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In biology, data are conceptualized using diagrams that capture protein-protein, enzyme-substrate, and
regulator-target interactions, among many others. These interaction diagrams are every bit as complicated as
wiring diagrams in modern electronic circuits—in many cases, even more so. Yet, in contrast to electronic
circuits, living systems must also autonomously reproduce; some part of the “wiring diagram” of life must be
devoted to reproducing itself. A greatly simplifying principle in the analysis of these biological wiring diagrams
is that of “balanced growth,” in which network flows are balanced according to the requirements of biomass
production, leading to the exponential accumulation of cells. In microbial cells, exponential growth greatly
simplifies the underlying biochemical networks, because when its mathematical description is combined with
kinetic descriptions of underlying enzyme-mediated reactions, macroscale constraints on physiology emerge. As
is demonstrated in this tutorial, these constraints are mathematically and conceptually equivalent to Kirchhoff’s
circuit laws and Ohm’s constitutive equation. Consequently, bacterial growth physiology can be approached with
the same quantitative rigour as electrical circuit analysis. In this tutorial, this “Ohmics” approach is developed in

detail, and its power in simplifying complex physiology is demonstrated through two case studies.
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I. INTRODUCTION

Biological systems involve thousands of interactions of
different types, operating on a wide range of timescales.
This inherent complexity has frustrated attempts to estab-
lish generalizing principles to describe and predict microbial
physiology. However, though the underlying interactions are
complex, many of the sensible behaviors they yield can be
described by emergent rules that are relatively simple.

Indeed, much of the physiology of fast-growing cells
can be explained primarily by two principles: first, that the
rates at which environmental materials are assimilated into
biomass must be balanced according to the composition of
that biomass; and second, that these rates are constrained by
the autocatalytic nature of life, which necessitates that some
portion of biomass must always be committed to making more
biomass. Life is required to make more life. These principles
were initially developed from a few observations of fast-
growing cells made in the early 20th century, and they have
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been elaborated on since in the field of quantitative microbial
physiology.

Early measurements of bacterial accumulation demon-
strated that when growth is unrestricted by nutrient availabil-
ity, many bacteria will convert carbon and nitrogen to biomass
at a prodigious rate. For example, in nutrient-rich conditions,
with a plentiful supply of oxygen and a buffer to absorb
acidic waste products, the population, N(¢), of Escherichia
coli cultures will double in approximately T = 20 min. During
unrestricted growth, the rate of population increase is propor-
tional to the population size,

dN N( 1

7 & (), ey
and if allowed to adapt to the unrestricted nutrient environ-
ment, the bacteria will reach a constant rate of growth so that
the population will increase exponentially,

N(t) = Np2 = Nye', )

where © = 1/t is the doubling rate (typical units: doublings-
per-hour), 7 is the doubling time, and A = & x In2 is the
specific growth rate (typical units: per-hour).

Despite the ease with which bacterial growth can be quan-
tified, in the early days of quantitative microbial physiology
there was not a consensus on what precisely “bacte-
rial growth” even meant, nor indeed on what physiology
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yielding such growth might entail. Monod (after Buchanan)
had identified several phases of bacterial growth, including
the exponential phase wherein bacteria accumulate at an ex-
ponential rate, and an inevitable subsequent phase of zero
net growth rate—a so-called “stationary phase” [1]. This sug-
gested the existence of some growth limiting factor, but it was
not until 1957 that Campbell [2] had the clarity of vision to de-
fine steady-state, or balanced growth, to explain exponential
growth and the lack thereof during the stationary phase.

Balanced growth is the relatively intuitive idea that in order
for cells to accumulate at an exponential rate, the underlying
biomass-generating processes must occur at balanced rates. A
constant population doubling rate arises as a result, because
cells contain the processes required to make more cells, so
the rate of accumulation is proportional to the population
size. Conversely, if a material constraint prevents the inter-
nal rates from being balanced, growth is halted. This may
occur, for example, if the cells consume the nitrogen in the
growth medium to below a certain concentration relative to
the available carbon. Thus, balanced growth neatly explains
the stationary phase as being due to the depletion of a limit-
ing nutrient component such that some processes required to
make more cells cannot operate in balance.

Ultimately, balanced growth is a mathematically simple
statement at the macroscale captured by Egs. (1) and (2), yet
its simplicity belies the extraordinary chemical complexity
operating in the background. It requires the immensity of
cellular regulation and adaptation to operate in concert to
ensure that every constituent in the cell doubles at the same
rate, despite these constituents having vastly different com-
positions. After Campbell, balanced growth was no longer
seen as a characteristic of one of the many growth phases
through which bacteria must pass. Rather, it was understood
as a steady state that could be maintained by dilution, in theory
for as long as an investigator wishes, because the addition of
fresh media could ensure that media components are always
provided in excess. According to Schaechter, “the difference
between ‘exponential phase’ and ‘balanced growth’ is the dif-
ference between watching apples fall and thinking of gravity
[31”

As such, balanced growth has become the standard con-
dition in which bacterial physiology is studied. The growth
rates (and other parameters [4]) measured in balanced growth
conditions (Box 1) are robust and reproducible, exhibiting
less than 5% variability from day-to-day or laboratory-to-
lab. From an analytic perspective, balanced growth implies
that, on average, all the relative synthesis rates in the cell
are uniquely defined by the macroscale doubling rate: if the
number of cells doubles once per hour, so too does the mass
of DNA, RNA, and protein. These relative synthesis rates
can be converted to absolute rates if the population averaged
abundance of a particular constituent is known at a particular
doubling rate. For example, Bremer and Dennis [4] report that
the protein content of E coli B/r growing at one doubling
per hour is 8.7 x 108 amino acids per cell, which necessitates
a peptide polymerization rate of 1.45 x 107 amino acids per
minute. This example highlights the power of the idea of bal-
anced growth, as it allows for the quantification of a complex,
microscale process (amino acid polymerization) from a small

number of readily accessible macroscale observables (growth
rate, total protein content).

In this tutorial, we will explore the consequences of bal-
anced growth for mathematical models of bacterial growth
physiology. Applied to individual metabolic reactions in the
cell, balanced growth implies a sum rule for reaction rates
(or reaction flux) that is analogous to Kirchhoff’s current
law. Remarkably, the analogy with electrical network analysis
extends beyond this—empirical relations governing protein
concentration per cell and the rate of enzyme-catalyzed re-
actions yield constraints analogous to Kirchhoff’s voltage
law and Ohm’s law. Overall, balanced growth leads to an
“Ohmics” framework that quantifies the coupling between
bacterial physiology, metabolic rates, and protein expression
in E coli. The impact of this framework is described across
the six remaining sections in this tutorial. In Sec. II, a com-
mon and powerful tool in bacterial network analysis, flux
balance analysis (FBA), is summarized. Enzyme kinetics are
developed in Sec. III as a basis for understanding subsequent
sections. Then the concept of a constraint on the total protein
in a cell is introduced in Sec. IV, and the power of such
constraints in coarse-graining the proteome is demonstrated in
Sec. V. Finally, some examples of applications of proteomic
coarse-graining are presented in Sec. VI.

Box 1: Quantifying Escherichia coli growth

E. coli has several useful characteristics that make it an
ideal model organism: its nutritional demands are simple,
its optimal growth temperature is commensurate with our
own, and its growth timescale is comparable to a reason-
able workday.

At the least, E. coli requires a nutrient environment with
plentiful carbon (e.g. glucose) and nitrogen (e.g. ammo-
nium chloride), and a buffer to neutralize metabolic waste
products. The gold standard for reproducible growth of E.
coli is the morpholinopropane sulfonate (MOPS)-buffered
medium developed by Neidhardt [5]. As a gut-dwelling
bacterium, E. coli grows most rapidly at 37°C with an
unrestricted supply of oxygen. To ensure a constant tem-
perature, bacteria are typically grown in a flask or test tube
immersed in a water bath shaker. Aeration is maintained
by turbulent mixing of the medium as the culture vessel
shakes, and the volume of the liquid medium is kept low to
maximize the rate of oxygen transfer.

A convenient method for monitoring the growth of bac-
terial cultures is to measure the degree to which cultures
scatter light using a spectrophotometer. Over a narrow
range of number density, the fraction of scattered light —
corresponding to apparent absorbance — is proportional
to the number density of the particles scattering light.
Typically, light scattered at 600 nm (sometimes called the
optical density at 600 nm, or the ODg) is used as a proxy
for cell number density. In the dilute limit, where multiple
scattering events are negligible, the ratio of the incident (/)
to transmitted (/) light intensity is related to the number
of bacteria N by,

I
ODgy = log I—O ={NQ(),
;
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where ¢ is the path length over which scattering occurs,
and Q is a shape parameter that depends upon the size and
shape of the light-scattering particles and the wavelength
of the incident light. In a given spectrophotometer cuvette,
the volume of the scattering chamber is fixed (i.e. £ is
constant), and so provided the average size and shape of the
bacteria remains constant over the experiment, the optical
density provides a convenient proxy for changes in number
density. There are several practical points to consider:

(1) In balanced growth, the cell population increases
exponentially in time. The log, of the number density (or
a suitable proxy such as the ODgq) plotted against time
produces a straight line, the slope of which is the doubling
rate . In practice, the linearity of the data is extraordinary,
and one should expect a coefficient of determination r?> >
0.995.

(2) The measured optical density will vary from
spectrophotometer-to-spectrophotometer. If absolute num-
ber density is required, then the optical density must be
calibrated against true number density (obtained through
plating dilutions of the growth culture and counting
colonies). This calibration must be redone whenever there
is a possibility that the shape parameter Q has changed.

(3) In Sec. III, the fact that average cell size changes
dramatically with growth rate will be discussed. This
results in much lower optical density measurements of
slowly growing cells compared with faster growing cells
at the same number density.

(4) Reading optical density of cultures in microwell
plates posses several practical challenges: evaporation can
lead to path length changes throughout the experiment,
incomplete agitation and cell clumping can result in a
scattering volume that is not representative of the indi-
vidual bacterium, and scratches on the plate may produce
spurious scattering. As such, unless the microplate growth
is carefully calibrated [6], it is recommended that optical
density measurements be made in a non-disposable cuvette
mounted in a spectrophotometer.

II. FLUX BALANCE AND KIRCHHOFF’S CIRCUIT LAWS

A. Background

It has been widely appreciated since before the advent of
balanced growth as a concept that cells use internal chemical
reactions to assimilate material from the environment and
reconstitute it in specific ratios corresponding to their over-
all chemical composition, which shows very little cell-to-cell
variation. That is to say that growth rate, as observed, emerges
in part from the sum of the chemical reactions which occur in
cells (the other part is management of transcription and trans-
lation, discussed in Sec. V). In this context, balanced growth
requires that metabolic reaction rates themselves be balanced
such that they can generate the components of biomass in the
specific ratios required to make more cells, and the energy
required to power reconstitution of these components.

The idea that metabolic reaction rates must be balanced in
steady-state growth conditions was first applied to metabolic
characterization by Papoutsakis in 1984 [7], in a forward-
thinking study of microbial fuel production, and arguably

formalized a decade later by Varma and Palsson [8]. Sig-
nificant contributions were made throughout this period by
several researchers in related fields, and the development of
the resulting “flux balance analysis” (FBA) methodology has
occurred organically and informally. Today, various forms of
FBAs exist and are standard, highly tractable tools to predict
growth rates, metabolic flux distributions, and engineering
strategies for biomanufacturing (Box 2).

Understanding FBA first requires an understanding of what
is meant by flux in a metabolic context. As in other areas of
study, flux in metabolism is a normalized rate; it is a measure
of how quickly molecules are transformed by enzyme cata-
lysts. Whereas other forms of flux, such as magnetic field
flux, are normalized to a flow-through area, metabolic flux
is instead normalized to biomass. It typically has dimensions
of concentration of molecules transformed per unit mass of
biomass per unit time, with standard units of millimoles-per-
gram dry weight of biomass-per-hour (mmol gCDW ' h™').

Every reaction in metabolism can be described as carrying
some amount of flux (which may be 0 mmol gCDW~'h™1),
and the boundary of metabolism is defined by import and
export fluxes, which capture the rates at which material is
taken up from the environment and wastes are exported to the
environment, respectively. When metabolism is considered as
a collection of chemical reactions, it is clear that even simple
organisms are powered by a complex network made up of
overlapping, branching, and cyclical structures (Fig. 1). Ma-
terial flows through this network according to rates described
by reaction fluxes, much like electric current flows through
circuits. Despite the high degree of complexity that is possible
in metabolic reaction networks, some core structures have per-
sisted throughout evolutionary history. For example, central
carbon metabolism, in which most of the energy and chemical
backbones required to make more cells are produced, is highly
conserved across all branches of the tree of life.

B. Flux balance as a linear programming problem

In flux balance analysis (FBA), the principle of balanced
growth—and balanced fluxes—is applied to significantly
simplify analysis of complex metabolic networks. This
simplification begins with mass balances on each of the
metabolites, x;, in metabolism:

dxl n m
o= Xgaijvj - Zﬂikvky 3)
=

k=0

where the «;; and Bj; capture stoichiometry of the n produc-
ing and m consuming reactions of metabolite x;, respectively,
operating at rates v; and v. These balances can be expressed
more compactly—and more usefully—in matrix form:

dx

dt

where X is the vector of metabolite concentrations, and the
time-rate-of-change is called the flux j expressed in terms of
the stoichiometric matrix S and the rate vector v.

The stoichiometric matrix, S, is a critical component of
FBA and all other related constraint-based modeling ap-
proaches. Its rows correspond to metabolites and columns to
the reactions in which they participate, with entries reflecting

j=S-1, “
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FIG. 1. FBA summary. Metabolism is a complex network of
interrelated chemical transformations that interact with the environ-
ment via transport reactions (green) and ultimately produces the
material and energy required to make more cells (yellow). In FBA,
the wiring of metabolism is captured in an m X n stoichiometric
matrix S, which is always rectangular because of the biomass re-
action and transport reactions. A constrained optimization is used
to find rate distributions v € R” for a given objective function Z.
The constraints delimit an admissible solution space in R”, and the
optimal solution is found by solving the constrained optimization
problem. Figure inspired by [14].

the stoichiometry of these reactions. For a reaction network
with m metabolites and n reactions, S has dimensions of
m x n. An example stoichiometric matrix might look like

Reactions

0 0-11---0
-10 0 2--- 1

Metabolites

0000:--—1]
I | )

The stoichiometric matrix is like a metabolic wiring di-
agram. It captures how fluxes can move material through
the metabolic network, regardless of other factors such as
metabolite or enzyme concentrations, or thermodynamics.
The structure of the stoichiometric matrix provides the most
fundamental constraint on fluxes in the metabolic network
because the stoichiometry of a given reaction can never be
changed. This is similar to how a circuit wiring diagram
describes the constraints on how electricity can flow through
a circuit. Of course, as with an electric circuit, determining

the actual flows through the metabolic networks requires more
knowledge than just the structure.

At steady state, for example during balanced growth,
Eq. (4) becomes

dx - .

== S-9=0. ©6)
Thus, the problem of finding the values of metabolic fluxes
which yield balanced growth is equivalent to solving a ho-
mogeneous system of linear equations. In real metabolic
networks, this problem is always underspecified because there
are always more reactions than there are metabolites: m < n.
Underspecification is guaranteed by the fact that metabolism
is an open system, with import and export reactions. This
condition ensures that at least one metabolite participates
in multiple, unbalanced reactions (Fig. 1). Indeed, in real
metabolism, there are typically multiple metabolites which
participate in transport reactions. Furthermore, cycles and
other complex structures are guaranteed to yield an un-
derspecified system in Eq. (6). Moreover, most metabolites
participate in just a few reactions, leading to a sparse sto-
ichiometric matrix, which poses specific challenges to the
computational tractability of solving Eq. (6).

To address the challenge of underspecification, the problem
of finding fluxes, 7, in balanced growth can be recast as a
constrained optimization via the application of two principles:
first, that metabolism has been optimized to achieve a spe-
cific function, described by a linear combination of fluxes;
and second, that many rates in the metabolic networks are
bounded by some observable value. For example, the rate of
carbon import sets upper bounds on all downstream fluxes,
and nonzero growth rate (A > 0, i.e., cells are alive) requires
that some critical fluxes, such as those which generate energy,
be nonzero. These principles yield the following constrained
optimization formulation:

maximize the objective function
Z = ¢ - v (often the growth rate = A), @)
under balanced growth conditions j=S-73=0, (8)
subject to physical constraints on the rates 1b; < v; < ub;.
©)

Here the objective function, Z, is a linear combination of some
fluxes in the metabolic network. The vector ¢ is made up of
user-defined weights that must be chosen such that Z corre-
sponds to this desired linear combination of fluxes. Individual
rates in the network have lower and upper bounds (lb;, ub;)
which must be specified. Typically, bounds are used to capture
measured import and export fluxes. Various algorithms exist
to rapidly solve this optimization problem; see Box 2 for more
information.

The baseline assumption in FBA is that the objective func-
tion, Z, is proportional to the growth rate, A, based upon
the intuitive idea that evolution has selected for cells that
grow as quickly as possible. Cell proliferation emerges from
many fluxes acting in concert to produce the components
of biomass. As such, metabolic network models include a
pseudoreaction representing biomass accumulation, typically
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derived empirically through measurement of the elemental
composition of biomass, the waste products, and energy re-
quirements of producing a new cell. The rate of the resulting
so-called “biomass reaction” has units of grams of cell dry
weight-per-hour, such that when it is normalized as a flux, it
yields units of gCDW gCDW~'h™! = h™! and corresponds to
the growth rate of the cell for a given flux distribution.

C. Fluxes are currents of chemical mass

In the same way that electric current is the flow of electrons
through a conducting material, metabolic flux is the flow of
chemical mass through enzyme-catalyzed reactions. Conser-
vation of mass and energy applies to both systems, so that
the flux entering and exiting a junction, or branch point, must
balance. The stoichiometry matrix S is sparse [Eq. (5)] and
the overall flux-balance condition [Eq. (4)] applies to each
metabolite. Focusing on the mth metabolite,

Z Smnvn - Z jn - 0’ (10)

node m node m

where the flux j, = S,,,v, is the product of the reaction stoi-
chiometry and the reaction rate for all reactions leading in and
out of metabolite m,

J1

node m

Equation (10) is the metabolic analogy of Kirchhoff’s cur-
rent law, as it expresses how balanced growth imposes flux
conservation at each junction in the network. The solution
to the flux-balance condition, Eq. (6), is the nullspace of the
stoichiometric matrix, S.

Metabolic networks are not exclusively unidirectional—
there are cycles or loops that are associated with conserved
chemical scaffolds. For example, energy-carrying molecules
are routinely used in reduction-oxidation [NAD(P)H <«
NAD(P)+] or phosphorylation/dephosphorylation (ATP <
ADP) cycles to couple energy transfer between metabolic
reactions. Conserved quantities—the backbones that are cy-
cled through loops in metabolism—are determined by the
left nullspace of the stoichiometric matrix instead. The left
nullspace is simply the nullspace of the transpose of a matrix,
so the conserved quantities in a metabolic network i can be
found by solving the equation

ST.i=0. (11)

Specific conservation relationships can be found using the
column vectors, s, of the stoichiometric matrix and the basis
vectors of its left nullspace:

> sijui = 0. (12)

Whereas the only flow in electrical circuits is of electrons,
there are many unique flows of chemical species in metabolic

networks. As such, many cycle-conservation relationships ex-
ist. Enumerating these can be useful to characterize metabolic
pools necessary to maintain steady states.

Box 2: Flux Balance Analysis (FBA) in a Nutshell

FBA is a highly tractable method of estimating flux
distributions that can be performed on most personal com-
puters using standard packages and solvers available for
MATLAB [9], Python [10], and Julia [11]. FBA can be per-
formed on any reaction network, but is generally used with
genome-scale metabolic models (GEMs), which are recon-
structions of metabolisms from the genome sequence(s) of
specific organisms. They may additionally integrate other
information beyond genome sequences, such as transcrip-
tomics. Many GEMs are available via public repositories
such as the Biochemical, Genetic and Genomic (BiGG)
knowledge base [12], and the quality of GEMs is ensured
with the MEMOTE framework [13].

The basic premises of FBA are twofold: first, that cells
have evolved to optimize some objective function, typi-
cally growth rate, given some bounds on uptake fluxes; and
second, that the stoichiometries of chemical reactions pro-
vide constraints within which fluxes yielding an optimal
solution to this objective must fall. Together, these yield
a linear programming problem with a solution that falls
within a high-dimensional cone. Typically, solutions are
projected onto a two-dimensional space for interpretation.
See Fig. 1 below for a visual explanation of the basis of
FBA.

Many other constraint-based methods have been devel-
oped as expansions and/or modifications to FBA. Some
of these which are commonly used are summarized below,
with relevant literature cited for further exploration:

(1) Dynamic FBA (dFBA) [15]. A fundamental as-
sumption of standard FBA is that cells operate at
steady-state. This is only truly valid for continuous cultures
or for a short period in mid-exponential phase for batch
cultures. In dFBA, quasi-steady state is assumed for small
time intervals over the course of a batch culture. The flux
distributions determined by FBA for each time interval
are used to update external concentrations based on an
assumption of linearity over this time period. The updated
external concentrations at the end of the interval are used
to initiate a new FBA calculation for the next interval. In
this way, a linear programming approach can be used to
estimate nonlinear growth characteristics.

(2) Flux Variability Analysis (FVA) [16]. In FVA, the
maximum and minimum value for all fluxes which can
support some fraction of the optimal value of the objective
function are determined. This requires a bi-level optimiza-
tion approach and can uncover robustness in metabolic
networks by determining which fluxes can vary without
significantly affecting the objective.

(3) Parsimonious FBA (pFBA) [17]. In exponentially
growing cultures, it is reasonable to assume that fast grow-
ers will be selected for. FBA captures this assumption
well, but there is an additional reasonable expectation that
among fast growers, cells which use the least amount of

enzyme to achieve a given growth rate will outcompete
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their neighbours. pFBA uses FVA to find alternatives to
solutions found via FBA, and classifies these according
to their contribution to the optimal flux distribution, with
longer pathways being penalized.

(4) Elementary Flux Mode Analysis (EFMA) [18].
Elementary flux modes (EFM) are the minimal functional
units of a metabolic network such that every single pos-
sible path of a metabolic network can be constructed via
linear combinations of EFMs. They essentially capture the
routes through which material can flow at steady state, and
if any EFM is blocked, its function in the network will also
be blocked. This is a lot like sub-circuits in a home electri-
cal system; if a breaker is flipped, power to one room may
be disrupted, whereas other rooms in the house will still
have current. Enumerating EFMs is computational chal-
lenging, but EFMA can be used to find functional modules
in metabolic networks, and to determine the robustness of
networks to perturbations.

III. BIOLOGICAL CATALYSIS

The majority of protein in the bacterial cell is made up
of catalytic molecules called “enzymes.” Enzymes carry out
the reactions whose fluxes are predicted in FBA. In doing
so, they allow otherwise extremely slow reactions to occur
on timescales required for life [19]. In some cases, they cou-
ple reactions to the breaking of energetic bonds in cofactor
molecules such as ATP or NADH to force irreversibility in a
particular direction. Cell proliferation rates of tens-of-minutes
(or even tens-of-hours) are only possible through the catalytic
action of enzymes.

A. Enzyme kinetics

A simple mathematical model for irreversible enzyme
catalysis was introduced by Michaelis and Menten [20], and
refined by Briggs and Haldane [21]: an enzyme E binds with a
substrate S to form an activated complex ES that is converted
to the product P (thereby releasing the enzyme E),

Keat

Kon
E+S— ES —E+P

ko complex

Assuming mass-action kinetics, the rates of formation of
the concentrations of each species are

% = —konlETIS] + kot [ES] + keal ES],

% = —kon[E1[S] + kot[E S],
d[ES] o
7 = kon[E][S] - knff[ES] - kcat[ES]’

d[P]

7 — kcal[ES]’

and the total enzyme concentration, [Eiy.], is conserved:
[Ewt] = [E] 4+ [ES]. The object of interest is the rate of prod-
uct formation, d[P]/dt. If the substrate abundance far exceeds
the enzyme abundance, [S] > [E], then the complex con-
centration [ES] does not change on the timescale of product

formation,

d[ES]

= kon[E1[S] — kot [ES] — keat[ES] ~ 0.
From the conservation of the total enzyme concentration,
[E] = [Ewt] — [ES], the free-enzyme concentration [E] can
be eliminated, with the active complex concentration [ES]
written in terms of the total enzyme concentration [Ey],

[ES]({koff + kcat} + kon) ~ kon [Elot][S]
[S]

= [ES] = [Etot]m,

so that
d[P] _ [S]
dt “CIS]+ Km

The constant Ky = (kot + keat)/kon 18 called the Michaelis
constant, and sets a characteristic concentration scale for the
substrate [S] at which the rate of product formation is half-
maximal. The overall rate, d[P]/d¢t, quantifies the flow of
molecules of S through a reaction in a given time in much
the same way that, for example, electric current is a measure
of charge flux in a wire.

The derivation presented here is that of Haldane. It differs
from the earlier Michaelis-Menten derivation insofar as there
is no assumption that any of the kinetic steps are rapid (the
quasi-steady-state approximation), only that the abundance of
the substrate far exceeds the abundance of the enzyme, which
is a less restrictive assumption in most applications. The
conditions under which the Michaelis-Menten expression,
Eq. (14), is a valid approximation of real enzyme mediated
kinetics, Eq. (13), continues to be an active area of research
[22].

Not all enzyme-catalyzed reactions are irreversible, or pro-
ceed in a single step [23]. Nevertheless, the simple irreversible
case illustrates three fundamental control points by which flux
through enzyme-mediated reactions may be modulated. Of the
three factors on the right-hand side of Eq. (14), the first two
control flux via enzyme activity, whereas the third controls
flux via enzyme abundance (Fig. 2). Notice that the substrate
saturation dynamically partitions the total enzyme abundance
[Etot] into a flux-carrying “active” fraction [AE],

[S]

[Eiot]- (14)

flux = keyy ——————[E] = keat [AE], 15
ST KM[ ] ¢ [AE] (15)
and a non-flux-carrying “free” fraction [Ey] [24],
(Ewl = [Eol + [AE1 = — M (Bl + — 0 (£,
tot 0 = [S] +KM tot [S] +KM totd -
[Eo] [AE]
(16)

Combining these two equations, Egs. (15) and (16), the flux
and the total enzyme concentration [Ey] are related as

flux
kcat '

This expression will be particularly relevant in the next
section.

[Eiot] = [Eo] + a7

022001-6



CONSTRAINTS ON METABOLIC NETWORK ANALYSIS IN ...

PRX LIFE 3, 022001 (2025)

Controlled by the

Controlled by distal  proximal substrate

effector molecules

(allosteric regulation) Controlled through
\ transcription and
translation
flux o< keat 81 [Eiot)
[S] + Knm
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FIG. 2. Control of enzyme-mediated flux. The catalytic rate, kcy,
can be modulated by cofactors (including metal ions, vitamins, and
nucleoside triphosphates) or by small-molecule regulators. Modula-
tion by distal small molecules is called allosteric regulation [25],
and it allows the tuning of enzyme activity via signals from other
parts of the reaction network. The enzyme activity is also responsive
to the substrate concentration relative to the Michaelis constant,
[S1/Ky, with [S]/Ky = 2 for most enzymes in E coli [24]. Fi-
nally, the flux can be adjusted via transcriptional and translational
control of the enzyme protein abundance [E] [26]. Although not
all enzyme-mediated fluxes respond to allosteric control, most re-
spond to changes in substrate availability and changes in enzyme
abundance.

B. Ribosomes catalyze protein synthesis

Enzymes, like all proteins, are made up of polymerized
amino acids. Ribosomes are a special biological catalyst re-
sponsible for carrying out amino acid polymerization to make
all proteins [27]. As they are themselves in part made up of
proteins, ribosomes are required to make more ribosomes.
They also contain catalytic ribonucleic acid (RNA), and they
are therefore ribozymes. Although enzyme abundance and
activity are typically the focus of metabolic network models,
ribosome abundance exhibits strong growth rate dependence
[4,28], and under conditions of rapid growth or inhibition
by ribosome-targeting antibiotics, ribosome-affiliated proteins
can occupy 30-50 % of the total protein mass [26,29,30].

The catalytic activity of ribosomes shares many of the same
features as the Michaelis-Menten scheme detailed in Sec. III.
They use the amino acids carried by charged transfer RNAs
(tRNA) as substrates to produce an elongating polypeptide
chain. In effect, the translating ribosome is an enzyme that
converts charged tRNA into uncharged tRNA (Fig. 3). The

Energy
(GTP)

Charged tRNA &
Elongation factors
(Ternary complex)

Translating ribosome

Complex

kinetic scheme that results is analogous to that used to arrive
at Eq. (14). As a result, the rate of protein synthesis catalyzed
by a ribosome can also be analogously written as [31]

(T*]
[T*] 4+ Km

where [T*] is the concentration of charged tRNA, Ky is the
Michaelis constant associated with the reaction, and [Rby] is
the total concentration of ribosomes.

As is the case with metabolic enzymes, the rate at which
ribosomes operate is dependent on kinetic and saturation fac-
tors, and the total ribosome concentration. Also like metabolic
enzymes, their activity may be modulated via changes to
activity and/or changes to abundance. The flux they carry is
the rate of protein synthesis per unit time; this rate is a critical
factor in the synthesis rate of biomass, as will be elaborated
on in the next section. Ribosomes in fast-growing cells tend
to operate very close to saturation, and the rate at which they
bind tRNA is nearly diffusion-limited [31]. That is to say,
they typically operate close to the maximum possible capac-
ity defined by physical constraints in exponentially growing
microbes.

During exponential growth, the fluxes carried by metabolic
enzymes and by ribosomes, including the synthesis of new
ribosomes, are all in balance. In both cases, rates depend di-
rectly on the abundance of the corresponding enzymes, which
share a precursor pool of amino acids. In the next section, the
consequences of this in the context of a total protein constraint
will be discussed.

rate of protein synthesis o< Keiong [Rbio],  (18)

IV. CONSTRAINTS ON PROTEIN EXPRESSION

Microbes can maintain balanced growth over a wide range
of conditions, including in the presence of sublethal antibiotic
concentrations, in conditions of osmotic stress, or even in
temperatures outside the optimal range. In suboptimal envi-
ronmental conditions, cells still achieve exponential growth,
but with reduced growth rate, 4 < fmax. This is possible
because different metabolic subnetworks are active in dif-
ferent nutrient and/or environmental conditions. Exquisite
control strategies have evolved to modulate the expression and

Elongation step
releases energy

o
kclong +

Elongation of the peptide chain

FIG. 3. Ribosomes are catalysts that make proteins. Ribosomes use transfer RNA (tRNA) molecules carrying specific amino acids as a
substrate. The tRNA, along with an energy source in the form of guanosine triphosphate (GTP), binds to the active ribosome to form a complex.
The GTP is hydrolyzed to release energy required to form a new peptide bond, resulting in an elongated polypeptide. Many elementary steps
are involved in ribosomal catalysis, but these can be lumped into three steps to yield similar kinetics to those of metabolic enzymes: (1)
formation of a complex, with rate constant &,,, (2) dissolution of the complex, with rate constant k., and (3) formation of a peptide bond and
concomitant release of the uncharged tRNA, with rate constant kcjone. Figure reproduced from [31].
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FIG. 4. Microbial physiology is intrinsically linked to growth
rate. In bacterial cultures in balanced growth, cellular composition
is uniquely defined by growth rate: on a per-cell basis, the RNA,
protein, and DNA masses all grow exponentially with growth rate.

activity of metabolic enzymes to balance rates even in sub-
optimal conditions, and the discovery and elucidation of the
molecular mechanisms underpinning such regulation contin-
ues to be an active research stream.

In what has been described as the “fundamental experi-
ments of bacterial physiology” [32], Maalge and collaborators
used this consistency of balanced growth to deliberately vary
the growth rate of exponentially growing microbial cultures
through environmental manipulation. They found that the size
and macromolecular composition of Salmonella cells exhibit
a characteristic growth rate dependence [33]. The average
cell volume increases roughly exponentially with growth rate,
approximately as 2* [34]. Consequently, cells growing with a
doubling time of 20 min are twice as large as those doubling
every 30 min, and four times as large as those doubling every
hour. Furthermore, irrespective of the chemical details of the
growth medium, the per-cell abundance of RNA, DNA, and
protein also exhibit an approximately exponential dependence
on u (Fig. 4),

DNA-per-cell oc 208%,
RNA-per-cell oc 2!, (19)

protein-per-cell o< 2#,

Since the per-cell protein amount and cell volume increase
with approximately the same growth rate dependence, the
protein concentration in cells exhibits little variation (<5%)
over most nutrient conditions [35,36].

Thus, even though cells must—and do—express different
enzymes in different environmental conditions to maintain
balanced growth, the protein content of those cells remains
approximately the same. This means that if the expression of
one group of proteins is upregulated to increase the concentra-
tion of those proteins, then the concentration of other proteins
must necessarily decrease to accommodate the change. For
example, if expression of the proteins required for glucose
assimilation is upregulated due to the presence of glucose in
the environment, then the concentrations of proteins required
to assimilate other carbon sources must decrease in response.
The empirical constancy of protein concentration provides
a strong constraint on protein expression in many micro-
organisms [37], but it has been best studied in E coli [38].

A. Growth-dependent macromolecular composition

Box 3: Balanced growth in sub-optimal conditions

Bacteria have a preferred carbon source with which they
can generate more biomass most rapidly, but they may
still achieve balanced growth at sub-optimal rates in media
containing carbon sources of reduced nutritional quality,
provided that other nutrients such as nitrogen are present
in sufficient excess. Microbial growth rates can also be di-
rectly modulated by growing cells in continuous cultures,
in which the rate of culture replacement defines the rate at
which cells must grow to remain.

Maalge and colleagues used these two approaches to
control the growth rate of fast-growing Salmonella cultures
by growing them on a wide range of culture media and
in continuous cultures with varied dilution rate [33]. They
then examined the relationships between various physio-
logical features of the cells in their cultures and the growth
rates of those cultures. Cell size, protein mass, RNA mass,
and DNA mass per-cell were measured very carefully, and,
remarkably, it was found that these physiological parame-
ters all scaled exponentially with the doubling rate, u [Eq.
(19), and Fig. 4].

In fast-growing microbial cells, a doubling in growth
rate yields almost 3 times as much RNA per cell, for exam-
ple. Maalge and colleagues showed that this relationship
was true in both batch cultures, in which nutritional quality
controlled growth rate, and in continuous cultures in which
growth rate is controlled by the culture dilution rate.

B. Global constraints on protein expression

This total protein constraint can be simply expressed by
substituting protein mass fraction in place of concentration.
These are proportional as long as the per-cell protein concen-
tration remains invariant [38]. If the protein mass fraction of
protein i is ¢;, then the total protein constraint is expressed
as

D di=1 (20)

Thus, if the mass fraction of one protein increases, there must
be a concomitant decrease in the mass fractions of one or more
other proteins.

In E coli, there is an empirical connection between the
enzyme-mediated reaction flux, the balanced growth rate, and
the total enzyme mass fraction under a large range of growth
conditions. The mass fraction of a given set of catalytic pro-
teins, ¢; (which includes metabolic enzymes and ribosomal
proteins), is often found to be a linear function of the growth
rate A [26,30,36],

0o A
bi=¢; +—. 2D
Ki
The total flux through reactions that are active in a given set
of conditions is often directly proportional to the growth rate,
A [8]. Comparison of Eq. (21) to the equation for irreversible
enzyme kinetics [Eq. (17)] then provides a possible interpre-
tation of the phenomenological parameters ¢! and «; [24,39]:
the former is the mass fraction of non-flux-carrying protein
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that arises because enzymes may not operate at saturation,
while the latter is a measure of the catalytic turnover of the
active fraction.

Rearrangement of Eq. (21) yields an expression for growth
rate in terms of the active protein fraction:

1

(¢i —¢)) = ,\<—>. (22)

Ki

Here, the relationship is written to show that a rate, A,
multiplied by a factor capturing resistance to flux, 1/k;, is
equivalent to a potential—the flux-carrying portion of the pro-
tein mass fraction. This is mathematically and conceptually
equivalent to Ohm’s law, V = iR, in which a potential (V) is
equivalent to the product of a flux (i) and resistance thereto
(R).

Essentially, in analogy with electrical circuit elements, the
protein cost associated with a particular enzyme-mediated
reaction ¢; has the form of a battery (¢?) in series with a
resistor (1/k;), where the battery is always oriented to oppose
the flow of current (A):

growth rate, A

% ANAN
g Um

The remainder of this tutorial explores the consequences of
this linear empirical relationship, along with other constraints
that are active during balanced growth—flux balance at reac-
tion nodes [Eq. (10), elaborated in Sec. II] and the total protein
constraint [Eq. (20)]. Together, these yield a framework for
quantifying microbial physiology that is mathematically iden-
tical and conceptually analogous to Kirchhoff’s circuit laws
and Ohm’s law under the following associations:

Metabolism

i Precusor
Catabolism | Metabolites

Anabolism

Nutrients

Electrical Physiological Electrical Physiological
variables variables constraints constraints
current reaction growth Kirchhoff’s dZ Jn=0
i flux j; < rate A junction rule Eq. (10)
voltage protein mass Kirchhoff’s Y, ¢ =1
14 fraction ¢; loop rule Eq. (20)
conductance catalytic Ohm’s (i — ¢?) = %
1/R constant k; law Eq. (22)

A remarkable feature of networks composed of batteries
and resistors is that they can be coarse-grained into smaller
equivalent networks, again composed of only batteries
and resistors. In the analogy with enzyme kinetics and
bacterial physiology, this coarse-graining is tantamount to
replacing large subsets of the metabolic network with a single
effective enzymatic reaction characterized by two effective
phenomenological parameters, the non-flux-carrying offset
¢? and the effective catalytic constant «;. In the next section,
the origin and consequences of this coarse-graining scheme
are outlined.

V. NETWORK EQUIVALENCE AND PROTEOMIC
COARSE-GRAINING

Bacterial growth and proliferation is driven by a large and
complex network of enzyme-catalyzed reactions. Analysis
of this network is greatly simplified by the existence of a
pervasive hierarchical assembly of modules. A quantitative
analogy with electrical circuit analysis can be applied to this
modular design that provides a framework for coarse-graining
the complex network into empirically determined large-scale
modules, a framework called “Ohmics” [40].

A. Bow tie topology and one-port networks

Many complex systems, both arising naturally or
engineered synthetically, exhibit common principles of

Protein synthesis

Amino acids i

Elongating
Ribosomes

Genes

L—— Protein

FIG. 5. Bacterial metabolism and protein synthesis exhibits recurrent “bow tie” architecture, typified by diverse inputs canalized toward
an intermediate “knot” of precursors that are used to synthesize a diversity of outputs. In the case of metabolism, catabolic enzymes break
down environmental nutrients into approximately a dozen different precursor metabolites that are used by anabolic enzymes to synthesize
a variety of molecules, including amino acids. Similarly, the transcriptional machinery converts diverse genetic sequences into a pool of 22
different elongating ribosomes that translate these genes into a diversity of proteins, consuming the amino acids produced by metabolism.
The synthesized proteins feed back into each module (dashed arrows), creating an autocatalytic loop that defines cellular proliferation. These
large-scale topological features are conserved among micro-organisms, although the regulatory strategies used to coordinate modules exhibit
considerable variation among species. Redrawn after Csete and Doyle [42].
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FIG. 6. The modular architecture of metabolism and protein syn-
thesis suggests a simple coarse-graining of the autocatalytic loop
underlying bacterial proliferation.

composition [41-43]. Chief among these is a “bow tie” ar-
chitecture that recurs throughout the network. In bacteria, for
example, external nutrients are broken down via catabolism
into a pool of a dozen precursor metabolites, and these pre-
cursors “fan out” to feed biosynthetic anabolic reactions [44].
Some of these biosynthetic products, including amino acids,
then feed a second “bow tie” that converts genetic information
into protein via a “knot” of translating ribosomes (Fig. 5).

There are several advantages conferred by a modular bow
tie design. The central “knot” provides a natural control point
to exert regulation of large-scale flux through the network.
Moreover, the material feeding the “knot” can be swapped in
or out between species via horizontal gene transfer, making
this design both robust and evolvable [42,45,46].

The unidirectionality implied by the “bow tie” metaphor
tends to obscure the essential feature of microbial
proliferation—bacterial metabolism is an autocatalytic
loop, with protein catalysts assimilating nutrients from
the environment to create more of themselves [43,47,48]
(Fig. 5, dashed arrows). The electrical circuit analogy to a
modular, bow tie network is the series assembly of one-port
networks (Fig. 6), connected in a closed loop to capture the
autocatalytic feedback (Fig. 6, dashed line).

This collection of one-port networks is obviously a vast
simplification of the complex underlying network, yet it is
able to capture large-scale features of protein expression and
flux upon shifts in growth conditions of the bacterium [38].
Furthermore, the electrical circuit analogy points to a method
by which this coarse-grained representation can be empiri-
cally determined using “equivalent circuits.”

!

B. Thévenin equivalent circuits

Helmbholtz and Thévenin independently derived what is
now called “Thévenin’s theorem”: a network of voltage
sources and resistors, irrespective of the complexity of their
interconnections, can be replaced by an equivalent circuit
composed of a single equivalent voltage source, Vi, and
a single resistor, Ry,. Empirically, Vi, is determined by the
open-circuit potential across the terminals, whereas Ry, is
determined by the short-circuit current flow between the ter-
minals (and application of Ohm’s law) (see Fig. 7).

Imagine the simplest bacterial reaction network: a single
enzyme catalyzing a single reaction. For most reactions during
balanced growth, flux through such a reaction is propor-
tional to the growth rate [8]. The open-circuit potential of the
Thévenin circuit in this scenario corresponds to zero growth
rate in the Ohmics analogy, which is incompatible with the
balanced growth condition. To overcome this limitation, the
current through the reaction (i.e., growth rate) is varied instead
through manipulation of nutrient quality, and the correspond-
ing linear change in potential (i.e., the protein mass fraction) is
measured via proteomics. When protein mass fraction is plot-
ted against growth rate, the zero-growth intercept provides the
offset mass fraction ¢? and the slope is the inverse effective
catalytic constant 1/x;.

Surprisingly, this same approach can be applied at the net-
work level. The overall constraint on the protein mass fraction
[Eq. (20)] and the decomposition of enzyme protein mass
fraction into a flux-carrying resistor and an opposing non-
flux-carrying potential provides analogous prerequisites for
the application of Thévenin’s theorem. Moreover, the modular
“bow tie” architecture suggests that serial decomposition is
possible.

The earliest example of this type of coarse-graining was the
observation by Neidhardt and Magasanik [27] that the total
RNA content of the cell, which is proportional to the riboso-
mal protein mass fraction, ¢r, exhibits a linear dependence on

FIG. 7. A useful property of one-port networks composed of resistors and batteries is the coarse-graining afforded by a Thévenin equivalent
circuit. Irrespective of the topological details, and arrangement of the elements, the network behavior is identical to a single battery (with
potential Vi) in series with a single resistor (with resistance Ry,). These elements are determined by the open-circuit potential and the short-

circuit current, respectively.
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FIG. 8. (a) If the growth rate is modulated via the nutrient quality
of the medium (e.g., by changing the carbon source, or supple-
menting the medium with amino acids), then the mass fraction of
proteins responsible for protein synthesis exhibits a positive linear
correlation with growth rate [29]—the symbols denote media sup-
port slow growth (triangle), moderate growth (diamond), and rapid
growth (pentagon). (b) In the electrical circuit analogy, the intercept
provides the offset potential ¢9 that opposes the current, and the
slope provides the resistance 1/kg.

the growth rate when the growth rate is modulated [Fig. 8(a)].
In the circuit analogy, the inverse slope of this linear relation-
ship is the conductance, kg [29], and the zero-growth intercept
is the non-flux-carrying offset, ¢g [31] [Fig. 8(b)]. It is not
difficult to imagine the translational machinery as a fixed
catalog of proteins (including ribosomal subunits, initiation
factors, elongation factors, etc.; see Table 4 of Ref. [4]) that
operate in concert under all growth conditions. But what about
a characterization of the heterogeneous, condition-dependent
metabolic protein fraction?

1. Anticorrelations among protein sectors

By virtue of the total protein constraint [Eq. (20)], or
equivalently Kirchhoff’s loop law, it can be inferred that the
metabolic protein fraction can be characterized by observing
the complementary response of the ribosomal protein frac-
tion, ¢R, to decreases in conductance, kg (Fig. 9). In E coli,

v = G
Enforcingthe — Uncharacterized
proteome partitioning r) remainder of the
constraint (Eq. 16) proteome
Antibiotic
10
1 / KR (DR
~——

¢R Protein synthesis

FIG. 9. The constraint on the total protein mass fraction (anal-
ogous to Kirchhoff’s loop law) provides a simple strategy to infer
the coarse-grained parameters characterizing the remainder of the
circuit. By modulating the rate of protein synthesis via k, either us-
ing a chemical probe like ribosome-targeting antibiotics or a genetic
probe like slow-translating mutations to the ribosome, it is possible
to modulate the growth rate [29]. As in Fig. 8, tracking the mass
fraction of protein-synthetic proteins ¢r then provides the resistor
and offset associated with the remaining circuit.

antibiotics that target the ribosome (e.g., chloramphenicol,
tetracycline, kanamycin) lead to an effective decrease in the
conductivity, kg, and a commensurate increase in the total
mass fraction of the protein synthetic machinery.

Mechanistically, in response to the decrease in protein
synthesis flux elicited by the antibiotic, E coli synthesizes
a small molecule (ppGpp) that upregulates the production
of the protein synthetic machinery [49,50]. Empirically, this
antibiotic-mediated decrease in xg appears to have a negli-
gible effect on the efficiency of metabolic enzymes and so
provides a chemical method of modulating «g alone. The
result is a negative linear correlation between the mass frac-
tion of the protein synthetic machinery and the growth rate
[Fig. 10(a)].

As with the response of the protein synthesis machinery to
changes in nutrient quality (Fig. 8), the slope of the response
corresponds to the equivalent conductance, ky, through the
metabolic part of the circuit, whereas now the zero-growth
intercept ¢g** corresponds to the total remaining potential
after accounting for the offset in the nonribosomal protein
fraction, g™ =1 — qbf\),[, characterizing the two-module elec-
tric circuit analogy that captures the growth-rate dependence
of the protein-synthetic machinery under conditions of nu-
trient change and antibiotic inhibition of ribosome synthesis
[Fig. 10(b)].

Other modes of growth inhibition, for example modulation
of the carbon uptake, serves to further partition the proteome
into modules, or sectors, that respond in concert to the per-
turbation. In this way, Hui et al. [26] created a six-sector
coarse graining of the proteome identified as those proteins
upregulated in response to inhibition of protein synthesis (R),
carbon uptake (C), amino acid biosynthesis (A), both carbon
uptake and amino acid biosynthesis (S), in addition to proteins
exhibiting growth-rate dependent change in expression but not
responding to any inhibitions (U), and proteins exhibiting no
growth-rate dependence in expression (O). Figure 11 provides
a concise visualization of this empirical decomposition of
proteome sectors.

The two-component proteome partitioning (Fig. 10) and
the more detailed six-component partitioning (Fig. 11) both
illustrate the utility of directed growth-perturbations. For ex-
ample, in E coli the inhibition of protein synthesis [Fig. 10(a);
Fig. 11, green arrow] acts like a rheostat (see Sec. VIA),
increasing the resistance of the protein-synthetic component
of the circuit. As a consequence, the potential drop (i.e., mass
fraction) increases across the protein-synthesis resistor, and
at the same time the potential drop across all other resistors
decreases with the decreasing current (i.e., growth rate). Use-
ful probes of circuit function are those chemical or genetic
perturbations that result in the direct increase of one proteome
sector and the indirect decrease of all others (Fig. 11, colored
arrows).

The proteome fractions ¢c, ¢s, ¢a, and ¢y in addi-
tion to their shared response to growth-perturbations also
share a common function [26], with their coordinated re-
sponse mediated by global regulators. In E coli, for example,
the response to catabolic limitation (Fig. 11, red arrows)
is mediated by cAMP-Crp [51], whereas the response to
protein-synthesis inhibition is mediated by ppGpp [50]. Given
the common architectural features in microbial metabolism
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FIG. 10. (a) The open symbols are as in Fig. 8. Starting from a given growth medium, for example the medium supporting rapid growth
(pentagon), increasing concentration of a ribosome-targeting antibiotic results in a negative linear correlation between the growth rate and the
mass fraction of protein-synthesis proteins ¢r (increasing gray-scale). (b) In the simple circuit representation, the intercept in panel (a) provides
an estimate of the offset associated with metabolic proteins, ¢, and the slope provides the resistance 1/iy [29]. In that analogy, changes in
nutrient quality act to modulate the metabolic resistor 1/ky;, whereas inhibition of protein synthesis modulates the resistor 1/«g. (¢) From the
intersection of the two lines in panel (a), or from the circuit analogy in panel (b), the growth rate (current) can be expressed in terms of the four

phenomenological parameters {kg, km, P2, Py }-

(Fig. 5), the general topology of the metabolic network
revealed by growth-inhibitory “probes” used on E coli is
expected to be largely conserved among micro-organisms.
Yet, given the tremendous variety of species-specific global
regulatory logic [52,53], the growth-inhibitory probes used to
query the network are likewise expected to exhibit tremendous
species-specific variety.

Mathematical models of biological systems must balance
the opposing demands of utility and simplicity. Gene deletion
libraries [54], or libraries of individually inducible metabolic
enzymes [55], can be used as “probes” at the level of single
genes, and thereby provide a comprehensive mapping of the
correlated expression of expressed proteins in a given growth
environment [56]. The Thévenin-type coarse-graining is per-
haps most relevant when perturbations identify a small set of
phenomenological parameters that capture the system behav-
ior in a comparatively simple model. Like the tension between
hydrodynamic mean-field equations and molecular-dynamics
simulation, or thermodynamics and statistical mechanics, the
utility of a coarse-grained approach depends upon the exper-
imental context and the details of the problem for which a
mathematical model is the solution.

C. Ohmics

Flux balance analysis is a useful modeling framework
that can be modified to accommodate a variety of additional

constraints [57], including the constant protein concentra-
tion constraint [58]. However, the high-dimensional network
fluxes it predicts can be difficult to analyze. The projection
of these onto simple potential-resistor networks (an approach
that Vincent Danos has called “Ohmics”) provides a comple-
mentary mode of analysis. The resultant modeling framework
provides several advantages over traditional flux-balance
analysis.

(1) Implicit direct global regulation: Growth-inhibitory
probes used to partition in the proteome identify large frac-
tions of the proteome that are effectively regulated by a global
effector. For example, proteins found in the C and S sectors in
Fig. 11 are upregulated by cAMP-Crp, with S sector proteins
exhibiting combinatorial control with whatever (currently un-
known) effector upregulates the A sector proteins in response
to anabolic limitation.

(ii) Hierarchical coarse-graining: Thévenin’s theorem pro-
vides a theoretical justification for the decomposition of the
proteome into increasingly-fine-grained sectors so that, for
example, growth-inhibitory probes could be found to actively
upregulate proteins responsible for fatty-acid or nucleotide
synthesis.

(iii) Indirect regulation and anticorrelated response:
The Ohmics circuit contains the constant-protein-
concentration constraint implicitly as Kirchhoff’s loop
law [Eq. (20)]. The directed upregulation of one sector of
the proteome can be used to infer the characterization of the
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FIG. 11. (a) The concerted response of different proteins in
response to different probes allows for a coarse-graining of the
proteome. For example, in E coli modulating the carbon uptake rate
(red) or the rate of amination (blue) further partitions the metabolic
bow-tie in Fig. 5. In this way, Hui et al. [26] distinguish among
proteins that are upregulated only in response to inhibition of carbon
uptake (¢c), those only upregulated to inhibition of the amination
rate (¢4 ), those that are upregulated along with both C and A proteins
(¢s), a growth-dependent fraction that is not upregulated by either
probe (¢y), and finally a sector exhibiting no growth rate dependence
(¢o = ¢3). The empirical growth dependence is summarized in the
simple circuit, where the flux-carrying fraction of each protein sector
is denoted by the potential drop across the resistors, A¢;. (b) As with
the two-sector coarse-graining shown in Fig. 10, with the nonriboso-
mal proteins further divided into additional sectors, the growth rate
A is expressed in terms of 11 phenomenological parameters (the O
sector carries no flux, and so there is no associated resistor 1/kop).

remainder of the proteome, as was done in Fig. 10. Another
consequence of the loop law is that if a non-flux-carrying
heterologous protein is produced by E coli, effectively
producing a synthetic offset, then the growth rate is predicted
to decrease linearly with the mass fraction of the expressed
protein [29], and this growth rate decrease is unavoidable.

Modification and extensions can be simply accommodated
in this framework. For example, growth on two (or more)
co-utilized carbon sources would introduce resistors arranged
in-parallel within the 1/«c resistor shown in Fig. 11 [40,59].
In the next section, we consider in detail applications where
the Ohmics model shown in Figs. 10(b) and 11 provides an
essential physiological chassis.

VI. APPLICATIONS

The Ohmics framework provides a set of quantitative con-
straints that operate on mechanistic models. In this final
section, two case studies are presented: growth-dependent
susceptibility to ribosome-targeting antibiotics, and network
constraints on evolutionary adaptation.

A. Interfacing physiological constraints
with mechanistic models

In the previous section, ribosome-targeting antibiotics were
used as a means to modulate the conductance «g through the
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FIG. 12. A predictive model connecting antibiotic concentration
with growth rate can be constructed using a mechanistic model
for antibiotic transport and binding constrained to reproduce the
empirical coupling between growth rate and the mass fraction of
protein-synthesis proteins predicated on the physiological circuit.

ribosomal protein fraction in order to characterize the other
coarse-grained elements in the circuit (see Fig. 9). But the
relationship between the concentration of antibiotic and the
growth rate is, itself, an important measure of antibiotic effi-
cacy and of primary importance for the treatment of bacterial
infection. To bridge the connection between applied antibiotic
concentration and bacterial growth rate requires interfacing
a mechanistic chemical-dynamics model for antibiotic trans-
port and binding with the physiological “Ohmics” model
(Fig. 12).

A simple model would contain, at minimum, the intracellu-
lar concentrations of the antibiotic (a), the unbound ribosome
(r.), and the bound ribosome (rp). If the cells are growing
with growth rate A in the presence of an external antibiotic
concentration, d.x, then the three state variables are coupled
via the governing differential equations,

d
d—j = —\a — konary, + kogtrp + J(a, Aex), (23)
dr,
o = —Ary, — konar, + kogerp + s(A), (24)
dr,
2b iy + konars — kogr, (25)

dt

where ko, and kog characterize the binding and unbinding
of the antibiotic, J(a, dex) = Pindex — Poyta 18 the transport of
antibiotic in and out of the cell, and s(A) is the synthesis rate
of new (unbound) ribosomes. This is a simple mechanistic
model, and yet it is not solvable. First, the system is not
closed: the growth rate, A, is an unknown that is a desired out-
put. Second, the synthesis rate s()) is currently unspecified.
Both of these difficulties are overcome by forcing the simple
model to be consistent with the intrinsic coupling between
the ribosomal content and the growth rate required by the
“Ohmics” circuit [Fig. 10(a)].

In the absence of antibiotic, the growth rate depends lin-
early on the (unbound) ribosome concentration, and it is
assumed that the same is true in the presence of antibiotics:
A o krry [Fig. 10(a), open symbols]. That provides a fourth
equation determining A and thereby closing the system. In
the presence of antibiotics, at steady-state the total ribosome
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FIG. 13. The simple mechanistic model [Eq. (25)] produces qualitatively different behavior depending upon the binding affinity between
the antibiotic and the ribosomal target [60]. For low-affinity binding antibiotics (e.g., chloramphenicol and tetracycline), both the model and
experiments produce Langmuir-like inhibition curves, with half-inhibition concentration ICs, that is inversely related to the drug-free growth

rate Ao (upper panels, symbols as in Fig. 8). Here, A¢p™* =

1 — ¢9 — @3 denotes the maximum potential drop across the resistor 1/kg. By

contrast, for high-affinity binding antibiotics (e.g., kanamycin and streptomycin), the model and experiments produce sigmoidal inhibition
curves, with half-inhibition concentration ICs, that is directly related to the drug-free growth rate. The constant of proportionality converts
from mass-fraction on the right-hand side to concentration of the left. Furthermore, the abrupt drop in growth rate at the half-inhibition
concentration behaves like an undervoltage lockout (UVLO) placed across the metabolic protein fraction.

concentration ry + rp is again linearly dependent on the
growth rate [Fig. 10(a), gray scale symbols]. The steady state
of the second and third model equations [Egs. (24) and (25)]
defines the synthesis rate, s(1), as simply A x the black line
in Fig. 10(a) [60].

Solving the model equations [Eqgs. (23)—(25)] at steady
state, subject to the “Ohmics” constraints, reveals that
ribosome-targeting antibiotics produce qualitatively different
behavior based on their binding affinities. If the dissociation
constant Kp = kogr/kon is large (as is the case with chlo-
ramphenicol and tetracycline), then the growth rate, A, is a
concave up function of the antibiotic concentration, and the
half-inhibition concentration (Fig. 13, dashed) is negatively
correlated with the drug-free growth rate. That is, low affinity
ribosome-targeting antibiotics are more effective against fast-
growing bacteria.

High-affinity antibiotics (such as the aminoglycosides
kanamycin and streptomycin) exhibit qualitatively different
behavior: the growth rate, A, is a concave-down function of the
concentrations of these antibiotics, and drops to zero growth
at the half-inhibition concentration. In the “Ohmics” model,
these high-affinity antibiotics effectively add an undervoltage
lockout across the metabolic part of the circuit. Once the po-
tential drop across the metabolic resistor, 1/ky, drops below
half its drug-free potential, the circuit breaks and the growth
rate drops to zero. Furthermore, the half-inhibition concen-
tration is positively correlated with the drug-free growth rate;

high affinity ribosome-targeting antibiotics are more effective
against slow-growing bacteria.

In Figs. 9 and 10, a low-affinity antibiotic was used as
a probe to effectively increase the resistor 1/xg. From the
mechanistic model for antibiotic binding [Egs. (23)—(25)], it
would seem more appropriate to treat the antibiotic action as
an increase in the offset, ¢g, corresponding to the nontrans-
lating bound ribosomes, r,,. For the purposes of characterizing
the nonribosomal circuit elements, all that matters is that the
probe increases the potential drop across the protein-synthesis
machinery (i.e., it results in a targeted increase in the protein
mass fraction ¢r); for low affinity ribosome-targeting antibi-
otics, however, changes in the offset, ¢g, are equivalent to
changes in the resistor, 1/kg. This can be demonstrated by
assuming equilibrium transport, so that the internal antibi-
otic concentration, a, is proportional to the external antibiotic
concentration dex: @ = (P /Pout) dex, then making the substi-
tution [46]

a

KR > KR T Ky (26)

in the growth rate expression shown in Fig. 10(c). This pro-
duces the same growth rate, A, as shown in the upper panel of
Fig. 13. That is to say, for the low-affinity case, the effect of
the ribosome-targeting antibiotic can be either thought of as a
dynamic partitioning of the ribosomes into a subset that does
not translate (r,) and a subset translating at full-speed (7,)
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(this would be represented as a change in the offset ¢ ), or as
an averaged response where all ribosomes translate the same
reduced rate given by Eq. (26) (this would be represented as a
change in the resistance 1/kR).

B. Network constraints on evolutionary adaptation

The “Ohmic” model quantitatively links the three primary
constraints on the exponential growth of bacteria: flux bal-
ance, constant protein concentration, and enzyme-catalyzed
reaction rates. On the long timescales of adaptive laboratory
evolution, these same constraints persist if the majority of the
proliferation time is spent in balanced growth.

There are several interesting tradeoffs that could arise
when evolutionary selective pressure abuts intrinsic physio-
logical constraints. Pinheiro et al. [61], for example, found
that when E coli adapts to low concentrations of the high
affinity ribosome-targeting antibiotic streptomyin, a common
resistance pathway is a diminished function in nutrient uptake
transporters that also uptake streptomycin. They model this as
an effective decrease in the metabolic conductivity, k), shown
in Fig. 12, leading to a decreased drug-free growth rate. The
tradeoff is that, for high affinity ribosome-targeting antibi-
otics, the antibiotic becomes more effective as the drug-free
growth rate decreases (triangle in the lower panel of Fig. 12).
Using a constrained metabolic model, the authors were able
to quantitatively predict the coupling between the drug-free
growth rate of the resistant mutants and the level of antibi-
otic resistance over a large range of antibiotic concentrations.
Furthermore, they were able to predict the concentration of
antibiotic exposure at which off-target transporter mutations
became unfeasible, and mutations in the ribosome target be-
gan to dominate.

One would expect that similar “Ohmic” constraints would
help direct adaptation trajectories under evolutionary selective
pressure. One of the longest-running (and currently ongoing)
adaptive laboratory evolution studies was started by Lenski in
1988 adapting E coli to growth in glucose and citrate as the
sole carbon sources [62]. The six-component circuit analogy
shown in Fig. 11 can be used to project the hundreds of genetic
changes that accrued over the course of adaptation in this
experiment onto the small set of phenomenological circuit
parameters.

After 40 000 generations of adaptation in glucose, most of
the circuit parameters remain unchanged except for a marked
decrease in the offsets qbg, ¢g, and qﬁg. The decrease in q)g
comes from a regulated decrease in the expression of an un-
necessary porin, OmpF [63]. The decrease in ¢} and ¢ comes
from enzymes in close network association with a deleted
enzyme connecting glycolysis to the tricarboxylic acid (TCA)
cycle, pyruvate kinase PykF [39].

The enzyme PykF is the target of a flux-sensing mecha-
nism [64,65] that acts as a speedometer coordinating the flux
through upper glycolysis with the flux through the TCA cycle.
The “Ohmic” analysis of the Lenski strains led Mori et al.
[39] to a simple mechanistic model that extends the analy-
sis in Sec. III from irreversible kinetics to include allosteric
regulation and reversibility. Their claim is that deletion of
the flux-sensing mechanism mediated by PykF leads to an
increase in enzyme efficiency via substrate saturation, and

they predict that loss of flux-sensing mechanisms could be a
generic response to evolutionary adaptation.

VII. CONCLUSIONS

Mathematical models of biological systems can be over-
whelmingly complex. Bacterial growth physiology, however,
is characterized by simple empirical constraints linking gene
expression and growth rate that promise a similarly simple
predictive framework governing suitably chosen state vari-
ables [1,33].

In balanced growth, the empirical constraint of near-
invariant protein concentration, along with the ubiquity
of enzyme-catalyzed reaction kinetics, provides a mathe-
matical framework for linking protein mass fraction and
reaction flux to growth rate under a range of growth condi-
tions. This “Ohmics” approach is a one-to-one mapping of
electrical circuit analysis applied to a collection of resistors
and batteries. The framework, beyond computational effi-
ciency, inherits the operating constraints of electric circuits
(including Thévenin equivalence) that provide a mechanistic
justification for coarse-graining complex biochemical reaction
networks into simple circuit analogies.

The biochemical origin of the resulting phenomenologi-
cal circuit parameters has only recently been clarified in the
case of irreversible enzyme kinetics [24], and more gener-
ally applied in the context of reversible kinetics subject to
post-transcriptional regulation [39]. By way of illustration, we
discuss several case studies where simple mechanistic models
yield unexpected, but experimentally verifiable, conclusions
when tethered to an Ohmics chassis [39,60,61].

Constraints-based metabolic network analysis shares the
limitations of any phenomenological theory insofar as they
capture coarse-grained empirical behavior but are agnostic to
the mechanistic origins of that behavior. As with the anal-
ysis of electrical phenomena [66], it can be challenging to
rationalize how molecular interactions give rise to simple
empirical relations [50]. Metabolic network analysis is fur-
ther limited by the heterogeneous implementation of network
connectivity. For an electrical circuit, the wires and resistors
are homogeneous, static building blocks, and modulating the
current through any particular wire is straightforward. In con-
trast, the connecting elements among the nodes of a metabolic
network are a mixture of chemically distinct substrate and ef-
fector molecules. Identifying modes of growth inhibition [e.g.,
the “probes” in Fig. 11(a)] that lay bare the coarse-grained
structure of the network requires educated guesswork, and
there is no reason to suppose that the same probes that have
been successful in the analysis of E coli will have the same
success in other organisms.

For a physicist, bacterial physiology presents an interest-
ing historical inversion. Whereas in physics the macroscopic
thermodynamic investigations of the 1800s gave way to the
microscopic statistical mechanics of the early 1900s, in mi-
crobiology we have something like the reverse. The past
50 years have seen a proliferation of large-Ohmics data sets
under a wide variety of growth conditions for multifarious
organisms. Like Kepler with Brahe’s notebooks, this wealth
of data presents the opportunity for “synthetic” biology in
the alchemical sense: synthesizing disparate details into an
intelligible whole.
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