

Constraints on Metabolic Network Analysis in Bacterial Physiology

Jonathan (Shao-Kai) Huang

June 20, 2025

Department of Physics, National Taiwan University /
Institute of Molecular Biology, Academia Sinica

Table of contents

1. Introduction
2. Proteomic Coarse-Graining and Electric Circuit
3. Applications
4. Concluding Remarks
5. References

Introduction

PRX Life PRX Life 3, 022001 Published 1 April 2025 [9].

¹This is an approximation.

PRX Life PRX Life 3, 022001 Published 1 April 2025 [9].

Main ideas of this paper are:

- Characterize **emergent properties** of biological interactions in bacterial cells.

¹This is an approximation.

PRX Life PRX Life 3, 022001 Published 1 April 2025 [9].

Main ideas of this paper are:

- Characterize **emergent properties** of biological interactions in bacterial cells.
- These constraints are equivalent to **Kirchhoff's laws** and **Ohm's law**.

¹This is an approximation.

PRX Life PRX Life 3, 022001 Published 1 April 2025 [9].

Main ideas of this paper are:

- Characterize **emergent properties** of biological interactions in bacterial cells.
- These constraints are equivalent to **Kirchhoff's laws** and **Ohm's law**.
- Bacterial growth physiology can be analyzed quantitatively as **electrical circuits** \Rightarrow **coarse-graining**.¹

¹This is an approximation.

Laws of Bacterial Physiology

Author(s):

"Life is required to make more life."

Laws of Bacterial Physiology

Author(s):

"Life is required to make more life."

Growth Laws

Many emergent behaviors can be described by simple phenomenological laws:

Laws of Bacterial Physiology

Author(s):

"Life is required to make more life."

Growth Laws

Many emergent behaviors can be described by simple phenomenological laws:

- (i) Rate at which environmental materials are assimilated is balanced according to composition

Laws of Bacterial Physiology

Author(s):

"Life is required to make more life."

Growth Laws

Many emergent behaviors can be described by simple phenomenological laws:

- (i) Rate at which environmental materials are assimilated is balanced according to composition
- (ii) Rates are constrained by the autocatalytic nature of life

Exponential Growth

- When environmental nutrient is unlimited, population increases like

$$\frac{dN}{dt} \sim N(t) \Rightarrow N(t) = N_0 e^{\lambda t}. \quad (1)$$

Exponential Growth

- When environmental nutrient is unlimited, population increases like

$$\frac{dN}{dt} \sim N(t) \Rightarrow N(t) = N_0 e^{\lambda t}. \quad (1)$$

- Balanced growth** characterizes exponential phase: In order for cells to accumulate exponentially, generating processes must happen at balanced rates.

Metabolic Networks Are Complicated

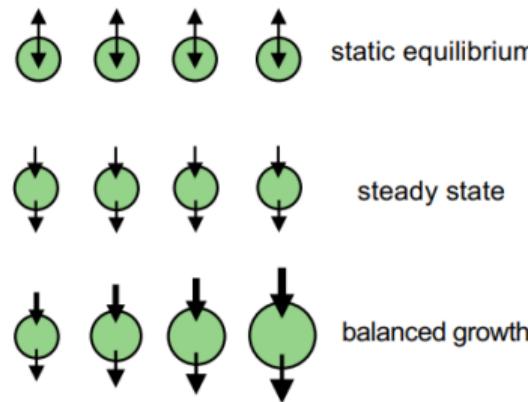


Figure 1: Comparison of equilibrium, steady state, and balanced growth [6].

Metabolic Networks Are Complicated

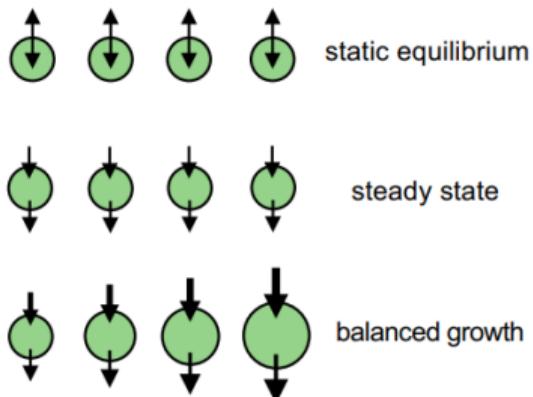


Figure 1: Comparison of equilibrium, steady state, and balanced growth [6].

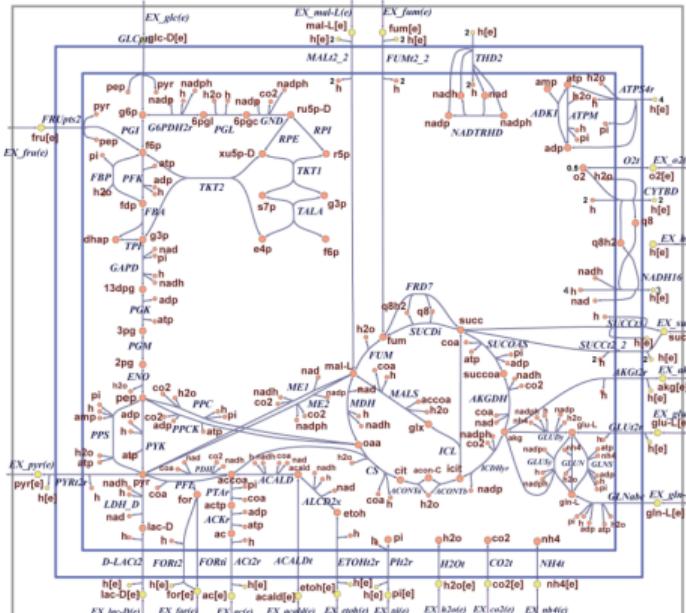


Figure 2: Core metabolic network of *E. coli* [7].

Flux Balance Analysis

- Stoichiometric matrix $S \in M_{m \times n}(R)$, biomass vector $X \in \mathbb{R}^n$:

$$\frac{dX}{dt} \equiv J = SX \quad (2)$$

S is *underspecified* (metabolism is an open system) and *sparse*.

²suboptimal growth environment is fine

- Stoichiometric matrix $S \in M_{m \times n}(\mathbb{R})$, biomass vector $X \in \mathbb{R}^n$:

$$\frac{dX}{dt} \equiv J = SX \quad (2)$$

S is *underspecified* (metabolism is an open system) and *sparse*.

- Evolution selects cells that grow fast: $Z \propto \lambda$

²suboptimal growth environment is fine

Flux Balance Analysis

- Stoichiometric matrix $S \in M_{m \times n}(R)$, biomass vector $X \in \mathbb{R}^n$:

$$\frac{dX}{dt} \equiv J = SX \quad (2)$$

S is *underspecified* (metabolism is an open system) and *sparse*.

- Evolution selects cells that grow fast: $Z \propto \lambda$
- Metabolic reaction rates must be **balanced** during steady-state ² growth:
 $J = 0$.

²suboptimal growth environment is fine

Flux Balance is a Linear Programming Problem

Constrained Optimization

Maximize the objective function $Z = c \cdot x$

subject to

$$J = Sx = 0 \quad (\text{balanced growth}), \quad (3)$$

and

$$lb_i \leq x_i \leq ub_i \quad (\text{bounded rates}). \quad (4)$$

Flux Balance is a Linear Programming Problem

Proteome Partition of E. coli

Constrained Optimization

Maximize the objective function $Z = c \cdot x$
subject to

$$J = Sx = 0 \quad (\text{balanced growth}), \quad (3)$$

and

$$\text{lb}_i \leq x_i \leq \text{ub}_i \quad (\text{bounded rates}). \quad (4)$$

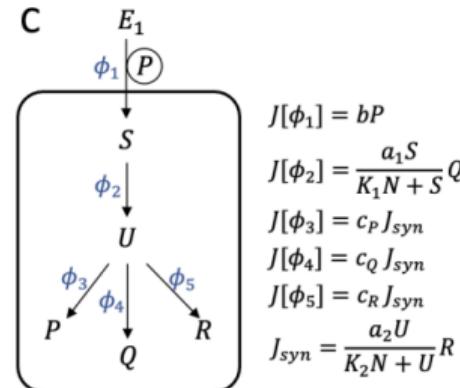


Figure 3: Three-sector proteome partition model (Lin, Wei-Hsiang, 2025) [9, 5]

Ribosomes Catalyze Protein Synthesis

- Ribosomes are optimized for **autocatalytic** production

Ribosomes Catalyze Protein Synthesis

- Ribosomes are optimized for **autocatalytic production**
- Michaelis-Menten kinetics

Ribosomes Catalyze Protein Synthesis

- Ribosomes are optimized for **autocatalytic** production
- Michaelis-Menten kinetics

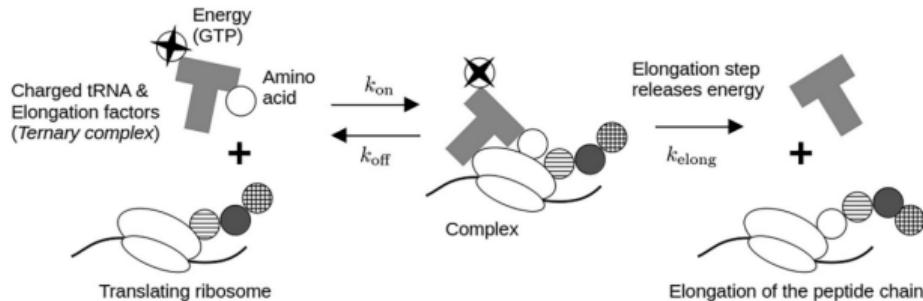


Figure 4: Ribosomes follow similar kinetics to those of enzymes: they turn charged tRNA into uncharged tRNA.

Ribosomes Catalyze Protein Synthesis

- Ribosomes are optimized for **autocatalytic production**
- Michaelis-Menten kinetics

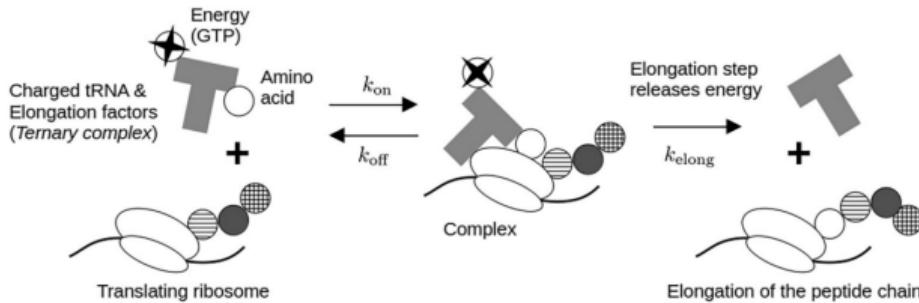


Figure 4: Ribosomes follow similar kinetics to those of enzymes: they turn charged tRNA into uncharged tRNA.

(Haldane) Abundance of the substrate far exceeds the abundance of the enzyme.

$$\text{rate} \propto [\text{Rb}] \times \frac{[\text{tRNA}]}{K_M + [\text{tRNA}]} \quad (5)$$

Global Constraints

- Maaloe et al. [2]: Per-cell quantity of RNA, DNA, and protein increase exponentially with λ
 \Rightarrow Protein concentration is **nearly constant**.

- Maaloe et al. [2]: Per-cell quantity of RNA, DNA, and protein increase exponentially with λ
 \Rightarrow Protein concentration is **nearly constant**.
- Total protein constraint: $\sum_i \phi_i = 1$.

- Maaloe et al. [2]: Per-cell quantity of RNA, DNA, and protein increase exponentially with λ
 \Rightarrow Protein concentration is **nearly constant**.
- Total protein constraint: $\sum_i \phi_i = 1$.

Protein mass fraction is a **linear** function of growth rate:

$$\phi_i = \phi_i^0 + \frac{\lambda}{\kappa_i}. \quad (6)$$

- Maaloe et al. [2]: Per-cell quantity of RNA, DNA, and protein increase exponentially with λ
 \Rightarrow Protein concentration is **nearly constant**.
- Total protein constraint: $\sum_i \phi_i = 1$.

Protein mass fraction is a **linear** function of growth rate:

$$\phi_i = \phi_i^0 + \frac{\lambda}{K_i}. \quad (6)$$

Ohm's law: $\Delta V = I/G$.

Global Constraints

Global Constraints

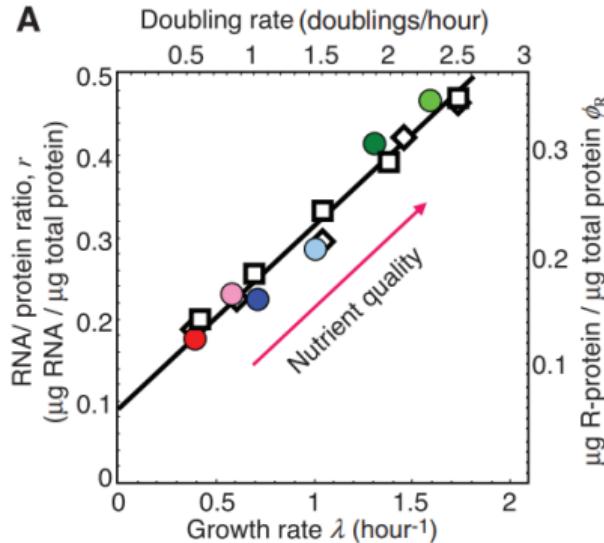


Figure 5: Growth rate is modulated by quality of nutrient [8].

Global Constraints



Figure 5: Growth rate is modulated by quality of nutrient [8].

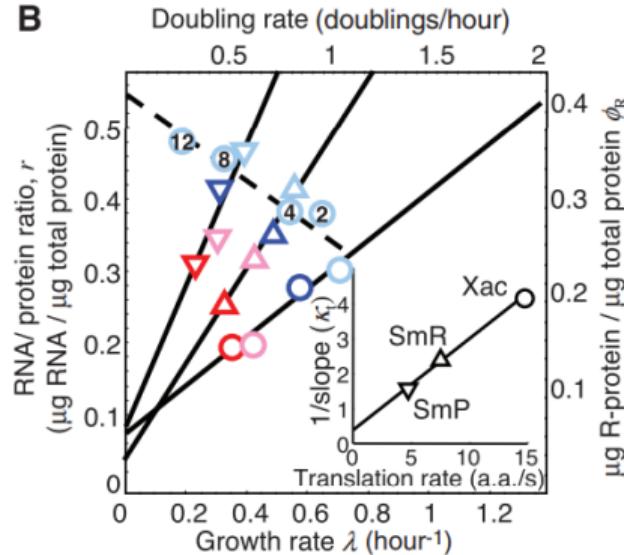


Figure 6: Growth rate is modulated by translational inhibition [8].

Proteomic Coarse-Graining and Electric Circuit

Bow-Tie Topology

Bow-Tie Topology

Conserved large-scale topological features among micro-organisms:

Bow-Tie Topology

Conserved large-scale topological features among micro-organisms:

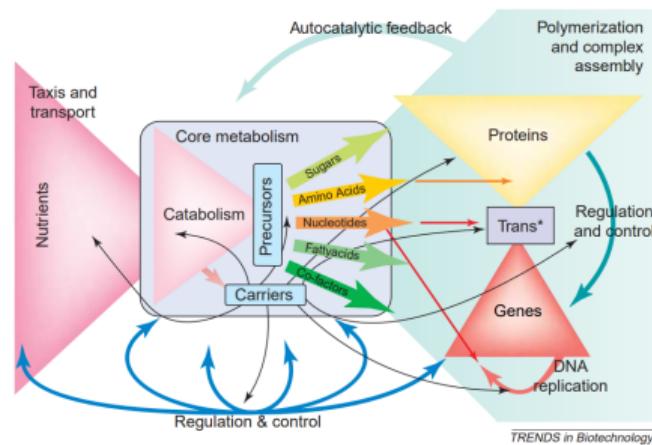
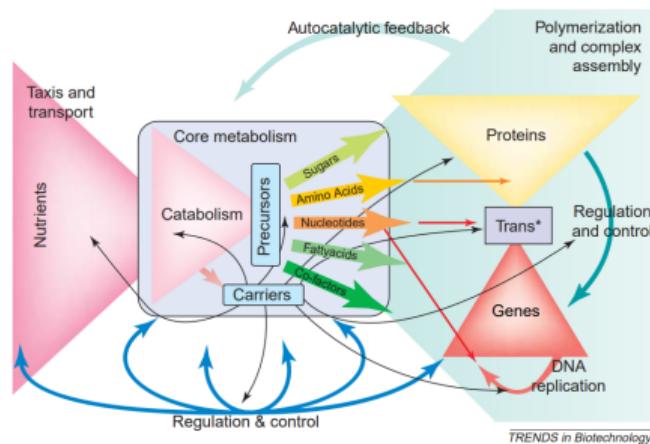


Figure 7: Common module for bacterial metabolism: diversity of inputs and outputs, processed with few intermediate common currencies [3].

Bow-Tie Topology

Conserved large-scale topological features among micro-organisms:

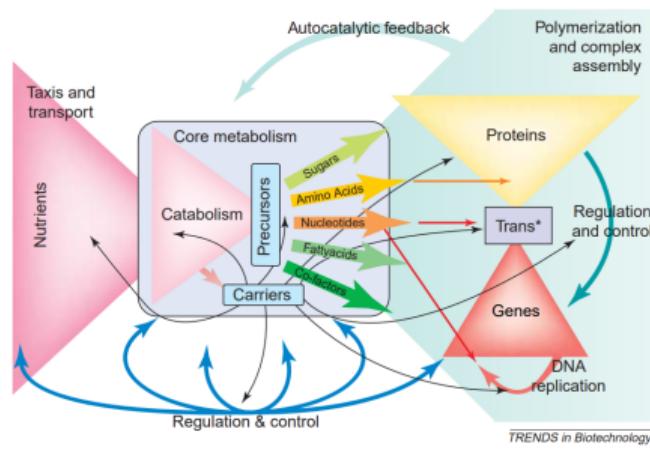


- Bacterial metabolism and transcriptional machinery exhibits **bow tie architecture**

Figure 7: Common module for bacterial metabolism: diversity of inputs and outputs, processed with few intermediate common currencies [3].

Bow-Tie Topology

Conserved large-scale topological features among micro-organisms:



- Bacterial metabolism and transcriptional machinery exhibits **bow tie architecture**
- Proteins can be partitioned into only few classes

Figure 7: Common module for bacterial metabolism: diversity of inputs and outputs, processed with few intermediate common currencies [3].

Equivalent Circuits and Kirchhoff's Laws

Equivalent Circuits and Kirchhoff's Laws

Kirchhoff's Laws

Governing laws for DC circuits

$$\sum_{\text{node } m} j_n = 0 \text{ (current law),} \quad (7)$$

$$\sum_i \phi_i = 0 \text{ (voltage law).} \quad (8)$$

j_n is proportional to λ .

Equivalent Circuits and Kirchhoff's Laws

Kirchhoff's Laws

Governing laws for DC circuits

$$\sum_{\text{node } m} j_n = 0 \text{ (current law),} \quad (7)$$

$$\sum_i \phi_i = 0 \text{ (voltage law).} \quad (8)$$

j_n is proportional to λ .

Thevenin's Law

A network of voltage sources and resistors can be replaced by an equivalent circuit with one voltage source and one resistor.

Anti-Correlation Among Proteome Sectors

- **Proteome partition**: coarse-graining proteins into sectors that behave similarly under specific probes, e.g. functionality

Anti-Correlation Among Proteome Sectors

- **Proteome partition**: coarse-graining proteins into sectors that behave similarly under specific probes, e.g. functionality
- Two sectors: $\phi_M^0 + \phi_R^0 = 1$

Anti-Correlation Among Proteome Sectors

- **Proteome partition**: coarse-graining proteins into sectors that behave similarly under specific probes, e.g. functionality
- Two sectors: $\phi_M^0 + \phi_R^0 = 1$
- Antibiotic decreases λ without affecting ϕ_M^0 : modulates κ_R alone.
- Nutrient quality modulates κ_M .

Ohmics

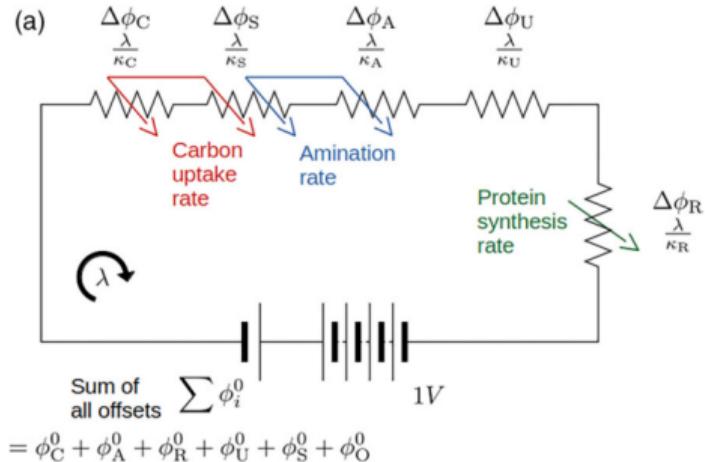


Figure 8: Six-sectors: ribosomes (R), carbon uptake (C), a.a. biosynthesis (A), carbon uptake + a.a. biosynthesis (S), λ -dependent but not inhibited (U), not λ -dependent [4].

Ohmics

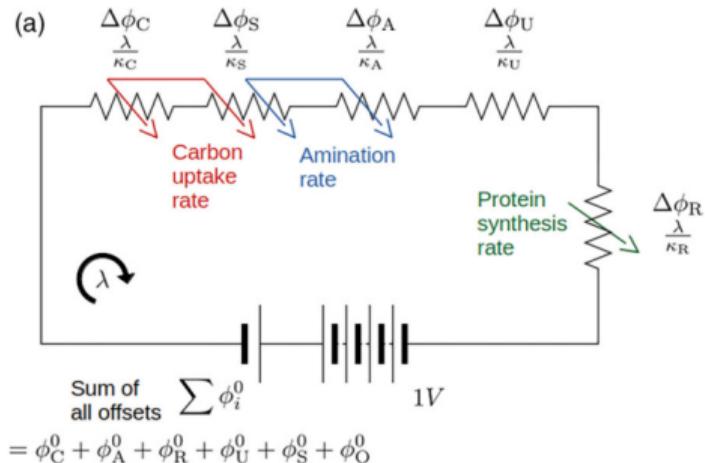


Figure 8: Six-sectors: ribosomes (R), carbon uptake (C), a.a. biosynthesis (A), carbon uptake + a.a. biosynthesis (S), λ -dependent but not inhibited (U), not λ -dependent [4].

Coarse-grain according to proteins' response to probes.

$$\lambda = \frac{1 - \phi_C^0 - \phi_A^0 - \phi_R^0 - \phi_U^0 - \phi_S^0 - \phi_O^0}{1/\kappa_C + 1/\kappa_A + 1/\kappa_R + 1/\kappa_U + 1/\kappa_S + 1/\kappa_S} \quad (9)$$

Ohmics

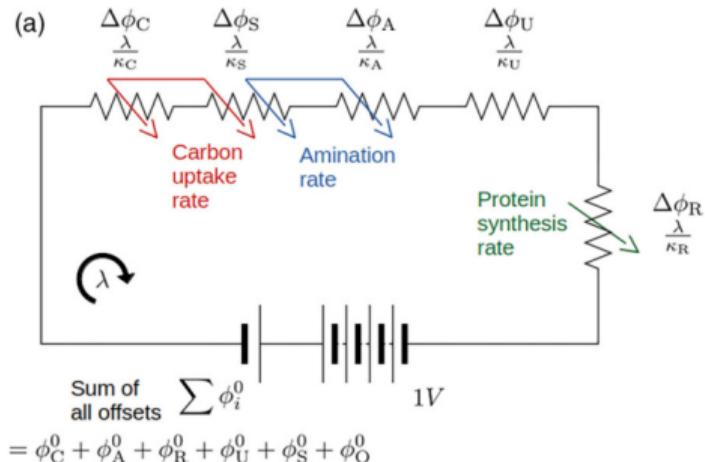


Figure 8: Six-sectors: ribosomes (R), carbon uptake (C), a.a. biosynthesis (A), carbon uptake + a.a. biosynthesis (S), λ -dependent but not inhibited (U), not λ -dependent [4].

Coarse-grain according to proteins' response to probes.

$$\lambda = \frac{1 - \phi_C^0 - \phi_A^0 - \phi_R^0 - \phi_U^0 - \phi_S^0 - \phi_O^0}{1/\kappa_C + 1/\kappa_A + 1/\kappa_R + 1/\kappa_U + 1/\kappa_S + 1/\kappa_O} \quad (9)$$

Growth on N carbon sources:

$$\frac{1}{\kappa_C} \longrightarrow \frac{1}{\kappa_{C_1} + \kappa_{C_2} + \dots + \kappa_{C_N}} \quad (10)$$

Applications

Antibiotic Transport and Binding

Antibiotic Transport and Binding

- Ribosome-targeting antibiotics can modulate conductance κ_R .

Antibiotic Transport and Binding

- Ribosome-targeting antibiotics can modulate conductance κ_R .
- "Ohmics" assumption for antibiotics-growth rate relationship:

$$\begin{cases} \frac{da}{dt} = -\lambda a - k_{\text{on}} ar_u + k_{\text{off}} r_b + P_{\text{in}} a_{\text{ex}} - P_{\text{out}} a, \\ \frac{dr_u}{dt} = -\lambda r_u - k_{\text{on}} ar_u + k_{\text{off}} r_b + s(\lambda), \\ \frac{dr_b}{dt} = -\lambda r_b + k_{\text{on}} ar_u - k_{\text{off}} r_b. \end{cases} \quad (11)$$

$a_{\text{ex}}, k_{\text{on}}, k_{\text{off}}, P_{\text{in}}, P_{\text{out}} \in \mathbb{R}_{\geq 0}$. $s(\lambda)$ is undetermined!

Antibiotic Transport and Binding

- Ribosome-targeting antibiotics can modulate conductance κ_R .
- "Ohmics" assumption for antibiotics-growth rate relationship:

$$\begin{cases} \frac{da}{dt} = -\lambda a - k_{\text{on}} ar_u + k_{\text{off}} r_b + P_{\text{in}} a_{\text{ex}} - P_{\text{out}} a, \\ \frac{dr_u}{dt} = -\lambda r_u - k_{\text{on}} ar_u + k_{\text{off}} r_b + s(\lambda), \\ \frac{dr_b}{dt} = -\lambda r_b + k_{\text{on}} ar_u - k_{\text{off}} r_b. \end{cases} \quad (11)$$

$a_{\text{ex}}, k_{\text{on}}, k_{\text{off}}, P_{\text{in}}, P_{\text{out}} \in \mathbb{R}_{\geq 0}$. $s(\lambda)$ is undetermined!

- Qualitatively different behavior based on binding affinity.

Antibiotic Transport and Binding

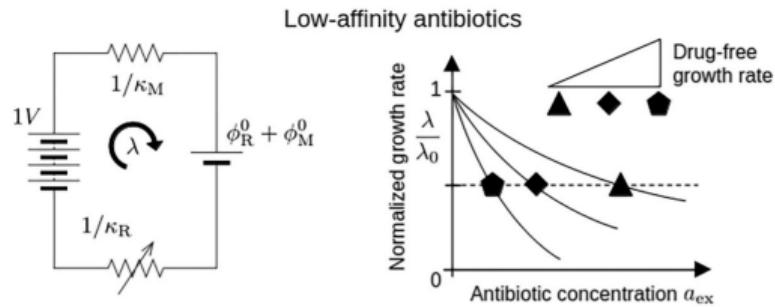


Figure 9: Low-affinity antibiotics [9].

Antibiotic Transport and Binding

- Langmuir-like inhibition curves.

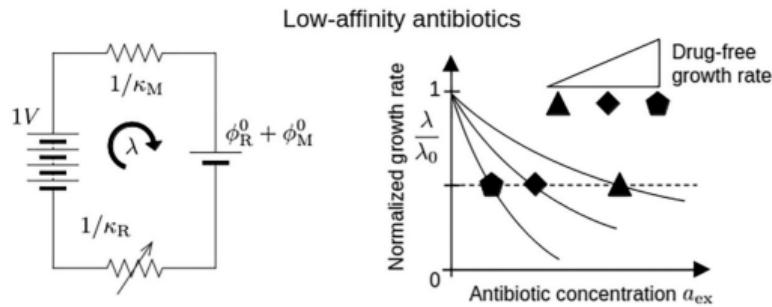


Figure 9: Low-affinity antibiotics [9].

Antibiotic Transport and Binding

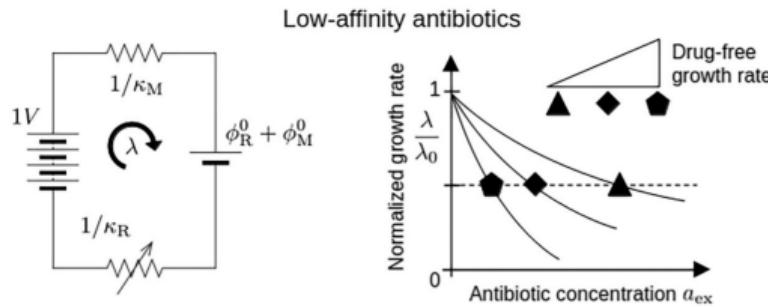


Figure 9: Low-affinity antibiotics [9].

- Langmuir-like inhibition curves.
- Half-inhibition conc. anti-correlated with growth rate:

$$\lambda_0 = \lambda \left(1 + \frac{a_{ex}}{IC_{50}} \right).$$

Antibiotic Transport and Binding

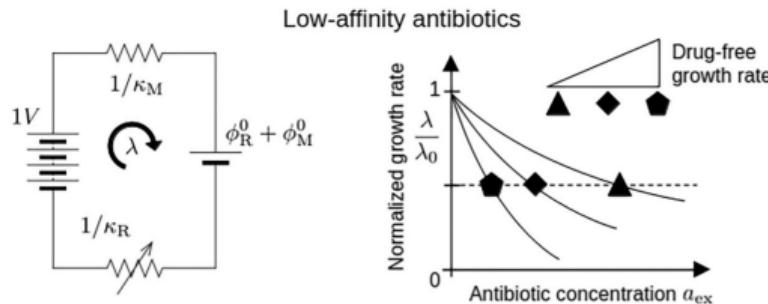


Figure 9: Low-affinity antibiotics [9].

- Langmuir-like inhibition curves.
- Half-inhibition conc. anti-correlated with growth rate:

$$\lambda_0 = \lambda \left(1 + \frac{a_{ex}}{IC_{50}} \right).$$

- Effective against **fast-growing** bacteria.

Antibiotic Transport and Binding

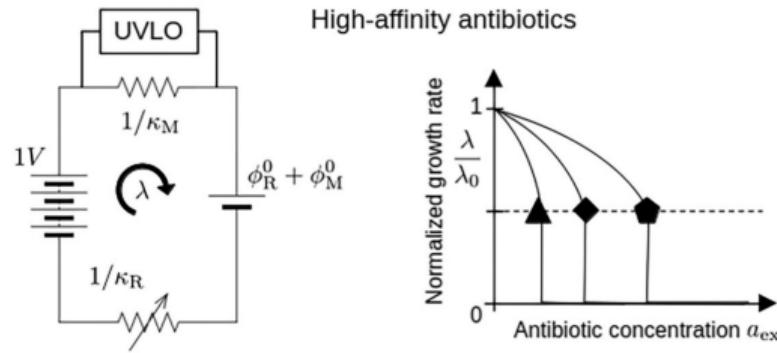


Figure 10: High-affinity antibiotics [9].

Antibiotic Transport and Binding

- Sigmoidal inhibition curves.

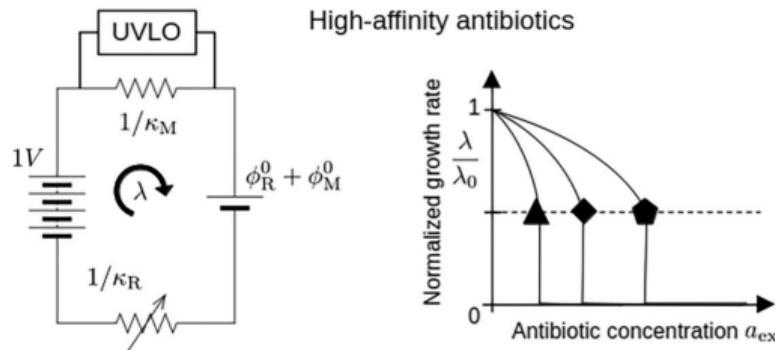


Figure 10: High-affinity antibiotics [9].

Antibiotic Transport and Binding

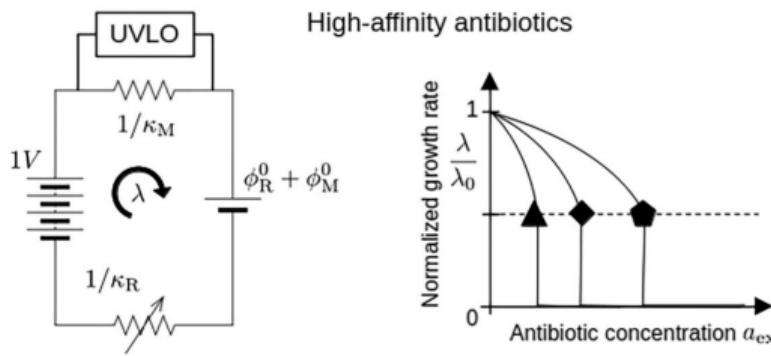


Figure 10: High-affinity antibiotics [9].

- Sigmoidal inhibition curves.
- Half-inhibition conc. correlated with growth rate:

$$\lambda_0 = \lambda \left[\frac{1}{2} \left(1 + \sqrt{1 - \frac{a_{ex}}{IC_{50}}} \right) \right]^{-1}.$$

- Abrupt drop of λ at IC_{50} analogous to an undervoltage lockout (UVLO)

Antibiotic Transport and Binding

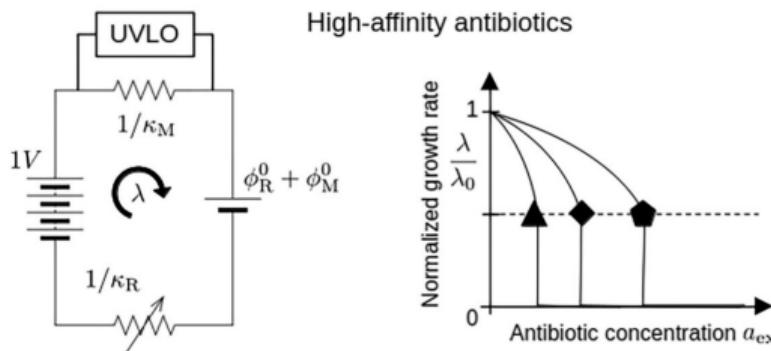


Figure 10: High-affinity antibiotics [9].

- Sigmoidal inhibition curves.
- Half-inhibition conc. correlated with growth rate:

$$\lambda_0 = \lambda \left[\frac{1}{2} \left(1 + \sqrt{1 - \frac{a_{\text{ex}}}{\text{IC}_{50}}} \right) \right]^{-1}.$$

- Abrupt drop of λ at IC_{50} analogous to an undervoltage lockout (UVLO)
- Effective against **slow-growing** bacteria.

Evolutionary Adaptation Studies

Evolutionary Adaptation Studies

Ohmic constraints help direct evolutionary adaptation trajectories by projecting genetic changes to a small set of circuit parameters, e.g. six-sector partition.

Ohmic constraints help direct evolutionary adaptation trajectories by projecting genetic changes to a small set of circuit parameters, e.g. six-sector partition.

Adapting *E. coli* to growth in glucose and citrate [1]

- Parameters unchanged except for decrease in $\phi_O^0, \phi_A^0, \phi_S^0$.

Ohmic constraints help direct evolutionary adaptation trajectories by projecting genetic changes to a small set of circuit parameters, e.g. six-sector partition.

Adapting *E. coli* to growth in glucose and citrate [1]

- Parameters unchanged except for decrease in $\phi_O^0, \phi_A^0, \phi_S^0$.
- Mechanistic explanation:
 - ϕ_O^0 : decrease in porin *OmpF*
 - ϕ_A^0, ϕ_S^0 : enzymes associates with pyruvate kinase *PykF*.

Concluding Remarks

Additional Thoughts

Additional Thoughts

- The Ohmics model is phenomenological.

Additional Thoughts

- The Ohmics model is phenomenological.
- For nutrient quality, we can recover linearity directly from the ODE

Additional Thoughts

- The Ohmics model is phenomenological.
- For nutrient quality, we can recover linearity directly from the ODE

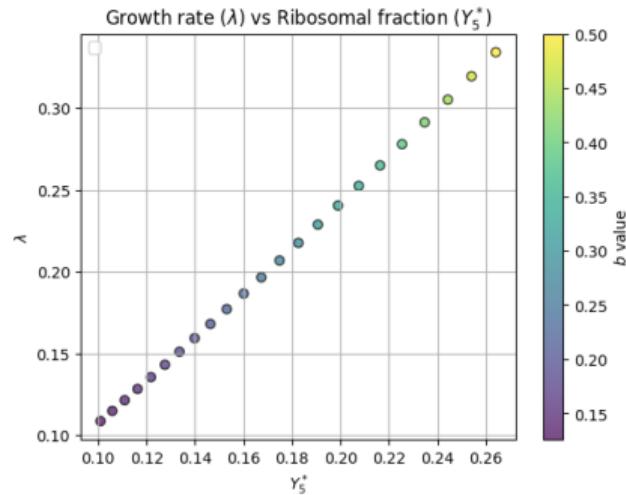


Figure 11: Three-sector partition (low nutrient).

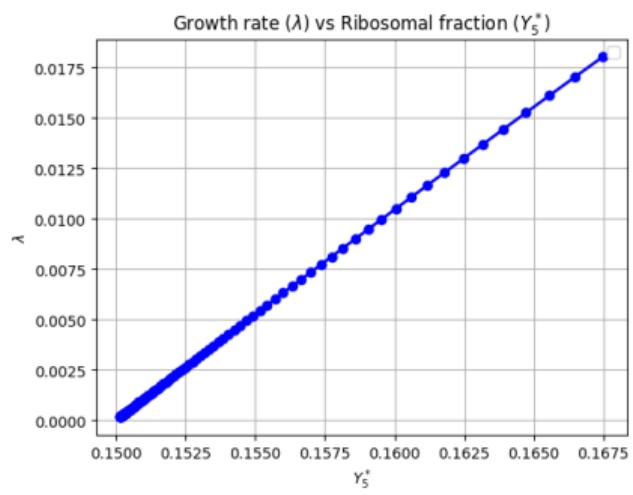


Figure 12: Six-sector partition (low nutrient).

Conclusion

- (Near)-invariant protein concentration + enzyme kinetics provides linkage between protein fraction and growth rate.

Conclusion

- (Near)-invariant protein concentration + enzyme kinetics provides linkage between protein fraction and growth rate.
- Mechanistic justification for coarse-graining complex biochemical networks with circuits.

Conclusion

- (Near)-invariant protein concentration + enzyme kinetics provides linkage between protein fraction and growth rate.
- Mechanistic justification for coarse-graining complex biochemical networks with circuits.
- Wealth of large-Ohmics data → opportunity for synthetic biology.

Thank You
Q & A

References

References i

- J. E. Barrick, D. S. Yu, S. H. Yoon, H. Jeong, T. K. Oh, D. Schneider, R. E. Lenski, and J. F. Kim.
Genome evolution and adaptation in a long-term experiment with escherichia coli.
Nature, 461(7268):1243–1247, Oct. 2009.
- S. Cooper.
Bacterial Growth and Division: Biochemistry and Regulation of Prokaryotic and Eukaryotic Division Cycles.
Academic Press, San Diego, CA, 1st edition, 1991.
Also available as an eBook (ISBN: 978-0080917474).

- M. Csete and J. Doyle.
Bow ties, metabolism and disease.
Trends in Biotechnology, 22(9):446–450, 2004.
- S. Hui, J. M. Silverman, S. S. Chen, D. W. Erickson, M. Basan, J. Wang, T. Hwa, and J. R. Williamson.
Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria.
Molecular Systems Biology, 11(2):784, 2015.
- W.-H. Lin.
Biomass transfer on autocatalytic reaction network: a delay differential equation formulation, 2025.

References iii

- W.-H. Lin, E. Kussell, L.-S. Young, and C. Jacobs-Wagner.
Origin of exponential growth in nonlinear reaction networks.
Proceedings of the National Academy of Sciences, 117(45):27795–27804, 2020.
- J. D. Orth, I. Thiele, and B. O. Palsson.
What is flux balance analysis?
Nature Biotechnology, 28(3):245–248, Mar. 2010.
- M. Scott, C. W. Gunderson, E. M. Mateescu, Z. Zhang, and T. Hwa.
Interdependence of cell growth and gene expression: Origins and consequences.
Science, 330(6007):1099–1102, 2010.

- M. Zim, C. Euler, and M. Scott.
Constraints on metabolic network analysis in bacterial physiology.
PRX Life, 3:022001, Apr 2025.