2025 Fall Introduction to Geometry

Homework 3 (Due Sep 26, 2025)
W~ FEF = F &I B12202004
September 26, 2025

Problem 1 (Do Carmo 1.5.10). Consider the map

(t,0,e=/), ¢t>0
a(t) =4 (te V70), t<0 (1)
(07 07 0)7 t=0
a. Prove that « is a differentiable curve.

b. Prove that « is regular for all ¢ and that the curvature k(t) # 0, for t # 0, t # £4/2/3, and
k(0) = 0.

c. Show that the limit of the osculating planes as ¢ — 0,¢ > 0, is the plane y = 0 but that the
limit of the osculating planes as t — 0,¢ < 0, is the plane z = 0 (this implies that the normal
vector is discontinuous at ¢ = 0 and shows why we excluded points where k = 0).

d. Show that 7 can be defined so that 7 = 0, even though « is not a plane curve.

Solution 1.

(a) The curve « is differentiable if o exists everywhere. For ¢ > 0 and ¢t < 0 it is made of
elementary functions, so it is differentiable. At ¢ = 0, the x coordinate is differentiable, so
consider the z coordinateo only.

Lemma 1. The map

eV 2>
x) = ’ ’ 2
f(@) {0, x < 0. @
is differentiable at = = 0 and f(™(0) = 0.
Proof. Let f(z) = e~1/%" notice that
f(z) <nlz®™  for all n. (3)

Thus, for n = 1 we have f/(0) = lim,_,o f(z)/x = 0 by the squeeze theorem. Assume
that f*)(0) = 0 for all k¥ < n. By induction we know that f*) is of the form f(™)(z) =
f(z) 27{\;1 arz~" for z > 0, so choosing some n large enough such that

N
f(k+1)(a:) < plp?" Zarx_T < Cz™

r=1

for some constant C, we have f is (k+1) times differentiable and f*+1)(0) = 0. By induction
we are done. O

By Lemma , « is differentiable.

(b) The curve has derivative



Since e/t is always positive, o/(t) # 0 for all ¢, so « is regular. Next, we compute the

curvature k(t).

Lemma 2. For a regular curve a(t), the curvature is given by

[/ () A" (1)]

0= R

(4)

Proof. Let a: I — R3 be a regular curve. Then, we have T"(t(s)) = k(t(s))N(t(s)), where
t(s) is the reparametrization by arc length. Then |T"(¢(s))| = k(t(s))|N(t(s))| = k(t(s)). The
left hand side is dT'/ds = (dT'/dt) (dt/ds) = (dT'/dt) /|&/(t)|. Moreover,

d7T_ |a/|2al/_(al_a//)a/_al/\(a///\a/) (5)
dt - |0/|3 - |a’|3 :

Since o L o’ Ad/,
la’(t) A (1)

k(t(s)) = |T'(t(s))| =

|/ (8)]?
[
We have o/ (t) given above, and
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Using Lemma[2] we have
46\ e ( 4 _2/t2)3/2
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k(t) = ‘<t6 t4) [+ e » 170, (6)

0, t=0.

From above we know k(¢) = 0 when and only when ¢t = 0 and ¢t = 4+/2/3.

The osculating plane is determined by the normal vector N(t) and the tangent vector T'(t).
By equation and the definition d7T'(¢(s))/ds = k(t(s))N(¢(s)), the normal vector is

'<t> @ HAW) o)
PIOIE () A a7 () ™

_ AN @) N (1))
o/ (@)l () A ()]

4 2 -1/2 2 2
N(t) = (1+ e 1/t ) (—ﬁe 1/t 70,1>

4 —1/2 2 2
T(t):(1+t—6e 1”) <1,0,t—3e 1“),

For t > 0, we have

and



hence Np = limy_,q+ T(¢) AN(t) = (0,0,1)A(1,0,0) = (0, 1,0). Furthermore, lim;_,o+ a(t) =
(0,0,0), so the osculating plane is y = 0.

On the other hand, for t < 0, we have

and

hence Np = lim;_,o- T(t)AN(t) = (0,1,0)A(1,0,0) = (0,0, —1). Furthermore, lim;_,q- a(t) =
(0,0,0), so the osculating plane is z = 0. Notice that N(t) is discontinuous at ¢t = 0, thus
undefined there.

(d) Since k(0) = k(£+/2/3) =0, N(0) and N(£4/2/3) are not well-defined. Therefore, we can
define 7 to be zero at these points. For ¢ # 0,4+/2/3, we have

—(0,1,0), t>0,

B(t)=T(t) AN(t) = {(0 0,1) t <0.

The binormal vector B(t) is constant on I\{0}, so B'(s) = B'(t)-|a/(t)| 7 = 0 = 7(t(s)) N (¢(s)).
Hence we can choose 7(t) = 0 for ¢ € I\{0,++/2/3}. This is an example of a curve with
identically zero torsion that is not a plane curve.

Problem 2 (Do Carmo 1.5.17). In general, a curve « is called a helix if the tangent lines of «
make a constant angle with a fixed direction. Assume that 7(s) # 0, s € I, and prove that:

*a. « is a helix if and only if é = const.

*b. « is a helix if and only if the lines containing n(s) and passing through «(s) are parallel to
a fixed plane.

c. « is a helix if and only if the lines containing b(s) and passing through a(s) make a constant
angle with a fixed direction.

d. The curve
a(s) = (%/siné)(s) ds,%/cos@(s) ds) (8)

where ¢? = a® + b?, is a helix, and that £ = ¢.

Solution 2.

(a) Suppose there exists a vector v € R3 such that v - ¢(s) = C for some constant C. Then

dt
LU= kE(s)n(s)-v =0,
so n(s) -v = 0. Differentiating again gives
j—n ‘v = —k(s)t(s) v+ 7(s)b(s) - v=—k(s)C + 7(s)b(s) -v = 0.
s

Since 7(s) # 0, we have

Ck(s)/7(s) = (b(s) - v) = (t(s) An(s)) -0 = (v A L(s)) - n(s).

Since t(s),v L n(s), the triple product is equal to |n(s)|[t(s)||v]sin(C) = |v|sin C. Therefore,
k(s)/7(s) is a constant. Conversely, if k(s)/7(s) = C’ for some constant C’, then we can take
v =t(s) + C'b(s), which is a constant vector since

% = k(s)n(s) + C' (=7 (s)n(s)) = 0.



Then

— v =0.
ds v

Suppose a(s) is a helix, then there exists a vector v € R? such that v - t(s) = C for some
constant C. Let L be a line containing n(s) and passing through «(s). Then n(s) -v = 0 by
result in part (a), so L L v, hence parallel to the plane with normal vector v. Conversely, for
any point s € I, suppose the line L containing n(s) and passing a(s) is parallel to the plane
P with normal vector v € R3. Then n(s) - v = 0, and

Fi k(s)n(s)-v=0.

Hence dT'/ds = d(T -v)/ds = 0, and T'(s) - v = C" for some constant C’, and «(s) is a helix.

By definition of helix, there exists a vector v € R3 such that v-#(s) = C for some constant C.
By (b), all the lines containing n(s) and passing through a(s) are parallel to the plane with
some fixed normal vector u € R?, so n(s)-u = 0. Consider b- (uAv) = (t(s)An(s)) - (uAv) =
(t(s)-u)(n(s)-v)—(t(s)-v)(n(s) -u) =0, since n(s)-v = 0 from (a). Conversely, suppose there
exists a vector v € R3 such that b(s)-v = C for some constant C. Then (¢(s) A n(s))-v = C,

db

LU= —7(s)n(s) - v =0,

and by 7(s) # 0 we have n(s) - v = 0. Finally,

d
(1) 0) = Ks)n(s) v =0,

therefore, a(s) is a helix.

With s suppressed in the expressions, derivatives of « are
o = <gsin9(s) gcos@(s) é)
~\ec e el
i ( Qo ) _ay .
o = (CH (s) cosO(s), 69 (s) bln@(s),O) ,
" = (% (0"(s) cosO(s) — (6(s))*sinb(s)) ,—% (0"(s)sin@(s) + (6(s))* cos 0(s)) ,O) :
The curvature is k(s) = |o/(s)| = 26’. The torsion is given by the formula

(@) A a"() 0" (s
T

by [Do Carmo] Exercise 1.5.2. Direct calculation gives

(@' ANy = (2—30’(5) sin 0(s), —Z—Qbﬁ'(s) cos 0(s), —%(9/(8))2) = (03,

7(s) = 29’(5) = Sk(s).

Problem 3 (Do Carmo 1.6.1). Let a : I — R3 be a curve parametrized by arc length with
curvature k(s) # 0, s € I. Let P be a plane satisfying both of the following conditions:

1.
2.

P contains the tangent line at s.
Given any neighborhood J C I of s, there exist points of a(J) in both sides of P.

Prove that P is the osculating plane of a at s.



Solution 3. Let n be the normal vector of plane P, then condition 1 implies that np L t(s),
as t(s) € P. To show the desired reuslt, we will show that n(s) L np. Consider f(s) = ¢(s) -
np = 0, differentiating both sides gives f'(s) = t(s) - nlp = k(s)n(s) -np = 0, so n(s) L np.
Thus, the binormal vector b(s) || np. Furthermore, by condition 2 we can take some interval
J=(s— L. s+ 1) C I, then there exists ng) € (s— L. s) and sgm) € (s,s+ %) such that
a(sgm)) and a(sém)) are in different sides of plane P. This holds for all m € N, so as m — oo,
p=a(s) = limy, 00 sy (m )) lies on the left side of P, and p = a(s) = limy, 00 (S5 {m )) lies on the
right side of P, hence p = a(s) € P. Since P contains a(s) and has b(s) as a normal vector, P is
the osculating plane of « at s.

Problem 4 (Do Carmo 1.6.2). Let a : I — R? be a curve parametrized by arc length, with
curvature k(s) # 0, s € I. Show that

*a. The osculating plane at s is the limit position of the plane passing through a(s), a(s + hi),
a(s + hg) when hy, he — 0.

b. The limit position of the circle passing through «(s), a(s + h1), a(s + ha) when hy, ho — 0
is a circle in the osculating plane at s, the center of which is on the line that contains n(s)
and the radius of which is the radius of curvature 1/k(s); this circle is called the osculating
circle at s.

Solution 4.

(a) Since the plane, which we will call P, by construction passes through «(s), we are left to
show that the normal vector np of P converges to b(s) in the limit hy, ho — 0. We have

(afs + 1) —a(s)) A ( o
[(als + h1) — a(s)) A (als + h2) — a(s))]
(M (s) +O(n7

(e (s )+O(h%
( O/ES) Na(s)

o/ (s) A a(s)]

(0%

np =

hence

lim np=
h1,hz2—0 |’ (s)

Then the binormal vector is parallel to Np since
b(s) = t(s) An(s) = o/ (s) Aa(s) /" (s)| || np.

(b) Without loss of generality, shift the origin to s so that «(s),a(s + h1),a(s + ha) become
a(0), a(hy), a(hs), respectively. Let (xq,yo,20) be the center of the circle passing through
a(0), a(h1), and a(hz), then the equation of the circle can be written as F(s) = (z(s) —
20)? + (y(s) — y0)? + (2(s) — 20)? — 2. Calculate the derivatives to be

F'(s) = 2(x(s) — 0)2"(s) + 2(y(s) — y0)y'(s) + 2(2(s) — 20)z'(s)
and

F"(s) = 2(a'(5))* + 2(y/(5))* + 2(</(5))?
+2(x(s) — mo)a” (s) + 2(y(s) — o)y" (s) + 2(2(s) — 20)2" (s)-
Taking the limit as s — 0 gives F'(0) = —2z¢ and F"(0) = 2 — 2k(0)yo. Since the plane
passes through «(0), a(hy), a(hs), we have F(0) = F(hy) = F(hg) = 0. By the Mean Value

e
Theorem, there exists some s; € (0, h1) such that F'(s;) = 0. As hy — 0, we have s; — 0,
by continuity of F' we have F’'(s1) — 0 as s1 — 0 as hy, hg — 0. Similarly, suppose hy < ha,



there exists some sa € (hq,h2) such that F’(sz) = 0. By the Mean Value Theorem, there
exists some s3 € (s1,s2) such that F”(s3) = 0. As hy,hy — 0, we have sy, — 0, so by
continuity of F”', F"(s3) — 0 as s3 — 0. Therefore,
lim F'(s1) = F'(0) = —2z9 = 0 = z = 0,
h],h2—>0
and 1
li " =F"(0)=2-2k = = —.

pm | F(s2) (0) 0)yo =0 = o = ¢ 0

By (a) we know the circle lies on the osculating plane at «(0) as hy, hg — 0, so ¢ — 0. Hence

the center of the circle converges to (0,1/k(0),0), which lies on the line containing n(0), and
the radius converges to 1/k(0).



