2025 Fall Introduction to Geometry

Homework 5 (Due Oct 10, 2025)
W~ FEF = F &I B12202004
October 17, 2025

Problem 1 (Do Carmo 2.3.16%). Let R* = {(z,y,2) € R% 2 = —1} be identified with the
complex plane C by setting (z,y,—1) = z+iy = ( € C. Let P : C — C be the complex polynomial

P)=ao("+ar(" '+ +an, a#0,a,€C,i=0,...,n

Denote by 7y the stereographic projection of S? = {(z,y,2) € R3;2% + y? + 22 = 1} from the
north pole N = (0,0,1) onto R?. Prove that the map F : S — S? given by

7r;,1 oPonn(p), ifpeS?—{N},

F =
Q {N, ifp=N,

is differentiable.

Solution 1. Given a point p € S?\{N}, write it as p = (x,y,2). Since the composition of
differentiable functions is differentiable, we only need to show that 7, 77;,1 and P are differentiable.
The stereographic projection my : S?\{N} — R? is given by

ﬂN(x,y,z):( ’ Y )

1—2"1—2

Since z # 1 for all p € S?\{N}, 7y is differentiable. Similarly, note that the inverse stereographic
projection my' : R? — S2\{N} is given by

2u 2v u2—|—v2—1)
w2+ 1w 4+02 4+ 1 w2 +02 41/

Ty (usv) = (

Since u? +v% +1 > 0 for all (u,v) € R?, w&l is differentiable. Moreover, polynomials are differen-
tiable everywhere, so P is differentiable. Thus, F is differentiable on S?\{N}.

Problem 2 (Do Carmo 2.4.10. Tubular Surfaces). Let a : I — R3 be a regular parametrized
curve with nonzero curvature everywhere and arc length as parameter. Let

x(s,v) = a(s) + r(n(s) cosv + b(s)sinv), r=const. #0, s € I,

be a parametrized surface (the tube of radius r around «), where n is the normal vector and b is
the binormal vector of a. Show that, when x is regular, its unit normal vector is

N(s,v) = —(n(s) cosv + b(s)sinv).

Solution 2. Let x : U — R? as defined in the problem statement be a regular Parametrization,
where U is an open set in R, The unit normal vector at each point ¢ € x(U) is defined as

Xs N\ Xy

N(q) ()-

X AXy|
Let prime denote derivative with respect to s. Then we have

xs =a'(s) +r(n'(s) cosv + b'(s)sinv), x, =7(—n(s)sinv+ b(s)cosv),



and by the Frenet-Serret formulas,
o'(s) =t(s), n'(s)=—r(s)t(s) —T(s)b(s), V' (s)=T(s)n(s),
where ¢ is the unit tangent, & is the curvature, and 7 is the torsion of a. Thus,
xs = t(s) + r((—r(s)t(s) — 7(s)b(s)) cosv + 7(s)n(s) sinv),
x, =7( —n(s)sinv + b(s) cosv).
Now suppress s and compute the wedge product in the Frenet frame {t,n, b}:

Xg AX, = (tJrr( — HtCOS’L}*TbCOSUﬁLTTlSiDU)) /\r( 77’LSinU+bCOS'U)

2k sinvcosv(t An) — rikcos® u(t A b)

=—r(tAn)sinv+r{tAb)cosv—r
+ r?7rsinvcosv(b An) + r*rsinvcosv(n Ab)

= —r(1 — rrcosv) (cosvn + sinvb) .

Dividing by the norm and noting that n and b are unit length and orthogonal, we have

N(s,v) = —(n(s) cosv + b(s)sinv).

Problem 3 (Do Carmo 2.4.17). Two regular surfaces S; and Sy intersect transversally if when-
ever p € S1 NSy then T,(S1) # T,(S2). Prove that if S; intersects So transversally, then S; N .Sy
is a regular curve.

Solution 3. Let Sp,S5: be two regular surfaces that intersect transversally, and let p € S; N
Sy. Since Sp, S, are regular surfaces, there exists a differentiable function f : R® — R and a
neighborhood V; of p such that S; N'V; = f~1(0) N V4. Similarly, there exists a differentiable
function g : R?> — R and a neighborhood V5 of p such that Sy N Vo = ¢g71(0) N Va. Define
F:R® = R? by F(q) = (f(q),9(q)). Then

F710,0) = f71((0,0)) ng~1((0,0)) 2 (Vi N Va) N (S1 N Ss).

Let V =V; NV, In V, we have S; NSy = F~1(0,0). Since T,(S1) # T,(S2), we have N, (0,0) A
N,,(0,0) # 0, where

(far Sy, )W) (92,94, 9:)(P)

N, = . N, = .
" fes s )0 " (g2 9y 9:) D)
Hence

and dF is surjective. Therefore, (0,0) is a regular point of F, and by [Do Carmo] Problem 2.2.17
(b) (The inverse image of a regular value of a differentiable map F : U C R?® — R? is a regular
curve in R?), §; N Sy is a regular curve.

Problem 4 (Do Carmo 2.4.23). Prove that the map F : S — S? defined in Exercise 16 of Sec.
2-3 has only a finite number of critical points (see Exercise 13).

Solution 4. From Problem 2.3.16, F : S? — S? is differentiable. Let p € S? be a critical point
of F, then dF, = 0. Since F = 5" o P oy, by the chain rule, we have

de = d(ﬂ';/l)p(ﬂ.N(p)) o dPﬂ.N(p) o d(ﬂ'N)p.

Note that d(my), and d(my")p(ry(p)) are isomorphisms, so dF, = 0 if and only if APy, = 0.
Since P : C — C is a polynomial of degree n, dP is a polynomial of degree n — 1, and thus has
n — 1 roots by the Fundamental Theorem of Algebra. Therefore, the map F : S2 — S2 has only a
finite number of critical points.



Problem 5 (Do Carmo 2.4.28).
a. Define regular value for a differentiable function f : S — R on a regular surface S.

b. Show that the inverse image of a regular value of a differentiable function on a regular surface
S is a regular curve on S.

Solution 5.

a. A regular value of a differentiable function f : S — R defined on a regular surface S is a value
¢ € R such that for every point p € f~!(c), the differential df, : T,(S) — R is surjective

(i.e., df, #0).

b. Let ¢ be a regular value of a differentiable function f : S — R and let p € f~!(c). Pick a local
parametrization x : U C R? — S such that x((0,0)) = p. Define g: U — R by g = f ox,
then ¢(0,0) = f(x(0,0)) = f(p) = c. Since df, # 0 and dx(q,) is surjective onto 7,5, we
have dg(g,0) # 0. By the Implicit Function Theorem, there exists a neighborhood V' C U of
(0,0) such that g=*(c) NV is the graph of a C! function, say v = ¢(u). Then we can define
a local parametrization of the curve f~!(c) on S by

a(u) = x(u, (v), wel
where T is some neighborhood of u = 0. Suppose for some u*, we have o/ (u*) = 0, then

dX(u*,¢(u*)) (]., (ﬂ(u*)) =0.

Since dx is one-to-one, we must have (1,¢'(u*)) = 0, contradiction. Thus, o/(u) # 0 for all
u € I, and in a neighborhood of each p € f~1(¢), f~1(c) is the image of a regular curve o on
S. Patching the local parametrizations together, we conclude that f~!(c) is a regular curve
on S.



