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# & L B12202004
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Exercise 1 (Section 2.1, 14). Let V and W be vector spaces and T': V' — W be linear.

(a)
(b)

()

Prove that T is one-to-one if and only if T' carries linearly independent subsets of V' onto
linearly independent subsets of W.

Suppose that T is one-to-one and that S is a subset of V. Prove that .S is linearly independent
if and only if T'(5) is linearly independent.

Suppose B = {v1,vs,...,u,} is a basis for V and T is one-to-one and onto. Prove that
T(B) ={T(v1),T(v2),...,T(v,)} is a basis for W.

Solution 1.

(a)

Suppose S C V is a subset.

( = ) We assume T is one-to-one, and that the set T(S) C W is linear independent, so
that every finite subset is linearly independent (see HW3). We want to show that S is linear
independent.

Take an arbitrary (finite) subset {T(s1),T(s2),...,T(sg)} C T(S), where s1,...,8; € S.
Then
a1T1(31)+--~—|—akT(sk) =0 = a1=---=a,r=0.
But
ar1Ti(s1) + -+ apT(sg) = T(a1s1 + - --arsk) =0,
S0 a181 + -+ - agsy € kerT = {0}, by theorem 2.4. Then a1s1 +-+-arsy =0 = a; =--- =

ar, =0, 80 {s1,...,8} is linearly independent. Thus S is linearly independent.

( <) We shall show that ker T = {0}. Take a vector x € kerT', suppose the subset S C V
is linearly independent, and so is T'(S) C W. We can write x as

r=a181+ - apsSk, a1,...,a € F, s1,...,8, € S.

Then T'(x) =0 = T(a1$1+---+arsk) = a1T(s1)+- - -+axT(sx) = 0. Linear independence
of T'(S) implies that a; = --- = a =0, so & = 0. Therefoe ker T'= {0}, and T is one-to-one
by theorem 2.4.

We suppose S C V is a subset, T is one-to-one, and proceed to a proof by showing the
contrapositive in both directions.

( = ) Suppose that T(S) is not linearly independent, so that for a finite subset S =
{s1,...,8:} € S, we have a finite subset T = {T(s1),...,T(sx)} C T(S) such that there
exists aq,...,a € F not all zero, a;T(s1) + -+ - axT(sr) = 0. But then

arT(s1)+ - apT(sg) =T(a1s1 4+ +agsg) =0=T(0) = ays1+ -+ arsg =0,

since T" is assumed to be one-to-one. Therefore S is not linearly independent, for all finite
subsets S of S.

(=) Suppose to the contrary that there exists ai,...,ar € F' not all zero such that for
a finite subset S = {s1,...,8:} € S, a151 + -+ + arsy = 0. Then T'(aysy + -+ + agsk) =
T0)=0=a1T(s1)+ -+ arT(s), so T(S) is not linearly independent.



(¢) To show that T'(B) is a basis for W, we shall prove the following:

(i) T(B) is a spanning set of W: Since T is onto , by definition im7 = W. By theorem
2.2, imT = span(T'(B)), so span(T'(B)) = W.

(ii) T'(B) is linearly independent: For scalars b1,...,b, € F such that b1T(v1) + -+ +
b T (v,) = 0, we then have

T (v1) + -+ b,T(vn) =T (v + - + anvy) = 0=T(0).

Then byvy + -+ 4+ byv, = 0, since T' is one-to-one, and by = --- = b, = 0 by linear
independence of 5 .

Therefore B is a basis for W.

Exercise 2 (Section 2.1, 21). Let V be the vector space of sequences described in Example 5 of
Section 1.2. Define the functions T, U : V — V by

T(a1,as,...) = (az,as,...) and U(ay,as,...)=(0,a1,as,...).
T and U are called the left shift and right shift operators on V', respectively.
(a) Prove that T and U are linear.

(b) Prove that T is onto, but not one-to-one.

(c¢) Prove that U is one-to-one, but not onto.

Solution 2.
(a) Let (a1,a9,...),(b1,ba,...) €V, c€F.
(i)
T(c(ay,ag,...)+ (b1,ba,...)) = T(cas + by, cas + ba,...)

:(ca2—|—b2,...):c(ag,ag,...)+(b2,b3,...)
:cT(al,ag,...)—|—T(b1,b2,...).

(i)
U(C(Gq,dg,...)-l—(bl,bQ,...)) =U(ca1 +b1,ca2—|—b2,...)

= (0,ca; + b1,...) =c¢(0,a1,a9,...)+ (0,b1,ba,...)
:cU(al,ag,...)+U(b1,b2,...).

Therefore T, U are linear.

(b) Since 0 € V, for all sequences (ag,as,...) € V we can find the sequence (0,as,as,...) €
V such that T(0,as,as,...) = (a2,as,...), so T is onto. But for a; # @;, we have
T(ay,as2,...) = (ag,as,...) =T (a,as,...), so T is not one-to-one.

(¢) Suppose for ai,as,...,b1,ba, -+ € F we have U(ay,as,...) =U(by,bs,...), then
(0,(11,(12,...) = (07b1,b2,...) — (al,ag,...) = (bl,bg,...).
Thus U is one-to-one. But for a # 0, (a,a1,a9,...) € V is not in U(V), so U is not onto.
Exercise 3 (Section 2.1, 22). Let T : R® — R be linear. Show that there exist scalars a, b,

and c such that T(z,y,2) = ax + by + cz for all (z,y,z) € R3. Can you generalize this result for
T : F™ — F? State and prove an analogous result for T : F™ — F™.



Solution 3. Note that

1 0 0
B={lo]. (1] [0
0 0 1
is a basis for R3. Let
1 0 0
a=T|0],b=(1],¢c=1]0],
0 0 1

=T 0| +yT |1] 42T
0 0

=ar + by + cz.

_ o o O O

We claim that the analogous case for T : F™* — F™ is simply

z1 1121 + Q1222 + - - + A1 Ty
T = : )
Tn Am1T1 + Am2T2 + -+ AmnTn
1 0
0 1
where (z1,...,2,) € F", a11,..., amn € F. We prove this by noticing that B = o, ey
0 0
is a basis for F'™, where we simply write 1 for 1p. Let
1 ail O ai9 O A1n
0 as 1 as 0 a1n
T .| = ] T .| = ] eI = . e Fm.
0 am1 0 am?2 1 Amn
Then
1 0 1 0
0 0 0 0
T(xy,...,xn) =T x| .|+ +xn | . =T .|+ +z,T
0 1 0 1

1121 + a12%2 + ++ - + A1r Ty

Am1T1 + AmaZ2 + -+ + AppTn

Remark. This means we could write a linear transformation as a matrix with respect to some
basis.

Definition. Let V be a vector space, and let T : V' — V be linear. A subspace W of V is said to
be T-invariant if T'(x) € W for every x € W, that is, T(W) C W. If W is T-invariant, we define
the restriction of T on W to be the function T|w : W — W defined by T'|w (z) = T(z) for all
xeW.



Exercise 4 (Section 2.1, 28). Let V be a vector space, and let T : V — V be linear. Prove that
the subspaces {0}, V, image T, and ker T" are all T-invariant.

Solution 4.
1. T(0) = 0 € {0}, so {0} is T-invariant.
2. Since T is a map from V to V, by definition T(V) C V, so V is T-invariant.

3. By theorem 2.1, imT = {T'(z)|x € V} is a subspace of V, so T'(w) € imT,YVw € imT C V
by definition of im7T". So T(im7T") Cim T, im 7T is T-invariant.

4. T(x) =0 € kerT for all x € ker T, so T'(ker T') C ker T', ker T' is T-invariant.

Exercise 5 (Section 2.1, 29). If W is a T-invariant subspace of a vector space V and T : V — V
is linear, prove that T'|y is linear.

Solution 5. Take z,y € W and c € F, then = + cy € W since W is a subspace. Then
Tlw(z +cy) =T(z + cy) = T(x) + I'(y) = Tlw (z) + Tw (y).

Exercise 6 (Section 2.1, 32). Suppose that W is a T-invariant subspace of a vector space V and
that T : V — V is linear. Prove that ker T'|yw = ker TN W and image T'|y = T'(W).

Solution 6. We prove that (1) ker(T|w) = ker T NW and (2) im(T|w) = T(W).

(1) Suppose z € ker(T|w), then T|w(z) = 0 =T(z), so z € kerT. Also, x € W by definition
of domain of T|y. Then & € kerTNW = ker(T|w) C kerT N W. Now suppose
z€kerTNW, then T|w(z) =T(z) =0 = z €kerT = kerTNW C ker(T'|w). Thus
ker(T|w) =kerTNW .

(2) In W, we have T|w(x) = T(x), so im(T|w) = {T|w(z)|lz € W} ={T(x)|x e W} =T(W).

Exercise 7 (Section 2.1, 37). A function 7' : V. — W between vector spaces V and W is called
additive if T(x+y) = T'(z) + T (y) for all z,y € V. Prove that if V and W are vector spaces over
the field of rational numbers, then any additive function from V into W is a linear transformation.

Solution 7. We want to show that Yu,v € V¢ € Q, we have T'(u + cv) = T(u) + ¢T'(v). By
the additive property we already have T'(u + cv) = T'(u) + T(cv), so we only have to show that
T(cv) = cT'(v) for allv e V,c € Q.

The case ¢ = 0 is trivial, so consider the case ¢ > 0. We can let ¢ = p/q, where p,q € N.

(1) The value of T(%) can be define:
o) r (e o))
= T <Z> = QT(U)

(2) Then

(067G or () ()

so T'(cv) = ¢T'(v) for ¢ > 0.



The case ¢ < 0 can be included simply by noticing that
T (cv + |cjv) =T(0) =0 =T(cv) + T(|c|v).
T(cv) = =T (|c|v).
Therefore, for all ¢ € Q there is T'(cv) = ¢T'(v), and T'(u + cv) = T'(u) 4+ ¢T'(v), as desired.

(There are extra exercises in the next page.)



Extra Exercises
You don’t have to hand in extra exercises, and solving them will NOT affect your grade.

Exercise 8. Let V be a vector space over F' and let T : V' — V be a linear transformation.
Suppose that every subspace of V is T-invariant. Show that T is a scalar multiple of the identity
transformation Iy .

Exercise 9 (Section 1.3, 31). Let W be a subspace of a vector space V over a field F. For any
v €V theset {v}+W = {v+w: w € W} is called the coset of W containing v. It is customary
to denote this coset by v + W rather than {v} + W.

(a) Prove that v+ W is a subspace of V if and only if v € W.
(b) Prove that v; + W = vy + W if and only if v; — vy € W.

Addition and scalar multiplication by scalars of F' can be defined in the collection
S={v+W:veV}
of all cosets of W as follows:
(n+W)+ (v2+ W)= (v1+v2) + W

for all v1,vo € V and
alv+W)=av+W
forallv eV and a € F.
(c) Prove that the preceding operations are well defined; that is, show that if v; + W = v} + W
and v + W = vl + W, then
(01 + W)+ (02 + W) = (01 + W) + (v + W)
and
a(vy + W) = a(vy + W)
for all a € F.

(d) Prove that the set S is a vector space with the operations defined in (c¢). This vector space
is called the quotient space of V modulo W and is denoted by V /.

Exercise 10 (Section 1.6, 35, modified). Let W be a subspace of a finite-dimensional vector space
V', and consider the basis u1,us,...,ux for W. Let ui,uo, ..., ug, ugt1,-..,u, be an extension of
this basis to a basis for V.

(a) Prove that {ugs1 + Wyugyo + W, ..., u, + W} is a basis for V/W.
(b) Derive the formula dim(V /W) = dimV — dim W.



