Hodge Decomposition Theorem

Jonathan (Shao-Kai) Huang April 23, 2025

(Extra exercise 2 of homework 8 from the linear algebra II course.)

Let V be a finite-dimensional complex inner product space. Let d be a linear operator on V such that $d^2 = 0$, and let δ be the adjoint of d (i.e., $\delta = d^*$).

- (a) Prove that $\ker d\delta \subseteq \ker \delta$ and $\ker \delta d \subseteq \ker d$.
- (b) Set $\Delta = d\delta + \delta d$. Show that $\ker \Delta = \ker d \cap \ker \delta$.
- (c) Prove that there exists an orthogonal decomposition $V = \ker \Delta \oplus \operatorname{Im} d \oplus \operatorname{Im} \delta$, which is called the **Hodge decomposition**.
- (d) Prove that $\ker d / \operatorname{Im} d \simeq \ker \Delta$.

Proof.

- (a) Suppose $x \in \ker(d\delta)$, then $\langle d\delta x, x \rangle = 0 = \langle \delta x, \delta x \rangle$, so $x \in \ker \delta$. Hence $\ker(d\delta) \subseteq \ker \delta$. Suppose $x \in \ker(\delta d)$, then $\langle \delta dx, x \rangle = \langle dx, dx \rangle = 0$, so $x \in \ker d$. Hence $\ker(\delta d) \subseteq \ker d$.
- (b) (\subseteq): Suppose $x \in \ker \Delta$, then $(\delta d + d\delta)x = 0$, so $\langle (\delta d + d\delta)x, x \rangle = 0 = \langle \delta dx, x \rangle + \langle d\delta x, x \rangle = \langle dx, dx \rangle + \langle \delta x, \delta x \rangle$. Hence $\langle dx, dx \rangle = \langle \delta x, \delta x \rangle = 0$, hence $\delta x = dx = 0$, and $\ker D \subseteq \ker d \cap \ker \delta$.
 - (\supseteq) : Suppose $x \in \ker d \cap \ker \delta$, then $\Delta x = (\delta d + d\delta)x = \delta(dx) + d(\delta x) = 0$, so $x \in \ker \Delta$, and $\ker d \cap \ker \delta \subseteq \ker \Delta$.
- (c) The goal is to show that $\ker \Delta$, $\operatorname{Im} d$, and $\operatorname{Im} \delta$ are mutually orthogonal and that $V = \ker \oplus \operatorname{Im} d \oplus \operatorname{Im} \delta$.
 - (a) $\ker \Delta \perp \operatorname{Im} d$: Let $x \in \ker \Delta$ and $y = dx \in \operatorname{Im} d$ for some $z \in V$. Then $\langle x, y \rangle = \langle x, dz \rangle = \langle \delta x, z \rangle = 0$, since $\ker \Delta = \ker d \cap \ker \delta \subseteq \ker \delta$, from (b).
 - (b) $\ker \Delta \perp \operatorname{Im} \delta$: Let $x \in \ker \Delta$ and $y = \delta z \in \operatorname{Im} \delta$ for some $z \in V$. Then $\langle x, y \rangle = \langle x, \delta z \rangle = \langle dx, y \rangle = 0$, since $\ker \Delta \subseteq \ker d$, from (b).
 - (c) Im $d \perp$ Im δ : Let $x = du \in$ Im d and $y = \delta v \in$ Im δ , for some $u, v \in V$. Then $\langle x, y \rangle = \langle du, \delta v \rangle = \langle d^2u, v \rangle = 0$, since $d^2 = 0$.

Therefore, $\ker \Delta$, $\operatorname{Im} d$, and $\operatorname{Im} \delta$ have pair-wise trivial intersection and are all finite dimensional, so it suffices to show that $\dim V = \dim(\ker \Delta) + \dim(\operatorname{Im} d) + \dim(\operatorname{Im} \delta)$. It is a property of the adjoint on finite dimensional inner product spaces that $\ker d = (\operatorname{Im} \delta)^{\perp}$ and $\ker \delta = (\ker d)^{\perp}$, so $\ker \Delta = (\operatorname{Im} \delta)^{\perp} \cap (\operatorname{Im} d)^{\perp} = (\operatorname{Im} \delta + \operatorname{Im} d)^{\perp}$. Then

$$\dim(\ker \Delta) = \dim((\operatorname{Im} \delta + \operatorname{Im} d)^{\perp})$$

$$= \dim V - \dim \operatorname{Im} d - \dim \operatorname{Im} \delta + \dim(\operatorname{Im} d \cap \operatorname{Im} \delta)$$

$$= \dim V - \dim \operatorname{Im} d - \dim \operatorname{Im} \delta,$$

where the last term vanishes by orthogonality, hence the desired result.

(d) Consider the map $\phi : \ker \Delta \to \ker d / \operatorname{Im} d$, defined by $h \mapsto h + \operatorname{Im} d$. The quotient is well-defined since $\operatorname{Im} d$ is a subspace and $\operatorname{Im} d \subseteq \ker d$ by $d^2 = 0$. Furthermore, since $\ker \Delta = \ker d \cap \ker \delta$, $h \in \ker d$. Suppose $h \in \ker \phi$, then $h \in \operatorname{Im} d$, so $h \in \operatorname{Im} d \cap \ker \Delta = \{0\}$, since $\operatorname{Im} d \perp \ker \Delta$ by (c). Thus ϕ is injective. For any $h + \operatorname{Im} d \in \ker d / \operatorname{Im} d$, we can write $h = h' + d\alpha + \delta\beta$ for some $h' \in \ker \Delta$ and $\alpha, \beta \in V$ by the Hodge decomposition. Then $dh = dh' + d^2\alpha + d^2\beta = 0$, since $h \in \ker \Delta \subseteq \ker d$. Then $d\alpha + \delta\beta = h - h' \in \ker d$, $d^2\alpha + d\delta\beta = d\delta\beta = 0$, so $\beta \in \ker(d\delta) \subseteq \ker d$. Therefore $h = h' + d\alpha \in \ker \Delta \oplus \operatorname{Im} d$ and ϕ is

surjective, hence it is bijective. Finally, $\phi(h+ck)=(h+ck)+{\rm Im}\,d=(h+{\rm Im}\,d)+x(k+{\rm Im}\,d)=\phi(h)+c\phi(k)$ for all $h,k\in\ker d,c\in F$, so ϕ is linear. Hence, ϕ is an isomorphism and

$$\frac{\ker d}{\operatorname{Im} d} \simeq \ker \Delta.$$

Remark. The quantity on the left hand side is the first cohomology group H^1 , and the isomorphism implies that every cohomology class has a unique representative in ker Δ , called the harmonic representative.