

2025 Fall Introduction to Geometry

Solutions to Exercises in Do Carmo

黃紹凱 B12202004

December 4, 2025

1 Chapter 1.1

2 Chapter 1.2

Exercise 1.2.5. Let $\alpha: I \rightarrow \mathbb{R}^3$ be a parametrized curve, with $\alpha'(t) \neq 0$ for all $t \in I$. Show that $|\alpha(t)|$ is a nonzero constant if and only if $\alpha(t)$ is orthogonal to $\alpha'(t)$ for all $t \in I$.

Solution 1.2.5. Suppose $|\alpha(t)| = c \neq 0$ for all $t \in I$. Then,

$$\frac{d}{dt} |\alpha(t)|^2 = 2\alpha(t) \cdot \alpha'(t) = \frac{d}{dt} c^2 = 0.$$

Thus $\alpha(t) \cdot \alpha'(t) = 0$, and $\alpha(t)$ and $\alpha'(t)$ are orthogonal. Conversely, suppose $\alpha(t)$ and $\alpha'(t)$ are orthogonal for all $t \in I$, so $\alpha(t) \cdot \alpha'(t) = 0$. Then, we have

$$\frac{d}{dt} |\alpha(t)|^2 = 2\alpha(t) \cdot \alpha'(t) = 0.$$

Thus $|\alpha(t)|$ is a constant.

3 Chapter 1.3

Definition 1 (regular curve). A parametrized curve $\alpha: I \rightarrow \mathbb{R}^3$ is said to be regular if $\alpha'(t) \neq 0$ for all $t \in I$.

Exercise 1.3.2. A circular disk of radius 1 in the plane xy rolls without slipping along the x -axis. The figure described by a point on the circumference of the disk is called a **cycloid** (Figure 1-7).

- a. Obtain a parametrized curve $\alpha: \mathbb{R} \rightarrow \mathbb{R}^2$ the trace of which is the cycloid, and determine its singular points.
- b. Compute the arc length of the cycloid corresponding to a complete rotation of the disk.

Solution 1.3.2.

- a. Let $\alpha(t) = (x(t), y(t))$ be the parametrized curve of the cycloid. As the disk rolls without slipping and the radius of the disk is 1, the distance traveled along the x -axis is t and the y -coordinate is given by the height of the point on the circumference. Therefore, we have:

$$\begin{aligned} x(t) &= t - \sin(t), \\ y(t) &= 1 - \cos(t). \end{aligned} \tag{1}$$

The singular points occur when $\alpha'(t) = 0$. This is equivalent to

$$\begin{aligned} x'(t) &= 1 - \cos(t) = 0, \\ y'(t) &= \sin(t) = 0. \end{aligned} \tag{2}$$

Hence the singular points are at $t = 2n\pi$ for all $n \in \mathbb{Z}$.

b. The arc length of the cycloid for a complete rotation is given by integrating over $[0, 2\pi]$.

$$\begin{aligned} L &= \int_0^{2\pi} dt |\alpha'(t)| = \int_0^{2\pi} dt \sqrt{(1 - \cos(t))^2 + (\sin(t))^2} \\ &= \int_0^{2\pi} dt \sqrt{2 - 2\cos(t)} = 8. \end{aligned} \tag{3}$$

Exercise 1.3.4. Let $\alpha : (0, \pi) \rightarrow \mathbb{R}^2$ be given by

$$\alpha(t) = \left(\sin t, \cos t + \log \tan \frac{t}{2} \right),$$

where t is the angle that the y -axis makes with the vector $\alpha(t)$. The trace of α is called the *tractrix* (see Fig. 1-9). Show that:

- a.** α is a differentiable parametrized curve, regular except at $t = \pi/2$.
- b.** The length of the segment of the tangent of the tractrix between the point of tangency and the y -axis is constantly equal to 1.

Solution 1.3.4. Recall that a **regular** curve is a smooth, parametrized curve with a non-vanishing derivative.

- a.** First we shall compute the derivative of $\alpha(t)$ as

$$\begin{aligned} \alpha'(t) &= \left(\cos t, -\sin t + \frac{1}{\sin t} \right) \\ &= (\cos t, \cot t \cos t) \end{aligned} \tag{4}$$

Since $\alpha'(t)$ is continuous on $(0, \pi)$ and $\alpha'(t) \neq 0$ for all $t \in (0, \pi) \setminus \{\pi/2\}$, $\alpha(t)$ is a differentiable parametrized curve, regular except at $t = \pi/2$.

- b.** The equation of the tangent line at $\alpha(t)$ is given by

$$y - y_0(t) = \cot t (x - x_0(t)), \tag{5}$$

where $y_0 = \cos t + \log \tan \frac{t}{2}$ and $x_0 = \sin t$. Setting $x = 0$ to find the intersection with the y -axis, we have

$$\begin{aligned} \Delta y &\equiv y - y_0(t) = -\cot t \sin t = -\cos t, \\ \Delta x &\equiv x - x_0(t) = -\sin t. \end{aligned} \tag{6}$$

Then the distance is $\sqrt{(\Delta y)^2 + (\Delta x)^2} = 1$.

Exercise 1.3.7. A map $\alpha : I \rightarrow \mathbb{R}^3$ is called a curve of class C^k if each of the coordinate functions in the expression $\alpha(t) = (x(t), y(t), z(t))$ has continuous derivatives up to order k . If α is merely continuous, we say that α is of class C^0 . A curve α is called simple if the map α is one-to-one. Thus, the curve in Example 3 of Sec. 1-2 is not simple.

Let $\alpha : I \rightarrow \mathbb{R}^3$ be a simple curve of class C^0 . We say that α has a weak tangent at $t = t_0 \in I$ if the line determined by $\alpha(t_0 + h)$ and $\alpha(t_0)$ has a limit position when $h \rightarrow 0$. We say that α has a strong tangent at $t = t_0$ if the line determined by $\alpha(t_0 + h)$ and $\alpha(t_0 + k)$ has a limit position when $h, k \rightarrow 0$. Show that

- a. $\alpha(t) = (t^3, t^2)$, $t \in \mathbb{R}$, has a weak tangent but not a strong tangent at $t = 0$.
- b. If $\alpha : I \rightarrow \mathbb{R}^3$ is of class C^1 and regular at $t = t_0$, then it has a strong tangent at $t = t_0$.

c. The curve given by

$$\alpha(t) = \begin{cases} (t^2, t^2), & t \geq 0, \\ (t^2, -t^2), & t \leq 0, \end{cases}$$

is of class C^1 but not of class C^2 . Draw a sketch of the curve and its tangent vectors.

Solution 1.3.7.

Exercise 1. Let $\alpha : I \rightarrow \mathbb{R}^3$ be a differentiable curve and let $[a, b] \subseteq I$ be a closed interval. For every partition

$$a = t_0 < t_1 < \cdots < t_n = b$$

of $[a, b]$, consider the sum $\sum_{i=1}^n |\alpha(t_i) - \alpha(t_{i-1})| = l(\alpha, P)$, where P stands for the given partition. The norm $|P|$ of a partition P is defined as

$$|P| = \max(t_i - t_{i-1}), \quad i = 1, \dots, n$$

Geometrically, $l(\alpha, P)$ is the length of the polygon inscribed in $\alpha([a, b])$ with the vertices in $\alpha(t_i)$. The point of the exercise is to show that the arc length of $\alpha([a, b])$ is, in some sense, a limit of the length of the inscribed polygons. Prove that given $\epsilon > 0$ there exists $\delta > 0$ such that if $|P| < \delta$ then

$$\left| \int_a^b |\alpha'(t)| dt - l(\alpha, P) \right| < \epsilon$$

Solution 1. Since $\alpha(t)$ is differentiable on the closed interval $[a, b]$, $\alpha'(t)$ is continuous. Thus, for any $\epsilon' > 0$ there exists $\delta' > 0$ such that $\alpha'(t_2) - \alpha'(t_1) < \epsilon$ whenever $|t_2 - t_1| < \delta'$. For a partition P , let $\epsilon' > 0$. The integral can be bounded as:

$$\begin{aligned} \left| \int_a^b dt |\alpha'(t)| - l(\alpha, P) \right| &= \left| \int_a^b dt |\alpha'(t)| - \sum_{i=1}^n |\alpha(t_i) - \alpha(t_{i-1})| \right| \\ &\leq \sum_{i=1}^n \left| \int_{t_{i-1}}^{t_i} dt |\alpha'(t)| - |\alpha(t_i) - \alpha(t_{i-1})| \right| \\ &\leq \sum_{i=1}^n \int_{t_{i-1}}^{t_i} dt \left| |\alpha'(t)| - \frac{|\alpha(t_i) - \alpha(t_{i-1})|}{t_i - t_{i-1}} \right| \\ &\leq \sum_{i=1}^n \int_{t_{i-1}}^{t_i} dt |\alpha'(t) - \alpha'(\xi)| \\ &< n(b-a)\epsilon'. \end{aligned} \tag{7}$$

whenever $t - \xi < |P| < \min_{i \in \{1, \dots, n\}} (\delta'_i)$. We have used the Mean Value Theorem to obtain ξ . Now, let $\epsilon' = \epsilon/n(b-a)$, $\delta = \delta'$, then for any partition P with $|P| < \delta$, we have

$$\left| \int_a^b dt |\alpha'(t)| - l(\alpha, P) \right| < \epsilon. \tag{8}$$

3.1 Chapter 1.4

Exercise 2.

a. Show that the volume V of a parallelepiped generated by three linearly independent vectors $u, v, w \in \mathbb{R}^3$ is given by $V = |(u \wedge v) \cdot w|$, and introduce an oriented volume in \mathbb{R}^3 .

b. Prove that

$$V^2 = \begin{vmatrix} u \cdot u & u \cdot v & u \cdot w \\ v \cdot u & v \cdot v & v \cdot w \\ w \cdot u & w \cdot v & w \cdot w \end{vmatrix} \quad (1)$$

Solution 2.

a. By definition, the volume of the parallelepiped is given by the area of the base times the height. The area of the base formed by u and v is given by $|u \wedge v|$, and the height is given by the projection of w onto the normal vector of the base, which is $\frac{(u \wedge v)}{|u \wedge v|}$. Therefore, the volume V is given by

$$V = |u \wedge v| \cdot \left| w \cdot \frac{(u \wedge v)}{|u \wedge v|} \right| = |(u \wedge v) \cdot w|. \quad (9)$$

The oriented volume can be introduced as $V = (u \wedge v) \cdot w$. If the vectors u, v, w (in order) form a right-handed system, the oriented volume is positive; otherwise, it is negative.

b. Recall that the vector product $u \wedge v \in \mathbb{R}$ is the unique vector where $(u \wedge v) \cdot w = \det(u, v, w)$. By (a), the volume of the parallelepiped is given by

$$V = |(u \wedge v) \cdot w|. \quad (10)$$

Then,

$$\begin{aligned} V^2 &= ((u \wedge v) \cdot w)((u \wedge v) \cdot w) \\ &= \det(u, v, w)^2 \\ &= \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} \\ &= \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix} \begin{pmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{pmatrix} \\ &= \begin{vmatrix} u \cdot u & u \cdot v & u \cdot w \\ v \cdot u & v \cdot v & v \cdot w \\ w \cdot u & w \cdot v & w \cdot w \end{vmatrix}. \end{aligned} \quad (11)$$

3.2 Chapter 1.5

Definition 2 (curvature). Let $\alpha : I \rightarrow \mathbb{R}^3$ be a curve parametrized by arc length. The number $|\alpha''| = k(s)$ is called the curvature of α at $s \in I$.

Definition 3 (torsion). Let $\alpha : I \rightarrow \mathbb{R}^3$ be a curve parametrized by arc length such that $k(s) \neq 0$, $s \in I$. The number $\tau(s)$ defined by $b'(s) = \tau(s)n(s)$ is called the torsion of α at s .

Theorem 1 (Fundamental Theorem of the Local Theory of Curves). Given differentiable functions $k(s) > 0$ and $\tau(s)$, $s \in I$, there exists a regular parametrized curve $\alpha : T \rightarrow \mathbb{R}^3$ such that s is the arc length, $k(s)$ is the curvature, and $\tau(s)$ is the torsion of α . Moreover, α is unique up to rigid motion, i.e. for any other curve $\bar{\alpha}$ satisfying the same conditions, there exists an orthogonal linear map ρ , $\det \rho > 0$, and a translation $t \in \mathbb{R}^3$ such that $\bar{\alpha} = \rho \circ \alpha + t$.

Remark. The requirements on $k(s) > 0$ are required. Otherwise, consider two arc length parametrized

curves on $I = [0, 1]$ given by

$$\alpha(s) = \begin{cases} (\cos s, \sin s, 0), & 0 \leq s \leq \frac{1}{2}, \\ (\cos \frac{1}{2}, \sin \frac{1}{2}, 0) + (s - \frac{1}{2})(1, 0, 0), & \frac{1}{2} < s \leq 1. \end{cases}$$

$$\bar{\alpha}(s) = \begin{cases} (\cos s, \sin s, 0), & 0 \leq s \leq \frac{1}{2}, \\ (\cos \frac{1}{2}, \sin \frac{1}{2}, 0) + (s - \frac{1}{2})(0, 0, 1), & \frac{1}{2} < s \leq 1. \end{cases}$$

Both curves have curvature $k(s) = 1$ for $s \in [0, 1/2]$ and $k(s) = 0$ for $s \in (1/2, 1]$, and torsion $\tau(s) = 0$ for all $s \in I$. However, there is no rigid motion mapping α to $\bar{\alpha}$ as the ray segments point in different directions.

Exercise 3. Given the parametrized curve (helix)

$$\alpha(s) = \left(a \cos \frac{s}{c}, a \sin \frac{s}{c}, b \frac{s}{c} \right), \quad s \in \mathbb{R},$$

where $c^2 = a^2 + b^2$.

- a. Show that the parameter s is the arc length.
- b. Determine the curvature and the torsion of α .
- c. Determine the osculating plane of α .
- d. Show that the lines containing $n(s)$ and passing through $\alpha(s)$ meet the z -axis under a constant angle equal to $\pi/2$.
- e. Show that the tangent lines to α make a constant angle with the z -axis.

Solution 3.

- a. The parameter s is the arc length since its derivative is unity:

$$\alpha'(s) = \left(-\frac{a}{c} \sin \frac{s}{c}, \frac{a}{c} \cos \frac{s}{c}, \frac{b}{c} \right) \implies |\alpha'(s)| = \left(\frac{a}{c} \right)^2 + \left(\frac{b}{c} \right)^2 = 1.$$

- b. The curvature $k(s)$ is given by $\alpha''(s) = k(s)n(s)$, so $k(s) = |\alpha''(s)|$. Therefore,

$$k(s) = \left| \left(-\frac{a}{c^2} \cos \frac{s}{c}, -\frac{a}{c^2} \sin \frac{s}{c}, 0 \right) \right| = \frac{a}{c^2}.$$

The torsion $\tau(s)$ is given by $b'(s) = \tau(s)n(s)$. Let's compute $t(s) = \alpha'(s)$,

$$n(s) = \frac{1}{k(s)} \alpha''(s) = \left(-\cos \frac{s}{c}, -\sin \frac{s}{c}, 0 \right),$$

$$b(s) = t(s) \wedge n(s) = \left(\frac{b}{c} \sin \frac{s}{c}, -\frac{b}{c} \cos \frac{s}{c}, \frac{a}{c} \right) \implies b'(s) = \left(\frac{b}{c^2} \cos \frac{s}{c}, \frac{b}{c^2} \sin \frac{s}{c}, 0 \right).$$

Comparing coefficients, we get $\tau(s) = -b/c^2$.

- c. The osculating plane is the plane spanned by $t(s)$ and $n(s)$. So it is defined by the normal vector

$$b(s) = t(s) \wedge n(s) = \left(\frac{b}{c} \sin \frac{s}{c}, -\frac{b}{c} \cos \frac{s}{c}, \frac{a}{c} \right).$$

- d. The line containing $n(s)$ and passing through $\alpha(s)$ is given by

$$\alpha(s) + \lambda n(s), \quad \lambda \in \mathbb{R},$$

with direction vector $n(s)$ such that $n(s) \cdot (0, 0, 1) = 0$, so it is always perpendicular to the z -axis.

e. By the above computation,

$$t(s) = \left(-\frac{a}{c} \sin \frac{s}{c}, \frac{a}{c} \cos \frac{s}{c}, \frac{b}{c} \right).$$

Let θ be the angle between $t(s)$ and the z -axis. Then $\cos \theta = t(s) \cdot (0, 0, 1) = \frac{b}{c}$.

Exercise 4 (*). Show that the torsion τ of α is given by

$$\tau(s) = -\frac{\alpha'(s) \wedge \alpha''(s) \cdot \alpha'''(s)}{|k(s)|^2}.$$

Solution 4. The torsion $\tau(s)$ is defined as

$$b'(s) = \tau(s)n(s). \quad (12)$$

Given $\alpha(s)$, we have $\alpha' = \alpha'$, $\alpha'' = kn$, and $\alpha''' = k'n + kn' = k'n - k^2t - k\tau b$ by the Frenet-Serret formulas. Let's compute the wedge product $\alpha' \wedge \alpha'' = t \wedge kn = kb$. Thus, the triple product is

$$(\alpha' \wedge \alpha'') \cdot \alpha''' = kb \cdot (k'n - k^2t - k\tau b) = -k^2\tau,$$

and we have

$$\tau(s) = -\frac{(\alpha'(s) \wedge \alpha''(s)) \cdot \alpha'''(s)}{|k(s)|^2}.$$

Exercise 5. Assume that $\alpha(I) \subset \mathbb{R}^2$ (i.e., α is a plane curve) and give k a sign as in the text. Transport the vectors $t(s)$ parallel to themselves in such a way that the origins of $t(s)$ agree with the origin of \mathbb{R}^2 ; the end points of $t(s)$ then describe a parametrized curve $s \mapsto t(s)$ called the indicatrix of tangents of α . Let $\theta(s)$ be the angle from e_1 to $t(s)$ in the orientation of \mathbb{R}^2 . Prove (a) and (b) (notice that we are assuming that $k \neq 0$).

- (a) The indicatrix of tangents is a regular parametrized curve.
- (b) $\frac{dt}{ds} = \left(\frac{d\theta}{ds} \right) n$, that is, $k = \frac{d\theta}{ds}$.

Solution 5.

Exercise 6 (*). Assume that all normals of a parametrized curve pass through a fixed point. Prove that the trace of the curve is contained in a circle.

Solution 6. Let $\alpha(s)$ be an arc length parametrization of the curve. Without loss of generality, assume the fixed point to be the origin. The normal at $\alpha(s)$ passes through the origin, so it is $\alpha(s) = \lambda(s)n(s)$ for some $\lambda(s)$. Then,

$$\frac{d}{ds}|\alpha(s)|^2 = 2\alpha(s) \cdot \alpha'(s) = 2\lambda(s)n(s) \cdot \alpha'(s) = 0,$$

so $|\alpha(s)|$ is constant. We may set it to $R > 0$, so the trace is contained in a *sphere* of radius R centered at the origin. Next, notice that

$$\alpha' = t = \lambda'n + \lambda n' = \lambda n - \lambda kt - \lambda\tau b \implies (1 + \lambda k)t - \lambda'n + \lambda\tau b = 0.$$

Since $\{t, n, b\}$ forms an orthonormal basis for \mathbb{R}^3 , we have $1 + k\lambda = \lambda' = \lambda\tau = 0$. Hence, $\lambda \neq 0$ is a constant, $k = -1/\lambda$, and $\tau = 0$. Therefore, α is planar with constant curvature and magnitude, and hence a circle.

Exercise 7. A regular parametrized curve α has the property that all its tangent lines pass through a fixed point.

- a. Prove that the trace of α is a (segment of a) straight line.
- b. Does the conclusion in part (a) still hold if α is not regular?

Solution 7.

- a. Let $\alpha(s)$ be an arc length regular parametrization of the curve. Without loss of generality, assume the fixed point to be the origin. The tangent at $\alpha(s)$ passes through the origin, so it satisfies $\alpha(s) = \lambda(s)t(s) = \lambda(s)\alpha'$. Then,

$$\alpha'(s) = \lambda'(s)\alpha'(s) + \lambda(s)\alpha''(s) \implies (1 - \lambda'(s))\alpha'(s) - \lambda(s)\alpha''(s) = 0.$$

Since $\alpha(s)$ is parametrized by arc length,

$$\alpha'(s) \cdot \alpha''(s) = \frac{1}{2} \frac{d}{ds} |\alpha'(s)|^2 = 0.$$

Therefore, $\alpha'(s)$ and $\alpha''(s)$ are linearly independent, and $\lambda(s) = 0$, $\lambda'(s) = 1$ whenever $\alpha'' \neq 0$. However, consider the set $S = \{s \in \mathbb{R} \mid \alpha''(s) \neq 0\}$, which is open since $\alpha''(s)$ is continuous and $S = (\alpha'')^{-1}(\mathbb{R} \setminus \{0\})$ is the inverse image of an open set. Then S contains intervals if it is non-empty, so $\lambda(s) = 0$ and $\lambda'(s) = 1$ cannot hold for all $s \in S$. Thus, $S = \emptyset$, and $\alpha''(s) = 0$ for all s . Therefore, the trace of $\alpha(s)$ is a segment of a straight line.

- b. No, since if $\alpha(s)$ is not regular, then $\alpha'(s)$ may vanish for some s , at which we cannot assume $\alpha'(s)$ and $\alpha''(s)$ are linearly independent.

Exercise 8. A translation by a vector v in \mathbb{R}^3 is the map $A : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ given by $A(p) = p + v$, $p \in \mathbb{R}^3$. A linear map $\rho : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ is an orthogonal transformation when $\rho u \cdot \rho v = u \cdot v$ for all vectors $u, v \in \mathbb{R}^3$. A rigid motion in \mathbb{R}^3 is the result of composing a translation with an orthogonal transformation with positive determinant (this last condition is included because we expect rigid motions to preserve orientation).

- a. Demonstrate that the norm of a vector and the angle θ between two vectors, $0 \leq \theta \leq \pi$, are invariant under orthogonal transformations with positive determinant.
- b. Show that the vector product of two vectors is invariant under orthogonal transformations with positive determinant. Is the assertion still true if we drop the condition on the determinant?
- c. Show that the arc length, the curvature, and the torsion of a parametrized curve are (whenever defined) invariant under rigid motions.

Solution 8.

- a. Since an orthogonal transformation preserves the inner product, it also preserves $\sqrt{u \cdot u}$ and $\cos^{-1} \frac{u \cdot v}{|u||v|}$ for all vectors $u, v \in \mathbb{R}^3$.
- b. Let $u, v, w \in \mathbb{R}^3$ be arbitrary vectors. Then consider the inner product of $\rho u \wedge \rho v$ with w :

$$\begin{aligned} (\rho u \wedge \rho v) \cdot w &= \det(\rho u, \rho v, w) \\ &= \det(\rho) \det(u, v, \rho^{-1}w) \\ &= \det(\rho) ((u \wedge v) \cdot \rho^{-1}w) \\ &= \det(\rho) (\rho(u \wedge v) \cdot w), \end{aligned}$$

for all $w \in \mathbb{R}^3$. Hence, $\rho u \cdot \rho v = \det(\rho)\rho(u \wedge v) = \rho(u \wedge v)$ whenever $\det(\rho) = 1$. Therefore, the assertion is false when $\det(\rho) \neq 1$.

c. Let $R = A \circ \rho : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be a rigid motion. Then, for all parametrized curves $\alpha(t)$, we have $\tilde{\alpha} = R\alpha = \rho\alpha + p$. The arc length is then given by

$$\tilde{s}(t) = \int d\tau |\tilde{\alpha}'(\tau)| = \int d\tau |\rho\alpha'(\tau)| = \int d\tau |\alpha'(\tau)| = s(t),$$

since ρ preserves the norm. Now, we use the arc length parametrization. The curvature is given by

$$\tilde{k}(\tilde{s}) = |\tilde{\alpha}''(\tilde{s})| = |\rho\alpha''(s)| = |\alpha''(s)| = k(s),$$

and the torsion is given by

$$\begin{aligned}\tilde{\tau}(\tilde{s}) &= -\frac{(\tilde{\alpha}'(\tilde{s}) \wedge \tilde{\alpha}''(\tilde{s})) \cdot \tilde{\alpha}'''(\tilde{s})}{\tilde{k}(\tilde{s})^2} = -\frac{(\rho\alpha'(s) \wedge \rho\alpha''(s)) \cdot \rho\alpha'''(s)}{k(s)^2} \\ &= -\frac{\rho(\alpha'(s) \wedge \alpha''(s)) \cdot \rho\alpha'''(s)}{k(s)^2} = -\frac{(\alpha'(s) \wedge \alpha''(s)) \cdot \alpha'''(s)}{k(s)^2} = \tau(s),\end{aligned}$$

since ρ preserves the vector and the inner product.

Exercise 9 (*). Let $\alpha : I \rightarrow \mathbb{R}^2$ be a regular parametrized plane curve (arbitrary parameter), and define $n = n(t)$ and $k = k(t)$ as in Remark 1. Assume that $k(t) \neq 0$, $t \in I$. In this situation, the curve

$$\beta(t) = \alpha(t) + \frac{1}{k(t)} n(t), \quad t \in I, \tag{13}$$

is called the evolute of α (Fig. 1–17).

- a. Show that the tangent at t of the evolute of α is the normal to α at t .
- b. Consider the normal lines of α at two neighboring points t_1, t_2 , $t_1 \neq t_2$. Let t_1 approach t_2 and show that the intersection points of the normals converge to a point on the trace of the evolute of α .

Solution 9.

- a. Let β be the evolute. By the chain rule, we have

$$n'(t) = \frac{dn}{ds} \frac{ds}{dt} = -k(t) \frac{\alpha'(t)}{|\alpha'(t)|} |\alpha'(t)| = -k(t) \alpha'(t).$$

By direct differentiation of β , we get

$$\beta'(t) = \alpha'(t) + \frac{-k(t)^2 \alpha'(t) - n(t) k(t)}{k(t)^2} = -\frac{k'(t)}{k(t)^2} n(t).$$

Hence, the tangent at t of β is precisely $n(t)$.

- b. Let the normal be given by $n(t) = (a(t), b(t))$, then $a'(t) \neq 0$ or $b'(t) \neq 0$ for all t since α is regular. Take some $t_2 \in I$, assume without loss of generality that $a'(t_2) \neq 0$. For $t \in J = (t_2 - \delta, t_2 + \delta)$, we have

$$|a'(t_2)| - \left| \frac{a_{t_2} - a_t}{t_2 - t} \right| \leq \left| a'(t_2) \frac{a_{t_2} - a_t}{t_2 - t} \right| < \frac{1}{2} |a'(t_2)|,$$

and

$$\left| \frac{a(t_2) - a(t)}{t_2 - t} \right| > \frac{|a'(t_2)|}{2} > 0,$$

hence $a(t) \neq a(t_2)$ for any t in a neighborhood of t_2 . Therefore, if we fix $t_1 \in J$, $t_1 \neq t_2$, then the normal lines N_1, N_2 of α at t_1, t_2 will have a unique intersection. L_1, L_2 are well-defined given that $n(t) \neq 0$ for all $t \in I$. Let $h \in \mathbb{R}^2$ be the intersection point, then

$$h = \alpha(t_1) + p_1 n(t_1) = \alpha(t_2) + p_2 n(t_2),$$

where $p_1, p_2 \in I$ are constants. We shall show that as $t_1 \rightarrow t_2$, $p_2 \rightarrow 1/k(t_2)$. The area spanned by $n(t_1)$ and $\alpha(t_1)$ is

$$\det(\alpha(t_1), n(t_1)) = \det(\alpha(t_2), n(t_1)) + p_1 \det(n(t_2), n(t_1)),$$

then

$$p_2 = \frac{\det(\alpha(t_1) - \alpha(t_2), n(t_1))}{\det(n(t_2), n(t_1))}.$$

Taking the limit $t_1 \rightarrow t_2$ gives, by L'Hôpital's rule,

$$\begin{aligned} \lim_{t_1 \rightarrow t_2} p_2 &= \frac{\det(\alpha'(t_2), n(t_2))}{\det(n(t_2), n'(t_2))} = \frac{1}{k(t_2)} \\ &= \lim_{t_1 \rightarrow t_2} \frac{\det(\alpha'(t_1), n(t_1)) - \det(\alpha(t_1) - \alpha(t_2), -k(t_1) \alpha'(t_1))}{\det(n(t_2), -k(t_1) \alpha'(t_1))} \\ &= \lim_{t_1 \rightarrow t_2} \frac{|\alpha'(t_1)|}{k(t_1) ||} + \lim_{t_1 \rightarrow t_2} \frac{\det(k(t_1) \alpha'(t_1), \alpha(t_1) - \alpha(t_2))}{k(t_1) |\alpha'(t_1)|} \\ &= \frac{1}{k(t_2)}. \end{aligned}$$

Therefore,

$$\lim_{t_1 \rightarrow t_2} h = \alpha(t_2) + \frac{1}{k(t_2)} n(t_2) = \beta(t_2),$$

which is a point on the evolute of α .

Exercise 10. The trace of the parametrized curve (arbitrary parameter)

$$\alpha(t) = (t, \cosh t), \quad t \in \mathbb{R}, \quad (14)$$

is called the catenary.

a. Show that the signed curvature (cf. Remark 1) of the catenary is

$$k(t) = \frac{1}{\cosh^2 t}. \quad (15)$$

b. Show that the evolute (cf. Exercise 7) of the catenary is

$$\beta(t) = (t - \sinh t \cosh t, 2 \cosh t). \quad (16)$$

Solution 10.

To keep the notation unambiguous, we will denote the (unit) tangent vector by T . Recall that $n(t) = T'(t)/|T'(t)|$, by remark 1, the signed curvature is given by

$$k(t) n(t) = \frac{dT}{ds} = \frac{dT/dt}{ds/dt} = \frac{T'(t)}{|\alpha'(t)|}. \quad (17)$$

Plugging in the expression for $n(t)$ simplifies it to

$$k(t) = \frac{|T'(t)|}{|\alpha'(t)|}. \quad (18)$$

a. We have $\alpha'(t) = (1, \sinh t)$, $|\alpha'(t)| = \sqrt{1 + \sinh^2 t} = \cosh t$. Then $T(t) = \alpha'(t)/|\alpha'(t)| = \operatorname{sech} t (1, \sinh t)$ and

$$\begin{aligned} T'(t) &= \operatorname{sech}^2 t (-\sinh t, 1), \\ |T'(t)| &= \operatorname{sech}^2 t \sqrt{\sinh^2 t + 1} = \operatorname{sech} t, \end{aligned}$$

By equation (18), we have

$$k(t) = \frac{\operatorname{sech} t}{\cosh t} = \operatorname{sech}^2 t = \frac{1}{\cosh^2 t}. \quad (19)$$

b. By definition in Exercise 7, the evolute is given by

$$\begin{aligned}\beta(t) &= \alpha(t) + \frac{1}{k(t)}n(t) \\ &= (t, \cosh t) + \cosh^2 t \operatorname{sech} t(-\sinh t, 1) \\ &= (t - \sinh t \cosh t, 2 \cosh t).\end{aligned}\tag{20}$$

Exercise 11. Given a differentiable function $k(s)$, $s \in I$, show that the parametrized plane curve having $k(s) = k$ as curvature is given by

$$\alpha(s) = \left(\int ds \cos \theta(s) + a, \int ds \sin \theta(s) + b \right),\tag{21}$$

where

$$\theta(s) = \int ds k(s) + \varphi,\tag{22}$$

and that the curve is determined up to a translation of the vector (a, b) and a rotation of the angle φ .

Solution 11. Let $\alpha(s)$ be as given, we have

$$\alpha'(s) = (\cos \theta(s), \sin \theta(s)) = \left(\cos \left(\int k(s) ds + \varphi \right), \sin \left(\int k(s) ds + \varphi \right) \right),\tag{23}$$

and

$$\alpha''(s) = k(s) (-\sin \theta(s), \cos \theta(s)),\tag{24}$$

hence $|\alpha''(s)| = k(s)$. By the definition of translation, the curve is determined up to a translation of the vector (a, b) , so suppose $a = b = 0$. Now suppose we rotate the curve by an angle φ counterclockwise, then the new curve $\tilde{\alpha}(s)$ is given by

$$\begin{aligned}\tilde{\alpha}(s) &= \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \alpha(s) \\ &= \begin{pmatrix} \cos \varphi \int ds \cos \theta(s) - \sin \varphi \int ds \sin \theta(s) \\ \sin \varphi \int ds \cos \theta(s) + \cos \varphi \int ds \sin \theta(s) \end{pmatrix} \\ &= \begin{pmatrix} \int ds \cos(\theta(s) + \varphi) \\ \int ds \sin(\theta(s) + \varphi) \end{pmatrix}.\end{aligned}$$

Thus, the curve is determined up to an arbitrary rotation of the angle φ .

Remark. This exercises shows how to construct a curve with any given curvature functions $k(s)$, up to a translation and rotation. This is a special case of the **Fundamental Theorem of the Local Theory of Curves**.

Exercise 12. Consider the map

$$\alpha(t) = \begin{cases} (t, 0, e^{-1/t^2}), & t > 0 \\ (t, e^{-1/t^2}, 0), & t < 0 \\ (0, 0, 0), & t = 0 \end{cases}\tag{25}$$

- a.** Prove that α is a differentiable curve.
- b.** Prove that α is regular for all t and that the curvature $k(t) \neq 0$, for $t \neq 0$, $t \neq \pm\sqrt{2/3}$, and $k(0) = 0$.
- c.** Show that the limit of the osculating planes as $t \rightarrow 0$, $t > 0$, is the plane $y = 0$ but that the limit of the osculating planes as $t \rightarrow 0$, $t < 0$, is the plane $z = 0$ (this implies that the normal vector is discontinuous at $t = 0$ and shows why we excluded points where $k = 0$).

d. Show that τ can be defined so that $\tau \equiv 0$, even though α is not a plane curve.

Solution 12.

(a) The curve α is differentiable if α' exists everywhere. For $t > 0$ and $t < 0$ it is made of elementary functions, so it is differentiable. At $t = 0$, the x coordinate is differentiable, so consider the z coordinate only.

Lemma 1. The map

$$f(x) = \begin{cases} e^{-1/x^2}, & x > 0; \\ 0, & x \leq 0. \end{cases} \quad (26)$$

is differentiable at $x = 0$ and $f^{(n)}(0) = 0$.

Proof. Let $f(x) = e^{-1/x^2}$, notice that

$$f(x) \leq n!x^{2n} \quad \text{for all } n. \quad (27)$$

Thus, for $n = 1$ we have $f'(0) = \lim_{x \rightarrow 0} f(x)/x = 0$ by the squeeze theorem. Assume that $f^{(k)}(0) = 0$ for all $k < n$. By induction we know that $f^{(k)}$ is of the form $f^{(k)}(x) = f(x) \sum_{r=1}^N a_r x^{-r}$ for $x > 0$, so choosing some n large enough such that

$$f^{(k+1)}(x) \leq n!x^{2n} \sum_{r=1}^N a_r x^{-r} \leq Cx^m$$

for some constant C , we have f is $(k+1)$ times differentiable and $f^{(k+1)}(0) = 0$. By induction we are done. \square

By Lemma (1), α is differentiable.

(b) The curve has derivative

$$\alpha' = \begin{cases} \left(1, 0, \frac{2}{t^3} e^{-1/t^2}\right), & t > 0, \\ \left(1, \frac{2}{t^3} e^{-1/t^2}, 0\right), & t < 0, \\ (1, 0, 0), & t = 0. \end{cases}$$

Since e^{-1/t^2} is always positive, $\alpha'(t) \neq 0$ for all t , so α is regular. Next, we compute the curvature $k(t)$.

Lemma 2. For a regular curve $\alpha(t)$, the curvature is given by

$$k(t) = \frac{|\alpha'(t) \wedge \alpha''(t)|}{|\alpha'(t)|^3}. \quad (28)$$

Proof. Let $\alpha: I \rightarrow \mathbb{R}^3$ be a regular curve. Then, we have $T'(t(s)) = k(t(s))N(t(s))$, where $t(s)$ is the reparametrization by arc length. Then $|T'(t(s))| = k(t(s))|N(t(s))| = k(t(s))$. The left hand side is $dT/ds = (dT/dt)(dt/ds) = (dT/dt)/|\alpha'(t)|$. Moreover,

$$\frac{dT}{dt} = \frac{|\alpha'|^2 \alpha'' - (\alpha' \cdot \alpha'') \alpha'}{|\alpha'|^3} = \frac{\alpha' \wedge (\alpha'' \wedge \alpha')}{|\alpha'|^3}. \quad (29)$$

Since $\alpha' \perp \alpha'' \wedge \alpha'$,

$$k(t(s)) = |T'(t(s))| = \frac{|\alpha'(t) \wedge \alpha''(t)|}{|\alpha'(t)|^3}.$$

\square

We have $\alpha'(t)$ given above, and

$$\alpha'' = \begin{cases} \left(0, 0, \left(\frac{4}{t^6} - \frac{6}{t^4}\right) e^{-1/t^2}\right), & t > 0, \\ \left(0, \left(\frac{4}{t^6} - \frac{6}{t^4}\right) e^{-1/t^2}, 0\right), & t < 0, \\ (0, 0, 0), & t = 0. \end{cases}$$

$$\alpha' \wedge \alpha'' = \begin{cases} \left(0, -\left(\frac{4}{t^6} - \frac{6}{t^4}\right) e^{-1/t^2}, 0\right), & t > 0, \\ \left(0, 0, \left(\frac{4}{t^6} - \frac{6}{t^4}\right) e^{-1/t^2}\right), & t < 0, \\ (0, 0, 0), & t = 0. \end{cases}$$

Using Lemma 2, we have

$$k(t) = \begin{cases} \left|\left(\frac{4}{t^6} - \frac{6}{t^4}\right) e^{-1/t^2}\right| / \left(1 + \frac{4}{t^6} e^{-2/t^2}\right)^{3/2}, & t \neq 0, \\ 0, & t = 0. \end{cases} \quad (30)$$

From above we know $k(t) = 0$ when and only when $t = 0$ and $t = \pm\sqrt{2/3}$.

(c) The osculating plane is determined by the normal vector $N(t)$ and the tangent vector $T(t)$. By equation (28) and the definition $dT(t(s))/ds = k(t(s))N(t(s))$, the normal vector is

$$\begin{aligned} N(t) &= \frac{1}{k(t)} \frac{dT(t(s))}{ds} \\ &= \frac{\alpha'(t) \wedge (\alpha''(t) \wedge \alpha'(t))}{|\alpha'(t)|^4} \cdot \frac{|\alpha'(t)|^3}{|\alpha'(t) \wedge \alpha''(t)|} \\ &= \frac{\alpha'(t) \wedge (\alpha''(t) \wedge \alpha'(t))}{|\alpha'(t)| |\alpha'(t) \wedge \alpha''(t)|}. \end{aligned} \quad (31)$$

For $t > 0$, we have

$$N(t) = \left(1 + \frac{4}{t^6} e^{-1/t^2}\right)^{-1/2} \left(-\frac{2}{t^3} e^{-1/t^2}, 0, 1\right)$$

and

$$T(t) = \left(1 + \frac{4}{t^6} e^{-1/t^2}\right)^{-1/2} \left(1, 0, \frac{2}{t^3} e^{-1/t^2}\right),$$

hence $N_P = \lim_{t \rightarrow 0^+} T(t) \wedge N(t) = (0, 0, 1) \wedge (1, 0, 0) = (0, 1, 0)$. Furthermore, $\lim_{t \rightarrow 0^+} \alpha(t) = (0, 0, 0)$, so the osculating plane is $y = 0$.

On the other hand, for $t < 0$, we have

$$N(t) = \left(1 + \frac{4}{t^6} e^{-1/t^2}\right)^{-1/2} \left(-\frac{2}{t^3} e^{-1/t^2}, 1, 0\right)$$

and

$$T(t) = \left(1 + \frac{4}{t^6} e^{-1/t^2}\right)^{-1/2} \left(1, \frac{2}{t^3} e^{-1/t^2}, 0\right),$$

hence $N_P = \lim_{t \rightarrow 0^-} T(t) \wedge N(t) = (0, 1, 0) \wedge (1, 0, 0) = (0, 0, -1)$. Furthermore, $\lim_{t \rightarrow 0^-} \alpha(t) = (0, 0, 0)$, so the osculating plane is $z = 0$. Notice that $N(t)$ is discontinuous at $t = 0$, thus undefined there.

(d) Since $k(0) = k(\pm\sqrt{2/3}) = 0$, $N(0)$ and $N(\pm\sqrt{2/3})$ are not well-defined. Therefore, we can define τ to be zero at these points. For $t \neq 0, \pm\sqrt{2/3}$, we have

$$B(t) = T(t) \wedge N(t) = \begin{cases} -(0, 1, 0), & t > 0, \\ (0, 0, 1), & t < 0. \end{cases}$$

The binormal vector $B(t)$ is constant on $I \setminus \{0\}$, so $B'(s) = B'(t) \cdot |\alpha'(t)|^{-1} = 0 = \tau(t(s))N(t(s))$. Hence we can choose $\tau(t) \equiv 0$ for $t \in I \setminus \{0, \pm\sqrt{2/3}\}$. This is an example of **a curve with identically zero torsion that is not a plane curve**.

Exercise 13. One often gives a plane curve in polar coordinates by $\rho = \rho(\theta)$, $a \leq \theta \leq b$.

a. Show that the arc length is

$$\int_a^b d\theta \sqrt{\rho^2 + (\rho')^2}, \quad (32)$$

where the prime denotes the derivative relative to θ .

b. Show that the curvature is

$$k(\theta) = \frac{2(\rho')^2 - \rho\rho'' + \rho^2}{((\rho')^2 + \rho^2)^{3/2}}. \quad (33)$$

Solution 13.

a. Calculate the curve vector in Cartesian coordinates:

$$\alpha(\theta) = (\rho(\theta) \cos \theta, \rho(\theta) \sin \theta),$$

Then

$$\alpha'(\theta) = (\rho'(\theta) \cos \theta - \rho(\theta) \sin \theta, \rho'(\theta) \sin \theta + \rho(\theta) \cos \theta),$$

and computing the norm gives

$$|\alpha'(\theta)| = \sqrt{(\rho'(\theta))^2 + \rho^2(\theta)}.$$

The arclength is defined to be

$$s(a, b) = \int_a^b d\theta |\alpha'(\theta)| = \int_a^b d\theta \sqrt{\rho^2 + (\rho')^2}. \quad (34)$$

b. The unit tangent is

$$T(\theta) = \frac{\alpha'(\theta)}{|\alpha'(\theta)|} = \frac{1}{\sqrt{(\rho')^2 + \rho^2}} (\rho'(\theta) \cos \theta - \rho(\theta) \sin \theta, \rho'(\theta) \sin \theta + \rho(\theta) \cos \theta).$$

Then we calculate $T'(\theta)$ and its magnitude, where prime denotes derivative with respect to θ . After some cumbersome algebra, we get

$$T'(\theta) = \frac{1}{((\rho')^2 + \rho^2)^{3/2}} ((2(\rho')^2 - \rho\rho'' + \rho^2)(-\sin \theta, \cos \theta)),$$

By equation (18), we have

$$k(\theta) = \frac{|T'(\theta)|}{|\alpha'(\theta)|} = \frac{2(\rho')^2 - \rho\rho'' + \rho^2}{((\rho')^2 + \rho^2)^{3/2}}. \quad (35)$$

Exercise 14. Let $\alpha : I \rightarrow \mathbb{R}^3$ be a regular parametrized curve (not necessarily by arc length) and let $\beta : J \rightarrow \mathbb{R}^3$ be a reparametrization of $\alpha(I)$ by the arc length $s = s(t)$, measured from $t_0 \in I$ (see Remark 2). Let $t = t(s)$ be the inverse function of s and set $d\alpha/dt = \alpha'$, $d^2\alpha/dt^2 = \alpha''$, etc. Prove that

a. $\frac{dt}{ds} = \frac{1}{|\alpha'|}$, $\frac{d^2t}{ds^2} = -\frac{\alpha' \cdot \alpha''}{|\alpha'|^4}$.

b. The curvature of α at $t \in I$ is

$$k(t) = \frac{|\alpha' \wedge \alpha''|}{|\alpha'|^3}.$$

c. The torsion of α at $t \in I$ is

$$\tau(t) = -\frac{(\alpha' \wedge \alpha'') \cdot \alpha'''}{|\alpha' \wedge \alpha''|^2}.$$

d. If $\alpha : I \rightarrow \mathbb{R}^2$ is a plane curve $\alpha(t) = (x(t), y(t))$, the signed curvature (see Remark 1) of α at t is

$$k(t) = \frac{x'y'' - x''y'}{((x')^2 + (y')^2)^{3/2}}.$$

Solution 14.

a. By the definition of arc length, we have

$$s(t) = \int_{t_0}^t du |\alpha'(u)| \implies \frac{ds}{dt} = |\alpha'(t)| \implies \frac{dt}{ds} = \frac{1}{|\alpha'|}.$$

Differentiating again gives

$$\frac{d^2t}{ds^2} = \frac{1}{|\alpha'|} \frac{d}{dt} \left(\frac{1}{|\alpha'|} \right) = -\frac{\alpha' \cdot \alpha''}{|\alpha'|^4}.$$

b. For a space curve, we have $k(s) = |\alpha''(s)|$ in the arc length parametrization. By the chain rule, so $k(s(t)) = |\alpha''(s(t))|$. By the chain rule, we have

$$\alpha' = \frac{d}{dt} \alpha(s(t))$$

c. *

Exercise 15 (*). Assume that $\tau(s) \neq 0$ and $k'(s) \neq 0$ for all $s \in I$. Show that a necessary and sufficient condition for $\alpha(I)$ to lie on a sphere is that

$$R^2 + (R')^2 T^2 = \text{const.},$$

where $R = 1/k$, $T = 1/\tau$, and R' is the derivative of R with respect to s .

Solution 15. Suppose α lies on a sphere of radius r centered at 0, then $|\alpha| = R$. Differentiating three times gives the following equations

$$\alpha \cdot \alpha' = 0,$$

$$\alpha' \cdot \alpha' + \alpha \cdot \alpha'' = 0 \implies \alpha \cdot \alpha'' = -1 \quad (*),$$

$$\alpha' \cdot \alpha'' + \alpha \cdot \alpha''' = 0 \implies \alpha \cdot \alpha''' = 0 \quad (*),$$

where we suppressed s and used $\alpha' \cdot \alpha'' = 0$. Let's write down the Frenet equations:

$$t' = kn, \quad n' = -kt - \tau b, \quad b' = \tau n. \quad (36)$$

By (*), we have $k\alpha \cdot n = -1$, so $\alpha \cdot n = -1/k$. By (**) and $\alpha''' = k'n + kn'$, we have the relation $k'\alpha \cdot n + k\alpha \cdot n' = 0$. Substitute the Frenet equations (36) into it gives

$$k' \left(-\frac{1}{k} \right) + k\alpha \cdot (-kt + \tau b) = -\frac{k'}{k} + k\tau\alpha \cdot b = 0.$$

Now we have $\alpha \cdot n = -1/k$, $\alpha \cdot t = 0$, and $\alpha \cdot b = \frac{k'}{\tau k^2}$, so we can write α in the Frenet frame $\{t, n, b\}$ as

$$\alpha = -\frac{1}{k}n + \frac{k'}{\tau k^2}b,$$

hence

$$|\alpha|^2 = \frac{1}{k^2} + \frac{(k')^2}{\tau^2 k^4} = R^2 + (R')^2 T^2, \quad k = \frac{1}{R}, \quad \tau = \frac{1}{T}.$$

Conversely, suppose $R^2 + (R')^2 T^2 = \text{const}$, where $R = 1/k$ and $T = 1/\tau$. Motivated by the Frenet frame formula for α , consider the quantity

$$\beta = \alpha + \frac{1}{k}n - \frac{k'}{\tau k^2}b,$$

then

$$\begin{aligned} \frac{d\beta}{ds} &= t + \frac{(-kt - \tau b)k - nk'}{k^2} - \frac{d}{ds} \left(\frac{k'}{\tau k^2} \right) b - \frac{k'}{\tau k^2} \tau n \\ &= \frac{\tau b}{k} - \frac{d}{ds} \left(\frac{k'}{\tau k^2} \right) b \\ &= \frac{k^2 \tau b}{k'} \left[\frac{k'}{k^3} - \frac{k'}{\tau k^2} \frac{d}{ds} \left(\frac{k'}{\tau k^2} \right) \right] \\ &= \frac{k^2 \tau b}{2k'} \frac{d}{ds} \left[\frac{1}{k^2} + \left(\frac{k'}{\tau k^2} \right)^2 \right] = 0. \end{aligned}$$

Therefore, $\beta(s) = \beta(0)$ is a constant vector, and we have

$$|\alpha - \beta(0)| = \sqrt{\frac{1}{k^2} + \frac{(k')^2}{\tau^2 k^4}} = \sqrt{R^2 + (R')^2 T^2} = \text{const},$$

and hence α lies on a sphere centered about $\beta(0)$.

Exercise 16 (*). Let $\alpha : (a, b) \rightarrow \mathbb{R}^2$ be a regular parametrized plane curve. Assume that there exists t_0 , $a < t_0 < b$, such that the distance $|\alpha(t)|$ from the origin to the trace of α will be a maximum at t_0 . Prove that the curvature k of α at t_0 satisfies

$$|k(t_0)| \geq \frac{1}{|\alpha(t_0)|}.$$

Solution 16. Notice that $f(t) = |\alpha(t)|$ is nonnegative, so $f^2(t) = \alpha(t) \cdot \alpha(t)$ also attains a maximum at t_0 . Then

$$\frac{d}{dt} f^2(t) \Big|_{t=t_0} = 2\alpha(t_0) \cdot \alpha'(t_0) = 0,$$

differentiating again gives

$$\frac{d^2}{dt^2} f^2(t) \Big|_{t=t_0} = \alpha'(t_0) \cdot \alpha'(t_0) + \alpha(t_0) \cdot \alpha''(t_0) \leq 0,$$

since $f(t)$ attains a maximum at t_0 . We also have $\alpha'(t_0) \cdot \alpha'(t_0) = 1$ since it is a parametrization by arclength, and $\alpha''(t_0) = k(t_0)n(t_0)$. Then let θ be the angle between $\alpha(t_0)$ and α'' , we have

$$k(t_0)n(t_0)\alpha(t_0) = |k(t_0)||n(t_0)||\alpha(t_0)| \cos \theta \leq -1.$$

Notice that $|n(t_0)| = 1$ and $\cos \theta < 0$, we have

$$k(t_0) \geq \frac{1}{|\alpha(t_0) \cos \theta|} \geq \frac{1}{|\alpha(t_0)|}.$$

Exercise 17 (*). Show that the knowledge of the vector function $b = b(s)$ (binormal vector) of a curve α , with nonzero torsion everywhere, determines the curvature $k(s)$ and the absolute value of the torsion $\tau(s)$ of α .

Solution 17. By the Frenet equations, we have $b' = \tau n$, so for an arc length parametrized curve, $|b'| = |\tau|$. Next, differentiate to get

$$b'' = \tau' n + \tau n' = \tau' n - \tau k t - \tau^2 b \implies \tau b'' = \tau \tau' n - \tau^2 k t - \tau^3 b.$$

From $b' = \tau n$, we have $b' \tau' = \tau \tau' n$, so

$$\tau b'' = b' \tau' - \tau^2 k t - \tau^3 b \implies t = \frac{b' \tau' - \tau^3 b - \tau b''}{\tau^2 k}.$$

Take the norm on both sides yields

$$k = \frac{|\tau^3 b - \tau' b' + \tau b''|}{\tau^2} = \frac{||b'|^4 - (b' \cdot b'')b' + |b'|^2 b''|}{|b'|^3},$$

where we assumed $\tau = |b'|$ without loss of generality as the formula is invariant under $\tau \rightarrow -\tau$, and hence $\tau' = (b' \cdot b'')/|b'|$. Therefore,

$$|\tau| = |b'|, \quad k = \frac{||b'|^4 - (b' \cdot b'')b' + |b'|^2 b''|}{|b'|^3}. \quad (37)$$

Exercise 18 (*). Show that the knowledge of the vector function $n = n(s)$ (normal vector) of a curve α , with nonzero torsion everywhere, determines the curvature $k(s)$ and the torsion $\tau(s)$ of α .

Solution 18. The normal n is determined by $\alpha'' = kn$, and $n' = -kt - \tau b$ by the second Frenet equation. Following the hint, we shall show that

$$\frac{(n \wedge n') \cdot n''}{|n'|^2} = \frac{\frac{d}{ds} \left(\frac{k}{\tau} \right)}{\left(\frac{k}{\tau} \right)^2 + 1}. \quad (38)$$

Let $t = \alpha'$, $b = t \wedge n = \alpha' \wedge n$ in the Frenet equation, then

$$\begin{aligned} n' &= -k\alpha' - \tau b \implies |n'|^2 = k^2 + \tau^2, \\ n \wedge n' &= n \wedge (-k\alpha' - \tau b) = -\tau t + kb, \end{aligned}$$

since $n \wedge b = \alpha' = t$. Next, differentiate n' to get

$$n'' = -[k't + (k^2 + \tau^2)n + \tau'b]$$

and

$$(n \wedge n') \cdot n'' = (-\tau t + kb) \cdot [-k't - (k^2 + \tau^2)n - \tau'b] = \tau k' - k\tau' = \tau^2 \left(\frac{k}{\tau} \right)'.$$

Therefore, we have

$$\frac{(n \wedge n') \cdot n''}{|n'|^2} = \frac{\frac{d}{ds} \left(\frac{k}{\tau} \right)}{\left(\frac{k}{\tau} \right)^2 + 1} \equiv a(s) \implies \tan^{-1} \left(\frac{k}{\tau} \right) = \int ds a(s).$$

Hence, we have, up to a constant C that can only be determined by initial conditions,

$$\frac{k}{\tau} = \tan \left[\int ds \frac{(n(s) \wedge n'(s)) \cdot n''(s)}{|n'(s)|^2} + C \right], \quad \tau^2 + k^2 = |n'(s)|^2.$$

Remark. The problem is ill-posed. Consider the counterexample: let

$$\beta(t) = (a \cos s, a \sin s, bs), \quad s \in \mathbb{R}$$

with $a^2 + b^2 = 1$, $a, b > 0$ be a helix. For all values of a, b , we have

$$\beta''(s) = -a(\cos s, \sin s, 0) \implies n(s) = -(\cos s, \sin s, 0),$$

and in general we have $k = a$ and $\tau = -b$ through direct calculation. Taking $(a, b) = (1/\sqrt{2}, 1/\sqrt{2})$ and $(a, b) = (1/2, \sqrt{3}/2)$ gives two different curves with the same normal vector function $n(s)$, non-vanishing torsion, and different curvature and torsion.

Exercise 19. In general, a curve α is called a helix if the tangent lines of α make a constant angle with a fixed direction. Assume that $\tau(s) \neq 0$, $s \in I$, and prove that:

- *a. α is a helix if and only if $\frac{k}{\tau} = \text{const.}$
- *b. α is a helix if and only if the lines containing $n(s)$ and passing through $\alpha(s)$ are parallel to a fixed plane.
- *c. α is a helix if and only if the lines containing $b(s)$ and passing through $\alpha(s)$ make a constant angle with a fixed direction.
- d. The curve

$$\alpha(s) = \left(\frac{a}{c} \int \sin \theta(s) ds, \frac{a}{c} \int \cos \theta(s) ds \right) \quad (39)$$

where $c^2 = a^2 + b^2$, is a helix, and that $\frac{k}{\tau} = \frac{a}{b}$.

Solution 19.

(a) Suppose there exists a vector $v \in \mathbb{R}^3$ such that $v \cdot t(s) = C$ for some constant C . Then

$$\frac{dt}{ds} \cdot v = k(s)n(s) \cdot v = 0,$$

so $n(s) \cdot v = 0$. Differentiating again gives

$$\frac{dn}{ds} \cdot v = -k(s)t(s) \cdot v + \tau(s)b(s) \cdot v = -k(s)C + \tau(s)b(s) \cdot v = 0.$$

Since $\tau(s) \neq 0$, we have

$$Ck(s)/\tau(s) = (b(s) \cdot v) = (t(s) \wedge n(s)) \cdot v = (v \wedge t(s)) \cdot n(s).$$

Since $t(s), v \perp n(s)$, the triple product is equal to $|n(s)||t(s)||v| \sin(C) = |v| \sin C$. Therefore, $k(s)/\tau(s)$ is a constant. Conversely, if $k(s)/\tau(s) = C'$ for some constant C' , then we can take $v = t(s) + C'b(s)$, which is a constant vector since

$$\frac{dv}{ds} = k(s)n(s) + C'(-\tau(s)n(s)) = 0.$$

Then

$$\frac{dt}{ds} \cdot v = 0.$$

(b) Suppose $\alpha(s)$ is a helix, then there exists a vector $v \in \mathbb{R}^3$ such that $v \cdot t(s) = C$ for some constant C . Let L be a line containing $n(s)$ and passing through $\alpha(s)$. Then $n(s) \cdot v = 0$ by result in part (a), so $L \perp v$, hence parallel to the plane with normal vector v . Conversely, for any point $s \in I$, suppose the line L containing $n(s)$ and passing through $\alpha(s)$ is parallel to the plane P with normal vector $v \in \mathbb{R}^3$. Then $n(s) \cdot v = 0$, and

$$\frac{dT}{ds} \cdot v = k(s)n(s) \cdot v = 0.$$

Hence $dT/ds = d(T \cdot v)/ds = 0$, and $T(s) \cdot v = C'$ for some constant C' , and $\alpha(s)$ is a helix.

(c) By definition of helix, there exists a vector $v \in \mathbb{R}^3$ such that $v \cdot t(s) = C$ for some constant C . By (b), all the lines containing $n(s)$ and passing through $\alpha(s)$ are parallel to the plane with some fixed normal vector $u \in \mathbb{R}^3$, so $n(s) \cdot u = 0$. Consider $b \cdot (u \wedge v) = (t(s) \wedge n(s)) \cdot (u \wedge v) = (t(s) \cdot u)(n(s) \cdot v) - (t(s) \cdot v)(n(s) \cdot u) = 0$, since $n(s) \cdot v = 0$ from (a). Conversely, suppose there exists a vector $v \in \mathbb{R}^3$ such that $b(s) \cdot v = C$ for some constant C . Then $(t(s) \wedge n(s)) \cdot v = C$,

$$\frac{db}{ds} \cdot v = -\tau(s)n(s) \cdot v = 0,$$

and by $\tau(s) \neq 0$ we have $n(s) \cdot v = 0$. Finally,

$$\frac{d}{ds} (t(s) \cdot v) = k(s)n(s) \cdot v = 0,$$

therefore, $\alpha(s)$ is a helix.

(d) With s suppressed in the expressions, derivatives of α are

$$\begin{aligned}\alpha' &= \left(\frac{a}{c} \sin \theta(s), \frac{a}{c} \cos \theta(s), \frac{b}{c} \right), \\ \alpha'' &= \left(\frac{a}{c} \theta'(s) \cos \theta(s), -\frac{a}{c} \theta'(s) \sin \theta(s), 0 \right), \\ \alpha''' &= \left(\frac{a}{c} (\theta''(s) \cos \theta(s) - (\theta'(s))^2 \sin \theta(s)), -\frac{a}{c} (\theta''(s) \sin \theta(s) + (\theta'(s))^2 \cos \theta(s)), 0 \right).\end{aligned}$$

The curvature is $k(s) = |\alpha'(s)| = \frac{a}{c} \theta'$. The torsion is given by the formula

$$\tau(s) = -\frac{(\alpha'(s) \wedge \alpha''(s)) \cdot \alpha'''(s)}{k(s)^2}$$

by [Do Carmo] Exercise 1.5.2. Direct calculation gives

$$(\alpha' \wedge \alpha'') \cdot \alpha''' = \left(\frac{ab}{c^2} \theta'(s) \sin \theta(s), -\frac{ab}{c^2} \theta'(s) \cos \theta(s), -\frac{a^2}{c^2} (\theta'(s))^2 \right) = \frac{a^2 b}{c^3} (\theta')^3,$$

so

$$\tau(s) = \frac{b}{c} \theta'(s) = \frac{b}{a} k(s).$$

3.3 Chapter 1.6

Exercise 20 (*). Let $\alpha : I \rightarrow \mathbb{R}^3$ be a curve parametrized by arc length with curvature $k(s) \neq 0$, $s \in I$. Let P be a plane satisfying both of the following conditions:

1. P contains the tangent line at s .
2. Given any neighborhood $J \subset I$ of s , there exist points of $\alpha(J)$ in both sides of P .

Prove that P is the osculating plane of α at s .

Solution 20. Let n be the normal vector of plane P , then condition 1 implies that $n_P \perp t(s)$, as $t(s) \in P$. To show the desired result, we will show that $n(s) \perp n_P$. Consider $f(s) = t(s) \cdot n_P = 0$, differentiating both sides gives $f'(s) = t(s) \cdot n'_P = k(s)n(s) \cdot n_P = 0$, so $n(s) \perp n_P$. Thus, the binormal vector $b(s) \parallel n_P$. Furthermore, by condition 2 we can take some interval $J = (s - \frac{1}{m}, s + \frac{1}{m}) \subseteq I$, then there exists $s_1^{(m)} \in (s - \frac{1}{m}, s)$ and $s_2^{(m)} \in (s, s + \frac{1}{m})$ such that $\alpha(s_1^{(m)})$ and $\alpha(s_2^{(m)})$ are in different sides of plane P . This holds for all $m \in \mathbb{N}$, so as $m \rightarrow \infty$, $p \equiv \alpha(s) = \lim_{m \rightarrow \infty} \alpha(s_1^{(m)})$ lies on the left side of P , and $p \equiv \alpha(s) = \lim_{m \rightarrow \infty} \alpha(s_2^{(m)})$ lies on the right side of P , hence $p = \alpha(s) \in P$. Since P contains $\alpha(s)$ and has $b(s)$ as a normal vector, P is the osculating plane of α at s .

Exercise 21. Let $\alpha : I \rightarrow \mathbb{R}^3$ be a curve parametrized by arc length, with curvature $k(s) \neq 0$, $s \in I$. Show that

- *a. The osculating plane at s is the limit position of the plane passing through $\alpha(s)$, $\alpha(s + h_1)$, $\alpha(s + h_2)$ when $h_1, h_2 \rightarrow 0$.
- b. The limit position of the circle passing through $\alpha(s)$, $\alpha(s + h_1)$, $\alpha(s + h_2)$ when $h_1, h_2 \rightarrow 0$ is a circle in the osculating plane at s , the center of which is on the line that contains $n(s)$ and the radius of which is the radius of curvature $1/k(s)$; this circle is called the osculating circle at s .

Solution 21.

(a) Since the plane, which we will call P , by construction passes through $\alpha(s)$, we are left to show that the normal vector n_P of P converges to $b(s)$ in the limit $h_1, h_2 \rightarrow 0$. We have

$$\begin{aligned} n_P &= \frac{(\alpha(s + h_1) - \alpha(s)) \wedge (\alpha(s + h_2) - \alpha(s))}{|(\alpha(s + h_1) - \alpha(s)) \wedge (\alpha(s + h_2) - \alpha(s))|} \\ &= \frac{(h_1 \alpha'(s) + O(h_1^2)) \wedge (h_2 \alpha'(s) + O(h_2^2))}{|(h_1 \alpha'(s) + O(h_1^2)) \wedge (h_2 \alpha'(s) + O(h_2^2))|} \\ &= \left(\frac{\alpha'(s) \wedge \alpha''(s)}{|\alpha'(s) \wedge \alpha''(s)|} + O(h_1) + O(h_2) \right), \end{aligned}$$

hence

$$\lim_{h_1, h_2 \rightarrow 0} n_P = \frac{\alpha'(s) \wedge \alpha''(s)}{|\alpha'(s) \wedge \alpha''(s)|}.$$

Then the binormal vector is parallel to N_P since

$$b(s) = t(s) \wedge n(s) = \alpha'(s) \wedge \alpha''(s) / |\alpha''(s)| \parallel n_P.$$

(b) Without loss of generality, shift the origin to s so that $\alpha(s), \alpha(s + h_1), \alpha(s + h_2)$ become $\alpha(0), \alpha(h_1), \alpha(h_2)$, respectively. Let (x_0, y_0, z_0) be the center of the circle passing through $\alpha(0)$, $\alpha(h_1)$, and $\alpha(h_2)$, then the equation of the circle can be written as $F(s) = (x(s) - x_0)^2 + (y(s) - y_0)^2 + (z(s) - z_0)^2 - r^2$. Calculate the derivatives to be

$$F'(s) = 2(x(s) - x_0)x'(s) + 2(y(s) - y_0)y'(s) + 2(z(s) - z_0)z'(s)$$

and

$$\begin{aligned} F''(s) &= 2(x'(s))^2 + 2(y'(s))^2 + 2(z'(s))^2 \\ &\quad + 2(x(s) - x_0)x''(s) + 2(y(s) - y_0)y''(s) + 2(z(s) - z_0)z''(s). \end{aligned}$$

Taking the limit as $s \rightarrow 0$ gives $F'(0) = -2x_0$ and $F''(0) = 2 - 2k(0)y_0$. Since the plane passes through $\alpha(0), \alpha(h_1), \alpha(h_2)$, we have $F(0) = F(h_1) = F(h_2) = 0$. By the Mean Value Theorem, there exists some $s_1 \in (0, h_1)$ such that $F'(s_1) = 0$. As $h_1 \rightarrow 0$, we have $s_1 \rightarrow 0$, by continuity of F we have $F'(s_1) \rightarrow 0$ as $s_1 \rightarrow 0$ as $h_1, h_2 \rightarrow 0$. Similarly, suppose $h_1 < h_2$, there exists some $s_2 \in (h_1, h_2)$ such that $F'(s_2) = 0$. By the Mean Value Theorem, there exists some $s_3 \in (s_1, s_2)$ such that $F''(s_3) = 0$. As $h_1, h_2 \rightarrow 0$, we have $s_1, s_2 \rightarrow 0$, so by continuity of F'' , $F''(s_3) \rightarrow 0$ as $s_3 \rightarrow 0$. Therefore,

$$\lim_{h_1, h_2 \rightarrow 0} F'(s_1) = F'(0) = -2x_0 = 0 \implies x_0 = 0,$$

and

$$\lim_{h_1, h_2 \rightarrow 0} F''(s_2) = F''(0) = 2 - 2k(0)y_0 = 0 \implies y_0 = \frac{1}{k(0)}.$$

By (a) we know the circle lies on the osculating plane at $\alpha(0)$ as $h_1, h_2 \rightarrow 0$, so $c \rightarrow 0$. Hence the center of the circle converges to $(0, 1/k(0), 0)$, which lies on the line containing $n(0)$, and the radius converges to $1/k(0)$.