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1 Introduction



• Optimization framework: thermodynamic infererence of improved lower 
bounds on entropy production rates

• Non-zero bounds for entropy production by considering transition 
statistics beyond one-step dynamics

• Living systems maintain or increase local order by working against the 
second law of thermodynamics

 Deduction of thermodynamic 
quantities from partial observations.

    Overview



• Sometimes trajectories appear symmetric in time

• Entropy production estimators fail when
• Only a small set of observables is accessible 
• Nonequilibrium transport currents vanish

• Many degrees of freedom are typically hidden in experiments

⇒ don’t obey detailed balance, no relative entropy!

    Present Problems



• Bacterial flagellar motor
• Microtubule growth
• Calcium oscillation in human embryonic 

kidney cells

• Overview of biological data analyzed

    Biological Examples



• Entropy as a measure of “disorder”
• Classically, entropy is a measure of the 

unavailability of a system's energy to do work  

• Entropy change can be experimentally measured

Gibbs energy internal energy

    What is Entropy?



• Entropy as a probabilistic idea

• There seems to be more “disordered 
states” than there are “ordered states”

Example (Phases of matter)
• More possible configurations in a 

gaseous system
⇒ gas has more entropy than solid

    What is Entropy?

(Boltzmann’s entropy)



• As a number associated to a probability distribution 
over a finite sample space

(Shannon entropy)

• Consistent with entropy in statistical physics (Cf. Boltzmann)

      is the probability 
of being in the state i

    What is Entropy?



(Shannon entropy)

      is the probability 
of being in the state i

    What is Entropy?

• The most compressed amount of code needed to encompass 
the content of a signal (information)

• We can reinterpret “disorder” as “information content”

• As a number associated to a probability distribution 
over a finite sample space



    What is Entropy?

• An event     happens with probablity
•           is the information content of 

1. Decreasing function of 
2. If events       and       are independent, 
    then 

⇒ function of

          is proportional to  ⇒

Entropy is the expectation value of information content



• Second Law of Thermodynamics:

The entropy of the universe tends to a maximum.

• Biological organisms are highly ordered

locally, entropy can be lowered by external action
increase in environmental entropy

    Entropy in Biology

⇒ nonequilibrium

⇒ the Second Law



2 Literature Review



    Upper Bound to Entropy Production Rates

• This paper gives a lower bound for entropy production

•  An upper bound for steadystate has been derived:

(Ref.) Nishiyama, T.; Hasegawa, Y. (2023). Upper bound for entropy production in Markov processes.

⇒



    Thermodynamic Uncertainty Relations

• Thermodynamic uncertainty relations (TURs) can constrain nonequilibrium 
fluctuations

(Ref.) Horowitz, J. M.;  Gingrich, T. R. (2020). Thermodynamic uncertainty relations constrain non-
equilibrium fluctuations.

• Classic lower bound for entropy production rate



3 Theory



• Systems in thermal equilibrium obey detailed balance:

• The entropy production rate in steadystate is 

⇒ This is a reversible Markov process

spends a fraction      
of the time in state i

rate of transition 
from state i to j 

    Entropy Production Rate



• Organisms operate far from equilibrium. Violations of 
detailed balance increase environment entropy 

• Apply the formula? Not all microstates are accessible
⇒ Estimate     from coarse-grained data 

No entropy production when 
system is in equilibrium

    Detailed Balance

Always positive



Example (Two nodes)

    Detailed Balance

Example (Three nodes)

Equilibrium is guaranteed Equilibrium is not guaranteed

Detail balance is a strong condition



• A continuous time Markov process a sequence of random 
variables with the Markov property 

• Markov property (discrete):

    Markov Processes



• History independence

FIG. Example of a Markov chain

• We may assume our biological system 
to be microscopically Markovian 

⇒ Why do we emphasize “microscopic”?

    Markov Processes



• System currently in macrostate 

The probabilities of jumping to 1 or 2 
are both non-zero

• Previous observed macrostate was 1

The probability of transitioning to 2 is zero

• Coarse-grained observables may be non-Markovian! 
⇒  History dependence emerges from partial observation

    An Example



• Arbitrary trajectory

The probability of transitioning to 2 is zero

Can the process transition to 2?

• Truncate the trajectory to length     : 

It shouldn’t! We lose information

    An Example



• No finite set of observables 
guaranteed to describe the system 

• Observable: 

Example calculation: 

Construct an estimator that 
preserves the statistics

⇒

    Markovian Systems



The best possible estimator is 

This is not practical 

Let’s look at a subset of the 
observable space 

set of all possible macroscopic 
observables for our system

⟹

Unique stationary distribution, 
use n as observable

    As as Optimization Problem



• We can simplify the internal topology 
without affecting        observables

    One-Step Estimator



• Convexity + Jensen’s inequality
⇒ Entropy production rate decreases 

• Markovian system with no hidden states 
and the same statistics (observables)

    One-Step Estimator



• We can obtain a bound for each macrostate, 
consistent with        observables

• Example: find the minimal EP rate across the edges (J, I), (J, K), and (J, L)

⟹
Apply       to 
simplify I, K, L

Example network The entropy production 
along edges connected to j

    Two-Step Estimator



• Summing over all macrostates 
gives the        estimator

Rerouting the network 
does not increase 

entropy production

⟹ ⟹

⟹

It is always possible to 
optimize over 6 internal 
states connecting any 
two macrostates

Canonical form: each 
internal state in J is 
connected only to two 
external macrostates

Iteration

⟹

    Two-Step Estimator



• For a simple system A-B-C,         
is the optimal bound

    Two-Step Estimator

• Less computation required
A three state topology with no “loops” 



3 Results



• Each flagellum is driven by a motor

• Stochastic direction switching
⇒ May not violate time-irreversibility

This example exhibits small net fluxes 

    Ex 1. Microbial Flagellar Motor



• Coarse-grain space into 3 regions, 
in total 3N segments (N = 6)

• The quantity         is interpreted as 
the free energy consumption rate

⇒ The       gives a nontrivial lower bound

This example exhibits small net fluxes 

    Ex 1. Microbial Flagellar Motor



Compare: specimen with single turning direction 
and stochastically switching direction

    Ex 1. Microbial Flagellar Motor



Recap: periods of steady growth before stochastically 
swicthing into rapid shrinking

    Ex 2. Microtubule Growth



• Length oscillates around its 
mean value ⇒ no net flux 

• Coarse-grain space modulo 3 
and apply      

• Higher-resolution experiments 
promise improved bounds

(D) Coarse-
graining over 
space and (E) 
coarse-graining 
over time

(A) Kymograph from experimental observations 
and (B)(C) corase-grained data

    Ex 2. Microtubule Growth

nontrivial bound of entropy 
production  



• A cell responses to external stimuli via 
intracellular signaling

Manipulation of the concentration of calcium ions within the 
cytosol of human embryonic kidney cells

• Coarse-graining 
(modulo 3) followed by 
optimization

• The entropy production 
increases after stimulation 
with carbachol
4                 ⟶ 8 

    Ex 3. Calcium Oscillation



• Entropy production rates depend on the relative entropy between 
forward and backward trajectories

 

forward Markov chain backward (time-reversed) 
Markov chain

• Sometimes relative entropy appears to be zero!

    Relative Entropy



Brownian clock on four microstates {1, 2, A, C}

 States 1 and 2 are not 
distinguished by observation 

• Consider the trajectory 

The trajectories                                  and 
cannot be distinguished

Forward and backward trajectories are 
equally probable...

Partial observation causes us to think the 
system is time-symmetric

• Sum over all Y

    An Example



4 Concluding Remarks



• Increased data resolution and trajectory length 
will lead to better bounds

• Apply coarse graining to a small network 

⇒ imaging annd other experimental techniques

⇒ Larger networks

• Quantify tradeoffs between the faithful 
execution of a biological function and the 
actual energy expended

    Outlook



• Ability to infer entropy production rates 
from partial experimental observations using 
optimization

• Tighter bounds on entropy production when 
systems appear time symmetric

• Living systems expend entropy to maintain 
biological functions

E.g. bacterial motors, microtubules, and 
calcium oscillations

    Conclusion



Graphs and markov chains. 
https://courses.grainger.illinois.edu/cs357/sp2021/notes/ ref-13-
markov.html. 
Accessed: February 11, 2025.
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