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1 Chapter 3.2

Definition 1 (second fundamental form). The quadratic form II,, defined in 7,(S) by II,,(v) =
—(dNp(v),v) is called the second fundamental form of S at p.

Definition 2 (normal curvature). Let C be a regular curve in S passing through p € S, k the
curvature of C at p, and cosf = (n, N), where n is the normal vector to C' and N is the normal
vector to S at p. The number k,, = kcos6 is then called the normal curvature of C' C S at p.

Definition 3 (Do Carmo 3.2.5, line of curvature). If a regular connected curve C' C S is such
that for all p € S the tangent line of C' is a principal direction at p, then C' is said to be a line of
curvature of S.

Definition 4 (Do Carmo 3.2.9, asymptotic curve). Let p € S. An asymptotic direction of S at
p is a direction in T),(S) for which the normal curvature is zero. An asymptotic curve of S is a
regular connected curve C' C S such that for each p € S the tangent line of C' at p is an asymptotic
direction.

Proposition 1 (Meusnier). All curves lying on a surface S and having at a given point p € S
the same tangent line have at this point the same normal curvatures.

Proposition 2 (Oline Rodrigues). A necessary and sufficient condition for a connected regular
curve C' on S to be a line of curvature of S is N'(t) = A(t)a/(t), for any parametrization a(t) of
C, where N(t) = (N o «a)(t) and A(t) is a differentiable function of ¢. In this case, —A(t) is the
principal curvature along o/(t).

Definition 5 (shape operator). The linear map S : T,(S) — T,(S) defined by S(v) = —dN,(v)
is called the shape operator of S at p.

Exercise 3.2.2. Show that if a surface is tangent to a plane along a curve, then the points of
this curve are either parabolic or planar.

Solution 3.2.2. Suppose a surface S is tangent to a plane II along a curve C. Let p € C be
an arbitrary point on the curve. Parametrize the curve C' by a : I — S N1II, where I is an open
interval containing 0 and a/(0) = p. Let N : S — S? be the Gauss map of S. Since the tangent
plane of S is II for all p € S, the unit normal N(a(s)) is equal to the constant normal n of II.
Thus,

d
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N(a(s)) = dNgy(s) (' (s)).



Therefore, the differential of the Gauss map dN,, has a nontrivial kernel containing a/(0) # 0 for
all as) € S. But AN, : T,(S) = T (S?) is a linear map between finite-dimensional vector
spaces, dN,, is not invertible, and hence det (dN,) # 0 for all p € C. Thus, all points on C are
either parabolic or planar.

Exercise 3.2.8. Describe the region of the unit sphere covered by the image of the Gauss map
of the following surfaces:

a. Paraboloid of revolution z = x? + y2.
b. Hyperboloid of revolution z? + y? — 2% = 1.

c. Catenoid 22 + y% = cosh? z.

Solution 3.2.8. Let’s take the natural orientation: upward normal for graphs and outward
normal for surfaces of revolution.

a. Let the graph be z = f(x,y) = 22 + y?, then the normal to the surface is
(_fwa _fya 1)

VAR

where f, = 2z, f, = 2y. Since (z,y) € R? and the z component N* = 1/,/1 + 4(z2 + y?) €
(0,1], the Gauss map is the open upper hemisphere of the unit sphere.

b. As a level set F(z,y,2) =2 +y? — 2% — 1, the (outward) normal vector is

VF _ (21’,2y, _22) _ (xay,_z)
IVF|  \f4z? + 42 + 422 /22 +y2 + 22

N =

Since 22 + y2 = 22 4+ 1 > 1, the z component
z z

1 1
s (1
Va2 +y?+ 22 V222 +1 V2 V2

Thus, the Gauss map covers the open band {p € S? | |[N?| < %}

N =—

c. Let’s write this in the following parametrization:
x(z,0) = (cosh zcosf,cosh zsinb, z), zeR,0¢€[0,2m).

Then,
x, = (sinh zcosf,sinh zsinf, 1), xp = (— cosh zsin 6, cosh z cos 6, 0).

The normal vector is given by

N XeXXo _ (—cosh zcos ), —cosh zsin 0, sinh zcosh z)  (—cos @, —sin6,sinh z)

N X, X Xq| B \/cosh2 2 + sinh? z cosh? 2 \/m

= N = (—sechzcosf, —sech zsin 6, tanh z).
Since 6 € [0,27) and N* = —tanh z € (—1, 1), the spherical image N(C) = 5%\ {(0,0,41)}.

Exercise 3.2.9.

a. Prove that the image N o a by the Gauss map N : S — S? of a parametrized regular curve
« : I — S which contains no planar or parabolic points is a parametrized regular curve on
the sphere S? (called the spherical image of «).



b. If C = «(I) is a line of curvature, and k is its curvature at p, then
k = |knkn|,

where k,, is the normal curvature at p along the tangent line of C' and ky is the curvature of
the spherical image N(C) C S? at N(p).

Solution 3.2.9.

a. Suppose « : I — S is a parametrized regular curve with no planar or parabolic points. Then,
the Gauss map N : S — S? satisfies det (dN,) # 0, and dN,, is invertible, and hence injective
for all p € C. Since « is a regular curve, o'(t) # 0 for all ¢ € I, and hence

(N o a)'(t) = dNa(t)(O/(t)) £ 0,
which shows that the spherical image N(C) is a regular curve on S2.

b. Since C is a line of curvature, the tangent vector t = &/(s) at p = «(s) is a principal direction.
Hence, S(t) = knt where k, is the normal curvature along t at p. Let N : S — S? be the
Gauss map of S. Using dN = —8(t), we have

d

£N(oc(s)) = dNy5)(/(s)) = =S(t) = —knt.

Thus, |N’| = |k,|, and the tangent vector of the spherical image N(C) at N(p) is

N =kt
IN =1 = = —sgn(ky,)t.
N[ [kl

Let sy be the arc length parameter of the spherical image N(C'). Then,

|k |_‘dtN’_ |dtN/dS| _dtN/dS k
N [dsn/ds] — [NT T Tkl

dSN

where we used t' = kn in the last equality. Therefore, k = |k, kn|.

Exercise 3.2.10. Assume that the osculating plane of a line of curvature C' C S, which is
nowhere tangent to an asymptotic direction, makes a constant angle with the tangent plane of S
along C. Prove that C is a plane curve.

Solution 3.2.10. Let ¢, n, b be the Frenet frame of the curve C. Since the osculating plane
makes a constant angle with the tangent plane of S, the unit normal N of S along C satisfies

b- N = const.
Differentiate both sides with respect to the arc length parameter s of C' and use Frenet’s formula:
bV N+b-N=0= —mn-N+b-N =0.

Next, N’ = —S(t) by the Weingarten formula, where S is the shape operator of S. Since C is a
line of curvature, ¢ is a principal direction of S, and S(t) = k,t, where k,, is the normal curvature
of S along C. Thus,

—mn-N—kpb-t=—7k,/k =0,
where k is the curvature of C. Since C is nowhere tangent to an asymptotic direction, k, # 0, so

7 = 0. This implies b’ = —7n =0, so

d
g(b'c) =cb' =0 = b = const.

and hence C'is a plane curve.



Exercise 3.2.14*. If the surface S; intersects the surface Sy along the regular curve C, then the
curvature k of C at p € C is given by

E%*sin® 0 = \? + A3 — 2\ Mg cos b,

where A; and Ag are the normal curvatures at p, along the tangent line to C, of S; and S,
respectively, and 6 is the angle made up by the normal vectors of S; and Ss at p.

Solution 3.2.14. Suppose S; and S9 intersect along the regular curve C. Let N, Ny be the
unit normals and let A;, A2 be the normal curvatures along the tangent line to C of S; and Ss,
respectively. Let ¢, n, b be the Frenet frame of the curve C. Since C' lies on S; and So, t L IV,
i = 1,2. Thus, we can write N; = ncos¢; + bsin¢; for some ¢; € [0, 7], i = 1,2. The normal
curvatures are given by

)\,‘ZO//~N¢=]€’I?,'NZ':]€COS¢,‘, i=1,2.
By definition, the angle # between N; and N, satisfies
cos @ = Ny - Ny = cos ¢ €os ¢ + sin @1 sin ¢y = cos(¢p1 — @2).
By direct computation, we have
A+ A2 — 2\ Mg cos O = k?(cos? ¢y + cos? g — 2 cos ¢y cos pa cos(p1 — b))
= k> (cos2 $1 + cos? g — 2€OS ¢y COS P2 (cos Py cOs g + sin ¢y sin ¢2))
= k> (COS2 $1 + cos? ¢y — cos® ¢ (1 — sin? )
— cos? pa(1 — sin? ¢h) — 2sin ¢y sin ¢ cos ¢ cos ¢2)

=k (sin2 b1 cos? o 4 sin? ¢o cos? ¢y — 2sin ¢ sin o cOs ¢y COs ¢2)

= k?sin?(¢1 — ¢o) = k?sin? 4.



2 Chapter 3.3

Proposition 3 (Gaussian curvature as a ratio of areas). Let p € S be such that K(p) # 0, and
let V' be a neighborhood of p where K does not change sign. Then

K = I, "ty

where A C V is a region containing p and N(A) C S? is its spherical image by the Gauss map
N : S — S2. The limit is taken through a sequence {4, }, where there is some N € N such that
any ball about p contains all A,, for n > N.

Remark. The curvature of a plane curve C at p is given by

_ o UT(s))
Mp) = fim =S

where T(s) is the image of s in the indicatrix of tangents, and £ is the length function. Thus, the
Gaussian curvature is the analogue for surfaces of the curvature of a plane curve.

Exercise 3.3.1. Show that at the origin (0,0, 0) of the hyperboloid z = azy we have

K = —d?, H=0.

Solution 3.3.1. Consider the parametrization x(u,v) = (u, v, auv) of the hyperboloid z = azy.
The first-order partial derivatives are x,, = (1, 0, av), x,, = (0, 1, au). Thus, we have

E={(xy,xy)=1, F={Xy,%Xy)=0, G=(Xy,%y)=1.
The normal vector at the origin is

A —av, —au, 1
N Xy Xy _ ( CLU; 0121/(/’ )2 _ N(O’O) = (O,O7 1)
|Xu A X'u‘ 1+a (U +v )

The second-order partial derivatives are x,,, = (0, 0, 0), X, = (0, 0, a), X,, = (0, 0, 0), so
e:<xuu7N>:07 f:<XuvaN>:a7 g=<xw,N>:0.
Finally, the Gaussian curvature and the mean curvature at the origin are

_ o= _0-a _ , . Eg-2Ff+Ge 1.0-041-0 _

EG-F2 1-1-0 ’  2(EG-F?)  2(1-1-0) 0

Exercise 3.3.2%. Determine the asymptotic curves and the lines of curvature of the helicoid
r=wvcosu, y=wvsinu, z=cu,

and show that its mean curvature is zero.

Solution 3.3.2.

Observation (Computing asymptotic directions and lines of curvature). For a tangent vector
w € T,(5) and parametrization x(u,v), we can write w = x,du + x,dv. Then

edu? + 2fdudv + gdv?
kn(w) = I, (w, w)/ I, (w, w) = '
(w) p(w,w)/ Ip(w,w) Edu? + 2Fdudv + Gdv?



The asymptotic directions satisfy k,(w) = 0, hence
I, (w, w) = edu? + 2f dudv + gdv? = 0.
The lines of curvature are where k,, attains extremal values, so let A = dv/du and solve dk,, /d\ = 0:

%_i( e+ 2fA+ g\’ )_
A\ T AAN\Ef2FA+GA2)

and hence
(fE — eF)du® + (gE — eG) dudv + (gF — fG) dv? = 0.

Consider the parametrization x(u,v) = (v cos u, vsinu, cu), we have
x, = (—vsinu, vcosu, ¢), X, = (cosu, sinu, 0).
2, 2
> E:<Xu7xu>:U +c, F:<XU,X,U>:O, G:<X'uaxv>:1~
The normal vector is given by

Xy A Xy (—esinw, ccosu, —v)

N — -
x4 A Xy V2 +v?

Then, we have x,, = (—vcosu, —vsinu,0), Xy, = (—sinwu, cosu,0), and x,, = (0,0,0). Thus, the
coefficients of the second fundamental form are

c
Ve o2

Plug into the formulas in the observation, we have 2f dudv # 0. Since f # 0, it must be that
du = 0 or dv = 0, and hence the asymptotic curves are u = const. and v = const.. For the lines of
curvature, we have

€:<quaN>:O7 f:<xuvaN>: g:<XUU7N>:0'

(fE — eF)du® + (gF — eG)dudv + (gF — fG)dv? = fEdu® — fGdv? = 0.
Since f # 0, we have E du? — G dv? = 0, or equivalently,

dv

2 2 2 2
vi+cf)du —dv =0 = du=F+——.
(v + ) —

Integrating both sides, we obtain the lines of curvature:
., —1 (7Y
u = +sinh (7) + const.
c

Finally, the mean curvature is

_ Eg—2Ff+Ge

I (W +¢*)-0-041-0

=0.

20EG - F?2)  2((v2+¢?)-1-0)

Remark. The helicoid is a minimal surface since its mean curvature is zero.

Exercise 3.3.3*%. Determine the asymptotic curves of the catenoid

x(u,v) = (coshv cosu, cosh v sin u, v).

Solution 3.3.3. The first-order partial derivatives are

x,, = (—coshvsinu, coshvcosu, 0), x, = (sinhvcosu, sinhwvsinu, 1).



= F = (Xy, Xy) = cosh’v, F = (Xuy X0) =0, G =(xy, Xy) = cosh? v.
The normal vector is given by

N Xu AXy (cosu, sinwu, sinhv)
3w A Xy V/1+sinh? v

Then, we have x,, = (—coshvcosu, —coshvsinu, 0), X, = (—sinhvsinu, sinhvcosu, 0), and
Xy = (coshv cosu, coshwvsinu, 0). Thus, the coefficients of the second fundamental form are

= —(sech v cosu, sechvsinu, tanhv).

€:<qu,N>:1, f:<xuvaN>:07 g:<xvvaN>:71'

The asymptotic curves satisfy null second fundamental form:

I, (w, w) = edu?® + 2f dudv + g dv? = edu® + gdv? = 0.
Since e = —g # 0, we have du? = dv?, or equivalently, du = £dv. Integrating both sides, we
obtain the asymptotic curves v = v + const.
Exercise 3.3.4. Determine the asymptotic curves and the lines of curvature of z = zy.
Solution 3.3.4. The parametrization is given by x(u,v) = (u,v,uv). Then we compute x, =
(17 0, U)7 Xy = (0, 1, u>7 Xuu = (0, 0, 0), Xuv = (0» 0, 1)7 Xoy = (0, 0, 0)7 and

X AXy  (—u,—u,l)
xu AXo|  VI+uZ+0?

Hence, we compute the coefficients of the first and second fundamental forms:

E:(xu,xu)zl—l—vQ, F = (xy,%X,) = uv, G:<XU,XU>:1—|-U2,

1
VIt uZ 02’

The asymptotic curves satisfy null second fundamental form:

e=(Xuu, N) =0, f=(xyuy,N)= g = (Xpu, N) = 0.
I, (w,w) = edu® + 2f dudv + gdv? = 2f dudv = 0.

Since f # 0, it must be that du = 0 or dv = 0, and hence the asymptotic curves are u = const.
and v = const., corrsponding to the y and x axes, respectively. The lines of curvature satisfy

(fE —eF)du® + (gE — eG)dudv + (gF — fG) dv? = fEdu® — fGdv? = 0.

Since f # 0, we have E du? — G dv? = 0, or equivalently,

du 11+ u?
2 2 2 2 _ —

. . =1 =1
Hence, the lines of curvature are given by sinh™ " « + sinh™ "~ v = const.

Exercise 3.3.5. (Enneper’s Surface)

Consider the parametrized surface (Enneper’s surface)

w3 3
x(u,v) = (uf §+u112, v — — +vu?, uzfvz)

and show that



a. The coefficients of the first fundamental form are

E=G=(01+u*+v%)? F=0.

b. The coefficients of the second fundamental form are

c. The principal curvatures are
2 2

k= s
Tt )

d. The lines of curvature are the coordinate curves.

o}

. The asymptotic curves are u + v = const. and u — v = const.

Solution 3.3.5.
a. Calculate the first-order partial derivatives:
x, = (1 —u®+0°, 2w, 2u), x, = (2uv, 1 —v* +u?, —20).
Then the coefficients of the first fundamental form are
E = (xy,%,) = (1 —u? +0*)? + 40?0? + 4u® = (1 + u® +0?)?,
F = (%Xu,%,) = 2uv(l — u® +v%) + 2uv(1 + u? — v?) — duv = 0,
G = (X, %) = 4u0? + (1 +u? —v?)? + 40? = (1 +u® + %)%

b. Calculate the second-order partial derivatives:
Xuuw = (—2u, 20, 2),  Xup = (20, 2u, 0), Xy = (2u, —2v, —2).
Next, we find the normal vector:
Xy AXy = (—2u(1+77), 20(1 4+ 1?), 1 — r4) ., where 7% = u? + 02,

|xy AXy| = (1+ 7"2)2.

Therefore,

Xy AX 1
= Tr - —2u, 2v, 1 —u? —v?).
%0 A Xy | (1+u2+v2)( =0 =)

The coefficients of the second fundamental form are given by the following inner products:

1
e = Voxw) = gy (0 + 407 4201 = = 0%)) =2,
1
f = <N,Xm;> = m(—4uv+4uv+0) =0,
1
g=(N,Xpp) = m (—4u2 — 40 —-2(1 — 2 —'UQ)) = 2.

c. The shape operator in the (u,v) basis is given by S = I~ 11, where

17<E F>7((1+u2+v2)2 0 )
\F G/ 0 (1+u?+02)2)°

(06 Y

and



Thus,

5_1_111_;(1 0)(2 0)_;(2 0)
B S (14w 4+02)2\0 1/\0 -2/ (1+u2+02)2\0 -2/°

The principal curvatures are the eigenvalues of the shape operator, which are easily seen to

be
2 2

Mf=—— o k= ——— )
! (14 u? +02)?’ 2 (14 u?+0?)?
d. The lines of curvature correspond to the eigenvectors of the shape operator, which are 9,
and 0,. Since the shape operator is diagonal in the (x,,x,) basis, the lines of curvature are
the coordinate curves u = const. and v = const..

e. For each p on an asymptotic curve, the normal curvature in the direction of the tangent vector
is zero. The normal curvature k,, in the direction of a unit tangent vector t = ax, + bx, is
given by

2 (du)? - (dv)?).

kn = (S(t),t) = (ERETSE

Setting k,, = 0 gives (du)? = (dv)?, which implies du = 4dv. Therefore, the asymptotic
directions correspond to the curves where u 4+ v = const. and u — v = const.

Remark. Since the mean curvature H = ’“17;’“2
minimal surface.

= (0 everywhere, Enneper’s surface is a

Exercise 3.4.6. (A Surface with K = —1; the Pseudosphere)

*a. Determine an equation for the plane curve C, which is such that the segment of the tangent
line between the point of tangency and some line 7 in the plane, which does not meet the
curve, is constantly equal to 1 (this curve is called the tractrix; see Fig. 1-9).

b. Rotate the tractrix C' about the line r; determine if the ”surface” of revolution thus obtained
(the pseudosphere; see Fig. 3-22) is regular and find a parametrization in a neighborhood of
a regular point.

c. Show that the Gaussian curvature of any regular point of the pseudosphere is —1.

Figure 3-22. The pseudosphere.



Solution 3.3.6.

a. Let C be the curve parametrized by arc length s, i.e., a(s) = (x(s), z(s)), with s > 0. Assume
that the line r is the z-axis. The tangent vector at a(s) is given by o/(s) = (2/(s), 2'(s)).
The line tangent to C' at a(s) intersects the z-axis at the point

T(s) = (J:(s) - j((‘z)) a:’(s),O) .

The length of the segment between the point of tangency and the intersection point is given

by
0(s) = |a(s) — T(s)] = \/C((?) x’(s))2 4 2(e)? = (o [14 (‘Zég)Q

Since s is the arc length parameter, we have

2'(s))% + (7'(s))? = x/(s)2: 1
@EP P =1 = 1+ (5) = o
Therefore,
= 2z(s) - L __zs) where 2/(s
£5) = 500) - T =~ oe where /() <0
Setting ¢(s) = 1, we have 2/(s) = —z(s), and hence z(s) = z(0)e *. By arc length

parametrization, we have

x(s) = /S dt2'(t) = /S dt V1 —a2e 2, a=2(0).
0 0

Thus, the tractrix is given by
S
C: afs)= (/ V1—a2e2tdt, ae*S> .
0
b. Rotate the tractrix C' about the z-axis. The parametrization of the pseudosphere is given by

u
x(u,v) = (/ V1 —a2e2tdt, ae” " cosv, ae” sinv) , o u>0,0<wv< 2T
0

c. We will compute the first and second fundamental forms to find the Gaussian curvature.
First, we have

X, = (m, —ae Y cosv, —ae” " sinv) , Xy = (0, —ae " “sinv, ae” " cos v) .
Thus, the coefficients of the first fundamental form are
E=(xy,x,) =1, F=(x,,%)=0G=(x,,x,) =a’e %"
Next, we have

_42,—2u __ ,,—u _ 2,-2U UG _ 2,-2
Xy A Xy (ae , —ae" " cosvv1 —ace %%, —ae “sinvv1 — a‘e “)

X0 A Xyl ae™ v
= (—ae_", —cosvy1—a2e 24, —sinvy/1 — a26—2“) ,

and

2 ,—2u
a-e —u —u o
Xyy = | —7/—, ae cos v, ae smuo |,

b
A /1 _ a26—2u
Xy = (O, ae “sinv, —ae” " cos U) ,

Xy = (0, —ae” " cosv, —ae "sinv).

10



Then,

2,—2u —u
a“e —ae
6:<i'7xuu>:7a67u( — + \/1*&2672“) = —
1 —a2e2u V1 —a?e—2v

f= <Na Xuv> =0,
g = (N, Xyp) = ae""\/1—a?e~2u.

Finally, the Gaussian curvature is given by

T EG-F? 1-a2e2v—0 oo

Exercise 3.3.7. (Surfaces of Revolution with Constant Gaussian Curvature)

A surface of revolution

(p(v)cosu, p(v)sinu, Y(v)),  @(v) #0,

is given as a surface of revolution with constant Gaussian curvature K. Choose the parameter v
such that

() + @) =1,
that is, v is the arc length of the generating curve (p(v), ¥ (v)). Show that:
a. ¢ satisfies ¢ + K = 0 and ¢ is given by

(o) = / VI (@) dv,

thus 0 < v < 27, and the domain of v is such that the last integral makes sense.

b. All surfaces of revolution with constant curvature K = 1 which intersect perpendicularly the
plane xOy are given by

@(v) = Ccosv, w(v):/ 1—C2sintdt
0

where C is a constant (C' = ¢(0)). Determine the domain of v and draw a rough sketch of
the profile of the surface in the xz-plane for the cases C =1, C' > 1, C < 1. (Observe that
C =1 gives a sphere.)

c. All surfaces of revolution with constant curvature K = —1 may be given by one of the
following types:

(a) p(v) = C coshw,

Y(v) = / V1 — C2sinh? t dt;
0

(b) ¢(v) = Csinhw,

P(v) :/ V1 — C2cosh? t dt;
0

(©) p(v) = e,

¢(v):/ovmdt.

Determine the domain of v and draw a rough sketch of the profile of the surface in the
zz-plane.

d. The surface of type 3 in part (c) is the pseudosphere of Exercise 6.

11



e. The only surfaces of revolution with K = 0 are the right circular cylinder, the right circular
cone, and the plane.

Solution 3.3.7.

a. The generating curve a(v) = (p(v),1(v)) is arc length parametrized. Here we follow the
steps in Example 4 and comput

x, = (—p(v)sinu, p(v)cosu, 0), x, = (¢'(v) cosu, '(v)sinu, P'(v)).
Then, E = ¢?, F =0, and G = (¢')° + (¢/)° = 1. The normal vector is given by
Xy N Xy "(v) cosu "(v) sinu
(Heosn s

X AX| o) p(v)
Then,
Xuy = (—p(v) cosu, —p(v)sinu, 0),
Xuv = (—(p/(’l)) Sinuu Qol(v) cosu, 0)7
Xuu = (" (v) cos u, " (v) sinu, ¥ (v)).
and

€= <N7 qu> - 1//(@),
f = <N7 Xm;> = O,

¥’ (v) "
g= N, Xyp) = HU(* +77ZJ’U v
( ) =¢"(v) 2(0) (v)¢'(v)
The Gaussian curvature is given by
_ 9= f
K= EG—-F?2

b. If the surface intersects perpendicularly the plane Oy, then ¥'(0) = 0, which implies ¢’(0) =
+1. Without loss of generality, we may take ’(0) = 1. The solution of ¢”" + ¢ = 0 subject to
this initial condition is ¢(v) = C cosv. Since (¢’)?+ (¢')? = 1, we have (¢')? = 1 —C?sin? v,
and hence

¢(v) = Ccosv, w(v)z/ dt V1 — C?sin’t.
0

Exercise 3.3.8. (Contact of Order > 2 of Surfaces) Two surfaces S and S, with a common point
p, have contact of order > 2 at p if there exist parametrizations x(u,v) and X(u,v) in p of S and
S, respectively, such that

Xy = Xyy Xy =Xy, Xyuw = Xyuy,  Xuv = Xuws  Xoy = Xpy-

a. Let S and S have contact of order > 2 at p; x: U — S and x: U — S be arbitrary
parametrizations in p of S and S respectively; and f: V C R3> — R be a differentiable
function in a neighborhood V of p in R?®. Then the partial derivatives of order < 2 of
fox:U — R are zero in x !(p) if and only if the partial derivatives of order < 2 of
fox: U — R are zero in x*(p).

*b. Let S and S have contact of order > 2 at p. Let 2 = f(z,y) and z = f(z,y) be the equations,
in a neighborhood of p, of S and S, respectively, where the xy-plane is the common tangent

plane at p = (0,0). Then the function f(z,y) — f(z,y) has all partial derivatives of order
< 2 equal to zero at (0,0).
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*d.

Let p be a point in a surface S C R3. Let Ozyz be a Cartesian coordinate system for R?
such that O = p and the xy-plane is the tangent plane of S at p. Show that the paraboloid

z = %(Iszz + Znyzy + yzfyy)a

obtained by neglecting third- and higher-order terms in the Taylor development around
p = (0,0), has contact of order > 2 at p with S (the surface (x) is called the osculating
paraboloid of S at p).

If a paraboloid (the degenerate cases of plane and parabolic cylinder are included) has contact
of order > 2 with a surface S at p, then it is the osculating paraboloid of S at p.

. If two surfaces have contact of order > 2 at p, then the osculating paraboloids of S and S at

p coincide. Conclude that the Gaussian and mean curvatures of S and S at p are equal.

The notion of contact of order > 2 is invariant by diffeomorphisms of R3; that is, if S and
S have contact of order > 2 at p and ¢: R? — R? is a diffeomorphism, then (S) and ¢(S)
have contact of order > 2 at o(p).

If S and S have contact of order > 2 at p, then

where d is the length of the segment cut by the surfaces in a straight line normal to T,,(S) =

T,(S), which is at a distance r from p.

Solution 3.3.8.

a.

b.

Suppose the partial derivatives of order < 2 of f o X are zero in X~ !(p). Then, by the chain
rule, we have

(fOX)uZVf'XHZO, (foi)vZVf'XUZO,
(f o i)uu =Vf Xyu + ingiu =0,
(foX)uy =V Xyy + XL Hpx, =0,
(foR)yy = Vf Xy + XL Hyx, =0,
where Hy is the Hessian matrix of f at p. Since S and S have contact of order > 2 at p,
in the region x~*(p) we have (f o X)yu = Vf  Xyu + XL Hpxy = Vf Xy + iZHfiu = 0.
Similarly, (f ox)yy = (foX)pw = (f ox)y = (f 0x), = 0. The converse follows by symmetry.

Since S, S have z = 0 as the common tangent plane, their graph at p = 0 satisfy f(0,0) =
£(0,0) = 0 and V£(0,0) = Vf(0,0) = 0. Let’s define the function F : R® — R, such
that F(z,y,2) = 2z — 1 f42(0,0)2% — f2,(0,0)zy — 3 f,,,(0,0)y>. Since F is a polynomial
of z,y,x, it is differentiable. The parametrizations x, X for S and S at p are given by
x(z,y) = (2,9, f(z,y)) and X(x,y) = (z,y, f(x,y)), respectively. Then, (F o x)(z,y) =
f(@,y) = 3 f22(0,0)2% = f,(0,0)zy — 3 f,,(0,0)y?, so all the partial derivatives of order < 2
of Fox at (0,0) are zero. By part a., all the partial derivatives of order < 2 of F'oX at (0,0)
are also zero. Therefore,

FoX(x,y) = f(z,y) — %fxz((),())xg - fxy(ov 0)ry — %fyy(070)y2

has all partial derivatives of order < 2 vanish at p. Thus, the function f(z,y) — f(x,y) has
all partial derivatives of order < 2 vanish at p.

In a neighborhood of p, the surface S can be expressed as the graph of a function z = f(x,y),
where the zy-plane is the tangent plane at p. Since the xy-plane is the tangent plane at p,
we have f(0,0) = f(0,0) = f,(0,0) = 0, so the Taylor expansion of f(x,y) around p is given
by

f(z,y) = % (fm(O,O)xQ + 2f2y(0,0)zy + fyy(O,O)yQ) + R3(z,9).
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Let S be the paraboloid defined by

z=g(x,y) = % (fm(O, 0)z? + 2f2y(0,0)zy + fyy (0, 0)y2) .

The parametrizations for S and S at p are given by x(z,y) = (z,y, f(z,y)) and X(z,y) =
(z,y,9(x,y)), respectively. The second-order partial derivatives of f and g at p are equal,
since the remainder term R3(z,y) contains only terms of order > 3. Therefore, by definition,
S and S have contact of order > 2 at p.

. Suppose a paraboloid S has contact of order > 2 with a surface S at p. Let the equation of
S in a neighborhood of p be given by z = f(z,y), where the xy-plane is the tangent plane at
p. The equation of the paraboloid S can be expressed as

2= f(x,y) = az® + 2bxy + cy?,

for some constants a, b, ¢ € R. The second-order Taylor expansion of f(x,y) around p is given
by

flz,y) = % (f22(0,0)2” +2f,,,(0,0)zy + f,,(0,0)y?) .

Comparing this with the expression for f(x,y), we find that

1 1 1
a = 5fzz(070)7 b= §f1y(070)a c= Efyy(oao)

Thus, the paraboloid S is the osculating paraboloid of S at p as defined in c..

. Let P, P be the osculating paraboloids of S and S, respectively. By b., S, S have contact
of order > 2 at p with P, P, respectively. Since S also has contact of order > 2 with S, all
the partial derivatvies of order < 2 of f and f vanish at p, where f, f are the equations in a
neighborhood of p, of S and S, respectively. Therefore,

N |
N —

and the osculating paraboloids P and P coincide. Since the Gaussian and mean curvatures
depend only on the partial derivatives of order < 2 of the parametrization at p, the Gaussian
and mean curvatures of S and S at p are equal.

. Suppose S and S have contact of order > 2 at p. Let ¢ : R3 — R3? be a diffeomor-
phism. The parametrizations for S and S at p are given by x(u,v) and X(u,v), respec-

tively. The parametrizations for ¢(S) and ¢(S) at ¢(p) are given by y = (¢ o x) (u,v) and
¥ = (¢ oX) (u,v), respectively. Then, by the chain rule, we have

Yo =dox Xy, Yo =d¢x - Xy, Yuu= szDx(Xu,Xu) + dox * Xyu,

Yuv = d2<,0|x(Xu,Xv) + d@|x * Xuvs Yoo = d2@|x(xvaxv) + d(P|x * Xowvy
and similarly for y, where d2¢|y is the bilinear differential of ¢ evaluated at x.

Since S and S have contact of order > 2 at p, it follows that y, = V., Yo = Yo, Yuu = Yuu

Yuv = Vups a0d Yy = ¥,p- Thus, ¢(S) and ¢(S) have contact of order > 2 at (p).

. We may choose a Cartesian coordinate system Ozyz such that O = p, and z = 0 is the
common tangent plane of S and S at p. Let the equations of S and S in a neighborhood
of p be given by z = f(z,y) and z = f(z,y), respectively. Since S and S have contact of
order > 2 at p, by part b., all the partial derivatives of order < 2 of the function G(z,y) =
f(z,y) — f(x,y) vanish at p. Therefore, G(0,0) = VG(0,0) = V2G(0,0) = 0, where V2@ is
the Hessian matrix of G. Take a point ¢ = (z,y,0) € T,,(S) in the tangent plane, a distance
r = /22 +y? from p. The straight line L, normal to the tangent plane passing through ¢
intersects the surfaces S and S at the points (z,y, f(z,y)) and (z,y, f(z,y)), respectively,
and d = | f(z,y) — F(,9)| = |G (@, ).
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Define the function g(t) = G(tu) for a fixed u, where u € R? is a unit vector such that
(z,y) = ru. Then g is differentiable, and ¢g(0) = ¢’(0) = ¢”(0) = 0, since all the partial
derivatives of order < 2 of F' vanish at p. By Taylor’s formula with remainder, we have

g(t) = g(0) + 4'(0) + ; ds (£ = s)g"(s) =/0 ds (t = s)g"(s)

for all ¢ in a neighborhood of 0. Next we will bound |g|. Since F is smooth, V2F is continuous,
so for all € > 0 there exists § > 0, such that ||(z,y)|| < § implies ||V2F(z,y)| < 2. Hence,
for t < 8, |g"(t)| = [ufV2Fu| < |V2F|||u?|| < 2¢. Take t = 7 < §, then we have

/ds r—s)g"( /ds (r—s)g"(s)]

_/ ds (r — 8)2er? = er?.

0

|G(ru)| = lg(r)| =

Notice that d = G(z,y) = G(ru), so for all € > 0 there exists § > 0 such that % < ¢
whenever \/z2 + y2 < §. This proves the desired result.

Exercise 3.3.13. Let F: R?* — R3 be the map (a similarity) defined by F(p) = cp, p € R3, c a
positive constant. Let S C R? be a regular surface and set S = F(S). Show that S is a regular
surface, and find formulas relating the Gaussian and mean curvatures, K and H, of S with the
Gaussian and mean curvatures, K and H, of S.

Solution 3.3.13.

1. Let x : U CR — S be a local parametrization of S. Let S = F(S), thenX = Fox : U — S is
a local parametrization of S. The map F is smooth, and since dF = cId is an isomorphism,
dX = dF odx = ecdx has rank 2 whenever dx has rank 2. Thus, X is a homeomorphism onto
its image and dZ is injective (hence an immersion). Therefore, S is a regular surface.

2. For any local parametrization x and X, we have X = cx. Thus,
= _ = _ —h= 2
Xy = Xy, Xy =Xy, XAXy =" (Xy AXy).

Hence, the normal for S satisfies N = N. Write the Weingarten map for S and S as S and
S, respectively. By definition, dN = —S§ o dx, so

dN:dN:—Sde:—Soldiz—(ES)Odi.
c c

Therefore, S = %S , and the principle curvatures satisfy k; = %ki, since they are the eigen-
values of §. The Gaussian curvature K and mean curvature H of S are then given by

Exercise *3.3.15. Give an example of a surface which has an isolated parabolic point p (that
is, no other parabolic point is contained in some neighborhood of p).

Solution 3.3.15. We know that the graph of 2* has an isolated point of zero curvature, so it can
be used as one direction. Then add something to bend it in the other direction away from the origin,
such that the Hessian is not changed, i.e. we add a quartic term. We can construct an example that
looks like z# in one direction and y? in the other at the origin: let x(u,v) = (u, v, u* +u?v? +v?).
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Claim. The image S C R? of x has a parabolic point at (0, 0, 0), and all the other points are
elliptic. We compute the second fundamental form as follows:

x, = (1, 0, 4u® + 2uw?), x, = (0, 1, 2u’v + 2v) ,
Xuu = (0, 0, 120® + 20%),  xup = (0, 0, 4uv), Xy, = (0, 0, 2u* +2) .,
The unit normal is given by

N Xu Nxy (—4u® — 2uv®, —2u*v — 20, 1)
[y AXy|  V/16u8 + 20ut0? + 120202 + 402 + 1

Let A = (16u® + 20u*v? + 12u®v* + 40 + 1)71/2 > 0, we have
e=A(12u* + 20%), f= A(4uwv), g= A2u*+2).
Hence, given a tangent direction w(u,v) = a(u, v)x, + b(u, v)x, € T,(S), we have
H(w, w) = ea(u,v)? + 2f a(u,v) b(u,v) + g b(u, v)?
= 2A (6u”a® + (va + ub)® + (1 — 3u?)b?) >0

if and only if u? < 1/3. Unless b = 0, II(w,w) > 0 whenever |u| < 1/v/3, so near the origin there is
only one direction in which k,, = II(w)/I(w) = 0. Take this direction, assume a # 0, then a point
p is parabolic if and only if k,(p) = 0, if and only if II,(w) = 24a?(6u® + v?) = 0, if and only if
u = v = 0. Hence, (0,0,0) is an isolated parabolic point.

Exercise *3.3.16. Show that a surface which is compact (i.e., it is bounded and closed in R3)
has an elliptic point.

Solution 3.3.16. Recall that an elliptic point is some point p where det (dN,) < 0.

Exercise 3.3.17. Define Gaussian curvature for a nonorientable surface. Can you define mean
curvature for a nonorientable surface?

Solution 3.3.17.

Exercise 3.4.18. Show that the Mobius strip of Fig. 3-1 can be parametrized by

x(u,v) = ((2—wvsin ¥)sinu, (2 —vsin%)cosu, vcos %),

and that its Gaussian curvature is

1

K = - T
{%U2+(27’L}Sin%) }

Solution 3.4.18. The Mobius strip is constructed by twisting the cyclinder segment
X(u,v) = (2sinw, 2cosu, v), u € |0,2n],v € [-1,1],
by an angle half of the turning angle u. Therefore, we have
x(u,v) = ((2 — vsin %) sinu, (2 —vsin¥) cosu, vcos %) .

2 2 2
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x

Figure 3-1. The Mdbius strip.

Figure 2-31

To compute the Gaussian curvature, let’s use , and compute the following:
v u
2 2

sinu, cos %) .

v
2

u
2

v

Xy = ((2—wvsin ) cosu — & cos ¥ sinu, —(2 —sin &) sinu — & cos -3

2
sinu, sin

sin E) ,

COoS U, 5

u

2

u

Xy = (f sin 5

Then, we have

2 2
E:(2—vsin%) +(%) F=0, G=1.

Therefore, x is an orthogonal parametrization. Next, notice that x,, = 0, and hence g = 0. Since
N = (x4 A Xy)/||Xu A Xy]|, we have

_det(xy, Xy, Xuo)

f = <Xuv; N> =
|Xu A Xy
Now, let’s compute the determinant: we have
_(_l U i — sin & _1 u in ¥ g _lgpu
Xyy = (—3 €0s § sinu — sin § cosu, —3 cos § cosu + sin 5 sinu, —5sing) .

Thus, we can compute the determinant directly, by expanding along the third column:

(2—vsin¥%)cosu — Ycos%sinu —sin¥sinu —3cos%sinu —sin % cosu

det(Xu, Xy, Xup) = |—(2 —vsin §)sinu — §cos § cosu  sin§cosu  —35cos g cosu + sin § sinu
Vi U u 1 inu
_§Sln§ COS§ _§SIH§

_ _% ((2 —vsin %)% + (%)2) - _g'

Moreover, we have |x, AX,| = VEG — F2 = VE, and f = —%/\F = —@. Finally, the Gaussian
curvature is given by
koo 1 L
- 2 = = 2
EG - F EG ik {%02—&—(2—118111%)2}

Exercise *3.3.19. Obtain the asymptotic curves of the one-sheeted hyperboloid

2?4yt —22 =1,

Solution 3.3.19. We first rederive a few important identities. Let x(u,v) = (u, v, f(u,v)) be a
parametrization of the surface. Then, we have

(_fua _f’LM 1)
VIt e+ 12
NeXta we have Xuu = (07 07 fuu)a Xuv = (07 07 fuv)7 Xov = (07 0; fvv)a and

f’ll/U. f’U.’U fU’U

VR [ TUhm R Vo R
17

Xu:(]-v 0, fu)a Xv:(oa 1, fv) = N =



By the Gauss formula, the Gaussian curvature is given by

K = eg—f2 _ fuufvv_fiv
CEG-F* (1+ f2+ )Y

For the one-sheeted hyperboloid, we have z = f(z,y) = /22 + y2 — 1 on the upper sheet where
z > 0. Compute

_ z — Yy
y? -1 2 —1 xy

fe =@ WE@Er g @i e

Explicitly, the coefficients e, f, g are given by

y?—1 Ty 2?2 -1

e = = — =

o f v 9 :
(@2 +y?)/a?+y?—1 (@2 +y?)/a?+y? -1 (x2 +y2) /22 +y2 -1

One parametrizion of the asymptotic curves satisfy the equation

x =tcosf —sind,
y =tsinf + cosb,

z =t

Remark. We can check that the Gaussian curvature is negative:

K: fmzfyy_ %y _ ]. <O
L+ @y -12

as expected for a hyperbolic surface.

Exercise *3.3.21. Let S be a surface with orientation N. Let V C S be an open set in S
and let f: V C S — R be any nowhere-zero differentiable function in V. Let v; and vy be two
differentiable (tangent) vector fields in V' such that at each point of V', v; and vy are orthonormal
and v1 Avgy = N.

a. Prove that the Gaussian curvature K of V is given by
(d(fN)(v1) Nd(fN)(v2), fN)
13

The virtue of this formula is that by a clever choice of f we can often simplify the computation
of K, as illustrated in part (b).

K =

b. Apply the above result to show that if f is the restriction of

22y 22
Tyt
to the ellipsoid
2 2 2
T y z
2tpta=h
then the Gaussian curvature of the ellipsoid is
1 1
T o222 fA

Solution 3.3.21.
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a.

Since v;, i = 1, 2 are tangent vector fields, we have d(fN),(v;) = v;(f)Np + fdN,(v;). Then,

d(fN)(v1) AA(fN)(v2) = (02 ()N + fAN(v1)) A (02(f)N + fAN (v2))
= f (v1(f) AdN (v2) = v2(f) AdN (v1)) + f2 (AN (1) A dN(v2)).

Taking the inner product with fN, we have
(d(fN) (1) Ad(fN)(v2), fN) = fHdN(v1) AN (v2), N),

by linearity of the determinant. Hence, (d(fN)(vi) A d(fN)(v2), fN)/f3 = (AN(v1) A
dN(vy), N} is independent of f. In the basis {v1, v}, we may write

dNy = ay1v1 + az1v2, ANz = a12v1 + ava,

taking the wedge product gives AN (v1)AdN (v2) = (a11a22 — ag2a21) (v1 A va), and (dN(vi)A
dN(v2), N) = det (a;;) since {v1,ve, N} is a positively oriented orthonormal frame. The
shape operator S satisfies S(v;) = —dN(v;), and hence S, = —dN,,. The Gaussian curvature
is

K = detS = det(—dN) = det(dN) = det (ai;)
(d(fN)(v1) AA(fN)(v2), fN)

= (AN (v1) A dN(vp), N) =

13
Given the implicit equation F(z,y,2) = (IL—; + Z—z + i—z =1, let A = diag (a%, b%, C%) and
p=(z,y,z). Then, F(p) = (Ap,p) =1 and VF = 2Ap. The unit normal is given by

VF  Ap  Ap
IVEI - [Apl f(p)’
since f(p) = /{(A4p,p) = ||Ap||. Therefore, f(p)N(p) = (fN)(p) = Ap is a linear map.

Hence, for any v € T,(S), we have d(fN),(v) = Av. Let v1,v2 be an orthonormal basis of
T,(S), such that {vy,ve, N} is a positively oriented orthonormal frame. Then,

N =

(A(fN)(v1) ANA(fN)(v2), fN) = (Avy A Avy, Ap) = det(A){v1 A va, p)

~ de — det(A) AP _ iy L

= det(A)(N, p) = det(A) o) d t(A)f(p).
{UN)(0) AA(fN) (), FN) _det(4) 11
= K= 13 - 14 T a2bh2c2 F'

The explicit formula for K is then

1 22y 22 -2
e \ag Ty ta) o

Exercise 3.3.24. (Local Convezity and Curvature)

A surface S C R3 is locally convex at a point p € S if there exists a neighborhood V C S

of p such that V is contained in one of the closed half-spaces determined by 7,(S) in R3. If, in
addition, V has only one common point with T},(.5), then S is called strictly locally convex at p.

a.

b.

Prove that S is strictly locally convex at p if the principal curvatures of S at p are nonzero
with the same sign (that is, the Gaussian curvature K (p) satisfies K(p) > 0).

Prove that if S is locally convex at p, then the principal curvatures at p do not have different
signs (thus, K(p) > 0).
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C.

*d.

To show that K > 0 does not imply local convexity, consider the surface

flz,y) =2

defined in the open set U = {(z,y) € R? : y*> < 3}. Show that the Gaussian curvature of
this surface is nonnegative on U and yet the surface is not locally convex at (0,0) € U (a
deep theorem, due to R. Sacksteder, implies that such an example cannot be extended to the
entire R? if we insist on keeping the curvature nonnegative; cf. Remark 3 of Sec. 5-6).

(1+y7),

The example of part (c) is also very special in the following local sense. Let p be a point in
a surface S, and assume that there exists a neighborhood V' C S of p such that the principal
curvatures on V' do not have different signs (this does not happen in the example of part ¢).
Prove that S is locally convex at p.

Solution 3.3.24.

a.

Without loss of generality, assume ki, ke > 0, since if both are negative, just replace the
chosen unit normal by its negative. Let x : U C R? — S C R3 be a local parametrization of S
such that {x,,x,} is an orthonormal basis of principle directions at p € S, where p = x(0,0).
Following the definition of Exercise 3.3.22, define the height function h : U — R of S relative

to T,(S) by
h(u,v) = (x(u,v) = p, N(p)),

where N(p) is the unit normal vector p. We compute the derivatives as follows:

(x(0,0) — (p)>
(x4 (0,0), ( )
(x,(0,0), N(p)) =
(%X (0, ) (p)> =
(xuv(0,0), N(p)) = f(p),
= (X0 (0, ) N(p)) =

where h;;(p) are the coefficients of the second fundamental form at p. Since x,(0,0) and
X, (0, 0) are principle directions and orthonormal, we have e(p) = kq, f(p) = 0, and g(p) =
Thus, the Hessian matrix of h at p is given by

w100 = () ) = (5 1)

(p) =
hu(p) =
hy(p) =
huu(p) =
huw(p) =
o

vU

and Taylor expansion gives

h(u,v) = (k1u2 + kov®) + o (u® + 112) ,

[N

Since ki, ko > 0, the quadratic form Q = % (k1u2 + k2v2) associated with V2h(p) is positive
definite. Hence, there exists a neighborhood W C U of p and some ¢ > 0 such that Q(u,v) >
c(u? + v?) for all (u,v) € W. Now since

h _
(u, 2)2 _’_652(”’0) —0 as (u,v) — (0,0),
there exists a radius 6 > 0 such that vu? + v? < § implies |h(u,v) — Q(u,v)| < §(u? + v?).

Therefore, for all (u,v) € W with vu? + v? < §, we have
+v?) — = (u? E(u2—i-vz) >0,
2 2
with h(u,v) = 0 if and only if (u,v) = (0,0). Thus, the neighborhood V = x(W N {(u,v) :

Vu? + 0?2 < §}) of p is contained in the half-space HT = {qg € R3 | (¢ — p, N(p)) > 0}, and
V has only one common point with 7,(S). Therefore, S is strictly locally convex at p.

h(u,v) > Q(u,v) — |h(u,v) — Q(u,v)| > c(u? +v?) =
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b. Suppose S is locally convex at p, so there exists a neighborhood V' C S of p such that V is
contained in one of the closed half-spaces determined by T},(S). Define the height function
as above, by local convexity we may choose an orientation N(p) such that h(u,v) > 0 in a
neighborhood of (0,0), and h(0,0) = h,(0,0) = h,(0,0) = 0. Suppose that the principal
curvatures at p have different signs, say k1 > 0 > ko. Then, along the coordinate axes, we
have h(u,0) = Fkiu® > 0 for all |u| < d,, and h(0,v) = $kov? < 0 for all [v] < &,. Hence, in
every neighborhood of (0,0), we can find points such that h(u,v) > 0 and others such that
h(u,v) < 0, contradicting local convexity. Therefore, the principal curvatures at p do not
have different signs, and hence K(p) > 0.

c. The Gaussian curvature K of the surface defined by z = f(x,y) is given by

AR
Let’s compute the necessary partial derivatives of f(z,y) = z3(1 + 3?):
fe=322(1+9?), f,=22%, for=06z(1+9%), f,, =22 [, =062%.
Then, we have

s— (6z(1+ y*))(22°%) — (62°y)®> 122%(1 — 2y?) -0
(14 Bx2(1+y2)2 + (223y)2)2 (14 924(1 +42)2 + 4a6y2)2 =

However, the surface is not locally convex at (0, 0), since for any neighborhood V' of (0, 0),
there exist points with both positive and negative = values, and hence z-coordinates, so V is
not contained in one of the closed half-spaces determined by the tangent plane at (0,0).

d. Suppose V C S is a neighborhood of p such that the principal curvatures on V' do not have
different signs. Without loss of generality, assume k;(q), k2(q) > 0 for all ¢ € V, since if at
some point one of them were positive and later negative, it would have to cross zero alone,
producing a point where the two have different signs, which is excluded by definition of V.
Follow the steps of a., we define the height function h : U — R of S relative to T},(S) by
h(u,v) = (x(u,v) —p, N(p)). Pick an orthonormal basis of principal directions {x,, %, }. The
Hessian matrix of h at p is given, again, by

kv O
2 _(m
v = ().
Near (0,0), we have
_ 1 2 2 2, .2
h(u,v) = 5 (k1u® + k2v?) + o (u® 4+ 0v?),
and the quadratic form Q = % (k1u2 + k2v2) is positive-definite. Now we consider two cases:

a east one of the principal curvatures at p is positive, say k1 > 0. en, there exists

At least f the principal t tpi iti k 0. Then, th ist
a neighborhood W C U of p and some ¢ > 0 such that Q(u,v) > c(u? + v?) for all
(u,v) € W. Following the same steps as in a., we can show local convexity at p.

(b) Both principal curvatures at p are zero, i.e., k1 = ko = 0, so @ = 0. Since the principal
curvatures are continuous functions on S, we have h(0,0) = 0 and h(u,v) > 0 in a
neighborhood of p. Therefore, S is locally convex at p.
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3 Chapter 3.4

Exercise 3.4.2. Prove that the vector field obtained on the torus by parametrizing all its merid-
ians by arc length and taking their tangent vectors (Example 1) is differentiable.

Solution 3.4.2. From Do Carmo 3.4 Definition 1, a vector field w is differentiable if, for some
parametrization x : U — R3, the functions a(u,v) and b(u,v) given by w = a(u,v)x, + b(u,v)x,
are differentiable on U. Parametrize the torus by

x(u,v) = ((R 4+ rcosv) cosu, (R + rcosv)sinu, rsinv),

where R is the distance from the center of the tube to the center of the torus, and r is the radius
of the tube. Fix 6 = 6y and vary ¢ = 2, we have

ag, () = x(0p,8/r) = ((R+ rcoss/r)cosby, (R+ rcoss/r)sinby,rsins/r).
Then the vector field obtained by parametrizing the meridians by arc length is given by
w(x(bo,s/r)) = ay, (s) = (—sins/rcos Oy, —sin s /rsin by, cos s/r) .
Let w(x(0, ¢)) = a(8, ¢)xo + b(8, ¢)x4, we have
xp = (—(R+rcos¢)sinb, (R4 rcos)cosh,0),
X4 = (—rsingcosd, —rsinsiné, r cos @) .

Comparing the coefficients, we get a(6,¢) = 0, b(8,¢) = % Since they are both differentiable, w
is differentiable.

Exercise 3.4.3. Prove that a vector field w defined on a regular surface S C R? is differentiable
if and only if it is differentiable as a map w : S — R3.

Solution 3.4.3. Suppose w is differentiable as a vector field. Then, there exist a parametrization
x : U — S such that w = a(u,v)x, + b(u,v)x, for differentiable functions a(u,v) and b(u,v).
Since x, and x, are differentiable, w o x = a(u,v)x, + b(u,v)x, is differentiable. Thus, w is
differentiable as a map. Conversely, suppose w is differentiable as a map w : S — R3. Then, for
any parametrization x : U — S and each (u,v) € U, since {x,,x,} forms a basis for T,(S), there
exist scalars a(u,v) and b(u, v) such that (w o x) (u,v) = a(u,v)x, + b(u,v)x,. Then, we have

(w,%xy) = a(Xy, Xy) + 0(Xp,Xy), (W,Xy) = a{Xy, Xy) + b{Xy, Xy).

(5)-(7 &) ()
B)  \F G/ \b
Since {x,,X,} are linearly independent, det (I) = EG — F? # 0, and we have
_ Ga-Fp _ —Fa+EpB
“TEG-F "T EG-F
Since w, x, and x, are differentiable, @ and § are differentiable. Also, since F, F' and G are
differentiable, a(u,v) and b(u,v) are differentiable. Therefore, w is differentiable as a vector field.

Let o = (w,xy), 5 = (w,X,), then

Exercise 3.4.6. A straight line r meets the z axis and moves in such a way that it makes a
constant angle a # 0 with the z axis and each of its points describes a helix of pitch ¢ # 0 about
the z axis. The figure described by r is the trace of the parametrized surface (see Fig. 3-32)

z(u,v) = (vsinacosu, vsinasinu, vcosa+ cu).

The map =z is easily seen to be a regular parametrized surface. Restrict the parameters (u,v) to
an open set U so that z(U) = S is a regular surface.
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. Find the orthogonal family (cf. Example 3) to the family of coordinate curves u = const.

b. Use the curves u = const and their orthogonal family to obtain an orthogonal parametrization

for S. Show that in the new parameters (@, 0) the coefficients of the first fundamental form
are 3 R
G =1, F =0, E = {c®+ (0 — cicos a)?} sin? a.

x Figure 3-32

Solution 3.4.6.

a. The coordinate curves u = const have tangent vectors x,. Let the curve be given by v = v(t),
u = ug. Then, its tangent vector is x, u’(t)+x,v’(t). Orthogonaity gives (x,u’+x,v’,x,) = 0,
and hence Fu’ + Gv' = 0. Let’s calculate the coefficients of the first fundamental form:
X, = (—vsinasinu,vsinacosu,c), X, = (sinacosu,sin asinu, cos ) .
Thus, we have
F = (x,,x,) =v?sina+ ¢, F=(x4,%x,) =ccosa, G=(x,x%,)=1.
Treating v(t) as a function of u, i.e. v(t) = v(¢(u)), we have

v _ F — o(u) +k

— = —— = —ccosu v(u) = —cucosa .

du G
Thus, the orthogonal family to the curves u = const is given by cucosa + v = k in the
(u,v)-plane.
. We have two transverse families of curves in the (u,v)-plane, given by uw = const. and
cucosa + v = const.. Let’s define new parameters (@, ) by

U=u, U=cucosa-+ .

The parametrization in the new parameters is given by X(@, ) = x(u,v) = x(@, ¥ — cti cos ).
Let’s calculate the coefficients of the first fundamental form F, F, G in the new parameters:
Xg = XyulUg + XpyVg = Xy — CCOS Xy,

5(17 = XUy + XV = Xy-

Substituting in the values of E, F', and G calculated in part a., we have
E= (X, Xg) = (Xy — CCOS AKXy, Xy — CCOS AXy)
= E — 2ccos aF + ¢? cos® aG,
2

= (v?sin® a + ¢?) — 2¢% cos? a + ¢? cos? a = (v? + c?sin? @) sin® «
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Exercise 3.4.7. Define the derivative w(f) of a differentiable function f : U C S — R relative
to a vector field w in U by

wii)o) = Gea)| . aeU

where o : I — S is a curve such that «(0) = ¢ and o/(0) = w(q).
Prove that:
a. w is differentiable in U if and only if w(f) is differentiable for all differentiable f in U.

b. Let A, u be real numbers and g : U C S — R be a differentiable function on U; then
wAf +pf') = Mw(f) +pw(f),  w(fg) =w(f)g+ fwlg).

Solution 3.4.7.

a. Suppose w is differentiable in U, then it is differentiable as a map w : U — R3 by Exercise
3.4.3. For any differentiable function f : U — R, let x : V' — U be a local parametrization
of U, and (u,v) a local coordinate. Then, we have

(w o x)(u,v) = a(u, v)Xy + b(u, v)Xy,
where a, b are differentiable functions. Fix ¢ = x(u,v) € U and a curve a = x(u(t), v(t))

such that «(0) = ¢, &’(0) = w(q). Let ¢(u,v) = (f o x)(u,v), then, we have

a d o)t
wi)0) = 55 20)(0) = GO, oe)| = 6w (0) +6u/(0),
and notice that in the basis {x,,x,}, (¢/(t),v'(t)) = (a(u,v), b(u,v)), so
w(f)(q) = ¢ut'(0) + ¢u0'(0) = pualu, v) + ¢ub(u, v)

is differentiable as a function of (u,v). Since x is a local parametrization, w(f) is differentiable
in U. Conversely, let m; be the standard projection, we have f; = m|, : U — R. By
hypothesis, each w(f;) is differentiable. Fix ¢ € U and a curve « such that a(0) = ¢,
a/(0) = w(q). Then

w(f3)(a) = S (fs 0 0)(0) = di

= -(ri00)(0) = (w(q));

and
w(q) = (w(f1)(q), w(f2)(q), w(f3)(q))-

Since each component is differentiable, w is differentiable as a map w : U — R?, and hence
differentiable as a vector field in U by Exercise 3.4.3.

b. Let g € U, a: I — S be a curve such that «(0) = ¢ and &/(0) = w(g). Then, we have
d /
wAf +pf) = 7 (A +uf)ea)li

d d .
= )\& (foa)l,_ +/L& (f o]z
= w(f) + pw(f),

and

w(fg) = S (F9) 0 0)lcg
= S (Toa)(go )y

- o0 @ea0+(oa)0) Gaoa)
=w(f)g(q) + f(q)w(g).
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Exercise 3.4.8. Show that if w is a differentiable vector field on a surface S and w(p) # 0 for
some p € S, then it is possible to parametrize a neighborhood of p by z(u,v) in such a way that
Ty = W.

Solution 3.4.8. Let’s express w in a local parametrization x : U — S in a neighborhood of
p =x%(0,0). Let (u,v) be a local coordinate, then, by a slight abuse of notation,

w(u,v) = (wox)(u,v) = alu,v)x, + blu, v)X,,
where a(u,v), b(u,v) are differentiable functions.

Claim. Let a(u,v) = (a(u,v),b(u,v)). Suppose da # 0, then there exists a neighborhood V of p
and coordinates (%, 0) such that a = a(@,?). Le. w = (1,0) in the basis {X,, X, } = {xa, X5}

Proof. Let (u,v) be alocal coordinate in a neighborhood of p. Since da = a, du+a,dv and da,, # 0,
at least one of a, (p) and a,(p) is non-zero. Without loss of generality, suppose a, (p) # 0. Then, by
the Inverse Function Theorem, there exists a neighborhood V of p such that the map ¥ : V — R?
defined by 9 (u,v) = (a(u,v),v) is a diffeomorphism onto its image. Let (@, ) = ¥ (u,v), then we
have a = a(u, v), as desired. O

Let ®(¢,x(0,0)) be the solution to the differential equation
dy
E = a(y)7 y(()) = X(Ov O)a

and let ¢(u,v) = ®(u, (0,v)). By the smooth dependence of solution of an ODE on initial condi-
tions, ®, and hence ¢, is differentiable. Then, we have

0
- 0(u,0) = a(6(u,0)) = w(d(u, v)).

Furthermore, since ¢(0,v) = ®(0,(0,v)) = (0,v), we have d¢, = 1, and hence ¢ is a local
parametrization around p. Let X(u,v) = ¢(u,v), then we have x,, = w(x(u,v)).

Remark. This is the vector-straightening lemma for surfaces, which is a special case of the
more general Frobenius theorem.

Exercise 3.4.9.

a. Let A:V — W be a nonsingular linear map of vector spaces V and W of dimension 2 and
endowed with inner products (, ) and (, ), respectively. A is a similitude if there exists a
real number A # 0 such that

(Avy, Ave) = Xv1,v9) for all vi,ve € V.

Assume that A is not a similitude and show that there exists a unique pair of orthonormal
vectors e; and es in V' such that Aeq, Aey are orthogonal in W.

b. Use part a. to prove Tissot’s theorem: Let ¢ : U3y C S1 — Sy be a diffeomorphism from a
neighborhood U; of a point p of a surface S into a surface S3. Assume that the linear map
dp is nowhere a similitude. Then it is possible to parametrize a neighborhood of p in S;
by an orthogonal parametrization x; : U — S such that g o x; = x5 : U — S is also an
orthogonal parametrization in a neighborhood of ¢(p) € Ss.

Solution 3.4.9.
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a. Suppose there does not exist a real number such that (Avy, Ave) = A{vy,ve) for all vy, ve € V.
Let {u1,u2} be an orthonormal basis of V, and let Au; = wy, Aug = ws. Since A is not a
similitude, we have (wq, ws) # 0. Define

1 1 (w1, w2)
e1 = ———(u1 —ug), ez = ———=(u; +uz), where p=—"T—"-""—
2(1— p) 201+ p) [Jwa[|[Jwe|]
Then, we have (e1,e3) =0, |ler|| = |le2]| = 1, and
1
(Aer, Aer) = ——me—= ((w1,w1) — (w2, w2)) = 0.
(1=p)(1+p)

Suppose there exists another pair of orthonormal vectors f1, fa such that (Afi, Afs) = 0.
Let f1 = cosfe; + sinfes, fo = —sinfe; + cosfes, then, we have

0= (Af1,Af2) = cosfsinf ((Aey, Aer) — (Aea, Aes)).
If (Aer, Aeq) = (Aeq, Aes), then for any v = ae; + bes € V| we have
|Avf? = (Av, Av) = (e1, e1)(a® + b%) = (ex, e1)[[v]*.

By the polarization identity,

1
(Avr, Avg) = 7 [llos +v2]* = [for = 02|} = (ex, ex) (02, v2),

A is a similitude, which is a contradiction. Thus, we have cos #sin § = 0, and hence 0 = kx /2,
k € Z. Therefore, the pair (e1,es) is unique up to sign.

b. Suppose x; : U C R? — S satisfies (x14,%1,) = 0. Let xo = ¢poxy : U — S3. Since d¢
is not a similitude, by part a., there exists a unique pair of orthonormal vectors ej,es €
T,(S1) such that (do(p)(e1),do(p)(e2)) = 0 in Ty (S2). Let e; = cosfx1y + sinf x1,,
ey = —sinfxq, + cosfxy,. Let & = cosf@u —sinfv, v =sinfu + cosfv. Then,

X1 = X1uUg + X1oVg = c0s 0 X1, +sinfxq, = e,
X15 = X14Us + X1,V = —sinf xy,, + cos 0 x1, = €.
Thus, x; is an orthogonal parametrization of S7 about p. Let X3 = ¢ 0 X3, then
X2 = do(X1)(X1a) = do(X1)(e1), X2 = dd(X1)(X15) = do(x1)(e2).
= (X2a,X25) = (do(X1)(e1), dg(x1)(e2)) = 0.

Thus, X2 is an orthogonal parametrization of Ss about ¢(p).

Exercise 3.4.10. Let T be the torus of Example 6 of Sec. 2-2 and define a map ¢ : R? — T by
o(u,v) = ((rcosu+a)cosv, (rcosu+a)sinv, rsinu),

where v and v are the Cartesian coordinates of R?. Let u = at, v = bt be a straight line in R?,
passing by (0,0) € R2, and consider the curve in T

a(t) = ¢(at, bt).
Prove that:
a. ¢ is a local diffeomorphism.
b. The curve «(t) is a regular curve; «(t) is a closed curve if and only if b/a is a rational number.

c. (Optional) If b/a is irrational, the curve a(t) is dense in T that is, in each neighborhood of
a point p € T there exists a point of a(t).

26



Solution 3.4.10.

a. Since each component ¢1, @2, ¢3 of ¢ is composed of elementary functions and thus differen-
tiable, ¢ is differentiable. The mapping is not globally bijective, but since

—rsinucosv —(rcosu+ a)sinv
Jo,=| —rsinusinv  (rcosu+a)cosv = rank J,(u,v) =2 for all (u,v) € R?
T COSU 0

by the Inverse Function Theorem, ¢ is a local homeomorphism, and hence a local diffeomor-
phism.

b. We have o/(t) = py(at, bt)a + @, (at, bt)b. Since {@y, p,} are linearly independent, o/(t) # 0
for all ¢ when a,b are not both zero, and hence «a(t) is a regular curve. Suppose «(t) is a
closed curve, then there exists T' > 0 such that a(t + 1) = a(t) for all . Then we have
ela(t+T),b(t +T)) = ¢(at,bt), and by inspecting ¢3, there must exist m,n € Z such that
aT = 2mm, bT = 2nmw. Thus, we have b/a = n/m € Q. Conversely, suppose b/a = n/m,
m,n € Z. Let T = 2rrlem (2, %), then we have

at+T)=plalt+T),bt+T)) = p(at + 2m'm, bt + 2n'7) = p(at,bt) = a(t), m',n' €Z.

*c. Suppose b/a is irrational. Let p € T, and let U be a neighborhood of p. Let T? = R?/(2rZ)?
be the flat torus, and consider the projection

7:R* = T?  7(u,v) = (u+27Z,v + 277Z).

The map ¢ : T? — T? defined by % (u+ 27Z,v + 27Z) = ¢(u,v) is well-defined, since
the components of ¢ are periodic with period 27 in (u,v). Therefore, ¢ = ¥ o7 and ¢
factors through m. Then, write a(t) = ¥(n(at,bt)) € T. Since ¢ is a diffeomorphism onto
its image and ¢ = ¢|[0’2ﬂ)7[0,2ﬂ), 1 is a diffeomorphism onto its image, and in particular a
homeomorphism. Thus, «(t) is dense in 7' if and only if 3(t) = w(at, bt) is dense in T?.

Lemma 1 (orbit of an irrational rotation is dense). Let Ry : S — S! be the rotation
defined by Ry(z) = €%z, where §/(2m) € R\ Q. Then, for any z € S, the orbit O = {R2(z) :
n € Z} is dense in S*.

Proof. Suppose O is not dense in S', so C = clg1(0) & S'. Since Ry is continuous and
bijective, we have Ry(C) = C, so C is closed and invariant, and @ C S'\ C is open.
Therefore, there is some non-empty interval I = (a,b) C S* such that I,, = Re(I) C S! for
all n € N. Suppose I, NI, # &, then there exists « € I such that  +nf = x+m6 (mod 2)
for m,n € Z. Hence (n —m)8 € (—|I],|I]) (mod 27), where |I| < 2w. Then, (n —m)f = 2kn
for some k € Z, which contradicts the irrationality of /(2x). Thus, I, N I,, = @ for all
n # m. Since S* is finite, |J7_,, € S' cannot contain infinitely many disjoint open
intervals of finite length, which is a contradiction. Therefore, O is dense in S*. O

Define I' = {3(t) | t € R}. Let [(ug,v0)] € T? be arbitrary and let ¢ > 0. Since a # 0, for
every k € Z define

2k b b
ty = Uo + 2km = u(tx) = up (mod 27), v(tr) = —up + 2kwr— (mod 27).
a a a

Let v = vg — upa/b and 6/27 = b/a. Then since u(tx) — ug = 0, the condition

dr2(B(tr), [(uo, vo)]) = max (Ju(t) — uol, [v(t) — vol) < e

is satisfied at t = t; whenever |kf — | < ¢ in S*. By the lemma, since b/a is irrational, such
a k exists. Thus, I is dense in T?, and hence «(t) is dense in T
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Exercise *3.4.11. Use the local uniqueness of trajectories of a vector field w in U C S to prove
the following result. Given p € U, there exists a unique trajectory o : I — U of w, with «(0) = p,
which is maximal in the following sense: Any other trajectory 8 : J — U, with 8(0) = p, is the
restriction of o to J (i.e., J C I and o]y = B).

Solution 3.4.11. A trajecry o : I — U of w with «(0) = p satisfies o/(t) = w(a(t)) for all
t € I. Let F be the set of all trajectories 3 : Jg — U, such that {0} C Jz C R is open for each
3. Define I = Uﬁe]—‘ Jg. For each ¢ € I, pick any 8 € F such that t € Jg, and define a(t) = §(¢)
on Jg. We claim this is the desired maximal trajectory. Suppose there exists another v € F such
that a|;, = v and t € Jg N J,. Then, the local uniqueness of trajectories implies there exists
{0} € K C JzNJ, such that 5|k = v|x. Theset {s € JgNJ, | |B(s) = y(s)} is open in JzN J, by
local uniqueness theorem, and closed in JgNJ, by continuity, thus it is equal to JgNJ,. Therefore,
a(t) is well-defined. By construction, « is a trajectory of w with «(0) = p. Furthermore, for any
other trajectory 8 : J — U with 5(0) = p, by definition of I, we have J C I and a|; = . Thus,
« is maximal.

Exercise *3.4.12. Prove that if w is a differentiable vector field on a compact surface S and
a(t) is the maximal trajectory of w with a(0) = p € S, then «(t) is defined for all ¢t € R.

Solution 3.4.12. Since S is compact, a(t) is a

Exercise 3.4.13. Counstruct a differentiable vector field on an open disk of the plane (which is
not compact) such that a maximal trajectory «(t) is not defined for all ¢ € R. (This shows that
the compactness condition of Exercise 12 is essential.)

Solution 3.4.13. Let D = {(z,y) € R? : 22 + y? < 1} be the open unit disk in R?%. Define the
vector field w : D — R? by w(z,y) = (1,0), and a trajectory a(t) = (z(t),y(t)) : I — D of w.
Then, we have 2/(t) = 1, y/(t) = 0 subject to z(0) = y(0) = 0. Thus, z(t) = t, y(t) = 0, and
a(t) = (¢,0). The maximal interval I such that «(t) € D is (—1, 1), which is not equal to R.

Remark. The closed disk would seem like a counterexample to the counterexample. However, the
closed disk is compact but not a surface, and hence does not contradict the previous exercise.
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