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1 Chapter 3.2

Definition 1 (second fundamental form). The quadratic form IIp, defined in Tp(S) by IIp(v) =
−⟨dNp(v), v⟩ is called the second fundamental form of S at p.

Definition 2 (normal curvature). Let C be a regular curve in S passing through p ∈ S, k the
curvature of C at p, and cos θ = ⟨n,N⟩, where n is the normal vector to C and N is the normal
vector to S at p. The number kn = k cos θ is then called the normal curvature of C ⊆ S at p.

Definition 3 (Do Carmo 3.2.5, line of curvature). If a regular connected curve C ⊆ S is such
that for all p ∈ S the tangent line of C is a principal direction at p, then C is said to be a line of
curvature of S.

Definition 4 (Do Carmo 3.2.9, asymptotic curve). Let p ∈ S. An asymptotic direction of S at
p is a direction in Tp(S) for which the normal curvature is zero. An asymptotic curve of S is a
regular connected curve C ⊆ S such that for each p ∈ S the tangent line of C at p is an asymptotic
direction.

Proposition 1 (Meusnier). All curves lying on a surface S and having at a given point p ∈ S
the same tangent line have at this point the same normal curvatures.

Proposition 2 (Oline Rodrigues). A necessary and sufficient condition for a connected regular
curve C on S to be a line of curvature of S is N ′(t) = λ(t)α′(t), for any parametrization α(t) of
C, where N(t) = (N ◦ α)(t) and λ(t) is a differentiable function of t. In this case, −λ(t) is the
principal curvature along α′(t).

Definition 5 (shape operator). The linear map S : Tp(S) → Tp(S) defined by S(v) = −dNp(v)
is called the shape operator of S at p.

Exercise 3.2.2. Show that if a surface is tangent to a plane along a curve, then the points of
this curve are either parabolic or planar.

Solution 3.2.2. Suppose a surface S is tangent to a plane Π along a curve C. Let p ∈ C be
an arbitrary point on the curve. Parametrize the curve C by α : I → S ∩ Π, where I is an open
interval containing 0 and α(0) = p. Let N : S → S2 be the Gauss map of S. Since the tangent
plane of S is Π for all p ∈ S, the unit normal N(α(s)) is equal to the constant normal n of Π.
Thus,

0 =
d

ds
N(α(s)) = dNα(s)(α

′(s)).
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Therefore, the differential of the Gauss map dNp has a nontrivial kernel containing α′(0) ̸= 0 for
all α(s) ∈ S. But dNp : Tp(S) → TN(p)(S

2) is a linear map between finite-dimensional vector
spaces, dNp is not invertible, and hence det (dNp) ̸= 0 for all p ∈ C. Thus, all points on C are
either parabolic or planar.

Exercise 3.2.8. Describe the region of the unit sphere covered by the image of the Gauss map
of the following surfaces:

a. Paraboloid of revolution z = x2 + y2.

b. Hyperboloid of revolution x2 + y2 − z2 = 1.

c. Catenoid x2 + y2 = cosh2 z.

Solution 3.2.8. Let’s take the natural orientation: upward normal for graphs and outward
normal for surfaces of revolution.

a. Let the graph be z = f(x, y) = x2 + y2, then the normal to the surface is

N =
(−fx,−fy, 1)»
f2x + f2y + 1

,

where fx = 2x, fy = 2y. Since (x, y) ∈ R2 and the z component Nz = 1/
√
1 + 4(x2 + y2) ∈

(0, 1], the Gauss map is the open upper hemisphere of the unit sphere.

b. As a level set F (x, y, z) = x2 + y2 − z2 − 1, the (outward) normal vector is

N =
∇F
|∇F |

=
(2x, 2y,−2z)√
4x2 + 4y2 + 4z2

=
(x, y,−z)√
x2 + y2 + z2

.

Since x2 + y2 = z2 + 1 ≥ 1, the z component

Nz = − z√
x2 + y2 + z2

= − z√
2z2 + 1

∈
Å
− 1√

2
,
1√
2

ã
.

Thus, the Gauss map covers the open band {p ∈ S2 | |Nz| < 1√
2
}.

c. Let’s write this in the following parametrization:

x(z, θ) = (cosh z cos θ, cosh z sin θ, z), z ∈ R, θ ∈ [0, 2π).

Then,
xz = (sinh z cos θ, sinh z sin θ, 1), xθ = (− cosh z sin θ, cosh z cos θ, 0).

The normal vector is given by

N =
xz × xθ
|xz × xθ|

=
(− cosh z cos θ,− cosh z sin θ, sinh z cosh z)√

cosh2 z + sinh2 z cosh2 z
=

(− cos θ,− sin θ, sinh z)√
1 + sinh2 z

.

=⇒ N = (− sech z cos θ,− sech z sin θ, tanh z).

Since θ ∈ [0, 2π) and Nz = − tanh z ∈ (−1, 1), the spherical image N(C) = S2 \ {(0, 0,±1)}.

Exercise 3.2.9.

a. Prove that the image N ◦ α by the Gauss map N : S → S2 of a parametrized regular curve
α : I → S which contains no planar or parabolic points is a parametrized regular curve on
the sphere S2 (called the spherical image of α).
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b. If C = α(I) is a line of curvature, and k is its curvature at p, then

k = |knkN |,

where kn is the normal curvature at p along the tangent line of C and kN is the curvature of
the spherical image N(C) ⊂ S2 at N(p).

Solution 3.2.9.

a. Suppose α : I → S is a parametrized regular curve with no planar or parabolic points. Then,
the Gauss map N : S → S2 satisfies det (dNp) ̸= 0, and dNp is invertible, and hence injective
for all p ∈ C. Since α is a regular curve, α′(t) ̸= 0 for all t ∈ I, and hence

(N ◦ α)′(t) = dNα(t)(α
′(t)) ̸= 0,

which shows that the spherical image N(C) is a regular curve on S2.

b. Since C is a line of curvature, the tangent vector t = α′(s) at p = α(s) is a principal direction.
Hence, S(t) = knt where kn is the normal curvature along t at p. Let N : S → S2 be the
Gauss map of S. Using dN = −S(t), we have

d

ds
N(α(s)) = dNα(s)(α

′(s)) = −S(t) = −knt.

Thus, |N ′| = |kn|, and the tangent vector of the spherical image N(C) at N(p) is

tN =
N ′

|N ′|
=

−knt
|kn|

= − sgn(kn)t.

Let sN be the arc length parameter of the spherical image N(C). Then,

|kN | =
∣∣∣∣ dtNdsN

∣∣∣∣ = |dtN/ds|
|dsN/ds|

=
dtN/ds

|N ′|
=

k

|kn|
,

where we used t′ = kn in the last equality. Therefore, k = |knkN |.

Exercise 3.2.10. Assume that the osculating plane of a line of curvature C ⊂ S, which is
nowhere tangent to an asymptotic direction, makes a constant angle with the tangent plane of S
along C. Prove that C is a plane curve.

Solution 3.2.10. Let t, n, b be the Frenet frame of the curve C. Since the osculating plane
makes a constant angle with the tangent plane of S, the unit normal N of S along C satisfies

b ·N = const.

Differentiate both sides with respect to the arc length parameter s of C and use Frenet’s formula:

b′ ·N + b ·N ′ = 0 =⇒ −τn ·N + b ·N ′ = 0.

Next, N ′ = −S(t) by the Weingarten formula, where S is the shape operator of S. Since C is a
line of curvature, t is a principal direction of S, and S(t) = knt, where kn is the normal curvature
of S along C. Thus,

−τn ·N − knb · t = −τkn/k = 0,

where k is the curvature of C. Since C is nowhere tangent to an asymptotic direction, kn ̸= 0, so
τ = 0. This implies b′ = −τn = 0, so

d

ds
(b · c) = cb′ = 0 =⇒ b = const.

and hence C is a plane curve.
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Exercise 3.2.14*. If the surface S1 intersects the surface S2 along the regular curve C, then the
curvature k of C at p ∈ C is given by

k2 sin2 θ = λ21 + λ22 − 2λ1λ2 cos θ,

where λ1 and λ2 are the normal curvatures at p, along the tangent line to C, of S1 and S2,
respectively, and θ is the angle made up by the normal vectors of S1 and S2 at p.

Solution 3.2.14. Suppose S1 and S2 intersect along the regular curve C. Let N1, N2 be the
unit normals and let λ1, λ2 be the normal curvatures along the tangent line to C of S1 and S2,
respectively. Let t, n, b be the Frenet frame of the curve C. Since C lies on S1 and S2, t ⊥ Ni,
i = 1, 2. Thus, we can write Ni = n cosϕi + b sinϕi for some ϕi ∈ [0, π2 ], i = 1, 2. The normal
curvatures are given by

λi = α′′ ·Ni = kn ·Ni = k cosϕi, i = 1, 2.

By definition, the angle θ between N1 and N2 satisfies

cos θ = N1 ·N2 = cosϕ1 cosϕ2 + sinϕ1 sinϕ2 = cos(ϕ1 − ϕ2).

By direct computation, we have

λ21 + λ22 − 2λ1λ2 cos θ = k2(cos2 ϕ1 + cos2 ϕ2 − 2 cosϕ1 cosϕ2 cos(ϕ1 − ϕ2))

= k2
(
cos2 ϕ1 + cos2 ϕ2 − 2 cosϕ1 cosϕ2(cosϕ1 cosϕ2 + sinϕ1 sinϕ2)

)
= k2

(
cos2 ϕ1 + cos2 ϕ2 − cos2 ϕ1(1− sin2 ϕ2)

− cos2 ϕ2(1− sin2 ϕ1)− 2 sinϕ1 sinϕ2 cosϕ1 cosϕ2
)

= k2
(
sin2 ϕ1 cos

2 ϕ2 + sin2 ϕ2 cos
2 ϕ1 − 2 sinϕ1 sinϕ2 cosϕ1 cosϕ2

)
= k2 sin2(ϕ1 − ϕ2) = k2 sin2 θ.
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2 Chapter 3.3

Proposition 3 (Gaussian curvature as a ratio of areas). Let p ∈ S be such that K(p) ̸= 0, and
let V be a neighborhood of p where K does not change sign. Then

K(p) = lim
A→0

area(N(A))

area(A)
,

where A ⊆ V is a region containing p and N(A) ⊆ S2 is its spherical image by the Gauss map
N : S → S2. The limit is taken through a sequence {An}, where there is some N ∈ N such that
any ball about p contains all An for n > N .

Remark. The curvature of a plane curve C at p is given by

k(p) = lim
ℓ(s)→0

ℓ(T (s))

ℓ(s)
,

where T (s) is the image of s in the indicatrix of tangents, and ℓ is the length function. Thus, the
Gaussian curvature is the analogue for surfaces of the curvature of a plane curve.

Exercise 3.3.1. Show that at the origin (0, 0, 0) of the hyperboloid z = axy we have

K = −a2, H = 0.

Solution 3.3.1. Consider the parametrization x(u, v) = (u, v, auv) of the hyperboloid z = axy.
The first-order partial derivatives are xu = (1, 0, av), xv = (0, 1, au). Thus, we have

E = ⟨xu,xu⟩ = 1, F = ⟨xu,xv⟩ = 0, G = ⟨xv,xv⟩ = 1.

The normal vector at the origin is

N =
xu ∧ xv
|xu ∧ xv|

=
(−av,−au, 1)√
1 + a2(u2 + v2)

=⇒ N(0, 0) = (0, 0, 1).

The second-order partial derivatives are xuu = (0, 0, 0), xuv = (0, 0, a), xvv = (0, 0, 0), so

e = ⟨xuu, N⟩ = 0, f = ⟨xuv, N⟩ = a, g = ⟨xvv, N⟩ = 0.

Finally, the Gaussian curvature and the mean curvature at the origin are

K =
eg − f2

EG− F 2
=

0− a2

1 · 1− 0
= −a2, H =

Eg − 2Ff +Ge

2(EG− F 2)
=

1 · 0− 0 + 1 · 0
2(1 · 1− 0)

= 0.

Exercise 3.3.2*. Determine the asymptotic curves and the lines of curvature of the helicoid

x = v cosu, y = v sinu, z = cu,

and show that its mean curvature is zero.

Solution 3.3.2.

Observation (Computing asymptotic directions and lines of curvature). For a tangent vector
w ∈ Tp(S) and parametrization x(u, v), we can write w = xudu+ xvdv. Then

kn(w) = IIp(w,w)/ Ip(w,w) =
edu2 + 2fdudv + gdv2

Edu2 + 2Fdudv +Gdv2
.
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The asymptotic directions satisfy kn(w) = 0, hence

IIp(w,w) = edu2 + 2f dudv + g dv2 = 0.

The lines of curvature are where kn attains extremal values, so let λ = dv/du and solve dkn/dλ = 0:

dkn
dλ

=
d

dλ

Å
e+ 2fλ+ gλ2

E + 2Fλ+Gλ2

ã
= 0,

and hence
(fE − eF ) du2 + (gE − eG) dudv + (gF − fG) dv2 = 0.

Consider the parametrization x(u, v) = (v cosu, v sinu, cu), we have

xu = (−v sinu, v cosu, c), xv = (cosu, sinu, 0).

=⇒ E = ⟨xu,xu⟩ = v2 + c2, F = ⟨xu,xv⟩ = 0, G = ⟨xv,xv⟩ = 1.

The normal vector is given by

N =
xu ∧ xv
|xu ∧ xv|

=
(−c sinu, c cosu,−v)√

c2 + v2
.

Then, we have xuu = (−v cosu,−v sinu, 0), xuv = (− sinu, cosu, 0), and xvv = (0, 0, 0). Thus, the
coefficients of the second fundamental form are

e = ⟨xuu, N⟩ = 0, f = ⟨xuv, N⟩ = c√
c2 + v2

, g = ⟨xvv, N⟩ = 0.

Plug into the formulas in the observation, we have 2f dudv ̸= 0. Since f ̸= 0, it must be that
du = 0 or dv = 0, and hence the asymptotic curves are u = const. and v = const.. For the lines of
curvature, we have

(fE − eF ) du2 + (gE − eG) dudv + (gF − fG) dv2 = fE du2 − fGdv2 = 0.

Since f ̸= 0, we have E du2 −Gdv2 = 0, or equivalently,

(v2 + c2) du2 − dv2 = 0 =⇒ du = ± dv√
v2 + c2

.

Integrating both sides, we obtain the lines of curvature:

u = ± sinh−1
(v
c

)
+ const.

Finally, the mean curvature is

H =
Eg − 2Ff +Ge

2(EG− F 2)
=

(v2 + c2) · 0− 0 + 1 · 0
2((v2 + c2) · 1− 0)

= 0.

Remark. The helicoid is a minimal surface since its mean curvature is zero.

Exercise 3.3.3*. Determine the asymptotic curves of the catenoid

x(u, v) = (cosh v cosu, cosh v sinu, v).

Solution 3.3.3. The first-order partial derivatives are

xu = (− cosh v sinu, cosh v cosu, 0), xv = (sinh v cosu, sinh v sinu, 1).
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=⇒ E = ⟨xu, xu⟩ = cosh2 v, F = ⟨xu, xv⟩ = 0, G = ⟨xv, xv⟩ = cosh2 v.

The normal vector is given by

N =
xu ∧ xv
|xu ∧ xv|

= − (cosu, sinu, sinh v)√
1 + sinh2 v

= −(sech v cosu, sech v sinu, tanh v).

Then, we have xuu = (− cosh v cosu, − cosh v sinu, 0), xuv = (− sinh v sinu, sinh v cosu, 0), and
xvv = (cosh v cosu, cosh v sinu, 0). Thus, the coefficients of the second fundamental form are

e = ⟨xuu, N⟩ = 1, f = ⟨xuv, N⟩ = 0, g = ⟨xvv, N⟩ = −1.

The asymptotic curves satisfy null second fundamental form:

IIp(w,w) = edu2 + 2f dudv + g dv2 = edu2 + g dv2 = 0.

Since e = −g ̸= 0, we have du2 = dv2, or equivalently, du = ±dv. Integrating both sides, we
obtain the asymptotic curves u = ±v + const.

Exercise 3.3.4. Determine the asymptotic curves and the lines of curvature of z = xy.

Solution 3.3.4. The parametrization is given by x(u, v) = (u, v, uv). Then we compute xu =
(1, 0, v), xv = (0, 1, u), xuu = (0, 0, 0), xuv = (0, 0, 1), xvv = (0, 0, 0), and

N =
xu ∧ xv
|xu ∧ xv|

=
(−v,−u, 1)√
1 + u2 + v2

.

Hence, we compute the coefficients of the first and second fundamental forms:

E = ⟨xu,xu⟩ = 1 + v2, F = ⟨xu,xv⟩ = uv, G = ⟨xv,xv⟩ = 1 + u2,

e = ⟨xuu, N⟩ = 0, f = ⟨xuv, N⟩ = 1√
1 + u2 + v2

, g = ⟨xvv, N⟩ = 0.

The asymptotic curves satisfy null second fundamental form:

IIp(w,w) = edu2 + 2f dudv + g dv2 = 2f dudv = 0.

Since f ̸= 0, it must be that du = 0 or dv = 0, and hence the asymptotic curves are u = const.
and v = const., corrsponding to the y and x axes, respectively. The lines of curvature satisfy

(fE − eF ) du2 + (gE − eG) dudv + (gF − fG) dv2 = fE du2 − fGdv2 = 0.

Since f ̸= 0, we have E du2 −Gdv2 = 0, or equivalently,

(1 + v2) du2 − (1 + u2) dv2 = 0 =⇒ du

dv
= ±

 
1 + u2

1 + v2
.

Hence, the lines of curvature are given by sinh−1 u± sinh−1 v = const.

Exercise 3.3.5. (Enneper’s Surface)

Consider the parametrized surface (Enneper’s surface)

x(u, v) =

Å
u− u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2

ã
and show that
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a. The coefficients of the first fundamental form are

E = G = (1 + u2 + v2)2, F = 0.

b. The coefficients of the second fundamental form are

e = 2, g = −2, f = 0.

c. The principal curvatures are

k1 =
2

(1 + u2 + v2)2
, k2 = − 2

(1 + u2 + v2)2
.

d. The lines of curvature are the coordinate curves.

e. The asymptotic curves are u+ v = const. and u− v = const.

Solution 3.3.5.

a. Calculate the first-order partial derivatives:

xu =
(
1− u2 + v2, 2uv, 2u

)
, xv =

(
2uv, 1− v2 + u2, −2v

)
.

Then the coefficients of the first fundamental form are

E = ⟨xu,xu⟩ = (1− u2 + v2)2 + 4u2v2 + 4u2 = (1 + u2 + v2)2,

F = ⟨xu,xv⟩ = 2uv(1− u2 + v2) + 2uv(1 + u2 − v2)− 4uv = 0,

G = ⟨xv,xv⟩ = 4u2v2 + (1 + u2 − v2)2 + 4v2 = (1 + u2 + v2)2.

b. Calculate the second-order partial derivatives:

xuu = (−2u, 2v, 2) , xuv = (2v, 2u, 0) , xvv = (2u, −2v, −2) .

Next, we find the normal vector:

xu ∧ xv =
(
−2u(1 + r2), 2v(1 + r2), 1− r4

)
, where r2 = u2 + v2,

|xu ∧ xv| = (1 + r2)2.

Therefore,

N =
xu ∧ xv
|xu ∧ xv|

=
1

(1 + u2 + v2)

(
−2u, 2v, 1− u2 − v2

)
.

The coefficients of the second fundamental form are given by the following inner products:

e = ⟨N,xuu⟩ =
1

(1 + u2 + v2)

(
4u2 + 4v2 + 2(1− u2 − v2)

)
= 2,

f = ⟨N,xuv⟩ =
1

(1 + u2 + v2)
(−4uv + 4uv + 0) = 0,

g = ⟨N,xvv⟩ =
1

(1 + u2 + v2)

(
−4u2 − 4v2 − 2(1− u2 − v2)

)
= −2.

c. The shape operator in the (u, v) basis is given by S = I−1 II, where

I =

Å
E F
F G

ã
=

Å
(1 + u2 + v2)2 0

0 (1 + u2 + v2)2

ã
,

and

II =

Å
e f
f g

ã
=

Å
2 0
0 −2

ã
.
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Thus,

S = I−1 II =
1

(1 + u2 + v2)2

Å
1 0
0 1

ãÅ
2 0
0 −2

ã
=

1

(1 + u2 + v2)2

Å
2 0
0 −2

ã
.

The principal curvatures are the eigenvalues of the shape operator, which are easily seen to
be

k1 =
2

(1 + u2 + v2)2
, k2 = − 2

(1 + u2 + v2)2
.

d. The lines of curvature correspond to the eigenvectors of the shape operator, which are ∂u
and ∂v. Since the shape operator is diagonal in the (xu,xv) basis, the lines of curvature are
the coordinate curves u = const. and v = const..

e. For each p on an asymptotic curve, the normal curvature in the direction of the tangent vector
is zero. The normal curvature kn in the direction of a unit tangent vector t = axu + bxv is
given by

kn = ⟨S(t), t⟩ = 2

(1 + u2 + v2)2
((du)2 − (dv)2).

Setting kn = 0 gives (du)2 = (dv)2, which implies du = ±dv. Therefore, the asymptotic
directions correspond to the curves where u+ v = const. and u− v = const.

Remark. Since the mean curvature H = k1+k2
2 = 0 everywhere, Enneper’s surface is a

minimal surface.

Exercise 3.4.6. (A Surface with K ≡ −1; the Pseudosphere)

*a. Determine an equation for the plane curve C, which is such that the segment of the tangent
line between the point of tangency and some line r in the plane, which does not meet the
curve, is constantly equal to 1 (this curve is called the tractrix; see Fig. 1–9).

b. Rotate the tractrix C about the line r; determine if the ”surface” of revolution thus obtained
(the pseudosphere; see Fig. 3–22) is regular and find a parametrization in a neighborhood of
a regular point.

c. Show that the Gaussian curvature of any regular point of the pseudosphere is −1.
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Solution 3.3.6.

a. Let C be the curve parametrized by arc length s, i.e., α(s) = (x(s), z(s)), with s ≥ 0. Assume
that the line r is the x-axis. The tangent vector at α(s) is given by α′(s) = (x′(s), z′(s)).
The line tangent to C at α(s) intersects the x-axis at the point

T (s) =

Å
x(s)− z(s)

z′(s)
x′(s), 0

ã
.

The length of the segment between the point of tangency and the intersection point is given
by

ℓ(s) = |α(s)− T (s)| =

√Å
z(s)

z′(s)
x′(s)

ã2
+ z(s)2 = z(s)

√
1 +

Å
x′(s)

z′(s)

ã2
.

Since s is the arc length parameter, we have

(x′(s))2 + (z′(s))2 = 1 =⇒ 1 +

Å
x′(s)

z′(s)

ã2
=

1

(z′(s))2
.

Therefore,

ℓ(s) = z(s) · 1

|z′(s)|
= − z(s)

z′(s)
, where z′(s) < 0.

Setting ℓ(s) = 1, we have z′(s) = −z(s), and hence z(s) = z(0)e−s. By arc length
parametrization, we have

x(s) =

∫ s

0

dt x′(t) =

∫ s

0

dt
√
1− a2e−2t, a ≡ z(0).

Thus, the tractrix is given by

C : α(s) =

Å∫ s

0

√
1− a2e−2t dt, ae−s

ã
.

b. Rotate the tractrix C about the x-axis. The parametrization of the pseudosphere is given by

x(u, v) =

Å∫ u

0

√
1− a2e−2t dt, ae−u cos v, ae−u sin v

ã
, u ≥ 0, 0 ≤ v < 2π.

c. We will compute the first and second fundamental forms to find the Gaussian curvature.
First, we have

xu =
Ä√

1− a2e−2u, −ae−u cos v, −ae−u sin v
ä
, xv =

(
0, −ae−u sin v, ae−u cos v

)
.

Thus, the coefficients of the first fundamental form are

E = ⟨xu, xu⟩ = 1, F = ⟨xu, xv⟩ = 0, G = ⟨xv, xv⟩ = a2e−2u.

Next, we have

N =
xu ∧ xv
|xu ∧ xv|

=

Ä
−a2e−2u, −ae−u cos v

√
1− a2e−2u, −ae−u sin v

√
1− a2e−2u

ä
ae−u

=
Ä
−ae−u, − cos v

√
1− a2e−2u, − sin v

√
1− a2e−2u

ä
,

and

xuu =

Å
a2e−2u

√
1− a2e−2u

, ae−u cos v, ae−u sin v

ã
,

xuv =
(
0, ae−u sin v, −ae−u cos v

)
,

xvv =
(
0, −ae−u cos v, −ae−u sin v

)
.
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Then,

e = ⟨N, xuu⟩ = −ae−u
Å

a2e−2u

√
1− a2e−2u

+
√
1− a2e−2u

ã
=

−ae−u√
1− a2e−2u

,

f = ⟨N, xuv⟩ = 0,

g = ⟨N, xvv⟩ = ae−u
√

1− a2e−2u.

Finally, the Gaussian curvature is given by

K =
eg − f2

EG− F 2
=

Ä
−ae−u

√
1−a2e−2u

ä Ä
ae−u

√
1− a2e−2u

ä
− 0

1 · a2e−2u − 0
= −1.

Exercise 3.3.7. (Surfaces of Revolution with Constant Gaussian Curvature)

A surface of revolution

(φ(v) cosu, φ(v) sinu, ψ(v)), φ(v) ̸= 0,

is given as a surface of revolution with constant Gaussian curvature K. Choose the parameter v
such that

(φ′)2 + (ψ′)2 = 1,

that is, v is the arc length of the generating curve (φ(v), ψ(v)). Show that:

a. φ satisfies φ′′ +Kφ = 0 and ψ is given by

ψ(v) =

∫ »
1− (φ′)2 dv,

thus 0 < u < 2π, and the domain of v is such that the last integral makes sense.

b. All surfaces of revolution with constant curvature K = 1 which intersect perpendicularly the
plane xOy are given by

φ(v) = C cos v, ψ(v) =

∫ v

0

√
1− C2 sin2 t dt,

where C is a constant (C = φ(0)). Determine the domain of v and draw a rough sketch of
the profile of the surface in the xz-plane for the cases C = 1, C > 1, C < 1. (Observe that
C = 1 gives a sphere.)

c. All surfaces of revolution with constant curvature K = −1 may be given by one of the
following types:

(a) φ(v) = C cosh v,

ψ(v) =

∫ v

0

√
1− C2 sinh2 t dt;

(b) φ(v) = C sinh v,

ψ(v) =

∫ v

0

√
1− C2 cosh2 t dt;

(c) φ(v) = ev,

ψ(v) =

∫ v

0

√
1− e2t dt.

Determine the domain of v and draw a rough sketch of the profile of the surface in the
xz-plane.

d. The surface of type 3 in part (c) is the pseudosphere of Exercise 6.
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e. The only surfaces of revolution with K ≡ 0 are the right circular cylinder, the right circular
cone, and the plane.

Solution 3.3.7.

a. The generating curve α(v) = (φ(v), ψ(v)) is arc length parametrized. Here we follow the
steps in Example 4 and comput

xu = (−φ(v) sinu, φ(v) cosu, 0) , xv = (φ′(v) cosu, φ′(v) sinu, ψ′(v)) .

Then, E = φ2, F = 0, and G = (φ′)
2
+ (ψ′)

2
= 1. The normal vector is given by

N =
xu ∧ xv
|xu ∧ xv|

=

Å
−ψ

′(v) cosu

φ(v)
, −ψ

′(v) sinu

φ(v)
, φ′(v)

ã
.

Then,

xuu = (−φ(v) cosu, −φ(v) sinu, 0) ,
xuv = (−φ′(v) sinu, φ′(v) cosu, 0) ,

xvv = (φ′′(v) cosu, φ′′(v) sinu, ψ′′(v)) .

and

e = ⟨N, xuu⟩ = ψ′(v),

f = ⟨N, xuv⟩ = 0,

g = ⟨N, xvv⟩ = φ′′(v)

Å
−ψ

′(v)

φ(v)

ã
+ ψ′′(v)φ′(v)

The Gaussian curvature is given by

K =
eg − f2

EG− F 2
=

b. If the surface intersects perpendicularly the plane xOy, then ψ′(0) = 0, which implies φ′(0) =
±1. Without loss of generality, we may take φ′(0) = 1. The solution of ϕ′′+ϕ = 0 subject to
this initial condition is φ(v) = C cos v. Since (φ′)2+(ψ′)2 = 1, we have (ψ′)2 = 1−C2 sin2 v,
and hence

φ(v) = C cos v, ψ(v) =

∫ v

0

dt
√
1− C2 sin2 t.

c.

Exercise 3.3.8. (Contact of Order ≥ 2 of Surfaces) Two surfaces S and S̄, with a common point
p, have contact of order ≥ 2 at p if there exist parametrizations x(u, v) and x̄(u, v) in p of S and
S̄, respectively, such that

xu = x̄u, xv = x̄v, xuu = x̄uu, xuv = x̄uv, xvv = x̄vv.

a. Let S and S̄ have contact of order ≥ 2 at p; x : U → S and x̄ : U → S̄ be arbitrary
parametrizations in p of S and S̄ respectively; and f : V ⊂ R3 → R be a differentiable
function in a neighborhood V of p in R3. Then the partial derivatives of order ≤ 2 of
f ◦ x̄ : U → R are zero in x̄−1(p) if and only if the partial derivatives of order ≤ 2 of
f ◦ x : U → R are zero in x−1(p).

*b. Let S and S̄ have contact of order ≥ 2 at p. Let z = f(x, y) and z = f̄(x, y) be the equations,
in a neighborhood of p, of S and S̄, respectively, where the xy-plane is the common tangent
plane at p = (0, 0). Then the function f(x, y) − f̄(x, y) has all partial derivatives of order
≤ 2 equal to zero at (0, 0).
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c. Let p be a point in a surface S ⊂ R3. Let Oxyz be a Cartesian coordinate system for R3

such that O = p and the xy-plane is the tangent plane of S at p. Show that the paraboloid

z = 1
2 (x

2fxx + 2xyfxy + y2fyy),

obtained by neglecting third- and higher-order terms in the Taylor development around
p = (0, 0), has contact of order ≥ 2 at p with S (the surface (∗) is called the osculating
paraboloid of S at p).

*d. If a paraboloid (the degenerate cases of plane and parabolic cylinder are included) has contact
of order ≥ 2 with a surface S at p, then it is the osculating paraboloid of S at p.

*e. If two surfaces have contact of order ≥ 2 at p, then the osculating paraboloids of S and S̄ at
p coincide. Conclude that the Gaussian and mean curvatures of S and S̄ at p are equal.

*f. The notion of contact of order ≥ 2 is invariant by diffeomorphisms of R3; that is, if S and
S̄ have contact of order ≥ 2 at p and φ : R3 → R3 is a diffeomorphism, then φ(S) and φ(S̄)
have contact of order ≥ 2 at φ(p).

*g. If S and S̄ have contact of order ≥ 2 at p, then

lim
r→0

d

r2
= 0,

where d is the length of the segment cut by the surfaces in a straight line normal to Tp(S) =
Tp(S̄), which is at a distance r from p.

Solution 3.3.8.

a. Suppose the partial derivatives of order ≤ 2 of f ◦ x̄ are zero in x̄−1(p). Then, by the chain
rule, we have

(f ◦ x̄)u = ∇f · x̄u = 0, (f ◦ x̄)v = ∇f · x̄v = 0,

(f ◦ x̄)uu = ∇f · x̄uu + x̄TuHf x̄u = 0,

(f ◦ x̄)uv = ∇f · x̄uv + x̄TuHf x̄v = 0,

(f ◦ x̄)vv = ∇f · x̄vv + x̄TvHf x̄v = 0,

where Hf is the Hessian matrix of f at p. Since S and S̄ have contact of order ≥ 2 at p,
in the region x−1(p) we have (f ◦ x)uu = ∇f · xuu + xTuHfxu = ∇f · xuu + xTuHfxu = 0.
Similarly, (f ◦x)uv = (f ◦x)vv = (f ◦x)u = (f ◦x)v = 0. The converse follows by symmetry.

b. Since S, S have z = 0 as the common tangent plane, their graph at p = 0 satisfy f(0, 0) =
f(0, 0) = 0 and ∇f(0, 0) = ∇f(0, 0) = 0. Let’s define the function F : R3 → R, such
that F (x, y, z) = z − 1

2fxx(0, 0)x
2 − fxy(0, 0)xy − 1

2fyy(0, 0)y
2. Since F is a polynomial

of x, y, x, it is differentiable. The parametrizations x, x for S and S at p are given by
x(x, y) = (x, y, f(x, y)) and x(x, y) =

(
x, y, f(x, y)

)
, respectively. Then, (F ◦ x)(x, y) =

f(x, y)− 1
2fxx(0, 0)x

2 − fxy(0, 0)xy − 1
2fyy(0, 0)y

2, so all the partial derivatives of order ≤ 2
of F ◦x at (0, 0) are zero. By part a., all the partial derivatives of order ≤ 2 of F ◦x at (0, 0)
are also zero. Therefore,

F ◦ x(x, y) = f(x, y)− 1

2
fxx(0, 0)x

2 − fxy(0, 0)xy −
1

2
fyy(0, 0)y

2

has all partial derivatives of order ≤ 2 vanish at p. Thus, the function f(x, y) − f(x, y) has
all partial derivatives of order ≤ 2 vanish at p.

c. In a neighborhood of p, the surface S can be expressed as the graph of a function z = f(x, y),
where the xy-plane is the tangent plane at p. Since the xy-plane is the tangent plane at p,
we have f(0, 0) = fx(0, 0) = fy(0, 0) = 0, so the Taylor expansion of f(x, y) around p is given
by

f(x, y) =
1

2

(
fxx(0, 0)x

2 + 2fxy(0, 0)xy + fyy(0, 0)y
2
)
+R3(x, y).
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Let S be the paraboloid defined by

z = g(x, y) =
1

2

(
fxx(0, 0)x

2 + 2fxy(0, 0)xy + fyy(0, 0)y
2
)
.

The parametrizations for S and S at p are given by x(x, y) = (x, y, f(x, y)) and x(x, y) =
(x, y, g(x, y)), respectively. The second-order partial derivatives of f and g at p are equal,
since the remainder term R3(x, y) contains only terms of order ≥ 3. Therefore, by definition,
S and S have contact of order ≥ 2 at p.

d. Suppose a paraboloid S has contact of order ≥ 2 with a surface S at p. Let the equation of
S in a neighborhood of p be given by z = f(x, y), where the xy-plane is the tangent plane at
p. The equation of the paraboloid S can be expressed as

z = f(x, y) = ax2 + 2bxy + cy2,

for some constants a, b, c ∈ R. The second-order Taylor expansion of f(x, y) around p is given
by

f(x, y) =
1

2

(
fxx(0, 0)x

2 + 2fxy(0, 0)xy + fyy(0, 0)y
2
)
.

Comparing this with the expression for f(x, y), we find that

a =
1

2
fxx(0, 0), b =

1

2
fxy(0, 0), c =

1

2
fyy(0, 0).

Thus, the paraboloid S is the osculating paraboloid of S at p as defined in c..

e. Let P , P be the osculating paraboloids of S and S, respectively. By b., S, S have contact
of order ≥ 2 at p with P , P , respectively. Since S also has contact of order ≥ 2 with S, all
the partial derivatvies of order ≤ 2 of f and f vanish at p, where f , f are the equations in a
neighborhood of p, of S and S, respectively. Therefore,

1

2

(
fxx(p)x

2 + 2fxy(p)xy + fyy(p)y
2
)
=

1

2

(
fxx(p)x

2 + 2fxy(p)xy + fyy(p)y
2
)
,

and the osculating paraboloids P and P coincide. Since the Gaussian and mean curvatures
depend only on the partial derivatives of order ≤ 2 of the parametrization at p, the Gaussian
and mean curvatures of S and S at p are equal.

f. Suppose S and S have contact of order ≥ 2 at p. Let φ : R3 → R3 be a diffeomor-
phism. The parametrizations for S and S at p are given by x(u, v) and x(u, v), respec-
tively. The parametrizations for φ(S) and φ(S) at φ(p) are given by y = (φ ◦ x) (u, v) and
y = (φ ◦ x) (u, v), respectively. Then, by the chain rule, we have

yu = dφx · xu, yv = dφx · xv, yuu = d2φx(xu,xu) + dφx · xuu,

yuv = d2φ|x(xu,xv) + dφ|x · xuv, yvv = d2φ|x(xv,xv) + dφ|x · xvv,

and similarly for y, where d2ϕ|x is the bilinear differential of ϕ evaluated at x.

Since S and S have contact of order ≥ 2 at p, it follows that yu = yu, yv = yv, yuu = yuu,
yuv = yuv, and yvv = yvv. Thus, φ(S) and φ(S) have contact of order ≥ 2 at φ(p).

g. We may choose a Cartesian coordinate system Oxyz such that O = p, and z = 0 is the
common tangent plane of S and S at p. Let the equations of S and S in a neighborhood
of p be given by z = f(x, y) and z = f(x, y), respectively. Since S and S have contact of
order ≥ 2 at p, by part b., all the partial derivatives of order ≤ 2 of the function G(x, y) ≡
f(x, y)− f(x, y) vanish at p. Therefore, G(0, 0) = ∇G(0, 0) = ∇2G(0, 0) = 0, where ∇2G is
the Hessian matrix of G. Take a point q = (x, y, 0) ∈ Tp(S) in the tangent plane, a distance

r =
√
x2 + y2 from p. The straight line Lq normal to the tangent plane passing through q

intersects the surfaces S and S at the points (x, y, f(x, y)) and (x, y, f(x, y)), respectively,
and d = |f(x, y)− f(x, y)| = |G(x, y)|.
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Define the function g(t) = G(tu) for a fixed u, where u ∈ R2 is a unit vector such that
(x, y) = ru. Then g is differentiable, and g(0) = g′(0) = g′′(0) = 0, since all the partial
derivatives of order ≤ 2 of F vanish at p. By Taylor’s formula with remainder, we have

g(t) = g(0) + g′(0) +

∫ t

0

ds (t− s)g′′(s) =

∫ t

0

ds (t− s)g′′(s)

for all t in a neighborhood of 0. Next we will bound |g|. Since F is smooth, ∇2F is continuous,
so for all ε > 0 there exists δ > 0, such that ∥(x, y)∥ < δ implies ∥∇2F (x, y)∥ < 2ε. Hence,
for t < δ, |g′′(t)| = |uT∇2Fu| ≤ |∇2F |∥u2∥ < 2ε. Take t = r < δ, then we have

|G(ru)| = |g(r)| =
∣∣∣∣∫ r

0

ds (r − s)g′′(s)

∣∣∣∣ ≤ ∫ r

0

ds (r − s)|g′′(s)|

≤
∫ r

0

ds (r − s)2εr2 = εr2.

Notice that d = G(x, y) = G(ru), so for all ε > 0 there exists δ > 0 such that d
r2 < ε

whenever
√
x2 + y2 < δ. This proves the desired result.

Exercise 3.3.13. Let F : R3 → R3 be the map (a similarity) defined by F (p) = cp, p ∈ R3, c a
positive constant. Let S ⊂ R3 be a regular surface and set S̄ = F (S). Show that S̄ is a regular
surface, and find formulas relating the Gaussian and mean curvatures, K and H, of S with the
Gaussian and mean curvatures, K̄ and H̄, of S̄.

Solution 3.3.13.

1. Let x : U ⊆ R → S be a local parametrization of S. Let S = F (S), then x = F ◦x : U → S is
a local parametrization of S. The map F is smooth, and since dF = c Id is an isomorphism,
dx = dF ◦ dx = cdx has rank 2 whenever dx has rank 2. Thus, x is a homeomorphism onto
its image and dx is injective (hence an immersion). Therefore, S is a regular surface.

2. For any local parametrization x and x, we have x = cx. Thus,

xu = cxu, xv = cxv, x ∧ xv = c2(xu ∧ xv).

Hence, the normal for S satisfies N = N . Write the Weingarten map for S and S as S and
S, respectively. By definition, dN = −S ◦ dx, so

dN = dN = −S ◦ dx = −S ◦ 1

c
dx = −

Å
1

c
S
ã
◦ dx.

Therefore, S = 1
cS, and the principle curvatures satisfy ki =

1
cki, since they are the eigen-

values of S. The Gaussian curvature K and mean curvature H of S are then given by

K = k1k2 =
1

c2
k1k2 =

1

c2
K,

H =
k1 + k2

2
=

1

c

k1 + k2
2

=
1

c
H.

Exercise *3.3.15. Give an example of a surface which has an isolated parabolic point p (that
is, no other parabolic point is contained in some neighborhood of p).

Solution 3.3.15. We know that the graph of x4 has an isolated point of zero curvature, so it can
be used as one direction. Then add something to bend it in the other direction away from the origin,
such that the Hessian is not changed, i.e. we add a quartic term. We can construct an example that
looks like x4 in one direction and y2 in the other at the origin: let x(u, v) = (u, v, u4 +u2v2 + v2).
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Claim. The image S ⊆ R3 of x has a parabolic point at (0, 0, 0), and all the other points are
elliptic. We compute the second fundamental form as follows:

xu =
(
1, 0, 4u3 + 2uv2

)
, xv =

(
0, 1, 2u2v + 2v

)
,

xuu =
(
0, 0, 12u2 + 2v2

)
, xuv = (0, 0, 4uv) , xvv =

(
0, 0, 2u2 + 2

)
.,

The unit normal is given by

N =
xu ∧ xv
|xu ∧ xv|

=

(
−4u3 − 2uv2, −2u2v − 2v, 1

)
√
16u6 + 20u4v2 + 12u2v4 + 4v2 + 1

.

Let A =
(
16u6 + 20u4v2 + 12u2v4 + 4v2 + 1

)−1/2
> 0, we have

e = A(12u2 + 2v2), f = A(4uv), g = A(2u2 + 2).

Hence, given a tangent direction w(u, v) = a(u, v)xu + b(u, v)xv ∈ Tp(S), we have

II(w,w) = e a(u, v)2 + 2f a(u, v) b(u, v) + g b(u, v)2

= 2A
(
6u2a2 + (va+ ub)2 + (1− 3u2)b2

)
> 0

if and only if u2 < 1/3. Unless b = 0, II(w,w) > 0 whenever |u| < 1/
√
3, so near the origin there is

only one direction in which kn = II(w)/ I(w) = 0. Take this direction, assume a ̸= 0, then a point
p is parabolic if and only if kn(p) = 0, if and only if IIp(w) = 2Aa2(6u2 + v2) = 0, if and only if
u = v = 0. Hence, (0, 0, 0) is an isolated parabolic point.

Exercise *3.3.16. Show that a surface which is compact (i.e., it is bounded and closed in R3)
has an elliptic point.

Solution 3.3.16. Recall that an elliptic point is some point p where det (dNp) < 0.

Exercise 3.3.17. Define Gaussian curvature for a nonorientable surface. Can you define mean
curvature for a nonorientable surface?

Solution 3.3.17.

Exercise 3.4.18. Show that the Möbius strip of Fig. 3–1 can be parametrized by

x(u, v) =
(
(2− v sin u

2 ) sinu, (2− v sin u
2 ) cosu, v cos

u
2

)
,

and that its Gaussian curvature is

K = − 1¶
1
4v

2 +
(
2− v sinu2

)2©2 .
Solution 3.4.18. The Möbius strip is constructed by twisting the cyclinder segment

x(u, v) = (2 sinu, 2 cosu, v) , u ∈ [0, 2π], v ∈ [−1, 1],

by an angle half of the turning angle u. Therefore, we have

x(u, v) =
(
(2− v sin u

2 ) sinu, (2− v sin u
2 ) cosu, v cos

u
2

)
.
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To compute the Gaussian curvature, let’s use , and compute the following:

xu =
(
(2− v sin u

2 ) cosu− v
2 cos

u
2 sinu, −(2− sin u

2 ) sinu− v
2 cos

u
2 cosu, −v

2 sin
u
2

)
,

xv =
(
− sin u

2 sinu, sin u
2 sinu, cos u2

)
.

Then, we have

E =
(
2− v sin

u

2

)2

+
(v
2

)2

, F = 0, G = 1.

Therefore, x is an orthogonal parametrization. Next, notice that xvv = 0, and hence g = 0. Since
N = (xu ∧ xv)/∥xu ∧ xv∥, we have

f = ⟨xuv, N⟩ = det(xu, xv, xuv)

|xu ∧ xv|
.

Now, let’s compute the determinant: we have

xuv =
(
− 1

2 cos
u
2 sinu− sin u

2 cosu, − 1
2 cos

u
2 cosu+ sin u

2 sinu, − 1
2 sin

u
2

)
.

Thus, we can compute the determinant directly, by expanding along the third column:

det(xu, xv, xuv) =

∣∣∣∣∣∣
(2− v sin u

2 ) cosu− v
2 cos

u
2 sinu − sin u

2 sinu − 1
2 cos

u
2 sinu− sin u

2 cosu
−(2− v sin u

2 ) sinu− v
2 cos

u
2 cosu sin u

2 cosu − 1
2 cos

u
2 cosu+ sin u

2 sinu
− v

2 sin
u
2 cos u2 − 1

2 sin
u
2

∣∣∣∣∣∣
= −1

2

Ä
(2− v sin u

2 )
2 +

(
v
2

)2ä
= −E

2
.

Moreover, we have |xu∧xv| =
√
EG− F 2 =

√
E, and f = −E

2 /
√
E = −

√
E
2 . Finally, the Gaussian

curvature is given by

K =
eg − f2

EG− F 2
= − f2

EG
= − 1

4E
= − 1¶

1
4v

2 +
(
2− v sinu2

)2©2 .
Exercise *3.3.19. Obtain the asymptotic curves of the one-sheeted hyperboloid

x2 + y2 − z2 = 1.

Solution 3.3.19. We first rederive a few important identities. Let x(u, v) = (u, v, f(u, v)) be a
parametrization of the surface. Then, we have

xu = (1, 0, fu), xv = (0, 1, fv) =⇒ N =
(−fu, −fv, 1)√
1 + f2u + f2v

.

Next, we have xuu = (0, 0, fuu), xuv = (0, 0, fuv), xvv = (0, 0, fvv), and

e =
fuu√

1 + f2u + f2v
, f =

fuv√
1 + f2u + f2v

, g =
fvv√

1 + f2u + f2v
.
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By the Gauss formula, the Gaussian curvature is given by

K =
eg − f2

EG− F 2
=

fuufvv − f2uv
(1 + f2u + f2v )

2
.

For the one-sheeted hyperboloid, we have z = f(x, y) =
√
x2 + y2 − 1 on the upper sheet where

z > 0. Compute

fx =
x√

x2 + y2 − 1
, fy =

y√
x2 + y2 − 1

,

fxx =
y2 − 1

(x2 + y2 − 1)3/2
, fyy =

x2 − 1

(x2 + y2 − 1)3/2
, fxy = − xy

(x2 + y2 − 1)3/2
.

Explicitly, the coefficients e, f , g are given by

e =
y2 − 1

(x2 + y2)
√
x2 + y2 − 1

, f = − xy

(x2 + y2)
√
x2 + y2 − 1

, g =
x2 − 1

(x2 + y2)
√
x2 + y2 − 1

.

One parametrizion of the asymptotic curves satisfy the equation
x = t cos θ − sin θ,

y = t sin θ + cos θ,

z = t.

Remark. We can check that the Gaussian curvature is negative:

K =
fxxfyy − f2xy
(1 + f2x + f2y )

2
= − 1

(x2 + y2 − 1)2
< 0,

as expected for a hyperbolic surface.

Exercise *3.3.21. Let S be a surface with orientation N . Let V ⊂ S be an open set in S
and let f : V ⊂ S → R be any nowhere-zero differentiable function in V . Let v1 and v2 be two
differentiable (tangent) vector fields in V such that at each point of V , v1 and v2 are orthonormal
and v1 ∧ v2 = N .

a. Prove that the Gaussian curvature K of V is given by

K =
⟨d(fN)(v1) ∧ d(fN)(v2), fN⟩

f3
.

The virtue of this formula is that by a clever choice of f we can often simplify the computation
of K, as illustrated in part (b).

b. Apply the above result to show that if f is the restriction of…
x2

a4
+
y2

b4
+
z2

c4

to the ellipsoid
x2

a2
+
y2

b2
+
z2

c2
= 1,

then the Gaussian curvature of the ellipsoid is

K =
1

a2b2c2
1

f4
.

Solution 3.3.21.
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a. Since vi, i = 1, 2 are tangent vector fields, we have d(fN)p(vi) = vi(f)Np+ fdNp(vi). Then,

d(fN)(v1) ∧ d(fN)(v2) = (v1(f)N + fdN(v1)) ∧ (v2(f)N + fdN(v2))

= f (v1(f) ∧ dN(v2)− v2(f) ∧ dN(v1)) + f2 (dN(v1) ∧ dN(v2)) .

Taking the inner product with fN , we have

⟨d(fN)(v1) ∧ d(fN)(v2), fN⟩ = f3⟨dN(v1) ∧ dN(v2), N⟩,

by linearity of the determinant. Hence, ⟨d(fN)(v1) ∧ d(fN)(v2), fN⟩/f3 = ⟨dN(v1) ∧
dN(v2), N⟩ is independent of f . In the basis {v1, v2}, we may write

dN1 = a11v1 + a21v2, dN2 = a12v1 + a22v2,

taking the wedge product gives dN(v1)∧dN(v2) = (a11a22 − a12a21) (v1 ∧ v2), and ⟨dN(v1)∧
dN(v2), N⟩ = det (aij) since {v1, v2, N} is a positively oriented orthonormal frame. The
shape operator S satisfies S(vi) = −dN(vi), and hence Sp = −dNp. The Gaussian curvature
is

K = detS = det(−dN) = det(dN) = det (aij)

= ⟨dN(v1) ∧ dN(v2), N⟩ = ⟨d(fN)(v1) ∧ d(fN)(v2), fN⟩
f3

.

b. Given the implicit equation F (x, y, z) = x2

a2 + y2

b2 + z2

c2 = 1, let A = diag
(

1
a2 ,

1
b2 ,

1
c2

)
and

p = (x, y, z). Then, F (p) = ⟨Ap, p⟩ = 1 and ∇F = 2Ap. The unit normal is given by

N =
∇F

∥∇F∥
=

Ap

|Ap|
=

Ap

f(p)
,

since f(p) =
√
⟨Ap, p⟩ = ∥Ap∥. Therefore, f(p)N(p) = (fN)(p) = Ap is a linear map.

Hence, for any v ∈ Tp(S), we have d(fN)p(v) = Av. Let v1, v2 be an orthonormal basis of
Tp(S), such that {v1, v2, N} is a positively oriented orthonormal frame. Then,

⟨d(fN)(v1) ∧ d(fN)(v2), fN⟩ = ⟨Av1 ∧Av2, Ap⟩ = det(A)⟨v1 ∧ v2, p⟩

= det(A)⟨N, p⟩ = det(A)
⟨Ap, p⟩
f(p)

= det(A)
1

f(p)
.

=⇒ K =
⟨d(fN)(v1) ∧ d(fN)(v2), fN⟩

f3
=

det(A)

f4
=

1

a2b2c2
1

f4
.

The explicit formula for K is then

K =
1

a2b2c2

Å
x2

a4
+
y2

b4
+
z2

c4

ã−2

.

Exercise 3.3.24. (Local Convexity and Curvature)

A surface S ⊂ R3 is locally convex at a point p ∈ S if there exists a neighborhood V ⊂ S
of p such that V is contained in one of the closed half-spaces determined by Tp(S) in R3. If, in
addition, V has only one common point with Tp(S), then S is called strictly locally convex at p.

a. Prove that S is strictly locally convex at p if the principal curvatures of S at p are nonzero
with the same sign (that is, the Gaussian curvature K(p) satisfies K(p) > 0).

b. Prove that if S is locally convex at p, then the principal curvatures at p do not have different
signs (thus, K(p) ≥ 0).
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c. To show that K ≥ 0 does not imply local convexity, consider the surface

f(x, y) = x3(1 + y2),

defined in the open set U = {(x, y) ∈ R2 : y2 < 1
2}. Show that the Gaussian curvature of

this surface is nonnegative on U and yet the surface is not locally convex at (0, 0) ∈ U (a
deep theorem, due to R. Sacksteder, implies that such an example cannot be extended to the
entire R2 if we insist on keeping the curvature nonnegative; cf. Remark 3 of Sec. 5-6).

*d. The example of part (c) is also very special in the following local sense. Let p be a point in
a surface S, and assume that there exists a neighborhood V ⊂ S of p such that the principal
curvatures on V do not have different signs (this does not happen in the example of part c).
Prove that S is locally convex at p.

Solution 3.3.24.

a. Without loss of generality, assume k1, k2 > 0, since if both are negative, just replace the
chosen unit normal by its negative. Let x : U ⊆ R2 → S ⊆ R3 be a local parametrization of S
such that {xu,xv} is an orthonormal basis of principle directions at p ∈ S, where p = x(0, 0).
Following the definition of Exercise 3.3.22, define the height function h : U → R of S relative
to Tp(S) by

h(u, v) = ⟨x(u, v)− p,N(p)⟩,

where N(p) is the unit normal vector p. We compute the derivatives as follows:

h(p) = ⟨x(0, 0)− p,N(p)⟩ = 0,

hu(p) = ⟨xu(0, 0), N(p)⟩ = 0,

hv(p) = ⟨xv(0, 0), N(p)⟩ = 0,

huu(p) = ⟨xuu(0, 0), N(p)⟩ = e(p),

huv(p) = ⟨xuv(0, 0), N(p)⟩ = f(p),

hvv(p) = ⟨xvv(0, 0), N(p)⟩ = g(p),

where hij(p) are the coefficients of the second fundamental form at p. Since xu(0, 0) and
xv(0, 0) are principle directions and orthonormal, we have e(p) = k1, f(p) = 0, and g(p) = k2.
Thus, the Hessian matrix of h at p is given by

∇2h(p) =

Å
huu(p) huv(p)
huv(p) hvv(p)

ã
=

Å
k1 0
0 k2

ã
,

and Taylor expansion gives

h(u, v) =
1

2

(
k1u

2 + k2v
2
)
+ o

(
u2 + v2

)
,

Since k1, k2 > 0, the quadratic form Q = 1
2

(
k1u

2 + k2v
2
)
associated with ∇2h(p) is positive

definite. Hence, there exists a neighborhood W ⊂ U of p and some c > 0 such that Q(u, v) >
c(u2 + v2) for all (u, v) ∈W . Now since

h(u, v)−Q(u, v)

u2 + v2
→ 0 as (u, v) → (0, 0),

there exists a radius δ > 0 such that
√
u2 + v2 < δ implies |h(u, v)−Q(u, v)| < c

2 (u
2 + v2).

Therefore, for all (u, v) ∈W with
√
u2 + v2 < δ, we have

h(u, v) ≥ Q(u, v)− |h(u, v)−Q(u, v)| > c(u2 + v2)− c

2
(u2 + v2) =

c

2
(u2 + v2) > 0,

with h(u, v) = 0 if and only if (u, v) = (0, 0). Thus, the neighborhood V = x(W ∩ {(u, v) :√
u2 + v2 < δ}) of p is contained in the half-space H+ = {q ∈ R3 | ⟨q − p,N(p)⟩ ≥ 0}, and

V has only one common point with Tp(S). Therefore, S is strictly locally convex at p.
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b. Suppose S is locally convex at p, so there exists a neighborhood V ⊂ S of p such that V is
contained in one of the closed half-spaces determined by Tp(S). Define the height function
as above, by local convexity we may choose an orientation N(p) such that h(u, v) ≥ 0 in a
neighborhood of (0, 0), and h(0, 0) = hu(0, 0) = hv(0, 0) = 0. Suppose that the principal
curvatures at p have different signs, say k1 > 0 > k2. Then, along the coordinate axes, we
have h(u, 0) = 1

2k1u
2 > 0 for all |u| < δu, and h(0, v) =

1
2k2v

2 < 0 for all |v| < δv. Hence, in
every neighborhood of (0, 0), we can find points such that h(u, v) > 0 and others such that
h(u, v) < 0, contradicting local convexity. Therefore, the principal curvatures at p do not
have different signs, and hence K(p) ≥ 0.

c. The Gaussian curvature K of the surface defined by z = f(x, y) is given by

K =
fxxfyy − f2xy
(1 + f2x + f2y )

2
.

Let’s compute the necessary partial derivatives of f(x, y) = x3(1 + y2):

fx = 3x2(1 + y2), fy = 2x3y, fxx = 6x(1 + y2), fyy = 2x3, fxy = 6x2y.

Then, we have

K =
(6x(1 + y2))(2x3)− (6x2y)2

(1 + (3x2(1 + y2))2 + (2x3y)2)2
=

12x4(1− 2y2)

(1 + 9x4(1 + y2)2 + 4x6y2)2
≥ 0.

However, the surface is not locally convex at (0, 0), since for any neighborhood V of (0, 0),
there exist points with both positive and negative x values, and hence z-coordinates, so V is
not contained in one of the closed half-spaces determined by the tangent plane at (0, 0).

d. Suppose V ⊆ S is a neighborhood of p such that the principal curvatures on V do not have
different signs. Without loss of generality, assume k1(q), k2(q) ≥ 0 for all q ∈ V , since if at
some point one of them were positive and later negative, it would have to cross zero alone,
producing a point where the two have different signs, which is excluded by definition of V .
Follow the steps of a., we define the height function h : U → R of S relative to Tp(S) by
h(u, v) = ⟨x(u, v)−p,N(p)⟩. Pick an orthonormal basis of principal directions {xu,xv}. The
Hessian matrix of h at p is given, again, by

∇2h(p) =

Å
k1 0
0 k2

ã
.

Near (0, 0), we have

h(u, v) =
1

2

(
k1u

2 + k2v
2
)
+ o

(
u2 + v2

)
,

and the quadratic form Q = 1
2

(
k1u

2 + k2v
2
)
is positive-definite. Now we consider two cases:

(a) At least one of the principal curvatures at p is positive, say k1 > 0. Then, there exists
a neighborhood W ⊂ U of p and some c > 0 such that Q(u, v) > c(u2 + v2) for all
(u, v) ∈W . Following the same steps as in a., we can show local convexity at p.

(b) Both principal curvatures at p are zero, i.e., k1 = k2 = 0, so Q = 0. Since the principal
curvatures are continuous functions on S, we have h(0, 0) = 0 and h(u, v) ≥ 0 in a
neighborhood of p. Therefore, S is locally convex at p.
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3 Chapter 3.4

Exercise 3.4.2. Prove that the vector field obtained on the torus by parametrizing all its merid-
ians by arc length and taking their tangent vectors (Example 1) is differentiable.

Solution 3.4.2. From Do Carmo 3.4 Definition 1, a vector field w is differentiable if, for some
parametrization x : U → R3, the functions a(u, v) and b(u, v) given by w = a(u, v)xu + b(u, v)xv
are differentiable on U . Parametrize the torus by

x(u, v) = ((R+ r cos v) cosu, (R+ r cos v) sinu, r sin v) ,

where R is the distance from the center of the tube to the center of the torus, and r is the radius
of the tube. Fix θ = θ0 and vary ϕ = s

r , we have

αθ0(s) = x(θ0, s/r) = ((R+ r cos s/r) cos θ0, (R+ r cos s/r) sin θ0, r sin s/r) .

Then the vector field obtained by parametrizing the meridians by arc length is given by

w(x(θ0, s/r)) = α′
θ0(s) = (− sin s/r cos θ0,− sin s/r sin θ0, cos s/r) .

Let w(x(θ, ϕ)) = a(θ, ϕ)xθ + b(θ, ϕ)xϕ, we have

xθ = (−(R+ r cosϕ) sin θ, (R+ r cosϕ) cos θ, 0) ,

xϕ = (−r sinϕ cos θ,−r sinϕ sin θ, r cosϕ) .
Comparing the coefficients, we get a(θ, ϕ) = 0, b(θ, ϕ) = 1

r . Since they are both differentiable, w
is differentiable.

Exercise 3.4.3. Prove that a vector field w defined on a regular surface S ⊂ R3 is differentiable
if and only if it is differentiable as a map w : S → R3.

Solution 3.4.3. Suppose w is differentiable as a vector field. Then, there exist a parametrization
x : U → S such that w = a(u, v)xu + b(u, v)xv for differentiable functions a(u, v) and b(u, v).
Since xu and xv are differentiable, w ◦ x = a(u, v)xu + b(u, v)xv is differentiable. Thus, w is
differentiable as a map. Conversely, suppose w is differentiable as a map w : S → R3. Then, for
any parametrization x : U → S and each (u, v) ∈ U , since {xu,xv} forms a basis for Tp(S), there
exist scalars a(u, v) and b(u, v) such that (w ◦ x) (u, v) = a(u, v)xu + b(u, v)xv. Then, we have

⟨w,xu⟩ = a⟨xu,xu⟩+ b⟨xv,xu⟩, ⟨w,xv⟩ = a⟨xu,xv⟩+ b⟨xv,xv⟩.

Let α = ⟨w,xu⟩, β = ⟨w,xv⟩, then Å
α
β

ã
=

Å
E F
F G

ãÅ
a
b

ã
Since {xu,xv} are linearly independent, det (I) = EG− F 2 ̸= 0, and we have

a =
Gα− Fβ

EG− F 2
, b =

−Fα+ Eβ

EG− F 2
.

Since w, xu and xv are differentiable, α and β are differentiable. Also, since E, F and G are
differentiable, a(u, v) and b(u, v) are differentiable. Therefore, w is differentiable as a vector field.

Exercise 3.4.6. A straight line r meets the z axis and moves in such a way that it makes a
constant angle α ̸= 0 with the z axis and each of its points describes a helix of pitch c ̸= 0 about
the z axis. The figure described by r is the trace of the parametrized surface (see Fig. 3–32)

x(u, v) = (v sinα cosu, v sinα sinu, v cosα+ cu).

The map x is easily seen to be a regular parametrized surface. Restrict the parameters (u, v) to
an open set U so that x(U) = S is a regular surface.

22



a. Find the orthogonal family (cf. Example 3) to the family of coordinate curves u = const.

b. Use the curves u = const and their orthogonal family to obtain an orthogonal parametrization
for S. Show that in the new parameters (ũ, ṽ) the coefficients of the first fundamental form
are

G̃ = 1, F̃ = 0, Ẽ = {c2 + (ṽ − cũ cosα)2} sin2 α.

Solution 3.4.6.

a. The coordinate curves u = const have tangent vectors xv. Let the curve be given by v = v(t),
u = u0. Then, its tangent vector is xuu

′(t)+xvv
′(t). Orthogonaity gives ⟨xuu′+xvv

′,xv⟩ = 0,
and hence Fu′ +Gv′ = 0. Let’s calculate the coefficients of the first fundamental form:

xu = (−v sinα sinu, v sinα cosu, c) , xv = (sinα cosu, sinα sinu, cosα) .

Thus, we have

E = ⟨xu,xu⟩ = v2 sin2 α+ c2, F = ⟨xu,xv⟩ = c cosα, G = ⟨xv,xv⟩ = 1.

Treating v(t) as a function of u, i.e. v(t) = v(t(u)), we have

dv

du
= −F

G
= −c cosα =⇒ v(u) = −cu cosα+ k.

Thus, the orthogonal family to the curves u = const is given by cu cosα + v = k in the
(u, v)-plane.

b. We have two transverse families of curves in the (u, v)-plane, given by u = const. and
cu cosα+ v = const.. Let’s define new parameters (ũ, ṽ) by

ũ = u, ṽ = cu cosα+ v.

The parametrization in the new parameters is given by x̃(ũ, ṽ) = x(u, v) = x(ũ, ṽ− cũ cosα).
Let’s calculate the coefficients of the first fundamental form Ẽ, F̃ , G̃ in the new parameters:

x̃ũ = xuuũ + xvvũ = xu − c cosαxv,

x̃ṽ = xuuṽ + xvvṽ = xv.

Substituting in the values of E, F , and G calculated in part a., we have

Ẽ = ⟨x̃ũ, x̃ũ⟩ = ⟨xu − c cosαxv,xu − c cosαxv⟩
= E − 2c cosαF + c2 cos2 αG,

= (v2 sin2 α+ c2)− 2c2 cos2 α+ c2 cos2 α = (v2 + c2 sin2 α) sin2 α

= {c2 + (ṽ − cũ cosα)2} sin2 α.
F̃ = ⟨x̃ũ, x̃ṽ⟩ = ⟨xu − c cosαxv,xv⟩ = F − c cosαG = 0,

G̃ = ⟨x̃ṽ, x̃ṽ⟩ = ⟨xv,xv⟩ = G = 1.

23



Exercise 3.4.7. Define the derivative w(f) of a differentiable function f : U ⊂ S → R relative
to a vector field w in U by

w(f)(q) =
d

dt
(f ◦ α)

∣∣∣∣
t=0

, q ∈ U,

where α : I → S is a curve such that α(0) = q and α′(0) = w(q).

Prove that:

a. w is differentiable in U if and only if w(f) is differentiable for all differentiable f in U .

b. Let λ, µ be real numbers and g : U ⊂ S → R be a differentiable function on U ; then

w(λf + µf ′) = λw(f) + µw(f ′), w(fg) = w(f)g + fw(g).

Solution 3.4.7.

a. Suppose w is differentiable in U , then it is differentiable as a map w : U → R3 by Exercise
3.4.3. For any differentiable function f : U → R, let x : V → U be a local parametrization
of U , and (u, v) a local coordinate. Then, we have

(w ◦ x)(u, v) = a(u, v)xu + b(u, v)xv,

where a, b are differentiable functions. Fix q = x(u, v) ∈ U and a curve α = x(u(t), v(t))
such that α(0) = q, α′(0) = w(q). Let ϕ(u, v) = (f ◦ x)(u, v), then, we have

w(f)(q) =
d

dt
(f ◦ α)(0) = d

dt
ϕ(u(t), v(t))

∣∣∣∣
t=0

= ϕuu
′(0) + ϕvv

′(0),

and notice that in the basis {xu,xv}, (u′(t), v′(t)) = (a(u, v), b(u, v)), so

w(f)(q) = ϕuu
′(0) + ϕvv

′(0) = ϕua(u, v) + ϕvb(u, v)

is differentiable as a function of (u, v). Since x is a local parametrization, w(f) is differentiable
in U . Conversely, let πi be the standard projection, we have fi = πi|U : U → R. By
hypothesis, each w(fi) is differentiable. Fix q ∈ U and a curve α such that α(0) = q,
α′(0) = w(q). Then

w(fi)(q) =
d

dt
(fi ◦ α)(0) =

d

dt
(πi ◦ α)(0) = (w(q))i ,

and
w(q) = (w(f1)(q), w(f2)(q), w(f3)(q)) .

Since each component is differentiable, w is differentiable as a map w : U → R3, and hence
differentiable as a vector field in U by Exercise 3.4.3.

b. Let q ∈ U , α : I → S be a curve such that α(0) = q and α′(0) = w(q). Then, we have

w(λf + µf ′) =
d

dt
((λf + µf ′) ◦ α)|t=0

= λ
d

dt
(f ◦ α)|t=0 + µ

d

dt
(f ′ ◦ α)|t=0

= λw(f) + µw(f ′),

and

w(fg) =
d

dt
((fg) ◦ α)|t=0

=
d

dt
((f ◦ α)(g ◦ α))|t=0

=
d

dt
(f ◦ α)

∣∣∣∣
t=0

(g ◦ α)(0) + (f ◦ α)(0) d

dt
(g ◦ α)

∣∣∣∣
t=0

= w(f)g(q) + f(q)w(g).
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Exercise 3.4.8. Show that if w is a differentiable vector field on a surface S and w(p) ̸= 0 for
some p ∈ S, then it is possible to parametrize a neighborhood of p by x(u, v) in such a way that
xu = w.

Solution 3.4.8. Let’s express w in a local parametrization x : U → S in a neighborhood of
p = x(0, 0). Let (u, v) be a local coordinate, then, by a slight abuse of notation,

w(u, v) ≡ (w ◦ x)(u, v) = a(u, v)xu + b(u, v)xv,

where a(u, v), b(u, v) are differentiable functions.

Claim. Let a(u, v) = (a(u, v), b(u, v)). Suppose da ̸= 0, then there exists a neighborhood V of p
and coordinates (ũ, ṽ) such that a = a(ũ, ṽ). I.e. w = (1, 0) in the basis {x̃u, x̃v} = {xũ,xṽ}.

Proof. Let (u, v) be a local coordinate in a neighborhood of p. Since da = audu+avdv and dap ̸= 0,
at least one of au(p) and av(p) is non-zero. Without loss of generality, suppose au(p) ̸= 0. Then, by
the Inverse Function Theorem, there exists a neighborhood V of p such that the map ψ : V → R2

defined by ψ(u, v) = (a(u, v), v) is a diffeomorphism onto its image. Let (ũ, ṽ) = ψ(u, v), then we
have a = a(ũ, ṽ), as desired.

Let Φ(t,x(0, 0)) be the solution to the differential equation

dy

dt
= a(y), y(0) = x(0, 0),

and let ϕ(u, v) = Φ(u, (0, v)). By the smooth dependence of solution of an ODE on initial condi-
tions, Φ, and hence ϕ, is differentiable. Then, we have

∂

∂u
ϕ(u, v) = a(ϕ(u, v)) = w(ϕ(u, v)).

Furthermore, since ϕ(0, v) = Φ(0, (0, v)) = (0, v), we have dϕp = 1, and hence ϕ is a local
parametrization around p. Let x̃(u, v) = ϕ(u, v), then we have x̃u = w(x̃(u, v)).

Remark. This is the vector-straightening lemma for surfaces, which is a special case of the
more general Frobenius theorem.

Exercise 3.4.9.

a. Let A : V → W be a nonsingular linear map of vector spaces V and W of dimension 2 and
endowed with inner products ⟨ , ⟩ and ( , ), respectively. A is a similitude if there exists a
real number λ ̸= 0 such that

(Av1, Av2) = λ⟨v1, v2⟩ for all v1, v2 ∈ V.

Assume that A is not a similitude and show that there exists a unique pair of orthonormal
vectors e1 and e2 in V such that Ae1, Ae2 are orthogonal in W .

b. Use part a. to prove Tissot’s theorem: Let φ : U1 ⊂ S1 → S2 be a diffeomorphism from a
neighborhood U1 of a point p of a surface S1 into a surface S2. Assume that the linear map
dφ is nowhere a similitude. Then it is possible to parametrize a neighborhood of p in S1

by an orthogonal parametrization x1 : U → S1 such that φ ◦ x1 = x2 : U → S2 is also an
orthogonal parametrization in a neighborhood of φ(p) ∈ S2.

Solution 3.4.9.
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a. Suppose there does not exist a real number such that (Av1, Av2) = λ⟨v1, v2⟩ for all v1, v2 ∈ V .
Let {u1, u2} be an orthonormal basis of V , and let Au1 = w1, Au2 = w2. Since A is not a
similitude, we have (w1, w2) ̸= 0. Define

e1 =
1√

2(1− ρ)
(u1 − u2), e2 =

1√
2(1 + ρ)

(u1 + u2), where ρ =
(w1, w2)

∥w1∥∥w2∥
.

Then, we have ⟨e1, e2⟩ = 0, ∥e1∥ = ∥e2∥ = 1, and

(Ae1, Ae2) =
1√

(1− ρ)(1 + ρ)
((w1, w1)− (w2, w2)) = 0.

Suppose there exists another pair of orthonormal vectors f1, f2 such that (Af1, Af2) = 0.
Let f1 = cos θe1 + sin θe2, f2 = − sin θe1 + cos θe2, then, we have

0 = (Af1, Af2) = cos θ sin θ ((Ae1, Ae1)− (Ae2, Ae2)) .

If (Ae1, Ae1) = (Ae2, Ae2), then for any v = ae1 + be2 ∈ V , we have

|Av|2 = (Av,Av) = (e1, e1)(a
2 + b2) = (e1, e1)∥v∥2.

By the polarization identity,

(Av1, Av2) =
1

4

î
∥v1 + v2∥2 − ∥v1 − v2∥2

ó
= (e1, e1)⟨v1, v2⟩,

A is a similitude, which is a contradiction. Thus, we have cos θ sin θ = 0, and hence θ = kπ/2,
k ∈ Z. Therefore, the pair (e1, e2) is unique up to sign.

b. Suppose x1 : U ⊆ R2 → S1 satisfies ⟨x1u,x1v⟩ = 0. Let x2 = ϕ ◦ x1 : U → S2. Since dϕ
is not a similitude, by part a., there exists a unique pair of orthonormal vectors e1, e2 ∈
Tp(S1) such that (dϕ(p)(e1),dϕ(p)(e2)) = 0 in Tϕ(p)(S2). Let e1 = cos θ x1u + sin θ x1v,
e2 = − sin θ x1u + cos θ x1v. Let ũ = cos θ u− sin θ v, ṽ = sin θ u+ cos θ v. Then,

x̃1ũ = x1uuũ + x1vvũ = cos θ x1u + sin θ x1v = e1,

x̃1ṽ = x1uuṽ + x1vvṽ = − sin θ x1u + cos θ x1v = e2.

Thus, x̃1 is an orthogonal parametrization of S1 about p. Let x̃2 = ϕ ◦ x̃1, then

x̃2ũ = dϕ(x̃1)(x̃1ũ) = dϕ(x̃1)(e1), x̃2ṽ = dϕ(x̃1)(x̃1ṽ) = dϕ(x̃1)(e2).

=⇒ (x̃2ũ, x̃2ṽ) = (dϕ(x̃1)(e1),dϕ(x̃1)(e2)) = 0.

Thus, x̃2 is an orthogonal parametrization of S2 about ϕ(p).

Exercise 3.4.10. Let T be the torus of Example 6 of Sec. 2–2 and define a map φ : R2 → T by

φ(u, v) =
(
(r cosu+ a) cos v, (r cosu+ a) sin v, r sinu

)
,

where u and v are the Cartesian coordinates of R2. Let u = at, v = bt be a straight line in R2,
passing by (0, 0) ∈ R2, and consider the curve in T

α(t) = φ(at, bt).

Prove that:

a. φ is a local diffeomorphism.

b. The curve α(t) is a regular curve; α(t) is a closed curve if and only if b/a is a rational number.

c. (Optional) If b/a is irrational, the curve α(t) is dense in T ; that is, in each neighborhood of
a point p ∈ T there exists a point of α(t).
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Solution 3.4.10.

a. Since each component ϕ1, ϕ2, ϕ3 of φ is composed of elementary functions and thus differen-
tiable, φ is differentiable. The mapping is not globally bijective, but since

Jφ =

Ñ
−r sinu cos v −(r cosu+ a) sin v
−r sinu sin v (r cosu+ a) cos v

r cosu 0

é
=⇒ rank Jφ(u, v) = 2 for all (u, v) ∈ R2,

by the Inverse Function Theorem, φ is a local homeomorphism, and hence a local diffeomor-
phism.

b. We have α′(t) = φu(at, bt)a+ φv(at, bt)b. Since {φu, φv} are linearly independent, α′(t) ̸= 0
for all t when a, b are not both zero, and hence α(t) is a regular curve. Suppose α(t) is a
closed curve, then there exists T > 0 such that α(t + T ) = α(t) for all t. Then we have
φ(a(t+ T ), b(t+ T )) = φ(at, bt), and by inspecting ϕ3, there must exist m,n ∈ Z such that
aT = 2mπ, bT = 2nπ. Thus, we have b/a = n/m ∈ Q. Conversely, suppose b/a = n/m,
m,n ∈ Z. Let T = 2π lcm

(
m
a ,

n
b

)
, then we have

α(t+ T ) = φ(a(t+ T ), b(t+ T )) = φ(at+ 2m′π, bt+ 2n′π) = φ(at, bt) = α(t), m′, n′ ∈ Z.

*c. Suppose b/a is irrational. Let p ∈ T , and let U be a neighborhood of p. Let T2 = R2/(2πZ)2
be the flat torus, and consider the projection

π : R2 → T2, π(u, v) = (u+ 2πZ, v + 2πZ).

The map ψ : T2 → T 2 defined by ψ (u+ 2πZ, v + 2πZ) = φ(u, v) is well-defined, since
the components of ϕ are periodic with period 2π in (u, v). Therefore, φ = ψ ◦ π and ϕ
factors through π. Then, write α(t) = ψ(π(at, bt)) ∈ T . Since ϕ is a diffeomorphism onto
its image and ψ = ϕ|[0,2π),[0,2π), ψ is a diffeomorphism onto its image, and in particular a

homeomorphism. Thus, α(t) is dense in T if and only if β(t) ≡ π(at, bt) is dense in T2.

R2 T

T2

φ

π
ψ

Lemma 1 (orbit of an irrational rotation is dense). Let Rθ : S1 → S1 be the rotation
defined by Rθ(z) = eiθz, where θ/(2π) ∈ R\Q. Then, for any z ∈ S1, the orbit O = {Rnθ (z) :
n ∈ Z} is dense in S1.

Proof. Suppose O is not dense in S1, so C ≡ clS1(O) ⫋ S1. Since Rθ is continuous and
bijective, we have Rθ(C) = C, so C is closed and invariant, and ∅ ⊊ S1 \ C is open.
Therefore, there is some non-empty interval I = (a, b) ⊆ S1 such that In ≡ Rθ(I) ⊆ S1 for
all n ∈ N. Suppose In∩ Im ̸= ∅, then there exists x ∈ I such that x+nθ ≡ x+mθ (mod 2π)
for m,n ∈ Z. Hence (n−m)θ ∈ (−|I|, |I|) (mod 2π), where |I| < 2π. Then, (n−m)θ = 2kπ
for some k ∈ Z, which contradicts the irrationality of θ/(2π). Thus, In ∩ Im = ∅ for all
n ̸= m. Since S1 is finite,

⋃∞
n=0 In ⊆ S1 cannot contain infinitely many disjoint open

intervals of finite length, which is a contradiction. Therefore, O is dense in S1.

Define Γ = {β(t) | t ∈ R}. Let [(u0, v0)] ∈ T2 be arbitrary and let ε > 0. Since a ̸= 0, for
every k ∈ Z define

tk =
u0 + 2kπ

a
=⇒ u(tk) ≡ u0 (mod 2π), v(tk) =

b

a
u0 + 2kπ

b

a
(mod 2π).

Let γ = v0 − u0a/b and θ/2π = b/a. Then since u(tk)− u0 = 0, the condition

dT2(β(tk), [(u0, v0)]) ≡ max (|u(t)− u0|, |v(t)− v0|) < ε

is satisfied at t = tk whenever |kθ− γ| < ε in S1. By the lemma, since b/a is irrational, such
a k exists. Thus, Γ is dense in T2, and hence α(t) is dense in T .
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Exercise *3.4.11. Use the local uniqueness of trajectories of a vector field w in U ⊂ S to prove
the following result. Given p ∈ U , there exists a unique trajectory α : I → U of w, with α(0) = p,
which is maximal in the following sense: Any other trajectory β : J → U , with β(0) = p, is the
restriction of α to J (i.e., J ⊂ I and α|J = β).

Solution 3.4.11. A trajecry α : I → U of w with α(0) = p satisfies α′(t) = w(α(t)) for all
t ∈ I. Let F be the set of all trajectories β : Jβ → U , such that {0} ⊆ Jβ ⊆ R is open for each
β. Define I =

⋃
β∈F Jβ . For each t ∈ I, pick any β ∈ F such that t ∈ Jβ , and define α(t) = β(t)

on Jβ . We claim this is the desired maximal trajectory. Suppose there exists another γ ∈ F such
that α|Jγ = γ and t ∈ Jβ ∩ Jγ . Then, the local uniqueness of trajectories implies there exists
{0} ⊆ K ⊆ Jβ ∩Jγ such that β|K = γ|K . The set {s ∈ Jβ ∩Jγ | |β(s) = γ(s)} is open in Jβ ∩Jγ by
local uniqueness theorem, and closed in Jβ∩Jγ by continuity, thus it is equal to Jβ∩Jγ . Therefore,
α(t) is well-defined. By construction, α is a trajectory of w with α(0) = p. Furthermore, for any
other trajectory β : J → U with β(0) = p, by definition of I, we have J ⊆ I and α|J = β. Thus,
α is maximal.

Exercise *3.4.12. Prove that if w is a differentiable vector field on a compact surface S and
α(t) is the maximal trajectory of w with α(0) = p ∈ S, then α(t) is defined for all t ∈ R.

Solution 3.4.12. Since S is compact, α(t) is a

Exercise 3.4.13. Construct a differentiable vector field on an open disk of the plane (which is
not compact) such that a maximal trajectory α(t) is not defined for all t ∈ R. (This shows that
the compactness condition of Exercise 12 is essential.)

Solution 3.4.13. Let D = {(x, y) ∈ R2 : x2 + y2 < 1} be the open unit disk in R2. Define the
vector field w : D → R2 by w(x, y) = (1, 0), and a trajectory α(t) = (x(t), y(t)) : I → D of w.
Then, we have x′(t) = 1, y′(t) = 0 subject to x(0) = y(0) = 0. Thus, x(t) = t, y(t) = 0, and
α(t) = (t, 0). The maximal interval I such that α(t) ∈ D is (−1, 1), which is not equal to R.

Remark. The closed disk would seem like a counterexample to the counterexample. However, the
closed disk is compact but not a surface, and hence does not contradict the previous exercise.
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