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Exercise 1 (Do Carmo 3.2.2). Show that if a surface is tangent to a plane along a curve, then
the points of this curve are either parabolic or planar.

Solution 1. Suppose a surface S is tangent to a plane Π along a curve C. Let p ∈ C be an
arbitrary point on the curve. Parametrize the curve C by α : I → S ∩ Π, where I is an open
interval containing 0 and α(0) = p. Let N : S → S2 be the Gauss map of S. Since the tangent
plane of S is Π for all p ∈ S, the unit normal N(α(s)) is equal to the constant normal n of Π.
Thus,

0 =
d

ds
N(α(s)) = dNα(s)(α

′(s)).

Therefore, the differential of the Gauss map dNp has a nontrivial kernel containing α′(0) ̸= 0 for
all α(s) ∈ S. But dNp : Tp(S) → TN(p)(S

2) is a linear map between finite-dimensional vector
spaces, dNp is not invertible, and hence det (dNp) ̸= 0 for all p ∈ C. Thus, all points on C are
either parabolic or planar.

Exercise 2 (Do Carmo 3.2.8). Describe the region of the unit sphere covered by the image of
the Gauss map of the following surfaces:

a. Paraboloid of revolution z = x2 + y2.

b. Hyperboloid of revolution x2 + y2 − z2 = 1.

c. Catenoid x2 + y2 = cosh2 z.

Solution 2. Let’s take the natural orientation: upward normal for graphs and outward normal
for surfaces of revolution.

a. Let the graph be z = f(x, y) = x2 + y2, then the normal to the surface is

N =
(−fx,−fy, 1)»
f2
x + f2

y + 1
,

where fx = 2x, fy = 2y. Since (x, y) ∈ R2 and the z component Nz = 1/
√
1 + 4(x2 + y2) ∈

(0, 1], the Gauss map is the open upper hemisphere of the unit sphere.

b. As a level set F (x, y, z) = x2 + y2 − z2 − 1, the (outward) normal vector is

N =
∇F

|∇F |
=

(2x, 2y,−2z)√
4x2 + 4y2 + 4z2

=
(x, y,−z)√
x2 + y2 + z2

.

Since x2 + y2 = z2 + 1 ≥ 1, the z component

Nz = − z√
x2 + y2 + z2

= − z√
2z2 + 1

∈
Å
− 1√

2
,
1√
2

ã
.

Thus, the Gauss map covers the open band {p ∈ S2 | |Nz| < 1√
2
}.
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c. Let’s write this in the following parametrization:

x(z, θ) = (cosh z cos θ, cosh z sin θ, z), z ∈ R, θ ∈ [0, 2π).

Then,
xz = (sinh z cos θ, sinh z sin θ, 1), xθ = (− cosh z sin θ, cosh z cos θ, 0).

The normal vector is given by

N =
xz × xθ

|xz × xθ|
=

(− cosh z cos θ,− cosh z sin θ, sinh z cosh z)√
cosh2 z + sinh2 z cosh2 z

=
(− cos θ,− sin θ, sinh z)√

1 + sinh2 z
.

=⇒ N = (− sech z cos θ,− sech z sin θ, tanh z).

Since θ ∈ [0, 2π) and Nz = − tanh z ∈ (−1, 1), the spherical image N(C) = S2 \ {(0, 0,±1)}.

Exercise 3 (Do Carmo 3.2.9).

a. Prove that the image N ◦ α by the Gauss map N : S → S2 of a parametrized regular curve
α : I → S which contains no planar or parabolic points is a parametrized regular curve on
the sphere S2 (called the spherical image of α).

b. If C = α(I) is a line of curvature, and k is its curvature at p, then

k = |knkN |,

where kn is the normal curvature at p along the tangent line of C and kN is the curvature of
the spherical image N(C) ⊂ S2 at N(p).

Solution 3.

a. Suppose α : I → S is a parametrized regular curve with no planar or parabolic points. Then,
the Gauss map N : S → S2 satisfies det (dNp) ̸= 0, and dNp is invertible, and hence injective
for all p ∈ C. Since α is a regular curve, α′(t) ̸= 0 for all t ∈ I, and hence

(N ◦ α)′(t) = dNα(t)(α
′(t)) ̸= 0,

which shows that the spherical image N(C) is a regular curve on S2.

b. Since C is a line of curvature, the tangent vector t = α′(s) at p = α(s) is a principal direction.
Hence, S(t) = knt where kn is the normal curvature along t at p. Let N : S → S2 be the
Gauss map of S. Using dN = −S(t), we have

d

ds
N(α(s)) = dNα(s)(α

′(s)) = −S(t) = −knt.

Thus, |N ′| = |kn|, and the tangent vector of the spherical image N(C) at N(p) is

tN =
N ′

|N ′|
=

−knt

|kn|
= − sgn(kn)t.

Let sN be the arc length parameter of the spherical image N(C). Then,

|kN | =
∣∣∣∣ dtNdsN

∣∣∣∣ = |dtN/ds|
|dsN/ds|

=
dtN/ds

|N ′|
=

k

|kn|
,

where we used t′ = kn in the last equality. Therefore, k = |knkN |.

Exercise 4 (Do Carmo 3.2.10). Assume that the osculating plane of a line of curvature C ⊂ S,
which is nowhere tangent to an asymptotic direction, makes a constant angle with the tangent
plane of S along C. Prove that C is a plane curve.
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Solution 4. Let t, n, b be the Frenet frame of the curve C. Since the osculating plane makes a
constant angle with the tangent plane of S, the unit normal N of S along C satisfies

b ·N = const.

Differentiate both sides with respect to the arc length parameter s of C and use Frenet’s formula:

b′ ·N + b ·N ′ = 0 =⇒ −τn ·N + b ·N ′ = 0.

Next, N ′ = −S(t) by the Weingarten formula, where S is the shape operator of S. Since C is a
line of curvature, t is a principal direction of S, and S(t) = knt, where kn is the normal curvature
of S along C. Thus,

−τn ·N − knb · t = −τkn/k = 0,

where k is the curvature of C. Since C is nowhere tangent to an asymptotic direction, kn ̸= 0, so
τ = 0. This implies b′ = −τn = 0, so

d

ds
(b · c) = cb′ = 0 =⇒ b = const.

and hence C is a plane curve.

Exercise 5 (*Do Carmo 3.2.14). If the surface S1 intersects the surface S2 along the regular
curve C, then the curvature k of C at p ∈ C is given by

k2 sin2 θ = λ2
1 + λ2

2 − 2λ1λ2 cos θ,

where λ1 and λ2 are the normal curvatures at p, along the tangent line to C, of S1 and S2,
respectively, and θ is the angle made up by the normal vectors of S1 and S2 at p.

Solution 5. Suppose S1 and S2 intersect along the regular curve C. Let N1, N2 be the unit
normals and let λ1, λ2 be the normal curvatures along the tangent line to C of S1 and S2, respec-
tively. Let t, n, b be the Frenet frame of the curve C. Since C lies on S1 and S2, t ⊥ Ni, i = 1, 2.
Thus, we can write Ni = n cosϕi + b sinϕi for some ϕi ∈ [0, π

2 ], i = 1, 2. The normal curvatures
are given by

λi = α′′ ·Ni = kn ·Ni = k cosϕi, i = 1, 2.

By definition, the angle θ between N1 and N2 satisfies

cos θ = N1 ·N2 = cosϕ1 cosϕ2 + sinϕ1 sinϕ2 = cos(ϕ1 − ϕ2).

By direct computation, we have

λ2
1 + λ2

2 − 2λ1λ2 cos θ = k2(cos2 ϕ1 + cos2 ϕ2 − 2 cosϕ1 cosϕ2 cos(ϕ1 − ϕ2))

= k2
(
cos2 ϕ1 + cos2 ϕ2 − 2 cosϕ1 cosϕ2(cosϕ1 cosϕ2 + sinϕ1 sinϕ2)

)
= k2

(
cos2 ϕ1 + cos2 ϕ2 − cos2 ϕ1(1− sin2 ϕ2)

− cos2 ϕ2(1− sin2 ϕ1)− 2 sinϕ1 sinϕ2 cosϕ1 cosϕ2

)
= k2

(
sin2 ϕ1 cos

2 ϕ2 + sin2 ϕ2 cos
2 ϕ1 − 2 sinϕ1 sinϕ2 cosϕ1 cosϕ2

)
= k2 sin2(ϕ1 − ϕ2) = k2 sin2 θ.
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