
2025 Fall Introduction to Geometry

Homework 8 (Due Nov 14, 2025)

物理三 黃紹凱 B12202004

November 14, 2025

Definition 1 (Do Carmo 3.2.5, line of curvature). If a regular connected curve C ⊆ S is such
that for all p ∈ S the tangent line of C is a principal direction at p, then C is said to be a line of
curvature of S.

Definition 2 (Do Carmo 3.2.9, asymptotic curve). Let p ∈ S. An asymptotic direction of S at
p is a direction in Tp(S) for which the normal curvature is zero. An asymptotic curve of S is a
regular connected curve C ⊆ S such that for each p ∈ S the tangent line of C at p is an asymptotic
direction.

Exercise 1 (Do Carmo 3.3.5, Enneper’s Surface). Consider the parametrized surface (Enneper’s
surface)

x(u, v) =

Å
u− u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2

ã
and show that

a. The coefficients of the first fundamental form are

E = G = (1 + u2 + v2)2, F = 0.

b. The coefficients of the second fundamental form are

e = 2, g = −2, f = 0.

c. The principal curvatures are

k1 =
2

(1 + u2 + v2)2
, k2 = − 2

(1 + u2 + v2)2
.

d. The lines of curvature are the coordinate curves.

e. The asymptotic curves are u+ v = const. and u− v = const.

Solution 1.

a. Calculate the first-order partial derivatives:

xu =
(
1− u2 + v2, 2uv, 2u

)
, xv =

(
2uv, 1− v2 + u2, −2v

)
.

Then the coefficients of the first fundamental form are

E = ⟨xu,xu⟩ = (1− u2 + v2)2 + 4u2v2 + 4u2 = (1 + u2 + v2)2,

F = ⟨xu,xv⟩ = 2uv(1− u2 + v2) + 2uv(1 + u2 − v2)− 4uv = 0,

G = ⟨xv,xv⟩ = 4u2v2 + (1 + u2 − v2)2 + 4v2 = (1 + u2 + v2)2.
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b. Calculate the second-order partial derivatives:

xuu = (−2u, 2v, 2) , xuv = (2v, 2u, 0) , xvv = (2u, −2v, −2) .

Next, we find the normal vector:

xu ∧ xv =
(
−2u(1 + r2), 2v(1 + r2), 1− r4

)
, where r2 = u2 + v2,

|xu ∧ xv| = (1 + r2)2.

Therefore,

N =
xu ∧ xv

|xu ∧ xv|
=

1

(1 + u2 + v2)

(
−2u, 2v, 1− u2 − v2

)
.

The coefficients of the second fundamental form are given by the following inner products:

e = ⟨N,xuu⟩ =
1

(1 + u2 + v2)

(
4u2 + 4v2 + 2(1− u2 − v2)

)
= 2,

f = ⟨N,xuv⟩ =
1

(1 + u2 + v2)
(−4uv + 4uv + 0) = 0,

g = ⟨N,xvv⟩ =
1

(1 + u2 + v2)

(
−4u2 − 4v2 − 2(1− u2 − v2)

)
= −2.

c. The shape operator in the (u, v) basis is given by S = I−1 II, where

I =

Å
E F
F G

ã
=

Å
(1 + u2 + v2)2 0

0 (1 + u2 + v2)2

ã
,

and

II =

Å
e f
f g

ã
=

Å
2 0
0 −2

ã
.

Thus,

S = I−1 II =
1

(1 + u2 + v2)2

Å
1 0
0 1

ãÅ
2 0
0 −2

ã
=

1

(1 + u2 + v2)2

Å
2 0
0 −2

ã
.

The principal curvatures are the eigenvalues of the shape operator, which are easily seen to
be

k1 =
2

(1 + u2 + v2)2
, k2 = − 2

(1 + u2 + v2)2
.

d. The lines of curvature correspond to the eigenvectors of the shape operator, which are ∂u
and ∂v. Since the shape operator is diagonal in the (xu,xv) basis, the lines of curvature are
the coordinate curves u = const. and v = const..

e. For each p on an asymptotic curve, the normal curvature in the direction of the tangent vector
is zero. The normal curvature kn in the direction of a unit tangent vector t = axu + bxv is
given by

kn = ⟨S(t), t⟩ = 2

(1 + u2 + v2)2
((du)2 − (dv)2).

Setting kn = 0 gives (du)2 = (dv)2, which implies du = ±dv. Therefore, the asymptotic
directions correspond to the curves where u+ v = const. and u− v = const.

From Do Carmo, the normal curvature is given by

kn = k⟨n,N⟩,

Exercise 2 (Do Carmo 3.3.8, Contact of Order ≥ 2 of Surfaces). Two surfaces S and S̄, with a
common point p, have contact of order ≥ 2 at p if there exist parametrizations x(u, v) and x̄(u, v)
in p of S and S̄, respectively, such that

xu = x̄u, xv = x̄v, xuu = x̄uu, xuv = x̄uv, xvv = x̄vv.
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a. Let S and S̄ have contact of order ≥ 2 at p; x : U → S and x̄ : U → S̄ be arbitrary
parametrizations in p of S and S̄ respectively; and f : V ⊂ R3 → R be a differentiable
function in a neighborhood V of p in R3. Then the partial derivatives of order ≤ 2 of
f ◦ x̄ : U → R are zero in x̄−1(p) if and only if the partial derivatives of order ≤ 2 of
f ◦ x : U → R are zero in x−1(p).

*b. Let S and S̄ have contact of order ≥ 2 at p. Let z = f(x, y) and z = f̄(x, y) be the equations,
in a neighborhood of p, of S and S̄, respectively, where the xy-plane is the common tangent
plane at p = (0, 0). Then the function f(x, y) − f̄(x, y) has all partial derivatives of order
≤ 2 equal to zero at (0, 0).

c. Let p be a point in a surface S ⊂ R3. Let Oxyz be a Cartesian coordinate system for R3

such that O = p and the xy-plane is the tangent plane of S at p. Show that the paraboloid

z = 1
2 (x

2fxx + 2xyfxy + y2fyy),

obtained by neglecting third- and higher-order terms in the Taylor development around
p = (0, 0), has contact of order ≥ 2 at p with S (the surface (∗) is called the osculating
paraboloid of S at p).

*d. If a paraboloid (the degenerate cases of plane and parabolic cylinder are included) has contact
of order ≥ 2 with a surface S at p, then it is the osculating paraboloid of S at p.

*e. If two surfaces have contact of order ≥ 2 at p, then the osculating paraboloids of S and S̄ at
p coincide. Conclude that the Gaussian and mean curvatures of S and S̄ at p are equal.

*f. The notion of contact of order ≥ 2 is invariant by diffeomorphisms of R3; that is, if S and
S̄ have contact of order ≥ 2 at p and φ : R3 → R3 is a diffeomorphism, then φ(S) and φ(S̄)
have contact of order ≥ 2 at φ(p).

*g. If S and S̄ have contact of order ≥ 2 at p, then

lim
r→0

d

r2
= 0,

where d is the length of the segment cut by the surfaces in a straight line normal to Tp(S) =
Tp(S̄), which is at a distance r from p.

Solution 2.

a. Suppose the partial derivatives of order ≤ 2 of f ◦ x̄ are zero in x̄−1(p). Then, by the chain
rule, we have

(f ◦ x̄)u = ∇f · x̄u = 0, (f ◦ x̄)v = ∇f · x̄v = 0,

(f ◦ x̄)uu = ∇f · x̄uu + x̄T
uHf x̄u = 0,

(f ◦ x̄)uv = ∇f · x̄uv + x̄T
uHf x̄v = 0,

(f ◦ x̄)vv = ∇f · x̄vv + x̄T
v Hf x̄v = 0,

where Hf is the Hessian matrix of f at p. Since S and S̄ have contact of order ≥ 2 at p,
in the region x−1(p) we have (f ◦ x)uu = ∇f · xuu + xT

uHfxu = ∇f · xuu + xT
uHfxu = 0.

Similarly, (f ◦x)uv = (f ◦x)vv = (f ◦x)u = (f ◦x)v = 0. The converse follows by symmetry.

b. Since S, S have z = 0 as the common tangent plane, their graph at p = 0 satisfy f(0, 0) =
f(0, 0) = 0 and ∇f(0, 0) = ∇f(0, 0) = 0. Let’s define the function F : R3 → R, such
that F (x, y, z) = z − 1

2fxx(0, 0)x
2 − fxy(0, 0)xy − 1

2fyy(0, 0)y
2. Since F is a polynomial

of x, y, x, it is differentiable. The parametrizations x, x for S and S at p are given by
x(x, y) = (x, y, f(x, y)) and x(x, y) =

(
x, y, f(x, y)

)
, respectively. Then, (F ◦ x)(x, y) =

f(x, y)− 1
2fxx(0, 0)x

2 − fxy(0, 0)xy − 1
2fyy(0, 0)y

2, so all the partial derivatives of order ≤ 2
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of F ◦x at (0, 0) are zero. By part a., all the partial derivatives of order ≤ 2 of F ◦x at (0, 0)
are also zero. Therefore,

F ◦ x(x, y) = f(x, y)− 1

2
fxx(0, 0)x

2 − fxy(0, 0)xy −
1

2
fyy(0, 0)y

2

has all partial derivatives of order ≤ 2 vanish at p. Thus, the function f(x, y) − f(x, y) has
all partial derivatives of order ≤ 2 vanish at p.

c. In a neighborhood of p, the surface S can be expressed as the graph of a function z = f(x, y),
where the xy-plane is the tangent plane at p. Since the xy-plane is the tangent plane at p,
we have f(0, 0) = fx(0, 0) = fy(0, 0) = 0, so the Taylor expansion of f(x, y) around p is given
by

f(x, y) =
1

2

(
fxx(0, 0)x

2 + 2fxy(0, 0)xy + fyy(0, 0)y
2
)
+R3(x, y).

Let S be the paraboloid defined by

z = g(x, y) =
1

2

(
fxx(0, 0)x

2 + 2fxy(0, 0)xy + fyy(0, 0)y
2
)
.

The parametrizations for S and S at p are given by x(x, y) = (x, y, f(x, y)) and x(x, y) =
(x, y, g(x, y)), respectively. The second-order partial derivatives of f and g at p are equal,
since the remainder term R3(x, y) contains only terms of order ≥ 3. Therefore, by definition,
S and S have contact of order ≥ 2 at p.

d. Suppose a paraboloid S has contact of order ≥ 2 with a surface S at p. Let the equation of
S in a neighborhood of p be given by z = f(x, y), where the xy-plane is the tangent plane at
p. The equation of the paraboloid S can be expressed as

z = f(x, y) = ax2 + 2bxy + cy2,

for some constants a, b, c ∈ R. The second-order Taylor expansion of f(x, y) around p is given
by

f(x, y) =
1

2

(
fxx(0, 0)x

2 + 2fxy(0, 0)xy + fyy(0, 0)y
2
)
.

Comparing this with the expression for f(x, y), we find that

a =
1

2
fxx(0, 0), b =

1

2
fxy(0, 0), c =

1

2
fyy(0, 0).

Thus, the paraboloid S is the osculating paraboloid of S at p as defined in c..

e. Let P , P be the osculating paraboloids of S and S, respectively. By b., S, S have contact
of order ≥ 2 at p with P , P , respectively. Since S also has contact of order ≥ 2 with S, all
the partial derivatvies of order ≤ 2 of f and f vanish at p, where f , f are the equations in a
neighborhood of p, of S and S, respectively. Therefore,

1

2

(
fxx(p)x

2 + 2fxy(p)xy + fyy(p)y
2
)
=

1

2

(
fxx(p)x

2 + 2fxy(p)xy + fyy(p)y
2
)
,

and the osculating paraboloids P and P coincide. Since the Gaussian and mean curvatures
depend only on the partial derivatives of order ≤ 2 of the parametrization at p, the Gaussian
and mean curvatures of S and S at p are equal.

f. Suppose S and S have contact of order ≥ 2 at p. Let φ : R3 → R3 be a diffeomor-
phism. The parametrizations for S and S at p are given by x(u, v) and x(u, v), respec-
tively. The parametrizations for φ(S) and φ(S) at φ(p) are given by y = (φ ◦ x) (u, v) and
y = (φ ◦ x) (u, v), respectively. Then, by the chain rule, we have

yu = dφx · xu, yv = dφx · xv, yuu = d2φx(xu,xu) + dφx · xuu,

yuv = d2φ|x(xu,xv) + dφ|x · xuv, yvv = d2φ|x(xv,xv) + dφ|x · xvv,
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and similarly for y, where d2ϕ|x is the bilinear differential of ϕ evaluated at x.

Since S and S have contact of order ≥ 2 at p, it follows that yu = yu, yv = yv, yuu = yuu,
yuv = yuv, and yvv = yvv. Thus, φ(S) and φ(S) have contact of order ≥ 2 at φ(p).

g. We may choose a Cartesian coordinate system Oxyz such that O = p, and z = 0 is the
common tangent plane of S and S at p. Let the equations of S and S in a neighborhood
of p be given by z = f(x, y) and z = f(x, y), respectively. Since S and S have contact of
order ≥ 2 at p, by part b., all the partial derivatives of order ≤ 2 of the function G(x, y) ≡
f(x, y)− f(x, y) vanish at p. Therefore, G(0, 0) = ∇G(0, 0) = ∇2G(0, 0) = 0, where ∇2G is
the Hessian matrix of G. Take a point q = (x, y, 0) ∈ Tp(S) in the tangent plane, a distance

r =
√
x2 + y2 from p. The straight line Lq normal to the tangent plane passing through q

intersects the surfaces S and S at the points (x, y, f(x, y)) and (x, y, f(x, y)), respectively,
and d = |f(x, y)− f(x, y)| = |G(x, y)|.

Define the function g(t) = G(tu) for a fixed u, where u ∈ R2 is a unit vector such that
(x, y) = ru. Then g is differentiable, and g(0) = g′(0) = g′′(0) = 0, since all the partial
derivatives of order ≤ 2 of F vanish at p. By Taylor’s formula with remainder, we have

g(t) = g(0) + g′(0) +

∫ t

0

ds (t− s)g′′(s) =

∫ t

0

ds (t− s)g′′(s)

for all t in a neighborhood of 0. Next we will bound |g|. Since F is smooth, ∇2F is continuous,
so for all ε > 0 there exists δ > 0, such that ∥(x, y)∥ < δ implies ∥∇2F (x, y)∥ < 2ε. Hence,
for t < δ, |g′′(t)| = |uT∇2Fu| ≤ |∇2F |∥u2∥ < 2ε. Take t = r < δ, then we have

|G(ru)| = |g(r)| =
∣∣∣∣∫ r

0

ds (r − s)g′′(s)

∣∣∣∣ ≤ ∫ r

0

ds (r − s)|g′′(s)|

≤
∫ r

0

ds (r − s)2εr2 = εr2.

Notice that d = G(x, y) = G(ru), so for all ε > 0 there exists δ > 0 such that d
r2 < ε

whenever
√
x2 + y2 < δ. This proves the desired result.

Exercise 3 (Do Carmo 3.3.13). Let F : R3 → R3 be the map (a similarity) defined by F (p) = cp,
p ∈ R3, c a positive constant. Let S ⊂ R3 be a regular surface and set S̄ = F (S). Show that S̄
is a regular surface, and find formulas relating the Gaussian and mean curvatures, K and H, of S
with the Gaussian and mean curvatures, K̄ and H̄, of S̄.

Solution 3.

1. Let x : U ⊆ R → S be a local parametrization of S. Let S = F (S), then x = F ◦x : U → S is
a local parametrization of S. The map F is smooth, and since dF = c Id is an isomorphism,
dx = dF ◦ dx = cdx has rank 2 whenever dx has rank 2. Thus, x is a homeomorphism onto
its image and dx is injective (hence an immersion). Therefore, S is a regular surface.

2. For any local parametrization x and x, we have x = cx. Thus,

xu = cxu, xv = cxv, x ∧ xv = c2(xu ∧ xv).

Hence, the normal for S satisfies N = N . Write the Weingarten map for S and S as S and
S, respectively. By definition, dN = −S ◦ dx, so

dN = dN = −S ◦ dx = −S ◦ 1

c
dx = −

Å
1

c
S
ã
◦ dx.
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Therefore, S = 1
cS, and the principle curvatures satisfy ki =

1
cki, since they are the eigen-

values of S. The Gaussian curvature K and mean curvature H of S are then given by

K = k1k2 =
1

c2
k1k2 =

1

c2
K,

H =
k1 + k2

2
=

1

c

k1 + k2
2

=
1

c
H.

Exercise 4 (Do Carmo 3.3.24, Local Convexity and Curvature).

A surface S ⊂ R3 is locally convex at a point p ∈ S if there exists a neighborhood V ⊂ S
of p such that V is contained in one of the closed half-spaces determined by Tp(S) in R3. If, in
addition, V has only one common point with Tp(S), then S is called strictly locally convex at p.

a. Prove that S is strictly locally convex at p if the principal curvatures of S at p are nonzero
with the same sign (that is, the Gaussian curvature K(p) satisfies K(p) > 0).

b. Prove that if S is locally convex at p, then the principal curvatures at p do not have different
signs (thus, K(p) ≥ 0).

c. To show that K ≥ 0 does not imply local convexity, consider the surface

f(x, y) = x3(1 + y2),

defined in the open set U = {(x, y) ∈ R2 : y2 < 1
2}. Show that the Gaussian curvature of

this surface is nonnegative on U and yet the surface is not locally convex at (0, 0) ∈ U (a
deep theorem, due to R. Sacksteder, implies that such an example cannot be extended to the
entire R2 if we insist on keeping the curvature nonnegative; cf. Remark 3 of Sec. 5-6).

*d. The example of part (c) is also very special in the following local sense. Let p be a point in
a surface S, and assume that there exists a neighborhood V ⊂ S of p such that the principal
curvatures on V do not have different signs (this does not happen in the example of part c).
Prove that S is locally convex at p.

Solution 4.

a. Without loss of generality, assume k1, k2 > 0, since if both are negative, just replace the
chosen unit normal by its negative. Let x : U ⊆ R2 → S ⊆ R3 be a local parametrization of S
such that {xu,xv} is an orthonormal basis of principle directions at p ∈ S, where p = x(0, 0).
Following the definition of Exercise 3.3.22, define the height function h : U → R of S relative
to Tp(S) by

h(u, v) = ⟨x(u, v)− p,N(p)⟩,

where N(p) is the unit normal vector p. We compute the derivatives as follows:

h(p) = ⟨x(0, 0)− p,N(p)⟩ = 0,

hu(p) = ⟨xu(0, 0), N(p)⟩ = 0,

hv(p) = ⟨xv(0, 0), N(p)⟩ = 0,

huu(p) = ⟨xuu(0, 0), N(p)⟩ = e(p),

huv(p) = ⟨xuv(0, 0), N(p)⟩ = f(p),

hvv(p) = ⟨xvv(0, 0), N(p)⟩ = g(p),

where hij(p) are the coefficients of the second fundamental form at p. Since xu(0, 0) and
xv(0, 0) are principle directions and orthonormal, we have e(p) = k1, f(p) = 0, and g(p) = k2.
Thus, the Hessian matrix of h at p is given by

∇2h(p) =

Å
huu(p) huv(p)
huv(p) hvv(p)

ã
=

Å
k1 0
0 k2

ã
,
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and Taylor expansion gives

h(u, v) =
1

2

(
k1u

2 + k2v
2
)
+ o

(
u2 + v2

)
,

Since k1, k2 > 0, the quadratic form Q = 1
2

(
k1u

2 + k2v
2
)
associated with ∇2h(p) is positive

definite. Hence, there exists a neighborhood W ⊂ U of p and some c > 0 such that Q(u, v) >
c(u2 + v2) for all (u, v) ∈ W . Now since

h(u, v)−Q(u, v)

u2 + v2
→ 0 as (u, v) → (0, 0),

there exists a radius δ > 0 such that
√
u2 + v2 < δ implies |h(u, v)−Q(u, v)| < c

2 (u
2 + v2).

Therefore, for all (u, v) ∈ W with
√
u2 + v2 < δ, we have

h(u, v) ≥ Q(u, v)− |h(u, v)−Q(u, v)| > c(u2 + v2)− c

2
(u2 + v2) =

c

2
(u2 + v2) > 0,

with h(u, v) = 0 if and only if (u, v) = (0, 0). Thus, the neighborhood V = x(W ∩ {(u, v) :√
u2 + v2 < δ}) of p is contained in the half-space H+ = {q ∈ R3 | ⟨q − p,N(p)⟩ ≥ 0}, and

V has only one common point with Tp(S). Therefore, S is strictly locally convex at p.

b. Suppose S is locally convex at p, so there exists a neighborhood V ⊂ S of p such that V is
contained in one of the closed half-spaces determined by Tp(S). Define the height function
as above, by local convexity we may choose an orientation N(p) such that h(u, v) ≥ 0 in a
neighborhood of (0, 0), and h(0, 0) = hu(0, 0) = hv(0, 0) = 0. Suppose that the principal
curvatures at p have different signs, say k1 > 0 > k2. Then, along the coordinate axes, we
have h(u, 0) = 1

2k1u
2 > 0 for all |u| < δu, and h(0, v) = 1

2k2v
2 < 0 for all |v| < δv. Hence, in

every neighborhood of (0, 0), we can find points such that h(u, v) > 0 and others such that
h(u, v) < 0, contradicting local convexity. Therefore, the principal curvatures at p do not
have different signs, and hence K(p) ≥ 0.

c. The Gaussian curvature K of the surface defined by z = f(x, y) is given by

K =
fxxfyy − f2

xy

(1 + f2
x + f2

y )
2
.

Let’s compute the necessary partial derivatives of f(x, y) = x3(1 + y2):

fx = 3x2(1 + y2), fy = 2x3y, fxx = 6x(1 + y2), fyy = 2x3, fxy = 6x2y.

Then, we have

K =
(6x(1 + y2))(2x3)− (6x2y)2

(1 + (3x2(1 + y2))2 + (2x3y)2)2
=

12x4(1− 2y2)

(1 + 9x4(1 + y2)2 + 4x6y2)2
≥ 0.

However, the surface is not locally convex at (0, 0), since for any neighborhood V of (0, 0),
there exist points with both positive and negative x values, and hence z-coordinates, so V is
not contained in one of the closed half-spaces determined by the tangent plane at (0, 0).

d. Suppose V ⊆ S is a neighborhood of p such that the principal curvatures on V do not have
different signs. Without loss of generality, assume k1(q), k2(q) ≥ 0 for all q ∈ V , since if at
some point one of them were positive and later negative, it would have to cross zero alone,
producing a point where the two have different signs, which is excluded by definition of V .
Follow the steps of a., we define the height function h : U → R of S relative to Tp(S) by
h(u, v) = ⟨x(u, v)−p,N(p)⟩. Pick an orthonormal basis of principal directions {xu,xv}. The
Hessian matrix of h at p is given, again, by

∇2h(p) =

Å
k1 0
0 k2

ã
.

Near (0, 0), we have

h(u, v) =
1

2

(
k1u

2 + k2v
2
)
+ o

(
u2 + v2

)
,

and the quadratic form Q = 1
2

(
k1u

2 + k2v
2
)
is positive-definite. Now we consider two cases:
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(a) At least one of the principal curvatures at p is positive, say k1 > 0. Then, there exists
a neighborhood W ⊂ U of p and some c > 0 such that Q(u, v) > c(u2 + v2) for all
(u, v) ∈ W . Following the same steps as in a., we can show local convexity at p.

(b) Both principal curvatures at p are zero, i.e., k1 = k2 = 0, so Q = 0. Since the principal
curvatures are continuous functions on S, we have h(0, 0) = 0 and h(u, v) ≥ 0 in a
neighborhood of p. Therefore, S is locally convex at p.
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