
Homework 11
Linear Algebra I, Fall 2024
黃紹凱 B12202004
November 27, 2024

Remark. In this homework, the characteristic polynomial of an n× n matrix A is defined by

chA(x) := det(xIn −A)

as in the lecture.

Exercise 1 (Section 5.1, 2(d)(f)). For each of the following linear operators T on a vector space
V and ordered bases B, compute [T ]B, and determine whether B is a basis consisting of eigenvectors
of T .

(d) V = R[x]≤2,

T (a+ bx+ cx2) = (−4a+ 2b− 2c)− (7a+ 3b+ 7c)x+ (7a+ b+ 5c)x2,

and B = {x− x2, −1 + x2, −1− x+ x2}.

(f) V = M2×2(R),

T

(
a b
c d

)
=

(
−7a− 4b+ 4c− 4d b
−8a− 4b+ 5c− 4d d

)
,

and
B =

ß(
1 0
1 0

)
,

(
−1 2
0 0

)
,

(
1 0
2 0

)
,

(
−1 0
0 2

)™
.

Solution 1.

(d) Compute the following:

T (x− x2) = 4 + 4x− 4x2 = −4(−1− x+ x2),

T (−1 + x2) = 2− 2x2 = −2(−1 + x2),

T (−1− x+ x2) = 3(x− x2).

Then the matrix representation of T in the ordered basis B is

[T ]B =

 0 0 3
0 −2 0
−4 0 0

 .

Since [T ]B is not diagonal, B is not a basis consisting of eigenvectors of T .

(f) Compute the following:

T

(
1 0
1 0

)
= −3

(
1 0
1 0

)
,

T

(
−1 2
0 0

)
=

(
−1 2
0 0

)
,

T

(
1 0
2 0

)
=

(
1 0
2 0

)
,

T

(
−1 0
0 2

)
=

(
−1 0
0 2

)
.

Then the matrix representation of T in the ordered basis B is [T ]B = diag(−3, 1, 1, 1). Since
[T ]B is diagonal, B is a basis consisting of eigenvectors of T .
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Exercise 2 (Section 5.1, 3(d)). For the matrix

A =

2 0 −1
4 1 −4
2 0 −1

 ∈ M3×3(R),

(i) Determine all the eigenvalues of A.

(ii) For each eigenvalue λ of A, find the set of eigenvectors corresponding to λ.

(iii) If possible, find a basis for R3 consisting of eigenvectors of A.

(iv) If successful in finding such a basis, determine an invertible matrix Q and a diagonal matrix
D such that Q−1AQ = D.

Solution 2.

(i) By theorem 5.2, the eigenvalues are solutions to chA(x) = 0. Then

chA(x) =

∣∣∣∣∣∣
x− 2 0 1
−4 x− 1 4
−2 0 x+ 1

∣∣∣∣∣∣ = x(x− 1)2 = 0,

the eigenvalues are λ = 0, 1, 1.

(ii) In the calculations, use v = (α, β, γ) to denote the eigenvector corresponding to the eigenvalue
in question.

λ = 0:

Av =

2 0 −1
4 1 −4
2 0 −1

α
β
γ

 =

0
0
0

 =⇒ β = 4α, γ = 2α.

So the set of eigenvalues corresponding to λ = 0 is

Sλ=0 = {α(1, 4, 2) | α ∈ R− {0}} .

λ = 1:

Av =

2 0 −1
4 1 −4
2 0 −1

α
β
γ

 =

α
β
γ

 =⇒ γ = α.

So
Sλ=1 = {α(1, 0, 1) + β(0, 1, 0) | α, β ∈ R− {0}} .

(iii) To construct a basis B , we take one eigenvector from Sλ=0 and two linearly independent
eigenvectors from Sλ=1:

B =


1
4
2

 ,

1
1
1

 ,

 1
−1
1

 .

Notice that the determinant of the matrix consisting of these column vectors is∣∣∣∣∣∣
1 1 −1
4 1 −1
2 1 1

∣∣∣∣∣∣ = −2 ̸= 0,

so B is linearly independent. Since |B| = 3 = dim(R3), by corollary 2 (b) of theorem 1.10 B
is a basis.
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(iv) Let Q be B in (iii), then by Gaussian elimination we have

Q =

1 1 −1
4 1 −1
2 1 1

 =⇒ Q−1 =

−1 0 0
3 1

2 − 5
2

−1 − 1
2

3
2

 .

By theorem 5.1, Q diagonalise A as

Λ = Q−1AQ =

0 0 0
0 1 0
0 0 1

 .

Exercise 3 (Section 5.1, 8).

(a) Prove that a linear operator T on a finite-dimensional vector space is invertible if and only
if zero is not an eigenvalue of T .

(b) Let T be an invertible linear operator. Prove that a scalar λ is an eigenvalue of T if and only
if λ−1 is an eigenvalue of T−1.

(c) State and prove results analogous to (a) and (b) for matrices.

Solution 3.

(a) For both directions, we proceed by showing the contrapositive.

( =⇒ ): Suppose 0 is an eigenvalue of T , then there exists a corresponding eigenvector some
v ∈ V not equal to zero such that T (v) = 0 · v = 0. Then v ∈ kerT =⇒ {0} ⊊ kerT , so T
is not one-to-one, and therefore also not invertible by theorem 2.5.

( ⇐= ): Suppose T is not invertible, then {0} ⊊ kerT , and there exists v ∈ V − {0} such
that T (v) = 0 = 0 · v, so 0 is an eigenvalue of T .

(b) Let T be invertible. Then for eigenvalue λ of T , let v ∈ V be the corresponding eigenvector.
T (v) = λv if and only if T−1(T (v)) = v = T−1(λv) = λT−1(v) if and only if T−1(v) = λ−1v
if and only if λ−1 is an eigenvalue of T . Here we have used the result of (a) (such that λ−1

exists if and only if T is invertible) and the fact that if T is an isomorphism, then so is T−1,
in particular, T−1 is linear.

(c) The analogous statement for matrices is:

(i) Let A ∈ Mn×n(F ), then A is invertible if and only if 0 ∈ Fn is not an eigenvalue of A.

(ii) Let A be invertible, then λ ∈ F is an eigenvalue of A if and only if λ−1 ∈ F is an
eigenvalue of A−1.

Proof. We exploit properties of determinants.

(i) ( =⇒ ): Suppose 0 is an eigenvalue of A, then there exists 0 ̸= v ∈ Fn such that
Av = 0v = 0. Then suppose A is invertible, we have v = A−10 = 0, contradiction, so A
is not invertible.

( ⇐= ): Suppose A is not invertible, then detA = det(A − 0 · In) = 0 by corollary to
theorem 4.7. By theorem 5.2 0 is an eigenvalue of A.

(ii) Similar to the proof of (b), but for completeness we write it out: λ is an eigenvalue of
A if and only if there exists 0 ̸= v ∈ Fn such that Av = λv if and only if v = λA−1v if
and only if A−1v = λ−1v if and only if λ−1 is an eigenvalue of A−1.

Exercise 4 (Section 5.1, 12).
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(a) Prove that similar matrices have the same characteristic polynomial.

(b) Show that the definition of the characteristic polynomial of a linear operator on a finite-
dimensional vector space V is independent of the choice of basis for V .

Solution 4.

(a) Let A ∈ Mn×n(F ). Notice that ch(Q−1AQ)(x) = det(xIn−Q−1AQ) = det(Q−1(xIn−A)Q) =
det(xIn −A) = chA(x), since determinant is multiplicative, and det(Q−1) = (detQ)−1 .

(b) Let B, C be two ordered bases for V , and Q = [IV ]BC be the change of coordinate matrix from
basis C into basis B. Let T ∈ L(V ) be a linear operator on V , then [T ]C = Q−1[T ]BQ. The
characteristic polynomial of [T ]C is ch(x) = det(xIn − [T ]C) = det(xIn −Q−1[T ]BQ). This is
equal to det(xIn − [T ]B) by (a), where B, C are arbitrary, so the characteristic polynomial of
operator T is independent of the choice of basis for V .

Exercise 5 (Section 5.1, 17). Let T be the linear operator on Mn×n(R) defined by T (A) = At.

(a) Show that ±1 are the only eigenvalues of T .

(b) Describe the eigenvectors corresponding to each eigenvalue of T .

(c) Find an ordered basis B for M2×2(R) such that [T ]B is a diagonal matrix.

(d) Find an ordered basis B for Mn×n(R) such that [T ]B is a diagonal matrix for n > 2.

Solution 5.

(a) Let A ∈ Mn×n(F ) be an eigenvector with eigenvalue λ, then T (A) = AT = λA. Taking the
determinant on both sides, we get det(AT) = detA = det(λA) = λn(detA), so λ = ±1.

(b) By (a) the only eigenvalues are 1 and −1. Eigenvectors with eigenvalue 1 are symmetric
matrices, since AT = A; eigenvectors with eigenvalue −1 are antisymmetric matrices, since
AT = −A.

(c) By theorem 5.1, a linear operator is represented as a diagonal matrix in an ordered basis
consisting of its eigenvectors. Therefore we try to find an independent set of order 22 = 4
consisting of only symmetric and antisymmetric matrices. A natural choice is

B =

ß(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 −1
1 0

)
,

(
0 0
0 1

)™
,

then
[T ]B = diag(1, 1,−1, 1).

(d) Following the same reasoning as (c), we construct a linearly independent set of order n2

consisting of only n × n symmetric and antisymmetric matrices. Counting diagonally from
left to right upward the nonzero entries, we discuss the following classes of matrices:

(i) Let the matrices with one entry only be1 0 · · ·
0 0 · · ·
...

... . . .

 ,

. . . ...
...

· · · 0 0
· · · 0 1

 .

(ii) Let the matrices with two entries be
0 1 0 · · ·
1 0 0 · · ·
0 0 0 · · ·
...

...
... . . .

 ,


0 −1 0 · · ·
1 0 0 · · ·
0 0 0 · · ·
...

...
... . . .

 ,


. . . ...

...
...

· · · 0 0 0
· · · 0 0 1
· · · 0 1 0

 ,


. . . ...

...
...

· · · 0 0 0
· · · 0 0 −1
· · · 0 1 0

 .
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(iii) For all the matrices with nonzero entry diagonals of size between 3 and n− 1:
0 0 −1 · · ·
0 1 0 · · ·
1 0 0 · · ·
...

...
... . . .

 ,


0 0 1 · · ·
0 −1 0 · · ·
1 0 0 · · ·
...

...
... . . .

 ,


0 0 1 · · ·
0 1 0 · · ·
−1 0 0 · · ·
...

...
... . . .

 ,


. . . ...

...
...

· · · 0 0 −1
· · · 0 1 0
· · · 1 0 0

 ,


. . . ...

...
...

· · · 0 0 1
· · · 0 −1 0
· · · 1 0 0

 ,


. . . ...

...
...

· · · 0 0 1
· · · 0 1 0
· · · −1 0 0

 .

Here we use 3 as an example and list all 3 × 2 = 6 matrices. Notice that the negative
sign appears once before each of the ones.

(iv) Finally, for matrices with nonzero entry diagonals of size n:
0 0 · · · 0 −1
0 0 · · · 1 0
...

...
...

...
0 1 · · · 0 0
1 0 · · · 0 0

 ,


0 0 · · · 0 1
0 0 · · · −1 0
...

...
...

...
0 1 · · · 0 0
1 0 · · · 0 0

 , . . . ,


0 0 · · · 0 1
0 0 · · · 1 0
...

...
...

...
0 1 · · · 0 0
−1 0 · · · 0 0

 .

Lemma 1. We can evaluate the n× n determinant:

∆ =

∣∣∣∣∣∣∣∣∣
a b · · · b
b a · · · b
...

... . . . ...
b b · · · a

∣∣∣∣∣∣∣∣∣ = [a+ (n− 1)b](a− b)n−1.

Proof. Let ∆ be an n× n determinant. Then

∆ =

∣∣∣∣∣∣∣∣∣
a b · · · b
b a · · · b
...

... . . . ...
b b · · · a

∣∣∣∣∣∣∣∣∣ = [a+ (n− 1)b]

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
b a · · · b
...

... . . . ...
b b · · · a

∣∣∣∣∣∣∣∣∣
= · · · =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
0 a− b · · · 0
...

... . . . ...
0 0 · · · a− b

∣∣∣∣∣∣∣∣∣ = [a+ (n− 1)b](a− b)n−1,

where in the first step we added rows 2 to n to the first row and pulled the constant out of
the determinant.

Corollary 2. ∣∣∣∣∣∣∣∣∣
−1 1 · · · 1
1 −1 · · · 1
...

... . . . ...
1 1 · · · −1

∣∣∣∣∣∣∣∣∣ ̸= 0.

Proof. Plug in a = −1 and b = 1 into the lemma.

The matrices in classes (iii) and (iv) respectively are linearly independent by the above
corollary (∗), matrices with different number of nonzero terms in class (iii) are obviously
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linearly independent, and matrices from different classes (i) to (iv) are also obviously linearly
independent. Collect the above into B, notice that |B| = 2× (1+ 2+ · · ·+(n− 1))+n = n2,
so B is a basis consisting of eigenvectors. By theorem 5.1 [T ]B is diagonal, with entries in
{1,−1}.

(∗): Denote the matrices in B by M1,M2, . . . ,Mn by some preferred order (without loss of
generality), and let a1, a2, . . . , an ∈ F satisfy the equation

a1M1 + a2M2 + · · ·+ anMn = 0.

Collect the n equations of nonzero terms to get (up to some permutation)
−a1 + a2 + · · ·+ an = 0,

a1 + a2 + · · ·+ an = 0,

...
a1 + a2 + · · · − an = 0.

So 
−1 1 · · · 1
1 −1 · · · 1
...

... . . . ...
1 1 · · · −1



a1
a2
...
an

 = 0.

Then lemma implies the matrix is invertible, and a1 = a2 = · · · = an = 0. Similar reasoning
can be appied to matrices in class (iii).

Exercise 6 (Section 5.1, 20). Let A be an n× n matrix with characteristic polynomial

chA(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0.

Prove that chA(0) = a0 = (−1)n detA. Deduce that A is invertible if and only if a0 ̸= 0.

Solution 6. By the definition of chA(x), chA(x) = det(xIn − A) = xn + · · · + a1x + a0. Plug
in x = 0 to get det(−A) = (−1)n(detA) = a0. By corollary to theorem 5.7, A is invertible if and
only if detA ̸= 0, if and only if a0 ̸= 0.

Exercise 7 (Section 5.1, 21). Let A and chA(x) be as in the previous exercise.

(a) Prove that chA(x) = (x− A11)(x− A22) · · · (x− Ann) + q(x), where q(x) is a polynomial of
degree at most n− 2.

Hint: Apply mathematical induction to n.

(b) Show that an−1 = − tr(A).

Solution 7.

(a) For n = 2, we have

chA(x) = det(xI2 −A) = (x−A11)(x−A22)−A12A21,

so q(x) = −A12A21 has degree 0 ≤ 2 − 2. By mathematical induction on n, suppose the
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result is true for all n ≤ k − 1. Consider the case n = k:

chA(x) =

∣∣∣∣∣∣∣∣∣
x−A11 −A12 · · · −A1k

−A21 x−A22 · · · −A2k

...
... . . . ...

−Ak1 −Ak2 · · · x−Akk

∣∣∣∣∣∣∣∣∣
= (x−A11)

∣∣∣∣∣∣∣∣∣
x−A22 −A23 · · · −A2k

−A32 x−A33 · · · −A3k

...
... . . . ...

−Ak2 −Ak3 · · · x−Akk

∣∣∣∣∣∣∣∣∣+A12

∣∣∣∣∣∣∣∣∣
−A21 −A23 · · · −A2k

−A31 x−A33 · · · −A3k

...
... . . . ...

−Ak1 −Ak3 · · · x−Akk

∣∣∣∣∣∣∣∣∣
+ · · ·+ (−1)nA1k

∣∣∣∣∣∣∣∣∣
−A21 x−A22 · · · −A2,k−1

−A31 −A32 · · · −A2,k−1

...
... . . . ...

−Ak1 −Ak2 · · · −Ak,k−1

∣∣∣∣∣∣∣∣∣ .
The first term has an (k− 1)× (k− 1) determinant of the desired form, so by hypothesis it is
equal to (x−A22) · · · (x−Akk) + q1(x), where q1(x) is of degree k− 3. Since x only appears
k − 2 times in the latter terms, their degree are at most k − 2. Therefore chA(x) = (x −
A11) · · · (x−Akk)+q(x), where the degree of q(x) is at most max {1 + (k − 3), k − 2} = k−2.

(b) Since the degree of q(x) is at most n − 2, the only contribution to the coefficient of xn−1

comes from the product (x−A11) · · · (x−Ann) = xn−(A11+· · ·+Ann)x
n−1+· · · . Thererfore

an−1 = − trA.

Exercise 8 (Section 5.1, 24). Use Section 5.1, 21(a) to prove Theorem 5.3:

Let A ∈ Mn×n(F ).

(a) The characteristic polynomial of A is a polynomial of degree n with leading coef-
ficient 1. (That is, a monic polynomial of degree n.)

(b) A has at most n distinct eigenvalues.

Solution 8.

(a) By Ex. 7 (a), chA(x) = xn − (trA)xn−1 + · · · , so chA(x) is a monic polynomial in x.

(b) By theorem 5.2, λ is an eigenvalue of A if and only if chA(λ) = 0 if and only if λ is a root of
chA(x), which is a polynomial of degree n. By the Fundamental Theorem of Algebra, there
are at most n distinct roots of chA(x), and therefore distinct eigenvalues.

(There are extra exercises in the next page.)
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Extra Exercises
You don’t have to hand in extra exercises, and solving them will NOT affect your grade.

Exercise 9. Let A ∈ Mn×n(F ).

(a) Show that A is nilpotent if and only if all the eigenvalues of A are 0. (An n× n matrix A is
called nilpotent if Ak = O for some positive integer k.)

(b) What if A is idempotent? (An n× n matrix A is called idempotent if A2 = A.)

Solution 9.

(a) ( =⇒ ): Suppose A is nilpotent, then Ak = O for some k > 0. Suppose 0 ̸= v ∈ V is an
eigenvector with eigenvalue λ, then Akv = Ak−1(Av) = Ak−1(λv) = · · · = λkv = Ov = 0. So
λ = 0.

( ⇐= ): If all the eigenvalues are 0 and F is algebraically closed, then chA(x) = xn. By the
Cayley-Hamilton theorem An = O, so A is nilpotent.

(b)

Claim. A matrix A is idempotent only if all of its eigenvalues are either 0 or 1. But the
converse is true only if A is diagonalisable.

Proof. ( =⇒ ): Suppose A2 = A, then A2−A = O. For all eigenvectors v ∈ V with eigenvalue
λ, we have (A2 −A)v = A(λv)− λv = (λ2 − λ)v = 0, so λ(λ− 1) = 0 =⇒ λ = 0, 1.

For the converse, consider the counterexample

A =

1 1 0
0 1 0
0 0 0

 ,

A2 ̸= A but the eigenvalues of A are 1, 1, 0. When A is diagonalisable, let A = Q−1ΛQ,
where Λ is diagonal with eigenvalues on the diagonal. Since the eigenvalues are all 0 or 1,
Λ2 = Λ, so A2 = (Q−1ΛQ)(Q−1ΛQ) = Q−1Λ2Q = Q−1ΛQ = A.

Exercise 10. Let A ∈ Mn×n(C) and let

chA(x) = xn + c1x
n−1 + c2x

n−2 · · ·+ cn−1x+ cn = (x− λ1)(x− λ2) · · · (x− λn)

be the characteristic polynomial of A. Note that λk may not be distinct.

(a) Show that
−kck = ck−1 tr(A) + ck−2 tr(A2) + · · ·+ c1 tr(Ak−1) + tr(Ak)

for every 1 ≤ k ≤ n. (Here, we define c0 = 1 and ck = 0 for k < 0.)

Hint: Consider the classical adjoint of xIn −A.

(b) Deduce that if tr(A) = tr(A2) = · · · = tr(An) = 0, then An = O.

(c) Show that

tr(Ak) =

n∑
j=1

λk
j ,

for every 1 ≤ k ≤ n.

Remark. In fact, these statements also hold for general A ∈ Mn×n(F ). As a result, the coeffi-
cients of characteristic polynomial are determined by tr(Ak).
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