

2025 Fall Introduction to Geometry

Homework 5 (Due Oct 10, 2025)

物理、數學三 黃紹凱 B12202004

October 17, 2025

Problem 1 (Do Carmo 2.3.16*). Let $R^2 = \{(x, y, z) \in \mathbb{R}^3; z = -1\}$ be identified with the complex plane \mathbb{C} by setting $(x, y, -1) = x + iy = \zeta \in \mathbb{C}$. Let $P : \mathbb{C} \rightarrow \mathbb{C}$ be the complex polynomial

$$P(\zeta) = a_0\zeta^n + a_1\zeta^{n-1} + \cdots + a_n, \quad a_0 \neq 0, a_i \in \mathbb{C}, i = 0, \dots, n.$$

Denote by π_N the stereographic projection of $S^2 = \{(x, y, z) \in \mathbb{R}^3; x^2 + y^2 + z^2 = 1\}$ from the north pole $N = (0, 0, 1)$ onto R^2 . Prove that the map $F : S^2 \rightarrow S^2$ given by

$$F(p) = \begin{cases} \pi_N^{-1} \circ P \circ \pi_N(p), & \text{if } p \in S^2 - \{N\}, \\ N, & \text{if } p = N, \end{cases}$$

is differentiable.

Solution 1. Given a point $p \in S^2 - \{N\}$, write it as $p = (x, y, z)$. Since the composition of differentiable functions is differentiable, we only need to show that π_N, π_N^{-1} and P are differentiable. The stereographic projection $\pi_N : S^2 - \{N\} \rightarrow \mathbb{R}^2$ is given by

$$\pi_N(x, y, z) = \left(\frac{x}{1-z}, \frac{y}{1-z} \right).$$

Since $z \neq 1$ for all $p \in S^2 - \{N\}$, π_N is differentiable. Similarly, note that the inverse stereographic projection $\pi_N^{-1} : \mathbb{R}^2 \rightarrow S^2 - \{N\}$ is given by

$$\pi_N^{-1}(u, v) = \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1} \right).$$

Since $u^2 + v^2 + 1 > 0$ for all $(u, v) \in \mathbb{R}^2$, π_N^{-1} is differentiable. Moreover, polynomials are differentiable everywhere, so P is differentiable. Thus, F is differentiable on $S^2 - \{N\}$.

Problem 2 (Do Carmo 2.4.10. Tubular Surfaces). Let $\alpha : I \rightarrow \mathbb{R}^3$ be a regular parametrized curve with nonzero curvature everywhere and arc length as parameter. Let

$$\mathbf{x}(s, v) = \alpha(s) + r(n(s) \cos v + b(s) \sin v), \quad r = \text{const.} \neq 0, s \in I,$$

be a parametrized surface (the tube of radius r around α), where n is the normal vector and b is the binormal vector of α . Show that, when \mathbf{x} is regular, its unit normal vector is

$$N(s, v) = -(n(s) \cos v + b(s) \sin v).$$

Solution 2. Let $\mathbf{x} : U \rightarrow \mathbb{R}^3$ as defined in the problem statement be a regular Parametrization, where U is an open set in \mathbb{R}^2 . The unit normal vector at each point $q \in \mathbf{x}(U)$ is defined as

$$N(q) = \frac{\mathbf{x}_s \wedge \mathbf{x}_v}{|\mathbf{x}_s \wedge \mathbf{x}_v|}(q).$$

Let prime denote derivative with respect to s . Then we have

$$\mathbf{x}_s = \alpha'(s) + r(n'(s) \cos v + b'(s) \sin v), \quad \mathbf{x}_v = r(-n(s) \sin v + b(s) \cos v),$$

and by the Frenet-Serret formulas,

$$\alpha'(s) = t(s), \quad n'(s) = -\kappa(s)t(s) - \tau(s)b(s), \quad b'(s) = \tau(s)n(s),$$

where t is the unit tangent, κ is the curvature, and τ is the torsion of α . Thus,

$$\begin{aligned} \mathbf{x}_s &= t(s) + r((-\kappa(s)t(s) - \tau(s)b(s)) \cos v + \tau(s)n(s) \sin v), \\ \mathbf{x}_v &= r(-n(s) \sin v + b(s) \cos v). \end{aligned}$$

Now suppress s and compute the wedge product in the Frenet frame $\{t, n, b\}$:

$$\begin{aligned} \mathbf{x}_s \wedge \mathbf{x}_v &= (t + r(-\kappa t \cos v - \tau b \cos v + \tau n \sin v)) \wedge r(-n \sin v + b \cos v) \\ &= -r(t \wedge n) \sin v + r(t \wedge b) \cos v - r^2 \kappa \sin v \cos v (t \wedge n) - r^2 \kappa \cos^2 v (t \wedge b) \\ &\quad + r^2 \tau \sin v \cos v (b \wedge n) + r^2 \tau \sin v \cos v (n \wedge b) \\ &= -r(1 - r\kappa \cos v) (\cos v n + \sin v b). \end{aligned}$$

Dividing by the norm and noting that n and b are unit length and orthogonal, we have

$$N(s, v) = -(n(s) \cos v + b(s) \sin v).$$

Problem 3 (Do Carmo 2.4.17). Two regular surfaces S_1 and S_2 intersect transversally if whenever $p \in S_1 \cap S_2$ then $T_p(S_1) \neq T_p(S_2)$. Prove that if S_1 intersects S_2 transversally, then $S_1 \cap S_2$ is a regular curve.

Solution 3. Let S_1, S_2 be two regular surfaces that intersect transversally, and let $p \in S_1 \cap S_2$. Since S_1, S_2 are regular surfaces, there exists a differentiable function $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ and a neighborhood V_1 of p such that $S_1 \cap V_1 = f^{-1}(0) \cap V_1$. Similarly, there exists a differentiable function $g : \mathbb{R}^3 \rightarrow \mathbb{R}$ and a neighborhood V_2 of p such that $S_2 \cap V_2 = g^{-1}(0) \cap V_2$. Define $F : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ by $F(q) = (f(q), g(q))$. Then

$$F^{-1}(0, 0) = f^{-1}((0, 0)) \cap g^{-1}((0, 0)) \supseteq (V_1 \cap V_2) \cap (S_1 \cap S_2).$$

Let $V = V_1 \cap V_2$. In V , we have $S_1 \cap S_2 = F^{-1}(0, 0)$. Since $T_p(S_1) \neq T_p(S_2)$, we have $N_{p_1}(0, 0) \wedge N_{p_2}(0, 0) \neq 0$, where

$$N_{p_1} = \frac{(f_x, f_y, f_z)(p)}{\|(f_x, f_y, f_z)(p)\|}, \quad N_{p_2} = \frac{(g_x, g_y, g_z)(p)}{\|(g_x, g_y, g_z)(p)\|}.$$

Hence

$$dF_{(x,y,z)} = \begin{pmatrix} f_x & f_y & f_z \\ g_x & g_y & g_z \end{pmatrix} (x, y, z) \neq 0,$$

and dF is surjective. Therefore, $(0, 0)$ is a regular point of F , and by [Do Carmo] Problem 2.2.17 (b) (The inverse image of a regular value of a differentiable map $F : U \subset \mathbb{R}^3 \rightarrow \mathbb{R}^2$ is a regular curve in \mathbb{R}^3), $S_1 \cap S_2$ is a regular curve.

Problem 4 (Do Carmo 2.4.23). Prove that the map $F : S^2 \rightarrow S^2$ defined in Exercise 16 of Sec. 2-3 has only a finite number of critical points (see Exercise 13).

Solution 4. From Problem 2.3.16, $F : S^2 \rightarrow S^2$ is differentiable. Let $p \in S^2$ be a critical point of F , then $dF_p = 0$. Since $F = \pi_N^{-1} \circ P \circ \pi_N$, by the chain rule, we have

$$dF_p = d(\pi_N^{-1})_{P(\pi_N(p))} \circ dP_{\pi_N(p)} \circ d(\pi_N)_p.$$

Note that $d(\pi_N)_p$ and $d(\pi_N^{-1})_{P(\pi_N(p))}$ are isomorphisms, so $dF_p = 0$ if and only if $dP_{\pi_N(p)} = 0$. Since $P : \mathbb{C} \rightarrow \mathbb{C}$ is a polynomial of degree n , dP is a polynomial of degree $n-1$, and thus has $n-1$ roots by the Fundamental Theorem of Algebra. Therefore, the map $F : S^2 \rightarrow S^2$ has only a finite number of critical points.

Problem 5 (Do Carmo 2.4.28).

- a. Define regular value for a differentiable function $f : S \rightarrow \mathbb{R}$ on a regular surface S .
- b. Show that the inverse image of a regular value of a differentiable function on a regular surface S is a regular curve on S .

Solution 5.

- a. A regular value of a differentiable function $f : S \rightarrow \mathbb{R}$ defined on a regular surface S is a value $c \in \mathbb{R}$ such that for every point $p \in f^{-1}(c)$, the differential $df_p : T_p(S) \rightarrow \mathbb{R}$ is surjective (i.e., $df_p \neq 0$).
- b. Let c be a regular value of a differentiable function $f : S \rightarrow \mathbb{R}$ and let $p \in f^{-1}(c)$. Pick a local parametrization $\mathbf{x} : U \subseteq \mathbb{R}^2 \rightarrow S$ such that $\mathbf{x}(0,0) = p$. Define $g : U \rightarrow \mathbb{R}$ by $g = f \circ \mathbf{x}$, then $g(0,0) = f(\mathbf{x}(0,0)) = f(p) = c$. Since $df_p \neq 0$ and $d\mathbf{x}_{(0,0)}$ is surjective onto $T_p S$, we have $dg_{(0,0)} \neq 0$. By the Implicit Function Theorem, there exists a neighborhood $V \subseteq U$ of $(0,0)$ such that $g^{-1}(c) \cap V$ is the graph of a C^1 function, say $v = \phi(u)$. Then we can define a local parametrization of the curve $f^{-1}(c)$ on S by

$$\alpha(u) = \mathbf{x}(u, \phi(u)), \quad u \in I$$

where I is some neighborhood of $u = 0$. Suppose for some u^* , we have $\alpha'(u^*) = 0$, then

$$d\mathbf{x}_{(u^*, \phi(u^*))}(1, \phi'(u^*)) = 0.$$

Since $d\mathbf{x}$ is one-to-one, we must have $(1, \phi'(u^*)) = 0$, contradiction. Thus, $\alpha'(u) \neq 0$ for all $u \in I$, and in a neighborhood of each $p \in f^{-1}(c)$, $f^{-1}(c)$ is the image of a regular curve α on S . Patching the local parametrizations together, we conclude that $f^{-1}(c)$ is a regular curve on S .