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Exercise 1 (Section 2.1, 14). Let V and W be vector spaces and T : V → W be linear.

(a) Prove that T is one-to-one if and only if T carries linearly independent subsets of V onto
linearly independent subsets of W .

(b) Suppose that T is one-to-one and that S is a subset of V . Prove that S is linearly independent
if and only if T (S) is linearly independent.

(c) Suppose B = {v1, v2, . . . , vn} is a basis for V and T is one-to-one and onto. Prove that
T (B) = {T (v1), T (v2), . . . , T (vn)} is a basis for W .

Solution 1.

(a) Suppose S ⊆ V is a subset.

( =⇒ ) We assume T is one-to-one, and that the set T (S) ⊆ W is linear independent, so
that every finite subset is linearly independent (see HW3). We want to show that S is linear
independent.

Take an arbitrary (finite) subset {T (s1), T (s2), . . . , T (sk)} ⊆ T (S), where s1, . . . , sk ∈ S.
Then

a1T1(s1) + · · ·+ akT (sk) = 0 =⇒ a1 = · · · = ak = 0.

But
a1T1(s1) + · · ·+ akT (sk) = T (a1s1 + · · · aksk) = 0,

so a1s1 + · · · aksk ∈ kerT = {0}, by theorem 2.4. Then a1s1 + · · · aksk = 0 =⇒ a1 = · · · =
ak = 0, so {s1, . . . , sk} is linearly independent. Thus S is linearly independent.

( ⇐= ) We shall show that kerT = {0}. Take a vector x ∈ kerT , suppose the subset S ⊆ V
is linearly independent, and so is T (S) ⊆ W . We can write x as

x = a1s1 + · · · aksk, a1, . . . , ak ∈ F, s1, . . . , sk ∈ S.

Then T (x) = 0 =⇒ T (a1s1+· · ·+aksk) = a1T (s1)+· · ·+akT (sk) = 0. Linear independence
of T (S) implies that a1 = · · · = ak = 0, so x = 0. Therefoe kerT = {0}, and T is one-to-one
by theorem 2.4.

(b) We suppose S ⊆ V is a subset, T is one-to-one, and proceed to a proof by showing the
contrapositive in both directions.

( =⇒ ) Suppose that T (S) is not linearly independent, so that for a finite subset S =
{s1, . . . , sk} ⊆ S, we have a finite subset T = {T (s1), . . . , T (sk)} ⊆ T (S) such that there
exists a1, . . . , ak ∈ F not all zero, a1T (s1) + · · · akT (sk) = 0. But then

a1T (s1) + · · · akT (sk) = T (a1s1 + · · ·+ aksk) = 0 = T (0) =⇒ a1s1 + · · ·+ aksk = 0,

since T is assumed to be one-to-one. Therefore S is not linearly independent, for all finite
subsets S of S.

( ⇐= ) Suppose to the contrary that there exists a1, . . . , ak ∈ F not all zero such that for
a finite subset S = {s1, . . . , sk} ⊆ S, a1s1 + · · · + aksk = 0. Then T (a1s1 + · · · + aksk) =
T (0) = 0 = a1T (s1) + · · ·+ akT (sk), so T (S) is not linearly independent.
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(c) To show that T (B) is a basis for W , we shall prove the following:

(i) T (B) is a spanning set of W : Since T is onto , by definition imT = W . By theorem
2.2, imT = span(T (B)), so span(T (B)) = W .

(ii) T (B) is linearly independent: For scalars b1, . . . , bn ∈ F such that b1T (v1) + · · · +
bnT (vn) = 0, we then have

b1T (v1) + · · ·+ bnT (vn) = T (b1v1 + · · ·+ anvn) = 0 = T (0).

Then b1v1 + · · · + bnvn = 0, since T is one-to-one, and b1 = · · · = bn = 0 by linear
independence of B .

Therefore B is a basis for W .

Exercise 2 (Section 2.1, 21). Let V be the vector space of sequences described in Example 5 of
Section 1.2. Define the functions T,U : V → V by

T (a1, a2, . . . ) = (a2, a3, . . . ) and U(a1, a2, . . . ) = (0, a1, a2, . . . ).

T and U are called the left shift and right shift operators on V , respectively.

(a) Prove that T and U are linear.

(b) Prove that T is onto, but not one-to-one.

(c) Prove that U is one-to-one, but not onto.

Solution 2.

(a) Let (a1, a2, . . . ), (b1, b2, . . . ) ∈ V , c ∈ F .

(i)

T (c(a1, a2, . . . ) + (b1, b2, . . . )) = T (ca1 + b1, ca2 + b2, . . . )

= (ca2 + b2, . . . ) = c(a2, a3, . . . ) + (b2, b3, . . . )

= cT (a1, a2, . . . ) + T (b1, b2, . . . ).

(ii)

U(c(a1, a2, . . . ) + (b1, b2, . . . )) = U(ca1 + b1, ca2 + b2, . . . )

= (0, ca1 + b1, . . . ) = c(0, a1, a2, . . . ) + (0, b1, b2, . . . )

= cU(a1, a2, . . . ) + U(b1, b2, . . . ).

Therefore T,U are linear.

(b) Since 0 ∈ V , for all sequences (a2, a3, . . . ) ∈ V we can find the sequence (0, a2, a3, . . . ) ∈
V such that T (0, a2, a3, . . . ) = (a2, a3, . . . ), so T is onto. But for a1 ̸= a1, we have
T (a1, a2, . . . ) = (a2, a3, . . . ) = T (a1, a2, . . . ), so T is not one-to-one.

(c) Suppose for a1, a2, . . . , b1, b2, · · · ∈ F we have U(a1, a2, . . . ) = U(b1, b2, . . . ), then

(0, a1, a2, . . . ) = (0, b1, b2, . . . ) =⇒ (a1, a2, . . . ) = (b1, b2, . . . ).

Thus U is one-to-one. But for a ̸= 0, (a, a1, a2, . . . ) ∈ V is not in U(V ), so U is not onto.

Exercise 3 (Section 2.1, 22). Let T : R3 → R be linear. Show that there exist scalars a, b,
and c such that T (x, y, z) = ax + by + cz for all (x, y, z) ∈ R3. Can you generalize this result for
T : Fn → F? State and prove an analogous result for T : Fn → Fm.
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Solution 3. Note that

B =


1
0
0

 ,

0
1
0

 ,

0
0
1


is a basis for R3. Let

a = T

1
0
0

 , b =

0
1
0

 , c =

0
0
1

 ,

we see that a, b, c ∈ R. Then by linearity of T , we have

T (x, y, x) = T

x
y
z

 = T

x

1
0
0

+ y

0
1
0

+ z

0
0
1


= xT

1
0
0

+ yT

0
1
0

+ zT

0
0
1


= ax+ by + cz.

We claim that the analogous case for T : Fn → Fm is simply

T

x1

...
xn

 =

 a11x1 + a12x2 + · · ·+ a1nxn

...
am1x1 + am2x2 + · · ·+ amnxn

 ,

where (x1, . . . , xn) ∈ Fn, a11, . . . , amn ∈ F . We prove this by noticing that B =



1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1




is a basis for Fn, where we simply write 1 for 1F . Let

T


1
0
...
0

 =


a11
a21
...

am1

 , T


0
1
...
0

 =


a12
a22
...

am2

 , . . . , T


0
0
...
1

 =


a1n
a1n

...
amn

 ∈ Fm.

Then

T (x1, . . . , xn) = T

x1


1
0
...
0

+ · · ·+ xn


0
0
...
1


 = x1T


1
0
...
0

+ · · ·+ xnT


0
0
...
1


=

 a11x1 + a12x2 + · · ·+ a1nxn

...
am1x1 + am2x2 + · · ·+ amnxn

 .

Remark. This means we could write a linear transformation as a matrix with respect to some
basis.

Definition. Let V be a vector space, and let T : V → V be linear. A subspace W of V is said to
be T -invariant if T (x) ∈ W for every x ∈ W , that is, T (W ) ⊆ W . If W is T -invariant, we define
the restriction of T on W to be the function T |W : W → W defined by T |W (x) = T (x) for all
x ∈ W .
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Exercise 4 (Section 2.1, 28). Let V be a vector space, and let T : V → V be linear. Prove that
the subspaces {0}, V , imageT , and kerT are all T -invariant.

Solution 4.

1. T (0) = 0 ∈ {0}, so {0} is T -invariant.

2. Since T is a map from V to V , by definition T (V ) ⊆ V , so V is T -invariant.

3. By theorem 2.1, imT ≡ {T (x)|x ∈ V } is a subspace of V , so T (w) ∈ imT, ∀w ∈ imT ⊆ V
by definition of imT . So T (imT ) ⊆ imT , imT is T -invariant.

4. T (x) = 0 ∈ kerT for all x ∈ kerT , so T (kerT ) ⊆ kerT , kerT is T -invariant.

Exercise 5 (Section 2.1, 29). If W is a T -invariant subspace of a vector space V and T : V → V
is linear, prove that T |W is linear.

Solution 5. Take x, y ∈ W and c ∈ F , then x+ cy ∈ W since W is a subspace. Then

T |W (x+ cy) = T (x+ cy) = T (x) + cT (y) = T |W (x) + cT |W (y).

Exercise 6 (Section 2.1, 32). Suppose that W is a T -invariant subspace of a vector space V and
that T : V → V is linear. Prove that kerT |W = kerT ∩W and imageT |W = T (W ).

Solution 6. We prove that (1) ker(T |W ) = kerT ∩W and (2) im(T |W ) = T (W ).

(1) Suppose x ∈ ker(T |W ), then T |W (x) = 0 = T (x), so x ∈ kerT . Also, x ∈ W by definition
of domain of T |W . Then x ∈ kerT ∩ W =⇒ ker(T |W ) ⊆ kerT ∩ W. Now suppose
x ∈ kerT ∩W , then T |W (x) = T (x) = 0 =⇒ x ∈ kerT =⇒ kerT ∩W ⊆ ker(T |W ). Thus
ker(T |W ) = kerT ∩W .

(2) In W , we have T |W (x) = T (x), so im(T |W ) ≡ {T |W (x)|x ∈ W} = {T (x)|x ∈ W} = T (W ).

Exercise 7 (Section 2.1, 37). A function T : V → W between vector spaces V and W is called
additive if T (x+ y) = T (x)+T (y) for all x, y ∈ V . Prove that if V and W are vector spaces over
the field of rational numbers, then any additive function from V into W is a linear transformation.

Solution 7. We want to show that ∀u, v ∈ V, c ∈ Q, we have T (u + cv) = T (u) + cT (v). By
the additive property we already have T (u + cv) = T (u) + T (cv), so we only have to show that
T (cv) = cT (v) for all v ∈ V, c ∈ Q.

The case c = 0 is trivial, so consider the case c > 0. We can let c = p/q, where p, q ∈ N.

(1) The value of T ( vq ) can be define:

T

(
q ·

(
v

q

))
= T

(
v

q
+ · · ·+ v

q

)
= T

(
v

q

)
+ · · ·+ T

(
v

q

)
=⇒ T

(
v

q

)
=

1

q
T (v).

(2) Then

T

((
p

q

)
v

)
= T

(
p

(
v

q

))
= T

(
v

q

)
+ · · ·+ T

(
v

q

)
= pT

(
v

q

)
=

p

q
T (v),

so T (cv) = cT (v) for c ≥ 0.
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The case c < 0 can be included simply by noticing that

T (cv + |c|v) = T (0) = 0 = T (cv) + T (|c|v).

T (cv) = −T (|c|v).

Therefore, for all c ∈ Q there is T (cv) = cT (v), and T (u+ cv) = T (u) + cT (v), as desired.

(There are extra exercises in the next page.)
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Extra Exercises
You don’t have to hand in extra exercises, and solving them will NOT affect your grade.

Exercise 8. Let V be a vector space over F and let T : V → V be a linear transformation.
Suppose that every subspace of V is T -invariant. Show that T is a scalar multiple of the identity
transformation IV .

Exercise 9 (Section 1.3, 31). Let W be a subspace of a vector space V over a field F . For any
v ∈ V the set {v}+W = {v+w : w ∈ W} is called the coset of W containing v. It is customary
to denote this coset by v +W rather than {v}+W .

(a) Prove that v +W is a subspace of V if and only if v ∈ W .

(b) Prove that v1 +W = v2 +W if and only if v1 − v2 ∈ W .

Addition and scalar multiplication by scalars of F can be defined in the collection

S = {v +W : v ∈ V }

of all cosets of W as follows:

(v1 +W ) + (v2 +W ) = (v1 + v2) +W

for all v1, v2 ∈ V and
a(v +W ) = av +W

for all v ∈ V and a ∈ F .

(c) Prove that the preceding operations are well defined; that is, show that if v1 +W = v′1 +W
and v2 +W = v′2 +W , then

(v1 +W ) + (v2 +W ) = (v′1 +W ) + (v′2 +W )

and
a(v1 +W ) = a(v′1 +W )

for all a ∈ F .

(d) Prove that the set S is a vector space with the operations defined in (c). This vector space
is called the quotient space of V modulo W and is denoted by V /W .

Exercise 10 (Section 1.6, 35, modified). Let W be a subspace of a finite-dimensional vector space
V , and consider the basis u1, u2, . . . , uk for W . Let u1, u2, . . . , uk, uk+1, . . . , un be an extension of
this basis to a basis for V .

(a) Prove that {uk+1 +W,uk+2 +W, . . . , un +W} is a basis for V /W .

(b) Derive the formula dim(V /W ) = dimV − dimW .

6


