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1 Chapter 1.1
2 Chapter 1.2

Exercise 1.2.5. Let a: I — R3 be a parametrized curve, with o/(t) # 0 for all t € I. Show that
|a(t)] is a nonzero constant if and only if a(t) is orthogonal to o/(t) for all ¢ € I.

Solution 1.2.5. Suppose |a(t)| = ¢ # 0 for all t € I. Then,
d d
—_ = 2 .o = — 2 = 0.
g lae(t)| a(t) - a'(t) 3¢ 0

are orthogonal. Conversely, suppose «(t) and o/(t) are

Thus «a(t) - o/(t) = 0, and «(t) o/ (t)
= 0. Then, we have

and
orthogonal for all ¢ € I, so «(t) - o/ (t)

d 2 _ / —
Sla®I? =2a()-a/(t) = 0.

Thus |«(t)| is a constant.

3 Chapter 1.3

Definition 1 (regular curve). A parametrized curve a : I — R? is said to be regular if o/ () # 0
forall t e I.

Exercise 1.3.2. A circular disk of radius 1 in the plane zy rolls without slipping along the x-axis.
The figure described by a point on the circumference of the disk is called a cycloid (Figure 1-7).

a. Obtain a parametrized curve o: R — R? the trace of which is the cycloid, and determine its
singular points.

b. Compute the arc length of the cycloid corresponding to a complete rotation of the disk.

Solution 1.3.2.

a. Let a(t) = (x(¢),y(t)) be the parametrized curve of the cycloid. As the disk rolls without
slipping and the radius of the disk is 1, the distance traveled along the z-axis is ¢ and the

y-coordinate is given by the height of the point on the circumference. Therefore, we have:

x(t) =t — sin(t),
_ (1)
y(t) = 1 — cos(t).

The singular points occur when o/(¢) = 0. This is equivalent to
2/ (t) =1 —cos(t) =0,
y'(t) = sin(t) = 0.

Hence the singular points are at ¢t = 2nx for all n € Z.



b. The arc length of the cycloid for a complete rotation is given by integrating over [0, 27].

L= i dt |/ (t)| = / i dt \/(1 — cos(t))? + (sin(t))2
0 0
2w
:/ dt /2 — 2cos(t) = 8.
0

Exercise 1.3.4. Let a: (0,7) — R? be given by

. t
at) = (smt, cost + log tan 5) ,

where ¢ is the angle that the y-axis makes with the vector «(t). The trace of « is called the tractriz
(see Fig. 1-9). Show that:

a. « is a differentiable parametrized curve, regular except at t = 7/2.

b. The length of the segment of the tangent of the tractrix between the point of tangency and
the y-axis is constantly equal to 1.

Solution 1.3.4. Recall that a regular curve is a smooth, parametrized curve with a non-
vanishing derivative.

a. First we shall compute the derivative of a(t) as
’ . 1
o' (t) = | cost, —sint + —

sint

(4)

= (cost,cottcost)
Since o/ (t) is continuous on (0, 7) and o/ (¢) # 0 for all t € (0, 7)\{7/2}, a(t) is a differentiable
parametrized curve, regular except at t = /2.

b. The equation of the tangent line at a(t) is given by
Yy —yo(t) = cott (z — mo(t)), (5)

where yo = cost + log tan% and xg = sint. Setting x = 0 to find the intersection with the
y-axis, we have

Ay =1y —yo(t) = —cottsint = — cost,

(6)

Ax =2 — x0(t) = —sint.

Then the distance is \/(Ay)? + (Az)? = 1.

Exercise 1.3.7. A map a : I — R3 is called a curve of class C* if each of the coordinate functions
in the expression «a(t) = (x(t),y(t), 2(t)) has continuous derivatives up to order k. If « is merely
continuous, we say that « is of class C°. A curve « is called simple if the map « is one-to-one.
Thus, the curve in Example 3 of Sec. 1-2 is not simple.

Let a : I — R3 be a simple curve of class C°. We say that « has a weak tangent at t = tq € I
if the line determined by «a(tg + h) and a(tg) has a limit position when h — 0. We say that « has
a strong tangent at ¢t = g if the line determined by (¢ + h) and «(tg + k) has a limit position
when h, k — 0. Show that

a. a(t) = (t3,?),t € R, has a weak tangent but not a strong tangent at ¢ = 0.

b. If a : I — R3 is of class C' and regular at t = t(, then it has a strong tangent at ¢t = .



c. The curve given by

is of class C'! but not of class C2. Draw a sketch of the curve and its tangent vectors.
Solution 1.3.7.

Exercise 1. Let a: I — R? be a differentiable curve and let [a,b] C I be a closed interval. For
every partition
a=ty<t1 <---<t,=b

of [a,b], consider the sum Y " | |a(t;) — «(ti—1)| = l(, P), where P stands for the given partition.
The norm |P| of a partition P is define as

|P| = max(t; —t;—1),i=1,...,n

Geometrically, I(a, P) is the length of the polygon inscribed in «([a, b]) with the vertices in a(t;).
The point of the exercise is to show that the arc length of a([a, b)) is, in some sense, a limit of the
length of the inscribed polygons. Prove that given € > 0 there exists § > 0 such that if |P| < ¢
then

")|dt — (o, P)| < €

Solution 1. Since a(t) is differentiable on the closed interval [a, b], ¢/ (¢) is continuous. Thus, for
any € > 0 there exists 6’ > 0 such that o/(t2) — o/(¢1) < € whenever |ty — ¢1| < ¢’. For a partition
P, let € > 0. The integral can be bounded as:

/dt|a ) = I(a, P) /dt\a |—Z|a ~altiy)|
<Z /t At/ (8)] — Ju(ts) — altss)|
! / la(t;) — a(ti—1)| (7)
< at ||’ ()| = ——F——=
;/tu ’ ti —ti—1 ‘
<3 [ al - ool

<n(b—a)é

whenever ¢ — § < |P| < min;eqy,... ny (6;). We have used the Mean Value Theorem to obtain &.
Now, let € = ¢/n(b—a), § = ¢, then for any partition P with |P| < , we have

b
/dt|a’(t)|—l(a,P) <e (8)

3.1 Chapter 1.4

Exercise 2.

a. Show that the volume V' of a parallelepiped generated by three linearly independent vectors
u,v,w € R3 is given by V = |(u A v) - w|, and introduce an oriented volume in R3.



b. Prove that

U UV UW
Vi=lvou v-v v-w (1)
weu wev wew

Solution 2.

a. By definition, the volume of the parallelepiped is given by the area of the base times the
height. The area of the base formed by u and v is given by |u A v|, and the height is given

(lmz‘) . Therefore, the

by the projection of w onto the normal vector of the base, which is

volume V is given by
(uAv)

|u A vl

Vzu/\v-‘w- =|(uAv)-wl. (9)

The oriented volume can be introduced as V' = (u A v) - w. If the vectors u,v,w (in order)
form a right-handed system, the oriented volume is positive; otherwise, it is negative.

b. Recall that the vector product u Av € R is the unique vector where (uAv)-w = det(u, v, w).
By (a), the volume of the parallelepiped is given by

V=|(uAv)- w. (10)
Then,

VZ=((uAv) w)((uAv)- w)

= det(u, v, w)?

U Uz U3 |U1I U2 U3
=|V1 VY2 V3||U1 V2 U3
wp w2 wW3||wp W2 W3
Uy U2 U3 uyp v wi (11)
= v U2 U3 Uz V2 W2
wp w2 w3 uz vz w3
uU-uU UV U-w
=|v-u vV VW
w-u WU w-w

3.2 Chapter 1.5

Definition 2 (curvature). Let a: I — R3 be a curve parametrized by arc length. The number
|a”| = k(s) is called the curvature of o at s € I.

Definition 3 (torsion). Let a: I — R3 be a curve parametrized by arc length such that k(s) # 0,
s € I. The number 7(s) defined by ¥'(s) = 7(s)n(s) is called the torsion of « at s.

Theorem 1 (Fundamental Theorem of the Local Theory of Curves). Given differentiable func-
tions k(s) > 0 and 7(s), s € I, there exists a regular parametrized curve a : T — R3 such that s
is the arc length, k(s) is the curvature, and 7(s) is the torsion of a. Moreover, « is unique up to
rigid motion, i.e. for any other curve @ satisfying the same conditions, there exists an orthogonal
linear map p, det p > 0, and a translation ¢t € R3 such that @ = po o + .

Remark. The requirements on k(s) > 0 are required. Otherwise, consider two arc length parametrized



curves on I = [0, 1] given by

1
(cos s,sin s, 0), 0<s< >
a(s) =
(cos S,sin =,0) + (s — 5)(1,0,0), ~<s<1
Z gin= i - .
COSQaS 97 s 2 y Uy YUy 9 s>
1
(cos s,sin s, 0), 0<s< >
a(s) =
(cos &,sin 2,0) + (s — 2)(0,0,1), ~<s<1
5 =, sin = - = 5 :
005255 9’ S 2 y Uy L)y 9 LIRS

Both curves have curvature k(s) = 1 for s € [0,1/2) and k(s) = 0 for s € (1/2,1], and torsion
7(s) = 0 for all s € I. However, there is no rigid motion mapping « to @ as the ray segments point
in different directions.

Exercise 3. Given the parametrized curve (helix)

s . s s
a(s):(acosf,amnf,bE), s €R,

C C

where ¢2 = a? + b2.

p

Show that the parameter s is the arc length.

&

Determine the curvature and the torsion of «.

c. Determine the osculating plane of a.

e

Show that the lines containing n(s) and passing through «(s) meet the z-axis under a constant
angle equal to 7/2.

e. Show that the tangent lines to o make a constant angle with the z-axis.

Solution 3.
a. The parameter s is the arc length since its derivative is unity:

a(s) = (—gblnf % eoss %) = |d/(s)] = (%)2 + <b>2 =1.

c c cC C c

b. The curvature k(s) is given by o/ (s) = k(s)n(s), so k(s) = |a”(s)|. Therefore,

s a
)(f—cosf f—2s1nc O)‘ =2
The torsion 7(s) is given by b'(s) = 7(s)n(s). Let’s compute t(s) = o/(s),

" s .8
= =(—cos>,—sin-,0),
n(s) (s) ( cos —, —sin - )

B (b . s b s a roN ( s b . s )
b(s) =1t(s) An(s) = (ESIHE’_ECOSE’E> = b(s) = C—ZCOSE,C—QsmE,O .
Comparing coefficients, we get 7(s) = —b/c%.

c. The osculating plane is the plane spanned by t(s) and n(s). So it is defined by the normal
vector

b . s b s a
o 9 )= (Bin L.
(s) =t(s) An(s) o sin -, —= cos
d. The line containing n(s) and passing through «(s) is given by
a(s) + Mn(s), XeR,

with direction vector n(s) such that n(s) - (0,0,1) = 0, so it is always perpendicular to the
z-axis.



e. By the above computation,

a . s a s b
t(s)=|——sin—,—cos—, - | .

c ¢’ c c'c

Let 6 be the angle between ¢(s) and the z-axis. Then cos = t(s) - (0,0,1) = 2.

Exercise 4 (*). Show that the torsion 7 of « is given by

__d(s)Aa"(s)-a"(s)
T Ok

Solution 4. The torsion 7(s) is defined as

b'(s) = 7(s)n(s). (12)

Given a(s), we have = o/, o’ = kn, and o/ = k'n + kn' = k'n — k?t — k7b by the Frenet-Serret
formulas. Let’s compute the wedge product o’ A o/ =t A kn = kb. Thus, the triple product is

(& Aa") - =kb- (K'n — k*t — ktb) = —k*T,
and we have

 (@(s) Aa(s) - (s)
Tle) =~ Ko

Exercise 5. Assume that o(I) C R? (i.e., a is a plane curve) and give k a sign as in the text.
Transport the vectors ¢(s) parallel to themselves in such a way that the origins of ¢(s) agree with
the origin of R?; the end points of #(s) then describe a parametrized curve s +— t(s) called the
indicatrix of tangents of . Let 0(s) be the angle from e; to #(s) in the orientation of R%. Prove
(a) and (b) (notice that we are assuming that k # 0).

(a) The indicatrix of tangents is a regular parametrized curve.

dt d@) L
(b) i (d—s n, that is, k = 4.

Solution 5.

Exercise 6 (*). Assume that all normals of a parametrized curve pass through a fixed point.
Prove that the trace of the curve is contained in a circle.

Solution 6. Let a(s) be an arc length parametrization of the curve. Without loss of generality,
assume the fixed point to be the origin. The normal at «(s) passes through the origin, so it is
a(s) = A(s)n(s) for some A(s). Then,

% a(s)]? = 2a(s) - o/(s) = 2\(s)n(s) - o' (s) = 0,

so |a(s)| is constant. We may set it to R > 0, so the trace is contained in a sphere of radius R
centered at the origin. Next, notice that
o =t=Nn+n' = — Ikt —A\b = (1+ k)t — Nn+Arb=0.

Since {t,n,b} forms an orthonormal basis for R3, we have 1 + kXA = X' = A7 = 0. Hence, \ # 0 is
a constant, k = —1/X, and 7 = 0. Therefore, « is planar with constant curvature and magnitude,
and hence a circle.



Exercise 7. A regular parametrized curve « has the property that all its tangent lines pass
through a fixed point.

a. Prove that the trace of « is a (segment of a) straight line.

b. Does the conclusion in part (a) still hold if « is not regular?

Solution 7.

a. Let a(s) be an arc length regular parametrization of the curve. Without loss of generality,
assume the fixed point to be the origin. The tangent at a(s) passes through the origin, so it
satisfies a(s) = A(s)t(s) = A(s)a’. Then,

a'(s) = N(s)d/(s) + A(s)a"(s) = (1 —N(s))d/(s) — A(s)a"(s) = 0.

Since «(s) is parametrized by arc length,

/ " _ li / 2 _
a'(s) -« (5)—2dsa(s)| =0.
Therefore, o/(s) and «”(s) are linearly independent, and A(s) = 0, X (s) = 1 whenever

o/ # 0. However, consider the set S = {s € R|a//(s) # 0}, which is open since a’'(s) is
continuous and S = (a”)”" (R \ {0}) is the inverse image of an open set. Then S contains
intervals if it is non-empty, so A(s) = 0 and A’'(s) = 1 cannot hold for all s € S. Thus, S = &,
and o (s) = 0 for all s. Therefore, the trace of a(s) is a segment of a straight line.

b. No, since if «(s) is not regular, then o’(s) may vanish for some s, at which we cannot assume
a/(s) and o’'(s) are linearly independent.

Exercise 8. A translation by a vector v in R?® is the map A : R® — R? given by A(p) =
p+v, p € R3. A linear map p : R? — R3 is an orthogonal transformation when pu - pv = u-v for all
vectors u,v € R3. A rigid motion in R? is the result of composing a translation with an orthogonal
transformation with positive determinant (this last condition is included because we expect rigid
motions to preserve orientation).

a. Demonstrate that the norm of a vector and the angle 6 between two vectors, 0 < 6 < 7, are
invariant under orthogonal transformations with positive determinant.

b. Show that the vector product of two vectors is invariant under orthogonal transformations
with positive determinant. Is the assertion still true if we drop the condition on the deter-
minant?

c. Show that the arc length, the curvature, and the torsion of a parametrized curve are (when-
ever defined) invariant under rigid motions.

Solution 8.

a. Since an orthogonal transformation preserves the inner product, it also preserves \/u - u and

cos™! ﬁ‘"ﬁl for all vectors u,v € R3.

b. Let u,v,w € R be arbitrary vectors. Then consider the inner product of pu A pv with w:

(pu A pv) - w = det(pu, pv, w)
= det(p) det(u, v, p~ w)
= det(p) ((uAv) - p~'w)
— det(p) (p(u A v) - w),

for all w € R3. Hence, pu - pv = det(p)p(u A v) = p(u A v) whenever det(p) = 1. Therefore,
the assertion is false when det(p) # 1.



c. Let R=Aop:R3— R3 be a rigid motion. Then, for all parametrized curves a(t), we have
& = Ra = pa + p. The arc length is then given by

)= [arl@@) = [arlpa0)] = [ arla’(r)] = sto),

since p preserves the norm. Now, we use the arc length parametrization. The curvature is
given by ~
k(8) = 18" (5)] = [pa” (s)| = o ()] = k(s),

and the torsion is given by

(@(3) N "(3) - a"(5) __(po'(s) A po”

#(3) = —

(
k(3)2 B k(s)2
p(a’(s) Na'(s)) - pa”(s) (a'(s) N a(

- k(5)2 - k(5)2 =(s),

since p preserves the vector and the inner product.

Exercise 9 (*). Let a : I — R? be a regular parametrized plane curve (arbitrary parameter),
and define n = n(t) and k = k(t) as in Remark 1. Assume that k(t) # 0, ¢ € I. In this situation,
the curve

B(t) = at) + oy n(t), tel, (13)

is called the evolute of a (Fig. 1-17).

a. Show that the tangent at t of the evolute of « is the normal to « at t.

b. Consider the normal lines of a at two neighboring points ¢y, ts, t1 # to. Let t; approach to
and show that the intersection points of the normals converge to a point on the trace of the
evolute of a.

Solution 9.
a. Let 8 be the evolute. By the chain rule, we have

W0 = T = KO S (0] = k() o),

By direct differentiation of 3, we get
—k@)*'(t) —n@) k() K(t)
k(t)?
Hence, the tangent at ¢ of 3 is precisely n(t).

b. Let the normal be given by n(t) = (a(t),b(t)), then a'(t) # 0 or ¥'(t) # 0 for all ¢ since
a is regular. Take some to € I, assume without loss of generality that a/(t2) # 0. For
teJ=(ta—9d,ta+9), we have

B(t) =a'(t) +

/ ag, — g 1, Nty — Q¢ 1,
to)] — t < 2ld(t2)],
la(t2)] 1 | = (t2) — 2\0(2)\
and ,
to) —al(t t
a(t2) — a(t) >|a(2)|>0’
to —t 2

hence a(t) # a(te) for any ¢ in a neighborhood of t5. Therefore, if we fix t; € J, t; # o, then
the normal lines N1, Ny of « at tq,ty will have a unique intersection. L1, Lo are well-defined
given that n(t) # 0 for all t € I. Let h € R? be the intersection point, then

h = a(t1) + pin(t1) = a(ta) + pan(tsa),



where p1,p2 € I are constants. We shall show that as t; — ta, po — 1/k(t2). The area
spanned by n(t1) and «(ty) is

det(a(t1), n(t1)) = det(a(ts), n(t1)) + p1 det(n(ts), n(t1)),

then
_det(a(ty) — afta), n(t1))
P2 = T et (nlta), n(t))

Taking the limit t; — to gives, by L’Hopital’s rule,

_det(d/(t2),n(t2)) 1

S py = det(n(ta), n'(t2)) _ k(t2)
o det(@/(h), n(t) = det(a(ty) — alts), —k(t) o’ (k)
t1 >t det(n(tz), —k(t1) o/ (t1))
o @] det(k(t) @/ (1), alt) — aft)
tiote k(ty) || tiot E(t1) [/ (t1)]
1
T k(t2)’

Therefore,

lim h = a(ts) + %n(tz) = B(t2),

t1—t2 t2)

which is a point on the evolute of a.

Exercise 10. The trace of the parametrized curve (arbitrary parameter)
a(t) = (¢,cosht), t eR, (14)
is called the catenary.

a. Show that the signed curvature (cf. Remark 1) of the catenary is

k(t) = 700311216' (15)

b. Show that the evolute (cf. Exercise 7) of the catenary is
B(t) = (t —sinht cosht, 2cosht). (16)

Solution 10.

To keep the notation unambiguous, we will denote the (unit) tangent vector by 7'. Recall
that n(t) = T"(¢)/|T"(t)|, by remark 1, the signed curvature is given by

4T dTjdt  T'()

= = = . 1
RO =30 = Gsjat = o) (17)
Plugging in the expression for n(t) simplifies it to
T'(t
k(t) = )] (18)

o’ ()]

a. We have o/(t) = (1,sinht), |o/(t)] = /1 +sinh®*¢t = cosht. Then T(t) = o/(t)/|c/(t)| =
sech t(1,sinh ) and
T'(t) = sech®t (—sinht, 1),
|T"(t)| = sech® t\/sinh® t + 1 = sech ,

By equation , we have

secht 1
sech?t = e
cosht cosh” ¢

k(t) =



b. By definition in Exercise 7, the evolute is given by

B(t) = a(t) + %n(t)

= (t,cosht) 4 cosh? t secht(—sinht, 1)
(t — sinh t cosh ¢, 2 cosh t).

Exercise 11. Given a differentiable function k(s), s € I, show that the parametrized plane curve
having k(s) = k as curvature is given by

a(s) = (/ ds cosf(s) + a, /ds sin0(s) + b> , (21)

where
0(s) = / ds k(s) + &, (22)

and that the curve is determined up to a translation of the vector (a,b) and a rotation of the angle
©.

Solution 11. Let a(s) be as given, we have

a/(s) = (cos(s),sinf(s)) = (cos (/ k(s)ds + <p) ,sin (/ k(s)ds + g@)) , (23)

and
a’(s) = k(s) (—sin@(s), cos6(s)), (24)

hence |a”(s)| = k(s). By the definition of translation, the curve is determined up to a translation
of the vector (a,b), so suppose a = b = 0. Now suppose we rotate the curve by an angle ¢
counterclockwise, then the new curve a(s) is given by

<,y _ [cosp —singp

als) = (singo Cos ¥ ) o(s)
_ <cosg0fd5 cosf(s) —siny [ ds sin 0(5))
~ \singp [ ds cosf(s) + cosp [ ds sinf(s)
B (f ds cos(6(s) + tp))

~ \Sdssin(0(s) +¢)/)

Thus, the curve is determined up to an arbitrary rotation of the angle .

Remark. This exercises shows how to construct a curve with any given curvature functions k(s),
up to a translation and rotation. This is a special case of the Fundamental Theorem of the
Local Theory of Curves.

Exercise 12. Consider the map
(t,0,e= 1), t>0
a(t) =4 (t,e /1,0), t<0 (25)
(0,0,0), t=20
a. Prove that « is a differentiable curve.

b. Prove that « is regular for all ¢ and that the curvature k(t) # 0, for t # 0, t # +4/2/3, and
k(0) = 0.

c. Show that the limit of the osculating planes as ¢ — 0,¢ > 0, is the plane y = 0 but that the
limit of the osculating planes as ¢t — 0,¢ < 0, is the plane z = 0 (this implies that the normal
vector is discontinuous at ¢t = 0 and shows why we excluded points where k = 0).

10



d.

Show that 7 can be defined so that 7 = 0, even though « is not a plane curve.

Solution 12.

(a)

The curve « is differentiable if o exists everywhere. For ¢ > 0 and ¢ < 0 it is made of
elementary functions, so it is differentiable. At ¢ = 0, the x coordinate is differentiable, so
consider the z coordinateo only.

Lemma 1. The map

f(:z‘,’) o 6_1/I27 x > 07 (26)
0, z < 0.
is differentiable at = =0 and f(™(0) = 0.
Proof. Let f(z) =e~1/*" notice that
f(z) < nlz®™  for all n. (27)

Thus, for n = 1 we have f/(0) = lim,_o f(z)/x = 0 by the squeeze theorem. Assume
that f*)(0) = 0 for all ¥ < n. By induction we know that f*) is of the form f(™)(z) =
fx) Zivzl a,x~" for x > 0, so choosing some n large enough such that

N
FEHD () < pla?n Z arz”" < Cax™
r=1

for some constant C, we have f is (k4-1) times differentiable and £+ (0) = 0. By induction
we are done. O

By Lemma , « is differentiable.

The curve has derivative
2
(1,0, —671/7&2) , >0,

t?’
/: 2
o (1, tfge—l/tz,o) . <0,
(1,0,0), t=0.

Since e/t is always positive, o/(t) # 0 for all ¢, so « is regular. Next, we compute the

curvature k(t).

Lemma 2. For a regular curve «(t), the curvature is given by

_ [/ @) A" @)

HO = wp =

Proof. Let a: I — R3 be a regular curve. Then, we have T"(t(s)) = k(t(
t(s) is the reparametrization by arc length. Then |T7(t(s))| = k(t(s))| N (t(s
left hand side is dT'/ds = (dT'/dt) (dt/ds) = (dT/d¢t) /|’ (t)|. Moreover,

)|)N(t(s)), where

)| = k(t(s)). The

dT B |a/|2a// _ (a/ ‘Oé”) Oé/ a//\(a///\a/)

a [P N (29)
Since o L o’ Ao,
k(t(s)) = IT'(t(s))| = W
O]

11



We have o/ (t) given above, and

[0 = 6 —1 t2

0, tG—tj) /,0) t<0,

(0,0,0), t=0
4 6 —1/t2

(0-(F-5)m0). >0

/ 1 — 4
o AN <070’<7_E> —1/t2)7 t <0,

6 ¢4

(anvo)a t=0

4 3/2
/<1+t—6e—2/t2> , t#£0,
0, t=0.

From above we know k(t) = 0 when and only when ¢t = 0 and t = 4+4/2/3.

The osculating plane is determined by the normal vector N(¢) and the tangent vector T'(¢).
By equation and the definition dT'(¢(s))/ds = k(t(s))N(¢(s)), the normal vector is
1 dT(t(s))
N(t) = —— )
®) k(t) ds
a'(t) A (a(t) A o'(1)) o/ (1)
= : (31)
o/ (B)]* /() A e (2)]

_ @A) N (1))
o/ (@)]|e/ () A ()]

For t > 0, we have

4 0 —1/2 2 2
N(t) = (1+t766 1/t ) (7;@)6 1/t ,0,1)
and
—1/t? /2 2 —1/t?
T(t) =1+ 5e ]-707t73 y

hence Np = lim; g+ T(¢) AN(t) = (0,0,1)A(1,0,0) = (0, 1,0). Furthermore, lim; o+ a(t) =
(0,0,0), so the osculating plane is y = 0.

On the other hand, for ¢ < 0, we have

4 2 —1/2 2 2
N(t) = (1+t766 1/t ) <_t736 1/t 7].70>
and

4 —1/2
T(t) = (1 " *66_1“2) (17 Ee—l/m’o) ’

t 3
hence Np = lim;_,o- T(t)AN(t) = (0,1,0)A(1,0,0) = (0,0, —1). Furthermore, lim;_,o- «(t) =
(0,0,0), so the osculating plane is z = 0. Notice that N(¢) is discontinuous at ¢ = 0, thus
undefined there.
Since k(0) = k(£+/2/3) = 0, N(0) and N(£+/2/3) are not well-defined. Therefore, we can
define 7 to be zero at these points. For ¢t # 0, 4+/2/3, we have

—(0,1,0), ¢>0,

B(t)=T(t) AN(t) = {(0 0,1) t <O0.

12



The binormal vector B(t) is constant on I\{0}, so B'(s) = B'(t)-|a/(t)|1 = 0 = 7(t(s)) N (t(s)).
Hence we can choose 7(t) = 0 for ¢ € I\{0,£+/2/3}. This is an example of a curve with
identically zero torsion that is not a plane curve.

Exercise 13. One often gives a plane curve in polar coordinates by p = p(0), a < 6 < b.

a. Show that the arc length is
b
| oo (32)

where the prime denotes the derivative relative to 6.

b. Show that the curvature is
k(o) = 20 —pr" 4 /"

(2 + 02"

Solution 13.
a. Calculate the curve vector in Cartesian coordinates:
a(f) = (p(0) cosb, p(f)sinb),

Then
a'(0) = (p'(0) cos O — p(0) sinf, p'(0)sin® + p(#) cos ),

and computing the norm gives
/()] =/ (¢'(0))* + p*(0).

The arclength is defined to be

b b
s(a,b):/ d9|o/(9)\:/ d0\/p2 1 (0)2. (34)

b. The unit tangent is

_ 2O _ ! '() cos 6§ — sin '(6) sin cos
T(0) = (505 = g (0 cost = ple)sind. 0)sint +p(0) ).

Then we calculate T"(6) and its magnitude, where prime denotes derivative with respect to
0. After some cumbersome algebra, we get

W ((2(0) = pp" + p*)(—sin b, cos0)),

By equation , we have

T'(0) =

_1T'O)] _ 2(p')? = pp" +p?
=@ (PR (35)

k(0)

Exercise 14. Let a : I — R? be a regular parametrized curve (not necessarily by arc length)
and let 8 : J — R? be a reparametrization of a(I) by the arc length s = s(t), measured from ¢y € I
(see Remark 2). Let t = t(s) be the inverse function of s and set da/dt = o', d*a/dt? = o, etc.
Prove that

dt 1 &t oo

a. —=— =——.
ds |o/|”  ds? o]

13



b. The curvature of o at ¢t € I is
k<t) B |a/ A O/l|
CEE

c. The torsion of c at t € [ is
(al /\ a/l) . a///
Tt)=———"——
|O/ A a//|2

d. If a: I — R? is a plane curve a(t) = (z(t),y(t)), the signed curvature (see Remark 1) of «
at tis 2l — 2y
Y Ty

k(t) = .
O @™

Solution 14.

a. By the definition of arc length, we have

t
ds dt 1
t)= [ duld/ = — =) = —=—.
0= [ wlwwl = F =0l = 3=
Differentiating again gives
1 d( 1 )_ o o
ds?  |o/| dt

o]/ ot

b. For a space curve, we have k(s) = |o”(s)| in the arc length parametrization. By the chain
rule, so k(s(t)) = |a”(s(t))|. By the chain rule, we have

, d
o = &a(s(t))

Exercise 15 (*). Assume that 7(s) # 0 and k'(s) # 0 for all s € I. Show that a necessary and
sufficient condition for «(7) to lie on a sphere is that

R? 4 (R)*T? = const.,

where R =1/k, T =1/7, and R’ is the derivative of R with respect to s.

Solution 15. Suppose « lies on a sphere of radius r centered at 0, then |a| = R. Differentiating
three times gives the following equations

a-d+ad=0= a-d =-1 (%),
a/_a//+a.a///20 _— Oé'O/HZO (*)’
where we suppressed s and used o' - o’/ = 0. Let’s write down the Frenet equations:

t'=kn, n'=-kt—7b, b =r1n. (36)

By (x), we have ka-n = —1,s0 a-n = —1/k. By (xx) and o/ = k'n + kn’, we have the relation
E'a-n+ ka -n' = 0. Substitute the Frenet equations into it gives
!/

k’(—%)+ka-(—kt+7b):—%+k7a-b:0.

14



Now we have a-n = —1/k, a-t =0, and a-b = TkQ, so we can write « in the Frenet frame {t,n, b}
as

1 n K b
a=——n+—
k k2"
hence (k')2
1 1 1
2 _ D2 22 _ _
‘OL| k2+ 2k4 7R +(R/) T 5 k—E, T—T.

Conversely, suppose R? + (R")?T? = const, where R = 1/k and T = 1/7. Motivated by the Frenet
frame formula for «, consider the quantity

%
,Bza+kn Wb
then
%:t+(—kt—rb)k—nk’_i<k7’) —k—,Tn
ds 2 ds \ 7k?2 Tk?

_rb_d (’i) b
ko ds \7k2
_ k*7b {k’ K i( K )}
K LR Tk2ds \7Tk?
krb d [ 1 ( K )2
-~ -4 (55) | =0
2k' ds | k2 Tk?
Therefore, 8(s) = 5(0) is a constant vector, and we have

o — R? 4+ (R')2T? = const,
2 k4

and hence « lies on a sphere centered about 3(0

Exercise 16 (*). Let a: (a,b) — R? be a regular parametrized plane curve. Assume that there
exists tg, a < tg < b, such that the distance |a(t)| from the origin to the trace of a will be a
maximum at tg. Prove that the curvature k of « at ¢y satisfies

|k(to)| =

|eu(to)|

Solution 16. Notice that f(t) = |a(t)| is nonnegative, so f2(t) = a(t) - a(t) also attains a
maximum at tg. Then

SP0)|_, =2a(t0)(t0) =0,

t=to

differentiating again gives

LP0|_ = alto)-o/lt) +alto) o (t0) <0,

dt? t=tg

since f(t) attains a maximum at to. We also have o/ (o) - o/(to) = 1 since it is a parametrization
by arclength, and o/ (tg) = k(to)n(to). Then let 6 be the angle between «a(ty) and o, we have

k(to)n(to)a(to) = |k(to)||n(to)||a(to)] cos 8 < —1.
Notice that |n(tg)| = 1 and cosf < 0, we have

> 1
~ la(to) cos b ~ |a(to)|

k(to) >

15



Exercise 17 (*). Show that the knowledge of the vector function b = b(s) (binormal vector) of
a curve «, with nonzero torsion everywhere, determines the curvature k(s) and the absolute value
of the torsion 7(s) of a.

Solution 17. By the Frenet equations, we have b’ = 7n, so for an arc length parametrized curve,
[b'| = |7|. Next, differentiate to get
Vi=t'n+mn' =1'n—71kt —7°0 = 70" =770 — 7%kt — 3.
From o' = tn, we have '’ = 77/n, so
' =7 — 2kt —7%h = t= —b/T/ =7 Td
T2k '

Take the norm on both sides yields

B ‘T3b _ 7_/b/ + Tb”‘ _ Hb/|4 _ (b/ . b//)b/ + |b/|2b//}

k
T2 |b/|3 ’

where we assumed 7 = |V/| without loss of generality as the formula is invariant under 7 — —,
and hence 7/ = (V' - b")/|b'|. Therefore,

B ||b/|4 _ (b/ . b//)b/ + ‘bl‘Qb//|

Y
|T|—|b|a k b/ |3

(37)

Exercise 18 (*). Show that the knowledge of the vector function n = n(s) (normal vector) of a
curve «, with nonzero torsion everywhere, determines the curvature k(s) and the torsion 7(s) of
a.

Solution 18. The normal n is determined by o/ = kn, and n’ = —kt — 7b by the second Frenet
equation. Following the hint, we shall show that

(nAn)-n" _ %(é) ' (38)

n/2 k 2
| (7> 1
-

Let t =o', b=t An = a’ An in the Frenet equation, then

n = —ka —1b = |n']* =k*+ 12,
nAn' =nA(—kda —71b) = —7t + kb,
since n A b= o/ =t. Next, differentiate n’ to get
n" =—[K't+ (k*+7*)n+7'b]

and

!
(nAn')-n" = (=1t +kb)- [-k't — (k*+7*)n—7'b] =7k’ — k7' =77 (ﬁ) :

T

Therefore, we have

v ()
(nAn')n _ ds \ 7 = a(s) — tanfl(é)Z/dsa(S)-

/|2 N 2
| (7) 1
-
Hence, we have, up to a constant C' that can only be determined by initial conditions,

£ —tan | [ as 22 wEN ) Lo, ek =)

[n'(s)?
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Remark. The problem is ill-posed. Consider the counterexample: let
B(t) = (acoss,asins, bs), seR
with a? + b? =1, a,b > 0 be a helix. For all values of a, b, we have
B"(s) = —a(cos s,sins,0) = n(s) = —(cos s,sin s, 0),

and in general we have k = a and 7 = —b through direct calculation. Taking (a,b) = (1/v/2,1/v/2)
and (a,b) = (1/2,4/3/2) gives two different curves with the same normal vector function n(s),
non-vanishing torsion, and different curvature and torsion.

Exercise 19. In general, a curve « is called a helix if the tangent lines of @ make a constant
angle with a fixed direction. Assume that 7(s) # 0, s € I, and prove that:

*a. « is a helix if and only if é = const.

*b. « is a helix if and only if the lines containing n(s) and passing through «(s) are parallel to
a fixed plane.

c. « is a helix if and only if the lines containing b(s) and passing through a(s) make a constant
angle with a fixed direction.

d. The curve

als) = (% / sinf(s) ds, ° / c0s0(s) ds) (39)

where ¢? = a® + b?, is a helix, and that f =7

Solution 19.

(a) Suppose there exists a vector v € R3 such that v - ¢(s) = C for some constant C. Then

% cv = k(s)n(s)-v=0,
so n(s) - v = 0. Differentiating again gives
(ji—n v = —k(s)t(s) v+ T1(s)b(s) - v=—k(s)C + 7(s)b(s) - v = 0.
s

Since 7(s) # 0, we have

Ck(s)/7(s) = (b(s) - v) = (t(s) An(s)) -v = (v AL(s)) - n(s).

Since t(s),v L n(s), the triple product is equal to |n(s)|[t(s)||v|sin(C) = |v|sin C. Therefore,
k(s)/7(s) is a constant. Conversely, if k(s)/7(s) = C’ for some constant C’, then we can take
v =t(s) + C'b(s), which is a constant vector since

% = k(s)n(s) + C" (=7(s)n(s)) = 0.
Then dt
T v =0.

(b) Suppose «a(s) is a helix, then there exists a vector v € R? such that v - t(s) = C for some
constant C. Let L be a line containing n(s) and passing through «(s). Then n(s) -v = 0 by
result in part (a), so L L v, hence parallel to the plane with normal vector v. Conversely, for
any point s € I, suppose the line L containing n(s) and passing «(s) is parallel to the plane
P with normal vector v € R3. Then n(s) - v = 0, and

dT

P k(s)n(s)-v=0.

Hence dT'/ds = d(T - v)/ds = 0, and T'(s) - v = C” for some constant C’, and «a(s) is a helix.

17
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By definition of helix, there exists a vector v € R? such that v-t(s) = C for some constant C'.
By (b), all the lines containing n(s) and passing through «(s) are parallel to the plane with
some fixed normal vector u € R3, so n(s)-u = 0. Consider b- (uAv) = (t(s) An(s)) - (uAv) =
(t(s)-u)(n(s)-v)—(t(s)-v)(n(s)-u) = 0, since n(s)-v = 0 from (a). Conversely, suppose there
exists a vector v € R? such that b(s)-v = C for some constant C. Then (t(s) An(s))-v = C,

db

FPR —7(s)n(s)-v =0,

and by 7(s) # 0 we have n(s) - v = 0. Finally,

d
& (t(s) . 'U) = k(s)n(s) v =0,

therefore, a(s) is a helix.

With s suppressed in the expressions, derivatives of «a are
o = (gsin9(s) 2(:089(3) 9)
- \ec e e/’
1" a / a / .
=(-0 0(s),——0 0
! <c (s) cosb(s), - (s)sinf(s), 0) ,
o = (g (6" (s) cos B(s) — (6'(s))?sin(s)) R (0" (s)sinB(s) + (6/(s))? cos O(s)) ,0) :
c c

The curvature is k(s) = |o/(s)| = 2¢’. The torsion is given by the formula

(@) Aa() 0" (s)
= K

by [Do Carmo] Exercise 1.5.2. Direct calculation gives

(@' Ny = (Z—SG’(S) sin 6(s), —(01—20'(5) cosf(s), —%(9’(5))2) = —(0)3,

7(s) = 20'(5) = gk(s).

18



3.3 Chapter 1.6

Exercise 20 (*). Let a: I — R3 be a curve parametrized by arc length with curvature k(s) # 0,
s € I. Let P be a plane satisfying both of the following conditions:

1. P contains the tangent line at s.
2. Given any neighborhood J C I of s, there exist points of a(J) in both sides of P.

Prove that P is the osculating plane of « at s.

Solution 20. Let n be the normal vector of plane P, then condition 1 implies that np L t(s),
as t(s) € P. To show the desired result, we will show that n(s) L np. Consider f(s) = t(s) -
np = 0, differentiating both sides gives f'(s) = t(s) - np = k(s)n(s) -np = 0, so n(s) L np.
Thus, the binormal vector b(s) || np. Furthermore, by condition 2 we can take some interval
J = (s — %,s—f— %) C I, then there exists ng) € (s - %,s) and sgm) € (s,s+ %) such that
a(sgm)) and a(sém)) are in different sides of plane P. This holds for all m € N, so as m — oo,
p = a(s) = limy, 00 oz(sgm)) lies on the left side of P, and p = a(s) = lim,— 0 a(sgm)) lies on the
right side of P, hence p = a(s) € P. Since P contains a(s) and has b(s) as a normal vector, P is
the osculating plane of « at s.

Exercise 21. Let o : I — R3 be a curve parametrized by arc length, with curvature k(s) # 0,
s € I. Show that

*a. The osculating plane at s is the limit position of the plane passing through a(s), a(s + hy),
a(s + he) when hy, he — 0.

b. The limit position of the circle passing through «(s), a(s + h1), a(s + ha) when hy, ho — 0
is a circle in the osculating plane at s, the center of which is on the line that contains n(s)
and the radius of which is the radius of curvature 1/k(s); this circle is called the osculating
circle at s.

Solution 21.

(a) Since the plane, which we will call P, by construction passes through «(s), we are left to
show that the normal vector np of P converges to b(s) in the limit hy, ho — 0. We have

_ ) A )
| th/(S)—FO(h% A hQO‘l(s)“l‘O(hg) |
- (|2/8 23/,& +0(h) + O(hQ)) ,
hence
m np = o/(s) Aa"(s)
haha=0 T ol (s) Aol (s)

Then the binormal vector is parallel to Np since
b(s) = t(s) An(s) = d/(s) Aa"(s)/]a" (s)] || np-

(b) Without loss of generality, shift the origin to s so that «a(s),a(s + hi),a(s + h2) become
a(0), a(hy), a(hs), respectively. Let (xo,yo,20) be the center of the circle passing through
a(0), a(h1), and a(hz), then the equation of the circle can be written as F(s) = (z(s) —
20)% + (y(s) — v0)? + (2(s) — 20)? — r2. Calculate the derivatives to be

F'(s) = 2(x(s) — 0)2’(s) + 2(y(s) — y0)y'(s) + 2(2(s) — 20)2'()
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and

F"(s) = 2(2'(s))* +2(y'(5))* + 2(2'(s))
+2(x(s) — wo)x" (s) + 2(y(s) — yo)y" (s) + 2(2(s) — 20)2"(s)-

Taking the limit as s — 0 gives F'(0) = —2z9 and F"(0) = 2 — 2k(0)yo. Since the plane
passes through «(0), a(hy), a(hs), we have F'(0) = F(hy) = F(hg) = 0. By the Mean Value
Theorem, there exists some s1 € (0, h1) such that F’(s;) = 0. As h; — 0, we have s; — 0,
by continuity of F we have F'(s1) — 0 as s; — 0 as hy, ha — 0. Similarly, suppose h; < ha,
there exists some so € (hy, ho) such that F’(s2) = 0. By the Mean Value Theorem, there
exists some s3 € (s1,s2) such that F”(s3) = 0. As hy,hy — 0, we have s1,s9 — 0, so by
continuity of F”, F"(s3) — 0 as s3 — 0. Therefore,

lim F/(S1) = F/(O) =210 =0 = z¢ =0,
h1,h2—0
and )
li F" =F"(0) =2 —2k(0)yo =0 = —.
By 50 (s2) 0) (0)90 o k(0)

By (a) we know the circle lies on the osculating plane at «(0) as h1, ha — 0, so ¢ — 0. Hence
the center of the circle converges to (0,1/k(0),0), which lies on the line containing n(0), and
the radius converges to 1/k(0).
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