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Definition 1 (Do Carmo 3.2.5, line of curvature). If a regular connected curve C' C S is such
that for all p € S the tangent line of C is a principal direction at p, then C' is said to be a line of
curvature of S.

Definition 2 (Do Carmo 3.2.9, asymptotic curve). Let p € S. An asymptotic direction of S at
p is a direction in T),(S) for which the normal curvature is zero. An asymptotic curve of S is a
regular connected curve C' C S such that for each p € S the tangent line of C' at p is an asymptotic
direction.

Exercise 1 (Do Carmo 3.3.5, Enneper’s Surface). Consider the parametrized surface (Enneper’s
surface)

u? v?

x(u,v) = (uf — +uv?, v — — +ou?, u? 7112)
3 3

and show that

a. The coefficients of the first fundamental form are

E=G=(1+u*+v?)?* F=0.

b. The coefficients of the second fundamental form are

c. The principal curvatures are

2 2

ki = ———"s ky = ———F—5-
YT 0w+ 02)? 2 (1+u2 +02)?

d. The lines of curvature are the coordinate curves.

o

. The asymptotic curves are u + v = const. and u — v = const.

Solution 1.

a. Calculate the first-order partial derivatives:
x, = (1 —u®+0% 2w, 2u), x, = (2uv, 1 —v* +u?, —20).
Then the coefficients of the first fundamental form are

F = (x4,x,) = (1 —u? + 03?4+ 4u?0? + 40u® = (1 +u® + 0?)?,
F = (%4,%,) = 2uv(l — u® +v%) + 2uv(1 + u? — v?) — duv = 0,
G = (X, %p) = 4u0? + (1 +u? —v?)? + 40? = (1 +u® + %)%



b. Calculate the second-order partial derivatives:
Xuuw = (—2u, 20, 2),  Xup = (20, 2u, 0), Xy = (2u, —2v, —2).
Next, we find the normal vector:
Xy AXy = (—2u(1+ r?), 2v(1 +7?), 1 — r4) ., where 7% = u? + 02,
Xy AXp| = (14122

Therefore,
Xy AKXy 1
e AR (14U +0?)

The coeflicients of the second fundamental form are given by the following inner products:

—2u, 20, 1 —u? —v?).
( ) )

1 2 2 2 2
e:<N,xuu>:m(4u + 40 +2(1 —u® —0?)) =2,

1
[ = (N, Xyp) = m(—4u1)+4u@+0)=0,

1 2 2 2 2
g:<N7X1}v>:m(—4u —4U —2(1—U — v )):—2

c. The shape operator in the (u,v) basis is given by S = I~ I, where

I—<E F)_((1+u2+v2)2 0 >
T\F G) 0 (1+u®+0?2)?%)"

0= -G %)

5—1—111—;(1 0)(2 0)_;@ 0>
- _(1+u2—|—02)2 0 1 0o -2 _(1+u2+1)2)2 0o —2/°

The principal curvatures are the eigenvalues of the shape operator, which are easily seen to
be

and

Thus,

2 2

k=—ovr, k= —— .
1 (1+u2 +v2)2’ 2 (1+u2 +12)?

d. The lines of curvature correspond to the eigenvectors of the shape operator, which are 9,
and 0,. Since the shape operator is diagonal in the (x,,x,) basis, the lines of curvature are
the coordinate curves u = const. and v = const..

e. For each p on an asymptotic curve, the normal curvature in the direction of the tangent vector
is zero. The normal curvature k,, in the direction of a unit tangent vector t = ax, + bx, is
given by

o = (S(t),8) = 2 ((du)? — (dv)?2).

(1 +u? +v?)
Setting k,, = 0 gives (du)? = (dv)?, which implies du = 4dv. Therefore, the asymptotic
directions correspond to the curves where v + v = const. and u — v = const.

From Do Carmo, the normal curvature is given by

ky, = k<na N>7

Exercise 2 (Do Carmo 3.3.8, Contact of Order > 2 of Surfaces). Two surfaces S and S, with a
common point p, have contact of order > 2 at p if there exist parametrizations x(u, v) and X(u,v)
in p of S and S, respectively, such that

Xu = Xyy Xy = Xyy,  Xyu = Xyuy, Xuv = Xuyvy Xy = Xoyp-



*b.

*d.

Let S and S have contact of order > 2 at p; x: U — S and x: U — S be arbitrary
parametrizations in p of S and S respectively; and f: V C R3> — R be a differentiable
function in a neighborhood V of p in R3. Then the partial derivatives of order < 2 of
fox:U — R are zero in X !(p) if and only if the partial derivatives of order < 2 of
fox: U — R are zero in x~!(p).

Let S and S have contact of order > 2 at p. Let z = f(z,y) and z = f(z,y) be the equations,
in a neighborhood of p, of S and S, respectively, where the xy-plane is the common tangent

plane at p = (0,0). Then the function f(z,y) — f(z,y) has all partial derivatives of order
< 2 equal to zero at (0,0).

Let p be a point in a surface S C R3. Let Ozyz be a Cartesian coordinate system for R>

such that O = p and the xy-plane is the tangent plane of S at p. Show that the paraboloid

= %(12}011 + 2xyfzy + yzfyy)a

obtained by neglecting third- and higher-order terms in the Taylor development around
p = (0,0), has contact of order > 2 at p with S (the surface (x) is called the osculating
paraboloid of S at p).

If a paraboloid (the degenerate cases of plane and parabolic cylinder are included) has contact
of order > 2 with a surface S at p, then it is the osculating paraboloid of S at p.

. If two surfaces have contact of order > 2 at p, then the osculating paraboloids of S and S at

p coincide. Conclude that the Gaussian and mean curvatures of S and S at p are equal.

The notion of contact of order > 2 is invariant by diffeomorphisms of R3; that is, if S and
S have contact of order > 2 at p and ¢: R® — R3 is a diffeomorphism, then ¢(S) and ¢(S)
have contact of order > 2 at ¢(p).

If S and S have contact of order > 2 at p, then

where d is the length of the segment cut by the surfaces in a straight line normal to T,,(S) =

T,(S), which is at a distance r from p.

Solution 2.

a.

b.

Suppose the partial derivatives of order < 2 of f o X are zero in X *(p). Then, by the chain
rule, we have
(foi)uZVf'iu:O7 (fO)Z)UZVf'iUZO,
(foR)uu = VI Ryu + XL Hyx, =0,
(foX)uy =V Xyy +XLHx, =0,
(foX)pw =V [ Xyp+ XZHfiv =0,
where Hy is the Hessian matrix of f at p. Since S and S have contact of order > 2 at p,

in the region x~!(p) we have (f o X)uy = Vf * Xuu + fofxu =Vf Xyu+ iZHfiu =0.
Similarly, (f oX)yy = (f 0X)yy = (f 0X)y = (f 0%), = 0. The converse follows by symmetry.

Since S, S have z = 0 as the common tangent plane, their graph at p = 0 satisfy f(0,0) =
£(0,0) = 0 and Vf(0,0) = Vf(0,0) = 0. Let’s define the function F : R® — R, such
that F(z,y,2) = z — %fm(O,O):z:2 — fay(0,0)zy — %fyy(O,O)yQ. Since F' is a polynomial
of x,y,z, it is differentiable. The parametrizations x, X for S and S at p are given by
x(z,y) = (z,y, f(z,y)) and X(x,y) = (x,y, f(x,y)), respectively. Then, (F o x)(z,y) =
f(@,y) = 5 f22(0,0)2% = f,(0,0)zy — 3 f,,(0,0)y?, so all the partial derivatives of order < 2



of Fox at (0,0) are zero. By part a., all the partial derivatives of order < 2 of F oX at (0, 0)
are also zero. Therefore,

_ 1 1
Fo X(SL’, y) = f(xvy) - §fwz(0>o)$2 - fmy(oa O)xy - §fyy(0»0)y2
has all partial derivatives of order < 2 vanish at p. Thus, the function f(z,y) — f(x,y) has
all partial derivatives of order < 2 vanish at p.

. In a neighborhood of p, the surface S can be expressed as the graph of a function z = f(x,y),
where the zy-plane is the tangent plane at p. Since the xy-plane is the tangent plane at p,
we have f(0,0) = f3(0,0) = f,(0,0) = 0, so the Taylor expansion of f(x,y) around p is given
by

flz,y) = % (]”3030(070)332 +2f24(0,0)zy + fyy(O,O)yQ) + Rs(z,y).

Let S be the paraboloid defined by

z=g(x,y) = % (fm(O, 0)z? + 2f2y(0,0)zy + fyy(0, 0)y2) .

The parametrizations for S and S at p are given by x(z,y) = (z,y, f(z,y)) and X(x,y) =
(z,y,9(x,y)), respectively. The second-order partial derivatives of f and g at p are equal,
since the remainder term Rs3(z,y) contains only terms of order > 3. Therefore, by definition,
S and S have contact of order > 2 at p.

. Suppose a paraboloid S has contact of order > 2 with a surface S at p. Let the equation of
S in a neighborhood of p be given by 2z = f(z,y), where the zy-plane is the tangent plane at
p. The equation of the paraboloid S can be expressed as

2= f(x,y) = az® + 2bxy + cy?,

for some constants a, b, ¢ € R. The second-order Taylor expansion of f(x,y) around p is given
by

F,9) = 5 (Fer 0,002 + 2120, 0079 + fyy (0, 0)57)

Comparing this with the expression for f(x,y), we find that

1 1 1
a= ifm(0,0), b= §fmy(070)’ c= ifyy(0,0).

Thus, the paraboloid S is the osculating paraboloid of S at p as defined in c..

. Let P, P be the osculating paraboloids of S and S, respectively. By b., S, S have contact
of order > 2 at p with P, P, respectively. Since S also has contact of order > 2 with S, all
the partial derivatvies of order < 2 of f and f vanish at p, where f, f are the equations in a
neighborhood of p, of S and S, respectively. Therefore,

(foa@)2® +2F oy (D)2y + [, ()V7)

N =

5 a0 + 261y D)y + i ()0?) =

and the osculating paraboloids P and P coincide. Since the Gaussian and mean curvatures
depend only on the partial derivatives of order < 2 of the parametrization at p, the Gaussian
and mean curvatures of S and S at p are equal.

. Suppose S and S have contact of order > 2 at p. Let ¢ : R?® — R? be a diffeomor-
phism. The parametrizations for S and S at p are given by x(u,v) and X(u,v), respec-

tively. The parametrizations for ¢(S) and ¢(S) at ¢(p) are given by y = (p o x) (u,v) and
¥ = (p oX) (u, v), respectively. Then, by the chain rule, we have

Yu = dcﬂx * X, Yo = d@x * Xy, Yuu = dz(Px(xuaXu) + d‘px * Xuus

Yuv = d2(ﬂ|x(xuaxv) + d§0|x *Xuvy  Yov = d2§0|x(xvvxv) + d<P|x * Xow)



and similarly for y, where d2¢|x is the bilinear differential of ¢ evaluated at x.

Since S and S have contact of order > 2 at p, it follows that y, = V,, Yo = Yo, Yuu = Yuu

Yuv = Yyus a0d Yoo = ¥,,,- Thus, ©(5) and ¢(S) have contact of order > 2 at ¢(p).

g. We may choose a Cartesian coordinate system Ozyz such that O = p, and z = 0 is the
common tangent plane of S and S at p. Let the equations of S and S in a neighborhood
of p be given by z = f(z,y) and z = f(z,y), respectively. Since S and S have contact of
order > 2 at p, by part b., all the partial derivatives of order < 2 of the function G(zx,y) =
f(z,y) — f(x,y) vanish at p. Therefore, G(0,0) = VG(0,0) = V2G(0,0) = 0, where V3G is
the Hessian matrix of G. Take a point ¢ = (z,y,0) € T,,(5) in the tangent plane, a distance
r = /22 +y? from p. The straight line L, normal to the tangent plane passing through ¢
intersects the surfaces S and S at the points (x,vy, f(x,y)) and (x,v, f(x,y)), respectively,
and d = ‘f(xvy) - f(:c,y)I = |G(:E7y)|

Define the function g(t) = G(tu) for a fixed u, where v € R? is a unit vector such that
(z,y) = ru. Then g is differentiable, and ¢g(0) = ¢’(0) = ¢”(0) = 0, since all the partial
derivatives of order < 2 of F' vanish at p. By Taylor’s formula with remainder, we have

g(t) = g(0) + ¢'(0) +/0 ds(t—s)g"(s) = /0 ds(t—s)g"(s)

for all ¢ in a neighborhood of 0. Next we will bound |g|. Since F is smooth, V2F is continuous,
so for all € > 0 there exists § > 0, such that ||(z,y)|| < § implies ||V2F(z,y)| < 2. Hence,
for t < 68, |g"(t)| = [uT V2Fu| < |V2F|||u?|| < 2¢. Take t =7 < §, then we have

|G(ru)| = 1g9(r)] =

[ ast =0

< / ds (r — s5)2er? = er?,
0

sfﬁwwww

Notice that d = G(z,y) = G(ru), so for all € > 0 there exists § > 0 such that % <
whenever \/z2 + y2 < §. This proves the desired result.

Exercise 3 (Do Carmo 3.3.13). Let F: R® — R3 be the map (a similarity) defined by F(p) = cp,
p € R3, ¢ a positive constant. Let S C R® be a regular surface and set S = F(S). Show that S
is a regular surface, and find formulas relating the Gaussian and mean curvatures, K and H, of S
with the Gaussian and mean curvatures, K and H, of S.

Solution 3.

1. Let x : U C R — S be a local parametrization of S. Let S = F(S), then X = Fox : U — S is
a local parametrization of S. The map F is smooth, and since dF = cId is an isomorphism,
dX = dF odx = cdx has rank 2 whenever dx has rank 2. Thus, X is a homeomorphism onto
its image and d7 is injective (hence an immersion). Therefore, S is a regular surface.

2. For any local parametrization x and X, we have X = cx. Thus,

- - 2
Xy = Xy, Xy =CXy, XAXy=C(Xy AXyp).

Hence, the normal for S satisfies N = N. Write the Weingarten map for S and S as S and
S, respectively. By definition, dN = —§ o dx, so

dN:dN:—Sde:—Soldiz—(ES)Odi.
c c



Therefore, S = fS and the principle curvatures satisfy k; = ,k“ since they are the eigen-
values of S. The Gaussian curvature K and mean curvature H of S are then given by

- 1 1
K =kike = Skiks = S K,
c
F:k1+k2 lhki+k 1
2 c 2 c

Exercise 4 (Do Carmo 3.3.24, Local Convexity and Curvature).

A surface S C R? is locally convex at a point p € S if there exists a neighborhood V C S
of p such that V is contained in one of the closed half-spaces determined by 7,(S) in R3. If, in
addition, V has only one common point with T,(.S), then S is called strictly locally convex at p.

a. Prove that S is strictly locally convex at p if the principal curvatures of S at p are nonzero
with the same sign (that is, the Gaussian curvature K (p) satisfies K(p) > 0).

b. Prove that if S is locally convex at p, then the principal curvatures at p do not have different
signs (thus, K(p) > 0).

c. To show that K > 0 does not imply local convexity, consider the surface

flz,y) =2°(1+9%),

defined in the open set U = {(z,y) € R? : y?> < }. Show that the Gaussian curvature of
this surface is nonnegative on U and yet the surface is not locally convex at (0,0) € U (a
deep theorem, due to R. Sacksteder, implies that such an example cannot be extended to the
entire R? if we insist on keeping the curvature nonnegative; cf. Remark 3 of Sec. 5-6).

*d. The example of part (c) is also very special in the following local sense. Let p be a point in
a surface 5, and assume that there exists a neighborhood V' C S of p such that the principal
curvatures on V' do not have different signs (this does not happen in the example of part c).
Prove that S is locally convex at p.

Solution 4.

a. Without loss of generality, assume k1, ks > 0, since if both are negative, just replace the
chosen unit normal by its negative. Let x : U C R? — S C R3 be a local parametrization of S
such that {x,,x,} is an orthonormal basis of principle directions at p € S, where p = x(0,0).
Following the definition of Exercise 3.3.22, define the height function h : U — R of S relative
to T,(S) by

h(u, v) = (x(u,v) = p, N(p)),

where N(p) is the unit normal vector p. We compute the derivatives as follows:

h(p) = (x(0,0) —p, N (p)>

hu(p) = (x4(0,0), N(p)) =

hy(p) = (x4(0,0), N(p)) =
huu(p) = (Xuu(0,0), N(p)) = e(p)
huw(P) = (Xuu(0,0), N(p)) = f(p),
hoo(P) = (%0u(0,0), N(p)) = g(p),

where h;;(p) are the coefficients of the second fundamental form at p. Since x,(0,0) and
x,(0, 0) are principle directions and orthonormal, we have e(p) = k1, f(p) = 0, and g(p) = ka.
Thus, the Hessian matrix of A at p is given by

e =) b)) =5 2



and Taylor expansion gives
1
h(u,v) = 3 (k1u® + k2v?) + o (u® + 0?)

Since k1, ks > 0, the quadratic form Q = 1 (k1u? + kav?) associated with V2h(p) is positive
definite. Hence, there exists a neighborhood W C U of p and some ¢ > 0 such that Q(u,v) >
c(u? +v?) for all (u,v) € W. Now since
h(u,v) — Q(u,v)
u? + v?
there exists a radius 6 > 0 such that vu? + v? < § implies |h(u,v) — Q(u,v)| < §(u? + v?).
Therefore, for all (u,v) € W with vu? + v? < §, we have

—0 as (u,v) = (0,0),

c
2
with h(u,v) = 0 if and only if (u,v) = (0,0). Thus, the neighborhood V' = x(W N {(u,v) :
VuZ +v2 < §}) of p is contained in the half-space HT = {q € R3 | (¢ — p, N(p)) > 0}, and
V has only one common point with 7},(S). Therefore, S is strictly locally convex at p.

h(u,v) > Q(u,v) — |h(u,v) — Q(u,v)| > c(u? +v?) — = (u? +v?) = g(u2 + %) > 0,

. Suppose S is locally convex at p, so there exists a neighborhood V' C S of p such that V is
contained in one of the closed half-spaces determined by T},(S). Define the height function
as above, by local convexity we may choose an orientation N(p) such that h(u,v) > 0 in a
neighborhood of (0,0), and h(0,0) = h,(0,0) = h,(0,0) = 0. Suppose that the principal
curvatures at p have different signs, say k1 > 0 > ko. Then, along the coordinate axes, we
have h(u,0) = Fkiu® > 0 for all |u| < d,, and h(0,v) = $kov? < 0 for all |v] < &,. Hence, in
every neighborhood of (0,0), we can find points such that h(u,v) > 0 and others such that
h(u,v) < 0, contradicting local convexity. Therefore, the principal curvatures at p do not
have different signs, and hence K(p) > 0.

. The Gaussian curvature K of the surface defined by z = f(z,y) is given by

fszyy - 3y
I+ 2+ 1)
Let’s compute the necessary partial derivatives of f(z,y) = z3(1 + 3?):
fe=32*(1+9?), f,=22%, foo=062(1+y?), fuy =22 fu, =627y

Then, we have

K =

(600 y?)(20%) — (627 1204(1 — 24) -
(1 Be2(1+y?))? 4+ (22%y)2)2 (149241 +y?)2 +4aSy?)? T
However, the surface is not locally convex at (0,0), since for any neighborhood V' of (0, 0),
there exist points with both positive and negative = values, and hence z-coordinates, so V is
not contained in one of the closed half-spaces determined by the tangent plane at (0,0).

. Suppose V C S is a neighborhood of p such that the principal curvatures on V' do not have
different signs. Without loss of generality, assume k1(q), k2(q) > 0 for all ¢ € V, since if at
some point one of them were positive and later negative, it would have to cross zero alone,
producing a point where the two have different signs, which is excluded by definition of V.
Follow the steps of a., we define the height function h : U — R of S relative to T,(S) by
h(u,v) = (x(u,v) —p, N(p)). Pick an orthonormal basis of principal directions {x,, %, }. The
Hessian matrix of h at p is given, again, by

ki O
2 _(F
viw = (")),
Near (0,0), we have
h(u,v) = % (k1u® + kav®) + 0 (v + v?),

and the quadratic form Q@ = £ (kju® 4 kov?) is positive-definite. Now we consider two cases:



(a) At least one of the principal curvatures at p is positive, say k; > 0. Then, there exists
a neighborhood W C U of p and some ¢ > 0 such that Q(u,v) > c(u? + v?) for all
(u,v) € W. Following the same steps as in a., we can show local convexity at p.

(b) Both principal curvatures at p are zero, i.e., k1 = ko = 0, so @ = 0. Since the principal
curvatures are continuous functions on S, we have h(0,0) = 0 and h(u,v) > 0 in a
neighborhood of p. Therefore, S is locally convex at p.



