

# 2025 Fall Introduction to Geometry

Solutions to Exercises in Do Carmo

黃紹凱 B12202004

January 7, 2026

## 1 Chapter 4.1

## 2 Chapter 4.2

**Definition 1** (isometry). A diffeomorphism  $\varphi : S \rightarrow \bar{S}$  is an isometry if for all  $p \in S$  and all pairs  $w_1, w_2 \in T_p(S)$  we have

$$\langle w_1, w_2 \rangle_p = \langle d\varphi_p(w_1), d\varphi_p(w_2) \rangle_{\varphi(p)}.$$

The surfaces  $S$  and  $\bar{S}$  are then said to be isometric.

*Remark.* An isometry is a diffeomorphism that preserves the first fundamental form.

**Proposition 1** (Do Carmo Proposition 4.2.1). Assume the existence of parametrizations  $\mathbf{x} : U \rightarrow S$  and  $\bar{\mathbf{x}} : U \rightarrow \bar{S}$  such that  $E = \bar{E}$ ,  $F = \bar{F}$ ,  $G = \bar{G}$  in  $U$ . Then  $\bar{\mathbf{x}} \circ \mathbf{x}^{-1} : \mathbf{x}(U) \rightarrow \bar{S}$  is a local isometry.

**Exercise 4.2.5.** Let  $\alpha_1 : I \rightarrow \mathbb{R}^3$ ,  $\alpha_2 : I \rightarrow \mathbb{R}^3$  be regular parametrized curves, where the parameter is the arc length. Assume that the curvatures  $k_1$  of  $\alpha_1$  and  $k_2$  of  $\alpha_2$  satisfy

$$k_1(s) = k_2(s) \neq 0, \quad s \in I.$$

Let

$$\mathbf{x}_1(s, v) = \alpha_1(s) + v\alpha'_1(s), \quad \mathbf{x}_2(s, v) = \alpha_2(s) + v\alpha'_2(s)$$

be their (regular) tangent surfaces (cf. Example 5, Sec. 2-3) and let  $V$  be a neighborhood of  $(s_0, v_0)$  such that  $\mathbf{x}_1(V) \subset \mathbb{R}^3$ ,  $\mathbf{x}_2(V) \subset \mathbb{R}^3$  are regular surfaces (cf. Prop. 2, Sec. 2-3). Prove that

$$\mathbf{x}_1 \circ \mathbf{x}_2^{-1} : \mathbf{x}_2(V) \longrightarrow \mathbf{x}_1(V)$$

is an isometry.

**Solution 4.2.5.** To show that  $\mathbf{x}_1 \circ \mathbf{x}_2^{-1}$  is an isometry, we need to show that it is a diffeomorphism and preserves the first fundamental form. From Example 2.3.5, the tangent surface of a regular curve  $\alpha$  is a regular surface, since for all  $(t, v) \subseteq U = \{(t, v) \in I \times \mathbb{R} \mid v \neq 0\}$ , we have

$$k(s) = \frac{|\alpha'(s) \wedge \alpha''(s)|}{|\alpha'(s)|^3} \neq 0 \implies \frac{\partial \mathbf{x}}{\partial s} \wedge \frac{\partial \mathbf{x}}{\partial v} = v\alpha''(s) \wedge \alpha'(s) \neq 0.$$

Thus, both  $\mathbf{x}_1$  and  $\mathbf{x}_2$  are regular parametrizations, and hence homeomorphisms on a small neighborhood  $V \subseteq \mathbb{R}^3$ . Since  $\mathbf{x}$  is differentiable and  $d\mathbf{x}_i$  has full rank,  $\mathbf{x}_i^{-1}$  is differentiable for  $i = 1, 2$  by the Inverse Function Theorem. Therefore,  $\mathbf{x}_1 \circ \mathbf{x}_2^{-1}$  is a diffeomorphism. In the Frenet frames of  $\alpha_i$ ,  $i = 1, 2$ , we have  $\mathbf{x}_i(s, v) = \alpha_i(s) + v\alpha'_i(s)$ , and

$$\mathbf{x}_{i,s} = \alpha'_i(s) + v\alpha''_i(s) = T_i(s) + v k_i(s) N_i(s), \quad \mathbf{x}_{i,v} = \alpha'_i(s) = T_i(s).$$

The first fundamental form coefficients are computed to be

$$E_i = \langle \mathbf{x}_{i,s}, \mathbf{x}_{i,s} \rangle = 1 + v^2 k_i^2(s), \quad F_i = \langle \mathbf{x}_{i,s}, \mathbf{x}_{i,v} \rangle = 1, \quad G_i = \langle \mathbf{x}_{i,v}, \mathbf{x}_{i,v} \rangle = 1.$$

Since  $k_1(s) = k_2(s)$  for all  $s \in I$ , we have  $E_1 = E_2$ ,  $F_1 = F_2$ ,  $G_1 = G_2$ . By Proposition 4.2.1,  $\mathbf{x}_1 \circ \mathbf{x}_2^{-1}$  is a local isometry. Since  $\mathbf{x}_1 \circ \mathbf{x}_2^{-1}$  is also a diffeomorphism,  $\mathbf{x}_1 \circ \mathbf{x}_2^{-1}$  is an isometry.

**Exercise 4.2.6\*.** Let  $\alpha : I \rightarrow \mathbb{R}^3$  be a regular parametrized curve with  $k(t) \neq 0$ ,  $t \in I$ . Let  $\mathbf{x}(t, v)$  be its tangent surface. Prove that, for each  $(t_0, v_0) \in I \times (\mathbb{R} - \{0\})$ , there exists a neighborhood  $V$  of  $(t_0, v_0)$  such that  $\mathbf{x}(V)$  is isometric to an open set of the plane (thus, tangent surfaces are locally isometric to planes).

**Solution 4.2.6.** We will construct the desired local isometry. First reparametrize by arc length to get  $\alpha(s)$ , and define  $\mathbf{x}(s, v) = \alpha(s) + v\alpha'(s)$ . Let  $k(s)$  be the curvature of  $\alpha(s)$ . As in a previous exercise, let

$$\theta(s) = \int_{s_0}^s du k(u), \quad s_0 \in I$$

be the angle function, and define a plane curve  $\beta(s)$  by

$$\beta(s) = \left( \int_{s_0}^s du \cos \theta(u), \int_{s_0}^s du \sin \theta(u), 0 \right),$$

$$\beta'(s) = (\cos \theta(s), \sin \theta(s), 0) \implies |\beta'(s)| = 1,$$

$$\beta''(s) = \theta'(s) (-\sin \theta(s), \cos \theta(s), 0) = k(s) (-\sin \theta(s), \cos \theta(s), 0).$$

Then, the curvature of  $\beta(s)$  is exactly  $k(s)$ , and hence  $\beta(s)$  is a unit-speed curve with the same curvature as  $\alpha$ . Since both  $\beta$  and  $\beta'$  lie in the plane  $z = 0$ , the image of the tangent surface  $\bar{\mathbf{x}}(s, v) = \beta(s) + v\beta'(s)$  is an open subset of the  $xy$ -plane. For  $\mathbf{x}$  and  $\bar{\mathbf{x}}$ , we have

$$\mathbf{x}_s = T(s) + v k(s) N(s), \quad \mathbf{x}_v = T(s),$$

$$\bar{\mathbf{x}}_s = \bar{T}(s) + v k(s) \bar{N}(s), \quad \bar{\mathbf{x}}_v = \bar{T}(s),$$

where  $T, N, \bar{T}, \bar{N}$  are the tangent vector and normal vector of  $\mathbf{x}$  and  $\bar{\mathbf{x}}$ , respectively. The first fundamental form coefficients of  $\mathbf{x}$  and  $\bar{\mathbf{x}}$  are, respectively,

$$E = 1 + v^2 k^2(s), \quad F = 1, \quad G = 1,$$

$$\bar{E} = 1 + v^2 k^2(s), \quad \bar{F} = 1, \quad \bar{G} = 1.$$

Since the coefficients agree, by Proposition 4.2.1, the map  $\bar{\mathbf{x}} \circ \mathbf{x}^{-1}$  is a local isometry from  $\mathbf{x}(V)$  to an open set of the plane for some neighborhood  $V$  of  $(s_0, v_0)$ . Therefore, the tangent surface is locally isometric to an open set of the plane.

**Exercise 4.2.7.** Let  $V$  and  $W$  be  $n$ -dimensional vector spaces with inner products denoted by  $\langle \cdot, \cdot \rangle$  and let  $F : V \rightarrow W$  be a linear map. Prove that the following conditions are equivalent:

- a.  $\langle F(v_1), F(v_2) \rangle = \langle v_1, v_2 \rangle$  for all  $v_1, v_2 \in V$ .
- b.  $|F(v)| = |v|$  for all  $v \in V$ .
- c. If  $\{v_1, \dots, v_n\}$  is an orthonormal basis in  $V$ , then  $\{F(v_1), \dots, F(v_n)\}$  is an orthonormal basis in  $W$ .
- d. There exists an orthonormal basis  $\{v_1, \dots, v_n\}$  in  $V$  such that  $\{F(v_1), \dots, F(v_n)\}$  is an orthonormal basis in  $W$ .

If any of these conditions is satisfied,  $F$  is called a linear isometry of  $V$  into  $W$ . (When  $W = V$ , a linear isometry is often called an orthogonal transformation.)

**Solution 4.2.7.**

- **a.  $\implies$  b.** Suppose  $\langle F(v_1), F(v_2) \rangle = \langle v_1, v_2 \rangle$  for all  $v_1, v_2 \in V$ . Then for all  $v \in V$ ,

$$|v| = \sqrt{\langle v, v \rangle} = \sqrt{\langle F(v), F(v) \rangle} = |F(v)|.$$

- **b.  $\implies$  c.** Suppose  $|F(v)| = |v|$  for all  $v \in V$ . Let  $\{v_1, \dots, v_n\}$  be an orthonormal basis of  $V$ . Then, for all  $i, j = 1, \dots, n$ , since the inner product is induced by a norm  $|\cdot|$ , we have

$$\begin{aligned} \langle F(v_i), F(v_j) \rangle &= \frac{1}{2} (|F(v_i) + F(v_j)|^2 - |F(v_i)|^2 - |F(v_j)|^2) \\ &= \frac{1}{2} (|v_i + v_j|^2 - |v_i|^2 - |v_j|^2) = \langle v_i, v_j \rangle = \delta_{ij}. \end{aligned}$$

Thus,  $\{F(v_1), \dots, F(v_n)\}$  is an orthonormal set in  $W$ . Since  $F$  is linear,  $\{F(v_1), \dots, F(v_n)\}$  spans  $\text{Im}(F)$ . Since  $\dim(\text{Im}(F)) \leq n$ , we have  $\dim(\text{Im}(F)) = n$ , and hence  $\{F(v_1), \dots, F(v_n)\}$  is an orthonormal basis of  $W$ .

- **c.  $\implies$  d.** Since  $V$  is finite-dimensional, just pick any orthonormal basis of  $V$ .
- **d.  $\implies$  a.** Suppose there exists an orthonormal basis  $\{v_1, \dots, v_n\}$  of  $V$  such that  $\{F(v_1), \dots, F(v_n)\}$  is an orthonormal basis of  $W$ . For all  $v_1, v_2 \in V$ , we can write

$$v_1 = \sum_{i=1}^n a_i v_i, \quad v_2 = \sum_{j=1}^n b_j v_j,$$

where  $a_i, b_j \in \mathbb{R}$ . Then,

$$\begin{aligned} \langle F(v_1), F(v_2) \rangle &= \left\langle F\left(\sum_{i=1}^n a_i v_i\right), F\left(\sum_{j=1}^n b_j v_j\right) \right\rangle \\ &= \left\langle \sum_{i=1}^n a_i F(v_i), \sum_{j=1}^n b_j F(v_j) \right\rangle \\ &= \sum_{i=1}^n \sum_{j=1}^n a_i b_j \langle F(v_i), F(v_j) \rangle \\ &= \sum_{i=1}^n \sum_{j=1}^n a_i b_j \delta_{ij} = \sum_{i=1}^n a_i b_i = \left\langle \sum_{i=1}^n a_i v_i, \sum_{j=1}^n b_j v_j \right\rangle = \langle v_1, v_2 \rangle. \end{aligned}$$

**Exercise 4.2.8\*.** Let  $G : \mathbb{R}^3 \rightarrow \mathbb{R}^3$  be a map such that

$$|G(p) - G(q)| = |p - q| \quad \text{for all } p, q \in \mathbb{R}^3$$

(that is,  $G$  is a distance-preserving map). Prove that there exists  $p_0 \in \mathbb{R}^3$  and a linear isometry (cf. Exercise 7)  $F$  of the vector space  $\mathbb{R}^3$  such that

$$G(p) = F(p) + p_0 \quad \text{for all } p \in \mathbb{R}^3.$$

**Solution 4.2.8.** Let  $p_0 = G(0)$ , and let  $F(p) = G(p) - p_0$ . Then, for all  $p, q \in \mathbb{R}^3$ , we have

$$|F(p) - F(q)| = |G(p) - G(q)| = |p - q|, \quad F(0) = G(0) - p_0 = 0.$$

Hence  $F$  is a distance-preserving map that fixes the origin. Let  $\{e_1, e_2, e_3\}$  be the standard basis of  $\mathbb{R}^3$ , and  $v_i = F(e_i)$  for  $i = 1, 2, 3$ . Since  $F$  is distance-preserving, we have

$$|v_i|^2 = |F(e_i) - F(0)|^2 = |e_i - 0|^2 = 1, \quad |v_i - v_j|^2 = |F(e_i) - F(e_j)|^2 = |e_i - e_j|^2 = 2,$$

squaring both sides gives

$$\langle v_i, v_j \rangle = 0 \text{ for } i \neq j \implies \{v_1, v_2, v_3\} \text{ is an orthonormal basis for } \mathbb{R}^3.$$

Let  $L : \mathbb{R}^3 \rightarrow \mathbb{R}^3$  be defined by  $L(e_i) = v_i$  for  $i = 1, 2, 3$ . Then  $L$  is linear by construction, and  $L(e_i) = v_i = F(e_i)$ ,  $i = 1, 2, 3$ . For any  $p \in \mathbb{R}^3$ , since  $L(0) = 0$ , by the distance-preserving property of  $F$ , we have  $|F(p)| = |p| = |L(p)|$ . Then, for all  $i = 1, 2, 3$ , we have

$$|F(p) - F(e_i)| = |p - e_i| = |L(p) - L(e_i)|.$$

Squaring both sides, then using  $|F(p)| = |L(p)|$  and  $F(e_i) = L(e_i)$ , we have  $\langle F(p) - L(p), F(e_i) \rangle = 0$ . Hence,  $F = L$ , and  $F$  is linear. By Exercise 4.3.7,  $F$  is a linear isometry. Therefore, there exists a linear isometry  $F$  such that  $G(p) = F(p) + p_0$  for all  $p \in \mathbb{R}^3$ .

**Exercise 4.2.9.** Let  $S_1$ ,  $S_2$ , and  $S_3$  be regular surfaces. Prove that

- a. If  $\varphi : S_1 \rightarrow S_2$  is an isometry, then  $\varphi^{-1} : S_2 \rightarrow S_1$  is also an isometry.
- b. If  $\varphi : S_1 \rightarrow S_2$ ,  $\psi : S_2 \rightarrow S_3$  are isometries, then  $\psi \circ \varphi : S_1 \rightarrow S_3$  is an isometry.

This implies that the isometries of a regular surface  $S$  constitute in a natural way a group, called the group of isometries of  $S$ .

**Solution 4.2.9.**

- a. Since  $\varphi$  is an isometry, for all  $p \in S_1$  and all pairs  $w_1, w_2 \in T_p(S_1)$  we have

$$\langle w_1, w_2 \rangle_p = \langle d\varphi_p(w_1), d\varphi_p(w_2) \rangle_{\varphi(p)}.$$

Let  $q = \varphi(p) \in S_2$  and  $u_1, u_2 \in T_q(S_2)$ . Since  $\varphi$  is a diffeomorphism,  $d\varphi$  is injective. Since the differential  $d\varphi$  is a linear transformation between finite-dimensional spaces, it is also surjective. Thus, there exist  $w_1, w_2 \in T_p(S_1)$  such that  $d\varphi_p(w_i) = u_i$  for  $i = 1, 2$ . Thus,

$$\langle d\varphi_p^{-1}(u_1), d\varphi_p^{-1}(u_2) \rangle_q = \langle w_1, w_2 \rangle_p = \langle u_1, u_2 \rangle_{\varphi(p)}.$$

Therefore,  $\varphi^{-1}$  is an isometry.

- b. Suppose  $\varphi : S_1 \rightarrow S_2$  and  $\psi : S_2 \rightarrow S_3$  are isometries. Since diffeomorphism between regular surfaces is an equivalence relation (by previous exercise),  $\psi \circ \varphi$  is a diffeomorphism. For all  $p \in S_1$  and all pairs  $w_1, w_2 \in T_p(S_1)$ , we have

$$\begin{aligned} \langle w_1, w_2 \rangle_p &= \langle d\varphi_p(w_1), d\varphi_p(w_2) \rangle_{\varphi(p)} \\ &= \langle d\psi_{\varphi(p)}(d\varphi_p(w_1)), d\psi_{\varphi(p)}(d\varphi_p(w_2)) \rangle_{\psi(\varphi(p))} \\ &= \langle d(\psi \circ \varphi)_p(w_1), d(\psi \circ \varphi)_p(w_2) \rangle_{(\psi \circ \varphi)(p)}, \end{aligned}$$

where the chain rule is used in the last equality. Therefore,  $\psi \circ \varphi$  is an isometry.

*Remark.* Since function composition is associative and the identity map  $\text{id} : S_1 \rightarrow S_1$  is an isometry, by a. and b., the set of isometries on  $S$  forms a group.

### 3 Chapter 4.3

**Theorem 2** (Theorema Egregium). The Gaussian curvature  $K$  of a regular, orientable, and oriented surface  $S$  is invariant under local isometries. Explicitly, for a parametrization  $\mathbf{x}(u, v)$  in the orientation of  $S$ , we have

$$-EK = (\Gamma_{12}^2)_u - (\Gamma_{11}^2)_v + \Gamma_{12}^1 \Gamma_{11}^2 + \Gamma_{12}^2 \Gamma_{11}^2 - \Gamma_{11}^2 \Gamma_{22}^2 - \Gamma_{11}^1 \Gamma_{12}^2.$$

*Proof.* This is adapted from Do Carmo Curve and Surfaces. Define the Christoffel symbols of  $S$  in the parametrization  $\mathbf{x}(u, v)$  by

$$\left\{ \begin{array}{l} \mathbf{x}_{uu} = \Gamma_{11}^1 \mathbf{x}_u + \Gamma_{11}^2 \mathbf{x}_v + eN, \\ \mathbf{x}_{uv} = \Gamma_{12}^1 \mathbf{x}_u + \Gamma_{12}^2 \mathbf{x}_v + fN, \\ \mathbf{x}_{vu} = \Gamma_{21}^1 \mathbf{x}_u + \Gamma_{21}^2 \mathbf{x}_v + fN, \\ \mathbf{x}_{vv} = \Gamma_{22}^1 \mathbf{x}_u + \Gamma_{22}^2 \mathbf{x}_v + gN, \\ N_u = a_{11} \mathbf{x}_u + a_{21} \mathbf{x}_v, \\ N_v = a_{12} \mathbf{x}_u + a_{22} \mathbf{x}_v. \end{array} \right.$$

Take inner products with  $\mathbf{x}_u$  and  $\mathbf{x}_v$ , we have

$$\left\{ \begin{array}{l} \Gamma_{11}^1 E + \Gamma_{11}^2 F = \langle \mathbf{x}_{uu}, \mathbf{x}_u \rangle = \frac{E_u}{2}, \\ \Gamma_{11}^1 F + \Gamma_{11}^2 G = \langle \mathbf{x}_{uu}, \mathbf{x}_v \rangle = F_u - \frac{1}{2} E_v. \\ \Gamma_{12}^1 E + \Gamma_{12}^2 F = \langle \mathbf{x}_{uv}, \mathbf{x}_u \rangle = \frac{1}{2} E_v, \\ \Gamma_{12}^1 F + \Gamma_{12}^2 G = \langle \mathbf{x}_{uv}, \mathbf{x}_v \rangle = \frac{1}{2} G_u. \\ \Gamma_{22}^1 E + \Gamma_{22}^2 F = \langle \mathbf{x}_{vv}, \mathbf{x}_u \rangle = F_v - \frac{1}{2} G_u, \\ \Gamma_{22}^1 F + \Gamma_{22}^2 G = \langle \mathbf{x}_{vv}, \mathbf{x}_v \rangle = \frac{1}{2} G_v. \end{array} \right.$$

By smoothness, we have  $\mathbf{x}_{uuv} - \mathbf{x}_{uvu} = 0$ , so expressing the equation as  $A_1 \mathbf{x}_u + B_1 \mathbf{x}_v + C_1 N = 0$  gives  $A_1 = B_1 = C_1 = 0$ .  $\square$

**Corollary 3.** For each pair, the determinant of the coefficient matrix is  $EG - F^2 \neq 0$ , so we can solve for the Christoffel symbols explicitly.

$$\Gamma_{11}^1 =$$

**Corollary 4.** By Theorema Egregium, the Gaussian curvature  $K$  can be computed entirely in terms of the first fundamental form coefficients  $E, F, G$  and their derivatives. This given explicitly by

**Theorem 5** (Mainardi-Codazzi equations). With the same notation as above, we have

$$e_v - f_u = e\Gamma_{12}^1 + f(\Gamma_{12}^2 - \Gamma_{11}^1) - g\Gamma_{11}^2, \quad f_v - g_u = e\Gamma_{22}^1 + f(\Gamma_{22}^2 - \Gamma_{12}^1) - g\Gamma_{12}^2.$$

*Remark.* The Gauss equation and the Mainardi-Codazzi equations are known as the compatibility equations of the theory of surfaces.

**Theorem 6** (Bonnet). Let  $E, F, G, e, f, g$  be differentiable functions defined on an open set  $V \subseteq \mathbb{R}^2$ , with  $E, G > 0$ . Suppose that these functions satisfy the compatibility equations, and  $\det g = EG - F^2 > 0$ . Then, for each point  $p \in V$ , there exists a neighborhood  $U \subseteq V$  and a regular diffeomorphism  $\mathbf{x} : U \rightarrow \mathbb{R}^3$  such that the coefficients of the first fundamental form of  $\mathbf{x}$  are  $E, F, G$ , and those of the second fundamental form are  $e, f, g$ . Moreover, if  $U$  is connected and  $\bar{\mathbf{x}} : U \rightarrow \bar{\mathbf{x}}(U)$  is another diffeomorphism satisfying the same conditions, then  $\bar{\mathbf{x}} = T \circ \rho \circ \mathbf{x}$  for some translation  $T$  and rotation  $\rho$ .

**Lemma 1** (Gaussian curvature). The Gaussian curvature  $K$  of a regular surface is given by

$$K = \frac{eg - f^2}{EG - F^2}.$$

*Proof.* Let  $\mathbf{x} : U \subset \mathbb{R}^2 \rightarrow S \subset \mathbb{R}^3$  be a parametrization of a regular surface  $S$ . Then, we have

$$\begin{aligned} E &= \langle \mathbf{x}_u, \mathbf{x}_u \rangle, & F &= \langle \mathbf{x}_u, \mathbf{x}_v \rangle, & G &= \langle \mathbf{x}_v, \mathbf{x}_v \rangle, \\ e &= \langle \mathbf{x}_{uu}, N \rangle, & f &= \langle \mathbf{x}_{uv}, N \rangle, & g &= \langle \mathbf{x}_{vv}, N \rangle, \end{aligned}$$

where  $N$  is the unit normal. In the basis  $\{\mathbf{x}_u, \mathbf{x}_v\}$ , the first and second fundamental forms are

$$g = \begin{pmatrix} E & F \\ F & G \end{pmatrix}, \quad A = \begin{pmatrix} e & f \\ f & g \end{pmatrix}.$$

The shape operator  $S : T_p S \rightarrow T_p S$  is defined by  $S(v) = -dN_v$ , with the principal curvatures  $k_1, k_2$  being its eigenvalues. It has been shown that  $S = g^{-1}A$ , so

$$K = \det S = \det(g^{-1}A) = \frac{\det A}{\det g} = \frac{eg - f^2}{EG - F^2}.$$

□

**Exercise 4.3.1.** Show that if  $\mathbf{x}$  is an orthogonal parametrization, that is,  $F = 0$ , then

$$K = -\frac{1}{2\sqrt{EG}} \left\{ \left( \frac{E_v}{\sqrt{EG}} \right)_v + \left( \frac{G_u}{\sqrt{EG}} \right)_u \right\}.$$

**Solution 4.3.1.** From the definition of the Christoffel symbols, we have

$$\begin{aligned} \mathbf{x}_{uu} &= \Gamma_{11}^1 \mathbf{x}_u + \Gamma_{11}^2 \mathbf{x}_v + L_1 N, \\ \mathbf{x}_{uv} &= \Gamma_{12}^1 \mathbf{x}_u + \Gamma_{12}^2 \mathbf{x}_v + L_2 N, \\ \mathbf{x}_{vv} &= \Gamma_{22}^1 \mathbf{x}_u + \Gamma_{22}^2 \mathbf{x}_v + L_3 N, \end{aligned}$$

we can compute the relations satisfied by the Christoffel symbols by taking inner product with  $\mathbf{x}_u$  and  $\mathbf{x}_v$  for each of the three equations above. Then, we get

$$\begin{aligned} \Gamma_{11}^1 E + \Gamma_{11}^2 F &= \frac{E_u}{2}, & \Gamma_{11}^1 F + \Gamma_{11}^2 G &= F_u - \frac{E_v}{2}, \\ \Gamma_{12}^1 E + \Gamma_{12}^2 F &= \frac{E_v}{2}, & \Gamma_{12}^1 F + \Gamma_{12}^2 G &= \frac{G_u}{2}, \\ \Gamma_{22}^1 E + \Gamma_{22}^2 F &= F_v - \frac{G_u}{2}, & \Gamma_{22}^1 F + \Gamma_{22}^2 G &= \frac{G_v}{2}. \end{aligned}$$

Since  $F = 0$  and  $\Gamma_{jk}^i = \Gamma_{kj}^i$ , we have

$$\begin{aligned} \Gamma_{11}^1 &= \frac{E_u}{2E}, & \Gamma_{11}^2 &= -\frac{E_v}{2G}, & \Gamma_{12}^1 &= \Gamma_{21}^1 = \frac{E_v}{2E}, \\ \Gamma_{12}^2 &= \Gamma_{21}^2 = \frac{G_u}{2G}, & \Gamma_{22}^1 &= -\frac{G_u}{2E}, & \Gamma_{22}^2 &= \frac{G_v}{2G}. \end{aligned}$$

and taking inner product with  $N$  gives  $L_1 = e$ ,  $L_2 = f$ ,  $L_3 = g$ . Thus, we have

$$\begin{aligned}\mathbf{x}_{uu} &= \frac{E_u}{2E}\mathbf{x}_u - \frac{E_v}{2G}\mathbf{x}_v + eN, \\ \mathbf{x}_{uv} &= \frac{E_v}{2E}\mathbf{x}_u + \frac{G_u}{2G}\mathbf{x}_v + fN, \\ \mathbf{x}_{vv} &= -\frac{G_u}{2E}\mathbf{x}_u + \frac{G_v}{2G}\mathbf{x}_v + gN.\end{aligned}$$

Next, use equation (1) in Section 4.3 to get

$$\begin{aligned}N_u &= \frac{fF - eG}{EG - F^2}\mathbf{x}_u + \frac{eF - fE}{EG - F^2}\mathbf{x}_v = -\frac{e}{E}\mathbf{x}_u - \frac{f}{G}\mathbf{x}_v, \\ N_v &= \frac{gF - fG}{EG - F^2}\mathbf{x}_u + \frac{fF - gE}{EG - F^2}\mathbf{x}_v = -\frac{f}{E}\mathbf{x}_u - \frac{g}{G}\mathbf{x}_v.\end{aligned}$$

Since the parametrization is continuously differentiable, the partial derivatives commute, and we have  $\mathbf{x}_{uuv} - \mathbf{x}_{uvu} = 0$ . First, let's compute the following partial derivatives:

$$\left(\frac{E_v}{2G}\right)_v = \frac{E_{vv}}{2G} - \frac{E_v G_v}{2G^2}, \quad \left(\frac{G_u}{2G}\right)_u = \frac{G_{uu}}{2G} - \frac{(G_u)^2}{2G^2}.$$

Next, we will compute  $\mathbf{x}_{uuv}$ :

$$\begin{aligned}\mathbf{x}_{uuv} &= (x_{uu})_v = \left(\frac{E_u}{2E}\mathbf{x}_u - \frac{E_v}{2G}\mathbf{x}_v + eN\right)_v \\ &= \left(\frac{E_u}{2E}\right)_v \mathbf{x}_u + \frac{E_u}{2E}\mathbf{x}_{uv} - \left(\frac{E_v}{2G}\right)_v \mathbf{x}_v - \frac{E_v}{2G}\mathbf{x}_{vv} + e_v N + e N_v \\ &= \left(\frac{E_u}{2E}\right)_v \mathbf{x}_u + \frac{E_u}{2E} \left[ \frac{E_v}{2E}\mathbf{x}_u + \frac{G_u}{2G}\mathbf{x}_v + fN \right] - \left(\frac{E_v}{2G}\right)_v \mathbf{x}_v \\ &\quad - \frac{E_v}{2G} \left[ -\frac{G_u}{2E}\mathbf{x}_u + \frac{G_v}{2G}\mathbf{x}_v + gN \right] + e_v N + e \left( -\frac{f}{E}\mathbf{x}_u - \frac{g}{E}\mathbf{x}_v \right) \\ &= \left[ \left(\frac{E_u}{2E}\right)_v + \frac{E_u E_v}{4E^2} + \frac{E_v G_u}{4EG} - \frac{ef}{E} \right] \mathbf{x}_u + \left[ -\left(\frac{E_v}{2G}\right)_v + \frac{E_u G_u}{4EG} - \frac{E_v G_v}{4G^2} - \frac{eg}{G} \right] \mathbf{x}_v \\ &\quad + \left[ \frac{E_u f}{2E} - \frac{E_v g}{2G} + e_v \right] N.\end{aligned}$$

In a similar manner, we have

$$\begin{aligned}\mathbf{x}_{uvu} &= (x_{uv})_u = \left(\frac{E_v}{2E}\mathbf{x}_u + \frac{G_u}{2G}\mathbf{x}_v + fN\right)_u \\ &= \left(\frac{E_v}{2E}\right)_u \mathbf{x}_u + \frac{E_v}{2E}\mathbf{x}_{uu} + \left(\frac{G_u}{2G}\right)_u \mathbf{x}_v + \frac{G_u}{2G}\mathbf{x}_{uv} + f_u N + f N_u \\ &= \left(\frac{E_v}{2E}\right)_u \mathbf{x}_u + \frac{E_v}{2E} \left[ \frac{E_u}{2E}\mathbf{x}_u - \frac{E_v}{2G}\mathbf{x}_v + eN \right] \\ &\quad + \left(\frac{G_u}{2G}\right)_u \mathbf{x}_v + \frac{G_u}{2G} \left[ \frac{E_v}{2E}\mathbf{x}_u + \frac{G_u}{2G}\mathbf{x}_v + fN \right] + f_u N + f \left( -\frac{e}{G}\mathbf{x}_u - \frac{f}{G}\mathbf{x}_v \right) \\ &= \left[ \left(\frac{E_v}{2E}\right)_u + \frac{E_u E_v}{4E^2} + \frac{E_v G_u}{4EG} - \frac{ef}{E} \right] \mathbf{x}_u + \left[ \left(\frac{G_u}{2G}\right)_u - \frac{(E_v)^2}{4EG} + \frac{(G_u)^2}{4G^2} - \frac{f^2}{G} \right] \mathbf{x}_v \\ &\quad + \left[ \frac{E_v e}{2E} + \frac{G_u f}{2G} + f_u \right] N.\end{aligned}$$

Combining the two results above, we have

$$\begin{aligned}\mathbf{x}_{uuv} - \mathbf{x}_{uvu} &= \left[ \left(\frac{E_u}{2E}\right)_v - \left(\frac{E_v}{2E}\right)_u \right] \mathbf{x}_u + \left[ \frac{E_u f - E_v e}{2E} - \frac{E_v g - G_u f}{2G} + e_v - f_u \right] N \\ &\quad + \left[ \frac{E_u G_u + (E_v)^2}{4EG} - \frac{E_v G_v + (G_u)^2}{4G^2} - \frac{eg - f^2}{G} - \left(\frac{E_v}{2G}\right)_v - \left(\frac{G_u}{2G}\right)_u \right] \mathbf{x}_v = 0.\end{aligned}$$

Since  $\{\mathbf{x}_u, \mathbf{x}_v, N\}$  is an orthonormal basis, each coefficient is equal to zero. Set the coefficient of  $\mathbf{x}_v$  to zero and recall the formula for the Gaussian curvature:

$$\begin{aligned}
K &= \frac{eg - f^2}{EG - F^2} = \frac{eg - f^2}{EG} \\
&= \frac{E_u G_u + (E_v)^2}{4E^2 G} - \frac{E_v G_v + (G_u)^2}{4EG^2} - \frac{1}{E} \left( \frac{E_v}{2G} \right)_v - \frac{1}{E} \left( \frac{G_u}{2G} \right)_u \\
&= \frac{E_u G_u}{4E^2 G} + \frac{(E_v)^2}{4E^2 G} - \frac{E_v G_v}{4EG^2} - \frac{(G_u)^2}{4EG^2} - \frac{E_{vv}}{2EG} + \frac{E_v G_v}{2EG^2} - \frac{G_{uu}}{2EG} + \frac{(G_u)^2}{2EG^2} \\
&= -\frac{1}{2\sqrt{EG}} \left[ \frac{G_{uu}}{\sqrt{EG}} - \frac{E_u G_u}{2E\sqrt{EG}} - \frac{(G_u)^2}{2G\sqrt{EG}} + \frac{E_{vv}}{\sqrt{EG}} - \frac{(E_v)^2}{2E\sqrt{EG}} - \frac{E_v G_v}{2G\sqrt{EG}} \right] \\
&= -\frac{1}{2\sqrt{EG}} \left\{ \left( \frac{E_v}{\sqrt{EG}} \right)_v + \left( \frac{G_u}{\sqrt{EG}} \right)_u \right\}.
\end{aligned}$$

*Remark.* The above formula for the Gaussian curvature of orthogonal parametrizations is known as the Brioschi formula.

**Exercise 4.3.2.** Show that if  $\mathbf{x}$  is an isothermal parametrization, that is,  $E = G = \lambda(u, v)$  and  $F = 0$ , then

$$K = -\frac{1}{2\lambda} \Delta(\log \lambda),$$

where  $\Delta\varphi$  denotes the Laplacian  $(\partial^2\varphi/\partial u^2) + (\partial^2\varphi/\partial v^2)$  of the function  $\varphi$ . Conclude that when

$$E = G = (u^2 + v^2 + c)^{-2} \quad \text{and} \quad F = 0,$$

then  $K = \text{const.} = 4c$ .

**Solution 4.3.2.** Suppose  $\mathbf{x}$  is an isothermal parametrization, that is,  $E = G = \lambda(u, v)$  and  $F = 0$ . Then we have

$$\begin{aligned}
E_v &= \lambda_v, \quad G_u = \lambda_u, \\
E_{vv} &= \lambda_{vv}, \quad G_{uu} = \lambda_{uu}.
\end{aligned}$$

From the proof of Exercise 4.3.1, since an isothermal parametrization is orthogonal, we have

$$\begin{aligned}
K &= -\frac{1}{2\sqrt{EG}} \left[ \frac{G_{uu}}{\sqrt{EG}} - \frac{E_u G_u}{2E\sqrt{EG}} - \frac{(G_u)^2}{2G\sqrt{EG}} + \frac{E_{vv}}{\sqrt{EG}} - \frac{(E_v)^2}{2E\sqrt{EG}} - \frac{E_v G_v}{2G\sqrt{EG}} \right] \\
&= -\frac{1}{2\lambda} \left[ \frac{\lambda_{uu}}{\lambda} - \frac{\lambda_u^2}{2\lambda^2} - \frac{\lambda_u^2}{2\lambda^2} + \frac{\lambda_{vv}}{\lambda} - \frac{\lambda_v^2}{2\lambda^2} - \frac{\lambda_v^2}{2\lambda^2} \right] \\
&= -\frac{1}{2\lambda} \left[ \frac{\lambda_{uu} + \lambda_{vv}}{\lambda} - \frac{\lambda_u^2 + \lambda_v^2}{\lambda^2} \right] = -\frac{1}{2\lambda} \Delta(\log \lambda),
\end{aligned}$$

since

$$\Delta(\log \lambda) = \left( \frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2} \right) (\log \lambda) = \frac{\partial}{\partial u} \left( \frac{\lambda_u}{\lambda} \right) + \frac{\partial}{\partial v} \left( \frac{\lambda_v}{\lambda} \right) = \frac{\lambda_{uu} + \lambda_{vv}}{\lambda} - \frac{\lambda_u^2 + \lambda_v^2}{\lambda^2}.$$

Let  $E = G = (u^2 + v^2 + c)^{-2}$  and  $F = 0$ , then we have  $\lambda(u, v) = (u^2 + v^2 + c)^{-2}$ . Then,

$$\begin{aligned}
\frac{\partial}{\partial u} (\log \lambda) &= -2 \frac{\partial}{\partial u} \log(u^2 + v^2 + c) = -\frac{4u}{u^2 + v^2 + c}, \\
\frac{\partial^2}{\partial u^2} (\log \lambda) &= -4 \frac{\partial}{\partial u} \left( \frac{u}{u^2 + v^2 + c} \right) = -4 \frac{(-u^2 + v^2 + c)}{(u^2 + v^2 + c)^2}, \\
\frac{\partial}{\partial v} (\log \lambda) &= -2 \frac{\partial}{\partial v} \log(u^2 + v^2 + c) = -\frac{4v}{u^2 + v^2 + c}, \\
\frac{\partial^2}{\partial v^2} (\log \lambda) &= -4 \frac{\partial}{\partial v} \left( \frac{v}{u^2 + v^2 + c} \right) = -4 \frac{(u^2 - v^2 + c)}{(u^2 + v^2 + c)^2}.
\end{aligned}$$

$$\implies K = -\frac{1}{2\lambda} \Delta(\log \lambda) = -\frac{1}{2} (u^2 + v^2 + c)^2 \left( -\frac{8c}{(u^2 + v^2 + c)^2} \right) = 4c.$$

This surface has constant Gaussian curvature  $K = 4c$ .

*Remark.* For  $c > 0$ , this corresponds to the stereographic projection of a sphere of radius  $1/\sqrt{c}$  minus the north pole; for  $c = 0$ , this corresponds to the Euclidean plane; and for  $c < 0$ , this corresponds to the stereographic projection of a hyperbolic plane.

**Exercise 4.3.3.** Verify that the surfaces

$$\mathbf{x}(u, v) = (u \cos v, u \sin v, \log u), \quad u > 0,$$

$$\bar{\mathbf{x}}(u, v) = (u \cos v, u \sin v, v),$$

have equal Gaussian curvature at the points  $\mathbf{x}(u, v)$  and  $\bar{\mathbf{x}}(u, v)$ , but that the mapping  $\bar{\mathbf{x}} \circ \mathbf{x}^{-1}$  is not an isometry. This shows that the "converse" of the Gauss theorem is not true.

**Solution 4.3.3.** First, we compute the first fundamental form of  $\mathbf{x}(u, v)$  and  $\bar{\mathbf{x}}(u, v)$ :

$$\begin{aligned} \mathbf{x}_u &= \left( \cos v, \sin v, \frac{1}{u} \right), \quad \mathbf{x}_v = (-u \sin v, u \cos v, 0), \\ E &= \langle \mathbf{x}_u, \mathbf{x}_u \rangle = \cos^2 v + \sin^2 v + \frac{1}{u^2} = 1 + \frac{1}{u^2}, \\ F &= \langle \mathbf{x}_u, \mathbf{x}_v \rangle = -u \cos v \sin v + u \sin v \cos v + 0 = 0, \\ G &= \langle \mathbf{x}_v, \mathbf{x}_v \rangle = u^2 \sin^2 v + u^2 \cos^2 v + 0 = u^2. \end{aligned}$$

Similarly, we have

$$\begin{aligned} \bar{\mathbf{x}}_u &= (\cos v, \sin v, 0), \quad \bar{\mathbf{x}}_v = (-u \sin v, u \cos v, 1), \\ \bar{E} &= \langle \bar{\mathbf{x}}_u, \bar{\mathbf{x}}_u \rangle = \cos^2 v + \sin^2 v + 0 = 1, \\ \bar{F} &= \langle \bar{\mathbf{x}}_u, \bar{\mathbf{x}}_v \rangle = -u \cos v \sin v + u \sin v \cos v + 0 = 0, \\ \bar{G} &= \langle \bar{\mathbf{x}}_v, \bar{\mathbf{x}}_v \rangle = u^2 \sin^2 v + u^2 \cos^2 v + 1 = u^2 + 1. \end{aligned}$$

Notice that for orthogonal parametrizations, the Gaussian curvature only depends on the following quantities:

$$E_v = \bar{E}_v = 0, \quad G_u = \bar{G}_u = 2u, \quad EG = \left( 1 + \frac{1}{u^2} \right) u^2 = u^2 + 1 = \bar{E} \bar{G}.$$

Since  $F = \bar{F} = 0$ , both parametrizations are orthogonal, so by Exercise 4.3.1 the Gaussian curvature at the points  $\mathbf{x}(u, v)$  and  $\bar{\mathbf{x}}(u, v)$  are equal. Consider the map  $\Phi : S \rightarrow \bar{S}$  defined by  $\Phi = \bar{\mathbf{x}} \circ \mathbf{x}^{-1}$ , where  $S$  and  $\bar{S}$  are the images of  $\mathbf{x}$  and  $\bar{\mathbf{x}}$ , respectively. Since  $\Phi$  satisfies  $\Phi(\mathbf{x}(u, v)) = \bar{\mathbf{x}}(u, v)$ , we have

$$d\Phi_{\mathbf{x}(u,v)}(\mathbf{x}_u) = \frac{\partial}{\partial u} \bar{\mathbf{x}}(u, v) = \bar{\mathbf{x}}_u, \quad d\Phi_{\mathbf{x}(u,v)}(\mathbf{x}_v) = \frac{\partial}{\partial v} \bar{\mathbf{x}}(u, v) = \bar{\mathbf{x}}_v.$$

Then, we compute the first fundamental form at  $\mathbf{x}(u, v)$  under the map  $\Phi$ :

$$\langle d\Phi_{\mathbf{x}(u,v)}(\mathbf{x}_u), d\Phi_{\mathbf{x}(u,v)}(\mathbf{x}_u) \rangle = \langle \bar{\mathbf{x}}_u, \bar{\mathbf{x}}_u \rangle = \bar{E} = 1 \neq 1 + \frac{1}{u^2} = E = \langle \mathbf{x}_u, \mathbf{x}_u \rangle,$$

so  $\Phi$  is not an isometry.

*Remark.* Two regular surfaces with identical Gaussian curvature at corresponding points are not necessarily isometric.

**Exercise 4.3.4.** Show that no neighborhood of a point in a sphere may be isometrically mapped into a plane.

#### Solution 4.3.4.

**Exercise 4.3.5.** If the coordinate curves form a Tchebyshef net (cf. Exercises 7 and 8, Sec. 2–5), then  $E = G = 1$  and  $F = \cos \theta$ . Show that in this case

$$K = -\frac{\theta_{uv}}{\sin \theta}.$$

#### Solution 4.3.5.

*Remark.* In principle, the Gaussian curvature is completely determined by the first fundamental form. However, in practice, it is often difficult to calculate  $K$  directly from  $E, F, G$ .

**Method 1:** From Theorema Egregium in Do Carmo Curves and Surfaces, we have

$$K = \frac{1}{E} \left[ -(\Gamma_{12}^2)_u + (\Gamma_{11}^2)_v - \Gamma_{12}^1 \Gamma_{11}^2 - \Gamma_{12}^2 \Gamma_{11}^2 + \Gamma_{11}^2 \Gamma_{22}^2 + \Gamma_{11}^1 \Gamma_{12}^2 \right].$$

In this case, the Christoffel symbols satisfy the following relations:

$$\left\{ \begin{array}{l} \Gamma_{11}^1 E + \Gamma_{11}^2 F = \frac{E_u}{2} = 0, \\ \Gamma_{11}^1 F + \Gamma_{11}^2 G = F_u - \frac{E_v}{2} = -\sin \theta \theta_u, \\ \Gamma_{12}^1 E + \Gamma_{12}^2 F = \frac{E_v}{2} = 0, \\ \Gamma_{12}^1 F + \Gamma_{12}^2 G = \frac{G_u}{2} = 0, \\ \Gamma_{22}^1 E + \Gamma_{22}^2 F = F_v - \frac{G_u}{2} = -\sin \theta \theta_v, \\ \Gamma_{22}^1 F + \Gamma_{22}^2 G = \frac{G_v}{2} = 0. \end{array} \right.$$

Then, since  $|g|^2 = EG - F^2 = \sin^2 \theta$ , we have

$$\begin{aligned} \Gamma_{11}^1 &= \frac{1}{|g|^2} F \sin \theta \theta_u = \cot \theta \theta_u, & \Gamma_{11}^2 &= -\frac{1}{|g|^2} E \sin \theta \theta_u = -\csc \theta \theta_u, \\ \Gamma_{12}^1 &= \Gamma_{12}^2 = \Gamma_{21}^1 = \Gamma_{21}^2 = 0, \\ \Gamma_{22}^1 &= -\frac{1}{|g|^2} G \sin \theta \theta_v = -\csc \theta \theta_v, & \Gamma_{22}^2 &= \frac{1}{|g|^2} F \sin \theta \theta_v = \cot \theta \theta_v. \end{aligned}$$

Next,  $(\Gamma_{11}^2)_v = (-\csc \theta \theta_u)_v = \csc \theta \cot \theta \theta_u \theta_v - \csc \theta \theta_{uv}$ . By the Theorema Egregium, we have

$$K = \csc \theta \cot \theta \theta_u \theta_v - \csc \theta \theta_{uv} - 0 - 0 + (-\csc \theta \theta_u) (\cot \theta \theta_v) + 0 = -\frac{\theta_{uv}}{\sin \theta}.$$

**Method 2:** From Riemannian geometry, the Theorema Egregium states that

$$R_{1212} = \langle R(\partial_u, \partial_v) \partial_u, \partial_v \rangle = -\det g K.$$

By antisymmetry of the curvature tensor, we have

$$K = -\frac{1}{\det g} R_{1212} = \frac{1}{\det g} R_{1221} = \frac{1}{\det g} \langle R(\partial_u, \partial_v) \partial_v, \partial_u \rangle.$$

**Exercise 4.3.6.** Show that there exists no surface  $\mathbf{x}(u, v)$  such that

$$E = G = 1, \quad F = 0 \quad \text{and} \quad e = 1, \quad g = -1, \quad f = 0.$$

**Solution 4.3.6.** Suppose such a surface  $\mathbf{x}(u, v)$  exists. Since  $E = G = 1$  and  $F = 0$ , the parametrization is orthogonal. From Exercise 4.3.1, we have

$$K = -\frac{1}{2\sqrt{EG}} \left\{ \left( \frac{E_v}{\sqrt{EG}} \right)_v + \left( \frac{G_u}{\sqrt{EG}} \right)_u \right\} = -\frac{1}{2}(0 + 0) = 0.$$

On the other hand, from the Gauss formula, we have

$$K = \frac{eg - f^2}{EG - F^2} = \frac{(1)(-1) - 0^2}{(1)(1) - 0^2} = -1,$$

a contradiction.

**Exercise 4.3.7.** Does there exist a surface  $\mathbf{x} = \mathbf{x}(u, v)$  with

$$E = 1, \quad F = 0, \quad G = \cos^2 u \quad \text{and} \quad e = \cos^2 u, \quad f = 0, \quad g = 1?$$

**Solution 4.3.7.**

**Exercise 4.3.8.** Compute the Christoffel symbols for an open set of the plane

- a. In Cartesian coordinates.
- b. In polar coordinates.

Use the Gauss formula to compute  $K$  in both cases.

**Solution 4.3.8.**

- a. An open set of the plane can be parametrized in Cartesian coordinates as  $\mathbf{x}(u, v) = (u, v, 0)$ . Then, we have

$$E = \langle \mathbf{x}_u, \mathbf{x}_u \rangle = 1, \quad F = \langle \mathbf{x}_u, \mathbf{x}_v \rangle = 0, \quad G = \langle \mathbf{x}_v, \mathbf{x}_v \rangle = 1.$$

Since  $F = 0$  and  $E, G \neq 0$ , we have

$$\begin{aligned} \Gamma_{11}^1 &= \frac{E_u}{2E} = 0, & \Gamma_{11}^2 &= -\frac{E_v}{2G} = 0, & \Gamma_{12}^1 &= \Gamma_{21}^1 = \frac{E_v}{2E} = 0, \\ \Gamma_{12}^2 &= \Gamma_{21}^2 = \frac{G_u}{2G} = 0, & \Gamma_{22}^1 &= -\frac{G_u}{2E} = 0, & \Gamma_{22}^2 &= \frac{G_v}{2G} = 0. \end{aligned}$$

Hence, all Christoffel symbols are zero. Next, compute

$$\mathbf{x}_{uu} = \mathbf{x}_{uv} = \mathbf{x}_{vv} = 0,$$

so with the unit normal  $\mathbf{N} = (0, 0, 1)$ , we have

$$e = \langle \mathbf{x}_{uu}, \mathbf{N} \rangle = 0, \quad f = \langle \mathbf{x}_{uv}, \mathbf{N} \rangle = 0, \quad g = \langle \mathbf{x}_{vv}, \mathbf{N} \rangle = 0.$$

Therefore, since  $EG - F^2 \neq 0$ , the Gaussian curvature is given by the Gauss formula as

$$K = \frac{eg - f^2}{EG - F^2} = 0.$$

- b. An open set of the plane can also be parametrized in polar coordinates, given by the parametrization  $\mathbf{x}(u, v) = (u \cos v, u \sin v, 0)$ . Then, we have

$$E = \langle \mathbf{x}_u, \mathbf{x}_u \rangle = 1, \quad F = \langle \mathbf{x}_u, \mathbf{x}_v \rangle = 0, \quad G = \langle \mathbf{x}_v, \mathbf{x}_v \rangle = u^2.$$

Since  $F = 0$ , we have the following Christoffel symbols whenever  $u \neq 0$ :

$$\begin{aligned}\Gamma_{11}^1 &= \frac{E_u}{2E} = 0, & \Gamma_{11}^2 &= -\frac{E_v}{2G} = 0, & \Gamma_{12}^1 = \Gamma_{21}^1 &= \frac{E_v}{2E} = 0, \\ \Gamma_{12}^2 = \Gamma_{21}^2 &= \frac{G_u}{2G} = \frac{1}{u}, & \Gamma_{22}^1 &= -\frac{G_u}{2E} = -u, & \Gamma_{22}^2 &= \frac{G_v}{2G} = 0.\end{aligned}$$

Unlike in the Cartesian coordinates, not all Christoffel symbols are zero. Next, compute

$$\mathbf{x}_{uu} = (0, 0, 0), \quad \mathbf{x}_{uv} = (-\sin v, \cos v, 0), \quad \mathbf{x}_{vv} = (-u \cos v, -u \sin v, 0),$$

so with the unit normal  $N = (0, 0, 1)$ , we have

$$e = \langle \mathbf{x}_{uu}, N \rangle = 0, \quad f = \langle \mathbf{x}_{uv}, N \rangle = 0, \quad g = \langle \mathbf{x}_{vv}, N \rangle = 0.$$

Therefore, since  $EG - F^2 \neq 0$ , the Gaussian curvature is given by the Gauss formula as

$$K = \frac{eg - f^2}{EG - F^2} = 0.$$

**Exercise 4.3.9.** Justify why the surfaces below are not pairwise locally isometric:

- a. Sphere.
- b. Cylinder.
- c. Saddle  $z = x^2 - y^2$ .

**Solution 4.3.9.**

- a. The sphere has constant positive Gaussian curvature. Let a sphere of radius  $r$  be centered about the origin, and let  $\mathbf{x}(\theta, \phi) = (r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)$  be a parametrization of the sphere. Then,

$$\begin{aligned}\mathbf{x}_\theta &= (r \cos \theta \cos \phi, r \cos \theta \sin \phi, -r \sin \theta), \\ \mathbf{x}_\phi &= (-r \sin \theta \sin \phi, r \sin \theta \cos \phi, 0),\end{aligned}$$

and we have

$$E = r^2, \quad F = 0, \quad G = r^2 \sin^2 \theta.$$

We can compute

$$E_\phi = 0, \quad G_\theta = 2r^2 \sin \theta \cos \theta, \quad EG = r^4 \sin^2 \theta.$$

Then,

$$\left( \frac{E_\phi}{\sqrt{EG}} \right)_\phi = 0, \quad \left( \frac{G_\theta}{\sqrt{EG}} \right)_\theta = (\cos \theta)_\theta = -\sin \theta.$$

Since  $F = 0$ , the parametrization is orthogonal. By Exercise 4.3.1 we have

$$K = -\frac{1}{2r^2 \sin \theta} (-\sin \theta) = \frac{1}{2r^2} > 0.$$

- b. The cylinder has zero Gaussian curvature. Let a cylinder of radius  $r$  be centered about the  $z$ -axis, and let  $\mathbf{x}(\theta, z) = (r \cos \theta, r \sin \theta, z)$  be a parametrization of the cylinder. Then,

$$\mathbf{x}_\theta = (-r \sin \theta, r \cos \theta, 0), \quad \mathbf{x}_z = (0, 0, 1),$$

and we have

$$E = r^2, \quad F = 0, \quad G = 1.$$

We can compute

$$E_z = 0, \quad G_\theta = 0, \quad EG = r^2.$$

Then,

$$\left( \frac{E_z}{\sqrt{EG}} \right)_z = 0, \quad \left( \frac{G_\theta}{\sqrt{EG}} \right)_\theta = 0.$$

Since  $F = 0$ , the parametrization is orthogonal. By Exercise 4.3.1 we have

$$K = -\frac{1}{2r}(0 + 0) = 0.$$

**c.** The saddle has negative Gaussian curvature. Let the saddle be given by the parametrization  $\mathbf{x}(u, v) = (u, v, u^2 - v^2)$ . Then,

$$\begin{aligned} \mathbf{x}_u &= (1, 0, 2u), & \mathbf{x}_v &= (0, 1, -2v), \\ \mathbf{x}_{uu} &= (0, 0, 2), & \mathbf{x}_{uv} &= (0, 0, 0), & \mathbf{x}_{vv} &= (0, 0, -2), \end{aligned}$$

and we have  $E = 1 + 4u^2$ ,  $F = -4uv$ , and  $G = 1 + 4v^2$ . The normal vector of the surface is given by

$$N = \frac{\mathbf{x}_u \wedge \mathbf{x}_v}{\|\mathbf{x}_u \wedge \mathbf{x}_v\|} = \frac{(-2u, 2v, 1)}{\sqrt{1 + 4u^2 + 4v^2}}.$$

Then, we have

$$e = \langle \mathbf{x}_{uu}, N \rangle = \frac{2}{\sqrt{1 + 4u^2 + 4v^2}}, \quad f = \langle \mathbf{x}_{uv}, N \rangle = 0, \quad g = \langle \mathbf{x}_{vv}, N \rangle = \frac{-2}{\sqrt{1 + 4u^2 + 4v^2}}.$$

Since  $EG - F^2 = (1 + 4u^2)(1 + 4v^2) - 16u^2v^2 = 1 + 4u^2 + 4v^2 \neq 0$ , the Gaussian curvature is given by the Gauss formula as

$$K = \frac{eg - f^2}{EG - F^2} = \frac{\left( \frac{2}{\sqrt{1 + 4u^2 + 4v^2}} \right) \left( \frac{-2}{\sqrt{1 + 4u^2 + 4v^2}} \right) - 0}{1 + 4u^2 + 4v^2} = \frac{-4}{(1 + 4u^2 + 4v^2)^2} < 0.$$

Suppose **a.** to **c.** are pairwise locally isometric, then by the Theorema Egregium they must have identical Gaussian curvature at corresponding points, a contradiction to our above calculation.

The following are some extra exercises from other sources.

**Theorem 7** (Levi-Civita connection formula).

Let  $g$  be the metric, or the first fundamental form, on a surface  $S$ . The Christoffel symbols associated to  $g$  are given by

$$\Gamma_{ij}^k = \frac{1}{2}g^{kl}(\partial_i g_{jl} + \partial_j g_{il} - \partial_l g_{ij}),$$

where  $(g^{ij})$  is the inverse matrix of  $(g_{ij})$ .

*Proof.* Let  $\{e_i\}$  be the coordinate basis induced by the parametrization  $\mathbf{x}(u^1, \dots, u^n)$ . Then,

$$\partial_j e_i = \nabla_{e_j} e_i = \sum_{k=1}^n \Gamma_{ij}^k e_k \equiv \Gamma_{ij}^k e_k.$$

The metric tensor is  $g_{ij} = \langle e_i, e_j \rangle$ , and

$$\begin{aligned} \partial_k g_{ij} &= \partial_k \langle e_i, e_j \rangle = \langle \partial_k e_i, e_j \rangle + \langle e_i, \partial_k e_j \rangle \\ &= \langle \Gamma_{ik}^l e_l, e_j \rangle + \langle e_i, \Gamma_{jk}^m e_m \rangle = \Gamma_{ik}^l g_{lj} + \Gamma_{jk}^m g_{im}. \end{aligned}$$

By permuting the indices, we also have  $\partial_j g_{ik} = \Gamma_{ij}^l g_{lk} + \Gamma_{kj}^l g_{il}$  and  $\partial_i g_{jk} = \Gamma_{ji}^l g_{lk} + \Gamma_{ki}^l g_{jl}$ . Recall that since  $\mathbf{x}_{ij} = \mathbf{x}_{ji}$  by smoothness of  $\mathbf{x}$ , we have  $\partial_i e_j = \partial_j e_i$ , and hence  $\Gamma_{ij}^k = \Gamma_{ji}^k$ . Therefore, we have

$$2\Gamma_{ij}^l g_{lk} = \partial_j g_{ik} + \partial_i g_{jk} - \partial_k g_{ij}.$$

Contract with  $g^{km}$  and use  $g^{km}g_{lk} = \delta_l^m$  to obtain

$$2\Gamma_{ij}^m = g^{km} (\partial_j g_{ik} + \partial_i g_{jk} - \partial_k g_{ij}) \implies \Gamma_{ij}^m = \frac{1}{2} g^{km} (\partial_j g_{ik} + \partial_i g_{jk} - \partial_k g_{ij}).$$

□

**Exercise 1** (Christoffel symbols in higher dimensions). Here we calculate the Christoffel symbols for various high-dimensional manifolds.

a. Hyper-paraboloid: Let  $(x^1, \dots, x^n)$  be coordinates in  $\mathbb{R}^n$ . Consider the immersion  $\Phi : \mathbb{R}^n \rightarrow \mathbb{R}^{n+1}$  defined by

$$\Phi(x^1, \dots, x^n) = \left( x^1, \dots, x^n, \sum_{i=1}^n (x^i)^2 \right).$$

Its image is the hyper-paraboloid in  $\mathbb{R}^{n+1}$ . Compute the Christoffel symbols of the induced metric (from  $\langle \cdot \rangle_{\mathbb{R}^{n+1}}$ ) on the hyper-paraboloid.

b. Conformally flat metric in  $\mathbb{R}^n$ : Consider the metric  $g$  on  $\mathbb{R}^3$  defined by  $g_{ij} = e^{2\phi(x)}\delta_{ij}$ . Compute  $\Gamma_{ij}^k$  in terms of  $\phi$ .

c.  $n$ -sphere: Consider the  $n$ -sphere  $S^n \subset \mathbb{R}^{n+1}$  with the parametrization

$$\mathbf{x}(u^1, \dots, u^n) = \begin{pmatrix} \cos u^1 \\ \sin u^1 \cos u^2 \\ \sin u^1 \sin u^2 \cos u^3 \\ \vdots \\ \sin u^1 \sin u^2 \cdots \sin u^{n-1} \sin u^n \end{pmatrix},$$

where  $u^1 \in [0, \pi]$ ,  $u^2, \dots, u^{n-1} \in [0, \pi]$ , and  $u^n \in [0, 2\pi)$ . Compute the Christoffel symbols of the induced metric on  $S^n$ .

**Solution 1.**

a.

**Exercise 2** (computing the Ricci tensor). Let  $f \in C^\infty(U)$ ,  $f > 0$ , and  $g_{ij}(x^1, \dots, x^n) = f(x^n)\delta_{ij}$ . Then, calculate the Ricci tensor  $R_{ij}$  in terms of  $f$  and its derivatives.

**Solution 2.**

## 4 Chapter 4.4

**Definition 2** (covariant derivative 協變導數). Let  $w$  be a differentiable vector field restricted to a curve  $\alpha : I \rightarrow S$ . The vector by the normal projection of  $dw/dt$  onto  $T_p(S)$  is called the covariant derivative of the vector field  $w$  relative to  $\alpha'(0)$ .

**Definition 3** (covariant derivative of vector field along a curve). Let  $w$  be a differentiable vector field along a curve  $\alpha : I \rightarrow S$ . The expression

$$\begin{aligned} \frac{Dw}{dt}(t) = & (a' + \Gamma_{11}^1 au' + \Gamma_{12}^1 av' + \Gamma_{12}^1 bu' + \Gamma_{22}^1 bv') \mathbf{x}_u \\ & + (b' + \Gamma_{11}^2 au' + \Gamma_{12}^2 av' + \Gamma_{12}^2 bu' + \Gamma_{22}^2 bv') \mathbf{x}_v \end{aligned} \quad (1)$$

is called the covariant derivative of the vector field  $w$  along the curve  $\alpha$ .

**Definition 4** (parallel vector field). A vector field  $w$  along a curve  $\alpha : I \rightarrow S$  is said to be parallel if  $Dw/dt = 0$  for all  $t \in I$ .

**Definition 5** (parallel transport 平行輸運). Let  $\alpha : I \rightarrow S$  be a parametrized curve in  $S$  and let  $w_0 \in T_{\alpha(t_0)}(S)$ ,  $t_0 \in I$ . Let  $w$  be the (unique) parallel vector field along  $\alpha$  such that  $w(t_0) = w_0$ . The vector  $w(t) \in T_{\alpha(t)}(S)$  is called the parallel transport of  $w_0$  along  $\alpha$  at  $\alpha(t)$ .

**Definition 6** (parametrized geodesic 參數測地線). A nonconstant, parametrized curve  $\gamma : I \rightarrow S$  is said to be geodesic at  $t \in I$  if the field of its tangent vectors  $\gamma'(t)$  is parallel along  $\gamma$  at  $t$ , i.e.

$$\frac{D\gamma'}{dt}(t) = 0. \quad (2)$$

We say  $\gamma$  is a parametrized geodesic if it is geodesic for all  $t \in I$ .

**Definition 7** (geodesic 測地線). A regular connected curve  $C$  in  $S$  is said to be a geodesic if, for every  $p \in C$ , the parametrization  $\alpha(s)$  of a coordinate neighborhood of  $p$  by arc length  $s$  is a parametrized geodesic. That is,  $\alpha'(s)$  is a parallel vector field along  $\alpha(s)$ .

**Definition 8.** Let  $w$  be a differentiable field of unit vectors along a parametrized curve  $\alpha : I \rightarrow S$  on an oriented surface  $S$ . Since  $w(t)$  is normal to  $dw(t)/dt$ , we can write

$$\frac{Dw}{dt}(t) = \lambda(t) (N(t) \wedge w(t)), \quad \lambda(t) \equiv \left[ \frac{Dw}{dt} \right],$$

where  $[Dw/dt]$  is called the algebraic value of  $Dw/dt$  at  $t$ .

**Definition 9** (geodesic curvature 測地線曲率). Let  $C \subset S$  be a regular curve on an oriented surface  $S$ , and let  $\alpha(s)$  be its parametrization by arc length. The algebraic value of the covariant derivative  $[D\alpha'(s)/ds] \equiv k_g$  of  $\alpha'(s)$  at  $p$  is called the geodesic curvature of  $C$  at  $p = \alpha(s)$ .

*Remark.* Immediately, we have  $k^2 = k_n^2 + k_g^2$ .

**Proposition 8** (algebraic value of covariant derivative).

Let  $\mathbf{x}(u, v)$  be an orthonormal parametrization of a neighborhood of an oriented surface  $S$ , and  $w(t)$  be a differentiable field of unit vectors along a curve  $\mathbf{x}(u(t), v(t))$ . Then,

$$\left[ \frac{Dw}{dt} \right] = \frac{1}{2\sqrt{EG}} \left( G_u \frac{dv}{dt} - E_v \frac{du}{dt} \right) + \frac{d\phi}{dt}, \quad (3)$$

where  $\phi(t) = \cos^{-1} \langle \mathbf{x}_u / \sqrt{E}, w(t) \rangle$  is the angle from  $\mathbf{x}_u$  to  $w(t)$  in the given orientation.

**Proposition 9** (Liouville). Let  $\alpha(s)$  be a parametrization by arc length of a neighborhood of  $p$  of a regular oriented curve  $C$  on an oriented surface  $S$ . Let  $\mathbf{x}$  be an orthonormal parametrization of a neighborhood of  $p$  such that the angle between  $\alpha'(s)$  and  $\mathbf{x}_u$  is  $\phi(s)$ . Then,

$$k_g = (k_g)_1 \cos \phi + (k_g)_2 \sin \phi + \frac{d\phi}{ds},$$

where  $(k_g)_1$  and  $(k_g)_2$  are the geodesic curvatures of the coordinate curves  $v = \text{const.}$  and  $u = \text{const.}$ , respectively.

**Theorem 10** (differential equations of the geodesics).

Let  $\alpha : I \rightarrow S$  be a parametrized curve on a surface  $S$ , and let  $\mathbf{x}(u, v)$  be a parametrization of  $S$  in a neighborhood of  $\alpha(t_0)$ ,  $t_0 \in I$ . Then, the tangent vector field  $\alpha'(t)$ ,  $t \in J$ , is given by  $w(t) = u'(t)\mathbf{x}_u + v'(t) + \mathbf{x}_v$ . Since  $w$  is parallel along  $\alpha$ , the functions  $u(t)$ ,  $v(t)$  satisfy

$$u'' + \Gamma_{11}^1(u')^2 + 2\Gamma_{12}^1 u' v' + \Gamma_{22}^1(v')^2 = 0, \quad v'' + \Gamma_{11}^2(u')^2 + 2\Gamma_{12}^2 u' v' + \Gamma_{22}^2(v')^2 = 0.$$

*Additional definitions for Riemannian geometry.*

**Definition 10** (Levi-Civita formula). The Christoffel symbols associated to the first fundamental form are given by

$$\Gamma_{ij}^k = \frac{1}{2} g^{kl} (\partial_i g_{jl} + \partial_j g_{il} - \partial_l g_{ij}),$$

where  $(g^{ij})$  is the inverse matrix of  $(g_{ij})$ .

**Definition 11** (connection 1-form). Given an orthonormal frame  $\{e_1, e_2\}$  on a surface  $S$ , the connection 1-form  $\omega$  is defined by

$$\omega(X) = \langle \nabla_X e_1, e_2 \rangle,$$

for any vector field  $X$  on  $S$ .

**Definition 12** (Levi-Civita connection). The Christoffel symbols defined by the Levi-Civita formula determine a unique connection  $\nabla$  on the tangent bundle of a surface  $S$ , called the Levi-Civita connection. This is given by the formula

$$\nabla_{e_i} e_j = \Gamma_{ij}^k (e_1, \dots, e_n) e_k.$$

**Definition 13** (Riemannian tensor). Given vector fields  $X, Y, Z$  on  $S$ , the Riemannian curvature tensor  $R$  is defined by

$$R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z.$$

In coordinates, we have

$$R^l_{ijk} = \langle R(\partial_i, \partial_j) \partial_k, \partial_l \rangle = \partial_i \Gamma_{jk}^l - \partial_j \Gamma_{ik}^l + \Gamma_{jk}^m \Gamma_{im}^l - \Gamma_{ik}^m \Gamma_{jm}^l.$$

**Definition 14** (Ricci tensor & scalar curvature). The Ricci tensor  $R_{ij}$  is defined by contracting the Riemannian curvature tensor as

$$R_{ij} = R^k_{ikj}.$$

Then, the scalar curvature  $R$  is defined as the trace of the Ricci tensor, i.e.  $R = g^{ij}R_{ji}$ .

**Exercise 4.4.1.**

- a. Show that if a curve  $C \subset S$  is both a line of curvature and a geodesic, then  $C$  is a plane curve.
- b. Show that if a (nonrectilinear) geodesic is a plane curve, then it is a line of curvature.
- c. Give an example of a line of curvature which is a plane curve and not a geodesic.

**Solution 4.4.1.**

- a. By Proposition 3.2.3, the theorem of Olinde Rodrigues states that a regular curve is a line of curvature if and only if the normal vector  $N$  along  $C$  satisfies  $N'(t) = \lambda(t)\alpha'(t)$  for some function  $\lambda$ . Since  $\alpha(t)$  is a geodesic, we have  $D\alpha'/dt = DT/dt = 0$ , and thus  $T'(t) = \mu(t)N(t)$  for some differentiable function  $\mu$ . Therefore, the binormal vector  $B(t) = T(t) \wedge N(t)$  satisfies

$$B'(t) = T'(t) \wedge N(t) + T(t) \wedge N'(t) = \mu(t)N(t) \wedge N(t) + T(t) \wedge \lambda(t)\alpha'(t) = 0.$$

Then,  $\frac{d}{dt}\langle\alpha(t), B(t)\rangle = \langle T(t), B(t)\rangle + \langle\alpha(t), B'(t)\rangle = 0$ , and  $C$  is a plane curve.

- b. Suppose  $C$  is a geodesic and a plane curve. Then, the normal vector  $N$  along  $C$  is constant, so  $N'(t) = 0$ . Since  $\alpha(t)$  is a geodesic, we have  $\langle N'(t), \alpha'(t)\rangle = 0$ , \*
- c. Let  $C$  be the curve of constant latitude on a sphere  $S$  with latitude  $0 < \phi < \pi/2$ . Then,  $C$  is a line of curvature since the normal vector along  $C$  is constant. Also,  $C$  is a plane curve since it lies in a plane parallel to the equatorial plane. However,  $C$  is not a geodesic since the geodesics on a sphere are exactly the great circles.

**Exercise 4.4.2.** Prove that a curve  $C \subset S$  is both an asymptotic curve and a geodesic if and only if  $C$  is a (segment of a) straight line.

**Solution 4.4.2.** Suppose  $C$  is both an asymptotic curve and a geodesic, and  $C$  is the trace of the parametrization  $\alpha : I \rightarrow \mathbb{R}^3$ . Then  $k_n = k_g = 0$ . Thus,  $k^2 = k_n^2 + k_g^2 = 0$  implies  $k = 0$ , and so  $\alpha'' = kn = 0$ . Integrating twice, we have  $\alpha(t) = at + b$ , a straight line. Conversely, if  $C$  is a straight line, then  $kn = \alpha'' = 0$ . Taking the norm on both sides shows  $k = 0$ , and hence  $k_g = k_n = 0$ .

**Exercise 4.4.3.** Show, without using Prop. 5, that the straight lines are the only geodesics of a plane.

**Solution 4.4.3.** For a plane, the unit normal  $N$  is constant, and thus  $dN = 0$ . Therefore, the second fundamental form  $\Pi(v, w) = -\langle dN_p(v), w\rangle N = 0$  for all  $v, w \in T_p(S)$ , and  $k_n$  is identically zero. For a geodesic, we have  $k_g = 0$ , so  $k = 0$ , and  $\alpha'' = 0$ . Integrating twice, we have  $\alpha(t) = at + b$ , a straight line. Conversely, a straight line has  $\alpha'' = 0$ , so  $k = 0$ , and hence  $k_g = 0$ .

**Exercise 4.4.4.** Let  $v$  and  $w$  be vector fields along a curve  $\alpha : I \rightarrow S$ . Prove that

$$\frac{d}{dt}\langle v(t), w(t)\rangle = \left\langle \frac{Dv}{dt}, w(t) \right\rangle + \left\langle v(t), \frac{Dw}{dt} \right\rangle.$$

**Solution 4.4.4.** The covariant derivative is the normal projection of the ordinary derivative onto the tangent space. Thus, we have

$$\begin{aligned}\frac{Dv}{dt} &= \frac{dv}{dt} - \left\langle \frac{dv}{dt}, N \right\rangle N, \quad \frac{Dw}{dt} = \frac{dw}{dt} - \left\langle \frac{dw}{dt}, N \right\rangle N. \\ \implies \left\langle \frac{Dv}{dt}, w \right\rangle + \left\langle v, \frac{Dw}{dt} \right\rangle &= \left\langle \frac{dv}{dt} - \left\langle \frac{dv}{dt}, N \right\rangle N, w \right\rangle + \left\langle v, \frac{dw}{dt} - \left\langle \frac{dw}{dt}, N \right\rangle N \right\rangle \\ &= \left\langle \frac{dw}{dt}, v \right\rangle + \left\langle \frac{dv}{dt}, w \right\rangle - \left\langle \frac{dv}{dt}, N \right\rangle \langle N, w \rangle - \left\langle \frac{dw}{dt}, N \right\rangle \langle v, N \rangle \\ &= \frac{d}{dt} \langle v, w \rangle - \frac{d}{dt} \langle v, N \rangle \langle N, w \rangle\end{aligned}$$

**Exercise 4.4.5.** Consider the torus of revolution generated by rotating the circle

$$(x - a)^2 + z^2 = r^2, \quad y = 0,$$

about the  $z$  axis ( $a > r > 0$ ). The parallels generated by the points  $(a + r, 0)$ ,  $(a - r, 0)$ ,  $(a, r)$  are called the maximum parallel, the minimum parallel, and the upper parallel, respectively. Check which of these parallels is

- a. A geodesic.
- b. An asymptotic curve.
- c. A line of curvature.

**Solution 4.4.5.** Take the standard parametrization of the torus of rotation:

$$\mathbf{x}(u, v) = ((a + r \cos v) \cos u, (a + r \cos v) \sin u, r \sin v), \quad u, v \in [0, 2\pi).$$

Then, we have

$$\begin{aligned}\mathbf{x}_u &= (-(a + r \cos v) \sin u, (a + r \cos v) \cos u, 0), \\ \mathbf{x}_v &= (-r \sin v \cos u, -r \sin v \sin u, r \cos v), \\ \mathbf{x}_{uu} &= (-(a + r \cos v) \cos u, -(a + r \cos v) \sin u, 0), \\ \mathbf{x}_{uv} &= (r \sin v \sin u, -r \sin v \cos u, 0), \\ \mathbf{x}_{vv} &= (-r \cos v \cos u, -r \cos v \sin u, -r \sin v).\end{aligned}$$

The first fundamental form is given by

$$E = \langle \mathbf{x}_u, \mathbf{x}_u \rangle = (a + r \cos v)^2, \quad F = \langle \mathbf{x}_u, \mathbf{x}_v \rangle = 0, \quad G = \langle \mathbf{x}_v, \mathbf{x}_v \rangle = r^2,$$

the unit normal is  $N = (\cos v \cos u, \cos v \sin u, \sin v)$ , and the second fundamental form is given by

$$e = \langle N, \mathbf{x}_{uu} \rangle = -(a + r \cos v) \cos v, \quad f = \langle N, \mathbf{x}_{uv} \rangle = 0, \quad g = \langle N, \mathbf{x}_{vv} \rangle = -r.$$

Now, we proceed to calculate the geodesic curvature  $k_g$  for each parallel with  $v = \phi_0$ . The maximum, minimum, and upper parallels correspond to  $\phi_0 = 0, \pi$ , and  $\pi/2$ , respectively. The unit tangent along the parallel is  $T = \mathbf{x}_u / \sqrt{E}$ , and the normal curvature is given by

$$k_n = \frac{\text{II}(T, T)}{\text{I}(T)} = \frac{e}{E} = -\frac{(a + r \cos \phi_0) \cos \phi_0}{(a + r \cos \phi_0)^2} = -\frac{\cos \phi_0}{a + r \cos \phi_0}.$$

We have

$$\frac{DT}{ds} = \Gamma_{uu}^v (T^u)^2 e_v = \Gamma_{uu}^v \frac{1}{E} \mathbf{x}_v =$$

**Exercise \*4.4.6.** Compute the geodesic curvature of the upper parallel of the torus of Exercise 5.

**Solution 4.4.6.**

**Exercise \*4.4.8.** Show that if all the geodesics of a connected surface are plane curves, then the surface is contained in a plane or a sphere.

**Solution 4.4.8.** Let  $C$  be a geodesic of  $S$ , and  $\alpha(t)$  be its parametrization. Since  $C$  is a plane curve, we have  $B' = T' \wedge N + T \wedge N' = 0$ . Since  $C$  is a geodesic, we have  $k_g = 0$ , and thus  $\alpha'' = T' = k_n N$ . Hence,  $T \wedge N' = 0$ , and so  $N' = \lambda T$  for some function  $\lambda$ . By Proposition 3.2.3 (Olinde Rodrigues), every point of  $C$  is an umbilical point. By Proposition 4.4.5, for any  $p \in S$  and  $w \in T_p(S)$ , there is a unique parametrized geodesic  $\gamma : I \rightarrow S$  such that  $\gamma(0) = p$  and  $\gamma'(0) = w$ , and hence every point of  $S$  is umbilical. Since  $S$  is connected and all its points are umbilical points, by Proposition 3.2.4 (a surface  $S$  is contained in a plane or a sphere if  $S$  is connected and all its points are umbilical points),  $S$  is contained in a plane or a sphere.

**Exercise \*4.4.9.** Consider two meridians of a sphere  $C_1$  and  $C_2$  which make an angle  $\varphi$  at the point  $p_1$ . Take the parallel transport of the tangent vector  $w_0$  of  $C_1$ , along  $C_1$  and  $C_2$ , from the initial point  $p_1$  to the point  $p_2$  where the two meridians meet again, obtaining, respectively,  $w_1$  and  $w_2$ . Compute the angle from  $w_1$  to  $w_2$ .

**Solution 4.4.9.** Let  $C_1$  and  $C_2$  be the two meridians of the sphere intersecting at  $p_1$  and  $=_2$ , parametrized by  $\alpha_1$  and  $\alpha_2$  respectively. Without loss of generality, let  $p_1 = (0, 0, 1)$  and  $p_2 = (0, 0, -1)$ . Choose coordinates such that

$$\alpha_1(s) = (\sin s, 0, \cos s), \quad \alpha_2(s) = (\cos \phi \sin s, \sin \phi \sin s, \cos s),$$

for  $0 \leq s < \pi$ . We have  $w_0 = \alpha_1'(0) = (1, 0, 0)$  and the transport along  $C_1$  is  $w_1(\pi) = \alpha_1'(\pi) = (-1, 0, 0)$ .

**Exercise \*4.4.10.** Show that the geodesic curvature of an oriented curve  $C \subset S$  at a point  $p \in C$  is equal to the curvature of the plane curve obtained by projecting  $C$  onto the tangent plane  $T_p(S)$  along the normal to the surface at  $p$ .

**Exercise \*4.4.12.** We say that a set of regular curves on a surface  $S$  is a differentiable family of curves on  $S$  if the tangent lines to the curves of the set make up a differentiable field of directions (see Sec. 3–4). Assume that a surface  $S$  admits two differentiable orthogonal families of geodesics. Prove that the Gaussian curvature of  $S$  is zero.

**Exercise \*4.4.13.** Let  $V$  be a connected neighborhood of a point  $p$  of a surface  $S$ , and assume that the parallel transport between any two points of  $V$  does not depend on the curve joining these two points. Prove that the Gaussian curvature of  $V$  is zero.

**Exercise 4.4.14.** Let  $S$  be an oriented regular surface and let  $\alpha : I \rightarrow S$  be a curve parametrized by arc length. At the point  $p = \alpha(s)$  consider the three unit vectors (the Darboux trihedron)

$$T(s) = \alpha'(s), \quad N(s) = \text{the normal vector to } S \text{ at } p, \quad V(s) = N(s) \wedge T(s).$$

Show that

$$\begin{aligned}\frac{dT}{ds} &= 0 + aV + bN, \\ \frac{dV}{ds} &= -aT + 0 + cN, \\ \frac{dN}{ds} &= -bT - cV + 0,\end{aligned}$$

where  $a = a(s)$ ,  $b = b(s)$ ,  $c = c(s)$ ,  $s \in I$ . The above formulas are the analogues of Frenet's formulas for the trihedron  $T, V, N$ . To establish the geometrical meaning of the coefficients, prove that

- a.  $c = -\langle dN/ds, V \rangle$ ; conclude from this that  $\alpha(I) \subset S$  is a line of curvature if and only if  $c \equiv 0$  ( $-c$  is called the geodesic torsion of  $\alpha$ ; cf. Exercise 19, Sec. 3-2).
- b.  $b$  is the normal curvature of  $\alpha(I) \subset S$  at  $p$ .
- c.  $a$  is the geodesic curvature of  $\alpha(I) \subset S$  at  $p$ .

**Solution 4.4.14.** First, we show the Darboux trihedron analogue for Frenet's formulas. Since  $T, V, N$  are orthonormal, we have  $\langle T, T \rangle = \langle V, V \rangle = \langle N, N \rangle = 1$  and  $\langle T, V \rangle = \langle V, N \rangle = \langle N, T \rangle = 0$ . Differentiating these equations with respect to  $s$ , we have

$$\left\langle \frac{dT}{ds}, T \right\rangle = \left\langle \frac{dV}{ds}, V \right\rangle = \left\langle \frac{dN}{ds}, N \right\rangle = 0,$$

and

$$\left\langle \frac{dT}{ds}, V \right\rangle + \left\langle T, \frac{dV}{ds} \right\rangle = 0, \quad \left\langle \frac{dV}{ds}, N \right\rangle + \left\langle V, \frac{dN}{ds} \right\rangle = 0, \quad \left\langle \frac{dN}{ds}, T \right\rangle + \left\langle N, \frac{dT}{ds} \right\rangle = 0.$$

Hence, let  $a(s) = \langle dT/ds, V \rangle$ ,  $b(s) = \langle dT/ds, N \rangle$ , and  $c(s) = -\langle dN/ds, V \rangle$ , we have

$$\begin{aligned}\frac{dT}{ds} &= \left\langle \frac{dT}{ds}, V \right\rangle V + \left\langle \frac{dT}{ds}, N \right\rangle N = 0 + aV + bN, \\ \frac{dV}{ds} &= \left\langle \frac{dV}{ds}, T \right\rangle T + \left\langle \frac{dV}{ds}, N \right\rangle N \\ &= -\left\langle \frac{dT}{ds}, V \right\rangle T + 0 - \left\langle \frac{dN}{ds}, V \right\rangle N = -aT + 0 + cN, \\ \frac{dN}{ds} &= \left\langle \frac{dN}{ds}, T \right\rangle T + \left\langle \frac{dN}{ds}, V \right\rangle V = -bT - cV + 0.\end{aligned}$$

- a.  $c(s)$  is as we defined above. By Proposition 3.2.3 (Olinde Rodrigues),  $\alpha(I) \subset S$  is a line of curvature if and only if  $N'(s) = \lambda(s)T(s)$  for some function  $\lambda$ , if and only if  $c(s) = -\langle N'(s), V(s) \rangle = 0$  for all  $s \in I$ .
- b. Since  $k_n = k \cos \theta$ , where  $\cos \theta = \langle n, N \rangle$ , we have  $k_n = \langle \alpha'', N \rangle$ . By the first formula,  $\alpha'' = dT/ds = aV + bN$ , so  $k_n = \langle aV + bN, N \rangle = b$ .
- c. The geodesic curvature  $k_g$  is the algebraic value of the covariant derivative of  $\alpha'(t)$ . For a unit vector field  $w(t)$  along  $\alpha(t)$ , we have

$$\left[ \frac{Dw}{dt} \right] = \left\langle \frac{dw}{dt}, N \wedge w \right\rangle.$$

Let  $w(t) = \alpha'(t) = T(t)$ , we have

$$k_g(t) = \left[ \frac{D\alpha'}{dt} \right] = \left\langle \frac{dT}{ds}, N \wedge T \right\rangle = \langle aV + bN, V \rangle = a(t).$$

**Exercise 4.4.15.** Let  $p_0$  be a pole of a unit sphere  $S^2$  and  $q, r$  be two points on the corresponding equator in such a way that the meridians  $p_0q$  and  $p_0r$  make an angle  $\theta$  at  $p_0$ . Consider a unit vector  $v$  tangent to the meridian  $p_0q$  at  $p_0$ , and take the parallel transport of  $v$  along the closed curve made up by the meridian  $p_0q$ , the parallel  $qr$ , and the meridian  $rp_0$  (Fig. 4–21).

- a. Determine the angle of the final position of  $v$  with  $v$ .
- b. Do the same thing when the points  $r, q$  instead of being on the equator are taken on a parallel of colatitude  $\varphi$  (cf. Example 1).

**Solution 4.4.15.**

**Exercise \*4.4.16.** Let  $p$  be a point of an oriented surface  $S$  and assume that there is a neighborhood of  $p$  in  $S$  all points of which are parabolic. Prove that the (unique) asymptotic curve through  $p$  is an open segment of a straight line. Give an example to show that the condition of having a neighborhood of parabolic points is essential.

**Solution 4.4.16.**

**Exercise \*4.4.18.** Consider a geodesic which starts at a point  $p$  in the upper part ( $z > 0$ ) of a hyperboloid of revolution  $x^2 + y^2 - z^2 = 1$  and makes an angle  $\theta$  with the parallel passing through  $p$  in such a way that  $\cos \theta = 1/r$ , where  $r$  is the distance from  $p$  to the  $z$  axis. Show that by following the geodesic in the direction of decreasing parallels, it approaches asymptotically the parallel  $x^2 + y^2 = 1$ ,  $z = 0$  (Fig. 4–22).

**Exercise \*4.4.19.** Show that when the differential equations (4) of the geodesics are referred to the arc length then the second equation of (4) is, except for the coordinate curves, a consequence of the first equation of (4).

## 5 Chapter 4.5

**Theorem 11** (turning tangents).

$$\sum_{i=0}^k (\phi(t_{i+1}) - \phi(t_i)) + \sum_{i=0}^k \theta_i = \pm 2\pi,$$

where the sign plus or minus depends on the orientation of the curve.

**Definition 15.** Let  $S$  be an oriented surface. A region  $R \subseteq S$  is called a simple region if  $R$  is homeomorphic to a disk and the boundary  $\partial R$  of  $R$  is the trace of a simple, closed, piecewise regular, parametrized curve  $\alpha : I \rightarrow S$ . Further, let  $\mathbf{x} : U \subseteq \mathbb{R}^2 \rightarrow S$  be a parametrization and let  $R$  be bounded. Then, if  $f$  is a differentiable function on  $S$ , the integral of  $f$  over  $R$  is given by

$$\iint_R d\sigma f = \iint_{\mathbf{x}^{-1}(R)} du dv f(\mathbf{x}(u, v)) \sqrt{EG - F^2},$$

and this definition is independent of the parametrization  $\mathbf{x}$  chosen.

**Theorem 12** (local Gauss-Bonnet Theorem). Let  $\mathbf{x} : U \rightarrow S$  be an isothermal parametrization of an oriented surface  $S$ , where  $U$  is homeomorphic to an open disk and  $\mathbf{x}$  is compatible with the orientation of  $S$ . Let  $R \subseteq \mathbf{x}(U)$  be a simple region and  $\alpha : I \rightarrow S$  be such that  $\alpha(I) = \partial R$ . Assume  $\alpha$  is positively oriented, parametrized by arc length, and that  $\alpha(s_0), \dots, \alpha(s_k)$  and  $\theta_0, \dots, \theta_k$  are the vertices and exterior angles of  $\alpha$ , respectively. Then,

$$\sum_{i=0}^k \int_{s_i}^{s_{i+1}} ds k_g + \iint_R d\sigma K + \sum_{i=0}^k \theta_i = 2\pi,$$

where  $k_g$  is the geodesic curvature of the regular arcs of  $\alpha$  and  $K$  is the Gaussian curvature of  $S$ .

**Theorem 13** (global Gauss-Bonnet Theorem). Let  $R \subseteq S$  be a regular region of an oriented surface  $S$  and let  $C_0, \dots, C_n$  be the closed, simple, piecewise regular curves which make up  $\partial R$ . Suppose each  $C_i$  is positively oriented and let  $\{\theta_1, \dots, \theta_p\}$  be the set of the curves  $C_1, \dots, C_n$ . Then,

$$\sum_{i=1}^n \int_{C_i} ds k_g + \iint_R d\sigma K + \sum_{j=1}^p \theta_j = 2\pi\chi(R),$$

where  $s$  denotes the arc length of  $C_i$ , and the integral over  $C_i$  means the sum of integrals over each regular arc of  $C_i$ .

**Corollary 14.** If  $R$  is a simple region, then

$$\sum_{i=1}^n \int_{C_i} ds k_g + \iint_R d\sigma K + \sum_{j=1}^p \theta_j = 2\pi.$$

**Corollary 15.** If  $S$  is an orientable compact surface, then

$$\iint_S d\sigma K + \sum_{j=1}^p \theta_j = 2\pi\chi(S).$$

**Corollary 16** (interior angles of a geodesic triangle). Let  $T$  be a geodesic triangle in an oriented surface  $S$ . Assume the Gaussian curvature  $K$  does not change sign in  $T$ , and let  $\phi_i$  denote the interior angles of  $T$ . Then,

$$\sum_{i=1}^3 \phi_i = \pi + \iint_T d\sigma K.$$

**Definition 16** (index of a vector field). Let  $v$  be a differentiable vector field on a surface  $S$ . A point  $p \in S$  is called a singular point of  $v$  if  $v(p) = 0$ . A singular point  $p$  is said to be isolated if there exists a neighborhood  $\overline{U} \subset S$  of  $p$  such that  $p$  is the only singular point of  $v$  in  $U$ . Let  $\mathbf{x} : U \rightarrow S$  be an orthogonal parametrization of  $S$  at  $p = \mathbf{x}(0,0)$  compatible with  $S$ , and let  $\alpha : [0, l] \rightarrow S$  be a simple, closed, positively oriented, piecewise regular curve such that  $\alpha([0, l]) \subseteq \mathbf{x}(U)$  is the boundary of a simple region  $R$  containing  $p$  and no other singular points of  $v$ .

**Exercise 4.5.1.** Let  $S \subset \mathbb{R}^3$  be a regular, compact, connected, orientable surface which is not homeomorphic to a sphere. Prove that there are points on  $S$  where the Gaussian curvature is positive, negative, and zero.

**Solution 4.5.1.** By corollary of the global Gauss–Bonnet theorem for orientable compact surfaces, we have

$$\iint_S K d\sigma = 2\pi\chi(S) \leq 0,$$

since compact surfaces in  $\mathbb{R}^3$  have Euler–Poincaré characteristic less than or equal to zero unless they are homeomorphic to a sphere. By a previous result, every compact surface in  $\mathbb{R}^3$  has an elliptic point, so  $K(p) > 0$  for some  $p$ . Suppose there are no points with  $K < 0$ , then by continuity of  $K$  there is an open neighborhood  $U \subset S$  of  $p$  such that  $K(q) > 0$  for all  $q \in U$ . Thus,

$$\iint_S K d\sigma = \iint_U K d\sigma + \iint_{S \setminus U} K d\sigma > 0,$$

a contradiction. Finally, since  $S$  is connected and  $K$  is a continuous mapping, there exists  $r \in S$  such that  $K(r) = 0$  by the Intermediate Value Theorem.

**Exercise 4.5.2.** Let  $T$  be a torus of revolution. Describe the image of the Gauss map of  $T$  and show, without using the Gauss–Bonnet theorem, that

$$\iint_T K d\sigma = 0.$$

Compute the Euler–Poincaré characteristic of  $T$  and check the above result with the Gauss–Bonnet theorem.

**Solution 4.5.2.** The torus of revolution  $T$  can be parametrized by

$$\mathbf{x}(u, v) = ((a + r \cos v) \cos u, (a + r \cos v) \sin u, r \sin v),$$

where  $a > r > 0$ ,  $u \in [0, 2\pi]$ , and  $v \in [0, 2\pi]$ . Then  $\mathbf{x}_u = (-1 + r \cos v) \sin u, (1 + r \cos v) \cos u, 0$ ,  $\mathbf{x}_v = (-r \sin v \cos u, -r \sin v \sin u, r \cos v)$ . The Gauss map  $N : T \rightarrow S^2$  is given by

$$N(u, v) = \frac{\mathbf{x}_u \wedge \mathbf{x}_v}{|\mathbf{x}_u \wedge \mathbf{x}_v|} = (\cos v \cos u, \cos v \sin u, \sin v).$$

The image of  $N$  is the entire unit sphere  $S^2$ , since for every  $(x, y, z) \in S^2$ , we can find  $(u, v) \in [0, 2\pi] \times [0, 2\pi]$  such that  $N(u, v) = (x, y, z)$ . The Gaussian curvature of  $T$  is given by

$$K(u, v) = \frac{\langle N_u \wedge N_v, N \rangle}{|\mathbf{x}_u \wedge \mathbf{x}_v|} = \frac{\cos v}{r(a + r \cos v)}.$$

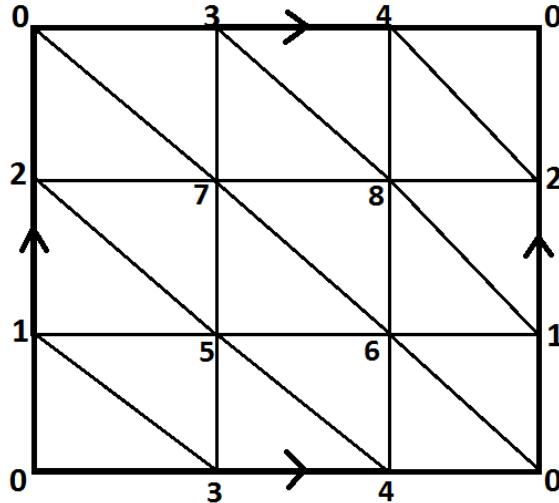


Figure 1: Triangulation of the torus.

Then, we can directly compute

$$\begin{aligned}
 \iint_T d\sigma K &= \int_0^{2\pi} \int_0^{2\pi} du dv K(u, v) \sqrt{EG - F^2} \\
 &= \int_0^{2\pi} \int_0^{2\pi} du dv \frac{\cos v}{r(a + r \cos v)} r(a + r \cos v) \\
 &= \int_0^{2\pi} du \int_0^{2\pi} dv \cos v = 0.
 \end{aligned}$$

To compute the Euler-Poincaré characteristic of  $T$ , note that the torus is isomorphic to the quotient of a square by identifying the opposite sides and identifying the vertices to a single point. Consider the triangulation of  $T$  shown in Figure 1, which has  $V = 9$ ,  $E = 27$ , and  $F = 18$ . In fact, the minimal triangulation only has  $V = 7$ ,  $E = 21$ , and  $F = 14$ . Thus,  $\chi(T) = E - V + F = 0$ .

By the global Gauss-Bonnet Theorem, we have

$$\iint_T d\sigma K = 0 = 2\pi\chi(T) \implies \chi(T) = 0.$$

*Remark.* Calculating Gaussian curvature for a surface of revolution:

**Exercise 4.5.3.** Let  $S \subset \mathbb{R}^3$  be a regular compact surface with  $K > 0$ . Let  $\Gamma \subset S$  be a simple closed geodesic in  $S$ , and let  $A$  and  $B$  be the regions of  $S$  which have  $\Gamma$  as a common boundary. Let  $N : S \rightarrow S^2$  be the Gauss map of  $S$ . Prove that  $N(A)$  and  $N(B)$  have the same area.

**Solution 4.5.3.**

**Exercise 4.5.4.** Compute the Euler-Poincaré characteristic of

a. an ellipsoid;

\*b. the surface

$$S = \{(x, y, z) \in \mathbb{R}^3 ; x^2 + y^{10} + z^6 = 1\}.$$

**Solution 4.5.4.**

- a. Let  $E$  be the ellipsoid given by the equation  $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ , where  $a, b, c > 0$ . Since the linear map  $L : S^2 \rightarrow E$  given by  $L(x, y, z) = (ax, by, cz)$  is a diffeomorphism,  $E \approx S^2$ , and  $\chi(E) = 2$ .
- b. Let  $F : \mathbb{R}^3 \rightarrow \mathbb{R}$  be defined by  $F(x, y, z) = x^2 + y^{10} + z^6$ .  $1$  is said to be a regular point if  $dF_p \neq 0$ , or, equivalently,  $\nabla F \neq 0$ . Since  $\nabla F = (2x, 10y^9, 6z^5) = 0$  only at  $(0, 0, 0)$ , which is not in  $S$ , we have that  $1$  is a regular value of  $F$ . By the Regular Value Theorem,  $S = F^{-1}(1)$  is a regular surface. Since  $\{1\} \subseteq \mathbb{R}$  is closed and  $F$  is continuous,  $S = F^{-1}(\{1\})$  is closed. Furthermore, we have  $|x|, |y|, |z| \leq 1$ , so  $S$  is bounded. By the Heine-Borel Theorem,  $S$  is compact. Moreover,  $S$  is orientable with  $N = \nabla F / |\nabla F|$ . For fixed  $u = (u_1, u_2, u_3) \in S^2$ , let  $\phi_u : \mathbb{R}^3 \rightarrow \mathbb{R}^3$  be defined by  $\phi_u(r) \equiv F(ru)$  for  $r > 0$ . Since  $\phi_u$  is continuous,  $\phi'_u(r) = 2ru_1^2 + 10r^9u_2^{10} + 6r^5u_3^6 > 0$ , and  $\phi_u(0) = 0, \phi_u(\infty) = \infty$ , by the Intermediate Value Theorem there exists a unique  $r_u > 0$  such that  $\phi_u(r_u) = 1$ .

**Claim.** The map  $\psi : S^2 \rightarrow S$  given by  $\psi(u) = r_u u$  is a continuous bijection.

*Proof.* Define  $G : (0, \infty) \times S^2 \rightarrow \mathbb{R}$  by  $G(r, u) = F(ru) - 1$ . Then  $G(r_u, u) = 0$  and

$$\frac{\partial G}{\partial u}(r_u, u) = \langle \nabla F(r_u u), u \rangle = 2r_u u_1^2 + 10r_u^9 u_2^{10} + 6r_u^5 u_3^6 > 0.$$

Hence, by the Implicit Function Theorem,  $r_u$  depends smoothly on  $u$ , and thus  $\psi = r_u u$  is continuous. For  $p \in S$ , let  $u = p/\|p\|$ , then  $F(\|p\|u) = F(p) = 1$ , and by the uniqueness of  $r_u$ ,  $r_u = \|p\|$ . Then  $\psi(u) = r_u u = p$ , and  $\psi$  is surjective. Let  $p \in S$  satisfy  $\psi(p) = r_p p = 0$ . Since  $r_p > 0$ , it must be that  $p = 0$ , hence  $\psi$  is injective, and hence a bijection.  $\square$

**Theorem 17.** A continuous bijection between a compact space and a Hausdorff space is a homeomorphism.

Since  $\psi$  is a continuous bijection between a compact space  $S^2$  and a Hausdorff space  $S$ , by the theorem above  $\psi$  is a homeomorphism, and thus  $S \approx S^2$ . Therefore,  $\chi(S) = 2$ .

**Exercise 4.5.5.** Let  $C$  be a parallel of colatitude  $\varphi$  on an oriented unit sphere  $S^2$ , and let  $w_0$  be a unit vector tangent to  $C$  at a point  $p \in C$  (cf. Example 1, Sec. 4-4). Take the parallel transport of  $w_0$  along  $C$  and show that its position, after a complete turn, makes an angle

$$\Delta\varphi = 2\pi(1 - \cos \varphi)$$

with the initial position  $w_0$ . Check that

$$\lim_{R \rightarrow p} \frac{\Delta\varphi}{A} = 1 = \text{curvature of } S^2,$$

where  $A$  is the area of the region  $R$  of  $S^2$  bounded by  $C$ .

**Solution 4.5.5.** Let  $S^2$  be the unit sphere parametrized by

$$\mathbf{x}(u, v) = (\sin v \cos u, \sin v \sin u, \cos v),$$

where  $u \in [0, 2\pi)$  and  $v \in [0, \pi]$ . Then, the parallel of colatitude  $\varphi$  is given by  $C : \alpha(t) = (\sin \varphi \cos t, \sin \varphi \sin t, \cos \varphi)$ , where  $t \in [0, 2\pi]$ . The tangent vector to  $C$  at  $p = \alpha(0)$  is given by

$$w_0 = \alpha'(0) = (0, \sin \varphi, 0).$$

We have  $\alpha'(t) = (-\sin \varphi \sin t, \sin \varphi \cos t, 0)$ ,  $\alpha''(t) = (-\sin \varphi \cos t, -\sin \varphi \sin t, 0)$ , and  $\langle \alpha' \wedge \alpha'', \alpha' \rangle = \sin^2 \varphi \cos \varphi$ . The geodesic curvature of  $C$  is given by

$$k_g(t) = \frac{\langle N(\alpha(t)) \wedge \alpha'(t), \alpha''(t) \rangle}{\|\alpha'(t)\|^3} = \frac{\langle \alpha(t) \wedge \alpha'(t), \alpha''(t) \rangle}{\|\alpha'(t)\|^3} = \cot \varphi,$$

where the Gauss map  $N$  of  $S^2$  satisfies  $N(\alpha(t)) = \alpha(t)$ . Now, we can compute the parallel transport of  $w_0$  along  $C$ . Let  $e_1 = \mathbf{x}_u / \|\mathbf{x}_u\| = \mathbf{x}_u / \sin v$ ,  $e_2 = v$  be the orthonormal tangent frame. Along the paralle  $v = \varphi$ , we can write

$$\alpha(t) = \mathbf{x}_u(t, \varphi) = \sin \varphi e_1(t).$$

Let the paralle transport of  $w_0$  along  $C$  be given by  $w(t) = a(t)e_1(t) + b(t)e_2(t)$ , where  $a(0) = 1$ ,  $b(0) = 0$ . Then,

$$\frac{Dw}{dt} \implies *$$

$$\Delta\varphi = \int_0^{2\pi} k_g(t) dt = \int_0^{2\pi} \sin \varphi dt = 2\pi(1 - \cos \varphi).$$

The area of the region  $R$  bounded by  $C$  is given by

$$A = \iint_R K d\sigma = 2\pi(1 - \cos \varphi),$$

since the Gaussian curvature of the unit sphere is identically equal to one. Thus,

$$\lim_{R \rightarrow p} \frac{\Delta\varphi}{A} = \lim_{\varphi \rightarrow 0} \frac{2\pi(1 - \cos \varphi)}{2\pi(1 - \cos \varphi)} = 1,$$

which is the curvature of  $S^2$ .

**Exercise \*4.5.6.** Show that  $(0, 0)$  is an isolated singular point and compute the index at  $(0, 0)$  of the following vector fields in the plane:

- \*a.  $v = (x, y)$ ;
- b.  $v = (-x, y)$ ;
- c.  $v = (x, -y)$ ;
- \*d.  $v = (x^2 - y^2, -2xy)$ ;
- e.  $v = (x^3 - 3xy^2, y^3 - 3x^2y)$ .

### Solution 4.5.6.

a. Since  $v(x, y) = (0, 0)$  if and only if  $(x, y) = (0, 0)$ ,  $(0, 0)$  is an isolated singular point. Consider the circle  $C : \alpha(t) = (\cos t, \sin t)$ ,  $t \in [0, 2\pi]$ . Then,  $v(\alpha(t)) = (\cos t, \sin t)$ , and the angle between  $v(\alpha(t))$  and the positive  $x$ -axis is just  $t$ . Thus,

$$\text{ind}(v; (0, 0)) = \frac{1}{2\pi} \int_0^{2\pi} dt = 1.$$

b. Since  $v(x, y) = (0, 0)$  if and only if  $(x, y) = (0, 0)$ ,  $(0, 0)$  is an isolated singular point. Consider the circle  $C : \alpha(t) = (\cos t, \sin t)$ ,  $t \in [0, 2\pi]$ . Then,  $v(\alpha(t)) = (-\cos t, \sin t)$ , and the angle between  $v(\alpha(t))$  and the positive  $x$ -axis is  $\pi - t$ . Thus,

$$\text{ind}(v; (0, 0)) = \frac{1}{2\pi} \int_0^{2\pi} dt (-1) = -1.$$

c. Since  $v(x, y) = (0, 0)$  if and only if  $(x, y) = (0, 0)$ ,  $(0, 0)$  is an isolated singular point. Consider the circle  $C : \alpha(t) = (\cos t, \sin t)$ ,  $t \in [0, 2\pi]$ . Then,  $v(\alpha(t)) = (\cos t, -\sin t)$ , and the angle between  $v(\alpha(t))$  and the positive  $x$ -axis is  $-t$ . Thus,

$$\text{ind}(v; (0, 0)) = \frac{1}{2\pi} \int_0^{2\pi} dt (-1) = -1.$$

d. Suppose  $v(x, y) = (0, 0)$ , then  $-2xy = 0$  and one of  $x, y$  must be zero. If  $x = 0$ , then  $x^2 - y^2 = -y^2 = 0$  implies  $y = 0$ , and similarly for  $y = 0$ . Thus,  $(0, 0)$  is an isolated singular point. Consider the circle  $C : \alpha(t) = (\cos t, \sin t)$ ,  $t \in [0, 2\pi]$ . Then,  $v(\alpha(t)) = (\cos^2 t - \sin^2 t, -2 \cos t \sin t) = (\cos 2t, -\sin 2t)$ , and the angle between  $v(\alpha(t))$  and the positive  $x$ -axis is  $-2t$ . Thus, the index of  $v$  at  $(0, 0)$  is

$$\text{ind}(v; (0, 0)) = \frac{1}{2\pi} \int_0^{2\pi} dt (-2) = -2.$$

e. Suppose  $v(x, y) = (0, 0)$ , then  $y^3 - 3x^2y = y(y^2 - 3x^2) = 0$  and either  $y = 0$  or  $y^2 = 3x^2$ . If  $y = 0$ , then  $x^3 - 3xy^2 = x^3 = 0$  implies  $x = 0$ . If  $y^2 = 3x^2$ , then substituting into the first equation gives  $x^3 - 3x(3x^2) = x^3 - 9x^3 = -8x^3 = 0$ , so  $x = 0$  and thus  $y = 0$ . Therefore,  $(0, 0)$  is an isolated singular point. Consider the circle  $C : \alpha(t) = (\cos t, \sin t)$ ,  $t \in [0, 2\pi]$ . Then,  $v(\alpha(t)) = (\cos^3 t - 3 \cos t \sin^2 t, \sin^3 t - 3 \cos^2 t \sin t) = (\cos 3t, \sin 3t)$ , and the angle between  $v(\alpha(t))$  and the positive  $x$ -axis is  $3t$ . Thus,

$$\text{ind}(v; (0, 0)) = \frac{1}{2\pi} \int_0^{2\pi} dt 3 = 3.$$

**Exercise 4.5.7.** Can it happen that the index of a singular point is zero? If so, give an example.

**Solution 4.5.7.**

*Remark.* Intuitively, the index of a singular point defines the idea of how many times the vector field "turns around" when we go around a small loop enclosing the singular point. If the vector field does not turn at all, then the index is zero.

Yes. Let  $v(x, y) = (x^2 + y^2, 0)$ , then  $v = 0$  if and only if  $x = y = 0$ , so  $(0, 0)$  is a isolated singular point. Consider the circle  $C : \alpha(t) = (\cos t, \sin t)$ ,  $t \in [0, 2\pi]$ . Then,  $v(\alpha(t)) = (1, 0)$ , and the angle between  $v(\alpha(t))$  and the positive  $x$ -axis is 0 for all  $t$ . Thus,

$$\text{ind}(v; (0, 0)) = \frac{1}{2\pi} \int_0^{2\pi} dt 0 = 0.$$

**Exercise 4.5.8.** Prove that an orientable compact surface  $S \subset \mathbb{R}^3$  has a differentiable vector field without singular points if and only if  $S$  is homeomorphic to a torus.

**Solution 4.5.8.** By the Poincaré-Hopf Theorem, we have

$$\sum_{i=1}^n \text{ind}(v; p_i) = \chi(S),$$

where  $p_1, \dots, p_n$  are the isolated singular points of  $v$ . If  $S$  has a differentiable vector field without singular points, then the left-hand side is zero, so  $\chi(S) = 0$ . By the classification theorem of compact surfaces, the only orientable compact surface with Euler-Poincaré characteristic zero is, up to homeomorphism, the torus. Conversely, let  $S$  be homeomorphic to a torus. Let  $\mathbf{x}(u, v) = ((R + r \cos u) \cos v, (R + r \cos u) \sin v, r \sin v)$  be (the parametrization of) the standard torus of revolution  $T$ , then the coordinate vector field

$$\mathbf{x}_u = (-r \sin u \cos v, -r \sin u \sin v, r \cos u), \quad \|\mathbf{x}_u\| = r > 0$$

never vanishes. Hence,  $T$  has a differentiable vector field without singular points.

**Exercise 4.5.9.** Let  $C$  be a regular closed simple curve on a sphere  $S^2$ . Let  $v$  be a differentiable vector field on  $S^2$  with isolated singularities such that the trajectories of  $v$  are never tangent to  $C$ . Prove that each of the two regions determined by  $C$  contains at least one singular point of  $v$ .

**Solution 4.5.9.** By the Jordan Curve Theorem,  $S \setminus C$  is divided into two simple connected regions  $R_1$  and  $R_2$ ,  $\partial R_1 = \partial R_2 = C$ , and  $\bar{R}_1, \bar{R}_2 \approx D$  the unit disk. Hence,  $\chi(R_i) = 1$ ,  $i = 1, 2$ . Suppose no trajectory of  $v$  is tangent to  $C$ , so  $v(p) \notin T_p(C)$  for all  $p$ . At points  $p$  along  $C$ , choose the normal  $N_i \in T_p(S^2)$  pointing outwards from  $R_i$ . Let  $\phi(p) = \langle v(p), N_i(p) \rangle$ , then  $\phi(p) \neq 0$  for all  $p \in C$ . Since  $C$  is connected and  $\phi$  is continuous,  $\phi(p)$  has constant sign on  $C$ . Without loss of generality, assume  $\phi(p) > 0$  for all  $p \in C$ . Take  $v$  or  $-v$  to make it point everywhere outwards on  $C$ , then we can apply the Poincaré-Hopf Theorem to  $R_i$ :

$$\sum_{j=1}^{n_i} \text{ind}(v; p_j) = \chi(R_i) = 1,$$

where  $p_1, \dots, p_{n_i}$  are the isolated singular points of  $v$  in  $R_i$ . If there were no singular points, then the sum on the LHS would be zero, and  $v \neq 0$  on  $C$  guarantees that no singular points lie on the boundary. Thus, each region  $R_i$  contains at least one singular point of  $v$ .