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Exercise 1 (Section 1.5, 15). Let S = {u1, u2, . . . , un} be a finite set of vectors. Prove that S is
linearly dependent if and only if u1 = 0 or uk+1 ∈ span({u1, u2, . . . , uk}) for some k (1 ≤ k < n).

Solution 1. We prove the two directions of the iff condition.

( =⇒ ): Suppose S is linearly dependent, then there exists some (a1, . . . , an) ∈ Fn not all
zero such that

a1u1 + · · ·+ anun = 0.

The sequence (a1, a2, . . . , an) has non-zero terms. We call the non-zero coefficient with largest
index al, where l satisfies 1 ≤ l < n. Consider the two cases:

1. l = 1: a1u1 + 0 + · · ·+ 0 = 0, a1 ̸= 0. Then it must be true that u1 = 0.

2. 1 < l < n: We can write
a1u1 + · · · al−1ul−1 + alul = 0,

Then

ul = −
(
a1
al

)
u1 −

(
a2
al

)
u2 − · · · −

(
al−1

al

)
ul−1 ∈ span ({u1, . . . , ul−1}) .

Let l = k + 1 to get the desired result.

( ⇐= ): The case u1 = 0 is trivial, since the n-tuple (a1, 0, . . . , 0) ∈ Fn, a1 ̸= 0 works.

Consider the case uk+1 ∈ span ({u1, . . . , uk}): we can write uk+1 in the {u1, . . . , uk} basis as

uk+1 = b1u1 + · · · bkuk.

Then we can write the non-trivial linear combination

(−b1)u1 + (−b2)u2 + · · ·+ (−bk)uk + uk+1 + 0 · uk+2 + · · ·+ 0 · un = 0,

so S is linearly dependent.

Exercise 2 (Section 1.5, 16). Prove that a set S of vectors is linearly independent if and only if
each finite subset of S is linearly independent.

Solution 2. We prove the two directions of the iff condition.

( =⇒ ): Suppose by way of contradiction that S is linearly independent and there exists a
finite subset, say W , of S with dimension n that is linearly dependent. Then there is some tuple
(a1, . . . , an) ∈ Fn not all zero that satisfies

a1w1 + · · ·+ anwn = 0, w1, . . . , wn ∈ W.

Then there is the nontrivial representation of 0 ∈ S using w1, . . . , wn :

a1w1 + a2w2 + · · ·+ anwn = 0.
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Thus the contradiction.

( ⇐= ): This is trivial if S is finite, since S is its own finite subset. So assume S is an infinite
set. From the definition of linear dependence, an infinite set of vectors is linearly dependent if it
contains a subset that is linearly dependent. So, by negation, an infinite set of vectors is linearly
independent if every (finite) subset is linearly independent. Therefore, this direction is also trivial
for the infinite case.

Remark. The ( =⇒ ) direction can be trivially shown by invoking theorem 1.6: If V is a vector
space, S1 ⊆ S2 ⊆ V its subsets, and S2 is linearly independent, then S1 is linearly independent.

Exercise 3 (Section 1.6, 13). The set of solutions to the system of linear equations

x1 − 2x2 + x3 = 0

2x1 − 3x2 + x3 = 0

is a subspace of R3. Find a basis for this subspace.

Solution 3. Simplifying the equation gives

x1 − x3 = 0

x1 − x2 = 0

So x1 = x2 = x3. A spanning set for this subspace is

B =


1
1
1

 ,

such that span(B) ⊂ R3. This is a basis since a non-zero singleton is linearly independent.

Exercise 4 (Section 1.6, 14). Find bases for the following subspaces of F 5:

W1 = {(a1, a2, a3, a4, a5) ∈ F 5 : a1 − a3 − a4 = 0}

and
W2 = {(a1, a2, a3, a4, a5) ∈ F 5 : a2 = a3 = a4 and a1 + a5 = 0}.

What are the dimensions of W1 and W2?

Solution 4.

1. Substitute in the relation to get

W1 = {(a3 + a4, a2, a3, a4, a5) ∈ F 5}.

Notice that

(a3 + a4, a2, a3, a4, a5) = a2(0, 1, 0, 0, 0) + a3(1, 0, 1, 0, 0) + a4(1, 0, 0, 1, 0) + (0, 0, 0, 0, 1).

Write
B1 = {(0, 1, 0, 0, 0), (1, 0, 1, 0, 0), (1, 0, 0, 1, 0), (0, 0, 0, 0, 1)} ,

checking the vectors for linear independence shows that B is indeed linearly independent, so
B is a basis for W1, and

dimW1 = |B1| = 4.
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2. Substitute in the relation to get

W2 = {(a1, 0, 0, 0,−a1) ∈ F 5}.

Notice that
(a1, 0, 0, 0,−a1) = a1(1, 0, 0, 0,−1) + a2 · (0, 1, 1, 1, 0).

Write
B2 = {(1, 0, 0, 0,−1), (0, 1, 1, 1, 0)} ,

checking the vectors for linear independence shows that B is indeed linearly independent, so
B is a basis for W2, and

dimW2 = |B2| = 2.

Exercise 5 (Section 1.6, 20). Let V be a vector space having dimension n, and let S be a subset
of V that generates V .

(a) Prove that there is a subset of S that is a basis for V . (Be careful not to assume that S is
finite.)

(b) Prove that S contains at least n vectors.

Solution 5.

(a) To prove that there exists B ⊆ S such that B is a basis for V , first take a basis B′ ⊆ V :
B′ = {β1, . . . , βn}.

Then for αij ∈ F, sij ∈ S, 1 ≤ i ≤ n, 1 ≤ j ≤ ni, we can write the bi’s as
b1 = α11s11 + · · ·+ α1n1

s1n1
,

...
bn = αn1 + · · ·+ αnnn

.

This implies spanB′ ⊆ span ({sij}) ⊆ V . But spanB′ = V , so span ({sij}) = V .

The set {sij} is finite, so we can use theorem 1.10 (Steinitz exchange lemma / replacement
theorem) to extract a basis from {sij}. Call it B, and B ⊆ S by construction.

(b) Suppose S ⊂ V has m < n elements and spans V , then we can choose the subset S ⊂ S that
is linearly independent, so that span(S) = span(S) = dim(V ).

Then S is a basis for V , which is impossible since
∣∣S∣∣ ≤ |S| = m < dim(V ). Thus, |S| ≥ n.

Remark. An algorithmic procedure to ”extract” basis vectors from S may not work when S is
infinite, since the procedure of searching through every vector in S cannot terminate in finite time.

Exercise 6 (Section 1.6, 22). Let W1 and W2 be subspaces of a finite-dimensional vector space
V . Determine necessary and sufficient conditions on W1 and W2 so that dim(W1 ∩W2) = dimW1.

Solution 6. Claim:
dim (W1 ∩W2) = dim(W1) ⇐⇒ W1 ⊂ W2.

( =⇒ ): notice that W1 ∩W2 ⊂ W1 is a subspace of W1, since it is a subset, and

1. Both W1 and W2 are subspaces, so they contain the zero vector. Therefore their intersection
contains 0.

2. u, v ∈ W1 ∩W2 =⇒ u+ v ∈ W1 ∩W2, since W1 and W2 are subspaces.

3



3. u ∈ W1 ∩W2 =⇒ cu ∈ W1 ∩W2∀c ∈ F , again since W1 and W2 are subspaces.

Lemma 1. If a subspace has the same dimension as the vector space, then they are equal.

Proof. Assume W ⊂ V is a subspace of V with basis β , where dimV = n. Let the dimension of
W also be n. Then for some vector u ∈ V , either u ∈ span(W ) or is not. If not, then the set {β, u}
is a basis with n+ 1 elements, which is a contradiction.

By our lemma, dim(W1 ∩W2) = dim(W1) implies W1 ∩W2 = W1. Thus, W1 ⊂ W2.

( ⇐= ): W1 ⊆ W2 =⇒ W1 ∩W2 = W1 =⇒ dim (W1 ∩W2) = dim(W1).

Exercise 7 (Section 1.6, 29). (a) Prove that if W1 and W2 are finite-dimensional subspaces of
a vector space V , then the subspace W1 +W2 is finite-dimensional, and

dim(W1 +W2) = dimW1 + dimW2 − dim(W1 ∩W2).

Hint: Start with a basis {u1, u2, . . . , uk} for W1 ∩W2 and extend this set to a basis
{u1, u2, . . . , uk, v1, v2, . . . , vm} for W1 and to a basis {u1, u2, . . . , uk, w1, w2, . . . , wp} for W2.

(b) Let W1 and W2 be finite-dimensional subspaces of a vector space V , and let V = W1 +W2.
Deduce that V is the direct sum of W1 and W2 if and only if dimV = dimW1 + dimW2.

Solution 7.

(a) Let β = {u1, . . . , uk} be a basis for W1 ∩W2. Since W1 ∩W2 is a subset of W1 and W2, we
can extend β to form bases for W1 and W2:

dim(W1) = m, so let β1 = β ∪ {vk+1, . . . , vm} be a basis for W1. Similarly, dim(W2) = n, so
let β2 = β ∪ {wk+1, . . . , wn} be a basis for W2.

The β part is identical for the bases of W1 and W2, so we can construct the following spanning
set of W1 + W2: γ = {u1, . . . , uk, vk+1, . . . , vm, wk+1, . . . , wn}. Now we only have to show
that γ is linearly independent.

This can be shown as follows: {c1, . . . , ck, ak+1, . . . am, bk+1, . . . , bn} ∈ F k+(m−k)+(n−k) is a
set of scalars, consider the linear combination

ak+1vk+1 + · · ·+ amvm + bk+1wk+1 + · · · bnwn + c1u1 + · · · ckuk = 0.

This can also be written as

ak+1vk+1 + · · ·+ amvm = −bk+1wk+1 − · · · bnwn − c1u1 − · · · ckuk,

so ak+1vk+1 + · · ·+ amvm ∈ W2. But the LHS is in W1, so it must be that ak+1vk+1 + · · ·+
amvm ∈ W2 ∈ W1 ∩W2.

Then we can write
ak+1vk+1 + · · ·+ amvm = d1u1 + · · ·+ dkuk

for some {d1, . . . , dk} ∈ F k. By the linear independence of W1, we have ak+1 = · · · = am = 0.
Going back to the original equation, we are now left with

bk+1wk+1 + · · · bnwn + c1u1 + · · · ckuk = 0,

and by linear independence of W2 we have bk+1 = · · · = bn = c1 = · · · = ck = 0, thus γ is
linearly independent. Now we can safely write

dim(W1 +W2) = n+m− k = dim(W1) + dim(W2)− dim (W1 ∩W2) ,

and dim(W1 +W2) is therefore finite.
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(b) We prove the two directions:

( =⇒ ): Suppose V = W1 ⊕W2, then by definition V = W1 +W2 and W1 ∩W2 = ∅. Then
from (a) we have

dim (W1 +W2) = dim(W1) + dim(W2) + 0 = dim(W1) + dim(W2).

( ⇐= ): By (a), we have dim (W1 ∩W2) = 0. So W1 ∩ W2 = ∅, which, along with the
assumption V = W1 +W2, implies W = W1 ⊕W2.

Exercise 8 (Section 1.6, 31). Let W1 and W2 be subspaces of a vector space V having dimensions
m and n, respectively, where m ≥ n.

(a) Prove that dim(W1 ∩W2) ≤ n.

(b) Prove that dim(W1 +W2) ≤ m+ n.

Solution 8. The solution uses result from Ex. 7 (a).

(a) Suppose dim (W1 ∩W2) = p > n, then there is a basis β = {u1, . . . , up} for W1 ∩W2.

Since W1 ∩ W2 is a subset of W1, this implies there is a linearly independent set of p > n
elements in W1, contradicting the fact that dim (W1) = n. Thus, dim (W1 ∩W2) ≤ n.

(b) From Ex. 7 (a) we have the result

dim (W1 +W2) = dim (W1) + dim (W2)− dim (W1 ∩W2) = m+ n− α,

for some α ≥ 0, so dim (W1 +W2) ≤ m+ n.

(There are extra exercises in the next page.)
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Extra Exercises
You don’t have to hand in extra exercises, and solving them will NOT affect your grade.

Exercise 9. Suppose that V is a finite-dimensional vector space and U is a subspace of V . Show
that there exists a subspace W of V such that V = U ⊕W .
In this case, we call W a complementary subspace of U in V .

Solution 9. This exercise shows the existence of a complementary subspace.

If U is a subspace in V , then the basis of U , which we call BU is in V . Following the method
in solution 7 (a), we extend BU to a basis for V , BV , by adding in linearly independent vectors.

Since the vectors in BV are linearly independent, we have

span (BU\BU ) ∩ span (BU ) = {0}.

This is true because any vector v ∈ V can be represented by a linear combination of {u1, . . . , um, w1, . . . , wn−m},
where u1, . . . , um ∈ U and w1, . . . , wn−m ∈ V \U .

Let W = span (BV \BU ), then we have V = U ⊕W , as desired.

Exercise 10. Let R+ be the set of all positive real numbers. One can verify that R+ is a vector
space over R under the addition

x ⊞ y = xy, x, y ∈ R+

and the scalar multiplication
a ⊠ x = xa, x ∈ R+, a ∈ R.

Find a basis and the dimension of this vector space.

Solution 10. We guess that the basis consists of a single element not equal to 1. Let it be 3, so
B = {3}. We want to show that any element x ∈ R+ can be written as 0 < x = c⊠ 3 = 3c, c ∈ R,
but then c is simply log3(x). So B = {3}, dim(R+) = 1.

Remark. The map log3 : R+ → R is an isomorphism, since it is linear (with respect to addition
anf multiplication as defined above), onto, and one-to-one. So this also proves that R+ ∼= R.

Exercise 11. Let n ∈ N. For a = 0, 1, . . . , n, define

Pn,a = (x+ a)(x+ a+ 1) · · · (x+ a+ n− 1)

to be a polynomial in R[x]≤n.

(a) Show that
n∑

k=0

(−1)k
(
n

k

)
Pn,k = (−1)nn!.

Hint: First show that Pn,k − Pn,k−1 = n · Pn−1,k.

(b) Show that {Pn,a : 0 ≤ a ≤ n} is a basis of R[x]≤n.

Hint: Show that
{1, x, x(x+ 1), x(x+ 1)(x+ 2), . . . , x(x+ 1) · · · (x+ n)} ⊆ span({Pn,a : 0 ≤ a ≤ n}).
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