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1 Introduction



Overview

* Living systems maintain or increase local order by working against the
second law of thermodynamics

e Optimization framework: thermodynamic infererence of improved lower
bounds on entropy production rates \

Deduction of thermodynamic
guantities from partial observations.

* Non-zero bounds for entropy production by considering transition
statistics beyond one-step dynamics




Present Problems

* Entropy production estimators fail when
* Only a small set of observables is accessible
* Nonequilibrium transport currents vanish

 Many degrees of freedom are typically hidden in experiments

* Sometimes trajectories appear symmetric in time

don’t obey detailed balance, no relative entropy!




Biological Examples

Overview of biological data analyzed

Bacterial flagellar motor

Microtubule growth

Calcium oscillation in human embryonic
kidney cells




What is Entropy?

* Entropy as a measure of “disorder”

e C(Classically, entropy is a measure of the
unavailability of a system's energy to do work
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What is Entropy?

Example (Phases of matter)

* Entropy as a probabilistic idea , , , ,
* More possible configurations in a

* There seems to be more “disordered gaseous system

states” than there are “ordered states” .
gas has more entropy than solid

S =kglogQ (Boltzmann’s entropy)
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What is Entropy?

* As a number associated to a probability distribution
over a finite sample space

N
H— _ Zpi log p; P; is.the.probability |
i—1 of being in the state i

(Shannon entropy)

* Consistent with entropy in statistical physics (Cf. Boltzmann)




What is Entropy?

* As a number associated to a probability distribution
over a finite sample space

N
H— _ Zpi log p; P; is.the.probability |
i—1 of being in the state i

(Shannon entropy)

 The most compressed amount of code needed to encompass
the content of a signal (information)

 We can reinterpret “disorder” as “information content”




What is Entropy?

* An event E happens with probablity P(E)
* s(E) is the information content of E  function of P(E)

1. Decreasing function of P(E) s(E) is proportional to

2. If events E; and E, are independent, —klogP(E), k>0
then S(El M Ez) = S(El) —+ S(Eg)

Entropy is the expectation value of information content




Entropy in Biology

* Second Law of Thermodynamics:

The entropy of the universe tends to a maximum.

* Biological organisms are highly ordered  nonequilibrium

locally, entropy can be lowered by external action

increase in environmental entropy the Second Law




2 Literature Review



Upper Bound to Entropy Production Rates

* This paper gives a lower bound for entropy production

 An upper bound for steadystate has been derived:

a = Z (migji + m;qij) R = max;; Lisq

i<j q i

o < a(logR) (g—_:)

(Ref.) Nishiyama, T.; Hasegawa, Y. (2023). Upper bound for entropy production in Markov processes.




Thermodynamic Uncertainty Relations

 Thermodynamic uncertainty relations (TURs) can constrain nonequilibrium
fluctuations

(J:)?
Var(J;)

ET = Qkﬂ

e Classic lower bound for entropy production rate

(Ref.) Horowitz, J. M.; Gingrich, T. R. (2020). Thermodynamic uncertainty relations constrain non-
equilibrium fluctuations.




3 Theory



Entropy Production Rate

spends a fraction 7r;
of the time in state i

/

e Systems in thermal equilibrium obey detailed balance: miqij =mjqj

T~

This is a reversible Markov process rate of transition
from state i toj

* The entropy production rate in steadystate is

kB miqij )
gis (We:Qz"-’?T‘fI'z‘)log(
D) x X ] ﬂ.}qji




Detailed Balance

No entropy production when
system is in equilibrium

k‘B Tiqq4
F="g Z(ﬂ-i%’j — m;qj;) log (ﬂ'qj)
i, i Always positive

* Organisms operate far from equilibrium. Violations of
detailed balance increase environment entropy

* Apply the formula? Not all microstates are accessible
Estimate ¢ from coarse-grained data




Detailed Balance

Example (Two nodes) Example (Three nodes)
" X
X) a<)
N ! 2
allb , '
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y 93 a+b < o o

Equilibrium is guaranteed Equilibrium is not guaranteed

Detail balance is a strong condition




Markov Processes

* Markov property (discrete): X = (X1, Xo,...,XnN,...)
P(Xn_|_1 = Tp+1 | X = Lriyais .,Xl — 321) = P(Xﬂ_!_l = Tp41 [ X = mﬂ) for all n € IN.

* A continuous time Markov process a sequence of random
variables with the Viarkov property

P(X; = §|Xo = 1) = Py (#) = (%)




Markov Processes

* History independence

* We may assume our biological system
to be microscopically Markovian

Why do we emphasize “microscopic”?

FIG. Example of a Markov chain




An Example

e System currently in macrostate H;

The probabilities of jumping to 1 or 2
are both non-zero

Hi H2

* Previous observed macrostate was 1

The probability of transitioning to 2 is zero

* Coarse-grained observables may be non-Markovian!
History dependence emerges from partial observation




An Example

“‘”  Arbitrary trajectory (3, Ho, Hy, Hs, ..., Hy)
= H . .
1 ’ ( ) The probability of transitioning to 2 is zero

* Truncate the trajectory to length N : (H,, Hy,H>,..., H;)

Can the process transition to 2? It shouldn’t! We lose information




Markovian Systems

* No finite set of observables Construct an estimator that
guaranteed to describe the system preserves the statistics

* Observable: nap=> ) mg;
icA jeB

Example calculation:

A ={a,b,c}, B=1{1,2}.

NAB = E E Tiqij

i=a,b,c j=1,2
= Taqal + Tqp1 + Tpqp2 + Teqc2




As as Optimization Problem

set of all possible macroscopic

The best possible estimator is / observables for our system
0(8) > min {o(R)|O(R) = O(S)}.

Unique stationary distribution,

. : use n as observable
This is not practical

k‘ n;;
Let’s look at a subset of the = 73 > _(nij —nji)log (—J)

observable space 17

o(8) > min {o(R)|OL(R) = O4(S)},




One-Step Estimator

* We can simplify the internal topology

without affecting 1 observables \\/ \
@

=D — @
()
Nk ik
ﬂi-—ﬂi]D 4+ (n:p — neq ) lo (L)
(nik — Nki) E’;(nh) (njrx — nkj) log o O o
Nig + N, O, = {nys|I, J macrostates
5 ((nik+ﬂjk)_(”ki+ﬂkj))lﬂg( 2 -?k) 1, = 4y }
Ng; + Nk j




One-Step Estimator

« Convexity + Jensen’s inequality \\./ \

Entropy production rate decreases = — @

* Markovian system with no hidden states O o
and the same statistics (observables) O, = {nyrs|I,J macrostates}




Two-Step Estimator

« We can obtain a bound for each macrostate, 02 = {nuv,nuvw|U, V, W macrostates}
consistent with O, observables

 Example: find the minimal EP rate across the edges (J, /), (J, K), and (J, L)

Apply o1 to r ‘ nis
simplify 1, K, L \J o(j) = ) _ (nij — njs)log (n J)
i€k =t

Example network The entropy production
along edges connected to j




Two-Step Estimator

Canonical form: each
internal state in J is
connected only to two
. external macrostates

Rerouting the network lteration
does not increase

entropy production F o s@ s
/’////f///\%\? It is always possible to
* Summing over aI.I macrostates /,ﬁé":,.;-ﬂg. J,j%‘§\ optimize over 6 internal
gives the O, estimator @Eaﬂ(@ states connecting any

1 two macrostates
T9 = 52}0’2(;1){_:0' K“.‘ 8




Two-Step Estimator

1
Jp = 5;@(@*_:5

* For a simple system A-B-C, o2(B)
is the optimal bound

A three state topology with no “loops”

* Less computation required




3 Results



Ex 1. Microbial Flagellar Motor

* Each flagellum is driven by a motor

 Stochastic direction switching

Time (ms)

May not violate time-irreversibility T ——

40 80 120

This example exhibits small net fluxes




Ex 1. Microbial Flagellar Motor

* Coarse-grain space into 3 regions,
in total 3N segments (N = 6)

The o2 gives a nontrivial lower bound

* The quantity o1’ is interpreted as et
. i L S—
the free energy consumption rate 0 40 80 120

This example exhibits small net fluxes




Ex 1. Microbial Flagellar Motor

0 1II} Time (ms) 20 30

12000 I o -
W o
8000}
dmn | ﬁ

MTBE# 'IEImM MTBE#- SSmM MT332 EEmM

Rate of entropy
production (k;s")

Compare: specimen with single turning direction
and stochastically switching direction




. Microtubule Growth

Fi=ratll, uiss owh
KU i atven % 3 0,000,000 |

[

Recap: periods of steady growth before stochastically
swicthing into rapid shrinking




Ex 2. Microtubule Growth

* Length oscillates around its

mean value no net flux B
|l | Bl |
* Coarse-grain space modulo 3 C E_—__—_—_—_—_—_
and apply 0-2 0 1I"‘.)Time(mins) 26
nontrivial bound of entropy (A) Kymograph from experimental observations
: and (B)(C) corase-grained data
production
D E
+ + (D) Coarse-
. . . £, graining over
* Higher-resolution experiments i€ } ! space and (E)
promise improved bounds EE . . l coarse-graining
i over time

1 2 3 4 1 2 3 4
Spatial coarse graining Temporal coarse graining




Ex 3. Calcium Oscillation

* A cell responses to external stimuli via
intracellular signaling

* Coarse-graining

A 4L Initial transient Stimuli added (modulo 3) followed by
3 09H / Steady state New steady state Optimization
% 0.7H .
| . The entropy prod.uctlon.
) ' . - | | increases after stimulation
B w}------------ T A I — A== tHt =t 4= =4 ==k === F =4 ==+ 44 with carbachol
————— e e o 1 I o o o T o e o e e £ 1 R RS BE IR EL
————— S O I O IO - - - - - - - — O O O O I I .1 . 1
0 2000 it 200D 6000 4 kg - min 8 kp - min

Manipulation of the concentration of calcium ions within the
cytosol of human embryonic kidney cells




Relative Entropy

* Entropy production rates depend on the relative entropy between
forward and backward trajectories

— at g o _
H(P,Q) = ZPz' log (%) ep S lim —H (P|zp, P~ |5p)

n—+oc 1

1€X J /

forward Markov chain = 4\ o (time-reversed)

Markov chain

* Sometimes relative entropy appears to be zero!




An Example

Brownian clock on four microstates {1, 2, A, C}
P(Y) = (1/4)a™ *v*

* Consider the trajectory X = (4, B, C, B,C, B) \

0 Q The trajectories Y = (4,1,C,2,C,2) and ¥ = (4,2,C,1,C,1)
cannot be distinguished f

©
Q O P(Y) = (1/4)a*b" "
0 e Sumover all Y

States 1 and 2 are not Forward and backward trajectories are
distinguished by observation equally probable...

Partial observation causes us to think the
system is time-symmetric




4 Concluding Remarks



Outlook

* Apply coarse graining to a small network Larger networks

* Increased data resolution and trajectory length
will lead to better bounds

imaging annd other experimental techniques

 Quantify tradeoffs between the faithful
execution of a biological function and the
actual energy expended




Conclusion

Living systems expend entropy to maintain
biological functions

Ability to infer entropy production rates
from partial experimental observations using

optimization

E.g. bacterial motors, microtubules, and
calcium oscillations

Tighter bounds on entropy production when
systems appear time symmetric
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