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1 Chapter 2

1.1 Chapter 2.1

1.2 Chapter 2.2

Definition 1 (regular surface). A subset S ⊆ R3 is a regular surface if, for each p ∈ S, there
exists a neighborhood V ⊆ R3 and a map x : U → V ∩ S of an open set U ⊆ R2 onto V ∩ S ⊆ R3

such that

(i) x is (infinitely) differentiable.

(ii) x is a homeomorphism, i.e. x is a bijection, and both x and x−1 are continuous.

(iii) For each q ∈ U , the differential dxq : R2 → R3 is one-to-one (the regularity condition).

The mapping x is called a parametrization of the surface S or a system of local coordinates around
the point p. The neighborhood V ∩ S of p is called a coordinate neighborhood.

Definition 2 (regular and critical value). Given a differential map F : U ⊆ Rn → Rm defined
on an open set U , we say that p ∈ U is a critical value of F is the differential dFp : Rn → Rm is
not surjective. Otherwise, p is called a regular value of F .

Proposition 1. If f : U → R is a differentiable function in an open set U of R2, then the graph
of f , that is, the subset of R3 given by (x, y, f(x, y)) for (x, y) ∈ U , is a regular surface.

Proposition 2. If f : U ⊆ R2 → R3 is a differentiable function and a ∈ f(U) is a regular value
of f , then f−1(a) is a regular surface in R3.

Proposition 3. Let S ⊆ R3 be a regular surface and p ∈ S. Then there exists a neighborhood
V of p in S such that V is the graph of a differentiable function which has one of the following
three forms: z = f(x, y), y = g(x, z), x = h(y, z).

Proposition 4. Let p ∈ S be a point of a regular surface S and let x : U ⊆ R2 → R3 be a map
with p ∈ x(U) ⊆ S such that the conditions 1 and 3 of Def. 1 (for a regular surface) hold. Assume
that x is one-to-one. Then x−1 is continuous.

Exercise 1. Show that the cylinder {(x, y, z) ∈ R3, x2 + y2 = 1} is a regular surface, and find
parametrizations whose coordinate neighborhoods cover it.

Solution 1.
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Exercise 2. Is the set {(x, y, z) ∈ R3, z = 0 and x2 + y2 ≤ 1} a regular surface? Is the set
{(x, y, z) ∈ R3, z = 0 and x2 + y2 < 1} a regular surface?

Solution 2.

Exercise 3. Show that the two-sheeted cone, with its vertex at the origin, that is, the set
{(x, y, z) ∈ R3, x2 + y2 − z2 = 0}, is not a regular surface.

Solution 3.

Exercise 4. Let f(x, y, z) = z2. Prove that 0 is not a regular value of f and yet that f−1(0) is
a regular surface.

Solution 4.

Exercise 5 (*). Let P = {(x, y, z) ∈ R3, x = y} (a plane) and let x : U ⊂ R2 → R3 be given by

x(u, v) = (u+ v, u+ v, uv),

where U = {(u, v) ∈ R2; u > v}. Clearly, x(U) ⊂ P . Is x a parametrization of P?

Solution 5.

Exercise 6. Give another proof of Proposition 1 by applying Proposition 2 to h(x, y, z) =
f(x, y)− z.

Solution 6.

Exercise 7. Let f(x, y, z) = (x+ y + z − 1)2.
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a. Locate the critical points and critical values of f .

b. For what values of c is the set f(x, y, z) = c a regular surface?

c. Answer the questions of parts a and b for the function f(x, y, z) = xyz2.

Solution 7.

Exercise 8. Let x(u, v) be as in Definition 1. Verify that dxq : R2 → R3 is one-to-one if and
only if

∂x

∂u
∧ ∂x

∂v
̸= 0.

Solution 8.

Exercise 9. Let V be an open set in the xy-plane. Show that the set

{(x, y, z) ∈ R3; z = 0 and (x, y) ∈ V }

is a regular surface.

Solution 9.

Exercise 10. Let C be a figure “8” in the xy-plane and let S be the cylindrical surface over C
(Fig. 2-11); that is,

S = {(x, y, z) ∈ R3; (x, y) ∈ C}.

Is the set S a regular surface?

Solution 10.

Exercise 11. Show that the set

S = {(x, y, z) ∈ R3 ; z = x2 − y2}

is a regular surface and check that parts (a) and (b) are parametrizations for S:

(a) x(u, v) = (u+ v, u− v, 4uv), (u, v) ∈ R2.

(b) x(u, v) = (u cosh v, u sinh v, u2), (u, v) ∈ R2, u ̸= 0.

Which parts of S do these parametrizations cover?

Solution 11.

Notice that z(x, y) = x2 − y2 is a differentiable function from the open set U = R2 to R, so
by Proposition 2.2.1 in Do Carmo, S is a regular surface. Recall that a map x : U → V ∩ S if x is
differentiable, a homeomorphism, and dxp is one-to-one for all p ∈ U .

(a) The map x is a polyminial in u and v, so it is differentiable. By explicit calculation,

dxq =

Ñ
1 1
1 −1
4v 4u

é
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in the canonical basis, so |∂(x, y)/∂(u, v)| = 2 and dx is one-to-one. To show that x is a
homeomorphism, observe that for any (x, y, z) ∈ S, we have z = x2 − y2, so z = (u + v)2 −
(u− v)2 = 4uv, and

u =
x+ y

2
, v =

x− y

2

from the remaining equations. This determines a unique (u, v) for each (x, y, z) ∈ S, and we
can conclude that the inverse map x−1 exists and is continuous.

(b) The map x is a composition of polynomials and exponential functions, so it is differentiable.
By explicit calculation,

dxq =

Ñ
cosh v u sinh v
sinh v u cosh v
2u 0

é
in the canonical basis, so |∂(x, y)/∂(u, v)| = u, and dx is one-to-one for u ̸= 0. To show
that x is a homeomorphism, observe that for any (x, y, z) ∈ S with x2 − y2 > 0, we have
z = x2 − y2, so z = u2(cosh2 v − sinh2 v) = u2, and

u = ±
√
x2 − y2, v = tanh−1 y

x

from the remaining equations. This determines a unique (u, v) for each (x, y, z) ∈ S with
x2 − y2 > 0, and we can conclude that the inverse map x−1 exists and is continuous.

Parametrization (a) covers the whole surface S, while parametrization (b) only covers the parts of
S where |x| > |y|.

Remark. The graph of z = f(x, y) = x2 − y2 is a hyperbolic paraboloid, also known as saddle.

Exercise 12. Show that x : U ⊂ R2 → R3 given by

x(u, v) = (a sinu cos v, b sinu sin v, c cosu), a, b, c ̸= 0, 0 < u < π, 0 < v < 2π,

is a parametrization for the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1.

Describe geometrically the curves u = const. on the ellipsoid.

Solution 12.

Exercise 13 (*). Find a parametrization for the hyperboloid of two sheets

{(x, y, z) ∈ R3 : −x2 − y2 + z2 = 1}.

Solution 13.

Exercise 14. A half-line [0,∞) is perpendicular to a line E and rotates about E from a given
initial position while its origin 0 moves along E. The movement is such that when [0,∞) has
rotated through an angle θ, the origin is at a distance d = sin2(θ/2) from its initial position on
E. Verify that by removing the line E from the image of the rotating line, we obtain a regular
surface. If the movement were such that d = sin(θ/2), what else would need to be excluded to
have a regular surface?

Solution 14.
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Exercise 15 (*). Let two points p(t) and q(t) move with the same speed, p starting from (0, 0, 0)
and moving along the z-axis, and q starting at (a, 0, 0), a ̸= 0, and moving parallel to the y-axis.
Show that the line through p(t) and q(t) describes a set in R3 given by

y(x− a) + zx = 0.

Is this a regular surface?

Solution 15.

Exercise 16. One way to define a system of coordinates for the sphere S2, given by

x2 + y2 + (z − 1)2 = 1,

is to consider the so-called stereographic projection

π : S2 \ {N} −→ R2

which carries a point p = (x, y, z) of the sphere S2 minus the north pole N = (0, 0, 2) onto
the intersection of the xy-plane with the straight line which connects N to p (Fig. 2–12). Let
(u, v) = π(x, y, z), where (x, y, z) ∈ S2 \ {N} and (u, v) lies in the xy-plane.

a. Show that π−1 : R2 → S2 is given by

x =
4u

u2 + v2 + 4
, y =

4v

u2 + v2 + 4
, z =

2(u2 + v2)

u2 + v2 + 4
.

b. Show that it is possible, using stereographic projection, to cover the sphere with two coordi-
nate neighborhoods.

Solution 16.

a. Let’s construct the map π : S2 → R2 explicitly. For a point p = (x, y, z) ∈ S2 \ {N}, the line
connecting N and p can be parametrized as

L(t) = N + t(p−N) = (0, 0, 2) + t(x, y, z − 2) = (tx, ty, 2 + t(z − 2)) (1)

The intersection of this line with the xy-plane occurs when z = 0, so t = 2/(2− z). Substi-
tuting this back to equation (1) gives

π(p) = (u, v) =

Å
2x

2− z
,

2y

2− z

ã
.

Solving for (x, y) gives

(x, y) =

Å
u(2− z)

2
,
v(2− z)

2

ã
.

From the equation for the sphere, we haveÅ
u(2− z)

2

ã2
+

Å
v(2− z)

2

ã2
+ (z − 1)2 = 1 =⇒ z =

2(u2 + v2)

u2 + v2 + 4
,

hence

x =
4u

u2 + v2 + 4
, y =

4v

u2 + v2 + 4
, z =

2(u2 + v2)

u2 + v2 + 4
.

b. Using the inverse stereographic projection π−1, we can cover the whole sphere except the
north pole N . To cover the north pole, use another stereographic projection from the south
pole S = (0, 0, 0) to the xy-plane, with the inverse map given by

x =
4u

u2 + v2 + 4
, y =

4v

u2 + v2 + 4
, z =

8

u2 + v2 + 4
.
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Exercise 17. Define a regular curve in analogy with a regular surface. Prove that

a. The inverse image of a regular value of a differentiable function f : U ⊂ R2 → R is a regular
plane curve. Give an example of such a curve which is not connected.

b. The inverse image of a regular value of a differentiable map F : U ⊂ R3 → R2 is a regular
curve in R3. Show the relationship between this proposition and the classical way of defining
a curve in R3 as the intersection of two surfaces.

*c. The set C = {(x, y) ∈ R2 : x2 = y3} is not a regular curve.

Solution 17.

Exercise 18 (*). Suppose that

f(x, y, z) = u = const., g(x, y, z) = v = const., h(x, y, z) = w = const.,

describe three families of regular surfaces and assume that at (x0, y0, z0) the Jacobian

∂(f, g, h)

∂(x, y, z)
̸= 0.

Prove that in a neighborhood of (x0, y0, z0) the three families will be described by a mapping
F (u, v, w) = (x, y, z) of an open set of R3 into R3, where a local parametrization for the surface of
the family f(x, y, z) = u, for example, is obtained by setting u = const. in this mapping.

Determine F for the case where the three families of surfaces are:

f(x, y, z) = x2 + y2 + z2 = u = const. (spheres with center (0, 0, 0));

g(x, y, z) =
y

x
= v = const. (planes through the z-axis);

h(x, y, z) =
x2 + y2

z2
= w = const. (cones with vertex at (0, 0, 0)).

Solution 18.

Exercise 19 (*).

Let α : (−3, 0) → R2 be defined by (Fig. 2–13)

α(t) =


(0, −(t+ 2)), t ∈ (−3,−1),

a regular parametrized curve joining p = (0,−1) to q =

Å
1

π
, 0

ã
, t ∈ (−1,− 1

π ),

(−t, sin 1
t ), t ∈

(
− 1

π , 0
)
.

It is possible to define the curve joining p to q so that all the derivatives of α are continuous
at the corresponding points and α has no self-intersections. Let C be the trace of α.

a. Is C a regular curve?

b. Let a normal line to the plane R2 run through C so that it describes a “cylinder” S. Is S a
regular surface?

Solution 19.
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a. Let C be the trace of α, α is said to be regular if at every point p ∈ C, C is the graph of a C1

function y = f(x) or x = g(y) in a neighborhood of p. Notice that the origin (0, 0) belongs
to the trace of α since α(−2) = (0, 0). Consider the sequence tn = − 1

2nπ , which satisfies
tn ∈ (− 1

π , 0) for all n ∈ N. Therefore, in any neighborhood of (0, 0), we can find some n ∈ N
such that α(tn) ∈ U , so C cannot be the graph of x = f(y) locally. Similarly, C cannot be
the graph of y = g(x) on the line segment {0} × (−1, 1) ⊆ R2. Hence, C is not a regular
curve.

b. If the surface S were regular, then by Do Carmo Proposition 2.2.3, there exists a neighborhood
V of any p ∈ S such that V is the graph of a differentiable function z = f(x, y) or x = g(y, z)
or y = h(x, z). However, consider a point p ∈ (− 1

π , 0, z) on the side boundary of S. In (a)
we concluded that locally around (0, 0, z), the curve (translated by some z along the z axis)
is not the graph of a C1 function x = g(y, z) or y = h(x, z), while z cannot be a function of
x, y. Therefore, S is not a regular surface.
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1.3 Chapter 2.3

Definition 3 (differentiability on a surface). Let f : V ⊆ S → R be a function defined on
an open set V of a regular surface S. Then f is said to be differentiable at p ∈ V if, for some
parametrization x : U ⊆ R2 → S with p ∈ x(U) ⊆ V , the composition f ◦ x is differentiable at
x−1(p) ∈ U . f is differentiable in V if it is differentiable at every point p ∈ V .

Definition 4 (diffeomorphism). Two regular surfaces S1 and S2 are said to be diffeomorphic if
there exists a differentiable map ϕ : S1 → S2 with a differentiable inverse ϕ−1 : S2 → S1. Such a
map ϕ is called a diffeomorphism from S2 to S1.

Remark. The natural notion of equivalence associated with differentiability is the notion of dif-
feomorphism. From the point of view of differentiability, two diffeomorphic surfaces are indistin-
guishable.

Proposition 5 (change of parameters). Let p ∈ S be a point of a regular surface, and let
x : U ⊆ R2 → S, y : V ⊆ R2 → S be two parametrizations with p ∈ x(U) ∩ y(V ) ≡ W . Then the
change of coordinates map h = x−1 ◦ y : y−1(W ) → x−1(W ) is a diffeomorphism.

Exercise 20 (*). Let S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} be the unit sphere and let
A : S2 → S2 be the (antipodal) map

A(x, y, z) = (−x,−y,−z).

Prove that A is a diffeomorphism.

Solution 20. To show that A is differentiable, we need to show that for an atlas (a collection of
charts that cover the surface) (ϕα : Uα → Vα)α∈J of S2, the maps

ϕ−1
β ◦A ◦ ϕα : ϕ−1

α (Uα ∩ Uβ ∩A−1(Uα ∩ Uβ)) → ϕ−1
β (Uα ∩ Uβ ∩A(Uα ∩ Uβ))

are differentiable. Recall that S2 has an atlas consisting of the stereographic projections from the
north and south poles:

{(ϕS : US → VS) , (ϕN : UN → VN )} .

Let the sphere be centered about (0, 0, 0) with the north and south poles at (0, 0, 1) and (0, 0,−1),
respectively. Then

ϕS(x, y, z) =

Å
x

1 + z
,

y

1 + z

ã
, ϕN (x, y, z) =

Å
x

1− z
,

y

1− z

ã
.

It is trivial to check that the maps

ϕ−1
S ◦A ◦ ϕN (x, y) = (−x,−y) = ϕ−1

N ◦A ◦ ϕS(x, y),

ϕ−1
N ◦A ◦ ϕN =

Å
− x2

x2 + y2
,− y2

x2 + y2

ã
= ϕ−1

S ◦A ◦ ϕS(x, y)

are differentiable for all (x, y, z) ∈ R3 \ {(0, 0, 0)}. Since A−1 = A, the same analysis applies to
A−1, and thus A is a diffeomorphism.

Exercise 21. Let S ⊂ R3 be a regular surface and let π : S → R2 be the map which takes each
p ∈ S to its orthogonal projection onto

R2 = {(x, y, z) ∈ R3 : z = 0}.

Is π differentiable?
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Solution 21. The map π is differentiable if for each p ∈ S, there exists a parametrization
x : U ⊆ R2 → S with p ∈ x(U) such that the composition π ◦ x : U → R2 is differentiable.

Given the standard basis {ej} of R3, we may assume thatN(p) = e3, whereN(p) is the normal
vector of S at p. There exists a neighborhood V of p in S such that V is the graph of a differentiable
function of the form z = f(x, y). Thus, we can choose a parametrization x : U ⊆ R2 → S defined
by x(u, v) = ue1+ve2+f(u, v)e3. By applying translations in R3 and U , we can ensure that p = 0
and x(0, 0) = 0, and Tp(S) = Re1 + Re2. Then

π ◦ x : U → R2, (u, v) 7→ ue1 + ve2

is differentiable for all p ∈ R3. Also, note that dπ is injective, since in this coordinate we have

dπ =

Å
1 0
0 1

ã
.

Exercise 22. Show that the paraboloid z = x2 + y2 is diffeomorphic to a plane.

Solution 22. Consider the map ϕ : R2 → S defined by ϕ(u, v) = (u, v, u2 + v2). It is easy to see
that ϕ is differentiable and one-to-one. The inverse map ϕ−1 : S → R2 is given by ϕ−1(x, y, z) =
(x, y), which is also differentiable. Thus, the paraboloid is diffeomorphic to the plane.

Exercise 23. Construct a diffeomorphism between the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1

and the sphere
x2 + y2 + z2 = 1.

Solution 23. Let ϕ : R3 → R3 be defined by

ϕ(x, y, z) =
(x
a
,
y

b
,
z

c

)
.

It is easy to see that ϕ is differentiable and one-to-one. The inverse map ϕ−1 : R3 → R3 is given
by

ϕ−1(x, y, z) = (ax, by, cz),

which is also differentiable. Thus, the ellipsoid is diffeomorphic to the sphere.

Exercise 24 (*). *Let S ⊂ R3 be a regular surface, and define d : S → R by

d(p) = |p− p0|,

where p ∈ S, p0 ∈ R3, and p0 /∈ S. That is, d is the distance from p to a fixed point p0 not in S.
Prove that d is differentiable.

Solution 24. By definition 3, it suffices to show that for any parametrization x : U ⊂ R2 → S,
the composition d ◦ x : U → R is differentiable. Since S is a regular surface, for any point p ∈ S,
there exists a neighborhood V ⊆ R3 of p such that V ∩ S is the graph of a differentiable function
z(x, y) or x(y, z) or y(x, z). Assume that V ∩ S is the graph of a differentiable function z(x, y),
then define a parametrization

x(u, v) = (u, v, z(u, v)), (u, v) ∈ U ⊆ R2,
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where U is open in R2. The composition d ◦ x : U → R is given by

(d ◦ x)(u, v) = d(x(u, v)) =
»
⟨x(u, v)− p0, x(u, v)− p0⟩

=
»

(u− x0)2 + (v − y0)2 + (z(u, v)− z0)2.

Since

∂

∂u
(d ◦ x)(u, v)

∣∣∣∣
(u,v)

=
(u− x0 + (z(u, v)− z0)zu(u, v))√

(u− x0)2 + (v − y0)2 + (z(u, v)− z0)2
,

∂

∂v
(d ◦ x)(u, v)

∣∣∣∣
(u,v)

=
(v − y0 + (z(u, v)− z0)zv(u, v))√

(u− x0)2 + (v − y0)2 + (z(u, v)− z0)2
,

and z(u, v) is differentiable, we conclude that d ◦x is differentiable except when (u, v) = (x0, y0) =
x−1(p0). Since the choice of p ∈ S is arbitrary, we conclude that d is differentiable on S\{p0}.

Exercise 25. Prove that the definition of a differentiable map between surfaces does not depend
on the parametrizations chosen.

Solution 25.

Definition 5 (differentiable map between surfaces). A map ϕ : S1 → S2 between two regular
surfaces is said to be differentiable at p ∈ S1 if for some parametrizations x1 : U1 ⊆ R2 → S1

and x2 : U2 ⊆ R2 → S2 with p ∈ x1(U1) and ϕ(p) ∈ x2(U2), the composition map x−1
2 ◦ ϕ ◦ x1 is

differentiable at x−1
1 (p).

Suppose that ϕ : S1 → S2 is differentiable at p ∈ S1 with respect to parametrizations
x1 : U1 ⊆ R2 → S1 and x2 : U2 ⊆ R2 → S2. Then x−1

2 ◦ ϕ ◦ x1 is differentiable at q = x−1
1 (p). Let

y1 : V1 ⊆ R2 → S1 and y2 : V2 ⊆ R2 → S2 be another pair of parametrizations with p ∈ y1(V1)
and ϕ(p) ∈ y2(V2). Then the map

y−1
2 ◦ ϕ ◦ y1 = (y−1

2 ◦ x2) ◦ (x−1
2 ◦ ϕ ◦ x1) ◦ (x−1

1 ◦ y1)

is differentiable at q since y−1
2 ◦ x2 and x−1

1 ◦ y1 are change of coordinates maps, which are
diffeomorphisms by proposition 5. Conversely, suppose y−1

2 ◦ ϕ ◦ y1 is differentiable at q, then by
the same argument x−1

2 ◦ ϕ ◦ x1 is also differentiable at q. Thus, the definition of differentiability
of a map between surfaces does not depend on the choice of parametrizations.

Exercise 26. Prove that the relation “S1 is diffeomorphic to S2” is an equivalence relation in
the set of regular surfaces.

Solution 26. We verify the three properties of an equivalence relation. When S1 is diffeomorphic
S2, we write S1

∼= S2.

(i) Reflexivity: For any regular surface S, the identity map idS : S → S is a diffeomorphism
since it is differentiable and its inverse (itself) is also differentiable. Thus, S ∼= S.

(ii) Symmetry: Suppose S1 and S2 are regular surfaces such that S1
∼= S2. Then there exists a

diffeomorphism ϕ : S1 → S2 with differentiable inverse ϕ−1 : S2 → S1. Therefore, S2
∼= S1.

(iii) Transitivity: Suppose S1, S2, and S3 are regular surfaces such that S1
∼= S2 and S2

∼= S3.
Then S1

∼= S3 since composition of differentiable maps are differentiable, and composition of
bijections are bijective.

Exercise 27 (*). Let S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} and H = {(x, y, z) ∈ R3 :
x2 + y2 − z2 = 1}. Denote by N = (0, 0, 1) and S = (0, 0,−1) the north and south poles of S2,
respectively, and let F : S2 − {N} ∪ {S} → H be defined as follows:
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Figure 1:

For each p ∈ S2 − {N} ∪ {S}, let the perpendicular from p to the z-axis meet Oz at q.
Consider the half-line l starting at q and containing p. Then F (p) = l ∩H (see Fig. 2–20).

Prove that F is differentiable.

Solution 27. The map F is a projection of the sphere onto a one-sheeted hyperboloid along lines
parallel to the Oxy plane. Consider (1) the parametrization of the sphere

x(θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ)

for θ ∈ [0, 2π), ϕ ∈ (0, π), and (2) the parametrization for the hyperboloid

y(u, v) = (
√
1 + v2 cosu,

√
1 + v2 sinu, v)

Then we have

(y−1 ◦ F ◦ x)(θ, ϕ) = y−1
Ä√

1 + cos2 ϕ cos θ,
√

1 + cos2 ϕ sin θ, cosϕ
ä
= (u, v).

Since y−1 ◦ F ◦ x is differentiable for the parametrization x, y, F is differentiable.

Exercise 28.

a. Define the notion of differentiable function on a regular curve. What does one need to prove
for the definition to make sense? Do not prove it now. If you have not omitted the proofs in
this section, you will be asked to do it in Exercise 15.

b. Show that the map E : R → S1 = {(x, y) ∈ R2 : x2 + y2 = 1} given by

E(t) = (cos t, sin t), t ∈ R,

is differentiable (geometrically, E “wraps” R around S1).

Solution 28.

a. Suppose α : I → R2 is a regular curve with trace C ⊆ R2. We say that a function f : C → R
is differentiable along C if the composition f ◦ α : I → R is differentiable. In other words,
we need to check that the derivative (f ◦ α)′(t) exists for all t ∈ I.

11



b. *

Exercise 29. Let C be a plane regular curve which lies on one side of a straight line r of the
plane and meets r at the points p, q (see Fig. 2–21). What conditions should C satisfy to ensure
that the rotation of C about r generates an extended (regular) surface of revolution?

Solution 29. We can analyze the point p ∈ C locally. Assume that r is the z axis, and C is
the graph of a differentiable function y = f(x) in a neighborhood of p, since C is a regular curve.
Since S is the surface of revolution generated by rotating C about r, we claim that there is a local
chart at p ∈ S given by

x : U ⊆ R2 → S, (x, y) 7→ (x, y, f(
√
x2 + y2)),

where U is an open set in R2. We will check each condition given in definition (1) for S.

(i) x is differentiable. We can calculate its differential at some (x, y) ∈ U as

dx(x,y) =

Ü
1 0
0 1

x√
x2 + y2

f ′(
√
x2 + y2)

y√
x2 + y2

f ′(
√
x2 + y2)

ê
. (2)

Since f is differentiable, the partial derivatives of x exist whenever (x, y) ̸= (0, 0). By
symmetry, f(w) = f(−w), so f ′(w) = −f ′(−w). When (x, y) = (0, 0), we have f ′(0) = 0,
and

x√
x2 + y2

,
y√

x2 + y2

are bounded, so dx(x,y) exists at (0, 0). To satisfy the symmetry condition, we require that
f ′ is odd, hence f is even, and all the odd-order derivatives of f vanish at 0. Similarly, the
odd-order derivatives of g such that y = g(x) in a neighborhood of q must also vanish.

(ii) x is a homeomorphism, since the graph of a continuous function is homeomorphic to its
domain.

(iii) From equation (2), we have |∂(x, y)/∂(u, v)| = 1, so dx is one-to-one. Hence dx(x,y) is
one-to-one for all (x, y) ∈ U .

Exercise 30. Prove that the rotations of a surface of revolution S about its axis are diffeomor-
phisms of S.

Solution 30. Let S be a surface of revolution generated by rotating a regular curve C around
an axis r ⊆ R3, without loss of generality let r be the z-axis and let C lie on the Oxz plane.
Since C is a regular curve, it can be parametrized as (f(t), 0, g(t)) for t ∈ (a, b). Then S has a
parametrization x(u, v) = (f(v) cosu, f(v) sinu, v) for u ∈ [0, 2π) and v ∈ (0,∞). A rotation of S
about its axis by an angle θ is given by the map

Rθ : S → S, (x, y, z) 7→ (x cos θ − y sin θ, x sin θ + y cos θ, z).

Consider the composition (y−1 ◦Rθ ◦ x) : U → U for parametrizatoins x, y of S. Then(
y−1 ◦Rθ ◦ x

)
(u, v) = y−1 ((f(v) cos(u+ θ), f(v) sin(u+ θ), v)) = (u+ θ, v).

is differentiable since x, y, Rθ is differentiable. Similarly, the inverse map R−1
θ = R−θ is also

differentiable. Thus, Rθ is a diffeomorphism of S.
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Exercise 31. Parametrized surfaces are often useful to describe sets Σ which are regular surfaces
except for a finite number of points and a finite number of lines. For instance, let C be the trace of
a regular parametrized curveα : (a, b) → R3 which does not pass through the origin O = (0, 0, 0).
Let Σ be the set generated by the displacement of a straight line l passing through a moving point
p ∈ C and the fixed point 0 (a cone with vertex 0; see Fig. 2–22).

a. Find a parametrized surface x whose trace is Σ.

b. Find the points where x is not regular.

c. What should be removed from Σ so that the remaining set is a regular surface?

Solution 31.

Exercise 32 (*). Show that the definition of differentiability of a function f : V ⊂ S → R given
in the text (Def. 1) is equivalent to the following: f is differentiable in p ∈ V if it is the restriction
to V of a differentiable function defined in an open set of R3 containing p.

Solution 32.

Exercise 33. Let A ⊂ S be a subset of a regular surface S. Prove that A is itself a regular
surface if and only if A is open in S; that is,

A = U ∩ S,

where U is an open set in R3.

Solution 33. Suppose A ⊂ S is a regular surface. Then there are parametrizations xA : UA → A
and xS : US → S from open sets UA and US in R2. Then the map x−1

S ◦ xA : UA → US is an open
map: for V open in UA, (x

−1
S ◦ xA)(V ) is open in dom(xS) by the Inverse Function Theorem and

xS is a homeomorphism. Therefore, xA(V ) = xS ◦ (x−1
S ◦ xA)(V ) is open in S. Now let V = UA

be the whole domain, then xA(UA) = A is open in S.

Conversely, suppose A is open in S. Let p ∈ A, *

Exercise 34. Let C be a regular curve and let α : I ⊂ R → C, β : J ⊂ R → C be two
parametrizations of C in a neighborhood of p ∈ α(I) ∩ β(J) =W . Let

h = α−1 ◦ β : β−1(W ) → α−1(W )

be the change of parameters. Prove that

a. h is a diffeomorphism.

b. The absolute value of the arc length of C in W does not depend on which parametrization
is chosen to define it, that is,∣∣∣∣∣

∫ t

t0

|α′(t)| dt
∣∣∣∣∣ =

∣∣∣∣∫ τ

τ0

|β′(τ)| dτ
∣∣∣∣ , t = h(τ), t ∈ I, τ ∈ J.

Solution 34.

a. By the chain rule and inverse function rule,

h′(t) =
1

α′(α−1)

∣∣∣∣
β

◦ β′(t).

13



Since α and β are parametrizations for a regular curve, |α|, |β| ≠ 0. Then h′ always exists and
h is differentiable on β−1(W ). Similarly, we have h−1 = β−1 ◦ α, so by a similar calculation
we know h−1 is differentiable on α−1(W ). Therefore, h is a diffeomorphism.

b. For t ∈ I, τ ∈ J , we have∣∣∣∣∣
∫ t

t0

dt |α′(t)|
∣∣∣∣∣ =

∣∣∣∣∫ τ

τ0

dτ h′(τ) |(α′|h ◦ h(τ))|
∣∣∣∣

=

∣∣∣∣∣
∫ τ

τ0

dτ
1

α′(α−1)

∣∣∣∣
β

◦ β′(τ)
∣∣α′ ◦ (α−1 ◦ β)(τ)

∣∣∣∣∣∣∣
=

∣∣∣∣∫ τ

τ0

|β′(τ)| dτ
∣∣∣∣ .

Exercise 35 (*). Let R2 = {(x, y, z) ∈ R3; z = −1} be identified with the complex plane C by
setting (x, y,−1) = x+ iy = ζ ∈ C. Let P : C → C be the complex polynomial

P (ζ) = a0ζ
n + a1ζ

n−1 + · · ·+ an, a0 ̸= 0, ai ∈ C, i = 0, . . . , n.

Denote by πN the stereographic projection of S2 = {(x, y, z) ∈ R3;x2 + y2 + z2 = 1} from the
north pole N = (0, 0, 1) onto R2. Prove that the map F : S2 → S2 given by

F (p) =

®
π−1
N ◦ P ◦ πN (p), if p ∈ S2 − {N},
N, if p = N,

is differentiable.

Solution 35. Given a point p ∈ S2\{N}, write it as p = (x, y, z). Since the composition of
differentiable functions is differentiable, we only need to show that πN , π

−1
N and P are differentiable.

The stereographic projection πN : S2\{N} → R2 is given by

πN (x, y, z) =

Å
x

1− z
,

y

1− z

ã
.

Since z ̸= 1 for all p ∈ S2\{N}, πN is differentiable. Similarly, note that the inverse stereographic
projection π−1

N : R2 → S2\{N} is given by

π−1
N (u, v) =

Å
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

ã
.

Since u2 + v2 + 1 > 0 for all (u, v) ∈ R2, π−1
N is differentiable. Moreover, polynomials are differen-

tiable everywhere, so P is differentiable. Thus, F is differentiable on S2\{N}.
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1.4 Chapter 2.4

Exercise 36. Show that the equation of the tangent plane at (x0, y0, z0) of a regular surface
given by f(x, y, z) = 0, where 0 is a regular value of f , is

fx(x0, y0, z0)(x− x0) + fy(x0, y0, z0)(y − y0) + fz(x0, y0, z0)(z − z0) = 0.

Solution 36. Suppose 0 is a regular value of f , then by definition we have a regular surface
defined implicitly by f(x, y, z) = 0. By proposition, a regular surface can be locally represented as
the graph of a differentiable function. Without loss of generality, write z = g(x, y) = f−1(0) in a
neighborhood of p = (x0, y0, z0). By the Inverse Function Theorem, we have

∂g

∂x
(x0, y0) = −fx(x0, y0, z0)

fz(x0, y0, z0)
,

∂g

∂y
(x0, y0) = −fy(x0, y0, z0)

fz(x0, y0, z0)
. (3)

Then the tangent at p is given by

z = g(x0, y0) + gx(x0, y0)(x− x0) + gy(x0, y0)(y − y0)

= z0 −
Å
∂f/∂x

∂f/∂z

ã
p

(x− x0)−
Å
∂f/∂y

∂f/∂z

ã
p

(y − y0),
(4)

and
(x− x0)fx(x0, y0, z0) + (y − y0)fy(x0, y0, z0) + (z − z0)fz(x0, y0, z0) = 0. (5)

Remark. We can express this more compactly with x0 = (x0, y0, z0), x = (x, y, z) and ∇f =
(fx, fy, fz), then

(x− x0) · ∇f(x0) = 0. (6)

Exercise 37. Determine the tangent planes of x2 + y2 − z2 = 1 at the points (x, y, 0) and show
that they are all parallel to the z-axis.

Solution 37. Use the result of Exercise 2.4.1, we have

2x0(x− x0) + 2y0(y − y0)− 2z0(z − z0) = 0. (7)

At the point (x0, y0, 0), we have

2x0(x− x0) + 2y0(y − y0) = 0. (8)

The normal vector of the tangent plane is (2x0, 2y0, 0), which is perpendicular to the z-axis. Thus
the tangent planes are all parallel to the z-axis.

Exercise 38. Show that the equation of the tangent plane of a surface which is the graph of a
differentiable function z = f(x, y), at the point p0 = (x0, y0), is given by

z = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

Recall the definition of the differential df of a function f : R2 → R and show that the tangent
plane is the graph of the differential dfp.

Solution 38. Since z0 = f(x0, y0), the tangent plane at p0 = (x0, y0, z0) is given by

z = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0). (9)
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Recall the definition of the differential of a function f : R2 → R, we have

df(x0,y0)(h, k) = fx(x0, y0)h+ fy(x0, y0)k. (10)

Let h = x− x0, k = y − y0, then

df(x0,y0)(x− x0, y − y0) = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0). (11)

Thus the tangent plane can be expressed as

z = f(x0, y0) + df(x0,y0)(x− x0, y − y0), (12)

which is the graph of the differential df(x0,y0).

Exercise 39. Show that the tangent planes of a surface given by z = xf(y/x), x ̸= 0, where f
is a differentiable function, all pass through the origin (0, 0, 0).

Solution 39. Let g(x, y) = xf(y/x), then z = g(x, y) and

gx(x, y) = f(y/x)− y

x
f ′(y/x), gy(x, y) = f ′(y/x).

Since z0 = x0f(y0/x0), the tangent plane at (x0, y0, z0) is given by

z = x0f(y0/x0) + gx(x0, y0)(x− x0) + gy(x0, y0)(y − y0)

= x0f(y0/x0) +

Å
f(y0/x0)−

y0
x0
f ′(y0/x0)

ã
(x− x0) + f ′(y0/x0)(y − y0).

We can check that (0, 0, 0) is a solution, hence the desired result.

Exercise 40. If a coordinate neighborhood of a regular surface can be parametrized in the form

x(u, v) = α1(u) + α2(v),

where α1 and α2 are regular parametrized curves, show that the tangent planes along a fixed
coordinate curve of this neighborhood are all parallel to a line.

Solution 40. Here α1(u), α2(v) ∈ R3. The tangent plane at (u0, v0) is spanned by the vectors

xu(u0, v0) = α′
1(u0), xv(u0, v0) = α′

2(v0).

Then the normal vector of the plane is given by

N(u0, v0) =
xu ∧ xv

|xu ∧ xv|
(u0, v0) =

α′
1 ∧ α′

2

|α′
1 ∧ α′

2|
(u0, v0).

*

Exercise 41. Let α : I → R3 be a regular parametrized curve with everywhere nonzero curvature.
Consider the tangent surface of α (Example 5 of Sec. 2–3)

x(t, v) = α(t) + v α′(t), t ∈ I, v ̸= 0.

Show that the tangent planes along the curve x(const., v) are all equal.

Solution 41.
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Exercise 42. Let f : S → R be given by f(p) = |p− p0|2, where p ∈ S and p0 is a fixed point of
R3 (see Example 1 of Sec. 2–3). Show that

(df)p(w) = 2w · (p− p0), w ∈ Tp(S).

Solution 42.

Exercise 43. Prove that if L : R3 → R3 is a linear map and S ⊂ R3 is a regular surface invariant
under L, i.e., L(S) ⊂ S, then the restriction L|S is a differentiable map and

dLp(w) = L(w), p ∈ S, w ∈ Tp(S).

Solution 43.

Exercise 44. Show that the parametrized surface

x(u, v) = (v cosu, v sinu, au), a ̸= 0,

is regular. Compute its normal vector N(u, v) and show that along the coordinate line u = u0 the
tangent plane of x rotates about this line in such a way that the tangent of its angle with the z
axis is proportional to the inverse of the distance v(=

√
x2 + y2) of the point x(u0, v) to the z

axis.

Solution 44.

Exercise 45 (Tubular Surfaces). Let α : I → R3 be a regular parametrized curve with nonzero
curvature everywhere and arc length as parameter. Let

x(s, v) = α(s) + r
(
n(s) cos v + b(s) sin v

)
, r = const. ̸= 0, s ∈ I,

be a parametrized surface (the tube of radius r around α), where n is the normal vector and b is
the binormal vector of α. Show that, when x is regular, its unit normal vector is

N(s, v) = −
(
n(s) cos v + b(s) sin v

)
.

Solution 45. Let x : U → R3 as defined in the problem statement be a regular Parametrization,
where U is an open set in R2. The unit normal vector at each point q ∈ x(U) is defined as

N(q) =
xs ∧ xv

|xs ∧ xv|
(q).

Let prime denote derivative with respect to s. Then we have

xs = α′(s) + r
(
n′(s) cos v + b′(s) sin v

)
, xv = r

(
− n(s) sin v + b(s) cos v

)
,

and by the Frenet-Serret formulas,

α′(s) = t(s), n′(s) = −κ(s)t(s)− τ(s)b(s), b′(s) = τ(s)n(s),

where t is the unit tangent, κ is the curvature, and τ is the torsion of α. Thus,

xs = t(s) + r
(
(−κ(s)t(s)− τ(s)b(s)) cos v + τ(s)n(s) sin v

)
,

xv = r
(
− n(s) sin v + b(s) cos v

)
.
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Now suppress s and compute the wedge product in the Frenet frame {t, n, b}:

xs ∧ xv =
(
t+ r

(
− κt cos v − τb cos v + τn sin v

))
∧ r

(
− n sin v + b cos v

)
= −r(t ∧ n) sin v + r(t ∧ b) cos v − r2κ sin v cos v(t ∧ n)− r2κ cos2 v(t ∧ b)
+ r2τ sin v cos v(b ∧ n) + r2τ sin v cos v(n ∧ b)

= −r(1− rκ cos v) (cos vn+ sin vb) .

Dividing by the norm and noting that n and b are unit length and orthogonal, we have

N(s, v) = −
(
n(s) cos v + b(s) sin v

)
.

Exercise 46. Show that the normals to a parametrized surface given by

x(u, v) =
(
f(u) cos v, f(u) sin v, g(u)

)
, f(u) ̸= 0, g′(u) ̸= 0,

all pass through the z axis.

Solution 46.

Exercise 47. Show that each of the equations (a, b, c ̸= 0)

x2 + y2 + z2 = ax, x2 + y2 + z2 = by, x2 + y2 + z2 = cz

define a regular surface and that they all intersect orthogonally.

Solution 47. Recall the following proposition:

Proposition 6. A surface defined implicitly by f(x, y, z) = 0 is a regular surface if 0 is a regular
value of f , i.e., ∇f ̸= 0 on the surface.

Let f1(x, y, z) = x2+y2+z2−ax, f2(x, y, z) = x2+y2+z2−by, f3(x, y, z) = x2+y2+z2−cz.
Then we have

∇f1 = (2x− a, 2y, 2z), ∇f2 = (2x, 2y − b, 2z), ∇f3 = (2x, 2y, 2z − c). (13)

Since a, b, c ̸= 0, we have ∇f1 = 0 implies (x, y, z) = (a/2, 0, 0), which does not satisfy the equation
of the surface. Similarly, we can show that ∇f2 ̸= 0 and ∇f3 ̸= 0 on the surfaces. Thus all three
surfaces are regular surfaces. Moreover, the normal vectors of the tangent planes at (x, y, z) are
given by ∇f1, ∇f2, and ∇f3, respectively. Then we have

∇f1 · ∇f2 = 4x2 + 4y2 + 4z2 − 2ax− 2by = 0,

∇f2 · ∇f3 = 4x2 + 4y2 + 4z2 − 2by − 2cz = 0,

∇f1 · ∇f3 = 4x2 + 4y2 + 4z2 − 2ax− 2cz = 0.

(14)

Hence they all intersect orthogonally.

Exercise 48. A critical point of a differentiable function f : S → R defined on a regular surface
S is a point p ∈ S such that dfp = 0.

a. Let f : S → R be given by f(p) = |p − p0|, p ∈ S, p0 /∈ S (cf. Exercise 5, Sec. 2–3). Show
that p ∈ S is a critical point of f if and only if the line joining p to p0 is normal to S at p.

b. Let h : S → R be given by h(p) = p · v, where v ∈ R3 is a unit vector (cf. Example 1, Sec.
2–3). Show that p ∈ S is a critical point of f if and only if v is a normal vector of S at p.
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Solution 48.

Exercise 49. Let Q be the union of the three coordinate planes x = 0, y = 0, z = 0. Let
p = (x, y, z) ∈ R3 −Q.

a. Show that the equation in t,

x2

a− t
+

y2

b− t
+

z2

c− t
≡ f(t) = 1, a > b > c > 0,

has three distinct real roots t1, t2, t3.

b. Show that for each p ∈ R3 −Q, the sets given by

f(t1)− 1 = 0, f(t2)− 1 = 0, f(t3)− 1 = 0

are regular surfaces passing through p which are pairwise orthogonal.

Solution 49.

a. Consider the function F which implicitly defines the surfaces:

F (t) =
x2

a− t
+

y2

b− t
+

z2

c− t
− 1.

It has three vertical asymptotes at t = a, b, c. Moreover, it is continuous and monotone
increasing in each of the open intervals t ∈ (−∞, c), (c, b), (b, a), (a,∞). Thus by the
Intermediate Value Theorem, there exist exactly three distinct real roots t1 < c < t2 < b <
t3 < a.

b. Given F (tj) and F (tk), their point of intersection p is

0 = F (tj)− F (tk)

=

Å
x2

a− tj
+

y2

b− tj
+

z2

c− tj
− 1

ã
−
Å

x2

a− tk
+

y2

b− tk
+

z2

c− tk
− 1

ã
= (tj − tk)

Å
x2

(a− tj)(a− tk)
+

y2

(b− tj)(b− tk)
+

z2

(c− tj)(c− tk)

ã
.

Then, assuming tj ̸= tk, we have

∇(F (tj)) · ∇(F (tk)) = 4

Å
x

(a− tj)
,

y

(b− tj)
,

z

(c− tj)

ã
·
Å

x

(a− tk)
,

y

(b− tk)
,

z

(c− tk)

ã
= 4

Å
x2

(a− tj)(a− tk)
+

y2

(b− tj)(b− tk)
+

z2

(c− tj)(c− tk)

ã
= 0.

Therefore, the surfaces intersect orthogonally for all p ∈ R3, i.e. they are pairwise orthogonal.
Furthermore, we see ∇F |p = 0 if and only if p = 0 /∈ S, so by proposition 6, they are regular
surfaces.

Remark. The surfaces described above are called confocal quadrics. Any point (x0, y0, z0) ∈ R3\{0}
lies on exactly one surface of each of the three types of confocal quadratics, and the three quadrics
intersect orthogonally at that point.

Exercise 50. Show that if all normals to a connected surface pass through a fixed point, the
surface is contained in a sphere.

Solution 50.
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Exercise 51. Let w be a tangent vector to a regular surface S at a point p ∈ S and let x(u, v)
and x̄(ū, v̄) be two parametrizations at p. Suppose that the expressions of w in the bases associated
to x(u, v) and x̄(ū, v̄) are

w = α1xu + α2xv

and
w = β1x̄ū + β2x̄v̄.

Show that the coordinates of w are related by

β1 = α1
∂ū

∂u
+ α2

∂ū

∂v
, β2 = α1

∂v̄

∂u
+ α2

∂v̄

∂v
,

where ū = ū(u, v) and v̄ = v̄(u, v) are the expressions of the change of coordinates.

Solution 51.

Exercise 52 (*). Two regular surfaces S1 and S2 intersect transversally if whenever p ∈ S1 ∩S2

then Tp(S1) ̸= Tp(S2). Prove that if S1 intersects S2 transversally, then S1 ∩ S2 is a regular curve.

Solution 52. Let S1, S2 be two regular surfaces that intersect transversally, and let p ∈ S1 ∩
S2. Since S1, S2 are regular surfaces, there exists a differentiable function f : R3 → R and a
neighborhood V1 of p such that S1 ∩ V1 = f−1(0) ∩ V1. Similarly, there exists a differentiable
function g : R3 → R and a neighborhood V2 of p such that S2 ∩ V2 = g−1(0) ∩ V2. Define
F : R3 → R2 by F (q) = (f(q), g(q)). Then

F−1(0, 0) = f−1((0, 0)) ∩ g−1((0, 0)) ⊇ (V1 ∩ V2) ∩ (S1 ∩ S2).

Let V = V1 ∩ V2. In V , we have S1 ∩ S2 = F−1(0, 0). Since Tp(S1) ̸= Tp(S2), we have Np1
(0, 0) ∧

Np2
(0, 0) ̸= 0, where

Np1
=

(fx, fy, fz)(p)

∥(fx, fy, fz)(p)∥
, Np2

=
(gx, gy, gz)(p)

∥(gx, gy, gz)(p)∥
.

Hence

dF(x,y,z) =

Å
fx fy fz
gx gy gz

ã
(x, y, z) ̸= 0,

and dF is surjective. Therefore, (0, 0) is a regular point of F , and by [Do Carmo] Problem 2.2.17
(b) (The inverse image of a regular value of a differentiable map F : U ⊂ R3 → R2 is a regular
curve in R3), S1 ∩ S2 is a regular curve.

Exercise 53. Prove that if a regular surface S meets a plane P in a single point p, then this
plane coincides with the tangent plane of S at p.

Solution 53.

Exercise 54. Let S ⊂ R3 be a regular surface and P ⊂ R3 be a plane. If all points of S are on
the same side of P , prove that P is tangent to S at all points of P ∩ S.

Solution 54.
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Exercise 55 (*). Show that the perpendicular projections of the center (0, 0, 0) of the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1

onto its tangent planes constitute a regular surface given by

{(x, y, z) ∈ R3; (x2 + y2 + z2)2 = a2x2 + b2y2 + c2z2} − {(0, 0, 0)}.

Solution 55.

Exercise 56 (*). Let f : S → R be a differentiable function on a connected regular surface S.
Assume that dfp = 0 for all p ∈ S. Prove that f is constant on S.

Solution 56. Let p, q ∈ S be two arbitrary points. Since S is connected, there exists a piecewise
regular curve α : [0, 1] → S such that α(0) = p, α(1) = q. Then we have

(f ◦ α)′(t) = dfα(t)(α
′(t)) = 0, t ∈ [0, 1].

Thus f ◦ α is constant on [0, 1], and in particular, we have

f(p) = f(α(0)) = f(α(1)) = f(q).

Since p, q are arbitrary points in S, we conclude that f is constant on S.

Exercise 57. Prove that if all normal lines to a connected regular surface S meet a fixed straight
line, then S is a piece of a surface of revolution.

Solution 57.

Exercise 58. Prove that the map F : S2 → S2 defined in Exercise 16 of Sec. 2-3 has only a
finite number of critical points (see Exercise 13).

Solution 58. From Problem 2.3.16, F : S2 → S2 is differentiable. Let p ∈ S2 be a critical point
of F , then dFp = 0. Since F = π−1

N ◦ P ◦ πN , by the chain rule, we have

dFp = d(π−1
N )P (πN (p)) ◦ dPπN (p) ◦ d(πN )p.

Note that d(πN )p and d(π−1
N )P (πN (p)) are isomorphisms, so dFp = 0 if and only if dPπN (p) = 0.

Since P : C → C is a polynomial of degree n, dP is a polynomial of degree n − 1, and thus has
n− 1 roots by the Fundamental Theorem of Algebra. Therefore, the map F : S2 → S2 has only a
finite number of critical points.

Exercise 59 (Chain Rule). Show that if φ : S1 → S2 and ψ : S2 → S3 are differentiable maps
and p ∈ S1, then

d(ψ ◦ φ)p = dψφ(p) ◦ dφp.

Solution 59.

Exercise 60. Prove that if two regular curves C1 and C2 of a regular surface S are tangent at a
point p ∈ S, and if φ : S → S is a diffeomorphism, then φ(C1) and φ(C2) are regular curves which
are tangent at φ(p).
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Solution 60.

Exercise 61. Show that if p is a point of a regular surface S, it is possible, by a convenient
choice of the (x, y, z) coordinates, to represent a neighborhood of p in S in the form z = f(x, y) so
that

f(0, 0) = 0, fx(0, 0) = 0, fy(0, 0) = 0.

(This is equivalent to taking the tangent plane to S at p as the xy plane.)

Solution 61.

Exercise 62 (Theory of Contact). Two regular surfaces, S and S̄, in R3, which have a point
p in common, are said to have contact of order ≥ 1 at p if there exist parametrizations with the
same domain x(u, v), x̄(u, v) at p of S and S̄, respectively, such that xu = x̄u and xv = x̄v at p.
If, moreover, some of the second partial derivatives are different at p, the contact is said to be of
order exactly equal to 1. Prove that

a. The tangent plane Tp(S) of a regular surface S at the point p has contact of order ≥ 1 with
the surface at p.

b. If a plane has contact of order ≥ 1 with a surface S at p, then this plane coincides with the
tangent plane to S at p.

c. Two regular surfaces have contact of order ≥ 1 if and only if they have a common tangent
plane at p, i.e., they are tangent at p.

d. If two regular surfaces S and S̄ of R3 have contact of order ≥ 1 at p and if F : R3 → R3

is a diffeomorphism of R3, then the images F (S) and F (S̄) are regular surfaces which have
contact of order ≥ 1 at F (p) (that is, the notion of contact of order ≥ 1 is invariant under
diffeomorphisms).

e. If two surfaces have contact of order ≥ 1 at p, then lim
r→0

d

r
= 0, where d is the length of the

segment which is determined by the intersections with the surfaces of some parallel to the
common normal, at a distance r from this normal.

Solution 62.

Exercise 63 (Do Carmo 2.4.28).

a. Define regular value for a differentiable function f : S → R on a regular surface S.

b. Show that the inverse image of a regular value of a differentiable function on a regular surface
S is a regular curve on S.

Solution 63.

a. A regular value of a differentiable function f : S → R defined on a regular surface S is a value
c ∈ R such that for every point p ∈ f−1(c), the differential dfp : Tp(S) → R is surjective
(i.e., dfp ̸= 0).

b. Let c be a regular value of a differentiable function f : S → R and let p ∈ f−1(c). Pick a local
parametrization x : U ⊆ R2 → S such that x((0, 0)) = p. Define g : U → R by g = f ◦ x,
then g(0, 0) = f(x(0, 0)) = f(p) = c. Since dfp ̸= 0 and dx(0,0) is surjective onto TpS, we
have dg(0,0) ̸= 0. By the Implicit Function Theorem, there exists a neighborhood V ⊆ U of
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(0, 0) such that g−1(c) ∩ V is the graph of a C1 function, say v = ϕ(u). Then we can define
a local parametrization of the curve f−1(c) on S by

α(u) = x(u, ϕ(u)), u ∈ I

where I is some neighborhood of u = 0. Suppose for some u∗, we have α′(u∗) = 0, then

dx(u∗,ϕ(u∗)) (1, ϕ
′(u∗)) = 0.

Since dx is one-to-one, we must have (1, ϕ′(u∗)) = 0, contradiction. Thus, α′(u) ̸= 0 for all
u ∈ I, and in a neighborhood of each p ∈ f−1(c), f−1(c) is the image of a regular curve α on
S. Patching the local parametrizations together, we conclude that f−1(c) is a regular curve
on S.
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1.5 Chapter 2.5

Definition 6 (first fundamental form). The quadratic form Ip : Tp(S) → R defined by Ip(w) =
⟨w,w⟩p = |w|2 is called the first fundamental form of the surface S at the point p ∈ S.

Definition 7 (area). Let R ⊆ S be a bounded region of a regular surface S contained in the
coordinate neighborhood of a parametrization x : U ⊆ R2 → S. The positive number

A(R) =
x

x−1(R)

dudv |xu ∧ xv| =
x

x−1(R)

dudv
√
EG− F 2 (15)

is called the area of the region R.

Exercise 64. Compute the first fundamental forms of the following parametrized surfaces where
they are regular:

a. x(u, v) = (a sinu cos v, b sinu sin v, c cosu); ellipsoid.

b. x(u, v) = (au cos v, bu sin v, u2); elliptic paraboloid.

c. x(u, v) = (au cosh v, bu sinh v, u2); hyperbolic paraboloid.

d. x(u, v) = (a sinhu cos v, b sinhu sin v, c coshu); hyperboloid of two sheets.

Solution 64.

Exercise 65. Let x(φ, θ) = (sin θ cosφ, sin θ sinφ, cos θ) be a parametrization of the unit sphere
S2. Let P be the plane x = z cotα, 0 < α < π, and β be the acute angle which the curve P ∩ S2

makes with the semimeridian φ = φ0. Compute cosβ.

Solution 65.

Exercise 66. Obtain the first fundamental form of the sphere in the parametrization given by
stereographic projection (cf. Exercise 16, Sec. 2-2).

Solution 66. Refer to Exercise 2.2.16, let the sphere be S2 = {(x, y, z) ∈ R3 : x2+y2+(z−1)2 =
1}. The stereographic projection from the north pole N = (0, 0, 2) to the xy-plane is given by

x(u, v) =

Å
4u

u2 + v2 + 4
,

4v

u2 + v2 + 4
,
2(u2 + v2)

u2 + v2 + 4

ã
.

We have

xu =

Å
4(−u2 + v2 + 4)

(u2 + v2 + 4)2
,

−8uv

(u2 + v2 + 4)2
,

16u

(u2 + v2 + 4)2

ã
,

xv =

Å −8uv

(u2 + v2 + 4)2
,
4(u2 − v2 + 4)

(u2 + v2 + 4)2
,

16v

(u2 + v2 + 4)2

ã
.

Thus we have

E = ⟨xu,xu⟩ =
16(−u2 + v2 + 4)2 + 64u2v2 + 256u2

(u2 + v2 + 4)4
=

16

(u2 + v2 + 4)2
,

F = ⟨xu,xv⟩ =
−32uv(−u2 + v2 + 4)− 32uv(u2 − v2 + 4) + 256uv

(u2 + v2 + 4)4
= 0,

G = ⟨xv,xv⟩ =
64u2v2 + 16(u2 − v2 + 4)2 + 256v2

(u2 + v2 + 4)4
=

16

(u2 + v2 + 4)2
.
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Therefore, the first fundamental form is

Ip =
16

(u2 + v2 + 4)2
(
(u′)2 + (v′)2

)
.

Exercise 67. Given the parametrized surface

x(u, v) = (u cos v, u sin v, log cos v + u), −π
2
< v <

π

2
,

show that the two curves x(u, v1), x(u, v2) determine segments of equal lengths on all curves
x(u, const.).

Solution 67.

Exercise 68. Show that the area A of a bounded region R of the surface z = f(x, y) is

A =
x

Q

»
1 + f2x + f2y dx dy,

where Q is the normal projection of R onto the xy plane.

Solution 68.

Exercise 69. Show that

x(u, v) = (u sinα cos v, u sinα sin v, u cosα), 0 < u <∞, 0 < v < 2π, α = const.,

is a parametrization of the cone with 2α as the angle of the vertex. In the corresponding coordinate
neighborhood, prove that the curve

x(cev sinα cot β , v), c = const., β = const.,

intersects the generators of the cone (v = const.) under the constant angle β.

Solution 69.

Exercise 70. The coordinate curves of a parametrization x(u, v) constitute a Tchebyshef net
if the lengths of the opposite sides of any quadrilateral formed by them are equal. Show that a
necessary and sufficient condition for this is

∂E

∂v
=
∂G

∂u
= 0.

Solution 70. The coordinate curves of a parametrization x(u, v) are the curves obtained by
fixing one of the parameters and varying the other. Suppose we have a quadrilateral formed
by the coordinate curves at points (u1, v1), (u2, v1), (u2, v2), (u1, v2). Let s(x(u1, v1),x(u2, v2)) ≡
s((u1, v1), (u2, v2)) denote the arc length between two points. Then the lengths of the opposite
sides are equal if and only if

s((u1, v1), (u2, v1)) = s((u1, v2), (u2, v2)) =⇒
∫ u2

u1

du
»
E(u, v1) =

∫ u2

u1

du
»
E(u, v2),

s((u1, v1), (u1, v2)) = s((u2, v1), (u2, v2)) =⇒
∫ v2

v1

dv
»
G(u1, v) =

∫ v2

v1

dv
»
G(u2, v).
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Since u1, u2, v1, v2 are arbitrary, we have»
E(u, v1) =

»
E(u, v2),

»
G(u1, v) =

»
G(u2, v).

Therefore, E is independent of v and G is independent of u, giving the desired result:

∂E

∂v
= 0,

∂G

∂u
= 0.

Exercise 71 (*). Prove that whenever the coordinate curves constitute a Tchebyshef net (see
Exercise 7) it is possible to reparametrize the coordinate neighborhood in such a way that the new
coefficients of the first fundamental form are

E = 1, F = cos θ, G = 1,

where θ is the angle of the coordinate curves.

Solution 71. Following the procedure in Exercise 2.5.7, since the coordinate curves constitute a
Tchebyshef net, we have ∂E

∂v = 0 and ∂G
∂u = 0. Thus, E = E(u) and G = G(v). We can define an

arc length parametrization x̄(ū, v̄) by

ū =

∫ »
E(u) du, v̄ =

∫ »
G(v) dv,

Then we have

x̄ū =
∂x

∂u

∂u

∂ū
=

xu√
E(u)

, x̄v̄ =
∂x

∂v

∂v

∂v̄
=

xv√
G(v)

.

Thus, the coefficients of the first fundamental form in the new parametrization are

Ē = ⟨x̄ū, x̄ū⟩ =
Æ

xu√
E(u)

,
xu√
E(u)

∏
=
E(u)

E(u)
= 1,

F̄ = ⟨x̄ū, x̄v̄⟩ =
Æ

xu√
E(u)

,
xv√
G(v)

∏
=

F (u, v)√
E(u)G(v)

= cos θ,

Ḡ = ⟨x̄v̄, x̄v̄⟩ =
Æ

xv√
G(v)

,
xv√
G(v)

∏
=
G(v)

G(v)
= 1.

Exercise 72 (*). Show that a surface of revolution can always be parametrized so that

E = E(v), F = 0, G = 1.

Solution 72.

Definition 8. The coordinate curves of a parametrization are orthogonal if and only if F (u, v) = 0
for all (u, v). Such a parametrization is called an orthogonal parametrization.

Without loss of generality, let the axis of revolution be the z-axis. A surface of revolution
can be parametrized as

x(u, v) = (f(v) cosu, f(v) sinu, g(v)), u ∈ (0, 2π), v ∈ I,

where f(v) > 0 for all v ∈ I. Then

xu = (−f(v) sinu, f(v) cosu, 0),
xv = (f ′(v) cosu, f ′(v) sinu, g′(v)).
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The arc length parametrization of the v-curves is given by

v̄ =

∫ »
[f ′(v)]2 + [g′(v)]2 dv =⇒ x̄(u, v̄) = (f(v) cosu, f(v) sinu, g(v)) .

Then, abbreviating v(v̄) to v, we have

x̄u = (−f(v̄) sinu, f(v̄) cosu, 0),

x̄v̄ = (f ′(v̄) cosu, f ′(v̄) sinu, g′(v̄))
dv

dv̄
=

(f ′(v) cosu, f ′(v) sinu, g′(v))√
[f ′(v)]2 + [g′(v)]2

.

Then, the coefficients of the first fundamental form in the new parametrization are

Ē = ⟨x̄u, x̄u⟩ = f2(v), F̄ = ⟨x̄u, x̄v̄⟩ = 0, Ḡ = ⟨x̄v̄, x̄v̄⟩ = 1.

Note that if we force an arc length parametrization on the u curves instead, we would have Ē = 1,
F̄ = 0, and Ḡ = G(u). However, it is not possible to do both and still have an orthogonal
parametrization.

Exercise 73. Let P = {(x, y, z) ∈ R3; z = 0} be the xy plane and let x : U → P be a
parametrization of P given by

x(ρ, θ) = (ρ cos θ, ρ sin θ),

where
U = {(ρ, θ) ∈ R2; ρ > 0, 0 < θ < 2π}.

Compute the coefficients of the first fundamental form of P in this parametrization.

Solution 73. We have

xρ = (cos θ, sin θ, 0), (16)

xθ = (−ρ sin θ, ρ cos θ, 0). (17)

Thus the coefficients of the first fundamental form are

E = ⟨xρ,xρ⟩ = cos2 θ + sin2 θ = 1,

F = ⟨xρ,xθ⟩ = −ρ cos θ sin θ + ρ sin θ cos θ = 0,

G = ⟨xθ,xθ⟩ = ρ2 sin2 θ + ρ2 cos2 θ = ρ2.

Exercise 74. Let S be a surface of revolution and C its generating curve (cf. Example 4, Sec.
2-3). Let s be the arc length of C and denote by ρ = ρ(s) the distance to the rotation axis of the
point of C corresponding to s.

a. (Pappus’ Theorem.) Show that the area of S is

2π

∫ l

0

ρ(s) ds,

where l is the length of C.

b. Apply part (a) to compute the area of a torus of revolution.

Solution 74.

Exercise 75. Show that the area of a regular tube of radius r around a curve α (cf. Exercise 10,
Sec. 2-4) is 2πr times the length of α.
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Solution 75. From Exercise 2.4.10, the parametrization of a tubular surface of radius r around
a curve α is given by

x(s, θ) = α(s) + r (n(s) cos θ + b(s) sin θ) , r ̸= 0, s ∈ I.

Then

xs = α′(s) + r (n′(s) cos θ + b′(s) sin θ)

= t(s) + r (−k(s)t(s) cos θ − τ(s)b(s) cos θ + τ(s)n(s) sin θ)

= (1− rk cos θ)t+ rτ sin θn− rτ cos θb,

xθ = r (−n(s) sin θ + b(s) cos θ) ,

and

xs ∧ xθ = ((1− rk cos θ)t+ rτ sin θn− rτ cos θb) ∧ r (−n(s) sin θ + b(s) cos θ)

= −r(1− rk(s) cos θ)(cos θ n(s) + sin θ b(s)).

By definition 7, the area of the tube is given by

A =
x

dθ ds |xs ∧ xθ| =
∫ 2π

0

dθ

∫ s2

s1

ds r|1− rk(s) cos θ|.

Since k(s)r ≤ 1 for all s ∈ I, we have

A =

∫ 2π

0

dθ

∫ s2

s1

ds r(1− rk(s) cos θ) = 2πr

∫ s2

s1

ds = 2πr ℓ(α).

Remark. Let’s formalize the problem in the following way: Let α : [0, ℓ] → R3 be a curve
parametrized by arc length with k(s) ̸= 0. Suppose α has no self-intersections, α(0) = α(ℓ)
and it induces a smooth map from S1 to R3 (i.e. α is a smooth simple closed curve). Let r > 0
and φ : [0, ℓ]× [0, 2π] → R3 is given by:

φ(s, v) = α(s) + r(n(s)) cos v + b(s) sin v

Then image T = Imφ is called the tube of radius r around α. For r sufficiently small, T is a
surface. Prove that A(T ) = 2πrℓ.

Exercise 76. (Generalized Helicoids.) A natural generalization of both surfaces of revolution
and helicoids is obtained as follows. Let a regular plane curve C, which does not meet an axis
E in the plane, be displaced in a rigid screw motion about E, that is, so that each point of C
describes a helix (or circle) with E as axis. The set S generated by the displacement of C is called
a generalized helicoid with axis E and generator C. If the screw motion is a pure rotation about
E, S is a surface of revolution; if C is a straight line perpendicular to E, S is (a piece of) the
standard helicoid (cf. Example 3).

Choose the coordinate axes so that E is the z axis and C lies in the yz plane. Prove that

a. If (f(s), g(s)) is a parametrization of C by arc length s, a < s < b, f(s) > 0, then x : U → S,
where

U = {(s, u) ∈ R2; a < s < b, 0 < u < 2π}

and
x(s, u) = (f(s) cosu, f(s) sinu, g(s) + cu), c = const.,

is a parametrization of S. Conclude that S is a regular surface.

b. The coordinate lines of the above parametrization are orthogonal (i.e., F = 0) if and only if
x(U) is either a surface of revolution or (a piece of) the standard helicoid.
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Solution 76.

Exercise 77 (Gradient on Surfaces.). The gradient of a differentiable function f : S → R is a
differentiable map grad f : S → R3 which assigns to each point p ∈ S a vector grad f(p) ∈ Tp(S) ⊂
R3 such that

(grad f(p), v)p = dfp(v) for all v ∈ Tp(S).

Show that

a. If E,F,G are the coefficients of the first fundamental form in a parametrization x : U ⊂
R2 → S, then grad f on x(U) is given by

grad f =
fuG− fvF

EG− F 2
xu +

fvE − fuF

EG− F 2
xv.

In particular, if S = R2 with coordinates x, y,

grad f = fxe1 + fye2,

where {e1, e2} is the canonical basis of R2 (thus, the definition agrees with the usual definition
of gradient in the plane).

b. If you let p ∈ S be fixed and v vary in the unit circle |v| = 1 in Tp(S), then dfp(v) is maximum
if and only if v = grad f/| grad f | (thus, grad f(p) gives the direction of maximum variation
of f at p).

c. If grad f ̸= 0 at all points of the level curve C = {q ∈ S; f(q) = const.}, then C is a regular
curve on S and grad f is normal to C at all points of C.

Solution 77.

a.

Exercise 78 (Orthogonal Families of Curves.).

a. Let E,F,G be the coefficients of the first fundamental form of a regular surface S in the
parametrization x : U ⊂ R2 → S. Let φ(u, v) = const. and ψ(u, v) = const. be two families
of regular curves on x(U) ⊂ S (cf. Exercise 28, Sec. 2-4). Prove that these two families
are orthogonal (i.e., whenever two curves of distinct families meet, their tangent lines are
orthogonal) if and only if

Eφuψv − F (φuψu + φvψv) +Gφvψu = 0.

b. Apply part (a) to show that on the coordinate neighborhood x(U) of the helicoid of Example
3, the two families of regular curves

v cosu = const., v ̸= 0,

(v2 + a2) sin2 u = const., v ̸= 0, u ̸= π,

are orthogonal.

Solution 78.

a. Suppose φ(u, v) = c1 and ψ(u, v) = c2 are two families of regular curves on x(U) ⊂ S. The
curves satisfy

ϕuu
′ + ϕvv

′ = 0, ψuu
′ + ψvv

′ = 0.
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So we can choose the tangent vectors of the two families of curves to be

t(φ) = −φvxu + φuxv, t(ψ) = −ψvxu + ψuxv.

The two families are orthogonal if and only if ⟨t(φ), t(ψ)⟩ = 0, which is equivalent to

⟨t(φ), t(ψ)⟩ = ⟨−φvxu + φuxv,−ψvxu + ψuxv⟩
= φvψv⟨xu,xu⟩ − φvψu⟨xu,xv⟩ − φuψv⟨xv,xu⟩+ φuψu⟨xv,xv⟩
= Eφvψv − F (φuψv + φvψu) +Gφuψu = 0.

b. From Example 3, the helicoid is given by the parametrization x(u, v) = (v cosu, v sinu, au),
with the coefficients of the first fundamental form being

E(u, v) = v2 + a2, F (u, v) = 0, G(u, v) = 1.

Let ϕ(u, v) = v cosu, ψ(u, v) = (v2 + a2) sin2 u. Then

ϕu = −v sinu, ϕv = cosu,

ψu = 2(v2 + a2) sinu cosu, ψv = 2v sin2 u.

Substituting these into equation (??) in part (a), we have

(v2 + a2) cosu(2v sin2 u)− 0 + 1(−v sinu)(2(v2 + a2) sinu cosu) = 0.

Therefore, the two families of regular curves are orthogonal.
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