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Introduction



Overview

PRX Life PRX Life 3, 022001 Published 1 April 2025 [9].

Main ideas of this paper are:

• Characterize emergent properties of biological interactions in bacterial cells.
• These constraints are equivalent to Kirchhoff’s laws and Ohm’s law.
• Bacterial growth physiology can be analyzed quantitatively as electrical
circuits⇒ coarse-graining. 1

1This is an approximation.
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Laws of Bacterial Physiology

Author(s):

”Life is required to make more life.”

Growth Laws
Many emergent behaviors can be described by simple phenomenological laws:

(i) Rate at which environmental materials are assimilated is balanced according
to composition

(ii) Rates are constrained by the autocatalytic nature of life
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Exponential Growth

• When environmental nutrient is unlimited, population increases like

d𝑁
d𝑡 ∼ 𝑁(𝑡) ⇒ 𝑁(𝑡) = 𝑁0𝑒𝜆𝑡. (1)

• Balanced growth characterizes exponential phase: In order for cells to
accumulate exponentially, generating processes must happen at balanced
rates.
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Metabolic Networks Are Complicated

Figure 1: Comparison of equilibrium, steady state, and
balanced growth [6].

Figure 2: Core metabolic network of E. coli [7].
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Flux Balance Analysis

• Stoichiometric matrix 𝑆 ∈ 𝑀𝑚×𝑛(𝑅), biomass vector 𝑋 ∈ ℝ𝑛:

d𝑋
d𝑡 ≡ 𝐽 = 𝑆𝑋 (2)

𝑆 is underspecified (metabolism is an open system) and sparse.

• Evolution selects cells that grow fast: 𝑍 ∝ 𝜆
• Metabolic reaction rates must be balanced during steady-state 2 growth:
𝐽 = 0.

2suboptimal growth environment is fine
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Flux Balance is a Linear Programming Problem

Constrained Optimization

Maximize the objective function 𝑍 = 𝑐 ⋅ 𝑥
subject to

𝐽 = 𝑆𝑥 = 0 (balanced growth), (3)

and

lb𝑖 ≤ 𝑥𝑖 ≤ ub𝑖 (bounded rates). (4)

Proteome Partition of E. coli

Figure 3: Three-sector proteome partition model (Lin,
Wei-Hsiang, 2025) [9, 5]
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Ribosomes Catalyze Protein Synthesis

• Ribosomes are optimized for autocatalytic production

• Michaelis-Menten kinetics

Figure 4: Ribosomes follow similar kinetics to those of enzymes:
they turn charged tRNA into uncharged tRNA.

(Haldane) Abundance of the
substrate far exceeds the
abundance of the enzyme.

rate ∝ [Rb] × [tRNA]
𝐾M + [tRNA]

. (5)
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Global Constraints

• Maaloe et al. [2]: Per-cell quantity of RNA, DNA, and protein increase
exponentially with 𝜆
⟹ Protein concentration is nearly constant.

• Total protein constraint: ∑𝑖 𝜙𝑖 = 1.

Protein mass fraction is a linear function of growth rate:

𝜙𝑖 = 𝜙
0
𝑖 +

𝜆
𝜅𝑖
. (6)

Ohm’s law: Δ𝑉 = 𝐼/𝐺.
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Global Constraints

Figure 5: Growth rate is modulated by quality of
nutrient [8].

Figure 6: Growth rate is modulated by translational
inhibition [8].
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Proteomic Coarse-Graining and
Electric Circuit



Bow-Tie Topology

Conserved large-scale topological features among micro-organisms:

Figure 7: Common module for bacterial metabolism:
diversity of inputs and outputs, processed with few
intermediate common currencies [3].

• Bacterial metabolism and
transcriptional machinery exhibits
bow tie architecture

• Proteins can be partitioned into
only few classes
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Equivalent Circuits and Kirchhoff’s Laws

Kirchhoff’s Laws
Governing laws for DC circuits

∑
node 𝑚

𝑗𝑛 = 0 (current law), (7)

∑
𝑖
𝜙𝑖 = 0 (voltage law). (8)

𝑗𝑛 is proportional to 𝜆.

Thevenin’s Law
A network of voltage sources and
resistors can be replaced by an
equivalent circuit with one voltage
source and one resistor.
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Anti-Correlation Among Proteome Sectors

• Proteome partition: coarse-graining proteins into sectors that behave
similarly under specific probes, e.g. functionality

• Two sectors: 𝜙0M + 𝜙0R = 1
• Antibiotic decreases 𝜆 without affecting 𝜙0M: modulates 𝜅R alone.
• Nutrient quality modulates 𝜅M.
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Ohmics

Figure 8: Six-sectors: ribosomes (R), carbon uptake (C),
a.a. biosynthesis (A), carbon uptake + a.a. biosynthesis
(S), 𝜆-dependent but not inhibited (U), not 𝜆-dependent
[4].

Coarse-grain according to proteins’
response to probes.

𝜆 =
1 − 𝜙0C − 𝜙0A − 𝜙0R − 𝜙0U − 𝜙0S − 𝜙0O
1/𝜅C + 1/𝜅A + 1/𝜅R + 1/𝜅U + 1/𝜅S

(9)

Growth on 𝑁 carbon sources:
1
𝜅C

⟶ 1
𝜅C1 + 𝜅C2 + ⋯ + 𝜅C𝑁

(10)

15



Ohmics

Figure 8: Six-sectors: ribosomes (R), carbon uptake (C),
a.a. biosynthesis (A), carbon uptake + a.a. biosynthesis
(S), 𝜆-dependent but not inhibited (U), not 𝜆-dependent
[4].

Coarse-grain according to proteins’
response to probes.

𝜆 =
1 − 𝜙0C − 𝜙0A − 𝜙0R − 𝜙0U − 𝜙0S − 𝜙0O
1/𝜅C + 1/𝜅A + 1/𝜅R + 1/𝜅U + 1/𝜅S

(9)

Growth on 𝑁 carbon sources:
1
𝜅C

⟶ 1
𝜅C1 + 𝜅C2 + ⋯ + 𝜅C𝑁

(10)

15



Ohmics

Figure 8: Six-sectors: ribosomes (R), carbon uptake (C),
a.a. biosynthesis (A), carbon uptake + a.a. biosynthesis
(S), 𝜆-dependent but not inhibited (U), not 𝜆-dependent
[4].

Coarse-grain according to proteins’
response to probes.

𝜆 =
1 − 𝜙0C − 𝜙0A − 𝜙0R − 𝜙0U − 𝜙0S − 𝜙0O
1/𝜅C + 1/𝜅A + 1/𝜅R + 1/𝜅U + 1/𝜅S

(9)

Growth on 𝑁 carbon sources:
1
𝜅C

⟶ 1
𝜅C1 + 𝜅C2 + ⋯ + 𝜅C𝑁

(10)

15



Applications



Antibiotic Transport and Binding

• Ribosome-targeting antibiotics can modulate conductance 𝜅R.
• ”Ohmics” assumption for antibiotics-growth rate relationship:

{

d𝑎
d𝑡 = −𝜆𝑎 − 𝑘on𝑎𝑟u + 𝑘off𝑟b + 𝑃in𝑎ex − 𝑃out𝑎,
d𝑟𝑢
d𝑡 = −𝜆𝑟u − 𝑘on𝑎𝑟u + 𝑘off𝑟b + 𝑠(𝜆),
d𝑟𝑏
d𝑡 = −𝜆𝑟b + 𝑘on𝑎𝑟u − 𝑘off𝑟b.

(11)

𝑎ex, 𝑘on, 𝑘off, 𝑃in, 𝑃out ∈ ℝ≥0. 𝑠(𝜆) is undetermined!
• Qualitatively different behavior based on binding affinity.
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Antibiotic Transport and Binding

Figure 9: Low-affinity antibiotics [9].

• Langmuir-like inhibition curves.
• Half-inhibition conc. anti-correlated
with growth rate:

𝜆0 = 𝜆 (1 +
𝑎ex
IC50

) .

• Effective against fast-growing
bacteria.

17



Antibiotic Transport and Binding

Figure 9: Low-affinity antibiotics [9].

• Langmuir-like inhibition curves.

• Half-inhibition conc. anti-correlated
with growth rate:

𝜆0 = 𝜆 (1 +
𝑎ex
IC50

) .

• Effective against fast-growing
bacteria.

17



Antibiotic Transport and Binding

Figure 9: Low-affinity antibiotics [9].

• Langmuir-like inhibition curves.
• Half-inhibition conc. anti-correlated
with growth rate:

𝜆0 = 𝜆 (1 +
𝑎ex
IC50

) .

• Effective against fast-growing
bacteria.

17



Antibiotic Transport and Binding

Figure 9: Low-affinity antibiotics [9].

• Langmuir-like inhibition curves.
• Half-inhibition conc. anti-correlated
with growth rate:

𝜆0 = 𝜆 (1 +
𝑎ex
IC50

) .

• Effective against fast-growing
bacteria.

17



Antibiotic Transport and Binding

Figure 10: High-affinity antibiotics [9].

• Sigmoidal inhibition curves.
• Half-inhibition conc. correlated with
growth rate:

𝜆0 = 𝜆 [
1
2 (1 + √1 −

𝑎ex
IC50

)]
−1

.

• Abrupt drop of 𝜆 at IC50 analogous
to an undervoltage lockout (UVLO)

• Effective against slow-growing
bacteria.
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Evolutionary Adaptation Studies

Ohmic constraints help direct evolutionary adaptation trajectories by projecting
genetic changes to a small set of circuit parameters, e.g. six-sector partition.

Adapting E. coli to growth in glucose and citrate [1]
• Parameters unchanged except for decrease in 𝜙0O, 𝜙0A, 𝜙0S .
• Mechanistic explanation:

• 𝜙0O:decrease in porin OmpF
• 𝜙0A, 𝜙0S : enzymes associates with pyruvate kinase PykF.

19
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Concluding Remarks



Additional Thoughts

• The Ohmics model is phenomenological.
• Fow nutrient quality, we can recover linearity directly from the ODE

Figure 11: Three-sector partition (low nutrient). Figure 12: Six-sector partition (low nutrient).
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Conclusion

• (Near)-invariant protein concentration + enzyme kinetics provides linkage
between protein fraction and growth rate.

• Mechanistic justification for coarse-graining complex biochemical networks
with circuits.

• Wealth of large-Ohmics data⟶ opportunity for synthetic biology.
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Thank You
Q & A
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