
Homework 5
Linear Algebra (I), Fall 2024

Deadline: 10/9 (Wed.) 12:10

Exercise 1 (Section 2.2, 10). Let V be a vector space with the ordered basis B = {v1, v2, . . . , vn}.
Define v0 = 0. By Theorem 2.6, there exists a linear transformation T : V → V such that
T (vj) = vj + vj−1 for j = 1, 2, . . . , n. Compute [T ]B.

Solution 1. Under the basis B, the linear transformation T can be represented as an n × n
matrix, with components aij . The coefficients a+ ij should satisfy

T (vj) =

n∑
i=1

aijvi = vj + vj−1.

By observation, we find that aij = 1 if i = j or i = j − 1, and aij = 0 otherwise:

[T (v1)]B = (1 0 · · · 0)⊺,

[T (vn)]B = (0 0 · · · 1)⊺,
[T (vj)]B = (0 · · · 0 1 1 0 · · · 0)⊺, 1 < j < n.

The final matrix is

[T ]B =



1 0 0 · · · 0 0
1 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 0
0 0 0 · · · 1 1

 .

Exercise 2 (Section 2.2, 11). Let V be an n-dimensional vector space, and let T : V → V be a
linear transformation. Suppose that W is a T -invariant subspace of V having dimension k. Show
that there is a basis B for V such that [T ]B has the formÅ

A B
O C

ã
,

where A is a k × k matrix and O is the (n− k)× k zero matrix.

Solution 2. The cases k = 0 and k = n are trivial, since then there is no restriction on the form
of the matrix, and the matrix must exist.

Consider 1 < k < n, let B = {v1, . . . , vk} be a basis of W . Since W is T -invariant, T (W ) ⊆
W =⇒ T (vj) ∈ W , for 1 ≤ j ≤ k, and we can write

T (vj) =

k∑
i=1

aijvi.

Extend B to a basis for V , B = {v1, v2, . . . , vk, vk+1, . . . , vn}, by the replacement theorem. Then
for 1 ≤ j ≤ k, T (vj) is

T (vj) = a1jv1 + · · ·+ akjvk + 0 · vk+1 + · · ·+ 0 · vn.

In coordinate vector form this is [T ]B = (a1j · · · akj 0 · · · 0)⊺, so

[T ]B = [T (v1) · · · T (vk) T (vk+1 T (vn))]B =

Å
A B
O C

ã
,

where A and O are as defined in the problem statement.
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Exercise 3 (Section 2.2, 15). Let V and W be vector spaces, and let S be a subset of V . Define
S0 = {T ∈ L(V,W ) : T (x) = 0 for all x ∈ S}. Prove the following statements.

(a) S0 is a subspace of L(V,W ).

(b) If S1 and S2 are subsets of V and S1 ⊆ S2, then S0
2 ⊆ S0

1 .

(c) If V1 and V2 are subspaces of V , then (V1 + V2)
0 = V 0

1 ∩ V 0
2 .

Solution 3.

(a) From theorem 1.3, a subset is a subspace iff the following properties are satisfied:

(i) 0 ∈ S0: Let 0 : V → W, x 7→ 0 be the zero transformation. Then 0(x) = 0∀x ∈ S ⊆ V ,
so 0 ∈ S0.

(ii) T1, T2 ∈ S0 =⇒ T1 + T2 ∈ S0: Since T1, T2 ∈ S0, T1(x) = T2(x) = 0 for all x ∈ S.
Then (T1 + T2)(x) = T1(x) + T2(x) = 0 + 0 = 0 for all x ∈ S, and so T1 + T2 ∈ S0.

(iii) cT ∈ S0∀c ∈ F : Let T ∈ S0 and c ∈ F , so (cT )(x) = c[T (x)] = c0̇ = 0 for all x ∈ S.
Thus cT ∈ S0/

Therefore S0 is a subspace.

(b) We prove the two-way inclusion:
(V1 + V2)

0 ⊆ V 0
1 ∩ V 0

2 : Let T ∈ (V1 + V2)
0, so T (x) = 0 for all x ∈ V1 + V2. By the definition

of V1 + V2, we have

T (x) = T (v1v2) = T (v1) + T (v2)∀v1 ∈ V1, ∀v2 ∈ V2.

This holds for all v1 and v2, so T (v1) = T (v2) = 0 =⇒ T ∈ V1 ∩ V2.
V 0
1 ∩ V 0

2 ⊆ (V1 + V2)
0: Let T ∈ V1 ∩ V2, so T (x) = 0 for all x ∈ V1 ∩ V2 ⊆ V1 + V2. Therefore

T (x) = 0 for all x ∈ V1 + V2, and T ∈ (V1 + V2)
0.

Thus, (V1 + V2)
0 = V 0

1 ∩ V 0
2 .

Exercise 4 (Section 2.2, 16). Let V and W be vector spaces such that dimV = dimW , and let
T : V → W be linear. Show that there exist ordered bases B and C for V and W , respectively,
such that [T ]CB is a diagonal matrix.

Solution 4. The kernel of T may be nontrivial. In this more general case, let {w1, . . . , vm} be a
basis for kerT , then by the replacement theorem we can extend it to a basis B = {w1, . . . , wm, vm+1, . . . , vn}
for V .

We shall prove that {T (vm+1), . . . , T (vn)} is linearly independent. Suppose for scalars
am+1, . . . , an ∈ F , am+1T (vm+1) + · · · + anT (an) = 0, then am+1T (vm+1) + · · · + anT (an) =
0 = T (am+1vm+1 + · · · + anvn), so am+1vm+1 + · · · + anvn ∈ kerT . This means that for some
scalars a1, . . . , am ∈ F ,

a1w1 + · · ·+ amwm − (am+1vm+1 + · · ·+ anvn) = 0.

Since B is a basis, we have that a1 = · · · = an = 0, and the set {T (vm+1), . . . , T (vn)} is
linearly independent. Again by the replacement theorem, we can extend it to a basis C =
{α1, . . . , αm, T (vm+1), . . . , T (vn)} for W . In this ordered basis C, the matrix representation of
T is simply

[T ]CB =



0
. . .

0
1

1
. . .

1


,
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with m zeroes and n−m ones in the diagonal.

(There are extra exercises in the next page.)
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Extra Exercises
You don’t have to hand in extra exercises, and solving them will NOT affect your grade.

Exercise 5. Let V be a finite-dimensional vector space.

(a) Let U be a subspace of V with U 6= V . Suppose that S ∈ L(U,W ) and that S is not the
zero transformation. Define T : V → W by

T (v) =

®
S(v) if v ∈ U ,
0 if v ∈ V and v /∈ U .

Prove that T is NOT a linear transformation on V .

(b) Prove that every linear transformation on a subspace of V can be extended to a linear
transformation on V . In other words, show that if U is a subspace of V and S ∈ L(U,W ),
then there exists T ∈ L(V,W ) such that T (u) = S(u) for all u ∈ U .

Solution 5.

Exercise 6. Let U , V , and W be vector spaces over a field F (not necessarily finite-dimensional).

(a) Suppose that S : U → V and T : V → W are linear transformations whose kernels are both
finite-dimensional. Show that the kernel of the composition TS is also finite-dimensional and
that

nullity TS ≤ nullity T + nullity S.

(b) Suppose that S : U → V and T : V → W are linear transformations whose images are both
finite-dimensional. Show that the image of the composition TS is also finite-dimensional and
that

rankTS ≤ min{rankT, rankS}.

Solution 6.

Exercise 7. Let V be a finite-dimensional vector space and T ∈ L(V ). Suppose that Tm = 0 for
some positive integer m. Show that Tn = 0, where n = dimV .

Solution 7.
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