Homework 5

Linear Algebra (I), Fall 2024

Deadline: 10/9 (Wed.) 12:10

Exercise 1 (Section 2.2, 10). Let V be a vector space with the ordered basis $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$. Define $v_0 = 0$. By Theorem 2.6, there exists a linear transformation $T: V \to V$ such that $T(v_j) = v_j + v_{j-1}$ for $j = 1, 2, \dots, n$. Compute $[T]_{\mathcal{B}}$.

Solution 1. Under the basis \mathcal{B} , the linear transformation T can be represented as an $n \times n$ matrix, with components a_{ij} . The coefficients a + ij should satisfy

$$T(v_j) = \sum_{i=1}^{n} a_{ij}v_i = v_j + v_{j-1}.$$

By observation, we find that $a_{ij} = 1$ if i = j or i = j - 1, and $a_{ij} = 0$ otherwise:

$$[T(v_1)]_{\mathcal{B}} = (1 \ 0 \ \cdots \ 0)^{\mathsf{T}},$$

$$[T(v_n)]_{\mathcal{B}} = (0 \ 0 \ \cdots \ 1)^{\mathsf{T}},$$

$$[T(v_j)]_{\mathcal{B}} = (0 \ \cdots \ 0 \ 1 \ 1 \ 0 \ \cdots 0)^{\mathsf{T}}, \ 1 < j < n.$$

The final matrix is

$$[T]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 1 & 1 \end{pmatrix}.$$

Exercise 2 (Section 2.2, 11). Let V be an n-dimensional vector space, and let $T: V \to V$ be a linear transformation. Suppose that W is a T-invariant subspace of V having dimension k. Show that there is a basis \mathcal{B} for V such that $[T]_{\mathcal{B}}$ has the form

$$\begin{pmatrix} A & B \\ O & C \end{pmatrix},$$

where A is a $k \times k$ matrix and O is the $(n-k) \times k$ zero matrix.

Solution 2. The cases k = 0 and k = n are trivial, since then there is no restriction on the form of the matrix, and the matrix must exist.

Consider 1 < k < n, let $\overline{\mathcal{B}} = \{v_1, \dots, v_k\}$ be a basis of W. Since W is T-invariant, $T(W) \subseteq W \implies T(v_j) \in W$, for $1 \le j \le k$, and we can write

$$T(v_j) = \sum_{i=1}^k a_{ij} v_i.$$

Extend $\overline{\mathcal{B}}$ to a basis for V, $\mathcal{B} = \{v_1, v_2, \dots, v_k, v_{k+1}, \dots, v_n\}$, by the replacement theorem. Then for $1 \leq j \leq k$, $T(v_j)$ is

$$T(v_i) = a_{1i}v_1 + \dots + a_{ki}v_k + 0 \cdot v_{k+1} + \dots + 0 \cdot v_n.$$

In coordinate vector form this is $[T]_{\mathcal{B}} = (a_{1j} \cdots a_{kj} \ 0 \cdots 0)^{\intercal}$, so

$$[T]_{\mathcal{B}} = [T(v_1) \cdots T(v_k) T(v_{k+1} T(v_n))]_{\mathcal{B}} = \begin{pmatrix} A & B \\ O & C \end{pmatrix},$$

where A and O are as defined in the problem statement.

Exercise 3 (Section 2.2, 15). Let V and W be vector spaces, and let S be a subset of V. Define $S^0 = \{T \in \mathcal{L}(V, W) : T(x) = 0 \text{ for all } x \in S\}$. Prove the following statements.

- (a) S^0 is a subspace of $\mathcal{L}(V, W)$.
- (b) If S_1 and S_2 are subsets of V and $S_1 \subseteq S_2$, then $S_2^0 \subseteq S_1^0$.
- (c) If V_1 and V_2 are subspaces of V, then $(V_1 + V_2)^0 = V_1^0 \cap V_2^0$.

Solution 3.

- (a) From theorem 1.3, a subset is a subspace iff the following properties are satisfied:
 - (i) $0 \in S^0$: Let $0: V \to W$, $x \mapsto 0$ be the zero transformation. Then $0(x) = 0 \forall x \in S \subseteq V$, so $0 \in S^0$.
 - (ii) $T_1, T_2 \in S^0 \implies T_1 + T_2 \in S^0$: Since $T_1, T_2 \in S^0$, $T_1(x) = T_2(x) = 0$ for all $x \in S$. Then $(T_1 + T_2)(x) = T_1(x) + T_2(x) = 0 + 0 = 0$ for all $x \in S$, and so $T_1 + T_2 \in S^0$.
 - (iii) $cT \in S^0 \forall c \in F$: Let $T \in S^0$ and $c \in F$, so $(cT)(x) = c[T(x)] = c\dot{0} = 0$ for all $x \in S$. Thus $cT \in S^0 /$

Therefore S^0 is a subspace.

(b) We prove the two-way inclusion:

 $(V_1 + V_2)^0 \subseteq V_1^0 \cap V_2^0$: Let $T \in (V_1 + V_2)^0$, so T(x) = 0 for all $x \in V_1 + V_2$. By the definition of $V_1 + V_2$, we have

$$T(x) = T(v_1v_2) = T(v_1) + T(v_2) \forall v_1 \in V_1, \forall v_2 \in V_2.$$

This holds for all v_1 and v_2 , so $T(v_1) = T(v_2) = 0 \implies T \in V_1 \cap V_2$.

 $V_1^0 \cap V_2^0 \subseteq (V_1 + V_2)^0$: Let $T \in V_1 \cap V_2$, so T(x) = 0 for all $x \in V_1 \cap V_2 \subseteq V_1 + V_2$. Therefore T(x) = 0 for all $x \in V_1 + V_2$, and $T \in (V_1 + V_2)^0$.

Thus, $(V_1 + V_2)^0 = V_1^0 \cap V_2^0$.

Exercise 4 (Section 2.2, 16). Let V and W be vector spaces such that $\dim V = \dim W$, and let $T: V \to W$ be linear. Show that there exist ordered bases \mathcal{B} and \mathcal{C} for V and W, respectively, such that $[T]_{\mathcal{B}}^{\mathcal{C}}$ is a diagonal matrix.

Solution 4. The kernel of T may be nontrivial. In this more general case, let $\{w_1, \ldots, v_m\}$ be a basis for ker T, then by the replacement theorem we can extend it to a basis $\mathcal{B} = \{w_1, \ldots, w_m, v_{m+1}, \ldots, v_n\}$ for V.

We shall prove that $\{T(v_{m+1}), \ldots, T(v_n)\}$ is linearly independent. Suppose for scalars $a_{m+1}, \ldots, a_n \in F$, $a_{m+1}T(v_{m+1}) + \cdots + a_nT(a_n) = 0$, then $a_{m+1}T(v_{m+1}) + \cdots + a_nT(a_n) = 0 = T(a_{m+1}v_{m+1} + \cdots + a_nv_n)$, so $a_{m+1}v_{m+1} + \cdots + a_nv_n \in \ker T$. This means that for some scalars $a_1, \ldots, a_m \in F$,

$$a_1w_1 + \dots + a_mw_m - (a_{m+1}v_{m+1} + \dots + a_nv_n) = 0.$$

Since \mathcal{B} is a basis, we have that $a_1 = \cdots = a_n = 0$, and the set $\{T(v_{m+1}), \ldots, T(v_n)\}$ is linearly independent. Again by the replacement theorem, we can extend it to a basis $\mathcal{C} = \{\alpha_1, \ldots, \alpha_m, T(v_{m+1}), \ldots, T(v_n)\}$ for W. In this ordered basis \mathcal{C} , the matrix representation of T is simply

with m zeroes and n-m ones in the diagonal.

(There are extra exercises in the next page.) $\,$

Extra Exercises

You don't have to hand in extra exercises, and solving them will NOT affect your grade.

Exercise 5. Let V be a finite-dimensional vector space.

(a) Let U be a subspace of V with $U \neq V$. Suppose that $S \in \mathcal{L}(U,W)$ and that S is not the zero transformation. Define $T: V \to W$ by

$$T(v) = \begin{cases} S(v) & \text{if } v \in U, \\ 0 & \text{if } v \in V \text{ and } v \notin U. \end{cases}$$

Prove that T is NOT a linear transformation on V.

(b) Prove that every linear transformation on a subspace of V can be extended to a linear transformation on V. In other words, show that if U is a subspace of V and $S \in \mathcal{L}(U, W)$, then there exists $T \in \mathcal{L}(V, W)$ such that T(u) = S(u) for all $u \in U$.

Solution 5.

Exercise 6. Let U, V, and W be vector spaces over a field F (not necessarily finite-dimensional).

(a) Suppose that $S:U\to V$ and $T:V\to W$ are linear transformations whose kernels are both finite-dimensional. Show that the kernel of the composition TS is also finite-dimensional and that

nullity
$$TS \leq \text{nullity } T + \text{nullity } S$$
.

(b) Suppose that $S:U\to V$ and $T:V\to W$ are linear transformations whose images are both finite-dimensional. Show that the image of the composition TS is also finite-dimensional and that

$$\operatorname{rank} TS \leq \min \{\operatorname{rank} T, \operatorname{rank} S\}.$$

Solution 6.

Exercise 7. Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V)$. Suppose that $T^m = 0$ for some positive integer m. Show that $T^n = 0$, where $n = \dim V$.

Solution 7.