
Homework 13
Linear Algebra I, Fall 2024
黃紹凱 B12202004
December 11, 2024

Remark. In this homework, the characteristic polynomial of an n× n matrix A is defined by

chA(x) := det(xIn −A)

as in the lecture.

Exercise 1 (Section 5.4, 6(b)(d)). For each linear operator T on the vector space V , find an
ordered basis for the T -cyclic subspace generated by the vector z.

(b) V = R[x]≤3, T (f(x)) = f ′′(x), and z = x3.

(d) V = M2×2(R), T (A) =

(
1 1
2 2

)
A, and z =

(
0 1
1 0

)
.

Solution 1.

(b) Let Z(z;T ) denote the T -cyclic subspace of V generated by z. Then calculate z = x3,
T (z) = 6x, T 2(z) = 0 = T 3(z) + · · · , so

Z(z;T ) = span
(
{x3, 6x}

)
.

Since x3 and 6x are linearly independent, {z, T (z)} = {x3, 6x} is an ordered basis.

(d) Calculate z =

(
0 1
1 0

)
, T (z) =

(
1 1
2 2

)
, T 2(z) = 3

(
1 1
2 2

)
, . . . , so

Z(z;T ) = span
(ß(

0 1
1 0

)
,

(
1 1
2 2

)
, 3

(
1 1
2 2

)
, . . . , 3m

(
1 1
2 2

)
, . . .

™)
.

Since z and T (z) are linearly independent, {z, T (z)} =

ß(
0 1
1 0

)
,

(
1 1
2 2

)™
is an ordered

basis.

Exercise 2 (Section 5.4, 13). Let T be a linear operator on a vector space V (not necessarily
finite-dimensional), let v be a nonzero vector in V , and let W be the T -cyclic subspace of V
generated by v. For any w ∈ V , prove that w ∈ W if and only if there exists a polynomial g(t)
such that w = g(T )(v).

Solution 2.

( =⇒ ): By definition of W as the span of v, T (v), T 2(v), . . . , there exists some n ∈ N such
that w is a linear combination of v, T (v), . . . , Tn(v). Thus w = g(T )(v) for some polynomial of
degree at most n, due to the linearity of T .

( ⇐= ): Suppose w = g(T )(v) for a polynomial g of degree n, then there exist scalars
a0, a1, . . . , an such that w = (a0 + a1T + · · ·+ anT

n) (v) = a0v + a1T (v) + · · · + anT
n(v) ∈

span ({v, T (v), . . . , Tn(v)}) ⊆ span
(
{v, T (v), T 2(v), . . . }

)
= W .
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Exercise 3 (Section 5.4, 14). Prove that the polynomial g(t) of the last exercise can always
be chosen so that its degree is less than or equal to dimW . (We view dimW = ∞ if W is not
finite-dimensional.)

Solution 3. Suppose W is infinite dimensional, then by assumption dimW = ∞, and the claim
holds trivially. So assume W is finite dimensional of dimension k. By Theorem 5.22 (a) we
know {v, T (v), . . . , T k−1(v)} is a basis for W , so for all w ∈ W there exists scalars a0, a1, . . . , an
such that w = a0 + a1T (v) + · · · + ak−1T

k−1(v) = (a0 + a1T + · · · + ak−1T
k−1). Then g(t) =

a0 + a1t+·+ak−1t
k−1 is the desired polynomial.

Exercise 4 (Section 5.4, 17). Let A be an n× n matrix. Prove that

dim span({In, A,A2, . . . }) ≤ n.

Solution 4. By the Cayley-Hamilton Theorem for matrices, chA(A) = An + an−1A
n−1 + · · · +

a1A+ a0In = O, where O is the n× n zero matrix. Then An −−an−1A
n−1 − · · · − a1A−A0In ∈

span
({

In, A, . . . , A
n−1

})
, and An+1 = −an−1A

n − · · · − a1A
2 − a0A ∈ span ({In, A, . . . , An}) ⊆

span
({

In, A, . . . , A
n−1

})
. Continuing the calculation, we see that Am ∈ span

({
In, A, . . . , An−1

})
for all m ≥ n, so span

({
In, A,A2, . . .

})
= span

({
In, A, . . . , An−1

})
, with dimension no greater

than n.

Exercise 5 (Section 5.4, 19). Let A denote the k × k matrix

0 0 · · · 0 0 −a0
1 0 · · · 0 0 −a1
0 1 · · · 0 0 −a2
...

... . . . ...
...

...
0 0 · · · 1 0 −ak−2

0 0 · · · 0 1 −ak−1


,

where a0, a1, . . . , ak−1 are arbitrary scalars. Prove that the characteristic polynomial of A is

xk + ak−1x
k−1 + · · ·+ a1x+ a0.

Hint: Section 4.3, 24.

Solution 5.

chA(x) =



x 0 · · · 0 0 a0
−1 x · · · 0 0 a1
0 −1 · · · 0 0 a2
...

... . . . ...
...

...
0 0 · · · −1 x ak−2

0 0 · · · 0 −1 ak−1


= xk + ak−1x

k−1 + · · ·+ a1x+ a0,

by the result of Section 4.3, 24.

Exercise 6 (Section 5.4, 20). Let T be a linear operator on a vector space V (not necessarily
finite-dimensional), and suppose that V is a T -cyclic subspace of itself. Prove that if U is a linear
operator on V , then UT = TU if and only if U = g(T ) for some polynomial g(t).
Hint: Suppose that V is generated by v. Choose g(t) according to Section 5.4, 13 so that g(T )(v) =
U(v).
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Solution 6.

( =⇒ ): Suppose V = Z(v;T ) for some v ∈ V . Since U(v) ∈ V = Z(v;T ), by Section 5.4, 13
there exists a polynomial g(t) such that g(T )(v) = U(v). Now suppose TU = UT , the goal is to
show that U(w) = g(T )(w) for all w ∈ V , which is true if and only if U(T k(v)) = g(T )(T k(v)) for
all k ∈ N, if and only if T k(U(v)) = g(T )(T k(v)), if and only if T k(g(T ))(v) = g(T )(T k(v)), which
is true.

( ⇐= ): Suppose U = g(T ) for some polynomial g, then for w ∈ V , U(w) = g(T )(w),
and (UT )(w) = U(T (w)) = g(T )(T (w)) = (a0 + a1T + · · · + amTm)(T (w)) = (a0 + a1T + · · · +
amTm+1)(w) = T (a0 + a1T + · · ·+ amTm)(w) = T (g(T ))(w) = (TU)(w), for all w ∈ V . Therefore
TU = UT .

Exercise 7 (Section 5.4, 23). Let T be a linear operator on a finite-dimensional vector space
V , and let W be a T -invariant subspace of V . Suppose that v1, v2, . . . , vk are eigenvectors of T
corresponding to distinct eigenvalues. Prove that if v1 + v2 + · · ·+ vk is in W , then vi ∈ W for all
i.
Hint: Use mathematical induction on k.

Solution 7. The k = 1 case is obviously true. Suppose the result is true for k = m− 1, consider
the case k = m. Suppose we have u = v1 + v2 + · · ·+ vm ∈ W , then T (u) = T (v1) + T (v2) + · · ·+
T (vm) = λ1v1 + λ2v2 + · · ·+ λmvm ∈ W , since W is T -invariant by the result of Theorem 5.22.

Since u ∈ W , λmu is also in W , so T (u)−λmu = (λ1 −λm)v1 +(λ2 −λm)v2 + · · ·+(λm−1 −
λm)vm−1 ∈ W . Since none of the (λi−λm) are zero, by our induction hypothesis all of (λi−λm)vi
for 1 ≤ i ≤ m−1 are in W , and so vi ∈ W for 1 ≤ i ≤ m−1. Finally, vm = u−v1−· · ·−vm−1 ∈ W ,
and we are done.

Exercise 8 (Section 5.4, 25).

(a) Prove that if T and U are diagonalizable linear operators on a finite-dimensional vector space
V such that UT = TU , then T and U are simultaneously diagonalizable.
Hint: For any eigenvalue λ of T , show that Eλ is U -invariant, and apply Section 5.4, 24 to
obtain a basis for Eλ of eigenvectors of U .

(b) State and prove a matrix version of (a).

Solution 8.

(a) First we begin with the result of Section 5.4, 24 as a lemma.

Lemma 1 (Section 5.4, 24). If T is a diagonalisable linear operator, then the restriction of
T to any nontrivial T -invariant subspace of V is also diagonalisable.

Proof. Let T ∈ L(V ) be diagonalisable, {0} ⊊ W ⊆ V a T -invariant subspace of V , and
Eλi

the eigenspace corresponding to eigenvalue λi. Furthermore, let Wi = Eλi
∩W be the

eigenspace of T |W corresponding to λi.

For each of Wi, we can find a basis Bi for it. We claim that B =
∪

i Bi is a basis for W .
By Theorem 5.8, since Bi is a linearly independent subset of Wi, B is a linearly independent
subset of W . Furthermore, since T is diagonalisable, by Theorem 5.1 every vector in V ,
and therefore in W , is in the span of the set of the eigenvectors corresponding to distinct
eigenvalues. Then by Section 5.4, 23, these eigenvectors must themselves be in W .

Then W = span(B), so B is a basis for W consisting of eigenvectors. By Theorem 5.1, [T |W ]B
is diagonal.
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Suppose T , U are diagonalisable and TU = UT . For some eigenvalue λ of T , let Eλ be
its eigenspace and vi ∈ Eλ not necessarily an eigenvector. Then T (U(v)) = (TU)(v) =
(UT )(v) = λU(v), so U(v) ∈ Eλ

Apply the above to each Eλi
, we see that all of them are U -invariant, so we may Lemma 1 to

each Eλi
, giving us a basis Bi such that [Ui]Bi

is diagonal. Take B =
∪

i Bi, where the union
is taken by placing each of B1,B2, . . . in order. Then [T ]B and [U ]B are both diagonal.

(b) We state an analogous result for matrices A,B ∈ Mn×n(F ): If A,B are diagonalisable and
AB = BA, then A and B are simultaneously diagonalisable.

Proof. Apply the result of (a) to the linear operators LA and LB and we are done.

(There are extra exercises in the next page.)
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Extra Exercises
You don’t have to hand in extra exercises, and solving them will NOT affect your grade.

Exercise 9. Let A ∈ M2×2(C) with distinct eigenvalues, and let

S =

ß
B ∈ M2×2(C) :

(
A B
O A

)
is diagonalizable

™
be a subset of M2×2(C). Show that S is a 2-dimensional subspace of M2×2(C).

Exercise 10. Fix an integer n > 1. For A,B ∈ Mn×n(C), define

[A,B] := AB −BA.

Let kerM denote the kernel of the linear operator given by left multiplication by M ∈ Mn×n(C),
that is,

kerM = {A ∈ Mn×n(C) : MA = O}.

Now, fix A,B ∈ Mn×n(C) and define

N =

n∩
k=1

n∩
ℓ=1

ker[Ak, Bℓ].

Show that A and B have a common eigenvector if and only if N contains a nonzero vector.
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