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Exercise 1 (Do Carmo 3.4.2). Prove that the vector field obtained on the torus by parametrizing
all its meridians by arc length and taking their tangent vectors (Example 1) is differentiable.

Solution 1. From Do Carmo 3.4 Definition 1, a vector field w is differentiable if, for some
parametrization x : U — R3, the functions a(u,v) and b(u,v) given by w = a(u,v)x, + b(u,v)x,
are differentiable on U. Parametrize the torus by

x(u,v) = ((R 4+ rcosv) cosu, (R + rcosv)sinu, rsinv),

where R is the distance from the center of the tube to the center of the torus, and r is the radius
of the tube. Fix 6 = 6 and vary ¢ = 2, we have

ag, (8) = x(0p,8/r) = ((R+ rcoss/r)cosby, (R+ rcoss/r)sinby,rsins/r).
Then the vector field obtained by parametrizing the meridians by arc length is given by
w(x(bo,s/r)) = o, (s) = (—sins/r cos By, —sin s /rsin by, cos s/r) .
Let w(x(0, ¢)) = a(8, ¢)xg + b(0, $)x4, we have
xg = (—(R+rcos¢)sinb, (R + rcos¢)cosh,0),

X4 = (—rsingcosd, —rsingsiné, r cos @) .

Comparing the coefficients, we get a(,¢) = 0, b(0, ¢) = % Since they are both differentiable, w
is differentiable.

Exercise 2 (Do Carmo 3.4.3). Prove that a vector field w defined on a regular surface S C R3
is differentiable if and only if it is differentiable as a map w : S — R3.

Solution 2. Suppose w is differentiable as a vector field. Then, there exist a parametrization
x : U — S such that w = a(u,v)x, + b(u,v)x, for differentiable functions a(u,v) and b(u,v).
Since x, and x, are differentiable, w o x = a(u,v)x, + b(u,v)x, is differentiable. Thus, w is
differentiable as a map. Conversely, suppose w is differentiable as a map w : § — R3. Then, for
any parametrization x : U — S and each (u,v) € U, since {x,,x,} forms a basis for T,(5), there
exist scalars a(u,v) and b(u,v) such that (w o x) (u,v) = a(u, v)x, + b(u,v)x,. Then, we have

(w, %) = a(Xy, Xy) + 0(Xp, X0), (W,Xy) = a{Xy, Xy) + b(Xy, Xy).
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Since {x,,X,} are linearly independent, det (I) = EG — F? # 0, and we have
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Since w, x, and x, are differentiable, o and (3 are differentiable. Also, since E, F' and G are
differentiable, a(u,v) and b(u,v) are differentiable. Therefore, w is differentiable as a vector field.

Let o = (w, %), 8 = (w,x,), then



Exercise 3 (Do Carmo 3.4.6). A straight line r meets the z axis and moves in such a way that
it makes a constant angle o # 0 with the z axis and each of its points describes a helix of pitch
¢ # 0 about the z axis. The figure described by r is the trace of the parametrized surface (see Fig.
3-32)

x(u,v) = (vsinacosu, vsinasinu, vcosa + cu).
The map x is easily seen to be a regular parametrized surface. Restrict the parameters (u,v) to
an open set U so that z(U) = S is a regular surface.

a. Find the orthogonal family (cf. Example 3) to the family of coordinate curves u = const.

b. Use the curves u = const and their orthogonal family to obtain an orthogonal parametrization
for S. Show that in the new parameters (@, 0) the coefficients of the first fundamental form
are

G=1, F =0, E={c+ (v — clicos a)?} sin® av.
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x Figure 3-32

Solution 3.

a. The coordinate curves u = const have tangent vectors x,,. Let the curve be given by v = v(t),
u = ug. Then, its tangent vector is x, u’(t)+x,v’(t). Orthogonaity gives (x,u’'+x,v’,x,) = 0,
and hence Fu' + Gv' = 0. Let’s calculate the coefficients of the first fundamental form:

Xy = (—vusinasinu,vsinacosu,c), x, = (sinacosu,sinasinu,cosa).
Thus, we have

E = (x4,%,) = v?sin’ a4+ ¢?, F = (x,,%,) =ccosa, G=(x,,%x,)=1.
Treating v(t) as a function of u, i.e. v(t) = v(¢(u)), we have

v _ F — o(u) +k

— = —— = —ccosu v(u) = —cucosa .

du G
Thus, the orthogonal family to the curves u = const is given by cucosa + v = k in the
(u,v)-plane.

b. We have two transverse families of curves in the (u,v)-plane, given by u = const. and
cucosa + v = const.. Let’s define new parameters (@, ) by

U=1u, U=Ccucosa -+ v.

The parametrization in the new parameters is given by X(@, ) = x(u,v) = x(@, 0 — cti cos ).

Let’s calculate the coefficients of the first fundamental form F, F, G in the new parameters:

Xg = XuUg + XpyVg = Xy — CCOS Xy,



Xp = XUy + XpV5 = Xy-
Substituting in the values of E, F, and G calculated in part a., we have

E= (Xa,Xa) = (Xy — CCOS AXy, Xy — CCOS AXy)

= F — 2ccosaF + ¢? cos® aG,

2 2

= (v¥sin? a 4 ¢?) — 2c? cos? a + c? cos® a = (v? + ? sin? a) sin? a
v

F= (Xa,X5) = (Xy — CCOS Xy, Xy) = F — ccosaG = 0,
)

= (Xy,Xp) =G = 1.

Exercise 4 (Do Carmo 3.4.7). Define the derivative w(f) of a differentiable function f : U C
S — R relative to a vector field w in U by

W)@ = Groa| . gev
where o : I — S is a curve such that a(0) = ¢ and &/(0) = w(q).
Prove that:
a. w is differentiable in U if and only if w(f) is differentiable for all differentiable f in U.
b. Let A, i be real numbers and g : U C S — R be a differentiable function on U; then

wAf +pf') = w(f) +pw(f),  w(fg)=w(fg+ fw(g).

Solution 4.

a. Suppose w is differentiable in U, then it is differentiable as a map w : U — R3 by Exercise
3.4.3. For any differentiable function f : U — R, let x : V' — U be a local parametrization
of U, and (u,v) a local coordinate. Then, we have

(w o x)(u,v) = alu,v)x, + b(u, v)Xy,
where a, b are differentiable functions. Fix ¢ = x(u,v) € U and a curve o = x(u(t),v(t))

such that «(0) = ¢, &’(0) = w(q). Let ¢(u,v) = (f o x)(u,v), then, we have

w(f)(@) = S(F00)(0) = Lo, v = 0u(0) + 600/(0),

e =0
and notice that in the basis {x,,x,}, (¢/(t),v'(t)) = (a(u,v), b(u,v)), so
w(f)(q) = ¢ut'(0) + ¢u0'(0) = ua(u, v) + ¢ub(u, v)

is differentiable as a function of (u,v). Since x is a local parametrization, w( f) is differentiable
in U. Conversely, let 7; be the standard projection, we have f; = |, : U — R. By
hypothesis, each w(f;) is differentiable. Fix ¢ € U and a curve « such that «(0) = ¢,
a/(0) = w(q). Then

w(fi)la) = (i o @)(0) = S (m 0 @)(0) = (w(a)),.

and
w(q) = (w(f1)(q), w(f2)(q), w(fs3)(q))-

Since each component is differentiable, w is differentiable as a map w : U — R3, and hence
differentiable as a vector field in U by Exercise 3.4.3.



b. Let ¢ € U, a: I — S be a curve such that «(0) = ¢ and o/(0) = w(q). Then, we have

WO+ f) = 5 (OF + ) o 0l g
d d
AL (Foaptul (1 oa),
= w(f) + pw(f'),

and
w(fg) = S (F9) 0 0)lcg
= S (oa)go )y
d 0 0 d
FUea| o0+ (o)) Fooa)|
= w(f)g(q) + f(@uw(g)-

Exercise 5 (Do Carmo 3.4.8). Show that if w is a differentiable vector field on a surface S and
w(p) # 0 for some p € S, then it is possible to parametrize a neighborhood of p by z(u,v) in such
a way that z, = w.

Solution 5. Let’s express w in a local parametrization x : U — S in a neighborhood of p =
x(0,0). Let (u,v) be a local coordinate, then, by a slight abuse of notation,

w(u,v) = (wox)(u,v) = alu, v)x, + b(u, v)x,,
where a(u,v), b(u,v) are differentiable functions.

Claim. Let a(u,v) = (a(u,v),b(u,v)). Suppose da # 0, then there exists a neighborhood V of p
and coordinates (%, 0) such that a = a(a@,?). Le. w = (1,0) in the basis {X,,X,} = {xa, X5}

Proof. Let (u,v) be alocal coordinate in a neighborhood of p. Since da = a, du+a,dv and da,, # 0,
at least one of a, (p) and a,(p) is non-zero. Without loss of generality, suppose a, (p) # 0. Then, by
the Inverse Function Theorem, there exists a neighborhood V' of p such that the map ¢ : V — R?
defined by 9 (u,v) = (a(u,v),v) is a diffeomorphism onto its image. Let (@, ) = ¥(u,v), then we
have a = a(@, D), as desired. O

Let ®(¢,x(0,0)) be the solution to the differential equation

Y —al), y(0) =x(0,0)

and let ¢(u,v) = ®(u, (0,v)). By the smooth dependence of solution of an ODE on initial condi-
tions, ®, and hence ¢, is differentiable. Then, we have

0
S (,0) = a(d(u, ) = w(p(u, v).

Furthermore, since ¢(0,v) = ®(0,(0,v)) = (0,v), we have d¢, = 1, and hence ¢ is a local
parametrization around p. Let %X(u,v) = ¢(u,v), then we have x,, = w(x(u,v)).



