
2025 Fall Introduction to Geometry

Homework 4 (Due Oct 3, 2025)

物理、數學三 黃紹凱 B12202004

October 18, 2025

Definition 1 (Regular surface). A subset S ⊆ R3 is a regular surface if, for each p ∈ S, there
exists a neighborhood V ⊆ R3 and a map x : U → V ∩ S of an open set U ⊆ R2 onto V ∩ S ⊆ R3

such that

(i) x is (infinitely) differentiable.

(ii) x is a homeomorphism, i.e. x is a bijection, and both x and x−1 are continuous.

(iii) For each q ∈ U , the differential dxq : R2 → R3 is one-to-one (the regularity condition).

Definition 2 (Differentiability on regular surfaces). Let f : V ⊂ S → R be a function defined in
an open subset V of a regular surface S. Then f is said to be differentiable at p ∈ V if, for some
parametrization x : U ⊂ R2 → S with p ∈ x(U) ⊂ V , the composition f ◦ x : U ⊂ R2 → R is
differentiable at x−1(p). f is differentiable in V if it is differentiable at all points of V .

Problem 1 (Do Carmo 2.2.11). Show that the set

S = {(x, y, z) ∈ R3 ; z = x2 − y2}

is a regular surface and check that parts (a) and (b) are parametrizations for S:

(a) x(u, v) = (u+ v, u− v, 4uv), (u, v) ∈ R2.

(b) x(u, v) = (u cosh v, u sinh v, u2), (u, v) ∈ R2, u ̸= 0.

Which parts of S do these parametrizations cover?

Solution 1.
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Notice that z(x, y) = x2 − y2 is a differentiable function from the open set U = R2 to R, so
by Proposition 2.2.1 in Do Carmo, S is a regular surface. Recall that a map x : U → V ∩ S if x is
differentiable, a homeomorphism, and dxp is one-to-one for all p ∈ U .

(a) The map x is a polyminial in u and v, so it is differentiable. By explicit calculation,

dxq =

Ñ
1 1
1 −1
4v 4u

é
in the canonical basis, so |∂(x, y)/∂(u, v)| = 2 and dx is one-to-one. To show that x is a
homeomorphism, observe that for any (x, y, z) ∈ S, we have z = x2 − y2, so z = (u + v)2 −
(u− v)2 = 4uv, and

u =
x+ y

2
, v =

x− y

2

from the remaining equations. This determines a unique (u, v) for each (x, y, z) ∈ S, and we
can conclude that the inverse map x−1 exists and is continuous.

(b) The map x is a composition of polynomials and exponential functions, so it is differentiable.
By explicit calculation,

dxq =

Ñ
cosh v u sinh v
sinh v u cosh v
2u 0

é
in the canonical basis, so |∂(x, y)/∂(u, v)| = u, and dx is one-to-one for u ̸= 0. To show
that x is a homeomorphism, observe that for any (x, y, z) ∈ S with x2 − y2 > 0, we have
z = x2 − y2, so z = u2(cosh2 v − sinh2 v) = u2, and

u = ±
√

x2 − y2, v = tanh−1 y

x

from the remaining equations. This determines a unique (u, v) for each (x, y, z) ∈ S with
x2 − y2 > 0, and we can conclude that the inverse map x−1 exists and is continuous.

Parametrization (a) covers the whole surface S, while parametrization (b) only covers the parts of
S where |x| > |y|.

Remark. The graph of z = f(x, y) = x2 − y2 is a hyperbolic paraboloid, also known as saddle,
shown in figure 1, 1.

Figure 1: XZ plane projection Figure 2: YZ plane projection

Problem 2 (Do Carmo 2.2.16). One way to define a system of coordinates for the sphere S2,
given by

x2 + y2 + (z − 1)2 = 1,
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is to consider the so-called stereographic projection

π : S2 \ {N} −→ R2

which carries a point p = (x, y, z) of the sphere S2 minus the north pole N = (0, 0, 2) onto
the intersection of the xy-plane with the straight line which connects N to p (Fig. 2–12). Let
(u, v) = π(x, y, z), where (x, y, z) ∈ S2 \ {N} and (u, v) lies in the xy-plane.

a. Show that π−1 : R2 → S2 is given by

x =
4u

u2 + v2 + 4
, y =

4v

u2 + v2 + 4
, z =

2(u2 + v2)

u2 + v2 + 4
.

b. Show that it is possible, using stereographic projection, to cover the sphere with two coordi-
nate neighborhoods.

Solution 2.

a. Let’s construct the map π : S2 → R2 explicitly. For a point p = (x, y, z) ∈ S2 \ {N}, the line
connecting N and p can be parametrized as

L(t) = N + t(p−N) = (0, 0, 2) + t(x, y, z − 2) = (tx, ty, 2 + t(z − 2)) (1)

The intersection of this line with the xy-plane occurs when z = 0, so t = 2/(2− z). Substi-
tuting this back to equation (1) gives

π(p) = (u, v) =

Å
2x

2− z
,

2y

2− z

ã
.

Solving for (x, y) gives

(x, y) =

Å
u(2− z)

2
,
v(2− z)

2

ã
.

From the equation for the sphere, we haveÅ
u(2− z)

2

ã2
+

Å
v(2− z)

2

ã2
+ (z − 1)2 = 1 =⇒ z =

2(u2 + v2)

u2 + v2 + 4
,

hence

x =
4u

u2 + v2 + 4
, y =

4v

u2 + v2 + 4
, z =

2(u2 + v2)

u2 + v2 + 4
.
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b. Using the inverse stereographic projection π−1, we can cover the whole sphere except the
north pole N . To cover the north pole, use another stereographic projection from the south
pole S = (0, 0, 0) to the xy-plane, with the inverse map given by

x =
4u

u2 + v2 + 4
, y =

4v

u2 + v2 + 4
, z =

8

u2 + v2 + 4
.

Problem 3 (Do Carmo 2.2.19*).

Let α : (−3, 0) → R2 be defined by (Fig. 2–13)

α(t) =


(0, −(t+ 2)), t ∈ (−3,−1),

a regular parametrized curve joining p = (0,−1) to q =

Å
1

π
, 0

ã
, t ∈ (−1,− 1

π ),

(−t, sin 1
t ), t ∈

(
− 1

π , 0
)
.

It is possible to define the curve joining p to q so that all the derivatives of α are continuous
at the corresponding points and α has no self-intersections. Let C be the trace of α.

a. Is C a regular curve?

b. Let a normal line to the plane R2 run through C so that it describes a “cylinder” S. Is S a
regular surface?

Solution 3.

a. Let C be the trace of α, α is said to be regular if at every point p ∈ C, C is the graph of a C1

function y = f(x) or x = g(y) in a neighborhood of p. Notice that the origin (0, 0) belongs
to the trace of α since α(−2) = (0, 0). Consider the sequence tn = − 1

2nπ , which satisfies
tn ∈ (− 1

π , 0) for all n ∈ N. Therefore, in any neighborhood of (0, 0), we can find some n ∈ N
such that α(tn) ∈ U , so C cannot be the graph of x = f(y) locally. Similarly, C cannot be
the graph of y = g(x) on the line segment {0} × (−1, 1) ⊆ R2. Hence, C is not a regular
curve.

b. If the surface S were regular, then by Do Carmo Proposition 2.2.3, there exists a neighborhood
V of any p ∈ S such that V is the graph of a differentiable function z = f(x, y) or x = g(y, z)
or y = h(x, z). However, consider a point p ∈ (− 1

π , 0, z) on the side boundary of S. In (a)
we concluded that locally around (0, 0, z), the curve (translated by some z along the z axis)
is not the graph of a C1 function x = g(y, z) or y = h(x, z), while z cannot be a function of
x, y. Therefore, S is not a regular surface.

Problem 4 (Do Carmo 2.3.5*). Let S ⊂ R3 be a regular surface, and let d : S → R be given by

d(p) = ∥p− p0∥,
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where p ∈ S, p0 ∈ R3, and p0 /∈ S; that is, d is the distance from p to a fixed point p0 not in S.
Prove that d is differentiable.

Solution 4. By definition 2, it suffices to show that for any parametrization x : U ⊂ R2 → S,
the composition d ◦ x : U → R is differentiable. Since S is a regular surface, for any point p ∈ S,
there exists a neighborhood V ⊆ R3 of p such that V ∩ S is the graph of a differentiable function
z(x, y) or x(y, z) or y(x, z). Assume that V ∩ S is the graph of a differentiable function z(x, y),
then define a parametrization

x(u, v) = (u, v, z(u, v)), (u, v) ∈ U ⊆ R2,

where U is open in R2. The composition d ◦ x : U → R is given by

(d ◦ x)(u, v) = d(x(u, v)) =
»
⟨x(u, v)− p0, x(u, v)− p0⟩

=
»

(u− x0)2 + (v − y0)2 + (z(u, v)− z0)2.

Since

∂

∂u
(d ◦ x)(u, v)

∣∣∣∣
(u,v)

=
(u− x0 + (z(u, v)− z0)zu(u, v))√

(u− x0)2 + (v − y0)2 + (z(u, v)− z0)2
,

∂

∂v
(d ◦ x)(u, v)

∣∣∣∣
(u,v)

=
(v − y0 + (z(u, v)− z0)zv(u, v))√

(u− x0)2 + (v − y0)2 + (z(u, v)− z0)2
,

and z(u, v) is differentiable, we conclude that d ◦x is differentiable except when (u, v) = (x0, y0) =
x−1(p0). Since the choice of p ∈ S is arbitrary, we conclude that d is differentiable on S\{p0}.

Problem 5 (Do Carmo 2.3.10). Let C be a plane regular curve which lies on one side of a straight
line r of the plane and meets r at the points p, q (Fig. 2–21). What conditions should C satisfy to
ensure that the rotation of C about r generates an extended (regular) surface of revolution?

Solution 5. We can analyze the point p ∈ C locally. Assume that r is the z axis, and C is the
graph of a differentiable function y = f(x) in a neighborhood of p, since C is a regular curve. Since
S is the surface of revolution generated by rotating C about r, we claim that there is a local chart
at p ∈ S given by

x : U ⊆ R2 → S, (x, y) 7→ (x, y, f(
√
x2 + y2)),

where U is an open set in R2. We will check each condition given in definition (1) for S.
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(i) x is differentiable. We can calculate its differential at some (x, y) ∈ U as

dx(x,y) =

Ü
1 0
0 1

x√
x2 + y2

f ′(
√
x2 + y2)

y√
x2 + y2

f ′(
√
x2 + y2)

ê
. (2)

Since f is differentiable, the partial derivatives of x exist whenever (x, y) ̸= (0, 0). By
symmetry, f(w) = f(−w), so f ′(w) = −f ′(−w). When (x, y) = (0, 0), we have f ′(0) = 0,
and

x√
x2 + y2

,
y√

x2 + y2

are bounded, so dx(x,y) exists at (0, 0). To satisfy the symmetry condition, we require that
f ′ is odd, hence f is even, and all the odd-order derivatives of f vanish at 0. Similarly, the
odd-order derivatives of g such that y = g(x) in a neighborhood of q must also vanish.

(ii) x is a homeomorphism, since the graph of a continuous function is homeomorphic to its
domain.

(iii) From equation (2), we have |∂(x, y)/∂(u, v)| = 1, so dx is one-to-one. Hence dx(x,y) is
one-to-one for all (x, y) ∈ U .
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