

2025 Fall Introduction to Geometry

Homework 8 (Due Nov 14, 2025)

物理三 黃紹凱 B12202004

November 14, 2025

Definition 1 (Do Carmo 3.2.5, line of curvature). If a regular connected curve $C \subseteq S$ is such that for all $p \in S$ the tangent line of C is a principal direction at p , then C is said to be a line of curvature of S .

Definition 2 (Do Carmo 3.2.9, asymptotic curve). Let $p \in S$. An asymptotic direction of S at p is a direction in $T_p(S)$ for which the normal curvature is zero. An asymptotic curve of S is a regular connected curve $C \subseteq S$ such that for each $p \in S$ the tangent line of C at p is an asymptotic direction.

Exercise 1 (Do Carmo 3.3.5, Enneper's Surface). Consider the parametrized surface (Enneper's surface)

$$\mathbf{x}(u, v) = \left(u - \frac{u^3}{3} + uv^2, v - \frac{v^3}{3} + vu^2, u^2 - v^2 \right)$$

and show that

a. The coefficients of the first fundamental form are

$$E = G = (1 + u^2 + v^2)^2, \quad F = 0.$$

b. The coefficients of the second fundamental form are

$$e = 2, \quad g = -2, \quad f = 0.$$

c. The principal curvatures are

$$k_1 = \frac{2}{(1 + u^2 + v^2)^2}, \quad k_2 = -\frac{2}{(1 + u^2 + v^2)^2}.$$

d. The lines of curvature are the coordinate curves.

e. The asymptotic curves are $u + v = \text{const.}$ and $u - v = \text{const.}$

Solution 1.

a. Calculate the first-order partial derivatives:

$$\mathbf{x}_u = (1 - u^2 + v^2, 2uv, 2u), \quad \mathbf{x}_v = (2uv, 1 - v^2 + u^2, -2v).$$

Then the coefficients of the first fundamental form are

$$\begin{aligned} E &= \langle \mathbf{x}_u, \mathbf{x}_u \rangle = (1 - u^2 + v^2)^2 + 4u^2v^2 + 4u^2 = (1 + u^2 + v^2)^2, \\ F &= \langle \mathbf{x}_u, \mathbf{x}_v \rangle = 2uv(1 - u^2 + v^2) + 2uv(1 + u^2 - v^2) - 4uv = 0, \\ G &= \langle \mathbf{x}_v, \mathbf{x}_v \rangle = 4u^2v^2 + (1 + u^2 - v^2)^2 + 4v^2 = (1 + u^2 + v^2)^2. \end{aligned}$$

b. Calculate the second-order partial derivatives:

$$\mathbf{x}_{uu} = (-2u, 2v, 2), \quad \mathbf{x}_{uv} = (2v, 2u, 0), \quad \mathbf{x}_{vv} = (2u, -2v, -2).$$

Next, we find the normal vector:

$$\mathbf{x}_u \wedge \mathbf{x}_v = (-2u(1+r^2), 2v(1+r^2), 1-r^4), \quad \text{where } r^2 = u^2 + v^2,$$

$$|\mathbf{x}_u \wedge \mathbf{x}_v| = (1+r^2)^2.$$

Therefore,

$$N = \frac{\mathbf{x}_u \wedge \mathbf{x}_v}{|\mathbf{x}_u \wedge \mathbf{x}_v|} = \frac{1}{(1+u^2+v^2)} (-2u, 2v, 1-u^2-v^2).$$

The coefficients of the second fundamental form are given by the following inner products:

$$e = \langle N, \mathbf{x}_{uu} \rangle = \frac{1}{(1+u^2+v^2)} (4u^2 + 4v^2 + 2(1-u^2-v^2)) = 2,$$

$$f = \langle N, \mathbf{x}_{uv} \rangle = \frac{1}{(1+u^2+v^2)} (-4uv + 4uv + 0) = 0,$$

$$g = \langle N, \mathbf{x}_{vv} \rangle = \frac{1}{(1+u^2+v^2)} (-4u^2 - 4v^2 - 2(1-u^2-v^2)) = -2.$$

c. The shape operator in the (u, v) basis is given by $S = I^{-1} \Pi$, where

$$I = \begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} (1+u^2+v^2)^2 & 0 \\ 0 & (1+u^2+v^2)^2 \end{pmatrix},$$

and

$$\Pi = \begin{pmatrix} e & f \\ f & g \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}.$$

Thus,

$$S = I^{-1} \Pi = \frac{1}{(1+u^2+v^2)^2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} = \frac{1}{(1+u^2+v^2)^2} \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}.$$

The principal curvatures are the eigenvalues of the shape operator, which are easily seen to be

$$k_1 = \frac{2}{(1+u^2+v^2)^2}, \quad k_2 = -\frac{2}{(1+u^2+v^2)^2}.$$

d. The lines of curvature correspond to the eigenvectors of the shape operator, which are ∂_u and ∂_v . Since the shape operator is diagonal in the $(\mathbf{x}_u, \mathbf{x}_v)$ basis, the lines of curvature are the coordinate curves $u = \text{const.}$ and $v = \text{const.}$

e. For each p on an asymptotic curve, the normal curvature in the direction of the tangent vector is zero. The normal curvature k_n in the direction of a unit tangent vector $\mathbf{t} = a\mathbf{x}_u + b\mathbf{x}_v$ is given by

$$k_n = \langle S(\mathbf{t}), \mathbf{t} \rangle = \frac{2}{(1+u^2+v^2)^2} ((du)^2 - (dv)^2).$$

Setting $k_n = 0$ gives $(du)^2 = (dv)^2$, which implies $du = \pm dv$. Therefore, the asymptotic directions correspond to the curves where $u + v = \text{const.}$ and $u - v = \text{const.}$

From Do Carmo, the normal curvature is given by

$$k_n = k \langle n, N \rangle,$$

Exercise 2 (Do Carmo 3.3.8, Contact of Order ≥ 2 of Surfaces). Two surfaces S and \bar{S} , with a common point p , have contact of order ≥ 2 at p if there exist parametrizations $\mathbf{x}(u, v)$ and $\bar{\mathbf{x}}(u, v)$ in p of S and \bar{S} , respectively, such that

$$\mathbf{x}_u = \bar{\mathbf{x}}_u, \quad \mathbf{x}_v = \bar{\mathbf{x}}_v, \quad \mathbf{x}_{uu} = \bar{\mathbf{x}}_{uu}, \quad \mathbf{x}_{uv} = \bar{\mathbf{x}}_{uv}, \quad \mathbf{x}_{vv} = \bar{\mathbf{x}}_{vv}.$$

a. Let S and \bar{S} have contact of order ≥ 2 at p ; $\mathbf{x}: U \rightarrow S$ and $\bar{\mathbf{x}}: U \rightarrow \bar{S}$ be arbitrary parametrizations in p of S and \bar{S} respectively; and $f: V \subset \mathbb{R}^3 \rightarrow \mathbb{R}$ be a differentiable function in a neighborhood V of p in \mathbb{R}^3 . Then the partial derivatives of order ≤ 2 of $f \circ \bar{\mathbf{x}}: U \rightarrow \mathbb{R}$ are zero in $\bar{\mathbf{x}}^{-1}(p)$ if and only if the partial derivatives of order ≤ 2 of $f \circ \mathbf{x}: U \rightarrow \mathbb{R}$ are zero in $\mathbf{x}^{-1}(p)$.

***b.** Let S and \bar{S} have contact of order ≥ 2 at p . Let $z = f(x, y)$ and $z = \bar{f}(x, y)$ be the equations, in a neighborhood of p , of S and \bar{S} , respectively, where the xy -plane is the common tangent plane at $p = (0, 0)$. Then the function $f(x, y) - \bar{f}(x, y)$ has all partial derivatives of order ≤ 2 equal to zero at $(0, 0)$.

c. Let p be a point in a surface $S \subset \mathbb{R}^3$. Let $Oxyz$ be a Cartesian coordinate system for \mathbb{R}^3 such that $O = p$ and the xy -plane is the tangent plane of S at p . Show that the paraboloid

$$z = \frac{1}{2}(x^2 f_{xx} + 2xy f_{xy} + y^2 f_{yy}),$$

obtained by neglecting third- and higher-order terms in the Taylor development around $p = (0, 0)$, has contact of order ≥ 2 at p with S (the surface $(*)$ is called the osculating paraboloid of S at p).

***d.** If a paraboloid (the degenerate cases of plane and parabolic cylinder are included) has contact of order ≥ 2 with a surface S at p , then it is the osculating paraboloid of S at p .

***e.** If two surfaces have contact of order ≥ 2 at p , then the osculating paraboloids of S and \bar{S} at p coincide. Conclude that the Gaussian and mean curvatures of S and \bar{S} at p are equal.

***f.** The notion of contact of order ≥ 2 is invariant by diffeomorphisms of \mathbb{R}^3 ; that is, if S and \bar{S} have contact of order ≥ 2 at p and $\varphi: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ is a diffeomorphism, then $\varphi(S)$ and $\varphi(\bar{S})$ have contact of order ≥ 2 at $\varphi(p)$.

***g.** If S and \bar{S} have contact of order ≥ 2 at p , then

$$\lim_{r \rightarrow 0} \frac{d}{r^2} = 0,$$

where d is the length of the segment cut by the surfaces in a straight line normal to $T_p(S) = T_p(\bar{S})$, which is at a distance r from p .

Solution 2.

a. Suppose the partial derivatives of order ≤ 2 of $f \circ \bar{\mathbf{x}}$ are zero in $\bar{\mathbf{x}}^{-1}(p)$. Then, by the chain rule, we have

$$\begin{aligned} (f \circ \bar{\mathbf{x}})_u &= \nabla f \cdot \bar{\mathbf{x}}_u = 0, & (f \circ \bar{\mathbf{x}})_v &= \nabla f \cdot \bar{\mathbf{x}}_v = 0, \\ (f \circ \bar{\mathbf{x}})_{uu} &= \nabla f \cdot \bar{\mathbf{x}}_{uu} + \bar{\mathbf{x}}_u^T H_f \bar{\mathbf{x}}_u = 0, \\ (f \circ \bar{\mathbf{x}})_{uv} &= \nabla f \cdot \bar{\mathbf{x}}_{uv} + \bar{\mathbf{x}}_u^T H_f \bar{\mathbf{x}}_v = 0, \\ (f \circ \bar{\mathbf{x}})_{vv} &= \nabla f \cdot \bar{\mathbf{x}}_{vv} + \bar{\mathbf{x}}_v^T H_f \bar{\mathbf{x}}_v = 0, \end{aligned}$$

where H_f is the Hessian matrix of f at p . Since S and \bar{S} have contact of order ≥ 2 at p , in the region $\mathbf{x}^{-1}(p)$ we have $(f \circ \mathbf{x})_{uu} = \nabla f \cdot \mathbf{x}_{uu} + \mathbf{x}_u^T H_f \mathbf{x}_u = \nabla f \cdot \bar{\mathbf{x}}_{uu} + \bar{\mathbf{x}}_u^T H_f \bar{\mathbf{x}}_u = 0$. Similarly, $(f \circ \mathbf{x})_{uv} = (f \circ \mathbf{x})_{vv} = (f \circ \mathbf{x})_u = (f \circ \mathbf{x})_v = 0$. The converse follows by symmetry.

b. Since S, \bar{S} have $z = 0$ as the common tangent plane, their graph at $p = 0$ satisfy $f(0, 0) = \bar{f}(0, 0) = 0$ and $\nabla f(0, 0) = \nabla \bar{f}(0, 0) = 0$. Let's define the function $F: \mathbb{R}^3 \rightarrow \mathbb{R}$, such that $F(x, y, z) = z - \frac{1}{2}f_{xx}(0, 0)x^2 - f_{xy}(0, 0)xy - \frac{1}{2}f_{yy}(0, 0)y^2$. Since F is a polynomial of x, y, z , it is differentiable. The parametrizations $\mathbf{x}, \bar{\mathbf{x}}$ for S and \bar{S} at p are given by $\mathbf{x}(x, y) = (x, y, f(x, y))$ and $\bar{\mathbf{x}}(x, y) = (x, y, \bar{f}(x, y))$, respectively. Then, $(F \circ \mathbf{x})(x, y) = f(x, y) - \frac{1}{2}f_{xx}(0, 0)x^2 - f_{xy}(0, 0)xy - \frac{1}{2}f_{yy}(0, 0)y^2$, so all the partial derivatives of order ≤ 2

of $F \circ \mathbf{x}$ at $(0, 0)$ are zero. By part **a.**, all the partial derivatives of order ≤ 2 of $F \circ \bar{\mathbf{x}}$ at $(0, 0)$ are also zero. Therefore,

$$F \circ \bar{\mathbf{x}}(x, y) = \bar{f}(x, y) - \frac{1}{2}f_{xx}(0, 0)x^2 - f_{xy}(0, 0)xy - \frac{1}{2}f_{yy}(0, 0)y^2$$

has all partial derivatives of order ≤ 2 vanish at p . Thus, the function $f(x, y) - \bar{f}(x, y)$ has all partial derivatives of order ≤ 2 vanish at p .

c. In a neighborhood of p , the surface S can be expressed as the graph of a function $z = f(x, y)$, where the xy -plane is the tangent plane at p . Since the xy -plane is the tangent plane at p , we have $f(0, 0) = f_x(0, 0) = f_y(0, 0) = 0$, so the Taylor expansion of $f(x, y)$ around p is given by

$$f(x, y) = \frac{1}{2} (f_{xx}(0, 0)x^2 + 2f_{xy}(0, 0)xy + f_{yy}(0, 0)y^2) + R_3(x, y).$$

Let \bar{S} be the paraboloid defined by

$$z = g(x, y) = \frac{1}{2} (f_{xx}(0, 0)x^2 + 2f_{xy}(0, 0)xy + f_{yy}(0, 0)y^2).$$

The parametrizations for S and \bar{S} at p are given by $\mathbf{x}(x, y) = (x, y, f(x, y))$ and $\bar{\mathbf{x}}(x, y) = (x, y, g(x, y))$, respectively. The second-order partial derivatives of f and g at p are equal, since the remainder term $R_3(x, y)$ contains only terms of order ≥ 3 . Therefore, by definition, S and \bar{S} have contact of order ≥ 2 at p .

d. Suppose a paraboloid \bar{S} has contact of order ≥ 2 with a surface S at p . Let the equation of S in a neighborhood of p be given by $z = f(x, y)$, where the xy -plane is the tangent plane at p . The equation of the paraboloid \bar{S} can be expressed as

$$z = \bar{f}(x, y) = ax^2 + 2bxy + cy^2,$$

for some constants $a, b, c \in \mathbb{R}$. The second-order Taylor expansion of $f(x, y)$ around p is given by

$$f(x, y) = \frac{1}{2} (f_{xx}(0, 0)x^2 + 2f_{xy}(0, 0)xy + f_{yy}(0, 0)y^2).$$

Comparing this with the expression for $\bar{f}(x, y)$, we find that

$$a = \frac{1}{2}f_{xx}(0, 0), \quad b = \frac{1}{2}f_{xy}(0, 0), \quad c = \frac{1}{2}f_{yy}(0, 0).$$

Thus, the paraboloid \bar{S} is the osculating paraboloid of S at p as defined in **c.**

e. Let P, \bar{P} be the osculating paraboloids of S and \bar{S} , respectively. By **b.**, S, \bar{S} have contact of order ≥ 2 at p with P, \bar{P} , respectively. Since S also has contact of order ≥ 2 with \bar{S} , all the partial derivatives of order ≤ 2 of f and \bar{f} vanish at p , where f, \bar{f} are the equations in a neighborhood of p , of S and \bar{S} , respectively. Therefore,

$$\frac{1}{2} (f_{xx}(p)x^2 + 2f_{xy}(p)xy + f_{yy}(p)y^2) = \frac{1}{2} (\bar{f}_{xx}(p)x^2 + 2\bar{f}_{xy}(p)xy + \bar{f}_{yy}(p)y^2),$$

and the osculating paraboloids P and \bar{P} coincide. Since the Gaussian and mean curvatures depend only on the partial derivatives of order ≤ 2 of the parametrization at p , the Gaussian and mean curvatures of S and \bar{S} at p are equal.

f. Suppose S and \bar{S} have contact of order ≥ 2 at p . Let $\varphi : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be a diffeomorphism. The parametrizations for S and \bar{S} at p are given by $\mathbf{x}(u, v)$ and $\bar{\mathbf{x}}(u, v)$, respectively. The parametrizations for $\varphi(S)$ and $\varphi(\bar{S})$ at $\varphi(p)$ are given by $\mathbf{y} = (\varphi \circ \mathbf{x})(u, v)$ and $\bar{\mathbf{y}} = (\varphi \circ \bar{\mathbf{x}})(u, v)$, respectively. Then, by the chain rule, we have

$$\begin{aligned} \mathbf{y}_u &= d\varphi_{\mathbf{x}} \cdot \mathbf{x}_u, & \mathbf{y}_v &= d\varphi_{\mathbf{x}} \cdot \mathbf{x}_v, & \mathbf{y}_{uu} &= d^2\varphi_{\mathbf{x}}(\mathbf{x}_u, \mathbf{x}_u) + d\varphi_{\mathbf{x}} \cdot \mathbf{x}_{uu}, \\ \mathbf{y}_{uv} &= d^2\varphi_{\mathbf{x}}(\mathbf{x}_u, \mathbf{x}_v) + d\varphi_{\mathbf{x}} \cdot \mathbf{x}_{uv}, & \mathbf{y}_{vv} &= d^2\varphi_{\mathbf{x}}(\mathbf{x}_v, \mathbf{x}_v) + d\varphi_{\mathbf{x}} \cdot \mathbf{x}_{vv}, \end{aligned}$$

and similarly for $\bar{\mathbf{y}}$, where $d^2\phi|_{\mathbf{x}}$ is the bilinear differential of ϕ evaluated at \mathbf{x} .

Since S and \bar{S} have contact of order ≥ 2 at p , it follows that $\mathbf{y}_u = \bar{\mathbf{y}}_u$, $\mathbf{y}_v = \bar{\mathbf{y}}_v$, $\mathbf{y}_{uu} = \bar{\mathbf{y}}_{uu}$, $\mathbf{y}_{uv} = \bar{\mathbf{y}}_{uv}$, and $\mathbf{y}_{vv} = \bar{\mathbf{y}}_{vv}$. Thus, $\varphi(S)$ and $\varphi(\bar{S})$ have contact of order ≥ 2 at $\varphi(p)$.

g. We may choose a Cartesian coordinate system $Oxyz$ such that $O = p$, and $z = 0$ is the common tangent plane of S and \bar{S} at p . Let the equations of S and \bar{S} in a neighborhood of p be given by $z = f(x, y)$ and $z = \bar{f}(x, y)$, respectively. Since S and \bar{S} have contact of order ≥ 2 at p , by part b., all the partial derivatives of order ≤ 2 of the function $G(x, y) \equiv f(x, y) - \bar{f}(x, y)$ vanish at p . Therefore, $G(0, 0) = \nabla G(0, 0) = \nabla^2 G(0, 0) = 0$, where $\nabla^2 G$ is the Hessian matrix of G . Take a point $q = (x, y, 0) \in T_p(S)$ in the tangent plane, a distance $r = \sqrt{x^2 + y^2}$ from p . The straight line L_q normal to the tangent plane passing through q intersects the surfaces S and \bar{S} at the points $(x, y, f(x, y))$ and $(x, y, \bar{f}(x, y))$, respectively, and $d = |f(x, y) - \bar{f}(x, y)| = |G(x, y)|$.

Define the function $g(t) = G(tu)$ for a fixed $u \in \mathbb{R}^2$ is a unit vector such that $(x, y) = ru$. Then g is differentiable, and $g(0) = g'(0) = g''(0) = 0$, since all the partial derivatives of order ≤ 2 of F vanish at p . By Taylor's formula with remainder, we have

$$g(t) = g(0) + g'(0) + \int_0^t ds(t-s)g''(s) = \int_0^t ds(t-s)g''(s)$$

for all t in a neighborhood of 0. Next we will bound $|g|$. Since F is smooth, $\nabla^2 F$ is continuous, so for all $\varepsilon > 0$ there exists $\delta > 0$, such that $\|(x, y)\| < \delta$ implies $\|\nabla^2 F(x, y)\| < 2\varepsilon$. Hence, for $t < \delta$, $|g''(t)| = |u^T \nabla^2 F u| \leq \|\nabla^2 F\| \|u^2\| < 2\varepsilon$. Take $t = r < \delta$, then we have

$$\begin{aligned} |G(ru)| &= |g(r)| = \left| \int_0^r ds(r-s)g''(s) \right| \leq \int_0^r ds(r-s)|g''(s)| \\ &\leq \int_0^r ds(r-s)2\varepsilon r^2 = \varepsilon r^2. \end{aligned}$$

Notice that $d = G(x, y) = G(ru)$, so for all $\varepsilon > 0$ there exists $\delta > 0$ such that $\frac{d}{r^2} < \varepsilon$ whenever $\sqrt{x^2 + y^2} < \delta$. This proves the desired result.

Exercise 3 (Do Carmo 3.3.13). Let $F: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be the map (a similarity) defined by $F(p) = cp$, $p \in \mathbb{R}^3$, c a positive constant. Let $S \subset \mathbb{R}^3$ be a regular surface and set $\bar{S} = F(S)$. Show that \bar{S} is a regular surface, and find formulas relating the Gaussian and mean curvatures, K and H , of S with the Gaussian and mean curvatures, \bar{K} and \bar{H} , of \bar{S} .

Solution 3.

1. Let $\mathbf{x}: U \subseteq \mathbb{R} \rightarrow S$ be a local parametrization of S . Let $\bar{S} = F(S)$, then $\bar{\mathbf{x}} = F \circ \mathbf{x}: U \rightarrow \bar{S}$ is a local parametrization of \bar{S} . The map F is smooth, and since $dF = c\text{Id}$ is an isomorphism, $d\bar{\mathbf{x}} = dF \circ d\mathbf{x} = c d\mathbf{x}$ has rank 2 whenever $d\mathbf{x}$ has rank 2. Thus, $\bar{\mathbf{x}}$ is a homeomorphism onto its image and $d\bar{\mathbf{x}}$ is injective (hence an immersion). Therefore, \bar{S} is a regular surface.
2. For any local parametrization \mathbf{x} and $\bar{\mathbf{x}}$, we have $\bar{\mathbf{x}} = c\mathbf{x}$. Thus,

$$\bar{\mathbf{x}}_u = c\mathbf{x}_u, \quad \bar{\mathbf{x}}_v = c\mathbf{x}_v, \quad \bar{\mathbf{x}} \wedge \bar{\mathbf{x}}_v = c^2(\mathbf{x}_u \wedge \mathbf{x}_v).$$

Hence, the normal for \bar{S} satisfies $\bar{N} = N$. Write the Weingarten map for S and \bar{S} as \mathcal{S} and $\bar{\mathcal{S}}$, respectively. By definition, $dN = -\mathcal{S} \circ d\mathbf{x}$, so

$$d\bar{N} = dN = -\mathcal{S} \circ d\mathbf{x} = -\mathcal{S} \circ \frac{1}{c} d\bar{\mathbf{x}} = -\left(\frac{1}{c}\mathcal{S}\right) \circ d\bar{\mathbf{x}}.$$

Therefore, $\bar{\mathcal{S}} = \frac{1}{c}\mathcal{S}$, and the principle curvatures satisfy $\bar{k}_i = \frac{1}{c}k_i$, since they are the eigenvalues of \mathcal{S} . The Gaussian curvature K and mean curvature H of S are then given by

$$\begin{aligned}\bar{K} &= \bar{k}_1 \bar{k}_2 = \frac{1}{c^2} k_1 k_2 = \frac{1}{c^2} K, \\ \bar{H} &= \frac{\bar{k}_1 + \bar{k}_2}{2} = \frac{1}{c} \frac{k_1 + k_2}{2} = \frac{1}{c} H.\end{aligned}$$

Exercise 4 (Do Carmo 3.3.24, Local Convexity and Curvature).

A surface $S \subset \mathbb{R}^3$ is locally convex at a point $p \in S$ if there exists a neighborhood $V \subset S$ of p such that V is contained in one of the closed half-spaces determined by $T_p(S)$ in \mathbb{R}^3 . If, in addition, V has only one common point with $T_p(S)$, then S is called strictly locally convex at p .

- a. Prove that S is strictly locally convex at p if the principal curvatures of S at p are nonzero with the same sign (that is, the Gaussian curvature $K(p)$ satisfies $K(p) > 0$).
- b. Prove that if S is locally convex at p , then the principal curvatures at p do not have different signs (thus, $K(p) \geq 0$).
- c. To show that $K \geq 0$ does not imply local convexity, consider the surface

$$f(x, y) = x^3(1 + y^2),$$

defined in the open set $U = \{(x, y) \in \mathbb{R}^2 : y^2 < \frac{1}{2}\}$. Show that the Gaussian curvature of this surface is nonnegative on U and yet the surface is not locally convex at $(0, 0) \in U$ (a deep theorem, due to R. Sacksteder, implies that such an example cannot be extended to the entire \mathbb{R}^2 if we insist on keeping the curvature nonnegative; cf. Remark 3 of Sec. 5-6).

- *d. The example of part (c) is also very special in the following local sense. Let p be a point in a surface S , and assume that there exists a neighborhood $V \subset S$ of p such that the principal curvatures on V do not have different signs (this does not happen in the example of part c). Prove that S is locally convex at p .

Solution 4.

- a. Without loss of generality, assume $k_1, k_2 > 0$, since if both are negative, just replace the chosen unit normal by its negative. Let $\mathbf{x} : U \subseteq \mathbb{R}^2 \rightarrow S \subseteq \mathbb{R}^3$ be a local parametrization of S such that $\{\mathbf{x}_u, \mathbf{x}_v\}$ is an orthonormal basis of principle directions at $p \in S$, where $p = \mathbf{x}(0, 0)$. Following the definition of Exercise 3.3.22, define the height function $h : U \rightarrow \mathbb{R}$ of S relative to $T_p(S)$ by

$$h(u, v) = \langle \mathbf{x}(u, v) - p, N(p) \rangle,$$

where $N(p)$ is the unit normal vector p . We compute the derivatives as follows:

$$\begin{aligned}h(p) &= \langle \mathbf{x}(0, 0) - p, N(p) \rangle = 0, \\ h_u(p) &= \langle \mathbf{x}_u(0, 0), N(p) \rangle = 0, \\ h_v(p) &= \langle \mathbf{x}_v(0, 0), N(p) \rangle = 0, \\ h_{uu}(p) &= \langle \mathbf{x}_{uu}(0, 0), N(p) \rangle = e(p), \\ h_{uv}(p) &= \langle \mathbf{x}_{uv}(0, 0), N(p) \rangle = f(p), \\ h_{vv}(p) &= \langle \mathbf{x}_{vv}(0, 0), N(p) \rangle = g(p),\end{aligned}$$

where $h_{ij}(p)$ are the coefficients of the second fundamental form at p . Since $\mathbf{x}_u(0, 0)$ and $\mathbf{x}_v(0, 0)$ are principle directions and orthonormal, we have $e(p) = k_1$, $f(p) = 0$, and $g(p) = k_2$. Thus, the Hessian matrix of h at p is given by

$$\nabla^2 h(p) = \begin{pmatrix} h_{uu}(p) & h_{uv}(p) \\ h_{uv}(p) & h_{vv}(p) \end{pmatrix} = \begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix},$$

and Taylor expansion gives

$$h(u, v) = \frac{1}{2} (k_1 u^2 + k_2 v^2) + o(u^2 + v^2),$$

Since $k_1, k_2 > 0$, the quadratic form $Q = \frac{1}{2} (k_1 u^2 + k_2 v^2)$ associated with $\nabla^2 h(p)$ is positive definite. Hence, there exists a neighborhood $W \subset U$ of p and some $c > 0$ such that $Q(u, v) > c(u^2 + v^2)$ for all $(u, v) \in W$. Now since

$$\frac{h(u, v) - Q(u, v)}{u^2 + v^2} \rightarrow 0 \quad \text{as } (u, v) \rightarrow (0, 0),$$

there exists a radius $\delta > 0$ such that $\sqrt{u^2 + v^2} < \delta$ implies $|h(u, v) - Q(u, v)| < \frac{c}{2}(u^2 + v^2)$. Therefore, for all $(u, v) \in W$ with $\sqrt{u^2 + v^2} < \delta$, we have

$$h(u, v) \geq Q(u, v) - |h(u, v) - Q(u, v)| > c(u^2 + v^2) - \frac{c}{2}(u^2 + v^2) = \frac{c}{2}(u^2 + v^2) > 0,$$

with $h(u, v) = 0$ if and only if $(u, v) = (0, 0)$. Thus, the neighborhood $V = \mathbf{x}(W \cap \{(u, v) : \sqrt{u^2 + v^2} < \delta\})$ of p is contained in the half-space $H^+ = \{q \in \mathbb{R}^3 \mid \langle q - p, N(p) \rangle \geq 0\}$, and V has only one common point with $T_p(S)$. Therefore, S is strictly locally convex at p .

- b.** Suppose S is locally convex at p , so there exists a neighborhood $V \subset S$ of p such that V is contained in one of the closed half-spaces determined by $T_p(S)$. Define the height function as above, by local convexity we may choose an orientation $N(p)$ such that $h(u, v) \geq 0$ in a neighborhood of $(0, 0)$, and $h(0, 0) = h_u(0, 0) = h_v(0, 0) = 0$. Suppose that the principal curvatures at p have different signs, say $k_1 > 0 > k_2$. Then, along the coordinate axes, we have $h(u, 0) = \frac{1}{2}k_1 u^2 > 0$ for all $|u| < \delta_u$, and $h(0, v) = \frac{1}{2}k_2 v^2 < 0$ for all $|v| < \delta_v$. Hence, in every neighborhood of $(0, 0)$, we can find points such that $h(u, v) > 0$ and others such that $h(u, v) < 0$, contradicting local convexity. Therefore, the principal curvatures at p do not have different signs, and hence $K(p) \geq 0$.

- c.** The Gaussian curvature K of the surface defined by $z = f(x, y)$ is given by

$$K = \frac{f_{xx}f_{yy} - f_{xy}^2}{(1 + f_x^2 + f_y^2)^2}.$$

Let's compute the necessary partial derivatives of $f(x, y) = x^3(1 + y^2)$:

$$f_x = 3x^2(1 + y^2), \quad f_y = 2x^3y, \quad f_{xx} = 6x(1 + y^2), \quad f_{yy} = 2x^3, \quad f_{xy} = 6x^2y.$$

Then, we have

$$K = \frac{(6x(1 + y^2))(2x^3) - (6x^2y)^2}{(1 + (3x^2(1 + y^2))^2 + (2x^3y)^2)^2} = \frac{12x^4(1 - 2y^2)}{(1 + 9x^4(1 + y^2)^2 + 4x^6y^2)^2} \geq 0.$$

However, the surface is not locally convex at $(0, 0)$, since for any neighborhood V of $(0, 0)$, there exist points with both positive and negative x values, and hence z -coordinates, so V is not contained in one of the closed half-spaces determined by the tangent plane at $(0, 0)$.

- d.** Suppose $V \subseteq S$ is a neighborhood of p such that the principal curvatures on V do not have different signs. Without loss of generality, assume $k_1(q), k_2(q) \geq 0$ for all $q \in V$, since if at some point one of them were positive and later negative, it would have to cross zero alone, producing a point where the two have different signs, which is excluded by definition of V . Follow the steps of **a.**, we define the height function $h : U \rightarrow \mathbb{R}$ of S relative to $T_p(S)$ by $h(u, v) = \langle \mathbf{x}(u, v) - p, N(p) \rangle$. Pick an orthonormal basis of principal directions $\{\mathbf{x}_u, \mathbf{x}_v\}$. The Hessian matrix of h at p is given, again, by

$$\nabla^2 h(p) = \begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix}.$$

Near $(0, 0)$, we have

$$h(u, v) = \frac{1}{2} (k_1 u^2 + k_2 v^2) + o(u^2 + v^2),$$

and the quadratic form $Q = \frac{1}{2} (k_1 u^2 + k_2 v^2)$ is positive-definite. Now we consider two cases:

- (a) At least one of the principal curvatures at p is positive, say $k_1 > 0$. Then, there exists a neighborhood $W \subset U$ of p and some $c > 0$ such that $Q(u, v) > c(u^2 + v^2)$ for all $(u, v) \in W$. Following the same steps as in a., we can show local convexity at p .
- (b) Both principal curvatures at p are zero, i.e., $k_1 = k_2 = 0$, so $Q = 0$. Since the principal curvatures are continuous functions on S , we have $h(0, 0) = 0$ and $h(u, v) \geq 0$ in a neighborhood of p . Therefore, S is locally convex at p .