
2025 Fall Introduction to Geometry

Solutions to Exercises in Do Carmo

黃紹凱 B12202004

January 7, 2026

1 Chapter 4.1

2 Chapter 4.2

Definition 1 (isometry). A diffeomorphism φ : S → S is an isometry if for all p ∈ S and all
pairs w1, w2 ∈ Tp(S) we have

⟨w1, w2⟩p = ⟨dφp(w1),dφp(w2)⟩φ(p).

The surfaces S and S are then said to be isometric.

Remark. An isometry is a diffeomorphism that preserves the first fundamental form.

Proposition 1 (Do Carmo Proposition 4.2.1). Assume the existence of parametrizations x :
U → S and x : U → S such that E = E, F = F , G = G in U . Then x ◦ x−1 : x(U) → S is a local
isometry.

Exercise 4.2.5. Let α1 : I → R3, α2 : I → R3 be regular parametrized curves, where the
parameter is the arc length. Assume that the curvatures k1 of α1 and k2 of α2 satisfy

k1(s) = k2(s) ̸= 0, s ∈ I.

Let
x1(s, v) = α1(s) + vα′

1(s), x2(s, v) = α2(s) + vα′
2(s)

be their (regular) tangent surfaces (cf. Example 5, Sec. 2-3) and let V be a neighborhood of (s0, v0)
such that x1(V ) ⊂ R3, x2(V ) ⊂ R3 are regular surfaces (cf. Prop. 2, Sec. 2-3). Prove that

x1 ◦ x−1
2 : x2(V ) −→ x1(V )

is an isometry.

Solution 4.2.5. To show that x1◦x−1
2 is an isometry, we need to show that it is a diffeomorphism

and preserves the first fundamental form. From Example 2.3.5, the tangent surface of a regular
curve α is a regular surface, since for all (t, v) ⊆ U = {(t, v) ∈ I × R | v ̸= 0}, we have

k(s) =
|α′(s) ∧ α′′(s)|

|α′(s)|3
̸= 0 =⇒ ∂x

∂s
∧ ∂x

∂v
= vα′′(s) ∧ α′(s) ̸= 0.

Thus, both x1 and x2 are regular parametrizations, and hence homeomorphisms on a small neigh-
borhood V ⊆ R3. Since x is differentiable and dxi has full rank, x−1

i is differentiable for i = 1, 2
by the Inverse Function Theorem. Therefore, x1 ◦ x−1

2 is a diffeomorphism. In the Frenet frames
of αi, i = 1, 2, we have xi(s, v) = αi(s) + vα′(s), and

xi,s = α′(s) + vα′′(s) = Ti(s) + vki(s)Ni(s), xi,v = α′(s) = Ti(s).
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The first fundamental form coefficients are computed to be

Ei = ⟨xi,s,xi,s⟩ = 1 + v2k2i (s), Fi = ⟨xi,s,xi,v⟩ = 1, Gi = ⟨xi,v,xi,v⟩ = 1.

Since k1(s) = k2(s) for all s ∈ I, we have E1 = E2, F1 = F2, G1 = G2. By Proposition 4.2.1,
x1 ◦ x−1

2 is a local isometry. Since x1 ◦ x−1
2 is also a diffeomorphism, x1 ◦ x−1

2 is an isometry.

Exercise 4.2.6*. Let α : I → R3 be a regular parametrized curve with k(t) ̸= 0, t ∈ I. Let x(t, v)
be its tangent surface. Prove that, for each (t0, v0) ∈ I × (R − {0}), there exists a neighborhood
V of (t0, v0) such that x(V ) is isometric to an open set of the plane (thus, tangent surfaces are
locally isometric to planes).

Solution 4.2.6. We will construct the desired local isometry. Fir reparametrize by arc length to
get α(s), and define x(s, v) = α(s) + vα′(s). Let k(s) be the curvature of α(s). As in a previous
exercise, let

θ(s) =

∫ s

s0

du k(u), s0 ∈ I

be the angle function, and define a plane curve β(s) by

β(s) =

Å∫ s

s0

du cos θ(u),

∫ s

s0

du sin θ(u), 0

ã
,

β′(s) = (cos θ(s), sin θ(s), 0) =⇒ |β′(s)| = 1,

β′′(s) = θ′(s) (− sin θ(s), cos θ(s), 0) = k(s) (− sin θ(s), cos θ(s), 0) .

Then, the curvature of β(s) is exactly k(s), and hence β(s) is a unit-speed curve with the same
curvature as α. Since both β and β′ lie in the plane z = 0, the image of the tangent surface
x(s, v) = β(s) + vβ′(s) is an open subset of the xy-plane. For x and x, we have

xs = T (s) + vk(s)N(s), xv = T (s),

xs = T (s) + vk(s)N(s), xv = T (s),

where T,N, T ,N are the tangent vector and normal vector of x and x, respectively. The first
fundamental form coefficients of x and x are, respectively,

E = 1 + v2k2(s), F = 1, G = 1,

E = 1 + v2k2(s), F = 1, G = 1.

Since the coefficients agree, by Proposition 4.2.1, the map x ◦ x−1 is a local isometry from x(V )
to an open set of the plane for some neighborhood V of (s0, v0). Therefore, the tangent surface is
locally isometric to an open set of the plane.

Exercise 4.2.7. Let V and W be n-dimensional vector spaces with inner products denoted by
⟨ , ⟩ and let F : V →W be a linear map. Prove that the following conditions are equivalent:

a. ⟨F (v1), F (v2)⟩ = ⟨v1, v2⟩ for all v1, v2 ∈ V .

b. |F (v)| = |v| for all v ∈ V .

c. If {v1, . . . , vn} is an orthonormal basis in V , then {F (v1), . . . , F (vn)} is an orthonormal basis
in W .

d. There exists an orthonormal basis {v1, . . . , vn} in V such that {F (v1), . . . , F (vn)} is an or-
thonormal basis in W .

If any of these conditions is satisfied, F is called a linear isometry of V into W . (When W = V , a
linear isometry is often called an orthogonal transformation.)
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Solution 4.2.7.

• a. =⇒ b. Suppose ⟨F (v1), F (v2)⟩ = ⟨v1, v2⟩ for all v1, v2 ∈ V . Then for all v ∈ V ,

|v| =
»

⟨v, v⟩ =
»
⟨F (v), F (v)⟩ = |F (v)|.

• b. =⇒ c. Suppose |F (v)| = |v| for all v ∈ V . Let {v1, . . . , vn} be an orthonormal basis of V .
Then, for all i, j = 1, . . . , n, since the inner product is induced by a norm | · |, we have

⟨F (vi), F (vj)⟩ =
1

2

(
|F (vi) + F (vj)|2 − |F (vi)|2 − |F (vj)|2

)
=

1

2

(
|vi + vj |2 − |vi|2 − |vj |2

)
= ⟨vi, vj⟩ = δij .

Thus, {F (v1), . . . , F (vn)} is an orthonormal set in W . Since F is linear, {F (v1), . . . , F (vn)}
spans Im(F ). Since dim(Im(F )) ≤ n, we have dim(Im(F )) = n, and hence {F (v1), . . . , F (vn)}
is an orthonormal basis of W .

• c. =⇒ d. Since V is finite-dimensional, just pick any orthonormal basis of V .

• d. =⇒ a. Suppose there exists an orthonormal basis {v1, . . . , vn} of V such that {F (v1), . . . , F (vn)}
is an orthonormal basis of W . For all v1, v2 ∈ V , we can write

v1 =

n∑
i=1

aivi, v2 =

n∑
j=1

bjvj ,

where ai, bj ∈ R. Then,

⟨F (v1), F (v2)⟩ =

∞
F

(
n∑
i=1

aivi

)
, F

Ñ
n∑
j=1

bjvj

é∫
=

∞
n∑
i=1

aiF (vi),

n∑
j=1

bjF (vj)

∫
=

n∑
i=1

n∑
j=1

aibj⟨F (vi), F (vj)⟩

=

n∑
i=1

n∑
j=1

aibjδij =

n∑
i=1

aibi =

∞
n∑
i=1

aivi,

n∑
j=1

bjvj

∫
= ⟨v1, v2⟩.

Exercise 4.2.8*. Let G : R3 → R3 be a map such that

|G(p)−G(q)| = |p− q| for all p, q ∈ R3

(that is, G is a distance-preserving map). Prove that there exists p0 ∈ R3 and a linear isometry
(cf. Exercise 7) F of the vector space R3 such that

G(p) = F (p) + p0 for all p ∈ R3.

Solution 4.2.8. Let p0 = G(0), and let F (p) = G(p)− p0. Then, for all p, q ∈ R3, we have

|F (p)− F (q)| = |G(p)−G(q)| = |p− q|, F (0) = G(0)− p0 = 0.

Hence F is a distance-preserving map that fixes the origin. Let {e1, e2, e3} be the standard basis
of R3, and vi = F (ei) for i = 1, 2, 3. Since F is distance-preserving, we have

|vi|2 = |F (ei)− F (0)|2 = |ei − 0|2 = 1, |vi − vj |2 = |F (ei)− F (ej)|2 = |ei − ej |2 = 2,
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squaring both sides gives

⟨vi, vj⟩ = 0 for i ̸= j =⇒ {v1, v2, v3} is an orthonormal basis for R3.

Let L : R3 → R3 be defined by L(ei) = vi for i = 1, 2, 3. Then L is linear by construction, and
L(ei) = vi = F (ei), i = 1, 2, 3. For any p ∈ R3, since L(0) = 0, by the distance-preserving property
of F , we have |F (p)| = |p| = |L(p)|. Then, for all i = 1, 2, 3, we have

|F (p)− F (ei)| = |p− ei| = |L(p)− L(ei)| .

Squaring both sides, then using |F (p)| = |L(p)| and F (ei) = L(ei), we have ⟨F (p)−L(p), F (ei)⟩ = 0.
Hence, F = L, and F is linear. By Exercise 4.3.7, F is a linear isometry. Therefore, there exists a
linear isometry F such that G(p) = F (p) + p0 for all p ∈ R3.

Exercise 4.2.9. Let S1, S2, and S3 be regular surfaces. Prove that

a. If φ : S1 → S2 is an isometry, then φ−1 : S2 → S1 is also an isometry.

b. If φ : S1 → S2, ψ : S2 → S3 are isometries, then ψ ◦ φ : S1 → S3 is an isometry.

This implies that the isometries of a regular surface S constitute in a natural way a group, called
the group of isometries of S.

Solution 4.2.9.

a. Since φ is an isometry, for all p ∈ S1 and all pairs w1, w2 ∈ Tp(S1) we have

⟨w1, w2⟩p = ⟨dφp(w1),dφp(w2)⟩φ(p).

Let q = φ(p) ∈ S2 and u1, u2 ∈ Tq(S2). Since φ is a diffeomorphism, dφ is injective. Since
the differential dφ is a linear transformation between finite-dimensional spaces, it is also
surjective. Thus, there exist w1, w2 ∈ Tp(S1) such that dφp(wi) = ui for i = 1, 2. Thus,

⟨dφ−1
p (u1),dφ

−1
p (u2)⟩q = ⟨w1, w2⟩p = ⟨u1, u2⟩φ(p).

Therefore, φ−1 is an isometry.

b. Suppose φ : S1 → S2 and ψ : S2 → S3 are isometries. Since diffeomorphism between regular
surfaces is an equivalence relation (by previous exercise), ψ ◦ φ is a diffeomorphism. For all
p ∈ S1 and all pairs w1, w2 ∈ Tp(S1), we have

⟨w1, w2⟩p = ⟨dφp(w1),dφp(w2)⟩φ(p)
= ⟨dψφ(p)(dφp(w1)),dψφ(p)(dφp(w2))⟩ψ(φ(p))
= ⟨d(ψ ◦ φ)p(w1),d(ψ ◦ φ)p(w2)⟩(ψ◦φ)(p),

where the chain rule is used in the last equality. Therefore, ψ ◦ φ is an isometry.

Remark. Since function composition is associative and the identity map id : S1 → S1 is an isometry,
by a. and b., the set of isometries on S forms a group.
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3 Chapter 4.3

Theorem 2 (Theorema Egregium). The Gaussian curvature K of a regular, orientable, and
oriented surface S is invariant under local isometries. Explicitly, for a parametrization x(u, v) in
the orientation of S, we have

−EK =
(
Γ2
12

)
u
−
(
Γ2
11

)
v
+ Γ1

12Γ
2
11 + Γ2

12Γ
2
12 − Γ2

11Γ
2
22 − Γ1

11Γ
2
12.

Proof. This is adapted from Do Carmo Curve and Surfaces. Define the Christoffel symbols of S
in the parametrization x(u, v) by

xuu = Γ1
11xu + Γ2

11xv + eN,

xuv = Γ1
12xu + Γ2

12xv + fN,

xvu = Γ1
21xu + Γ2

21xv + fN,

xvv = Γ1
22xu + Γ2

22xv + gN,

Nu = a11xu + a21xv,

Nv = a12xu + a22xv.

Take inner products with xu and xv, we have
Γ1
11E + Γ2

11F = ⟨xuu, xu⟩ =
Eu
2
,

Γ1
11F + Γ2

11G = ⟨xuu, xv⟩ = Fu −
1

2
Ev.

Γ1
12E + Γ2

12F = ⟨xuv,xu⟩ =
1

2
Ev,

Γ1
12F + Γ2

12G = ⟨xuv, xv⟩ =
1

2
Gu.

Γ1
22E + Γ2

22F = ⟨xvv, xu⟩ = Fv −
1

2
Gu,

Γ1
22F + Γ2

22G = ⟨xvv, xv⟩ =
1

2
Gv.

By smoothness, we have xuuv−xuvu = 0, so expressing the equation as A1xu+B1xv+C1N =
0 gives A1 = B1 = C1 = 0.

Corollary 3. For each pair, the determinant of the coefficient matrix is EG−F 2 ̸= 0, so we can
solve for the Christoffel symbols explicitly.

Γ1
11 =

Corollary 4. By Theorema Egregium, the Gaussian curvature K can be computed entirely in
terms of the first fundamental form coefficients E,F,G and their derivatives. This given explicitly
by

Theorem 5 (Mainardi-Codazzi equations). With the same notation as above, we have

ev − fu = eΓ1
12 + f

(
Γ2
12 − Γ1

11

)
− gΓ2

11, fv − gu = eΓ1
22 + f

(
Γ2
22 − Γ1

12

)
− gΓ2

12.

Remark. The Gauss equation and the Mainardi-Codazzi equations are known as the compatibility
equations of the theory of surfaces.
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Theorem 6 (Bonnet). Let E, F , G, e, f , g be differentiable functions defined on an open set
V ⊆ R2, with E,G > 0. Suppose that these functions satisfy the compatibility equations, and
det g = EG − F 2 > 0. Then, for each point p ∈ V , there exists a neighborhood U ⊆ V and a
regular diffeomorphism x : U → R3 such that the coefficients of the first fundamental form of x
are E,F,G, and those of the second fundamental form are e, f, g. Moreover, if U is connected and
x : U → x(U) is another diffeomorphism satisfying the same conditions, then x = T ◦ ρ ◦ x for
some translation T and rotation ρ.

Lemma 1 (Gaussian curvature). The Gaussian curvature K of a regular surface is given by

K =
eg − f2

EG− F 2
.

Proof. Let x : U ⊂ R2 → S ⊂ R3 be a parametrization of a regular surface S. Then, we have

E = ⟨xu,xu⟩, F = ⟨xu,xv⟩, G = ⟨xv,xv⟩,
e = ⟨xuu, N⟩, f = ⟨xuv, N⟩, g = ⟨xvv, N⟩,

where N is the unit normal. In the basis {xu, xv}, the first and second fundamental forms are

g =

Å
E F
F G

ã
, A =

Å
e f
f g

ã
.

The shape operator S : TpS → TpS is defined by S(v) = −dNv, with the principal curvatures k1,
k2 being its eigenvalues. It has been shown that S = g−1A, so

K = detS = det
(
g−1A

)
=

detA

det g
=

eg − f2

EG− F 2
.

Exercise 4.3.1. Show that if x is an orthogonal parametrization, that is, F = 0, then

K = − 1

2
√
EG

ßÅ
Ev√
EG

ã
v

+

Å
Gu√
EG

ã
u

™
.

Solution 4.3.1. From the definition of the Christoffel symbols, we have

xuu = Γ1
11xu + Γ2

11xv + L1N,

xuv = Γ1
12xu + Γ2

12xv + L2N,

xvv = Γ1
22xu + Γ2

22xv + L3N,

we can compute the relations satisfied by the Christoffel symbols by taking inner product with xu
and xv for each of the three equations above. Then, we get

Γ1
11E + Γ2

11F =
Eu
2
, Γ1

11F + Γ2
11G = Fu −

Ev
2
,

Γ1
12E + Γ2

12F =
Ev
2
, Γ1

12F + Γ2
12G =

Gu
2
,

Γ1
22E + Γ2

22F = Fv −
Gu
2
, Γ1

22F + Γ2
22G =

Gv
2
.

Since F = 0 and Γijk = Γikj , we have

Γ1
11 =

Eu
2E

, Γ2
11 = −Ev

2G
, Γ1

12 = Γ1
21 =

Ev
2E

,

Γ2
12 = Γ2

21 =
Gu
2G

, Γ1
22 = −Gu

2E
, Γ2

22 =
Gv
2G

.
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and taking inner product with N gives L1 = e, L2 = f , L3 = g. Thus, we have

xuu =
Eu
2E

xu −
Ev
2G

xv + eN,

xuv =
Ev
2E

xu +
Gu
2G

xv + fN,

xvv = −Gu
2E

xu +
Gv
2G

xv + gN.

Next, use equation (1) in Section 4.3 to get

Nu =
fF − eG

EG− F 2
xu +

eF − fE

EG− F 2
xv = − e

E
xu −

f

G
xv,

Nv =
gF − fG

EG− F 2
xu +

fF − gE

EG− F 2
xv = − f

E
xu −

g

G
xv.

Since the parametrization is continuously differentiable, the partial derivatives commute, and we
have xuuv − xuvu = 0. First, let’s compute the following partial derivatives:Å

Ev
2G

ã
v

=
Evv
2G

− EvGv
2G2

,

Å
Gu
2G

ã
u

=
Guu
2G

− (Gu)
2

2G2
.

Next, we will compute xuuv:

xuuv = (xuu)v =

Å
Eu
2E

xu −
Ev
2G

xv + eN

ã
v

=

Å
Eu
2E

ã
v

xu +
Eu
2E

xuv −
Å
Ev
2G

ã
v

xv −
Ev
2G

xvv + evN + eNv

=

Å
Eu
2E

ã
v

xu +
Eu
2E

ï
Ev
2E

xu +
Gu
2G

xv + fN

ò
−
Å
Ev
2G

ã
v

xv

− Ev
2G

ï
−Gu
2E

xu +
Gv
2G

xv + gN

ò
+ evN + e

Å
− f

E
xu −

g

E
xv

ã
=

ïÅ
Eu
2E

ã
v

+
EuEv
4E2

+
EvGu
4EG

− ef

E

ò
xu +

ï
−
Å
Ev
2G

ã
v

+
EuGu
4EG

− EvGv
4G2

− eg

G

ò
xv

+

ï
Euf

2E
− Evg

2G
+ ev

ò
N.

In a similar manner, we have

xuvu = (xuv)u =

Å
Ev
2E

xu +
Gu
2G

xv + fN

ã
u

=

Å
Ev
2E

ã
u

xu +
Ev
2E

xuu +

Å
Gu
2G

ã
u

xv +
Gu
2G

xuv + fuN + fNu

=

Å
Ev
2E

ã
u

xu +
Ev
2E

ï
Eu
2E

xu −
Ev
2G

xv + eN

ò
+

Å
Gu
2G

ã
u

xv +
Gu
2G

ï
Ev
2E

xu +
Gu
2G

xv + fN

ò
+ fuN + f

Å
− e

G
xu −

f

G
xv

ã
=

ïÅ
Ev
2E

ã
u

+
EuEv
4E2

+
EvGu
4EG

− ef

E

ò
xu +

ïÅ
Gu
2G

ã
u

− (Ev)
2

4EG
+

(Gu)
2

4G2
− f2

G

ò
xv

+

ï
Eve

2E
+
Guf

2G
+ fu

ò
N.

Combining the two results above, we have

xuuv − xuvu =

ïÅ
Eu
2E

ã
v

−
Å
Ev
2E

ã
u

ò
xu +

ï
Euf − Eve

2E
− Evg −Guf

2G
+ ev − fu

ò
N

+

ï
EuGu + (Ev)

2

4EG
− EvGv + (Gu)

2

4G2
− eg − f2

G
−
Å
Ev
2G

ã
v

−
Å
Gu
2G

ã
u

ò
xv = 0.
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Since {xu,xv, N} is an orthonormal basis, each coefficient is equal to zero. Set the coefficient of
xv to zero and recall the formula for the Gaussian curvature:

K =
eg − f2

EG− F 2
=
eg − f2

EG

=
EuGu + (Ev)

2

4E2G
− EvGv + (Gu)

2

4EG2
− 1

E

Å
Ev
2G

ã
v

− 1

E

Å
Gu
2G

ã
u

=
EuGu
4E2G

+
(Ev)

2

4E2G
− EvGv

4EG2
− (Gu)

2

4EG2
− Evv

2EG
+
EvGv
2EG2

− Guu
2EG

+
(Gu)

2

2EG2

= − 1

2
√
EG

ï
Guu√
EG

− EuGu

2E
√
EG

− (Gu)
2

2G
√
EG

+
Evv√
EG

− (Ev)
2

2E
√
EG

− EvGv

2G
√
EG

ò
= − 1

2
√
EG

ßÅ
Ev√
EG

ã
v

+

Å
Gu√
EG

ã
u

™
.

Remark. The above formual for the Gaussian curvature of orthogonal parametrizations is known
as the Brioschi formula.

Exercise 4.3.2. Show that if x is an isothermal parametrization, that is, E = G = λ(u, v) and
F = 0, then

K = − 1

2λ
∆(log λ),

where ∆φ denotes the Laplacian (∂2φ/∂u2) + (∂2φ/∂v2) of the function φ. Conclude that when

E = G = (u2 + v2 + c)−2 and F = 0,

then K = const. = 4c.

Solution 4.3.2. Suppose x is an isothermal parametrization, that is, E = G = λ(u, v) and
F = 0. Then we have

Ev = λv, Gu = λu,

Evv = λvv, Guu = λuu.

From the proof of Exercise 4.3.1, since an isothermal parametrization is orthogonal, we have

K = − 1

2
√
EG

ï
Guu√
EG

− EuGu

2E
√
EG

− (Gu)
2

2G
√
EG

+
Evv√
EG

− (Ev)
2

2E
√
EG

− EvGv

2G
√
EG

ò
= − 1

2λ

ï
λuu
λ

− λ2u
2λ2

− λ2u
2λ2

+
λvv
λ

− λ2v
2λ2

− λ2v
2λ2

ò
= − 1

2λ

ï
λuu + λvv

λ
− λ2u + λ2v

λ2

ò
= − 1

2λ
∆(log λ),

since

∆ (log λ) =

Å
∂2

∂u2
+

∂2

∂v2

ã
(log λ) =

∂

∂u

Å
λu
λ

ã
+

∂

∂v

Å
λv
λ

ã
=
λuu + λvv

λ
− λ2u + λ2v

λ2
.

Let E = G = (u2 + v2 + c)−2 and F = 0, then we have λ(u, v) = (u2 + v2 + c)−2. Then,

∂

∂u
(log λ) = −2

∂

∂u
log
(
u2 + v2 + c

)
= − 4u

u2 + v2 + c
,

∂2

∂u2
(log λ) = −4

∂

∂u

Å
u

u2 + v2 + c

ã
= −4

(−u2 + v2 + c)

(u2 + v2 + c)2
,

∂

∂v
(log λ) = −2

∂

∂v
log
(
u2 + v2 + c

)
= − 4v

u2 + v2 + c
,

∂2

∂v2
(log λ) = −4

∂

∂v

Å
v

u2 + v2 + c

ã
= −4

(u2 − v2 + c)

(u2 + v2 + c)2
.
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=⇒ K = − 1

2λ
∆(log λ) = −1

2
(u2 + v2 + c)2

Å
− 8c

(u2 + v2 + c)2

ã
= 4c.

This surface has constant Gaussian curvature K = 4c.

Remark. For c > 0, this correponds to the stereographic projection of a sphere of radius 1/
√
c

minus the north pole; for c = 0, this corresponds to the Euclidean plane; and for c < 0, this
corresponds to the stereographic projection of a hyperbolic plane.

Exercise 4.3.3. Verify that the surfaces

x(u, v) = (u cos v, u sin v, log u), u > 0,

x̄(u, v) = (u cos v, u sin v, v),

have equal Gaussian curvature at the points x(u, v) and x̄(u, v), but that the mapping x̄ ◦ x−1 is
not an isometry. This shows that the ”converse” of the Gauss theorem is not true.

Solution 4.3.3. First, we compute the first fundamental form of x(u, v) and x̄(u, v):

xu =

Å
cos v, sin v,

1

u

ã
, xv = (−u sin v, u cos v, 0) ,

E = ⟨xu,xu⟩ = cos2 v + sin2 v +
1

u2
= 1 +

1

u2
,

F = ⟨xu,xv⟩ = −u cos v sin v + u sin v cos v + 0 = 0,

G = ⟨xv,xv⟩ = u2 sin2 v + u2 cos2 v + 0 = u2.

Similarly, we have

xu = (cos v, sin v, 0), xv = (−u sin v, u cos v, 1),
E = ⟨xu, xu⟩ = cos2 v + sin2 v + 0 = 1,

F = ⟨xu, xv⟩ = −u cos v sin v + u sin v cos v + 0 = 0,

G = ⟨xv, xv⟩ = u2 sin2 v + u2 cos2 v + 1 = u2 + 1.

Notice that for orthogonal parametrizations, the Gaussian curvature only depends on the following
quantities:

Ev = Ev = 0, Gu = Gu = 2u, EG =

Å
1 +

1

u2

ã
u2 = u2 + 1 = EG.

Since F = F = 0, both parametrizations are orthogonal, so by Exercise 4.3.1 the Gaussian curva-
ture at the points x(u, v) and x(u, v) are equal. Consider the map Φ : S → S defined by Φ = x◦x−1,
where S and S are the images of x and x, respectively. Since Φ satisfies Φ(x(u, v)) = x(u, v), we
have

dΦx(u,v)(xu) =
∂

∂u
x(u, v) = xu, dΦx(u,v)(xv) =

∂

∂v
x(u, v) = xv.

Then, we compute the first fundamental form at x(u, v) under the map Φ:

⟨dΦx(u,v)(xu), dΦx(u,v)(xu)⟩ = ⟨xu, xu⟩ = E = 1 ̸= 1 +
1

u2
= E = ⟨xu, xu⟩,

so Φ is not an isometry.

Remark. Two regular surfaces with identical Gaussian curvature at corresponding points are not
necessarily isometric.

Exercise 4.3.4. Show that no neighborhood of a point in a sphere may be isometrically mapped
into a plane.
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Solution 4.3.4.

Exercise 4.3.5. If the coordinate curves form a Tchebyshef net (cf. Exercises 7 and 8, Sec. 2–5),
then E = G = 1 and F = cos θ. Show that in this case

K = − θuv
sin θ

.

Solution 4.3.5.

Remark. In principle, the Gaussian curvature is completely determined by the first fundamental
form. However, in practie, it is often difficult to calculate K directly from E,F,G.

Method 1: From Theorema Egregium in Do Carmo Curves and Surfaces, we have

K =
1

E

[
−
(
Γ2
12

)
u
+
(
Γ2
11

)
v
− Γ1

12Γ
2
11 − Γ2

12Γ
2
12 + Γ2

11Γ
2
22 + Γ1

11Γ
2
12

]
.

In this case, the Christoffel symbols satisfy the following relations:

Γ1
11E + Γ2

11F =
Eu
2

= 0,

Γ1
11F + Γ2

11G = Fu −
Ev
2

= − sin θ θu,

Γ1
12E + Γ2

12F =
Ev
2

= 0,

Γ1
12F + Γ2

12G =
Gu
2

= 0,

Γ1
22E + Γ2

22F = Fv −
Gu
2

= − sin θ θv,

Γ1
22F + Γ2

22G =
Gv
2

= 0.

Then, since |g|2 = EG− F 2 = sin2 θ, we have

Γ1
11 =

1

|g|2
F sin θθu = cot θ θu, Γ2

11 = − 1

|g|2
E sin θθu = − csc θ θu,

Γ1
12 = Γ2

12 = Γ1
21 = Γ2

21 = 0,

Γ1
22 = − 1

|g|2
G sin θθv = − csc θ θv, Γ2

22 =
1

|g|2
F sin θθv = cot θ θv.

Next,
(
Γ2
11

)
v
= (− csc θθu)v = csc θ cot θθuθv − csc θθuv. By the Theorema Egregium, we have

K = csc θ cot θθuθv − csc θθuv − 0− 0 + (− csc θθu) (cot θθv) + 0 = − θuv
sin θ

.

Method 2: From Riemannian geometry, the Theorema Egregium states that

R1212 = ⟨R(∂u, ∂v)∂u, ∂v⟩ = −det g K.

By antisymmetry of the curvature tensor, we have

K = − 1

det g
R1212 =

1

det g
R1221 =

1

det g
⟨R(∂u, ∂v)∂v, ∂u⟩.

Exercise 4.3.6. Show that there exists no surface x(u, v) such that

E = G = 1, F = 0 and e = 1, g = −1, f = 0.
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Solution 4.3.6. Suppose such a surface x(u, v) exists. Since E = G = 1 and F = 0, the
parametrization is orthogonal. From Exercise 4.3.1, we have

K = − 1

2
√
EG

ßÅ
Ev√
EG

ã
v

+

Å
Gu√
EG

ã
u

™
= −1

2
(0 + 0) = 0.

On the other hand, from the Gauss formula, we have

K =
eg − f2

EG− F 2
=

(1)(−1)− 02

(1)(1)− 02
= −1,

a contradiction.

Exercise 4.3.7. Does there exist a surface x = x(u, v) with

E = 1, F = 0, G = cos2 u and e = cos2 u, f = 0, g = 1?

Solution 4.3.7.

Exercise 4.3.8. Compute the Christoffel symbols for an open set of the plane

a. In Cartesian coordinates.

b. In polar coordinates.

Use the Gauss formula to compute K in both cases.

Solution 4.3.8.

a. An open set of the plane can be parametrized in Cartesian coordinates as x(u, v) = (u, v, 0).
Then, we have

E = ⟨xu,xu⟩ = 1, F = ⟨xu,xv⟩ = 0, G = ⟨xv,xv⟩ = 1.

Since F = 0 and E,G ̸= 0, we have

Γ1
11 =

Eu
2E

= 0, Γ2
11 = −Ev

2G
= 0, Γ1

12 = Γ1
21 =

Ev
2E

= 0,

Γ2
12 = Γ2

21 =
Gu
2G

= 0, Γ1
22 = −Gu

2E
= 0, Γ2

22 =
Gv
2G

= 0.

Hence, all Christoffel symbols are zero. Next, compute

xuu = xuv = xvv = 0,

so with the unit normal N = (0, 0, 1), we have

e = ⟨xuu, N⟩ = 0, f = ⟨xuv, N⟩ = 0, g = ⟨xvv, N⟩ = 0.

Therefore, since EG− F 2 ̸= 0, the Gaussian curvature is given by the Gauss formula as

K =
eg − f2

EG− F 2
= 0.

b. An open set of the plane can also be parametrized in polar coordinates, given by the
parametrization x(u, v) = (u cos v, u sin v, 0). Then, we have

E = ⟨xu,xu⟩ = 1, F = ⟨xu,xv⟩ = 0, G = ⟨xv,xv⟩ = u2.
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Since F = 0, we have the following Christoffel symbols whenever u ̸= 0:

Γ1
11 =

Eu
2E

= 0, Γ2
11 = −Ev

2G
= 0, Γ1

12 = Γ1
21 =

Ev
2E

= 0,

Γ2
12 = Γ2

21 =
Gu
2G

=
1

u
, Γ1

22 = −Gu
2E

= −u, Γ2
22 =

Gv
2G

= 0.

Unlike in the Cartesian coordinates, not all Christoffel symbols are zero. Next, compute

xuu = (0, 0, 0), xuv = (− sin v, cos v, 0), xvv = (−u cos v,−u sin v, 0),

so with the unit normal N = (0, 0, 1), we have

e = ⟨xuu, N⟩ = 0, f = ⟨xuv, N⟩ = 0, g = ⟨xvv, N⟩ = 0.

Therefore, since EG− F 2 ̸= 0, the Gaussian curvature is given by the Gauss formula as

K =
eg − f2

EG− F 2
= 0.

Exercise 4.3.9. Justify why the surfaces below are not pairwise locally isometric:

a. Sphere.

b. Cylinder.

c. Saddle z = x2 − y2.

Solution 4.3.9.

a. The sphere has constant positive Gaussian curvature. Let a sphere of radius r be centered
about the origin, and let x(θ, ϕ) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ) be a parametrization of
the sphere. Then,

xθ = (r cos θ cosϕ, r cos θ sinϕ, −r sin θ),
xϕ = (−r sin θ sinϕ, r sin θ cosϕ, 0),

and we have
E = r2, F = 0, G = r2 sin2 θ.

We can compute
Eϕ = 0, Gθ = 2r2 sin θ cos θ, EG = r4 sin2 θ.

Then, Å
Eϕ√
EG

ã
ϕ

= 0,

Å
Gθ√
EG

ã
θ

= (cos θ)θ = − sin θ.

Since F = 0, the parametrization is orthogonal. By Exercise 4.3.1 we have

K = − 1

2r2 sin θ
(− sin θ) =

1

2r2
> 0.

b. The cylinder has zero Gaussian curvature. Let a cylinder of radius r be centered about the
z-axis, and let x(θ, z) = (r cos θ, r sin θ, z) be a parametrization of the cylinder. Then,

xθ = (−r sin θ, r cos θ, 0), xz = (0, 0, 1),

and we have
E = r2, F = 0, G = 1.

We can compute
Ez = 0, Gθ = 0, EG = r2.
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Then, Å
Ez√
EG

ã
z

= 0,

Å
Gθ√
EG

ã
θ

= 0.

Since F = 0, the parametrization is orthogonal. By Exercise 4.3.1 we have

K = − 1

2r
(0 + 0) = 0.

c. The saddle has negative Gaussian curvature. Let the saddle be given by the parametrization
x(u, v) = (u, v, u2 − v2). Then,

xu = (1, 0, 2u), xv = (0, 1,−2v),

xuu = (0, 0, 2), xuv = (0, 0, 0), xvv = (0, 0,−2),

and we have E = 1 + 4u2, F = −4uv, and G = 1 + 4v2. The normal vector of the surface is
given by

N =
xu ∧ xv
∥xu ∧ xv∥

=
(−2u, 2v, 1)√
1 + 4u2 + 4v2

.

Then, we have

e = ⟨xuu, N⟩ = 2√
1 + 4u2 + 4v2

, f = ⟨xuv, N⟩ = 0, g = ⟨xvv, N⟩ = −2√
1 + 4u2 + 4v2

.

Since EG− F 2 = (1 + 4u2)(1 + 4v2)− 16u2v2 = 1 + 4u2 + 4v2 ̸= 0, the Gaussian curvature
is given by the Gauss formula as

K =
eg − f2

EG− F 2
=

Å
2√

1 + 4u2 + 4v2

ãÅ −2√
1 + 4u2 + 4v2

ã
− 0

1 + 4u2 + 4v2
=

−4

(1 + 4u2 + 4v2)2
< 0.

Suppose a. to c. are pairwise locally isometric, then by the Theorema Egregium they must have
identical Gaussian curvature at corresponding points, a contradiction to our above calculation.

The following are some extra exercises from other sources.

Theorem 7 (Levi-Civita connection formula).

Let g be the metric, or the first fundamental form, on a surface S. The Christoffel symbols
associated to g are given by

Γkij =
1

2
gkl (∂igjl + ∂jgil − ∂lgij) ,

where (gij) is the inverse matrix of (gij).

Proof. Let {ei} be the coordinate basis induced by the parametrization x(u1, . . . , un). Then,

∂jei = ∇ejei =

n∑
k=1

Γkijek ≡ Γkijek.

The metric tensor is gij = ⟨ei, ej⟩, and

∂kgij = ∂k⟨ei, ej⟩ = ⟨∂kei, ej⟩+ ⟨ei, ∂kej⟩
= ⟨Γlikel, ej⟩+ ⟨ei,Γmjkem⟩ = Γlikglj + Γmjkgim.

By permuting the indices, we also have ∂jgik = Γlijglk +Γlkjgil and ∂igjk = Γljiglk +Γlkigjl. Recall

that since xij = xji by smoothness of x, we have ∂iej = ∂jei, and hence Γkij = Γkji. Therefore, we
have

2Γlijglk = ∂jgik + ∂igjk − ∂kgij .
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Contract with gkm and use gkmglk = δml to obtain

2Γmij = gkm (∂jgik + ∂igjk − ∂kgij) =⇒ Γmij =
1

2
gkm (∂jgik + ∂igjk − ∂kgij) .

Exercise 1 (Christoffel synbols in higher dimensions). Here we calculate the Christoffel symbols
for various high-dimenional manifolds.

a. Hyper-paraboloid: Let (x1, . . . , xn) be coordinates in Rn. Consider the immersion Φ : Rn →
Rn+1 defined by

Φ
(
x1, . . . , xn

)
=

(
x1, . . . , xn,

n∑
i=1

(xi)2

)
.

Its image is the hyper-paraboloid in Rn+1. Compute the Christoffel symbols of the induced
metric (from ⟨·⟩Rn+1) on the hyper-paraboloid.

b. Conformally flat metric in Rn: Consider the metric g on R3 defined by gij = e2ϕ(x)δij .
Comput Γkij in terms of ϕ.

c. n-sphere: Consider the n-sphere Sn ⊂ Rn+1 with the parametrization

x(u1, . . . , un) =

â
cosu1

sinu1 cosu2

sinu1 sinu2 cosu3

...
sinu1 sinu2 · · · sinun−1 sinun

ì
,

where u1 ∈ [0, π], u2, . . . , un−1 ∈ [0, π], and un ∈ [0, 2π). Compute the Christoffel symbols
of the induced metric on Sn.

Solution 1.

a.

Exercise 2 (computing the Ricci tensor). Let f ∈ C∞(U), f > 0, and gij(x
1, . . . , xn) = f(xn)δij .

Then, calculate the Ricci tensor Rij in terms of f and its derivatives.

Solution 2.
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4 Chapter 4.4

Definition 2 (covariant derivative 協變導數). Let w be a differentiable vector field restricted to
a curve α : I → S. The vector by the normal projection of dw/dt onto Tp(S) is called the covariant
derivative of the vector field w relative to α′(0).

Definition 3 (covariant derivative of vector field along a curve). Let w be a differentiable vector
field along a curve α : I → S. The expression

Dw

dt
(t) =

(
a′ + Γ1

11au
′ + Γ1

12av
′ + Γ1

12bu
′ + Γ1

22bv
′)xu

+
(
b′ + Γ2

11au
′ + Γ2

12av
′ + Γ2

12bu
′ + Γ2

22bv
′)xv (1)

is called the covariant derivative of the vector field w along the curve α.

Definition 4 (parallel vector field). A vector field w along a curve α : I → S is said to be parallel
if Dw/dt = 0 for all t ∈ I.

Definition 5 (parallel transport 平行輸運). Let α : I → S be a parametrized curve in S and let
w0 ∈ Tα(t0)(S), t0 ∈ I. Let w be the (unique) parallel vector field along α such that w(t0) = w0.
The vector w(t) ∈ Tα(t)(S) is called the parallel transport of w0 along α at α(t).

Definition 6 (parametrized geodesic參數測地線). A nonconstant, parametrized curve γ : I → S
is said to be geodesic at t ∈ I if the field of its tangent vectors γ′(t) is parallel along γ at t, i.e.

Dγ′

dt
(t) = 0. (2)

We say γ is a parametrized geodesic if it is geodesic for all t ∈ I.

Definition 7 (geodesic 測地線). A regular connected curve C in S is said to be a geodesic if,
for every p ∈ C, the parametrization α(s) of a coordinate neighborhood of p by arc length s is a
parametrized geodesic. That is, α′(s) is a parallel vector field along α(s).

Definition 8. Let w be a differentiable field of unit vectors along a parametrized curve α : I → S
on an oriented surface S. Since w(t) is normal to dw(t)/dt, we can write

Dw

dt
(t) = λ(t) (N(t) ∧ w(t)) , λ(t) ≡

ï
Dw

dt

ò
,

where [Dw/dt] is called the algebraic value of Dw/dt at t.

Definition 9 (geodesic curvature 測地線曲率). Let C ⊂ S be a regular curve on an oriented
surface S, and let α(s) be its parametrization by arc length. The algebraic value of the covariant
derivative [Dα′(s)/ds] ≡ kg of α′(s) at p is called the geodesic curvature of C at p = α(s).

Remark. Immediately, we have k2 = k2n + k2g .

Proposition 8 (algebraic value of covariant derivative).
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Let x(u, v) be an orthonormal parametrization of a neighborhood of an oriented surface S, and
w(t) be a differentiable field of unit vectors along a curve x(u(t), v(t)). Then,ï

Dw

dt

ò
=

1

2
√
EG

Å
Gu

dv

dt
− Ev

du

dt

ã
+

dϕ

dt
, (3)

where ϕ(t) = cos−1⟨xu/
√
E, w(t)⟩ is the angle from xu to w(t) in the given orientation.

Proposition 9 (Liouville). Let α(s) be a parametrization by arc length of a neighborhood of p
of a regular oriented curve C on an oriented surface S. Let x be an orthonormal parametrization
of a neighborhood of p such that the angle between α′(s) and xu is ϕ(s). Then,

kg = (kg)1 cosϕ+ (kg)2 sinϕ+
dϕ

ds
,

where (kg)1 and (kg)2 are the geodesic curvatures of the coordinate curves v = const. and u =
const., respectively.

Theorem 10 (differential equations of the geodesics).

Let α : I → S be a parametrized curve on a surface S, and let x(u, v) be a parametrization of
S in a neighborhood of α(t0), t0 ∈ I. Then, the tangent vector field α′(t), t ∈ J , is given by
w(t) = u′(t)xu + v′(t) + xv. Since w is parellel along α, the functions u(t), v(t) satisfy

u′′ + Γ1
11(u

′)2 + 2Γ1
12u

′v′ + Γ1
22(v

′)2 = 0, v′′ + Γ2
11(u

′)2 + 2Γ2
12u

′v′ + Γ2
22(v

′)2 = 0.

Additional definitions for Riemannian geometry.

Definition 10 (Levi-Civita formula). The Christoffel symbols associated to the first fundamental
form are given by

Γkij =
1

2
gkl (∂igjl + ∂jgil − ∂lgij) ,

where (gij) is the inverse matrix of (gij).

Definition 11 (connection 1-form). Given an orthonormal frame {e1, e2} on a surface S, the
connection 1-form ω is defined by

ω(X) = ⟨∇Xe1, e2⟩,

for any vector field X on S.

Definition 12 (Levi-Civita connection). The Christoffel symbols defined by the Levi-Civita for-
mula determine a unique connection ∇ on the tangent bundle of a surface S, called the Levi-Civita
connection. This is given by the formula

∇eiej = Γkij (e1, . . . , en) ek.

Definition 13 (Riemannian tensor). Given vector fields X,Y, Z on S, the Riemmannian curva-
ture tensor R is defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

In coordinates, we have

Rlijk = ⟨R(∂i, ∂j)∂k, ∂l⟩ = ∂iΓ
l
jk − ∂jΓ

l
ik + ΓmjkΓ

l
im − ΓmikΓ

l
jm.
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Definition 14 (Ricci tensor & scalar curvature). The Ricci tensor Rij is defined by contracting
the Riemannian curvature tensor as

Rij = Rkikj .

Then, the scalar curvature R is defined as the trace of the Ricci tensor, i.e. R = gijRji.

Exercise 4.4.1.

a. Show that if a curve C ⊂ S is both a line of curvature and a geodesic, then C is a plane
curve.

b. Show that if a (nonrectilinear) geodesic is a plane curve, then it is a line of curvature.

c. Give an example of a line of curvature which is a plane curve and not a geodesic.

Solution 4.4.1.

a. By Proposition 3.2.3, the theorem of Olinde Rodrigues states that a regular curve is a line
of curvature if and only if the normal vector N along C satisfies N ′(t) = λ(t)α′(t) for some
function λ. Since α(t) is a geodesic, we have Dα′/dt = DT/dt = 0, and thus T ′(t) = µ(t)N(t)
for some differentiable function µ. Therefore, the binormal vector B(t) = T (t)∧N(t) satisfies

B′(t) = T ′(t) ∧N(t) + T (t) ∧N ′(t) = µ(t)N(t) ∧N(t) + T (t) ∧ λ(t)α′(t) = 0.

Then, d
dt ⟨α(t), B(t)⟩ = ⟨T (t), B(t)⟩+ ⟨α(t), B′(t)⟩ = 0, and C is a plane curve.

b. Suppose C is a geodesic and a plane curve. Then, the normal vector N along C is constant,
so N ′(t) = 0. Since α(t) is a geodesic, we have ⟨N ′(t), α′(t)⟩ = 0, *

c. Let C be the curve of constant latitude on a sphere S with latitude 0 < ϕ < π/2. Then, C
is a line of curvature since the normal vector along C is constant. Also, C is a plane curve
since it lies in a plane parallel to the equatorial plane. However, C is not a geodesic since
the geodesics on a sphere are exactly the great circles.

Exercise 4.4.2. Prove that a curve C ⊂ S is both an asymptotic curve and a geodesic if and
only if C is a (segment of a) straight line.

Solution 4.4.2. Suppose C is both an asymptotic curve and a geodesic, and C is the trace of
the parametrization α : I → R3. Then kn = kg = 0. Thus, k2 = k2n + k2g = 0 implies k = 0, and so
α′′ = kn = 0. Integrating twice, we have α(t) = at+b, a straight line. Conversely, if C is a straight
line, then kn = α′′ = 0. Taking the norm on both sides shows k = 0, and hence kg = kn = 0.

Exercise 4.4.3. Show, without using Prop. 5, that the straight lines are the only geodesics of a
plane.

Solution 4.4.3. For a plane, the unit normal N is constant, and thus dN = 0. Therefore, the
second fundamental form II(v, w) = −⟨dNp(v), w⟩N = 0 for all v, w ∈ Tp(S), and kn is identically
zero. For a geodesic, we have kg = 0, so k = 0, and α′′ = 0. Integrating twice, we have α(t) = at+b,
a straight line. Conversely, a straight line has α′′ = 0, so k = 0, and hence kg = 0.

Exercise 4.4.4. Let v and w be vector fields along a curve α : I → S. Prove that

d

dt
⟨v(t), w(t)⟩ =

≠
Dv

dt
, w(t)

∑
+

≠
v(t),

Dw

dt

∑
.

17



Solution 4.4.4. The covariant derivative is the normal projection of the ordinary derivative onto
the tangent space. Thus, we have

Dv

dt
=

dv

dt
−
≠
dv

dt
,N

∑
N,

Dw

dt
=

dw

dt
−
≠
dw

dt
,N

∑
N.

=⇒
≠
Dv

dt
, w

∑
+

≠
v,

Dw

dt

∑
=

≠
dv

dt
−
≠
dv

dt
,N

∑
N,w

∑
+

≠
v,

dw

dt
−
≠
dw

dt
,N

∑
N

∑
=

≠
dw

dt
, v

∑
+

≠
dv

dt
, w

∑
−
≠
dv

dt
,N

∑
⟨N,w⟩ −

≠
dw

dt
,N

∑
⟨v,N⟩

=
d

dt
⟨v, w⟩ − d

dt
⟨v,N⟩⟨N,w⟩

Exercise 4.4.5. Consider the torus of revolution generated by rotating the circle

(x− a)2 + z2 = r2, y = 0,

about the z axis (a > r > 0). The parallels generated by the points (a+ r, 0), (a− r, 0), (a, r) are
called the maximum parallel, the minimum parallel, and the upper parallel, respectively. Check
which of these parallels is

a. A geodesic.

b. An asymptotic curve.

c. A line of curvature.

Solution 4.4.5. Take the standard parametrization of the torus of rotation:

x(u, v) = ((a+ r cos v) cosu, (a+ r cos v) sinu, r sin v) , u, v ∈ [0, 2π).

Then, we have

xu = (−(a+ r cos v) sinu, (a+ r cos v) cosu, 0) ,

xv = (−r sin v cosu, −r sin v sinu, r cos v) ,
xuu = (−(a+ r cos v) cosu, −(a+ r cos v) sinu, 0) ,

xuv = (r sin v sinu, −r sin v cosu, 0) ,
xvv = (−r cos v cosu, −r cos v sinu, −r sin v) .

The first fundamental form is given by

E = ⟨xu,xu⟩ = (a+ r cos v)2, F = ⟨xu,xv⟩ = 0, G = ⟨xv,xv⟩ = r2,

the unit normal is N = (cos v cosu, cos v sinu, sin v), and the second fundamental form is given by

e = ⟨N,xuu⟩ = −(a+ r cos v) cos v, f = ⟨N,xuv⟩ = 0, g = ⟨N,xvv⟩ = −r.

Now, we proceed to calculate the geodesic curvature kg for each parallel with v = ϕ0. The
maximum, minimum, and upper parallels correspond to ϕ0 = 0, π, and π/2, respectively. The unit
tangent along the parallel is T = xu/

√
E, and the normal curvature is given by

kn =
II(T, T )

I(T )
=

e

E
= − (a+ r cosϕ0) cosϕ0

(a+ r cosϕ0)2
= − cosϕ0

a+ r cosϕ0
.

We have

DT

ds
= Γvuu(T

u)2ev = Γvuu
1

E
xv =
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Exercise *4.4.6. Compute the geodesic curvature of the upper parallel of the torus of Exercise 5.

Solution 4.4.6.

Exercise *4.4.8. Show that if all the geodesics of a connected surface are plane curves, then the
surface is contained in a plane or a sphere.

Solution 4.4.8. Let C be a geodesic of S, and α(t) be its parametrization. Since C is a plane
curve, we have B′ = T ′ ∧ N + T ∧ N ′ = 0. Since C is a geodesic, we have kg = 0, and thus
α′′ = T ′ = knN . Hence, T ∧N ′ = 0, and so N ′ = λT for some function λ. By Proposition 3.2.3
(Olinde Rodrigues), every point of C is an umbilical point. By Proposition 4.4.5, for any p ∈ S and
w ∈ Tp(S), there is a unique parametrized geodesic γ : I → S such that γ(0) = p and γ′(0) = w,
and hence every point of S is umbilical. Since S is connected and all its points are umbilical points,
by Proposition 3.2.4 (a surface S is contained in a plane or a sphere if S is connected and all its
points are umbilical points), S is contained in a plane or a sphere.

Exercise *4.4.9. Consider two meridians of a sphere C1 and C2 which make an angle φ at the
point p1. Take the parallel transport of the tangent vector w0 of C1, along C1 and C2, from the
initial point p1 to the point p2 where the two meridians meet again, obtaining, respectively, w1

and w2. Compute the angle from w1 to w2.

Solution 4.4.9. Let C1 and C2 be the two meridians of the sphere intersecting at p1 and =2,
parametrized by α1 and α2 respectively. Without loss of generality, let p1 = (0, 0, 1) and p2 =
(0, 0,−1). Choose coordinates such that

α1(s) = (sin s, 0, cos s) , α2(s) = (cosϕ sin s, sinϕ sin s, cos s) ,

for 0 ≤ s < π. We have w0 = α′
1(0) = (1, 0, 0) and the transport along C1 is w1(π) = α′

1(π) =
(−1, 0, 0).

Exercise *4.4.10. Show that the geodesic curvature of an oriented curve C ⊂ S at a point p ∈ C
is equal to the curvature of the plane curve obtained by projecting C onto the tangent plane Tp(S)
along the normal to the surface at p.

Exercise *4.4.12. We say that a set of regular curves on a surface S is a differentiable family of
curves on S if the tangent lines to the curves of the set make up a differentiable field of directions
(see Sec. 3–4). Assume that a surface S admits two differentiable orthogonal families of geodesics.
Prove that the Gaussian curvature of S is zero.

Exercise *4.4.13. Let V be a connected neighborhood of a point p of a surface S, and assume
that the parallel transport between any two points of V does not depend on the curve joining these
two points. Prove that the Gaussian curvature of V is zero.

Exercise 4.4.14. Let S be an oriented regular surface and let α : I → S be a curve parametrized
by arc length. At the point p = α(s) consider the three unit vectors (the Darboux trihedron)

T (s) = α′(s), N(s) = the normal vector to S at p, V (s) = N(s) ∧ T (s).
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Show that

dT

ds
= 0 + aV + bN,

dV

ds
= −aT + 0 + cN,

dN

ds
= −bT − cV + 0,

where a = a(s), b = b(s), c = c(s), s ∈ I. The above formulas are the analogues of Frenet’s
formulas for the trihedron T, V,N . To establish the geometrical meaning of the coefficients, prove
that

a. c = −⟨dN/ds, V ⟩; conclude from this that α(I) ⊂ S is a line of curvature if and only if c ≡ 0
(−c is called the geodesic torsion of α; cf. Exercise 19, Sec. 3–2).

b. b is the normal curvature of α(I) ⊂ S at p.

c. a is the geodesic curvature of α(I) ⊂ S at p.

Solution 4.4.14. First, we show the Darboux trihedron analogue for Frenes formulas. Since
T, V,N are orthonormal, we have ⟨T, T ⟩ = ⟨V, V ⟩ = ⟨N,N⟩ = 1 and ⟨T, V ⟩ = ⟨V,N⟩ = ⟨N,T ⟩ = 0.
Differentiating these equations with respect to s, we have≠

dT

ds
, T

∑
=

≠
dV

ds
, V

∑
=

≠
dN

ds
,N

∑
= 0,

and ≠
dT

ds
, V

∑
+

≠
T,

dV

ds

∑
= 0,

≠
dV

ds
,N

∑
+

≠
V,

dN

ds

∑
= 0,

≠
dN

ds
, T

∑
+

≠
N,

dT

ds

∑
= 0.

Hence, let a(s) = ⟨dT/ds, V ⟩, b(s) = ⟨dT/ds,N⟩, and c(s) = −⟨dN/ds, V ⟩, we have

dT

ds
=

≠
dT

ds
, V

∑
V +

≠
dT

ds
,N

∑
N = 0 + aV + bN,

dV

ds
=

≠
dV

ds
, T

∑
T +

≠
dV

ds
,N

∑
N

= −
≠
dT

ds
, V

∑
T + 0−

≠
dN

ds
, V

∑
N = −aT + 0 + cN,

dN

ds
=

≠
dN

ds
, T

∑
T +

≠
dN

ds
, V

∑
V = −bT − cV + 0.

a. c(s) is as we defined above. By Proposition 3.2.3 (Olinde Rodrigues), α(I) ⊂ S is a line
of curvature if and only if N ′(s) = λ(s)T (s) for some function λ, if and only if c(s) =
−⟨N ′(s), V (s)⟩ = 0 for all s ∈ I.

b. Since kn = k cos θ, where cos θ = ⟨n,N⟩, we have kn = ⟨α′′, N⟩. By the first formula,
α′′ = dT/ds = aV + bN , so kn = ⟨aV + bN,N⟩ = b.

c. The geodesic curvature kg is the algebraic value of the covariant derivative of α′(t). For a
unit vector field w(t) along α(t), we haveï

Dw

dt

ò
=

≠
dw

dt
, N ∧ w

∑
.

Let w(t) = α′(t) = T (t), we have

kg(t) =

ï
Dα′

dt

ò
=

≠
dT

ds
, N ∧ T

∑
= ⟨aV + bN, V ⟩ = a(t).
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Exercise 4.4.15. Let p0 be a pole of a unit sphere S2 and q, r be two points on the corresponding
equator in such a way that the meridians p0q and p0r make an angle θ at p0. Consider a unit
vector v tangent to the meridian p0q at p0, and take the parallel transport of v along the closed
curve made up by the meridian p0q, the parallel qr, and the meridian rp0 (Fig. 4–21).

a. Determine the angle of the final position of v with v.

b. Do the same thing when the points r, q instead of being on the equator are taken on a parallel
of colatitude φ (cf. Example 1).

Solution 4.4.15.

Exercise *4.4.16. Let p be a point of an oriented surface S and assume that there is a neigh-
borhood of p in S all points of which are parabolic. Prove that the (unique) asymptotic curve
through p is an open segment of a straight line. Give an example to show that the condition of
having a neighborhood of parabolic points is essential.

Solution 4.4.16.

Exercise *4.4.18. Consider a geodesic which starts at a point p in the upper part (z > 0) of a
hyperboloid of revolution x2 + y2 − z2 = 1 and makes an angle θ with the parallel passing through
p in such a way that cos θ = 1/r, where r is the distance from p to the z axis. Show that by
following the geodesic in the direction of decreasing parallels, it approaches asymptotically the
parallel x2 + y2 = 1, z = 0 (Fig. 4–22).

Exercise *4.4.19. Show that when the differential equations (4) of the geodesics are referred to
the arc length then the second equation of (4) is, except for the coordinate curves, a consequence
of the first equation of (4).
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5 Chapter 4.5

Theorem 11 (turning tangents).

k∑
i=0

(ϕ(ti+1)− ϕ(ti)) +

k∑
i=0

θi = ±2π,

where the sign plus or minus depends on the orientation of the curve.

Definition 15. Let S be an oriented surface. A region R ⊆ S is called a simple region if R
is homeomorphic to a disk and the boundary ∂R of R is the trace of a simple, closed, piecewise
regular, parametrized curve α : I → S. Further, let x : U ⊆ R2 → S be a parametrization and let
R be bounded. Then, if f is a differentiable function on S, the integral of f over R is given by

x

R

dσ f =
x

x−1(R)

dudv f(x(u, v))
√
EG− F 2,

and this definition is independent of the parametrization x chosen.

Theorem 12 (local Gauss-Bonnet Theorem). Let x : U → S be an isothermal parametrization
of an oriented surface S, where U is homeomorphic to an open disk and x is compatible with the
orientation of S. Let R ⊆ x(U) be a simple region and α : I → S be such that α(I) = ∂R. Assume
α is positively oriented, parametrized by arc length, and that α(s0), . . . , α(sk) and θ0, . . . , θk are
the vertices and exterior angles of α, respectively. Then,

k∑
i=0

∫ si+1

si

ds kg +
x

R

dσK +

k∑
i=0

θi = 2π,

where kg is the geodesic curvature of the regular arcs of α and K is the Gaussian curvature of S.

Theorem 13 (global Gauss-Bonnet Theorem). Let R ⊆ S be a regular region of an oriented
surface S and let C0, . . . , Cn be the closed, simple, piecewise regular curves which make up ∂R.
Suppose each Ci is positively oriented and let {θ1, . . . , θp} be the set of the curves C1, . . . , Cn.
Then,

n∑
i=1

∫
Ci

ds kg +
x

R

dσK +

p∑
j=1

θj = 2πχ(R),

where s denotes the arc length of Ci, and the integral over Ci means the sum of integrals over each
regular arc of Ci.

Corollary 14. If R is a simple region, then

n∑
i=1

∫
Ci

ds kg +
x

R

dσK +

p∑
j=1

θj = 2π.

Corollary 15. If S is an orientable compact surface, then

x

S

dσK +

p∑
j=1

θj = 2πχ(S).
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Corollary 16 (interior angles of a geodesic triangle). Let T be a geodesic triangle in an oriented
surface S. Assume the Gaussian curvature K does not change sign in T , and let ϕi denote the
interior angles of T . Then,

3∑
i=1

ϕi = π +
x

T

dσK.

Definition 16 (index of a vector field). Let v be a differentiable vector field on a surface S. A
point p ∈ S is called a singular point of v if v(p) = 0. A singular point p is said to be isolated if there
exists a neighborhood U ⊂ S of p such that p is the only singular point of v in U . Let x : U → S
be an orthogonal parametrization of S at p = x(0, 0) compatible with S, and let α : [0, l] → S
be a simple, closed, positively oriented, piecewise regular curve such that α([0, l]) ⊆ x(U) is the
boundary of a simple region R containing p and no other singular points of v.

Exercise 4.5.1. Let S ⊂ R3 be a regular, compact, connected, orientable surface which is not
homeomorphic to a sphere. Prove that there are points on S where the Gaussian curvature is
positive, negative, and zero.

Solution 4.5.1. By corollary of the global Gauss–Bonnet theorem for orientable compact sur-
faces, we have x

S

K dσ = 2πχ(S) ≤ 0,

since compact surfaces in R3 have Euler–Poincaré characteristic less than or equal to zero unless
they are homeomorphic to a sphere. By a previous result, every compact surface in R3 has an
elliptics point, so K(p) > 0 for some p. Suppose there are no points with K < 0, then by continuity
of K there is an open neighborhood U ⊂ S of p such that K(q) > 0 for all q ∈ U . Thus,

x

S

K dσ =
x

U

K dσ +
x

S\U

K dσ > 0,

a contradiction. Finally, since S is connected and K is a continuous mapping, there exists r ∈ S
such that K(r) = 0 by the Intermediate Value Theorem.

Exercise 4.5.2. Let T be a torus of revolution. Describe the image of the Gauss map of T and
show, without using the Gauss-Bonnet theorem, that

x

T

K dσ = 0.

Compute the Euler–Poincaré characteristic of T and check the above result with the Gauss–Bonnet
theorem.

Solution 4.5.2. The torus of revolution T can be parametrized by

x(u, v) = ((a+ r cos v) cosu, (a+ r cos v) sinu, r sin v) ,

where a > r > 0, u ∈ [0, 2π), and v ∈ [0, 2π). Then xu = (−(1 + r cos v) sinu, (1 + r cos v) cosu, 0),
xv = (−r sin v cosu, −r sin v sinu, r cos v). The Gauss map N : T → S2 is given by

N(u, v) =
xu ∧ xv
|xu ∧ xv|

= (cos v cosu, cos v sinu, sin v).

The image of N is the entire unit sphere S2, since for every (x, y, z) ∈ S2, we can find (u, v) ∈
[0, 2π)× [0, 2π) such that N(u, v) = (x, y, z). The Gaussian curvature of T is given by

K(u, v) =
⟨Nu ∧Nv, N⟩
|xu ∧ xv|

=
cos v

r(a+ r cos v)
.
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Figure 1: Triangulation of the torus.

Then, we can directly compute

x

T

dσK =

∫ 2π

0

∫ 2π

0

dudv K(u, v)
√
EG− F 2

=

∫ 2π

0

∫ 2π

0

dudv
cos v

r(a+ r cos v)
r(a+ r cos v)

=

∫ 2π

0

du

∫ 2π

0

dv cos v = 0.

To compute the Euler-Poincaé characteristic of T , note that the torus is isomorphic to the quotient
of a square by identifying the opposite sides and identifying the vertices to a single point. Consider
the triangulation of T shown in Figure 1, which has V = 9, E = 27, and F = 18. In fact, the
minimal triangulation only has V = 7, E = 21, and F = 14. Thus, χ(T ) = E − V + F = 0.

By the global Gauss-Bonnet Theorem, we have
x

T

dσK = 0 = 2πχ(T ) =⇒ χ(T ) = 0.

Remark. Calculating Gaussian curvature for a surface of revolution:

Exercise 4.5.3. Let S ⊂ R3 be a regular compact surface with K > 0. Let Γ ⊂ S be a simple
closed geodesic in S, and let A and B be the regions of S which have Γ as a common boundary.
Let N : S → S2 be the Gauss map of S. Prove that N(A) and N(B) have the same area.

Solution 4.5.3.

Exercise 4.5.4. Compute the Euler–Poincaré characteristic of

a. an ellipsoid;

*b. the surface
S = {(x, y, z) ∈ R3 ; x2 + y10 + z6 = 1}.

Solution 4.5.4.
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a. Let E be the ellipsoid given by the equation x2

a2 + y2

b2 + z2

c2 = 1, where a, b, c > 0. Since the
linear map L : S2 → E given by L(x, y, z) = (ax, by, cz) is a diffeomorphism, E ≈ S2, and
χ(E) = 2.

b. Let F : R3 → R be defined by F (x, y, z) = x2 + y10 + z6. 1 is said to be a regular point if
dFp ̸= 0, or, equivalently, ∇F ̸= 0. Since ∇F = (2x, 10y9, 6z5) = 0 only at (0, 0, 0), which is
not in S, we have that 1 is a regular value of F . By the Regular Value Theorem, S = F−1(1)
is a regular surface. Since {1} ⊆ R is closed and F is continuous, S = F−1({1}) is closed.
Furthermore, we have |x|, |y|, |z| ≤ 1, so S is bounded. By the Heine-Borel Theorem, S is
compact. Moreover, S is orientable with N = ∇F/|∇F |. For fixed u = (u1, u2, u3) ∈ S2,
let ϕu : R3 → R3 be defined by ϕu(r) ≡ F (ru) for r > 0. Since ϕu is continuous, ϕ′u(r) =
2ru21 +10r9u102 +6r5u63 > 0, and ϕ(0) = 0, ϕu(∞) = ∞, by the Intermediate Value Theorem
there exists a unique ru > 0 such that ϕu(ru) = 1.

Claim. The map ψ : S2 → S given by ψ(u) = ruu is a continuous bijection.

Proof. Deifne G : (0,∞)× S2 → R by G(r, u) = F (ru)− 1. Then G(ru, u) = 0 and

∂G

∂u
(ru, u) = ⟨∇F (ruu), u⟩ = 2ruu

2
1 + 10r9uu

10
2 + 6r5uu

6
3 > 0.

Hence, by the Implicit Function Theorem, ru depends smoothly on u, and thus ψ = uru is
continuous. For p ∈ S, let u = p/∥p∥, then F (∥p∥u) = F (p) = 1, and by the uniqueness of
ru, ru = ∥p∥. Then ψ(u) = ruu = p, and ψ is surjective. Let p ∈ S satisfy ψ(p) = rpp = 0.
Since rp > 0, it must be that p = 0, hence ψ is injective, and hence a bijection.

Theorem 17. A continuous bijection between a compact space and a Hausdorff space is a
homeomorphism.

Since ψ is a continuous bijection between a compact space S2 and a Hausdorff space S, by
the theorem above ψ is a homeomorphism, and thus S ≈ S2. Therefore, χ(S) = 2.

Exercise 4.5.5. Let C be a parallel of colatitude φ on an oriented unit sphere S2, and let w0 be
a unit vector tangent to C at a point p ∈ C (cf. Example 1, Sec. 4–4). Take the parallel transport
of w0 along C and show that its position, after a complete turn, makes an angle

∆φ = 2π(1− cosφ)

with the initial position w0. Check that

lim
R→p

∆φ

A
= 1 = curvature of S2,

where A is the area of the region R of S2 bounded by C.

Solution 4.5.5. Let S2 be the unit sphere parametrized by

x(u, v) = (sin v cosu, sin v sinu, cos v),

where u ∈ [0, 2π) and v ∈ [0, π]. Then, the parallel of colatitude φ is given by C : α(t) =
(sinφ cos t, sinφ sin t, cosφ), where t ∈ [0, 2π]. The tangent vector to C at p = α(0) is given by

w0 = α′(0) = (0, sinφ, 0).

We have α′(t) = (− sinφ sin t, sinφ cos t, 0), α′′(t) = (− sinφ cos t, − sinφ sin t, 0), and ⟨α ∧
α′, α′′⟩ = sin2 φ cosφ. The geodesic curvature of C is given by

kg(t) =
⟨N(α(t)) ∧ α′(t), α′′(t)⟩

∥α′(t)∥3
=

⟨α(t) ∧ α′(t), α′′(t)⟩
∥α′(t)∥3

= cotφ,
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where the Gauss map N of S2 satisfies N(α(t)) = α(t). Now, we can compute the parallel transport
of w0 along C. Let e1 = xu/∥xu∥ = xu/ sin v, e2 = v be the orthonormal tangent frame. Along
the paralle v = φ, we can write

α(t) = xu(t, φ) = sinφe1(t).

Let the paralle transport of w0 along C be given by w(t) = a(t)e1(t) + b(t)e2(t), where a(0) = 1,
b(0) = 0. Then,

Dw

dt
=⇒ ∗

∆φ =

∫ 2π

0

kg(t) dt =

∫ 2π

0

sinφdt = 2π(1− cosφ).

The area of the region R bounded by C is given by

A =
x

R

K dσ = 2π(1− cosφ),

since the Gaussian curvature of the unit sphere is identically equal to one. Thus,

lim
R→p

∆φ

A
= lim
φ→0

2π(1− cosφ)

2π(1− cosφ)
= 1,

which is the curvature of S2.

Exercise *4.5.6. Show that (0, 0) is an isolated singular point and compute the index at (0, 0)
of the following vector fields in the plane:

*a. v = (x, y);

b. v = (−x, y);

c. v = (x,−y);

*d. v = (x2 − y2,−2xy);

e. v = (x3 − 3xy2, y3 − 3x2y).

Solution 4.5.6.

a. Since v(x, y) = (0, 0) if and only if (x, y) = (0, 0), (0, 0) is an isolated singular point. Consider
the circle C : α(t) = (cos t, sin t), t ∈ [0, 2π]. Then, v(α(t)) = (cos t, sin t), and the angle
between v(α(t)) and the positive x-axis is just t. Thus,

ind(v; (0, 0)) =
1

2π

∫ 2π

0

dt = 1.

b. Since v(x, y) = (0, 0) if and only if (x, y) = (0, 0), (0, 0) is an isolated singular point. Consider
the circle C : α(t) = (cos t, sin t), t ∈ [0, 2π]. Then, v(α(t)) = (− cos t, sin t), and the angle
between v(α(t)) and the positive x-axis is π − t. Thus,

ind(v; (0, 0)) =
1

2π

∫ 2π

0

dt (−1) = −1.

c. Since v(x, y) = (0, 0) if and only if (x, y) = (0, 0), (0, 0) is an isolated singular point. Consider
the circle C : α(t) = (cos t, sin t), t ∈ [0, 2π]. Then, v(α(t)) = (cos t,− sin t), and the angle
between v(α(t)) and the positive x-axis is −t. Thus,

ind(v; (0, 0)) =
1

2π

∫ 2π

0

dt (−1) = −1.
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d. Suppose v(x, y) = (0, 0), then −2xy = 0 and one of x, y must be zero. If x = 0, then
x2 − y2 = −y2 = 0 implies y = 0, and similarly for y = 0. Thus, (0, 0) is an isolated singular
point. Consider the circle C : α(t) = (cos t, sin t), t ∈ [0, 2π]. Then, v(α(t)) = (cos2 t −
sin2 t,−2 cos t sin t) = (cos 2t,− sin 2t), and the angle between v(α(t)) and the positive x-axis
is −2t. Thus, the index of v at (0, 0) is

ind(v; (0, 0)) =
1

2π

∫ 2π

0

dt (−2) = −2.

e. Suppose v(x, y) = (0, 0), then y3 − 3x2y = y(y2 − 3x2) = 0 and either y = 0 or y2 = 3x2. If
y = 0, then x3 − 3xy2 = x3 = 0 implies x = 0. If y2 = 3x2, then substituting into the first
equation gives x3 − 3x(3x2) = x3 − 9x3 = −8x3 = 0, so x = 0 and thus y = 0. Therefore,
(0, 0) is an isolated singular point. Consider the circle C : α(t) = (cos t, sin t), t ∈ [0, 2π].
Then, v(α(t)) = (cos3 t − 3 cos t sin2 t, sin3 t − 3 cos2 t sin t) = (cos 3t, sin 3t), and the angle
between v(α(t)) and the positive x-axis is 3t. Thus,

ind(v; (0, 0)) =
1

2π

∫ 2π

0

dt 3 = 3.

Exercise 4.5.7. Can it happen that the index of a singular point is zero? If so, give an example.

Solution 4.5.7.

Remark. Intuitively, the index of a singular point defines the idea of how many times the vector
field ”turns around” when we go around a small loop enclosing the singular point. If the vector
field does not turn at all, then the index is zero.

Yes. Let v(x, y) = (x2 + y2, 0), then v = 0 if and only if x = y = 0, so (0, 0) is a isolated
singular point. Consider the circle C : α(t) = (cos t, sin t), t ∈ [0, 2π]. Then, v(α(t)) = (1, 0), and
the angle between v(α(t)) and the positive x-axis is 0 for all t. Thus,

ind(v; (0, 0)) =
1

2π

∫ 2π

0

dt 0 = 0.

Exercise 4.5.8. Prove that an orientable compact surface S ⊂ R3 has a differentiable vector
field without singular points if and only if S is homeomorphic to a torus.

Solution 4.5.8. By the Poincareé-Hopf Theorem, we have

n∑
i=1

ind(v; pi) = χ(S),

where p1, . . . , pn are the isolated singular points of v. If S has a differentiable vector field without
singular points, then the left-hand side is zero, so χ(S) = 0. By the classification theorem of
compact surfaces, the only orientable compact surface with Euler-Poincaré characteristic zero is,
up to homeomorphism, the torus. Conversely, let S be homeomorphic to a torus. Let x(u, v) =
((R+ r cosu) cos v, (R+ r cosu) sin v, r sin v) be (the parametrization of) the standard torus of
revolution T , then the coordinate vector field

xu = (−r sinu cos v, −r sinu sin v, r cosu) , ∥xu∥ = r > 0

never vanishes. Hence, T has a differentiable vector field without singular points.

Exercise 4.5.9. Let C be a regular closed simple curve on a sphere S2. Let v be a differentiable
vector field on S2 with isolated singularities such that the trajectories of v are never tangent to C.
Prove that each of the two regions determined by C contains at least one singular point of v.
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Solution 4.5.9. By the Jordan Curve Theorem, S \ C is divided into two simple connected
regions R1 and R2, ∂R1 = ∂R2 = C, and R1, R2 ≈ D the unit disk. Hence, χ(Ri) = 1, i = 1, 2.
Suppose no trajectory of v is tangent to C, so v(p) /∈ Tp(C) for all p. At points p along C, choose
the normal Ni ∈ Tp(S

2) pointing outwards from Ri. Let ϕ(p) = ⟨v(p), Ni(p)⟩, then ϕ(p) ̸= 0 for
all p ∈ C. Since C is connected and ϕ is continuous, ϕ(p) has constant sign on C. Without loss of
generality, assume ϕ(p) > 0 for all p ∈ C. Take v or −v to make it point everywhere outwards on
C, then we can apply the Poincaré-Hopf Theorem to Ri:

ni∑
j=1

ind(v; pj) = χ(Ri) = 1,

where p1, . . . , pni
are the isolated singular points of v in Ri. If there were no singular points, then

the sum on the LHS would be zero, and v ̸= 0 on C guarantees that no singular points lie on the
boundary. Thus, each region Ri contains at least one singular point of v.
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