

2025 Fall Introduction to Geometry

Homework 3 (Due Sep 26, 2025)

物理、數學三 黃紹凱 B12202004

September 26, 2025

Problem 1 (Do Carmo 1.5.10). Consider the map

$$\alpha(t) = \begin{cases} (t, 0, e^{-1/t^2}), & t > 0 \\ (t, e^{-1/t^2}, 0), & t < 0 \\ (0, 0, 0), & t = 0 \end{cases} \quad (1)$$

- a. Prove that α is a differentiable curve.
- b. Prove that α is regular for all t and that the curvature $k(t) \neq 0$, for $t \neq 0$, $t \neq \pm\sqrt{2/3}$, and $k(0) = 0$.
- c. Show that the limit of the osculating planes as $t \rightarrow 0, t > 0$, is the plane $y = 0$ but that the limit of the osculating planes as $t \rightarrow 0, t < 0$, is the plane $z = 0$ (this implies that the normal vector is discontinuous at $t = 0$ and shows why we excluded points where $k = 0$).
- d. Show that τ can be defined so that $\tau \equiv 0$, even though α is not a plane curve.

Solution 1.

- (a) The curve α is differentiable if α' exists everywhere. For $t > 0$ and $t < 0$ it is made of elementary functions, so it is differentiable. At $t = 0$, the x coordinate is differentiable, so consider the z coordinate only.

Lemma 1. The map

$$f(x) = \begin{cases} e^{-1/x^2}, & x > 0; \\ 0, & x \leq 0. \end{cases} \quad (2)$$

is differentiable at $x = 0$ and $f^{(n)}(0) = 0$.

Proof. Let $f(x) = e^{-1/x^2}$, notice that

$$f(x) \leq n!x^{2n} \quad \text{for all } n. \quad (3)$$

Thus, for $n = 1$ we have $f'(0) = \lim_{x \rightarrow 0} f(x)/x = 0$ by the squeeze theorem. Assume that $f^{(k)}(0) = 0$ for all $k < n$. By induction we know that $f^{(k)}$ is of the form $f^{(k)}(x) = f(x) \sum_{r=1}^N a_r x^{-r}$ for $x > 0$, so choosing some n large enough such that

$$f^{(k+1)}(x) \leq n!x^{2n} \sum_{r=1}^N a_r x^{-r} \leq Cx^m$$

for some constant C , we have f is $(k+1)$ times differentiable and $f^{(k+1)}(0) = 0$. By induction we are done. \square

By Lemma (1), α is differentiable.

- (b) The curve has derivative

$$\alpha' = \begin{cases} \left(1, 0, \frac{2}{t^3}e^{-1/t^2}\right), & t > 0, \\ \left(1, \frac{2}{t^3}e^{-1/t^2}, 0\right), & t < 0, \\ (1, 0, 0), & t = 0. \end{cases}$$

Since e^{-1/t^2} is always positive, $\alpha'(t) \neq 0$ for all t , so α is regular. Next, we compute the curvature $k(t)$.

Lemma 2. For a regular curve $\alpha(t)$, the curvature is given by

$$k(t) = \frac{|\alpha'(t) \wedge \alpha''(t)|}{|\alpha'(t)|^3}. \quad (4)$$

Proof. Let $\alpha: I \rightarrow \mathbb{R}^3$ be a regular curve. Then, we have $T'(t(s)) = k(t(s))N(t(s))$, where $t(s)$ is the reparametrization by arc length. Then $|T'(t(s))| = k(t(s))|N(t(s))| = k(t(s))$. The left hand side is $dT/ds = (dT/dt)(dt/ds) = (dT/dt)/|\alpha'(t)|$. Moreover,

$$\frac{dT}{dt} = \frac{|\alpha'|^2 \alpha'' - (\alpha' \cdot \alpha'') \alpha'}{|\alpha'|^3} = \frac{\alpha' \wedge (\alpha'' \wedge \alpha')}{|\alpha'|^3}. \quad (5)$$

Since $\alpha' \perp \alpha'' \wedge \alpha'$,

$$k(t(s)) = |T'(t(s))| = \frac{|\alpha'(t) \wedge \alpha''(t)|}{|\alpha'(t)|^3}.$$

□

We have $\alpha'(t)$ given above, and

$$\begin{aligned} \alpha'' &= \begin{cases} \left(0, 0, \left(\frac{4}{t^6} - \frac{6}{t^4}\right) e^{-1/t^2}\right), & t > 0, \\ \left(0, \left(\frac{4}{t^6} - \frac{6}{t^4}\right) e^{-1/t^2}, 0\right), & t < 0, \\ (0, 0, 0), & t = 0. \end{cases} \\ \alpha' \wedge \alpha'' &= \begin{cases} \left(0, -\left(\frac{4}{t^6} - \frac{6}{t^4}\right) e^{-1/t^2}, 0\right), & t > 0, \\ \left(0, 0, \left(\frac{4}{t^6} - \frac{6}{t^4}\right) e^{-1/t^2}\right), & t < 0, \\ (0, 0, 0), & t = 0. \end{cases} \end{aligned}$$

Using Lemma 2, we have

$$k(t) = \begin{cases} \left|\left(\frac{4}{t^6} - \frac{6}{t^4}\right) e^{-1/t^2}\right| / \left(1 + \frac{4}{t^6} e^{-2/t^2}\right)^{3/2}, & t \neq 0, \\ 0, & t = 0. \end{cases} \quad (6)$$

From above we know $k(t) = 0$ when and only when $t = 0$ and $t = \pm\sqrt{2/3}$.

(c) The osculating plane is determined by the normal vector $N(t)$ and the tangent vector $T(t)$. By equation (4) and the definition $dT(t(s))/ds = k(t(s))N(t(s))$, the normal vector is

$$\begin{aligned} N(t) &= \frac{1}{k(t)} \frac{dT(t(s))}{ds} \\ &= \frac{\alpha'(t) \wedge (\alpha''(t) \wedge \alpha'(t))}{|\alpha'(t)|^4} \cdot \frac{|\alpha'(t)|^3}{|\alpha'(t) \wedge \alpha''(t)|} \\ &= \frac{\alpha'(t) \wedge (\alpha''(t) \wedge \alpha'(t))}{|\alpha'(t)| |\alpha'(t) \wedge \alpha''(t)|}. \end{aligned} \quad (7)$$

For $t > 0$, we have

$$N(t) = \left(1 + \frac{4}{t^6} e^{-1/t^2}\right)^{-1/2} \left(-\frac{2}{t^3} e^{-1/t^2}, 0, 1\right)$$

and

$$T(t) = \left(1 + \frac{4}{t^6} e^{-1/t^2}\right)^{-1/2} \left(1, 0, \frac{2}{t^3} e^{-1/t^2}\right),$$

hence $N_P = \lim_{t \rightarrow 0^+} T(t) \wedge N(t) = (0, 0, 1) \wedge (1, 0, 0) = (0, 1, 0)$. Furthermore, $\lim_{t \rightarrow 0^+} \alpha(t) = (0, 0, 0)$, so the osculating plane is $y = 0$.

On the other hand, for $t < 0$, we have

$$N(t) = \left(1 + \frac{4}{t^6} e^{-1/t^2}\right)^{-1/2} \left(-\frac{2}{t^3} e^{-1/t^2}, 1, 0\right)$$

and

$$T(t) = \left(1 + \frac{4}{t^6} e^{-1/t^2}\right)^{-1/2} \left(1, \frac{2}{t^3} e^{-1/t^2}, 0\right),$$

hence $N_P = \lim_{t \rightarrow 0^-} T(t) \wedge N(t) = (0, 1, 0) \wedge (1, 0, 0) = (0, 0, -1)$. Furthermore, $\lim_{t \rightarrow 0^-} \alpha(t) = (0, 0, 0)$, so the osculating plane is $z = 0$. Notice that $N(t)$ is discontinuous at $t = 0$, thus undefined there.

(d) Since $k(0) = k(\pm\sqrt{2/3}) = 0$, $N(0)$ and $N(\pm\sqrt{2/3})$ are not well-defined. Therefore, we can define τ to be zero at these points. For $t \neq 0, \pm\sqrt{2/3}$, we have

$$B(t) = T(t) \wedge N(t) = \begin{cases} -(0, 1, 0), & t > 0, \\ (0, 0, 1), & t < 0. \end{cases}$$

The binormal vector $B(t)$ is constant on $I \setminus \{0\}$, so $B'(s) = B'(t) \cdot |\alpha'(t)|^{-1} = 0 = \tau(t(s))N(t(s))$. Hence we can choose $\tau(t) \equiv 0$ for $t \in I \setminus \{0, \pm\sqrt{2/3}\}$. This is an example of **a curve with identically zero torsion that is not a plane curve**.

Problem 2 (Do Carmo 1.5.17). In general, a curve α is called a helix if the tangent lines of α make a constant angle with a fixed direction. Assume that $\tau(s) \neq 0$, $s \in I$, and prove that:

- *a. α is a helix if and only if $\frac{k}{\tau} = \text{const.}$
- *b. α is a helix if and only if the lines containing $n(s)$ and passing through $\alpha(s)$ are parallel to a fixed plane.
- *c. α is a helix if and only if the lines containing $b(s)$ and passing through $\alpha(s)$ make a constant angle with a fixed direction.
- d. The curve

$$\alpha(s) = \left(\frac{a}{c} \int \sin \theta(s) ds, \frac{a}{c} \int \cos \theta(s) ds \right) \quad (8)$$

where $c^2 = a^2 + b^2$, is a helix, and that $\frac{k}{\tau} = \frac{a}{b}$.

Solution 2.

(a) Suppose there exists a vector $v \in \mathbb{R}^3$ such that $v \cdot t(s) = C$ for some constant C . Then

$$\frac{dt}{ds} \cdot v = k(s)n(s) \cdot v = 0,$$

so $n(s) \cdot v = 0$. Differentiating again gives

$$\frac{dn}{ds} \cdot v = -k(s)t(s) \cdot v + \tau(s)b(s) \cdot v = -k(s)C + \tau(s)b(s) \cdot v = 0.$$

Since $\tau(s) \neq 0$, we have

$$Ck(s)/\tau(s) = (b(s) \cdot v) = (t(s) \wedge n(s)) \cdot v = (v \wedge t(s)) \cdot n(s).$$

Since $t(s), v \perp n(s)$, the triple product is equal to $|n(s)||t(s)||v| \sin(C) = |v| \sin C$. Therefore, $k(s)/\tau(s)$ is a constant. Conversely, if $k(s)/\tau(s) = C'$ for some constant C' , then we can take $v = t(s) + C'b(s)$, which is a constant vector since

$$\frac{dv}{ds} = k(s)n(s) + C'(-\tau(s)n(s)) = 0.$$

Then

$$\frac{dt}{ds} \cdot v = 0.$$

(b) Suppose $\alpha(s)$ is a helix, then there exists a vector $v \in \mathbb{R}^3$ such that $v \cdot t(s) = C$ for some constant C . Let L be a line containing $n(s)$ and passing through $\alpha(s)$. Then $n(s) \cdot v = 0$ by result in part (a), so $L \perp v$, hence parallel to the plane with normal vector v . Conversely, for any point $s \in I$, suppose the line L containing $n(s)$ and passing through $\alpha(s)$ is parallel to the plane P with normal vector $v \in \mathbb{R}^3$. Then $n(s) \cdot v = 0$, and

$$\frac{dT}{ds} \cdot v = k(s)n(s) \cdot v = 0.$$

Hence $dT/ds = d(T \cdot v)/ds = 0$, and $T(s) \cdot v = C'$ for some constant C' , and $\alpha(s)$ is a helix.

(c) By definition of helix, there exists a vector $v \in \mathbb{R}^3$ such that $v \cdot t(s) = C$ for some constant C . By (b), all the lines containing $n(s)$ and passing through $\alpha(s)$ are parallel to the plane with some fixed normal vector $u \in \mathbb{R}^3$, so $n(s) \cdot u = 0$. Consider $b \cdot (u \wedge v) = (t(s) \wedge n(s)) \cdot (u \wedge v) = (t(s) \cdot u)(n(s) \cdot v) - (t(s) \cdot v)(n(s) \cdot u) = 0$, since $n(s) \cdot v = 0$ from (a). Conversely, suppose there exists a vector $v \in \mathbb{R}^3$ such that $b(s) \cdot v = C$ for some constant C . Then $(t(s) \wedge n(s)) \cdot v = C$,

$$\frac{db}{ds} \cdot v = -\tau(s)n(s) \cdot v = 0,$$

and by $\tau(s) \neq 0$ we have $n(s) \cdot v = 0$. Finally,

$$\frac{d}{ds} (t(s) \cdot v) = k(s)n(s) \cdot v = 0,$$

therefore, $\alpha(s)$ is a helix.

(d) With s suppressed in the expressions, derivatives of α are

$$\begin{aligned} \alpha' &= \left(\frac{a}{c} \sin \theta(s), \frac{a}{c} \cos \theta(s), \frac{b}{c} \right), \\ \alpha'' &= \left(\frac{a}{c} \theta'(s) \cos \theta(s), -\frac{a}{c} \theta'(s) \sin \theta(s), 0 \right), \\ \alpha''' &= \left(\frac{a}{c} (\theta''(s) \cos \theta(s) - (\theta'(s))^2 \sin \theta(s)), -\frac{a}{c} (\theta''(s) \sin \theta(s) + (\theta'(s))^2 \cos \theta(s)), 0 \right). \end{aligned}$$

The curvature is $k(s) = |\alpha'(s)| = \frac{a}{c} \theta'$. The torsion is given by the formula

$$\tau(s) = -\frac{(\alpha'(s) \wedge \alpha''(s)) \cdot \alpha'''(s)}{k(s)^2}$$

by [Do Carmo] Exercise 1.5.2. Direct calculation gives

$$(\alpha' \wedge \alpha'') \cdot \alpha''' = \left(\frac{ab}{c^2} \theta'(s) \sin \theta(s), -\frac{ab}{c^2} \theta'(s) \cos \theta(s), -\frac{a^2}{c^2} (\theta'(s))^2 \right) = \frac{a^2 b}{c^3} (\theta')^3,$$

so

$$\tau(s) = \frac{b}{c} \theta'(s) = \frac{b}{a} k(s).$$

Problem 3 (Do Carmo 1.6.1). Let $\alpha : I \rightarrow \mathbb{R}^3$ be a curve parametrized by arc length with curvature $k(s) \neq 0$, $s \in I$. Let P be a plane satisfying both of the following conditions:

1. P contains the tangent line at s .
2. Given any neighborhood $J \subset I$ of s , there exist points of $\alpha(J)$ in both sides of P .

Prove that P is the osculating plane of α at s .

Solution 3. Let n be the normal vector of plane P , then condition 1 implies that $n_P \perp t(s)$, as $t(s) \in P$. To show the desired result, we will show that $n(s) \perp n_P$. Consider $f(s) = t(s) \cdot n_P = 0$, differentiating both sides gives $f'(s) = t(s) \cdot n'_P = k(s)n(s) \cdot n_P = 0$, so $n(s) \perp n_P$. Thus, the binormal vector $b(s) \parallel n_P$. Furthermore, by condition 2 we can take some interval $J = (s - \frac{1}{m}, s + \frac{1}{m}) \subseteq I$, then there exists $s_1^{(m)} \in (s - \frac{1}{m}, s)$ and $s_2^{(m)} \in (s, s + \frac{1}{m})$ such that $\alpha(s_1^{(m)})$ and $\alpha(s_2^{(m)})$ are in different sides of plane P . This holds for all $m \in \mathbb{N}$, so as $m \rightarrow \infty$, $p \equiv \alpha(s) = \lim_{m \rightarrow \infty} \alpha(s_1^{(m)})$ lies on the left side of P , and $p \equiv \alpha(s) = \lim_{m \rightarrow \infty} \alpha(s_2^{(m)})$ lies on the right side of P , hence $p = \alpha(s) \in P$. Since P contains $\alpha(s)$ and has $b(s)$ as a normal vector, P is the osculating plane of α at s .

Problem 4 (Do Carmo 1.6.2). Let $\alpha : I \rightarrow \mathbb{R}^3$ be a curve parametrized by arc length, with curvature $k(s) \neq 0$, $s \in I$. Show that

- *a. The osculating plane at s is the limit position of the plane passing through $\alpha(s)$, $\alpha(s + h_1)$, $\alpha(s + h_2)$ when $h_1, h_2 \rightarrow 0$.
- b. The limit position of the circle passing through $\alpha(s)$, $\alpha(s + h_1)$, $\alpha(s + h_2)$ when $h_1, h_2 \rightarrow 0$ is a circle in the osculating plane at s , the center of which is on the line that contains $n(s)$ and the radius of which is the radius of curvature $1/k(s)$; this circle is called the osculating circle at s .

Solution 4.

(a) Since the plane, which we will call P , by construction passes through $\alpha(s)$, we are left to show that the normal vector n_P of P converges to $b(s)$ in the limit $h_1, h_2 \rightarrow 0$. We have

$$\begin{aligned} n_P &= \frac{(\alpha(s + h_1) - \alpha(s)) \wedge (\alpha(s + h_2) - \alpha(s))}{|(\alpha(s + h_1) - \alpha(s)) \wedge (\alpha(s + h_2) - \alpha(s))|} \\ &= \frac{(h_1 \alpha'(s) + O(h_1^2)) \wedge (h_2 \alpha'(s) + O(h_2^2))}{|(h_1 \alpha'(s) + O(h_1^2)) \wedge (h_2 \alpha'(s) + O(h_2^2))|} \\ &= \left(\frac{\alpha'(s) \wedge \alpha''(s)}{|\alpha'(s) \wedge \alpha''(s)|} + O(h_1) + O(h_2) \right), \end{aligned}$$

hence

$$\lim_{h_1, h_2 \rightarrow 0} n_P = \frac{\alpha'(s) \wedge \alpha''(s)}{|\alpha'(s) \wedge \alpha''(s)|}.$$

Then the binormal vector is parallel to N_P since

$$b(s) = t(s) \wedge n(s) = \alpha'(s) \wedge \alpha''(s) / |\alpha''(s)| \parallel n_P.$$

(b) Without loss of generality, shift the origin to s so that $\alpha(s), \alpha(s + h_1), \alpha(s + h_2)$ become $\alpha(0), \alpha(h_1), \alpha(h_2)$, respectively. Let (x_0, y_0, z_0) be the center of the circle passing through $\alpha(0)$, $\alpha(h_1)$, and $\alpha(h_2)$, then the equation of the circle can be written as $F(s) = (x(s) - x_0)^2 + (y(s) - y_0)^2 + (z(s) - z_0)^2 - r^2$. Calculate the derivatives to be

$$F'(s) = 2(x(s) - x_0)x'(s) + 2(y(s) - y_0)y'(s) + 2(z(s) - z_0)z'(s)$$

and

$$\begin{aligned} F''(s) &= 2(x'(s))^2 + 2(y'(s))^2 + 2(z'(s))^2 \\ &\quad + 2(x(s) - x_0)x''(s) + 2(y(s) - y_0)y''(s) + 2(z(s) - z_0)z''(s). \end{aligned}$$

Taking the limit as $s \rightarrow 0$ gives $F'(0) = -2x_0$ and $F''(0) = 2 - 2k(0)y_0$. Since the plane passes through $\alpha(0), \alpha(h_1), \alpha(h_2)$, we have $F(0) = F(h_1) = F(h_2) = 0$. By the Mean Value Theorem, there exists some $s_1 \in (0, h_1)$ such that $F'(s_1) = 0$. As $h_1 \rightarrow 0$, we have $s_1 \rightarrow 0$, by continuity of F we have $F'(s_1) \rightarrow 0$ as $s_1 \rightarrow 0$ as $h_1, h_2 \rightarrow 0$. Similarly, suppose $h_1 < h_2$,

there exists some $s_2 \in (h_1, h_2)$ such that $F'(s_2) = 0$. By the Mean Value Theorem, there exists some $s_3 \in (s_1, s_2)$ such that $F''(s_3) = 0$. As $h_1, h_2 \rightarrow 0$, we have $s_1, s_2 \rightarrow 0$, so by continuity of F'' , $F''(s_3) \rightarrow 0$ as $s_3 \rightarrow 0$. Therefore,

$$\lim_{h_1, h_2 \rightarrow 0} F'(s_1) = F'(0) = -2x_0 = 0 \implies x_0 = 0,$$

and

$$\lim_{h_1, h_2 \rightarrow 0} F''(s_2) = F''(0) = 2 - 2k(0)y_0 = 0 \implies y_0 = \frac{1}{k(0)}.$$

By (a) we know the circle lies on the osculating plane at $\alpha(0)$ as $h_1, h_2 \rightarrow 0$, so $c \rightarrow 0$. Hence the center of the circle converges to $(0, 1/k(0), 0)$, which lies on the line containing $n(0)$, and the radius converges to $1/k(0)$.