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Problem 4 (Do Carmo 1.5.11). One often gives a plane curve in polar coordinates by ρ = ρ(θ),
a ≤ θ ≤ b.

a. Show that the arc length is ∫ b

a

dθ
»
ρ2 + (ρ′)2, (13)

where the prime denotes the derivative relative to θ.

b. Show that the curvature is

k(θ) =
2(ρ′)2 − ρρ′′ + ρ2(

(ρ′)2 + ρ2
)3/2 . (14)

Solution 4.

a. Calculate the curve vector in Cartesian coordinates:

α(θ) = (ρ(θ) cos θ, ρ(θ) sin θ),

Then
α′(θ) = (ρ′(θ) cos θ − ρ(θ) sin θ, ρ′(θ) sin θ + ρ(θ) cos θ),

and computing the norm gives

|α′(θ)| =
»
(ρ′(θ))2 + ρ2(θ).

The arclength is defined to be

s(a, b) =

∫ b

a

dθ |α′(θ)| =
∫ b

a

dθ
»
ρ2 + (ρ′)2. (15)

b. The unit tangent is

T (θ) =
α′(θ)

|α′(θ)|
=

1√
(ρ′)2 + ρ2

(ρ′(θ) cos θ − ρ(θ) sin θ, ρ′(θ) sin θ + ρ(θ) cos θ).

Then we calculate T ′(θ) and its magnitude, where prime denotes derivative with respect to
θ. After some cumbersome algebra, we get

T ′(θ) =
1

((ρ′)2 + ρ2)3/2
(
(2(ρ′)2 − ρρ′′ + ρ2)(− sin θ, cos θ)

)
,

By equation (6), we have

k(θ) =
|T ′(θ)|
|α′(θ)|

=
2(ρ′)2 − ρρ′′ + ρ2

((ρ′)2 + ρ2)3/2
. (16)

Problem 5 (Do Carmo 1.5.14). Let α : (a, b) → R2 be a regular parametrized plane curve.
Assume that there exists t0, a < t0 < b, such that the distance |α(t)| from the origin to the trace
of α will be a maximum at t0. Prove that the curvature k of α at t0 satisfies

|k(t0)| ≥
1

|α(t0)|
.

Solution 5. Notice that f(t) = |α(t)| is nonnegative, so f2(t) = α(t)·α(t) also attains a maximum
at t0. Then

d

dt
f2(t)

∣∣∣
t=t0

= 2α(t0) · α′(t0) = 0,
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differentiating again gives

d2

dt2
f2(t)

∣∣∣
t=t0

= α′(t0) · α′(t0) + α(t0) · α′′(t0) ≤ 0,

since f(t) attains a maximum at t0. We also have α′(t0) · α′(t0) = 1 since it is a parametrization
by arclength, and α′′(t0) = k(t0)n(t0). Then let θ be the angle between α(t0) and α′′, we have

k(t0)n(t0)α(t0) = |k(t0)||n(t0)||α(t0)| cos θ ≤ −1.

Notice that |n(t0)| = 1 and cos θ < 0, we have

k(t0) ≥
1

|α(t0) cos θ|
≥ 1

|α(t0)|
.
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