

Improved Bounds on Entropy Production in Living Systems

Jonathan (Shao-Kai) Huang

February 14, 2025

Department of Physics, National Taiwan University

IMB, Academia Sinica

Table of Contents

1 Introduction	Overview What is entropy?
2 Literature Review	Review of research
3 Theory	Markov process and estimators
4 Results	Model calculations Application to biological systems
5 Conclusion	Outlook Concluding remarks

1 Introduction

Overview

- **Living systems maintain or increase local order by working against the second law of thermodynamics**
- Optimization framework: **thermodynamic inference** of improved lower bounds on **entropy production rates**
 - Deduction of thermodynamic quantities from partial observations.
- Non-zero bounds for entropy production by considering transition statistics beyond one-step dynamics

Present Problems

- Entropy production estimators fail when
 - Only a small set of observables is accessible
 - Nonequilibrium transport currents vanish
- Many degrees of freedom are typically hidden in experiments
- Sometimes trajectories *appear* symmetric in time
 ⇒ don't obey **detailed balance**, no relative entropy!

Biological Examples

- Overview of biological data analyzed
- Bacterial flagellar motor
- Microtubule growth
- Calcium oscillation in human embryonic kidney cells

What is Entropy?

- Entropy as a measure of “disorder”
- Classically, entropy is a measure of the unavailability of a system's energy to do work

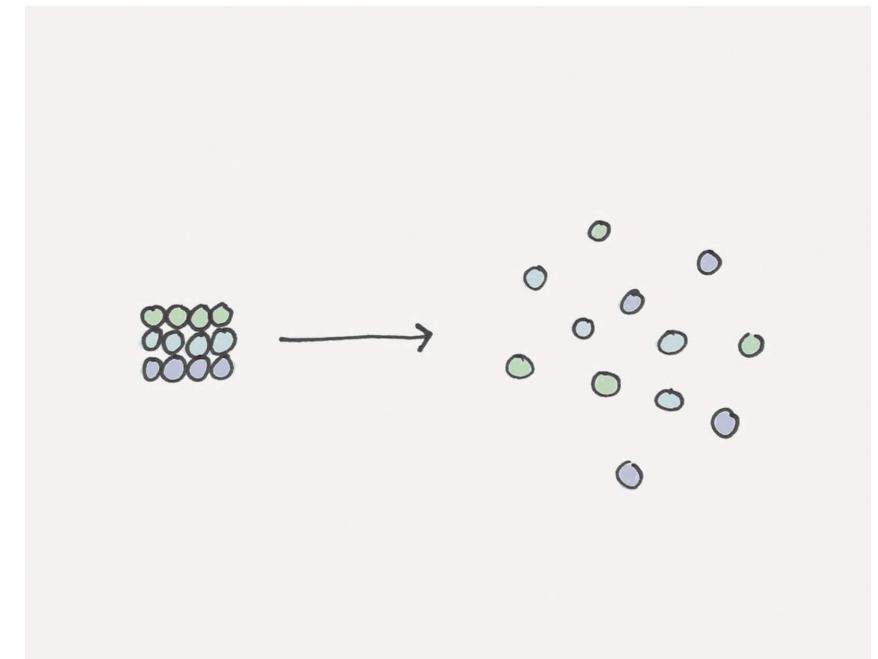
$$\Delta S = \frac{\Delta Q}{T}$$

- Entropy change can be experimentally measured

$$\Delta G = \Delta U - T\Delta S$$

↗ ↗

Gibbs energy internal energy



What is Entropy?

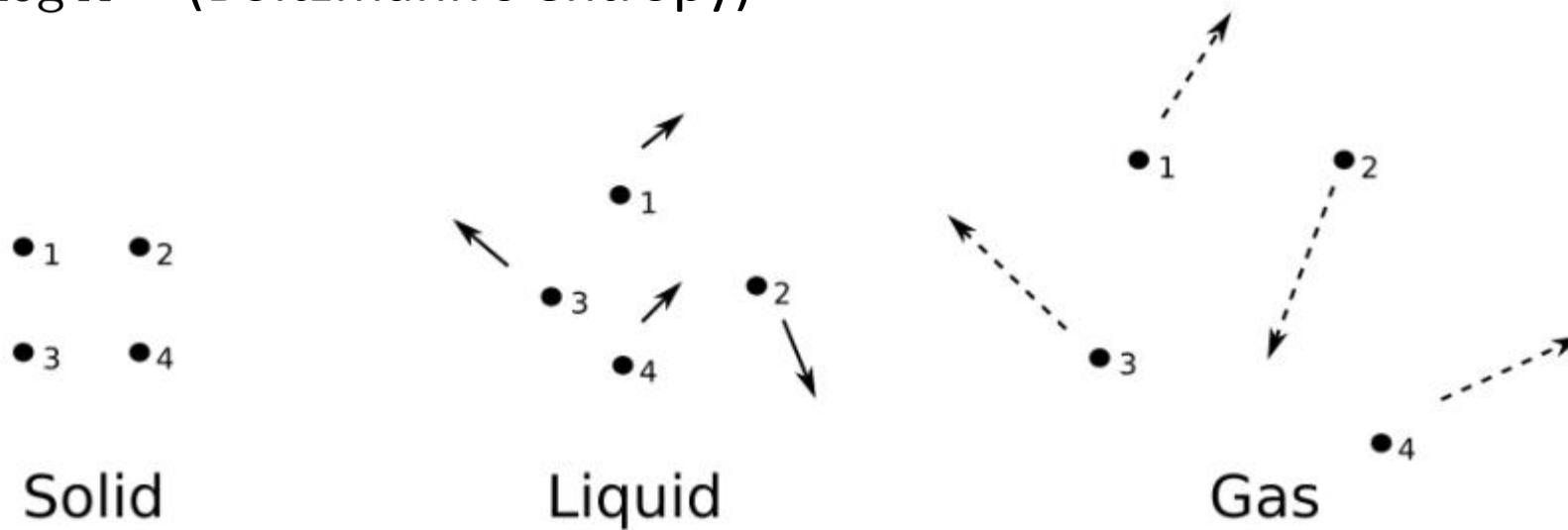
- Entropy as a probabilistic idea
- There seems to be more “disordered states” than there are “ordered states”

$$S = k_B \log \Omega \quad (\text{Boltzmann's entropy})$$

Example (Phases of matter)

- More possible configurations in a gaseous system

⇒ gas has more entropy than solid



What is Entropy?

- As a number associated to a probability distribution over a finite sample space

$$H = - \sum_{i=1}^N p_i \log p_i \quad p_i \text{ is the probability of being in the state } i$$

(Shannon entropy)

- Consistent with entropy in statistical physics (Cf. Boltzmann)

What is Entropy?

- As a number associated to a probability distribution over a finite sample space

$$H = - \sum_{i=1}^N p_i \log p_i \quad p_i \text{ is the probability of being in the state } i$$

(Shannon entropy)

- The most compressed amount of code needed to encompass the content of a signal (information)
- We can reinterpret “disorder” as “information content”

What is Entropy?

- An event E happens with probability $\mathbb{P}(E)$
- $s(E)$ is the information content of $E \Rightarrow$ function of $\mathbb{P}(E)$
 1. Decreasing function of $\mathbb{P}(E)$
 2. If events E_1 and E_2 are independent, then $s(E_1 \cap E_2) = s(E_1) + s(E_2)$

$\Rightarrow s(E)$ is proportional to $-k \log \mathbb{P}(E)$, $k > 0$

Entropy is the expectation value of information content

Entropy in Biology

- Second Law of Thermodynamics:
The entropy of the universe tends to a maximum.
- Biological organisms are highly ordered \Rightarrow nonequilibrium
locally, entropy can be lowered by external action
increase in environmental entropy \Rightarrow the Second Law

2 Literature Review

Upper Bound to Entropy Production Rates

- This paper gives a lower bound for entropy production
- An upper bound for steady state has been derived:

$$a = \sum_{i < j} (\pi_i q_{ji} + \pi_j q_{ij}) \quad R = \max_{i \neq j} \frac{q_{ij}}{q_{ji}} \geq 1$$

$$\Rightarrow \sigma \leq a (\log R) \left(\frac{R - 1}{R + 1} \right)$$

Thermodynamic Uncertainty Relations

- Thermodynamic uncertainty relations (TURs) can constrain nonequilibrium fluctuations

$$\Sigma_\tau \geq 2k_B \frac{\langle J_\tau \rangle^2}{\text{Var}(J_\tau)}$$

- Classic lower bound for entropy production rate

(Ref.) Horowitz, J. M.; Gingrich, T. R. (2020). *Thermodynamic uncertainty relations constrain nonequilibrium fluctuations*.

3 Theory

Entropy Production Rate

- Systems in thermal equilibrium obey **detailed balance**:

⇒ This is a reversible Markov process

spends a fraction π_i
of the time in state i

$$\pi_i q_{ij} = \pi_j q_{ji}$$

rate of transition
from state i to j

- The **entropy production rate in steady state** is

$$\sigma = \frac{k_B}{2} \sum_{i,j} (\pi_i q_{ij} - \pi_j q_{ji}) \log \left(\frac{\pi_i q_{ij}}{\pi_j q_{ji}} \right)$$

Detailed Balance

$$\sigma = \frac{k_B}{2} \sum_{i,j} (\pi_i q_{ij} - \pi_j q_{ji}) \log \left(\frac{\pi_i q_{ij}}{\pi_j q_{ji}} \right)$$

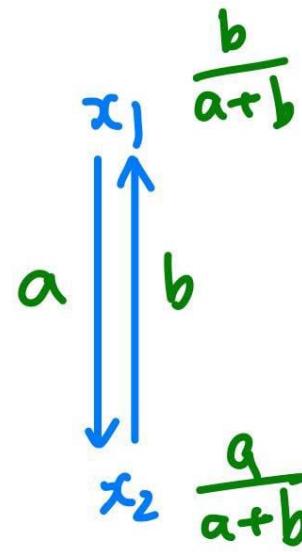
No entropy production when system is in equilibrium

Always positive

- Organisms operate far from equilibrium. Violations of detailed balance increase environment entropy
- Apply the formula? Not all microstates are accessible
⇒ Estimate σ from coarse-grained data

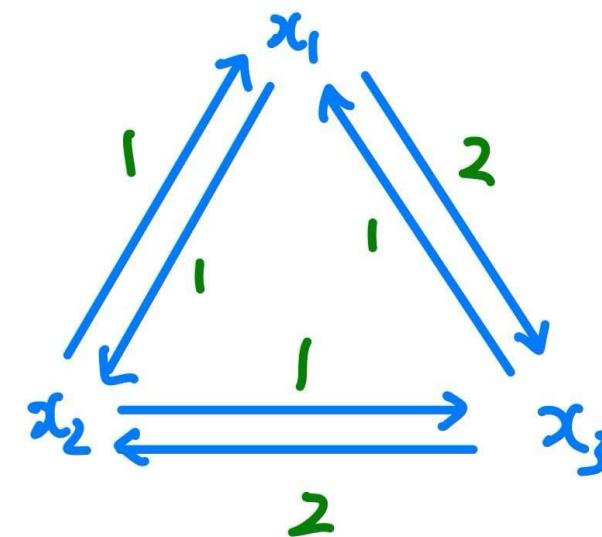
Detailed Balance

Example (Two nodes)



Equilibrium is guaranteed

Example (Three nodes)



Equilibrium is not guaranteed

Detail balance is a strong condition

Markov Processes

- Markov property (discrete): $X = (X_1, X_2, \dots, X_N, \dots)$
 $\mathbb{P}(X_{n+1} = x_{n+1} \mid X_n = x_n, \dots, X_1 = x_1) = \mathbb{P}(X_{n+1} = x_{n+1} \mid X_n = x_n)$ for all $n \in \mathbb{N}$.
- A continuous time **Markov process** a sequence of random variables with the **Markov property**

$$\mathbb{P}(X_t = j \mid X_0 = i) = P_{ij}(t) = (e^{Qt})_{ij}$$

Markov Processes

- History independence
- We may assume our biological system to be **microscopically** Markovian

⇒ Why do we emphasize “microscopic”?

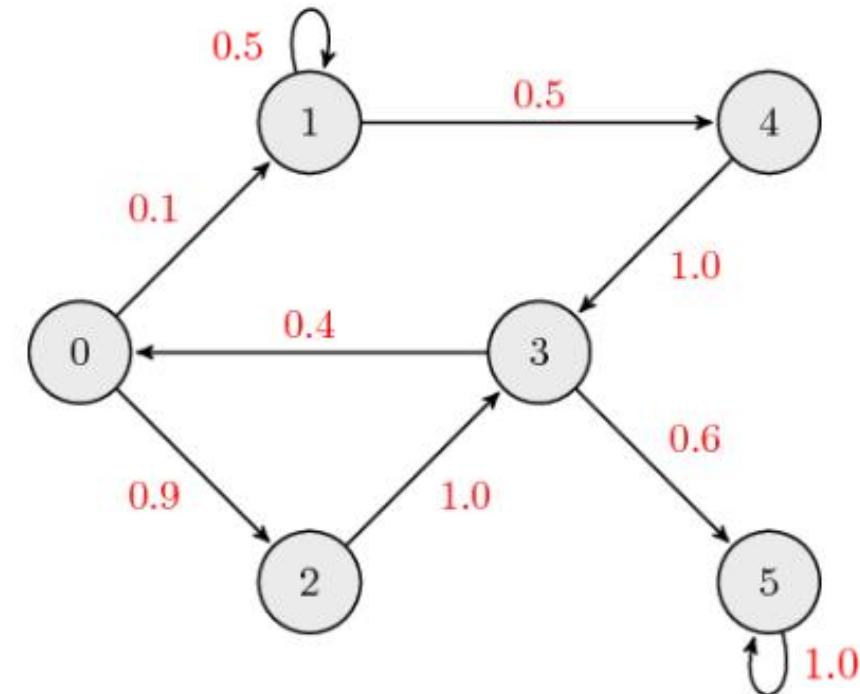
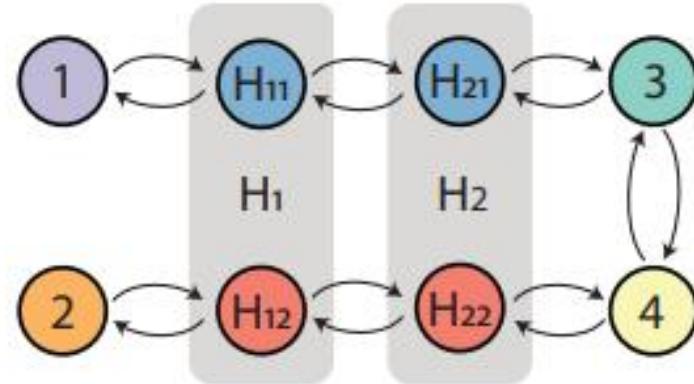


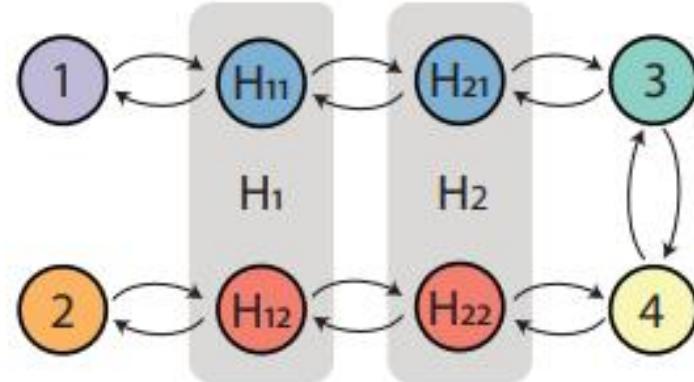
FIG. Example of a Markov chain

An Example



- System currently in macrostate H_1
The probabilities of jumping to 1 or 2 are both non-zero
- Previous observed macrostate was 1
The probability of transitioning to 2 is zero
- Coarse-grained observables may be **non-Markovian!**
⇒ History dependence emerges from partial observation

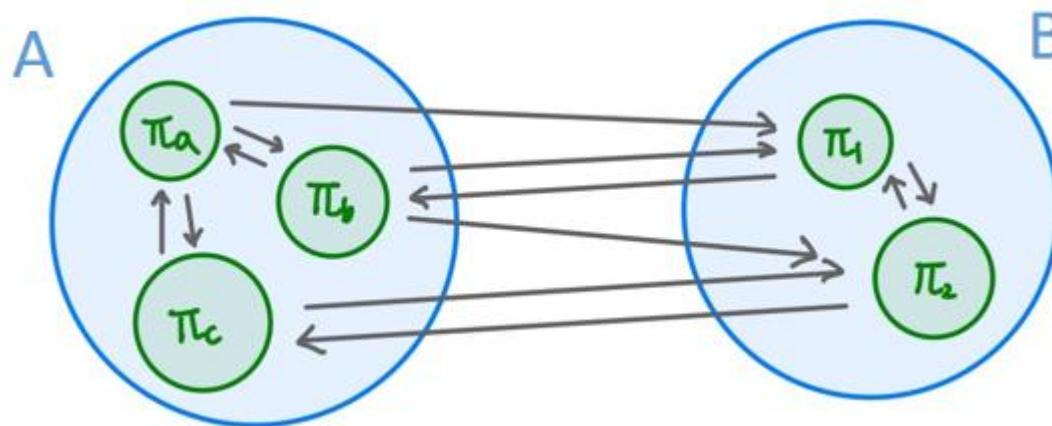
An Example



- Arbitrary trajectory $(3, H_2, H_1, H_2, \dots, H_1)$
The probability of transitioning to 2 is zero
- Truncate the trajectory to length N : $(H_2, H_1, H_2, \dots, H_1)$
Can the process transition to 2? It shouldn't! **We lose information**

Markovian Systems

- No finite set of observables guaranteed to describe the system \Rightarrow Construct an estimator that preserves the statistics
- Observable: $\hat{n}_{AB} = \sum_{i \in A} \sum_{j \in B} \pi_i q_{ij}$



Example calculation:

$$A = \{a, b, c\}, \quad B = \{1, 2\}.$$

$$\begin{aligned}\hat{n}_{AB} &= \sum_{i=a,b,c} \sum_{j=1,2} \pi_i q_{ij} \\ &= \pi_a q_{a1} + \pi_b q_{b1} + \pi_b q_{b2} + \pi_c q_{c2}\end{aligned}$$

As an Optimization Problem

The best possible estimator is

$$\sigma(\mathcal{S}) \geq \min \{ \sigma(\mathcal{R}) | \mathcal{O}(\mathcal{R}) = \mathcal{O}(\mathcal{S}) \}.$$

set of all possible macroscopic observables for our system

This is not practical

Let's look at a subset of the observable space

$$\sigma(\mathcal{S}) \geq \min \{ \sigma(\mathcal{R}) | \mathcal{O}_k(\mathcal{R}) = \mathcal{O}_k(\mathcal{S}) \},$$

Unique stationary distribution,
use n as observable

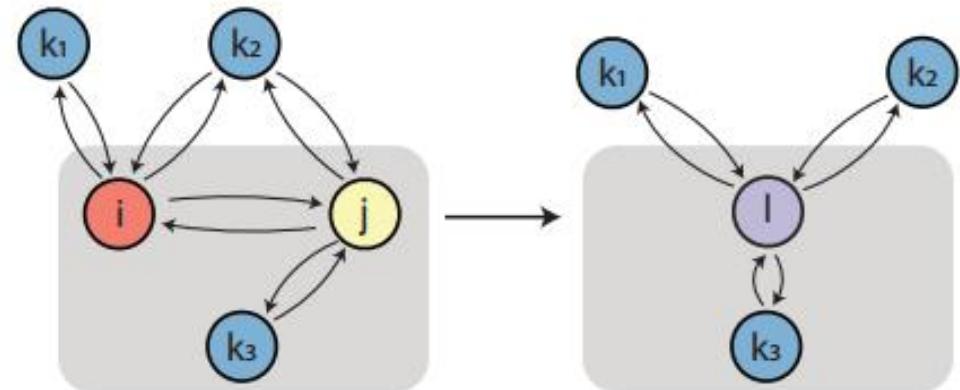
$$\sigma = \frac{k_B}{2} \sum_{i \neq j} (n_{ij} - n_{ji}) \log \left(\frac{n_{ij}}{n_{ji}} \right)$$

One-Step Estimator

- We can simplify the internal topology without affecting \mathcal{O}_1 observables

$$(n_{ik} - n_{ki}) \log \left(\frac{n_{ik}}{n_{ki}} \right) + (n_{jk} - n_{kj}) \log \left(\frac{n_{jk}}{n_{kj}} \right)$$

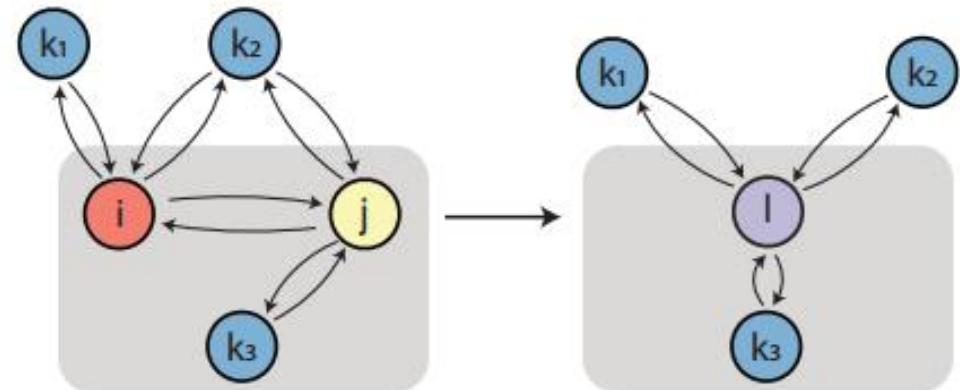
$$\mapsto ((n_{ik} + n_{jk}) - (n_{ki} + n_{kj})) \log \left(\frac{n_{ik} + n_{jk}}{n_{ki} + n_{kj}} \right)$$



$$\mathcal{O}_1 = \{n_{IJ} | I, J \text{ macrostates}\}$$

One-Step Estimator

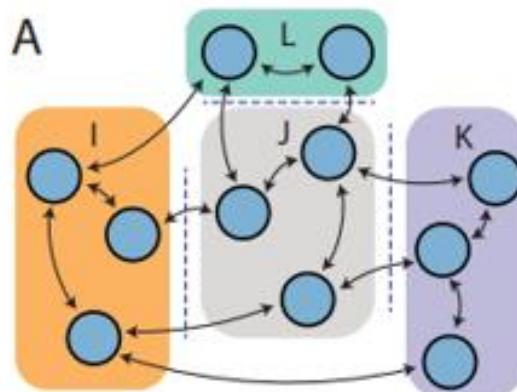
- Convexity + Jensen's inequality
⇒ Entropy production rate decreases
- Markovian system with **no hidden states** and the **same statistics (observables)**



$$\mathcal{O}_1 = \{n_{IJ} | I, J \text{ macrostates}\}$$

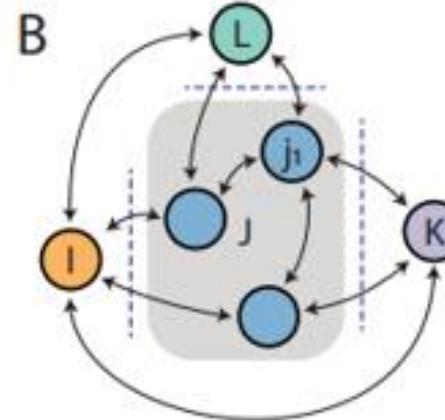
Two-Step Estimator

- We can obtain a bound for each macrostate, $\mathcal{O}_2 = \{n_{UV}, n_{UVW} | U, V, W \text{ macrostates}\}$ consistent with \mathcal{O}_2 observables
- Example: find the minimal EP rate across the edges (J, I) , (J, K) , and (J, L)



Example network

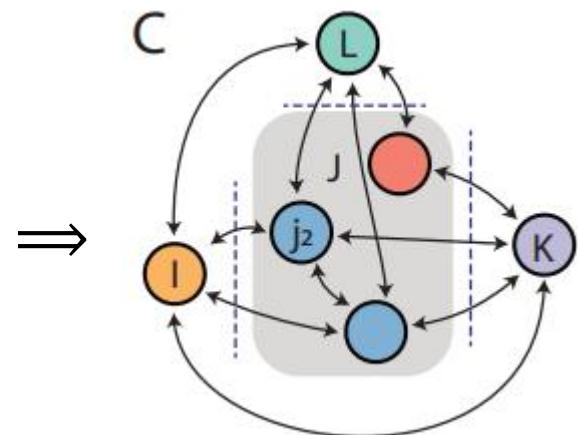
⇒
Apply σ_1 to
simplify I, K, L



$$\sigma(j) = \sum_{i \in \mathcal{K}} (n_{ij} - n_{ji}) \log \left(\frac{n_{ij}}{n_{ji}} \right)$$

The entropy production
along edges connected to j

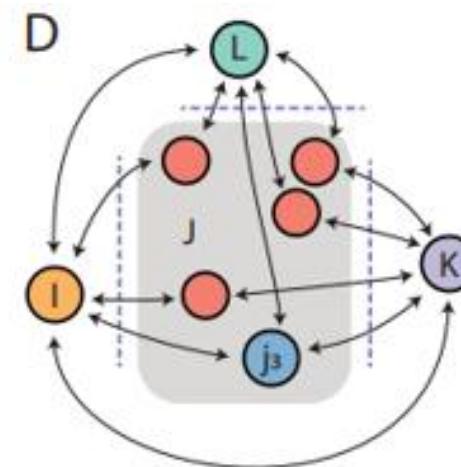
Two-Step Estimator



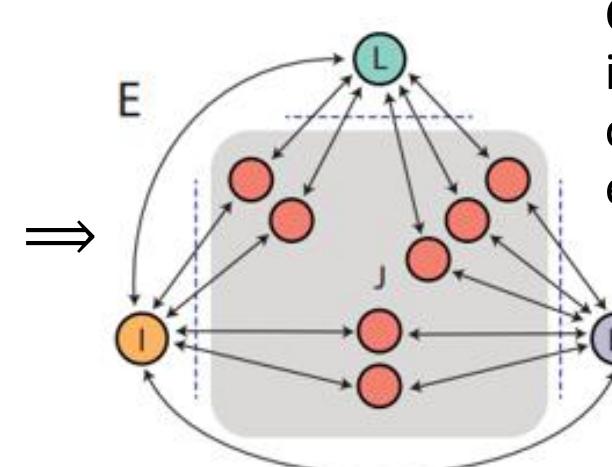
Rerouting the network
does not increase
entropy production

- Summing over all macrostates gives the \mathcal{O}_2 estimator

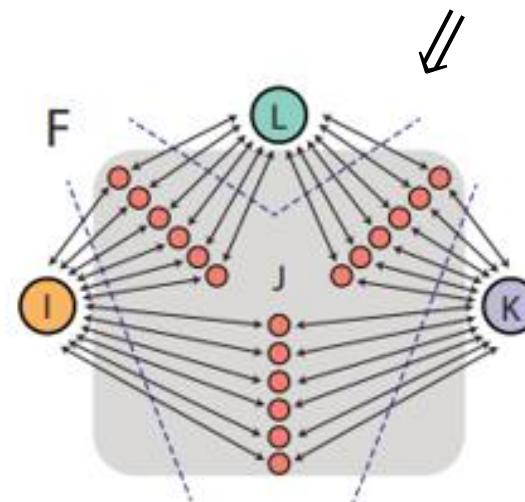
$$\sigma_2 = \frac{1}{2} \sum_J \sigma_2(J) \leq \sigma$$



Iteration



Canonical form: each
internal state in J is
connected only to two
external macrostates

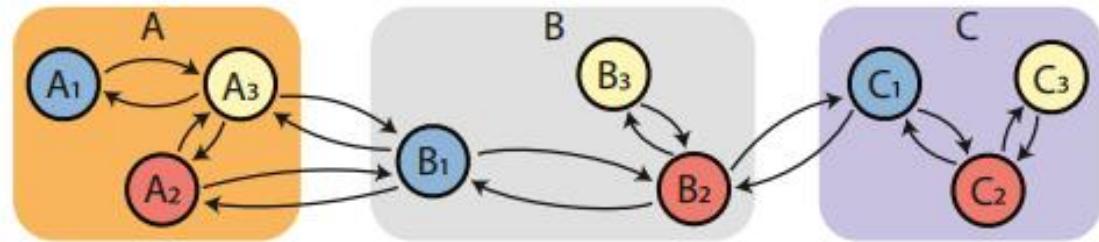


It is always possible to
optimize over 6 internal
states connecting any
two macrostates

Two-Step Estimator

$$\sigma_2 = \frac{1}{2} \sum_J \sigma_2(J) \leq \sigma$$

- For a simple system A-B-C, $\sigma_2(B)$ is the optimal bound
- Less computation required



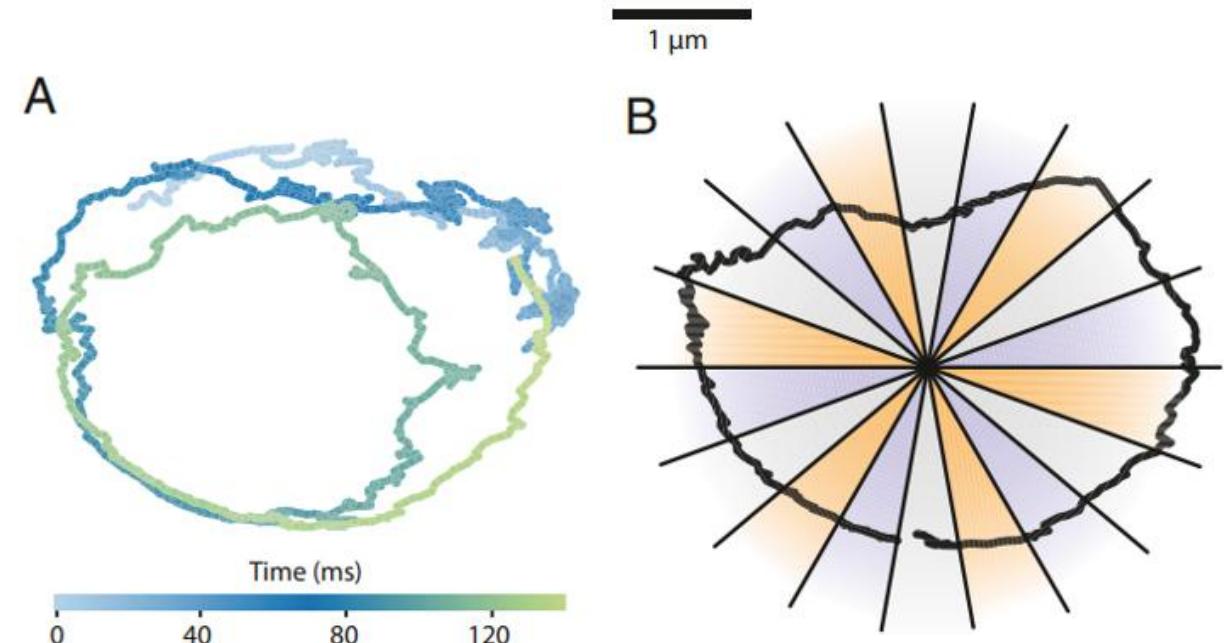
A three state topology with no “loops”

3 Results

Ex 1. Microbial Flagellar Motor

- Each flagellum is driven by a motor
- Stochastic direction switching

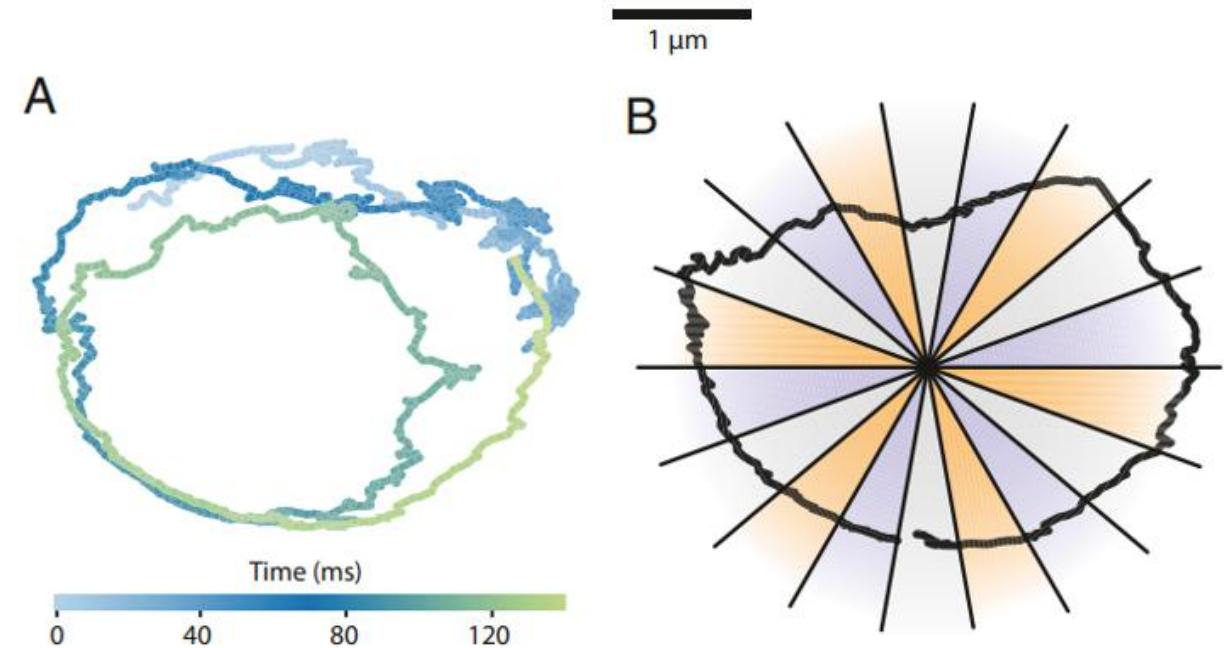
⇒ May not violate time-irreversibility



This example exhibits small net fluxes

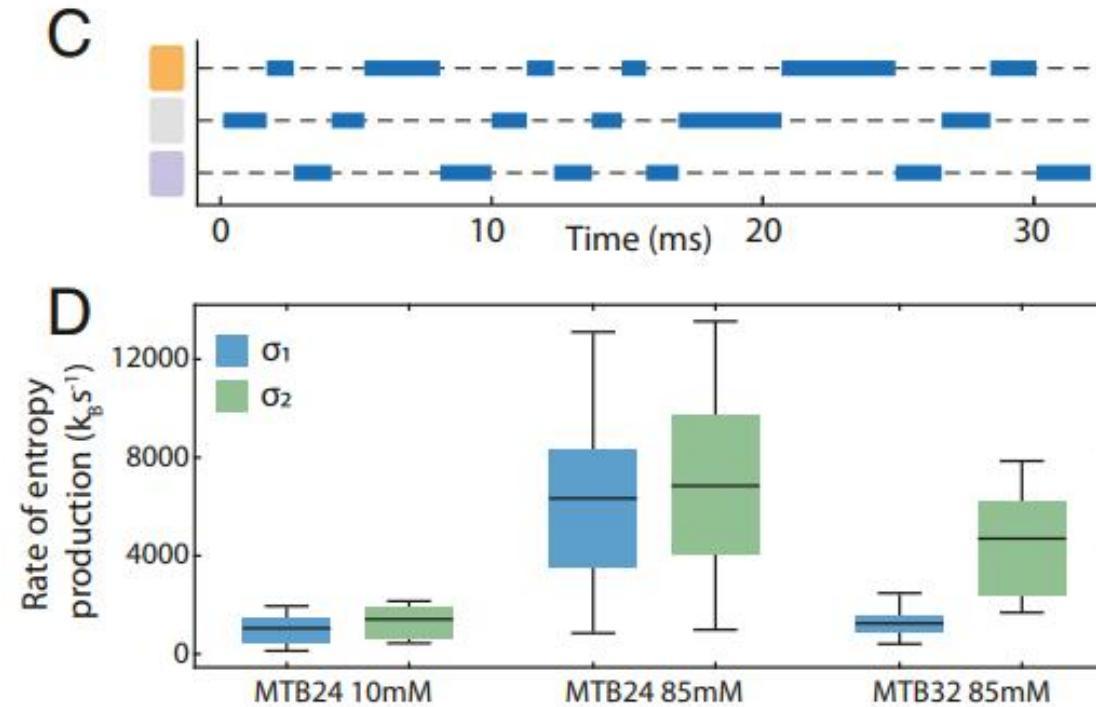
Ex 1. Microbial Flagellar Motor

- Coarse-grain space into 3 regions, in total $3N$ segments ($N = 6$)
⇒ The σ_2 gives a nontrivial lower bound
- The quantity σT is interpreted as the **free energy consumption rate**



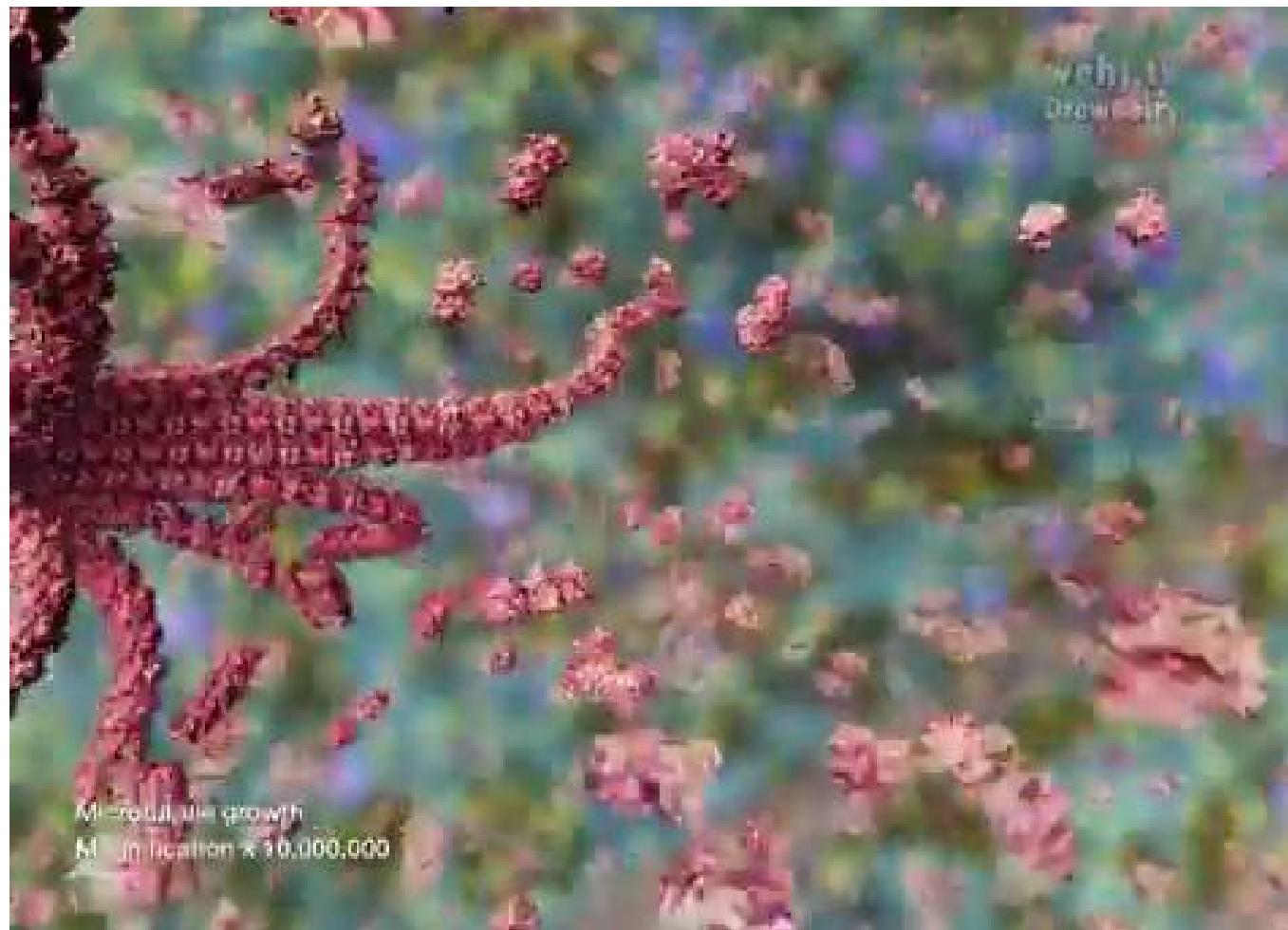
This example exhibits small net fluxes

Ex 1. Microbial Flagellar Motor



Compare: specimen with single turning direction
and stochastically switching direction

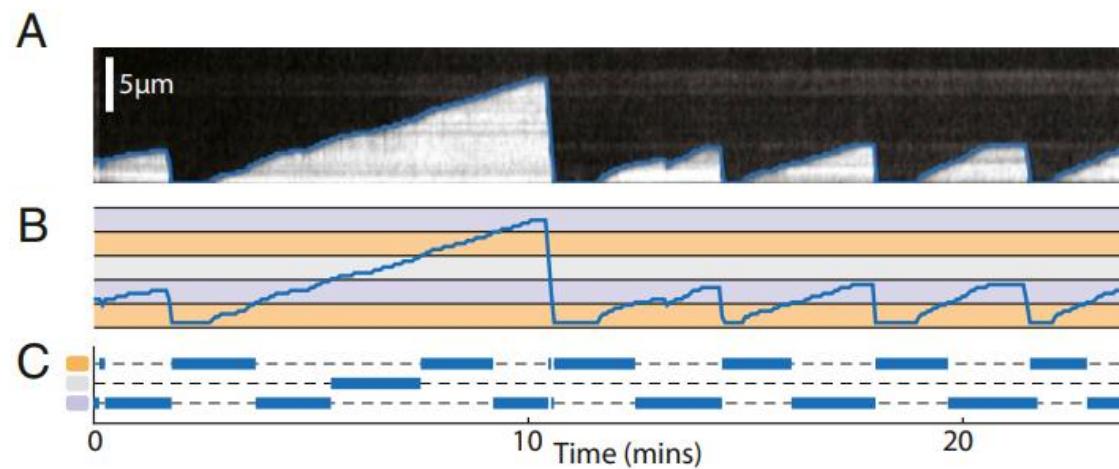
Ex 2. Microtubule Growth



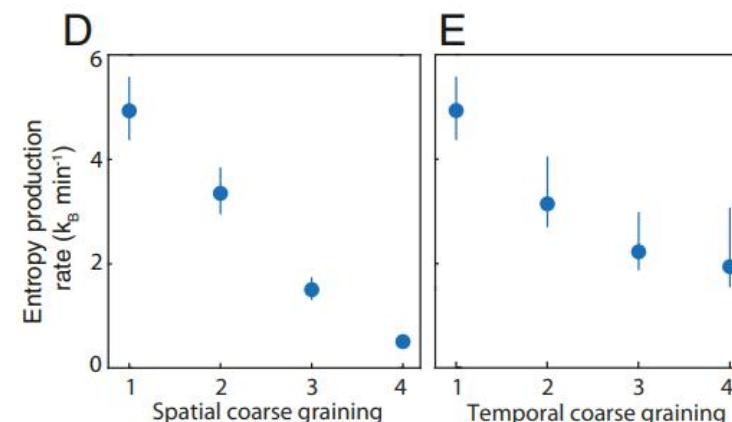
Recap: periods of steady growth before stochastically switching into rapid shrinking

Ex 2. Microtubule Growth

- Length oscillates around its mean value \Rightarrow no net flux
- Coarse-grain space modulo 3 and apply σ_2 nontrivial bound of entropy production
- Higher-resolution experiments promise improved bounds



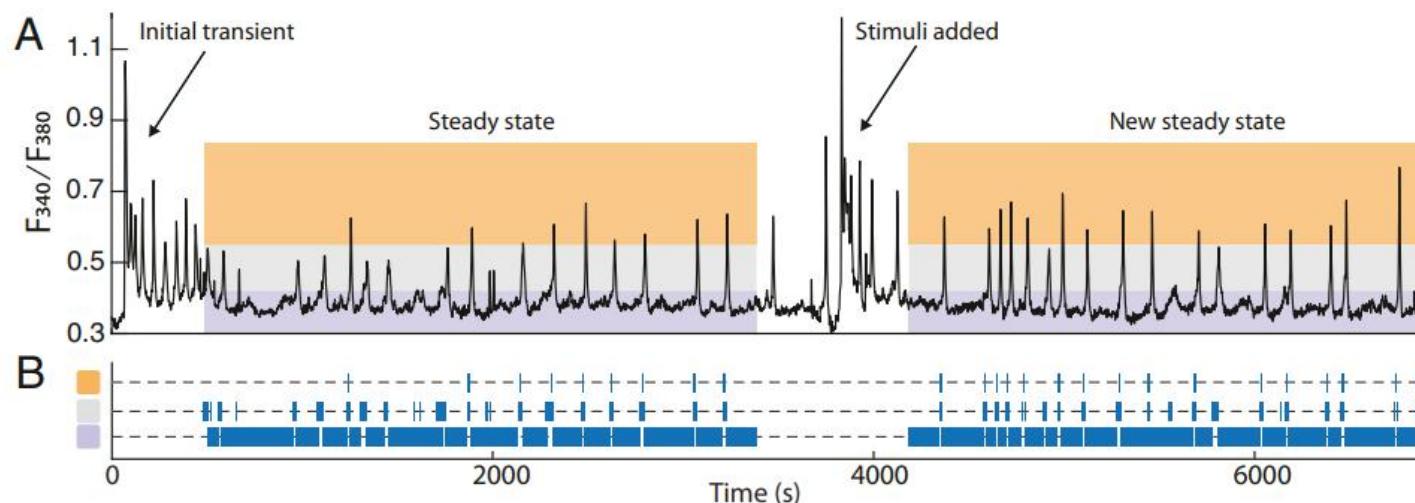
(A) Kymograph from experimental observations and (B)(C) coarse-grained data



(D) Coarse-graining over space and (E) coarse-graining over time

Ex 3. Calcium Oscillation

- A cell responds to external stimuli via intracellular signaling



- Coarse-graining (modulo 3) followed by optimization
- The entropy production increases after stimulation with carbachol

$$4 k_B \cdot \text{min}^{-1} \rightarrow 8 k_B \cdot \text{min}^{-1}$$

Manipulation of the concentration of calcium ions within the cytosol of human embryonic kidney cells

Relative Entropy

- Entropy production rates depend on the **relative entropy** between forward and backward trajectories

$$H(\mathbf{P}, \mathbf{Q}) = \sum_{i \in X} P_i \log \left(\frac{P_i}{Q_i} \right)$$

$$e_p \stackrel{\text{def}}{=} \lim_{n \rightarrow +\infty} \frac{1}{n} H(\mathbf{P}|_{\mathcal{F}_0^n}, \mathbf{P}^-|_{\mathcal{F}_0^n})$$

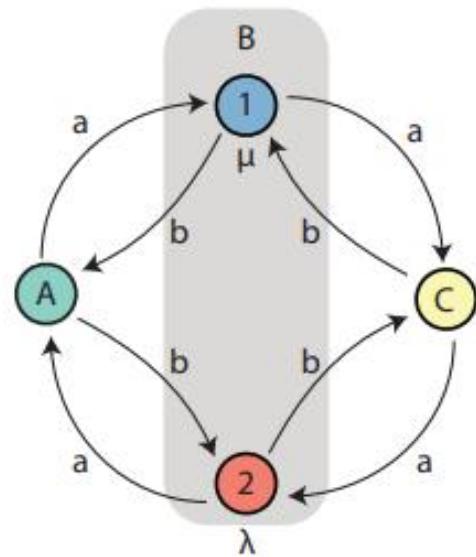
forward Markov chain

backward (time-reversed)
Markov chain

- Sometimes relative entropy **appears** to be zero!

An Example

Brownian clock on four microstates $\{1, 2, A, C\}$



States 1 and 2 are not distinguished by observation

- Consider the trajectory $X = (A, B, C, B, C, B)$

The trajectories $Y = (A, 1, C, 2, C, 2)$ and $\bar{Y} = (A, 2, C, 1, C, 1)$ cannot be distinguished

$$\mathbb{P}(\bar{Y}) = (1/4)a^{n-k}b^k$$

$$\mathbb{P}(Y) = (1/4)a^k b^{n-k}$$

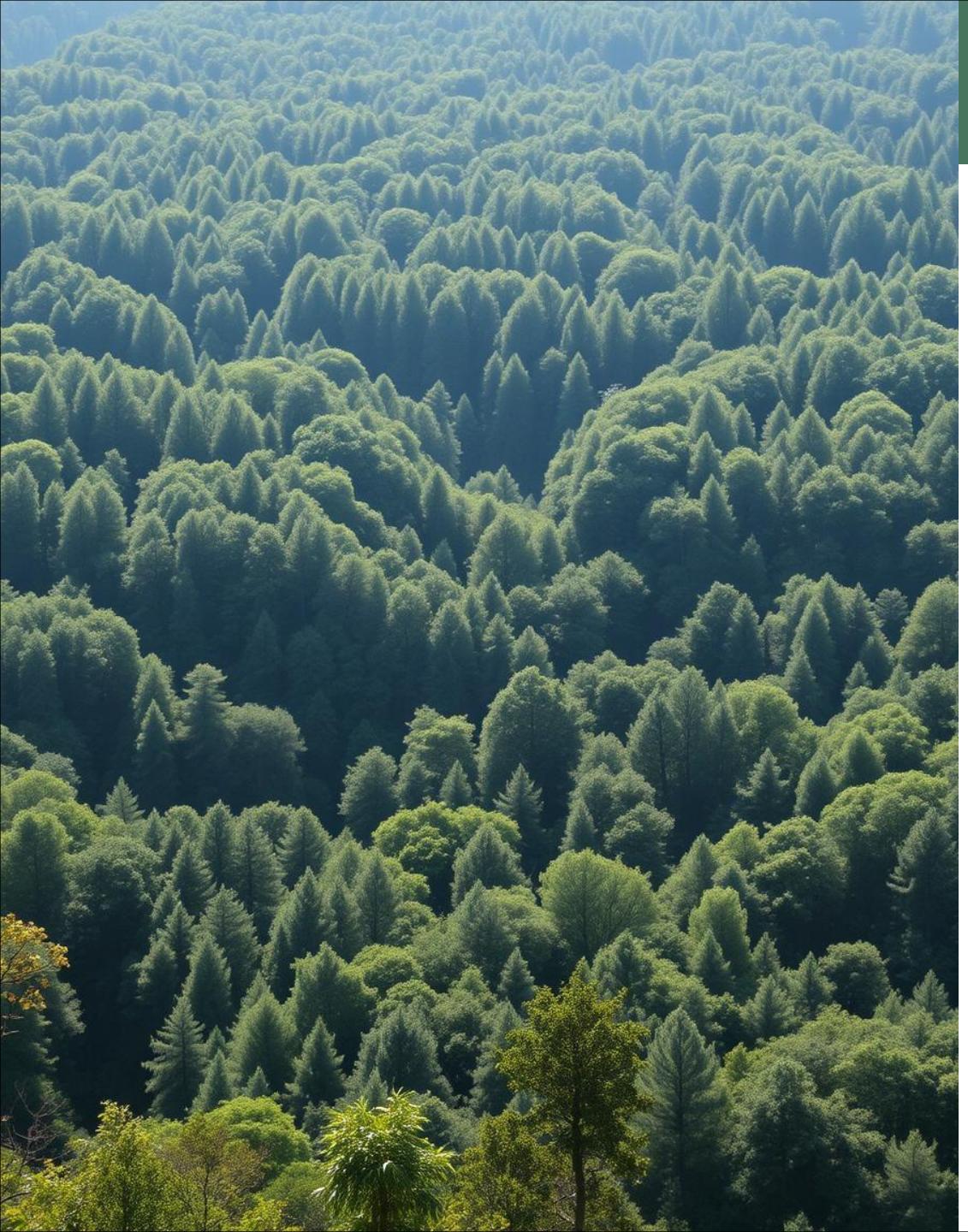
- Sum over all Y
Forward and backward trajectories are equally probable...

Partial observation causes us to think the system is time-symmetric

4 Concluding Remarks

Outlook

- Apply coarse graining to a small network \Rightarrow Larger networks
- Increased data resolution and trajectory length will lead to better bounds
 \Rightarrow imaging and other experimental techniques
- Quantify tradeoffs between the faithful execution of a biological function and the actual energy expended



Conclusion

- Living systems expend entropy to maintain biological functions
- Ability to infer entropy production rates from partial experimental observations using optimization
 - E.g. bacterial motors, microtubules, and calcium oscillations
- Tighter bounds on entropy production when systems appear time symmetric

References

- D. J. Skinner and J. Dunkel.
Improved bounds on entropy production in living systems.
Proceedings of the National Academy of Sciences,
118(18):e2024300118, 2021.
- Graphs and markov chains.
<https://courses.grainger.illinois.edu/cs357/sp2021/notes/ ref-13-markov.html>.
Accessed: February 11, 2025.

References

- D. Jiang, M. Qian, and M. Qian.
Mathematical theory of nonequilibrium steady states: On the frontier of probability and dynamical systems.
2004.
- D. Berry.
Cell organelles: Cytoskeleton (2014).
<https://www.youtube.com/watch?v=tO-W8mvBa78>.
Accessed: February 11, 2025.