2025 Fall Introduction to Geometry

Homework 4 (Due Oct 3, 2025)
W~ FEF = F &I B12202004
October 18, 2025

Definition 1 (Regular surface). A subset S C R? is a regular surface if, for each p € S, there
exists a neighborhood V C R? and a map x: U — VNS of an open set U C R onto VN S C R?
such that

(i) x is (infinitely) differentiable.
(ii) x is a homeomorphism, i.e. x is a bijection, and both x and x~! are continuous.

(iii) For each g € U, the differential dx, : R* — R? is one-to-one (the regularity condition).

Figure 2-1

Definition 2 (Differentiability on regular surfaces). Let f:V C .S — R be a function defined in
an open subset V of a regular surface S. Then f is said to be differentiable at p € V if, for some
parametrization x : U C R? — S with p € x(U) C V, the composition fox : U C R? — R is
differentiable at x~1(p). f is differentiable in V if it is differentiable at all points of V.

Problem 1 (Do Carmo 2.2.11). Show that the set

S:{(I7y,2) ERB; z:$2_y2}

is a regular surface and check that parts (a) and (b) are parametrizations for S:
(a) x(u,v) = (u+v, u—v, duv), (u,v) € R
(b) x(u,v) = (ucoshv, usinhv, u?), (u,v) € R? u+#0.

Which parts of S do these parametrizations cover?

Solution 1.



Notice that z(z,y) = 2® — y? is a differentiable function from the open set U = R? to R, so
by Proposition 2.2.1 in Do Carmo, S is a regular surface. Recall that a map x: U — VNS if x is
differentiable, a homeomorphism, and dx,, is one-to-one for all p € U.

(a) The map x is a polyminial in u and v, so it is differentiable. By explicit calculation,

1 1
dxq=( 1 -1
4v  4u
in the canonical basis, so |0(z,y)/0(u,v)] = 2 and dx is one-to-one. To show that x is a

2

homeomorphism, observe that for any (z,y, z) € S, we have z = 22 — y2, s0 2 = (u +v)? —

(u —v)? = 4uv, and
T+y r—y

b U -
2 2
from the remaining equations. This determines a unique (u,v) for each (z,y,2) € S, and we
can conclude that the inverse map x~! exists and is continuous.

(b) The map x is a composition of polynomials and exponential functions, so it is differentiable.
By explicit calculation,
coshv wusinhv
dx, = | sinhv wcoshwv
2u 0

in the canonical basis, so |0(x,y)/0(u,v)| = u, and dx is one-to-one for v # 0. To show
that x is a homeomorphism, observe that for any (x,y,2) € S with 2 — % > 0, we have
z =12 —y? so z = u?(cosh? v — sinh? v) = u?, and

u = ++/22 — 92, v = tanh™* ¥
x

from the remaining equations. This determines a unique (u,v) for each (z,y,z) € S with
22 — 92 > 0, and we can conclude that the inverse map x~! exists and is continuous.

Parametrization (a) covers the whole surface S, while parametrization (b) only covers the parts of
S where |z| > |y|.

Remark. The graph of z = f(x,y) = 2% — y? is a hyperbolic paraboloid, also known as saddle,
shown in figure

Figure 1: XZ plane projection Figure 2: YZ plane projection

Problem 2 (Do Carmo 2.2.16). One way to define a system of coordinates for the sphere S2,
given by
2+t (z-1)2 =1,



is to consider the so-called stereographic projection
7: 8%\ {N} — R?

which carries a point p = (x,y,2) of the sphere S? minus the north pole N = (0,0,2) onto
the intersection of the zy-plane with the straight line which connects N to p (Fig. 2-12). Let
(u,v) = 7(x,y, z), where (z,y,2) € S?\ {N} and (u,v) lies in the zy-plane.

a. Show that 7—!: R? — S? is given by
4u 4v 2(u? +v?)
= = 2= —">
u? 402 44’ Yoyt u2 40244

b. Show that it is possible, using stereographic projection, to cover the sphere with two coordi-
nate neighborhoods.

Figure 2-12. The stereographic projection.

Solution 2.

a. Let’s construct the map 7 : S — R? explicitly. For a point p = (z,y,2) € S?\ {N}, the line
connecting N and p can be parametrized as

Lit)=N+t(p—N)=(0,0,2) + t(z,y,z2 — 2) = (tz, ty,2 + t(z — 2)) (1)

The intersection of this line with the zy-plane occurs when z =0, so t = 2/(2 — z). Substi-
tuting this back to equation (1)) gives

2z 2y )

m(p) = (u,v) = <2_z’2—z

Solving for (x,y) gives

(2,y) = (u(22— z)7 0(22— z)) .

From the equation for the sphere, we have

(“(2—2)>2+<”(2_2))2+(Z_1>2:1 L 2w

2 2 w2 +v2+4’
hence
4u 4v 2(u? +v?)
r=——-—- =  z=—"_"‘
w2 +v2+4’ Y uz +v2+4’ uZ +v2+4



b. Using the inverse stereographic projection m~!, we can cover the whole sphere except the

north pole N. To cover the north pole, use another stereographic projection from the south
pole S = (0,0,0) to the zy-plane, with the inverse map given by
4u 4v 8
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u? +0v2+4’ u2+v2+4°

Problem 3 (Do Carmo 2.2.19%).
Let o : (=3,0) — R? be defined by (Fig. 2-13)

(0, =(t+2)), te(=3,-1),
1
a(t) = { a regular parametrized curve joining p = (0, —1) to ¢ = (7, O) , te(— ,f%),
™
(—t, sin 1), te(—5,0).
y
q=(1/x, 0)
0 x
p=(0,-1)

Horizontal scale distinct from vertical scale

Figure 2-13

It is possible to define the curve joining p to ¢ so that all the derivatives of « are continuous
at the corresponding points and « has no self-intersections. Let C' be the trace of .

a. Is C a regular curve?

b. Let a normal line to the plane R? run through C so that it describes a “cylinder” S. Is S a
regular surface?

Solution 3.

a. Let C be the trace of o, « is said to be regular if at every point p € C, C' is the graph of a C'!
function y = f(z) or x = g(y) in a neighborhood of p. Notice that the origin (0,0) belongs
to the trace of a since a(—2) = (0,0). Consider the sequence ¢, = —5i—, which satisfies
tn € (—1,0) for all n € N. Therefore, in any neighborhood of (0,0), we can find some n € N
such that a(t,) € U, so C cannot be the graph of © = f(y) locally. Similarly, C' cannot be
the graph of y = g(z) on the line segment {0} x (—1,1) C R% Hence, C is not a regular

curve.

b. If the surface S were regular, then by Do Carmo Proposition 2.2.3, there exists a neighborhood
V of any p € S such that V is the graph of a differentiable function z = f(z,y) or z = ¢(y, 2)
or y = h(x,z). However, consider a point p € (—%, 0, z) on the side boundary of S. In (a)
we concluded that locally around (0,0, z), the curve (translated by some z along the z axis)
is not the graph of a C! function = = g(y, 2) or y = h(x, z), while z cannot be a function of
x, y. Therefore, S is not a regular surface.

Problem 4 (Do Carmo 2.3.5%). Let S C R? be a regular surface, and let d : S — R be given by

d(p) = llp — poll,



where p € S, po € R?, and py ¢ S; that is, d is the distance from p to a fixed point py not in S.
Prove that d is differentiable.

Solution 4. By definition [2| it suffices to show that for any parametrization x : U € R? — §,
the composition d ox : U — R is differentiable. Since S is a regular surface, for any point p € S,
there exists a neighborhood V' C R3? of p such that V' NS is the graph of a differentiable function
z(z,y) or x(y,z) or y(x,z). Assume that V N S is the graph of a differentiable function z(z,y),
then define a parametrization

x(u,v) = (u,v, 2(u,v)), (u,v) €U CR?,

where U is open in R?. The composition d o x : U — R is given by

(d o x)(u,v) = d(x(u,v)) = \/(x(u, v) — po, X(u,v) — po)
=/ (u—20)2 + (v — y0)2 + (2(u,v) — 20)2.

Since

0
%(d ox)(u,v)

b

_ (u— 20+ (2(u,v) — 20) 24 (u, v))
(o) V(w—x0)2 + (v —y0)? + (2(u,v) — 20)?
vt () — ) (w)

(o) V(w—z0)2 + (v —y0)? + (2(u,v) — 20)?

0
—(dox)(u,v)

b

and z(u,v) is differentiable, we conclude that d ox is differentiable except when (u,v) = (zg, yo) =
xY(po). Since the choice of p € S is arbitrary, we conclude that d is differentiable on S\{po}.

Problem 5 (Do Carmo 2.3.10). Let C be a plane regular curve which lies on one side of a straight
line r of the plane and meets r at the points p, ¢ (Fig. 2-21). What conditions should C satisfy to
ensure that the rotation of C' about r generates an extended (regular) surface of revolution?

r

{3
p

Figure 2-21

Solution 5. We can analyze the point p € C locally. Assume that r is the z axis, and C' is the
graph of a differentiable function y = f(x) in a neighborhood of p, since C'is a regular curve. Since
S is the surface of revolution generated by rotating C' about r, we claim that there is a local chart

at p € S given by
x:UCR =8, (2,9) = (2,5, f(Va? +y?)),

where U is an open set in R2. We will check each condition given in definition for S.



(i)

x is differentiable. We can calculate its differential at some (z,y) € U as

1 0
0 1

V) =T (V)

Since f is differentiable, the partial derivatives of x exist whenever (z,y) # (0,0). By
symmetry, f(’LU) = f(—’LU), S0 f/(w) = —f/(—IU). When (SL’,y) = (0a0)7 we have fl(o) =Y
and

(2)

dx(z,) =

T Y
Va2 + y2 Va2 + 2
are bounded, so dx(,,,) exists at (0,0). To satisfy the symmetry condition, we require that

/" is odd, hence f is even, and all the odd-order derivatives of f vanish at 0. Similarly, the
odd-order derivatives of g such that y = g(z) in a neighborhood of ¢ must also vanish.

X is a homeomorphism, since the graph of a continuous function is homeomorphic to its
domain.

From equation , we have |0(x,y)/0(u,v)| = 1, so dx is one-to-one. Hence dx(,,) is
one-to-one for all (z,y) € U.



