Homework 11

Linear Algebra I, Fall 2024
# & L B12202004
November 27, 2024

Remark. In this homework, the characteristic polynomial of an n x n matrix A is defined by
cha(zx) := det(xl, — A)

as in the lecture.

Exercise 1 (Section 5.1, 2(d)(f)). For each of the following linear operators T" on a vector space
V and ordered bases B, compute [Tz, and determine whether 5 is a basis consisting of eigenvectors
of T

T(a+bx + cx?) = (—4a + 2b — 2¢) — (Ta + 3b + 7c)x + (Ta + b + 5¢)z?,
and B = {x — 22, -1+ 22, -1 — 2z + 2%}.

(f) V = Mayo(R),
T a b\ _ (—Ta—4b+4c—4d b
c d)  \—-8a—4b+5c—4d d)’

and
B_{1o 1 2\ (1 0 —10}
- 1 0/’\0 0/)’\2 0/)°’\0 2/))°
Solution 1.
(d) Compute the following:
T(x—2?) =4+ 4z — 4 = —4(—1 — z + 2?),
T(—142%) =2 —22% = —2(—1 4+ 2?),
T(—1—z+ %) = 3(zx — 2?).

Then the matrix representation of T" in the ordered basis B is

0 0 3
Tls=|0 -2 0
-4 0 0

Since [T is not diagonal, B is not a basis consisting of eigenvectors of 7.

1 0 1 0
(i o)== 0)
-1 2 -1 2
(o 0)=(0 o)
1 0 1 0
(3 0)=(2 o)
-1 0 -1 0
(4 5)=(0 )
Then the matrix representation of T" in the ordered basis B is [Tz = diag(—3,1,1,1). Since
[T]s is diagonal, B is a basis consisting of eigenvectors of T'.

(f) Compute the following:



Exercise 2 (Section 5.1, 3(d)). For the matrix

2 0 -1
A=|4 1 4| € ngg(R),
2 0 -1

(i) Determine all the eigenvalues of A.
(ii

(ii

)
) For each eigenvalue X of A, find the set of eigenvectors corresponding to A.

) If possible, find a basis for R? consisting of eigenvectors of A.

(iv) If successful in finding such a basis, determine an invertible matrix @ and a diagonal matrix
D such that Q'AQ = D.

Solution 2.

(i) By theorem 5.2, the eigenvalues are solutions to ch(x) = 0. Then

r—2 0 1
ChA(CL’) =| —4 r—1 4 ::L'(x— 1)2 =0,
-2 0 z+1

the eigenvalues are A = 0,1, 1.

(ii) In the calculations, use v = (¢, 8,7) to denote the eigenvector corresponding to the eigenvalue
in question.

2 0 -1 @ 0
Av=|4 1 -4 Bl =(0] = B=4da,v=2c.
2 0 -1 ¥ 0

So the set of eigenvalues corresponding to A = 0 is

Sxeo = {a(1,4,2) | a € R — {0}}.

A=1
2 0 -1 a «
Av=1[4 1 -4 Bl=18|] = y=a
2 0 -1 ¥ ol
So

SA:l = {()4(1,071) +6(Oa 1’0) | 045 €ER— {O}}

(iii) To construct a basis B , we take one eigenvector from Sy—¢ and two linearly independent
eigenvectors from Sy—i:

1 1 1
B={l4].,[1].[-1
2 1 1

Notice that the determinant of the matrix consisting of these column vectors is

-1
—1|=-2#0,
1

— =

1
4
2

so B is linearly independent. Since |B| = 3 = dim(R?), by corollary 2 (b) of theorem 1.10 B
is a basis.



(iv) Let @ be B in (iii), then by Gaussian elimination we have

1 1 -1 -1 0 0
-1 1 5
2 1 1 -1 -1 2

By theorem 5.1, @) diagonalise A as

00 0
A=Q'AQ=(0 1 0
0 0 1

Exercise 3 (Section 5.1, 8).

(a) Prove that a linear operator T on a finite-dimensional vector space is invertible if and only
if zero is not an eigenvalue of T

(b) Let T be an invertible linear operator. Prove that a scalar \ is an eigenvalue of T if and only
if A=1 is an eigenvalue of T~ 1.

(c) State and prove results analogous to (a) and (b) for matrices.

Solution 3.
(a) For both directions, we proceed by showing the contrapositive.

(= ): Suppose 0 is an eigenvalue of T', then there exists a corresponding eigenvector some
v € V not equal to zero such that T'(v) =0-v =0. Then v € kerT = {0} C kerT,so T
is not one-to-one, and therefore also not invertible by theorem 2.5.

( < ): Suppose T is not invertible, then {0} C kerT, and there exists v € V — {0} such
that T'(v) =0 =0-v, so 0 is an eigenvalue of T'.

(b) Let T be invertible. Then for eigenvalue A of T', let v € V' be the corresponding eigenvector.
T(v) = v if and only if T~1(T'(v)) = v =T"1(\v) = A\T~}(v) if and only if 771 (v) = A1
if and only if A=! is an eigenvalue of T. Here we have used the result of (a) (such that A~!
exists if and only if T is invertible) and the fact that if T is an isomorphism, then so is 71,
in particular, 7! is linear.

(¢) The analogous statement for matrices is:
(i) Let A € M, xn(F), then A is invertible if and only if 0 € F™ is not an eigenvalue of A.

(i) Let A be invertible, then A € F is an eigenvalue of A if and only if A™! € F is an
eigenvalue of A71.

Proof. We exploit properties of determinants.

(i) (= ): Suppose 0 is an eigenvalue of A, then there exists 0 # v € F™ such that
Av = 0v = 0. Then suppose A is invertible, we have v = A~'0 = 0, contradiction, so A
is not invertible.

( <= ): Suppose A is not invertible, then det A = det(A — 0 - I,,) = 0 by corollary to
theorem 4.7. By theorem 5.2 0 is an eigenvalue of A.

(ii) Similar to the proof of (b), but for completeness we write it out: A is an eigenvalue of
A if and only if there exists 0 # v € F™ such that Av = \v if and only if v = AA~ v if
and only if A='v = A~1v if and only if A~! is an eigenvalue of A~1.

O

Exercise 4 (Section 5.1, 12).



(a) Prove that similar matrices have the same characteristic polynomial.

(b) Show that the definition of the characteristic polynomial of a linear operator on a finite-
dimensional vector space V is independent of the choice of basis for V.

Solution 4.

(a) Let A € My, (F). Notice that chig-14q)(z) = det(zI,, —Q ™' AQ) = det(Q ' (2I,,— A)Q) =
det(zI, — A) = cha(x), since determinant is multiplicative, and det(Q~!) = (det Q)~! .

(b) Let B, C be two ordered bases for V, and @Q = [ly/]8 be the change of coordinate matrix from
basis C into basis B. Let T € L£(V) be a linear operator on V, then [T]¢ = Q7 [T]5Q. The
characteristic polynomial of [T]¢ is ch(z) = det(x1,, — [T)¢) = det(xI, — Q~'[T]5Q). This is
equal to det(zl, — [T]g) by (a), where B, C are arbitrary, so the characteristic polynomial of
operator T is independent of the choice of basis for V.

Exercise 5 (Section 5.1, 17). Let T be the linear operator on M,,«,(R) defined by T'(A) = A*.
(a) Show that +1 are the only eigenvalues of T
(b) Describe the eigenvectors corresponding to each eigenvalue of T'.
(c¢) Find an ordered basis B for May2(R) such that [Tz is a diagonal matrix.
(d) Find an ordered basis B for M, «,(R) such that [T]z is a diagonal matrix for n > 2.

Solution 5.

(a) Let A € M,,«n(F) be an eigenvector with eigenvalue ), then T(A) = AT = AA. Taking the
determinant on both sides, we get det(AT) = det A = det(AA) = A\"(det A), so A = #1.

(b) By (a) the only eigenvalues are 1 and —1. Eigenvectors with eigenvalue 1 are symmetric
matrices, since AT = A; eigenvectors with eigenvalue —1 are antisymmetric matrices, since

AT = —A.

(¢) By theorem 5.1, a linear operator is represented as a diagonal matrix in an ordered basis
consisting of its eigenvectors. Therefore we try to find an independent set of order 22 = 4
consisting of only symmetric and antisymmetric matrices. A natural choice is

5= {6 9)-¢ 0)-0 )6 D)

[T}B = dlag(lv 1, -1, 1)

then

(d) Following the same reasoning as (c), we construct a linearly independent set of order n?
consisting of only n X n symmetric and antisymmetric matrices. Counting diagonally from
left to right upward the nonzero entries, we discuss the following classes of matrices:

(i) Let the matrices with one entry only be

10 :
0 0 :
’ 00
0 1
(ii) Let the matrices with two entries be
010 - 0 -1 0 : : : :
000 [0 o o o 0o] 00
0 0 1 00 -1
0 1 01 0



(iii) For all the matrices with nonzero entry diagonals of size between 3 and n — 1:

00 -1 -\ /0 0 1 - 0 0 1
01 0 --| o -1 0 - 0 10

10 0 |1t 0 0o -|:s[=100 :
00 -1 [0 0 1| | 0 01
01 0 o0 =1 0| |- 0 10
10 0 -1 0 0/ \--- =1 00

Here we use 3 as an example and list all 3 x 2 = 6 matrices. Notice that the negative
sign appears once before each of the ones.

(iv) Finally, for matrices with nonzero entry diagonals of size n:

0 0 0 -1 0 0 0 1 0 O 1
0 0 1 0 0 0 -1 0 0 O 1 0
0 1 0 O 0 1 0 O 0 1 0 0
1 0 0 O 1 0 0 O -1 0 0 0
Lemma 1. We can evaluate the n x n determinant:
a b --- b
b a --- b
A=|. . d=la+ (n—1)b)(a—b)"""
b b a

Proof. Let A be an n X n determinant. Then

a b --- b 1 1 1
b a -+ b b a b
A= =la+ (n—1)}

b b a b b a
1 1 1
0 a—2» 0

== , = [a+ (n—1)b)(a — b)" ",

0 0 a—>

where in the first step we added rows 2 to n to the first row and pulled the constant out of
the determinant. O

Corollary 2.

-1 1 1
1 -1 1
: # 0.
1 1 -1
Proof. Plug in a = —1 and b =1 into the lemma. O

The matrices in classes (iii) and (iv) respectively are linearly independent by the above
corollary (*), matrices with different number of nonzero terms in class (iii) are obviously



linearly independent, and matrices from different classes (i) to (iv) are also obviously linearly
independent. Collect the above into B, notice that |B| =2 x (1+2+---+ (n—1)) +n = n?,
so B is a basis consisting of eigenvectors. By theorem 5.1 [Tz is diagonal, with entries in

1,-1}.

(*): Denote the matrices in B by My, M, ..., M, by some preferred order (without loss of
generality), and let aj,as,...,a, € F satisfy the equation

arMy 4+ aoMsy + -+ -+ a, M,, = 0.
Collect the n equations of nonzero terms to get (up to some permutation)

7a1+a2+...+an:0’
ar+as+---+a, =0,

a1 +as~+---—a, =0.
-1 1 1 aq
1 -1 1 as
. =0.
1 1 -1 an
Then lemma implies the matrix is invertible, and a; = a2 = -+ = a,, = 0. Similar reasoning

can be appied to matrices in class (iii).

Exercise 6 (Section 5.1, 20). Let A be an n X n matrix with characteristic polynomial

cha(z) =2a" + 12"V 4+ a1z + ag.
Prove that ch4(0) = ap = (—1)" det A. Deduce that A is invertible if and only if ag # 0.
Solution 6. By the definition of cha(z), cha(x) = det(zl, — A) = ™ + --- + a1z + ag. Plug

in z =0 to get det(—A) = (—1)"(det A) = ag. By corollary to theorem 5.7, A is invertible if and
only if det A # 0, if and only if ag # 0.

Exercise 7 (Section 5.1, 21). Let A and cha(z) be as in the previous exercise.

(a) Prove that cha(z) = (x — Ay1)(x — Agg) -+~ (x — Apn) + ¢(x), where g(z) is a polynomial of
degree at most n — 2.

Hint: Apply mathematical induction to n.

(b) Show that a,—1 = —tr(A4).

Solution 7.

(a) For n =2, we have
ChA((E) = det(:vfg — A) = ({I? — Au)(x — A22) — A12A21,

so q(x) = —Aj3A5 has degree 0 < 2 — 2. By mathematical induction on n, suppose the



result is true for all n < k — 1. Consider the case n = k:

xTr — A11 —A12 _Alkz
—A21 xr — A22 _A2k:
cha(z) = )
— Ay —Apo x — Agg
x — Aso *Aza *A2k — A *Azs *Azk
— Az x — A3z —Asp, —Asz1 x— Ass —Asy,
= (z — A1) . + Az .
—Apo —Ags x — A A Az x — A
—Ay x— Ay —As 1
—A31 —Asz —As k-1

The first term has an (k—1) x (k— 1) determinant of the desired form, so by hypothesis it is
equal to (x — Agg) - -+ (x — Agr) + q1(x), where ¢1(z) is of degree k — 3. Since x only appears
k — 2 times in the latter terms, their degree are at most k — 2. Therefore chy(z) = (x —
Ajp) - (x— Agg) +q(x), where the degree of ¢(z) is at most max {1 + (k — 3),k — 2} = k—2.

(b) Since the degree of g(x) is at most n — 2, the only contribution to the coefficient of x"~1
comes from the product (z—A11) - (x—Apy) = 2" — (A1 4+ +Apy )z 14 - .. Thererfore
Ap—_1 — — tr A.

Exercise 8 (Section 5.1, 24). Use Section 5.1, 21(a) to prove Theorem 5.3:
Let A € Myxn(F).

(a) The characteristic polynomial of A is a polynomial of degree n with leading coef-
ficient 1. (That is, a monic polynomial of degree n.)

(b) A has at most n distinct eigenvalues.

Solution 8.
(a) By Ex. 7 (a), cha(z) = 2™ — (tr A)z" 1 + .-+ so ch4(z) is a monic polynomial in x.

(b) By theorem 5.2, A is an eigenvalue of A if and only if ch4(A\) = 0 if and only if A is a root of
ch(z), which is a polynomial of degree n. By the Fundamental Theorem of Algebra, there
are at most n distinct roots of ch4(z), and therefore distinct eigenvalues.

(There are extra exercises in the next page.)



Extra Exercises

You don’t have to hand in extra exercises, and solving them will NOT affect your grade.

Exercise 9. Let A € M, «,(F).

(a)

(b)

Show that A is nilpotent if and only if all the eigenvalues of A are 0. (An n x n matrix A is
called nilpotent if A¥ = O for some positive integer .)

What if A is idempotent? (An n x n matrix A is called idempotent if A? = A.)

Solution 9.

(a)

( = ): Suppose A is nilpotent, then A¥* = O for some k& > 0. Suppose 0 # v € V is an
eigenvector with eigenvalue \, then A¥v = A*~1(Av) = A*~1(\v) =--- = \v=0v =0. So
A=0.

(<=): If all the eigenvalues are 0 and F is algebraically closed, then ch4(z) = z™. By the
Cayley-Hamilton theorem A™ = O, so A is nilpotent.

Claim. A matrix A is idempotent only if all of its eigenvalues are either 0 or 1. But the
converse is true only if A is diagonalisable.

Proof. (== ): Suppose A? = A, then A2— A = O. For all eigenvectors v € V with eigenvalue
A, we have (A% — A)jv=A(\) — A=A =XNv=0,50 \(A—-1)=0 = A=0,1.

For the converse, consider the counterexample

1
A= 10
0

O~ =
oS O O

A? £ A but the eigenvalues of A are 1, 1, 0. When A is diagonalisable, let A = Q 'AQ,
where A is diagonal with eigenvalues on the diagonal. Since the eigenvalues are all 0 or 1,

A2 = A, s0 42 = (QAQ)QTIAQ) = QTIA’Q = QAQ = A. O

Exercise 10. Let A € M, «,(C) and let

chy(z) =2 +ca™ P epr™ 2 e en = (@ — M) (T — X2) - (= Ap)

be the characteristic polynomial of A. Note that A\; may not be distinct.

(a)

(b)
()

Show that
—kep = cp_1 tr(A) + cp_o tr(A%) + - + ey tr(AFTY) 4 tr(AF)

for every 1 < k < n. (Here, we define ¢ = 1 and ¢, =0 for k < 0.)
Hint: Consider the classical adjoint of zI,, — A.

Deduce that if tr(A4) = tr(A?) = --- = tr(A") = 0, then A" = O.
Show that

tr(AF) =) A%,
j=1

for every 1 <k < n.

Remark. In fact, these statements also hold for general A € M, «,(F). As a result, the coeffi-
cients of characteristic polynomial are determined by tr(A¥).



