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Overview

PRX Life PRX Life 3, 022001 Published 1 April 2025 [9].

Main ideas of this paper are:

* Characterize emergent properties of biological interactions in bacterial cells.
* These constraints are equivalent to Kirchhoff’s laws and Ohm’s law.

* Bacterial growth physiology can be analyzed quantitatively as electrical
circuits = coarse-graining. '

This is an approximation.
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Laws of Bacterial Physiology

Author(s):
"Life is required to make more life.”

Growth Laws . . . .
Many emergent behaviors can be described by simple phenomenological laws:

(i) Rate at which environmental materials are assimilated is balanced according
to composition

(ii) Rates are constrained by the autocatalytic nature of life
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* When environmental nutrient is unlimited, population increases like

‘i—’:’ ~N(t) = N(t) = N,eM. (1)



Exponential Growth

* When environmental nutrient is unlimited, population increases like

‘i—’:’ ~N(t) = N(t) = N,eM. (1)

* Balanced growth characterizes exponential phase: In order for cells to

accumulate exponentially, generating processes must happen at balanced
rates.
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balanced growth [6].



Metabolic Networks Are Complicated

5 b & e
SO 6 wmm

bodd—-

Figure 1: Comparison of equilibrium, steady state, and
balanced growth [6].

e
o .
i I e

GLCpglc-Dlel] jeey  ezhe) i
s Jrowes [T

Py PR
pep/ | lpyr pad ]
wady B P20 g

L pd
e AN
D>

K71
a g
70 YTara 9P

¥

na o

4
nadp adph

NADTRIHD

g
g

ox|_EX o0

|oin-Lre]

£ o] _ex ot

ma.
e nag
1202 o e
i Mt 92 o nadh, oo
o L S
oS b capr syl oz N
% S Uhadh g
prs| Y 29PPPCRTS it o
ik on
b G % <2 g,
ool 13 < -
evril ] PR nadh. oy -
P B R R P s L
P scpieon | aucgr  cong
| 3 e o
co [ | AN
w{™h “%n [0 hopi  gho g0z onhe
T e ) s e e T e
T el o] Towontol T Waofe] eoZie] AT
lacblel) " forlel acteltacatatey” " hiel pite)

o clusto

x|acts_ £ sodtr B o) Ex|pr_ExJi2o_

Figure 2: Core metabolic network of E. coli [7].
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Flux Balance Analysis

* Stoichiometric matrix S € M, (R), biomass vector X € R":

aX _
G =X (2)

S is underspecified (metabolism is an open system) and sparse.
* Evolution selects cells that grow fast: Z o« A

* Metabolic reaction rates must be balanced during steady-state 2 growth:
J=0.

Zsuboptimal growth environment is fine



Flux Balance is a Linear Programming Problem

Constrained Optimization

Maximize the objective function Z = c- x
subject to

J=Sx=0 (balanced growth), (3)
and

lb. < x, < ub. (bounded rates). (&)

1 I I



Flux Balance is a Linear Programming Problem

Proteome Partition of E. coli
Constrained Optimization

Maximize the objective function Z = c- x

subject to J($i] = bP

a;§
J¢.] = KGN+S Q
J#s] = cpJsyn
Jda]l = coJsyn
J$s] = Crlsyn
_aU
Jon=gn+U

J=Sx=0 (balanced growth), (3)

and

lb. < x, < ub. (bounded rates). (&)

i i i Figure 3: Three-sector proteome partition model (Lin,

Wei-Hsiang, 2025) [9, 5]
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they turn charged tRNA into uncharged tRNA.



Ribosomes Catalyze Protein Synthesis

* Ribosomes are optimized for autocatalytic production
* Michaelis-Menten kinetics

Energy

(GTP)
%Am Eingaion sy (Haldane) Abundance of the
Chargeq tRNA & acid releases energy
P N — substrate far exceeds the
Kelong

abundance of the enzyme.

Complex

[tRNA]
K, + [ERNA]’

Translating ribosome Elongation of the peptide chain
rate o [Rb] x

(5)

Figure 4: Ribosomes follow similar kinetics to those of enzymes:
they turn charged tRNA into uncharged tRNA.
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Global Constraints

* Maaloe et al. [2]: Per-cell quantity of RNA, DNA, and protein increase

exponentially with A
= Protein concentration is nearly constant.

* Total protein constraint: ¥ ¢; = 1.

Protein mass fraction is a linear function of growth rate:

o0 A
4’;-4’1 Ki. (6)
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Global Constraints

* Maaloe et al. [2]: Per-cell quantity of RNA, DNA, and protein increase

exponentially with A
= Protein concentration is nearly constant.

* Total protein constraint: ¥ ¢; = 1.

Protein mass fraction is a linear function of growth rate:

o A
¢, =¢; + K (6)
Ohm's law: AV =1/G.

10
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Proteomic Coarse-Graining and
Electric Circuit
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Bow-Tie Topology

Conserved large-scale topological features among micro-organisms:

Autocatalytic feedback Polymerization

and complex
assembly
Taxis and
transport

Core metabolism l Proteins
©

Nutrients

A * Bacterial metabolism and

transcriptional machinery exhibits
bow tie architecture

* Proteins can be partitioned into
Regulation & control

s only few classes
Figure 72 Common module for bacterial metabolism:
diversity of inputs and outputs, processed with few
intermediate common currencies [3].
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Equivalent Circuits and Kirchhoff’s Laws

Kirchhoff’s Laws o
Governing laws for DC circuits

Z j, =0 (current law), (7)

node m
Z ¢, = 0 (voltage law). (8)
i

j, is proportional to A.
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Equivalent Circuits and Kirchhoff’s Laws

Kirchhoff’s Laws o
Governing laws for DC circuits

) Thevenin's Law
Z j, =0 (current law), (7) A network of voltage sources and

node m resistors can be replaced by an

Z . = 0 (voltage law) (8) equivalent circuit with one voltage
T ' source and one resistor.

j, is proportional to A.

13
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Anti-Correlation Among Proteome Sectors

Proteome partition: coarse-graining proteins into sectors that behave
similarly under specific probes, e.g. functionality

. 00 + 80 =
Two sectors: ¢y, + ¢p =1
* Antibiotic decreases A without affecting ¢%: modulates k, alone.

* Nutrient quality modulates k.

14



Ohmics

(a) Adc Ads Aga Ay
E A S

Ke Ks KA KU

Carbon Amination
uptake rate
rate Protein

synthesis
Ll

rate
Sum of 0
all offsets Z 2 .

=60+ O + Ok + Y + 68 + 6

Figure 8: Six-sectors: ribosomes (R), carbon uptake (C),
a.a. biosynthesis (A), carbon uptake + a.a. biosynthesis
(S), A-dependent but not inhibited (U), not A-dependent
[4].
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(a) Adc Ads Aga Ay
E A A S

KC Ks KA KU

Coarse-grain according to proteins
response to probes.

N
S K+ K+ 1 K+ 1 K+ T K

Carbon Amination
uptake rate
rate Protein

synthesis
Ll

rate
Sum of 0
all offsets Z 2 v

= e+ 9] + 0k + 8h + 95 + 65

(9)

Figure 8: Six-sectors: ribosomes (R), carbon uptake (C),
a.a. biosynthesis (A), carbon uptake + a.a. biosynthesis
(S), A-dependent but not inhibited (U), not A-dependent
[4].

15



(@) Adc Ads Ada Agy
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a.a. biosynthesis (A), carbon uptake + a.a. biosynthesis C G G, Cy

(S), A-dependent but not inhibited (U), not A-dependent
[4].
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Antibiotic Transport and Binding

* Ribosome-targeting antibiotics can modulate conductance k.
* "Ohmics” assumption for antibiotics-growth rate relationship:

d
d_ctz =-Aa - konaru + koffrb + Pinaex B Pouta'
dr,
dd_t = -Ar, - k..ar, + R qr, +S(A), (11)
" _
il -Ary+ R, ar, - R qr..
. N
A, R R Py Py € Ry S(A) is undetermined!

* Qualitatively different behavior based on binding affinity.
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Antibiotic Transport and Binding

* Langmuir-like inhibition curves.

Low-affinity antibiotics
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Figure 9: Low-affinity antibiotics [9]. e Effective against fast-grovving

bacteria.
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Antibiotic Transport and Binding

Sigmoidal inhibition curves.

Half-inhibition conc. correlated with
growth rate:

1 Agy
/\ :A|:— (1 + 1 - )]
o772 [

Abrupt drop of A at IC;, analogous
to an undervoltage lockout (UVLO)

-1

Normalized growth rate

o

Antibiotic concentration aex

Figure 10: High-affinity antibiotics [9].

Effective against slow-growing
bacteria.
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Evolutionary Adaptation Studies

Ohmic constraints help direct evolutionary adaptation trajectories by projecting
genetic changes to a small set of circuit parameters, e.g. six-sector partition.

Adapting E. coli to growth in glucose and citrate [1]

* Parameters unchanged except for decrease in ¢2, $9, ¢2.
* Mechanistic explanation:

. ¢g:decrease in porin OmpF

* ¢9,¢2: enzymes associates with pyruvate kinase PykF.
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Additional Thoughts

* The Ohmics model is phenomenological.
* Fow nutrient quality, we can recover linearity directly from the ODE

Growth rate (A) vs Ribosomal fraction (Y5) Growth rate (A) vs Ribosomal fraction (Y )
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Figure 11: Three-sector partition (low nutrient). Figure 12: Six-sector partition (low nutrient).
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Conclusion

 (Near)-invariant protein concentration + enzyme kinetics provides linkage
between protein fraction and growth rate.

* Mechanistic justification for coarse-graining complex biochemical networks
with circuits.

* Wealth of large-Ohmics data — opportunity for synthetic biology.

21
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