
2025 Fall Introduction to Geometry

Homework 3 (Due Sep 26, 2025)

物理、數學三 黃紹凱 B12202004

September 26, 2025

Problem 1 (Do Carmo 1.5.10). Consider the map

α(t) =


(t, 0, e−1/t2), t > 0

(t, e−1/t2 , 0), t < 0

(0, 0, 0), t = 0

(1)

a. Prove that α is a differentiable curve.

b. Prove that α is regular for all t and that the curvature k(t) ̸= 0, for t ̸= 0, t ̸= ±
√
2/3, and

k(0) = 0.

c. Show that the limit of the osculating planes as t → 0, t > 0, is the plane y = 0 but that the
limit of the osculating planes as t → 0, t < 0, is the plane z = 0 (this implies that the normal
vector is discontinuous at t = 0 and shows why we excluded points where k = 0).

d. Show that τ can be defined so that τ ≡ 0, even though α is not a plane curve.

Solution 1.

(a) The curve α is differentiable if α′ exists everywhere. For t > 0 and t < 0 it is made of
elementary functions, so it is differentiable. At t = 0, the x coordinate is differentiable, so
consider the z coordinateo only.

Lemma 1. The map

f(x) =

®
e−1/x2

, x > 0;

0, x ≤ 0.
(2)

is differentiable at x = 0 and f (n)(0) = 0.

Proof. Let f(x) = e−1/x2

, notice that

f(x) ≤ n!x2n for all n. (3)

Thus, for n = 1 we have f ′(0) = limx→0 f(x)/x = 0 by the squeeze theorem. Assume
that f (k)(0) = 0 for all k < n. By induction we know that f (k) is of the form f (m)(x) =

f(x)
∑N

r=1 arx
−r for x > 0, so choosing some n large enough such that

f (k+1)(x) ≤ n!x2n
N∑
r=1

arx
−r ≤ Cxm

for some constant C, we have f is (k+1) times differentiable and f (k+1)(0) = 0. By induction
we are done.

By Lemma (1), α is differentiable.

(b) The curve has derivative

α′ =



Å
1, 0,

2

t3
e−1/t2

ã
, t > 0,Å

1,
2

t3
e−1/t2 , 0

ã
, t < 0,

(1, 0, 0), t = 0.
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Since e−1/t2 is always positive, α′(t) ̸= 0 for all t, so α is regular. Next, we compute the
curvature k(t).

Lemma 2. For a regular curve α(t), the curvature is given by

k(t) =
|α′(t) ∧ α′′(t)|

|α′(t)|3
. (4)

Proof. Let α : I → R3 be a regular curve. Then, we have T ′(t(s)) = k(t(s))N(t(s)), where
t(s) is the reparametrization by arc length. Then |T ′(t(s))| = k(t(s))|N(t(s))| = k(t(s)). The
left hand side is dT/ds = (dT/dt) (dt/ds) = (dT/dt) /|α′(t)|. Moreover,

dT

dt
=

|α′|2α′′ − (α′ · α′′)α′

|α′|3
=

α′ ∧ (α′′ ∧ α′)

|α′|3
. (5)

Since α′ ⊥ α′′ ∧ α′,

k(t(s)) = |T ′(t(s))| = |α′(t) ∧ α′′(t)|
|α′(t)|3

.

We have α′(t) given above, and

α′′ =



Å
0, 0,

Å
4

t6
− 6

t4

ã
e−1/t2

ã
, t > 0,Å

0,

Å
4

t6
− 6

t4

ã
e−1/t2 , 0

ã
, t < 0,

(0, 0, 0), t = 0.

α′ ∧ α′′ =



Å
0,−
Å
4

t6
− 6

t4

ã
e−1/t2 , 0

ã
, t > 0,Å

0, 0,

Å
4

t6
− 6

t4

ã
e−1/t2

ã
, t < 0,

(0, 0, 0), t = 0.

Using Lemma 2, we have

k(t) =


∣∣∣∣Å 4

t6
− 6

t4

ã
e−1/t2

∣∣∣∣ / Å1 + 4

t6
e−2/t2

ã3/2
, t ̸= 0,

0, t = 0.

(6)

From above we know k(t) = 0 when and only when t = 0 and t = ±
√
2/3.

(c) The osculating plane is determined by the normal vector N(t) and the tangent vector T (t).
By equation (4) and the definition dT (t(s))/ds = k(t(s))N(t(s)), the normal vector is

N(t) =
1

k(t)

dT (t(s))

ds

=
α′(t) ∧ (α′′(t) ∧ α′(t))

|α′(t)|4
· |α′(t)|3

|α′(t) ∧ α′′(t)|

=
α′(t) ∧ (α′′(t) ∧ α′(t))

|α′(t)||α′(t) ∧ α′′(t)|
.

(7)

For t > 0, we have

N(t) =

Å
1 +

4

t6
e−1/t2

ã−1/2 Å
− 2

t3
e−1/t2 , 0, 1

ã
and

T (t) =

Å
1 +

4

t6
e−1/t2

ã−1/2 Å
1, 0,

2

t3
e−1/t2

ã
,
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hence NP = limt→0+ T (t)∧N(t) = (0, 0, 1)∧(1, 0, 0) = (0, 1, 0). Furthermore, limt→0+ α(t) =
(0, 0, 0), so the osculating plane is y = 0.

On the other hand, for t < 0, we have

N(t) =

Å
1 +

4

t6
e−1/t2

ã−1/2 Å
− 2

t3
e−1/t2 , 1, 0

ã
and

T (t) =

Å
1 +

4

t6
e−1/t2

ã−1/2 Å
1,

2

t3
e−1/t2 , 0

ã
,

henceNP = limt→0− T (t)∧N(t) = (0, 1, 0)∧(1, 0, 0) = (0, 0,−1). Furthermore, limt→0− α(t) =
(0, 0, 0), so the osculating plane is z = 0. Notice that N(t) is discontinuous at t = 0, thus
undefined there.

(d) Since k(0) = k(±
√

2/3) = 0, N(0) and N(±
√
2/3) are not well-defined. Therefore, we can

define τ to be zero at these points. For t ̸= 0,±
√
2/3, we have

B(t) = T (t) ∧N(t) =

®
−(0, 1, 0), t > 0,

(0, 0, 1), t < 0.

The binormal vectorB(t) is constant on I\{0}, soB′(s) = B′(t)·|α′(t)|−1 = 0 = τ(t(s))N(t(s)).
Hence we can choose τ(t) ≡ 0 for t ∈ I\{0,±

√
2/3}. This is an example of a curve with

identically zero torsion that is not a plane curve.

Problem 2 (Do Carmo 1.5.17). In general, a curve α is called a helix if the tangent lines of α
make a constant angle with a fixed direction. Assume that τ(s) ̸= 0, s ∈ I, and prove that:

*a. α is a helix if and only if k
τ = const.

*b. α is a helix if and only if the lines containing n(s) and passing through α(s) are parallel to
a fixed plane.

*c. α is a helix if and only if the lines containing b(s) and passing through α(s) make a constant
angle with a fixed direction.

d. The curve

α(s) =

Å
a

c

∫
sin θ(s) ds,

a

c

∫
cos θ(s) ds

ã
(8)

where c2 = a2 + b2, is a helix, and that k
τ = a

b .

Solution 2.

(a) Suppose there exists a vector v ∈ R3 such that v · t(s) = C for some constant C. Then

dt

ds
· v = k(s)n(s) · v = 0,

so n(s) · v = 0. Differentiating again gives

dn

ds
· v = −k(s)t(s) · v + τ(s)b(s) · v = −k(s)C + τ(s)b(s) · v = 0.

Since τ(s) ̸= 0, we have

Ck(s)/τ(s) = (b(s) · v) = (t(s) ∧ n(s)) · v = (v ∧ t(s)) · n(s).

Since t(s), v ⊥ n(s), the triple product is equal to |n(s)||t(s)||v| sin(C) = |v| sinC. Therefore,
k(s)/τ(s) is a constant. Conversely, if k(s)/τ(s) = C ′ for some constant C ′, then we can take
v = t(s) + C ′b(s), which is a constant vector since

dv

ds
= k(s)n(s) + C ′ (−τ(s)n(s)) = 0.
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Then
dt

ds
· v = 0.

(b) Suppose α(s) is a helix, then there exists a vector v ∈ R3 such that v · t(s) = C for some
constant C. Let L be a line containing n(s) and passing through α(s). Then n(s) · v = 0 by
result in part (a), so L ⊥ v, hence parallel to the plane with normal vector v. Conversely, for
any point s ∈ I, suppose the line L containing n(s) and passing α(s) is parallel to the plane
P with normal vector v ∈ R3. Then n(s) · v = 0, and

dT

ds
· v = k(s)n(s) · v = 0.

Hence dT/ds = d(T · v)/ds = 0, and T (s) · v = C ′ for some constant C ′, and α(s) is a helix.

(c) By definition of helix, there exists a vector v ∈ R3 such that v · t(s) = C for some constant C.
By (b), all the lines containing n(s) and passing through α(s) are parallel to the plane with
some fixed normal vector u ∈ R3, so n(s) ·u = 0. Consider b · (u∧v) = (t(s)∧n(s)) · (u∧v) =
(t(s) ·u)(n(s) ·v)−(t(s) ·v)(n(s) ·u) = 0, since n(s) ·v = 0 from (a). Conversely, suppose there
exists a vector v ∈ R3 such that b(s) · v = C for some constant C. Then (t(s) ∧ n(s)) · v = C,

db

ds
· v = −τ(s)n(s) · v = 0,

and by τ(s) ̸= 0 we have n(s) · v = 0. Finally,

d

ds
(t(s) · v) = k(s)n(s) · v = 0,

therefore, α(s) is a helix.

(d) With s suppressed in the expressions, derivatives of α are

α′ =

Å
a

c
sin θ(s),

a

c
cos θ(s),

b

c

ã
,

α′′ =
(a
c
θ′(s) cos θ(s),−a

c
θ′(s) sin θ(s), 0

)
,

α′′′ =
(a
c

(
θ′′(s) cos θ(s)− (θ′(s))2 sin θ(s)

)
,−a

c

(
θ′′(s) sin θ(s) + (θ′(s))2 cos θ(s)

)
, 0
)
.

The curvature is k(s) = |α′(s)| = a
c θ

′. The torsion is given by the formula

τ(s) = − (α′(s) ∧ α′′(s)) · α′′′(s)

k(s)2

by [Do Carmo] Exercise 1.5.2. Direct calculation gives

(α′ ∧ α′′) · α′′′ =

Å
ab

c2
θ′(s) sin θ(s),−ab

c2
θ′(s) cos θ(s),−a2

c2
(θ′(s))2

ã
=

a2b

c3
(θ′)3,

so

τ(s) =
b

c
θ′(s) =

b

a
k(s).

Problem 3 (Do Carmo 1.6.1). Let α : I → R3 be a curve parametrized by arc length with
curvature k(s) ̸= 0, s ∈ I. Let P be a plane satisfying both of the following conditions:

1. P contains the tangent line at s.

2. Given any neighborhood J ⊂ I of s, there exist points of α(J) in both sides of P .

Prove that P is the osculating plane of α at s.
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Solution 3. Let n be the normal vector of plane P , then condition 1 implies that nP ⊥ t(s),
as t(s) ∈ P . To show the desired reuslt, we will show that n(s) ⊥ nP . Consider f(s) = t(s) ·
nP = 0, differentiating both sides gives f ′(s) = t(s) · n′

P = k(s)n(s) · nP = 0, so n(s) ⊥ nP .
Thus, the binormal vector b(s) ∥ nP . Furthermore, by condition 2 we can take some interval

J =
(
s− 1

m , s+ 1
m

)
⊆ I, then there exists s

(m)
1 ∈

(
s− 1

m , s
)
and s

(m)
2 ∈

(
s, s+ 1

m

)
such that

α(s
(m)
1 ) and α(s

(m)
2 ) are in different sides of plane P . This holds for all m ∈ N, so as m → ∞,

p ≡ α(s) = limm→∞ α(s
(m)
1 ) lies on the left side of P , and p ≡ α(s) = limm→∞ α(s

(m)
2 ) lies on the

right side of P , hence p = α(s) ∈ P . Since P contains α(s) and has b(s) as a normal vector, P is
the osculating plane of α at s.

Problem 4 (Do Carmo 1.6.2). Let α : I → R3 be a curve parametrized by arc length, with
curvature k(s) ̸= 0, s ∈ I. Show that

*a. The osculating plane at s is the limit position of the plane passing through α(s), α(s+ h1),
α(s+ h2) when h1, h2 → 0.

b. The limit position of the circle passing through α(s), α(s+ h1), α(s+ h2) when h1, h2 → 0
is a circle in the osculating plane at s, the center of which is on the line that contains n(s)
and the radius of which is the radius of curvature 1/k(s); this circle is called the osculating
circle at s.

Solution 4.

(a) Since the plane, which we will call P , by construction passes through α(s), we are left to
show that the normal vector nP of P converges to b(s) in the limit h1, h2 → 0. We have

nP =
(α(s+ h1)− α(s)) ∧ (α(s+ h2)− α(s))

|(α(s+ h1)− α(s)) ∧ (α(s+ h2)− α(s))|

=

(
h1α

′(s) +O(h2
1)
)
∧
(
h2α

′(s) +O(h2
2)
)

|(h1α′(s) +O(h2
1)) ∧ (h2α′(s) +O(h2

2))|

=

Å
α′(s) ∧ α′′(s)

|α′(s) ∧ α′′(s)|
+O(h1) +O(h2)

ã
,

hence

lim
h1,h2→0

nP =
α′(s) ∧ α′′(s)

|α′(s) ∧ α′′(s)|
.

Then the binormal vector is parallel to NP since

b(s) = t(s) ∧ n(s) = α′(s) ∧ α′′(s)/|α′′(s)| ∥ nP .

(b) Without loss of generality, shift the origin to s so that α(s), α(s + h1), α(s + h2) become
α(0), α(h1), α(h2), respectively. Let (x0, y0, z0) be the center of the circle passing through
α(0), α(h1), and α(h2), then the equation of the circle can be written as F (s) = (x(s) −
x0)

2 + (y(s)− y0)
2 + (z(s)− z0)

2 − r2. Calculate the derivatives to be

F ′(s) = 2(x(s)− x0)x
′(s) + 2(y(s)− y0)y

′(s) + 2(z(s)− z0)z
′(s)

and

F ′′(s) = 2(x′(s))2 + 2(y′(s))2 + 2(z′(s))2

+ 2(x(s)− x0)x
′′(s) + 2(y(s)− y0)y

′′(s) + 2(z(s)− z0)z
′′(s).

Taking the limit as s → 0 gives F ′(0) = −2x0 and F ′′(0) = 2 − 2k(0)y0. Since the plane
passes through α(0), α(h1), α(h2), we have F (0) = F (h1) = F (h2) = 0. By the Mean Value
Theorem, there exists some s1 ∈ (0, h1) such that F ′(s1) = 0. As h1 → 0, we have s1 → 0,
by continuity of F we have F ′(s1) → 0 as s1 → 0 as h1, h2 → 0. Similarly, suppose h1 < h2,
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there exists some s2 ∈ (h1, h2) such that F ′(s2) = 0. By the Mean Value Theorem, there
exists some s3 ∈ (s1, s2) such that F ′′(s3) = 0. As h1, h2 → 0, we have s1, s2 → 0, so by
continuity of F ′′, F ′′(s3) → 0 as s3 → 0. Therefore,

lim
h1,h2→0

F ′(s1) = F ′(0) = −2x0 = 0 =⇒ x0 = 0,

and

lim
h1,h2→0

F ′′(s2) = F ′′(0) = 2− 2k(0)y0 = 0 =⇒ y0 =
1

k(0)
.

By (a) we know the circle lies on the osculating plane at α(0) as h1, h2 → 0, so c → 0. Hence
the center of the circle converges to (0, 1/k(0), 0), which lies on the line containing n(0), and
the radius converges to 1/k(0).
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