

# 2025 Fall Introduction to Geometry

Homework 7 (Due Nov 7, 2025)

物理、數學三 黃紹凱 B12202004

November 7, 2025

**Exercise 1** (Do Carmo 3.2.2). Show that if a surface is tangent to a plane along a curve, then the points of this curve are either parabolic or planar.

**Solution 1.** Suppose a surface  $S$  is tangent to a plane  $\Pi$  along a curve  $C$ . Let  $p \in C$  be an arbitrary point on the curve. Parametrize the curve  $C$  by  $\alpha : I \rightarrow S \cap \Pi$ , where  $I$  is an open interval containing 0 and  $\alpha(0) = p$ . Let  $N : S \rightarrow S^2$  be the Gauss map of  $S$ . Since the tangent plane of  $S$  is  $\Pi$  for all  $p \in S$ , the unit normal  $N(\alpha(s))$  is equal to the constant normal  $n$  of  $\Pi$ . Thus,

$$0 = \frac{d}{ds} N(\alpha(s)) = dN_{\alpha(s)}(\alpha'(s)).$$

Therefore, the differential of the Gauss map  $dN_p$  has a nontrivial kernel containing  $\alpha'(0) \neq 0$  for all  $\alpha(s) \in S$ . But  $dN_p : T_p(S) \rightarrow T_{N(p)}(S^2)$  is a linear map between finite-dimensional vector spaces,  $dN_p$  is not invertible, and hence  $\det(dN_p) \neq 0$  for all  $p \in C$ . Thus, all points on  $C$  are either parabolic or planar.

**Exercise 2** (Do Carmo 3.2.8). Describe the region of the unit sphere covered by the image of the Gauss map of the following surfaces:

- a. Paraboloid of revolution  $z = x^2 + y^2$ .
- b. Hyperboloid of revolution  $x^2 + y^2 - z^2 = 1$ .
- c. Catenoid  $x^2 + y^2 = \cosh^2 z$ .

**Solution 2.** Let's take the natural orientation: upward normal for graphs and outward normal for surfaces of revolution.

- a. Let the graph be  $z = f(x, y) = x^2 + y^2$ , then the normal to the surface is

$$N = \frac{(-f_x, -f_y, 1)}{\sqrt{f_x^2 + f_y^2 + 1}},$$

where  $f_x = 2x$ ,  $f_y = 2y$ . Since  $(x, y) \in \mathbb{R}^2$  and the z component  $N^z = 1/\sqrt{1 + 4(x^2 + y^2)} \in (0, 1]$ , the Gauss map is the open upper hemisphere of the unit sphere.

- b. As a level set  $F(x, y, z) = x^2 + y^2 - z^2 - 1$ , the (outward) normal vector is

$$N = \frac{\nabla F}{|\nabla F|} = \frac{(2x, 2y, -2z)}{\sqrt{4x^2 + 4y^2 + 4z^2}} = \frac{(x, y, -z)}{\sqrt{x^2 + y^2 + z^2}}.$$

Since  $x^2 + y^2 = z^2 + 1 \geq 1$ , the z component

$$N^z = -\frac{z}{\sqrt{x^2 + y^2 + z^2}} = -\frac{z}{\sqrt{2z^2 + 1}} \in \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right).$$

Thus, the Gauss map covers the open band  $\{p \in S^2 \mid |N^z| < \frac{1}{\sqrt{2}}\}$ .

c. Let's write this in the following parametrization:

$$\mathbf{x}(z, \theta) = (\cosh z \cos \theta, \cosh z \sin \theta, z), \quad z \in \mathbb{R}, \theta \in [0, 2\pi).$$

Then,

$$\mathbf{x}_z = (\sinh z \cos \theta, \sinh z \sin \theta, 1), \quad \mathbf{x}_\theta = (-\cosh z \sin \theta, \cosh z \cos \theta, 0).$$

The normal vector is given by

$$\begin{aligned} N &= \frac{\mathbf{x}_z \times \mathbf{x}_\theta}{|\mathbf{x}_z \times \mathbf{x}_\theta|} = \frac{(-\cosh z \cos \theta, -\cosh z \sin \theta, \sinh z \cosh z)}{\sqrt{\cosh^2 z + \sinh^2 z \cosh^2 z}} = \frac{(-\cos \theta, -\sin \theta, \sinh z)}{\sqrt{1 + \sinh^2 z}}. \\ &\implies N = (-\operatorname{sech} z \cos \theta, -\operatorname{sech} z \sin \theta, \tanh z). \end{aligned}$$

Since  $\theta \in [0, 2\pi)$  and  $N^z = -\tanh z \in (-1, 1)$ , the spherical image  $N(C) = S^2 \setminus \{(0, 0, \pm 1)\}$ .

**Exercise 3** (Do Carmo 3.2.9).

- a. Prove that the image  $N \circ \alpha$  by the Gauss map  $N : S \rightarrow S^2$  of a parametrized regular curve  $\alpha : I \rightarrow S$  which contains no planar or parabolic points is a parametrized regular curve on the sphere  $S^2$  (called the spherical image of  $\alpha$ ).
- b. If  $C = \alpha(I)$  is a line of curvature, and  $k$  is its curvature at  $p$ , then

$$k = |k_n k_N|,$$

where  $k_n$  is the normal curvature at  $p$  along the tangent line of  $C$  and  $k_N$  is the curvature of the spherical image  $N(C) \subset S^2$  at  $N(p)$ .

**Solution 3.**

- a. Suppose  $\alpha : I \rightarrow S$  is a parametrized regular curve with no planar or parabolic points. Then, the Gauss map  $N : S \rightarrow S^2$  satisfies  $\det(dN_p) \neq 0$ , and  $dN_p$  is invertible, and hence injective for all  $p \in C$ . Since  $\alpha$  is a regular curve,  $\alpha'(t) \neq 0$  for all  $t \in I$ , and hence

$$(N \circ \alpha)'(t) = dN_{\alpha(t)}(\alpha'(t)) \neq 0,$$

which shows that the spherical image  $N(C)$  is a regular curve on  $S^2$ .

- b. Since  $C$  is a line of curvature, the tangent vector  $t = \alpha'(s)$  at  $p = \alpha(s)$  is a principal direction. Hence,  $\mathcal{S}(t) = k_n t$  where  $k_n$  is the normal curvature along  $t$  at  $p$ . Let  $N : S \rightarrow S^2$  be the Gauss map of  $S$ . Using  $dN = -\mathcal{S}(t)$ , we have

$$\frac{d}{ds} N(\alpha(s)) = dN_{\alpha(s)}(\alpha'(s)) = -\mathcal{S}(t) = -k_n t.$$

Thus,  $|N'| = |k_n|$ , and the tangent vector of the spherical image  $N(C)$  at  $N(p)$  is

$$t_N = \frac{N'}{|N'|} = \frac{-k_n t}{|k_n|} = -\operatorname{sgn}(k_n) t.$$

Let  $s_N$  be the arc length parameter of the spherical image  $N(C)$ . Then,

$$|k_N| = \left| \frac{dt_N}{ds_N} \right| = \frac{|dt_N/ds|}{|ds_N/ds|} = \frac{dt_N/ds}{|N'|} = \frac{k}{|k_n|},$$

where we used  $t' = kn$  in the last equality. Therefore,  $k = |k_n k_N|$ .

**Exercise 4** (Do Carmo 3.2.10). Assume that the osculating plane of a line of curvature  $C \subset S$ , which is nowhere tangent to an asymptotic direction, makes a constant angle with the tangent plane of  $S$  along  $C$ . Prove that  $C$  is a plane curve.

**Solution 4.** Let  $t, n, b$  be the Frenet frame of the curve  $C$ . Since the osculating plane makes a constant angle with the tangent plane of  $S$ , the unit normal  $N$  of  $S$  along  $C$  satisfies

$$b \cdot N = \text{const.}$$

Differentiate both sides with respect to the arc length parameter  $s$  of  $C$  and use Frenet's formula:

$$b' \cdot N + b \cdot N' = 0 \implies -\tau n \cdot N + b \cdot N' = 0.$$

Next,  $N' = -\mathcal{S}(t)$  by the Weingarten formula, where  $\mathcal{S}$  is the shape operator of  $S$ . Since  $C$  is a line of curvature,  $t$  is a principal direction of  $S$ , and  $\mathcal{S}(t) = k_n t$ , where  $k_n$  is the normal curvature of  $S$  along  $C$ . Thus,

$$-\tau n \cdot N - k_n b \cdot t = -\tau k_n / k = 0,$$

where  $k$  is the curvature of  $C$ . Since  $C$  is nowhere tangent to an asymptotic direction,  $k_n \neq 0$ , so  $\tau = 0$ . This implies  $b' = -\tau n = 0$ , so

$$\frac{d}{ds}(b \cdot c) = cb' = 0 \implies b = \text{const.}$$

and hence  $C$  is a plane curve.

**Exercise 5** (\*Do Carmo 3.2.14). If the surface  $S_1$  intersects the surface  $S_2$  along the regular curve  $C$ , then the curvature  $k$  of  $C$  at  $p \in C$  is given by

$$k^2 \sin^2 \theta = \lambda_1^2 + \lambda_2^2 - 2\lambda_1 \lambda_2 \cos \theta,$$

where  $\lambda_1$  and  $\lambda_2$  are the normal curvatures at  $p$ , along the tangent line to  $C$ , of  $S_1$  and  $S_2$ , respectively, and  $\theta$  is the angle made up by the normal vectors of  $S_1$  and  $S_2$  at  $p$ .

**Solution 5.** Suppose  $S_1$  and  $S_2$  intersect along the regular curve  $C$ . Let  $N_1, N_2$  be the unit normals and let  $\lambda_1, \lambda_2$  be the normal curvatures along the tangent line to  $C$  of  $S_1$  and  $S_2$ , respectively. Let  $t, n, b$  be the Frenet frame of the curve  $C$ . Since  $C$  lies on  $S_1$  and  $S_2$ ,  $t \perp N_i$ ,  $i = 1, 2$ . Thus, we can write  $N_i = n \cos \phi_i + b \sin \phi_i$  for some  $\phi_i \in [0, \frac{\pi}{2}]$ ,  $i = 1, 2$ . The normal curvatures are given by

$$\lambda_i = \alpha'' \cdot N_i = kn \cdot N_i = k \cos \phi_i, \quad i = 1, 2.$$

By definition, the angle  $\theta$  between  $N_1$  and  $N_2$  satisfies

$$\cos \theta = N_1 \cdot N_2 = \cos \phi_1 \cos \phi_2 + \sin \phi_1 \sin \phi_2 = \cos(\phi_1 - \phi_2).$$

By direct computation, we have

$$\begin{aligned} \lambda_1^2 + \lambda_2^2 - 2\lambda_1 \lambda_2 \cos \theta &= k^2 (\cos^2 \phi_1 + \cos^2 \phi_2 - 2 \cos \phi_1 \cos \phi_2 \cos(\phi_1 - \phi_2)) \\ &= k^2 (\cos^2 \phi_1 + \cos^2 \phi_2 - 2 \cos \phi_1 \cos \phi_2 (\cos \phi_1 \cos \phi_2 + \sin \phi_1 \sin \phi_2)) \\ &= k^2 (\cos^2 \phi_1 + \cos^2 \phi_2 - \cos^2 \phi_1 (1 - \sin^2 \phi_2) \\ &\quad - \cos^2 \phi_2 (1 - \sin^2 \phi_1) - 2 \sin \phi_1 \sin \phi_2 \cos \phi_1 \cos \phi_2) \\ &= k^2 (\sin^2 \phi_1 \cos^2 \phi_2 + \sin^2 \phi_2 \cos^2 \phi_1 - 2 \sin \phi_1 \sin \phi_2 \cos \phi_1 \cos \phi_2) \\ &= k^2 \sin^2(\phi_1 - \phi_2) = k^2 \sin^2 \theta. \end{aligned}$$