Homework 13

Linear Algebra I, Fall 2024
# & L B12202004
December 11, 2024

Remark. In this homework, the characteristic polynomial of an n x n matrix A is defined by
cha(z) := det(xl, — A)

as in the lecture.

Exercise 1 (Section 5.4, 6(b)(d)). For each linear operator T' on the vector space V, find an
ordered basis for the T-cyclic subspace generated by the vector z.

(b) V =Rlx]<s, T(f(z)) = f"(z), and 2 = 3.

(d) V = Myys(R), T(A) = (; ;) A and z = (g’ é)

Solution 1.

(b) Let Z(z;T) denote the T-cyclic subspace of V generated by z. Then calculate z = 23,

T(z) =6z, T?(2) =0=T3(2) + -, s0
Z(z;T) = span ({a:g, 633}) i

Since 2% and 6x are linearly independent, {z,7(2)} = {23, 6x} is an ordered basis.

(d) Caleulate » — (‘1) (1)) T(z) = (; ;) T2(z) = 3 G ;) . so

zem=san ({0 0.0 D3 Do (2 D)),

Since z and T'(z) are linearly independent, {z,7(z)} = {(? é) , <; ;)} is an ordered

basis.

Exercise 2 (Section 5.4, 13). Let T be a linear operator on a vector space V (not necessarily
finite-dimensional), let v be a nonzero vector in V', and let W be the T-cyclic subspace of V
generated by v. For any w € V, prove that w € W if and only if there exists a polynomial g(t)
such that w = g(T)(v).

Solution 2.

( = ): By definition of W as the span of v, T'(v),T?(v),..., there exists some n € N such
that w is a linear combination of v, T'(v),...,T™(v). Thus w = g(T)(v) for some polynomial of
degree at most n, due to the linearity of T .

( < ): Suppose w = ¢g(T)(v) for a polynomial g of degree n, then there exist scalars

ag,ai,...,an such that w = (ag+ a1 T+ -+ a,T") (v) = apv + 1T (W) + -+ + a,T"(v) €
span ({v, T(v),...,T"(v)}) C span ({v,T(v), T?(v),...}) = W.



Exercise 3 (Section 5.4, 14). Prove that the polynomial g(t) of the last exercise can always
be chosen so that its degree is less than or equal to dim W. (We view dim W = oo if W is not
finite-dimensional.)

Solution 3. Suppose W is infinite dimensional, then by assumption dim W = oo, and the claim
holds trivially. So assume W is finite dimensional of dimension k. By Theorem 5.22 (a) we
know {v,T(v),...,T*"1(v)} is a basis for W, so for all w € W there exists scalars ag, a1, ...,a,
such that w = ag + a1T(v) + -+ + ax_1 T* 1 (v) = (ao + a1 T + -+ + ar_1T*"1). Then g(t) =
ag + a1t+-4ap_1t*"1 is the desired polynomial.

Exercise 4 (Section 5.4, 17). Let A be an n x n matrix. Prove that

dimspan({I,, A4, A%,...}) < n.

Solution 4. By the Cayley-Hamilton Theorem for matrices, cha(A) = A" + a,, (A" 1+ - +
a1 A+ apl, = O, where O is the n x n zero matrix. Then A® — —q,,_1 A" ' — .- —a1A — Apl, €
span ({I,,,A,...,A"71}), and A" = —a, 1 A" — -+ — a1 A% — apA € span ({I,, A, ..., A"}) C
span ({I,,,A,..., A"~1}) . Continuing the calculation, we see that A™ € span ({1, 4,..., A""'})
for all m > n, so span ({In,A,AQ, e }) = span ({In,A, .. .,A”_l}), with dimension no greater
than n.

Exercise 5 (Section 5.4, 19). Let A denote the k x k matrix

0 0 0 0 —ag
1 0 00 —a
0 1 0 0 —as
00 - 1 0 —ar_s
00 - 0 1 —ap_
where ag,a1,...,a,r_1 are arbitrary scalars. Prove that the characteristic polynomial of A is

zF + ak_lxkfl + -+ a1z + ag.

Hint: Section 4.3, 24.

Solution 5.

T o --- 0 0 ag
-1 x - 0 0 ay
o -1 --- 0 0 as
cha(x) = . . . .
0 0O -+ =1 x agp_9
0 o --- 0 -1 ap_

-1
:xk—l—ak,lx’“ +- -+ a1+ ag,

by the result of Section 4.3, 24.

Exercise 6 (Section 5.4, 20). Let T be a linear operator on a vector space V (not necessarily
finite-dimensional), and suppose that V' is a T-cyclic subspace of itself. Prove that if U is a linear
operator on V, then UT = TU if and only if U = ¢(T) for some polynomial g(¢).

Hint: Suppose that V is generated by v. Choose g(t) according to Section 5.4, 13 so that ¢(T')(v) =
U(v).



Solution 6.

(= ): Suppose V = Z(v;T) for some v € V. Since U(v) € V = Z(v;T), by Section 5.4, 13
there exists a polynomial ¢(¢) such that g(T")(v) = U(v). Now suppose TU = UT, the goal is to
show that U(w) = g(T)(w) for all w € V, which is true if and only if U(T*(v)) = g(T)(T*(v)) for
all k € N, if and only if T%(U(v)) = g(T)(T*(v)), if and only if T*(g(T))(v) = g(T)(T*(v)), which

is true.

( <= ): Suppose U = ¢(T) for some polynomial g, then for w € V, U(w) = ¢(T)(w),
and (UT)(w) = U(T(w)) = g(T)(T(w)) = (a0 + 01T + -+ + @ T")(T(w)) = (a0 + arT + -+ +
amnT™ N (w) =T(ag+ a1 T+ -+ anT™)(w) = T(g(T))(w) = (TU)(w), for all w € V. Therefore
TU =UT.

Exercise 7 (Section 5.4, 23). Let T be a linear operator on a finite-dimensional vector space
V, and let W be a T-invariant subspace of V. Suppose that vy, vs,...,v; are eigenvectors of T
corresponding to distinct eigenvalues. Prove that if v1 +vg + -+ vg is in W, then v; € W for all
i.

Hint: Use mathematical induction on k.

Solution 7. The k =1 case is obviously true. Suppose the result is true for Kk = m — 1, consider
the case k = m. Suppose we have u = v; +vo + -+ + v, € W, then T'(u) = T'(v1) + T(va) + -+ - +
T(vm) = Av1 + Agva + - -+ + A, € W, since W is T-invariant by the result of Theorem 5.22.

Since u € W, Apuis alsoin W, so T'(u) — Apu = (A1 — A )vr + (Ao = A)va + -+ (A1 —
Am )Um—1 € W. Since none of the (A; — A,,) are zero, by our induction hypothesis all of (A; — A, )v;
forl<i<m-—larein W,andsowv; € Wforl1l<i<m-—1. Finally, v, =u—v1—--—vpy_1 € W,
and we are done.

Exercise 8 (Section 5.4, 25).

(a) Prove that if T and U are diagonalizable linear operators on a finite-dimensional vector space
V such that UT = TU, then T and U are simultaneously diagonalizable.
Hint: For any eigenvalue A of T, show that F) is U-invariant, and apply Section 5.4, 24 to
obtain a basis for F) of eigenvectors of U.

(b) State and prove a matrix version of (a).

Solution 8.

(a) First we begin with the result of Section 5.4, 24 as a lemma.

Lemma 1 (Section 5.4, 24). If T is a diagonalisable linear operator, then the restriction of
T to any nontrivial T-invariant subspace of V' is also diagonalisable.

Proof. Let T € L(V) be diagonalisable, {0} C W C V a T-invariant subspace of V, and
E), the eigenspace corresponding to eigenvalue \;. Furthermore, let W; = E5, N W be the
eigenspace of T'|y corresponding to A;.

For each of W;, we can find a basis B; for it. We claim that B = Ui B; is a basis for W.
By Theorem 5.8, since B; is a linearly independent subset of W;, B is a linearly independent
subset of W. Furthermore, since T is diagonalisable, by Theorem 5.1 every vector in V,
and therefore in W, is in the span of the set of the eigenvectors corresponding to distinct
eigenvalues. Then by Section 5.4, 23, these eigenvectors must themselves be in W.

Then W = span(B), so B is a basis for W consisting of eigenvectors. By Theorem 5.1, [T'|w]5
is diagonal. O



Suppose T, U are diagonalisable and TU = UT. For some eigenvalue A of T, let E) be
its eigenspace and v; € FE) not necessarily an eigenvector. Then T(U(v)) = (TU)(v) =
(UT)(v) = AU (v), so U(v) € Ey

Apply the above to each E),, we see that all of them are U-invariant, so we may Lemma 1 to
each E},, giving us a basis B; such that [U;]p, is diagonal. Take B = |J, B;, where the union
is taken by placing each of By, Bs,... in order. Then [Tz and [U]g are both diagonal.

We state an analogous result for matrices A, B € M,,«,(F): If A, B are diagonalisable and
AB = BA, then A and B are simultaneously diagonalisable.

Proof. Apply the result of (a) to the linear operators L4 and Lp and we are done. O

(There are extra exercises in the next page.)



Extra Exercises
You don’t have to hand in extra exercises, and solving them will NOT affect your grade.

Exercise 9. Let A € Ms,»(C) with distinct eigenvalues, and let

S = {B € Myy2(C) : <g i) is diagonalizable}

be a subset of Myx2(C). Show that S is a 2-dimensional subspace of Msyo(C).

Exercise 10. Fix an integer n > 1. For A, B € M, «,(C), define
[A, B] .= AB — BA.

Let ker M denote the kernel of the linear operator given by left multiplication by M € M,,«,,(C),
that is,
ker M = {A € M, xn(C) : MA = O}.

Now, fix A, B € M,,x,(C) and define
N = ﬂ m ker[A*, B].
k=1(=1

Show that A and B have a common eigenvector if and only if A/ contains a nonzero vector.



