
Homework 6
Linear Algebra I, Fall 2024
黃紹凱 B12202004
October 19, 2024

Exercise 1 (Section 2.3, 9). Find linear transformations U, T : F 2 → F 2 such that UT = T0 (the
zero transformation) but TU ̸= T0. Use your answer to find matrices A and B such that AB = O
but BA ̸= O.

Solution 1. Consider the transformations U, T : F 2 → F 2 defined by

U

(
a
b

)
=

(
a+ b
a+ b

)
, T

(
a
b

)
=

(
a+ b

−(a+ b)

)
,

where a, b ∈ F . Here we show that U and T are indeed linear: Consider x1, x2, y1, y2, c ∈ F , then

U

(
x1 + cy1
x2 + cy2

)
=

(
x1 + cy1 + x2 + cy2
x1 + cy1 + x2 + cy2

)
=

(
x1 + x2

x1 + x2

)
+ c

(
y1 + y2
y1 + y2

)
= U

(
x1

x2

)
+ cU

(
y1
y2

)
,

T

(
x1 + cy1
x2 + cy2

)
=

(
x1 + cy1 + x2 + cy2

−(x1 + cy1 + x2 + cy2)

)
=

(
x1 + x2

−(x1 + x2)

)
+c

(
y1 + y2

−(y1 + y2)

)
= U

(
x1

x2

)
+cU

(
y1
y2

)
.

We can verify that for all a, b ∈ F ,

UT

(
a
b

)
= U

(
a+ b

−(a+ b)

)
=

(
0
0

)
,

so UT = T0. However,

TU

(
a
b

)
= T

(
a+ b
a+ b

)
=

(
2a+ 2b

−(2a+ 2b)

)
̸=

(
0
0

)
.

Choose the standard ordered basis for F 2, call it β, and we have that

B ≡ [T ]β =

(
1 1
−1 −1

)
, A ≡ [U ]β =

(
1 1
1 1

)
,

satisfying AB = O,BA ̸= O.

Exercise 2 (Section 2.3, 12). Let V , W , and Z be vector spaces, and let T : V → W and
U : W → Z be linear.

(a) Prove that if UT is one-to-one, then T is one-to-one. Must U also be one-to-one?

(b) Prove that if UT is onto, then U is onto. Must T also be onto?

(c) Prove that if U and T are one-to-one and onto, then UT is also.

Solution 2.

(a) Suppose UT is one-to-one, then theorem 2.4 tells us that ker(UT ) = {0}. Now suppose
there’s a v ∈ kerT such that T (v) = 0, so (UT )(v) = U(T (v)) = U(0) = 0, and v ∈ ker(UT ).
This implies v = 0, and kerT = {0}. By theorem 2.4 T is one-to-one.
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In the above result, U is not necessarily one-to-one. Consider the following counterexample:
let V = Z = R and W = R2. Let T : V → W and U : W → Z be given by

T (x) =

(
x
0

)
, U

(
x
y

)
= x, x, y ∈ R.

Then for all x ∈ R we have UT (x) = x, so UT = 1 is one-to-one and onto, but U is not
one-to-one.

(b) Suppose UT is onto, then for all z ∈ Z there exists v ∈ V such that (UT )(v) = z. But then
UT (v) = U(T (v)) = z, and we get that for all z ∈ Z, we also have w ≡ T (v) ∈ W such that
U(w) = z, so U is onto.

Again take the counterexample described in (a), UT is onto but T is not onto.

(c) Prove one-to-one and onto as follows:

(1) Since T and U are one-to-one, their kernels are trivial by theorem 2.4. I.e. kerT = {0v},
kerU = {0W }. Suppose v ∈ ker(UT ), then UT (v) = U(T (v)) = 0, so T (v) ∈ kerU =⇒
T (v) = 0W , and then v ∈ kerT =⇒ v = 0V . So the kernel of UT is trivial, and UT is
one-to-one by theorem 2.4.

(2) Suppose T and U are onto, then for all z ∈ Z there exists w ∈ W such that U(w) = z,
and for all w ∈ W there exists v ∈ V such that T (v) = w. Then for all z ∈ Z there
exists v ∈ V such that UT (v) = U(w) = z, so UT is onto.

Exercise 3 (Section 2.3, 13). Let A and B be n× n matrices (over F ). Recall that the trace of
A is defined by

tr(A) =

n∑
i=1

Aii.

Prove that tr(AB) = tr(BA) and tr(A) = tr(At).

Solution 3. expand the matrix AB in index notation:

(AB)ij =

n∑
k=1

AikBkj .

Then
tr(AB) =

n∑
i=1

n∑
k=1

AikBki =

n∑
k=1

n∑
i=1

BkiAik = tr(BA),

where the last equal sign is because we exchange the role of dummy index i and k. For A⊺, we
have (A⊺)ij = (A)ji, so (A⊺)ii = (A)ii, leaving the trace unchanged.

Exercise 4 (Section 2.4, 4). Let A and B be n×n invertible matrices. Prove that AB is invertible
and (AB)−1 = B−1A−1.

Solution 4. By assumption, the inverses A−1 and B−1 exist. Then

(AB)(B−1A−1) = In = (B−1A−1)(AB),

so by the definition of matrix inverse, (AB)−1 = B−1A−1.

Exercise 5 (Section 2.4, 5). Let A be invertible. Prove that At is invertible and (At)−1 = (A−1)t.
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Solution 5. First we claim that for two n× n matrices A,B, we have (AB)⊺ = B⊺A⊺.

Proof.

[(AB)⊺]ij = (AB)ji =
n∑

k=1

AjkBki =
n∑

k=1

(B⊺)ik(A⊺)kj = (B⊺A⊺)ij .

Therefore, (AA−1)⊺ = (In)
⊺ = In = (A−1)⊺A⊺, and (A−1A)⊺ = (In)

⊺ = In = A⊺(A−1)⊺. So
A⊺ is invertible, with (A⊺)−1 = (A−1)⊺.

Exercise 6 (Section 2.4, 10). Let A and B be n× n matrices such that AB = In.

(a) Prove that A and B are invertible. (If you want to use Section 2.4, 9, you need to prove it
first.)

(b) Prove A = B−1 (and hence B = A−1). (We are, in effect, saying that for square matrices, a
“one-sided” inverse is a “two-sided” inverse.)

(c) State and prove analogous results for linear transformations defined on finite-dimensional
vector spaces.

Solution 6.

(a) Here we use the result of 2.4, 9: For n× n matrices A and B, if AB is invertible, then so is
A and B.

Proof. Let LA and LB be the left-multiplication transformation associated with matrices A
and B, respectively. Then LA, LB ∈ L(V,W ), where dimV = dimW = n. By theorem 2.18,
AB is invertible iff LALB = LAB is invertible, where equality is due to theorem 2.15. Thus
LALB is one-to-one and onto. By exercise 2 (a) and (b) we know that LB is one-to-one,
and LA is onto, but by theorem 2.5 one-to-one, onto, and invertible are equivalent for linear
transformations in finite-dimensional spaces, so LA and LB are invertible. Again by theorem
2.18, A and B are invertible.

Since AB = In is invertible, A and B are invertible.

(b) From (a) we know that B−1 exists, so apply it to the right on both sides to get ABB−1 =
A = InB

−1 = B−1.

(c) We state the following analogous result: Consider linear transformations T, S ∈ L(V ), where
V is finite-dimensional. Then if TS = IV , T and S are invertible, with T = S−1.

Proof. Since TS = IV is invertible, TS is one-to-one and onto, so S is one-to-one and T is
onto. By theorem 2,5 T and S are both bijective, and so they are invertible. Then we verify
that TSS−1 = T = IV S

−1 = S−1.

Definition. A relation ∼ on a set A is called an equivalence relation on A if for all x, y, z ∈ A,

(i) (reflexivity) x ∼ x;

(ii) (symmetry) if x ∼ y, then y ∼ x;

(iii) (transitivity) if x ∼ y and y ∼ z, then x ∼ z.

Exercise 7 (Section 2.4, 13). Let ∼ mean “is isomorphic to.” Prove that ∼ is an equivalence
relation on the class of vector spaces over F .
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Solution 7. Let V,W,Z be isomorphic vector spaces, and T ∈ L(V,W ), S ∈ L(W,Z) be bijective.
We check the following criteria:

(i) Let IV : V → V be the identity map, it is linear and bijective, so it is an isomorphism, and
V ∼ V .

(ii) Suppose V ∼ W , then there exists a bijective linear map T : V → W . Consider T−1 : W →
V , by theorem 2.17 it is linear, and it is also invertible, so W ∼ V .

(iii) Suppose V ∼ W and W ∼ Z, then there exists linear bijective maps T : V → W and
S : W → Z.

Exercise 8 (Section 2.4, 17). Let V and W be finite-dimensional vector spaces and T : V → W
be an isomorphism. Let V0 be a subspace of V .

(a) Prove that T (V0) is a subspace of W .

(b) Prove that dimV0 = dimT (V0).

Solution 8.

(a) For T (V0) to be a subspace, it has to satisfy the following:

(1) 0W ∈ T (V0): Since V0 is a subspace of V , 0V ∈ V0, then T (0V ) = 0W ∈ T (V0).

(2) w1 + cw2 ∈ T (V0) for all w1, w2 ∈ T (V0), c ∈ F : By definition of T (V0), there exists
v1, v2 ∈ V0 such that w1 = T (v1), w2 = T (v2). Then w1 + cw2 = T (v1) + cT (v2) =
T (v1 + cv2) ∈ T (V0).

By the subspace criterion, T (V0) is a subspace of W .

(b) By the rank-nullity theorem, we have

rankT + nullityT = dimV0,

where we restrict T to the subspace V0, so that rankT = dim(imT ) = dimT (V0), and
nullityT ≥ 0. In general dimT (V0) ≤ dimV0. But since T is an isomorphism, it is also one-
to-one, and by theorem 2.4 kerT = {0}, dim(kerT ) = nullityT = 0, so dimV0 = dimT (V0).

(There are extra exercises in the next page.)

4



Extra Exercises
You don’t have to hand in extra exercises, and solving them will NOT affect your grade.

Exercise 9. Recall that if W is a subspace of a vector space V , we define

V /W := {v +W : v ∈ V }

to be the quotient space of V modulo W with addition and scalar multiplication defined by

(v1 +W ) + (v2 +W ) = (v1 + v2) +W

for all v1, v2 ∈ V and
c(v +W ) = cv +W

for all v ∈ V and c ∈ F .

(a) Let V and W be two vector spaces and let T ∈ (V,W ). Prove that

V / kerT ≃ ImT

with the canonical isomorphism T : V / kerT → ImT given by

T (v + kerT ) = T (v).

That is, you need to verify that

(i) T is well-defined; that is, prove that if v + kerT = v′ + kerT , then T (v) = T (v′);

(ii) T is linear;

(iii) T is invertible (one-to-one and onto).

This is called the first isomorphism theorem.

(b) Let π : V → V / kerT be the natural quotient map defined by

π(v) = v + kerT,

which is clearly a linear transformation. Prove that the following diagram commutes;

V W

V / kerT

T

π
T

that is, prove that T = T ◦ π. In this case, we say that T factors through V / kerT .

(c) Assume that V is finite-dimensional. Use (a) to deduce the rank-nullity theorem.

(d) Let U and W be subspaces of a vector space V . Prove that

(U +W )/W ≃ U/(U ∩W )

by (a) via the map T : U → (U +W )/W defined by

T (u) = u+W.

This is called the second isomorphism theorem.

(e) Let U and W be finite-dimensional subspaces of a vector space V . Use (d) to deduce that

dim(U +W ) = dimU + dimW − dim(U ∩W ).
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Solution 9.

(a) We show the following:

(i) T is well-defined: Take v, v′ ∈ V such that v + kerT = v′ + kerT , by problem 1.3,31
v − v′ ∈ kerT , so there exists some k ∈ kerT such that v − v′ = k. Then T (v) =
T (v′+k) = T (v′)+T (k) = T (v′). Therefore, v+kerT = v′+kerT =⇒ T (v+kerT ) =
T (v′ + kerT ).

(ii) T is linear: Let v1 + kerT, v2 + kerT ∈ V / kerT and c ∈ F , then T ((v1 + kerT ) +
c(v2 + kerT )) = T ((v1 + cv2) + kerT ) = T (v1 + cv2). But T is linear, so this equals
T (v1) + cT (v2) = T (v1 + kerT ) + cT (v2 + kerT ).

(iii) T is invertible: First let v + kerT ∈ kerT , then T (v + kerT ) = T (v) = 0, so v ∈
kerT =⇒ v + kerT = 0 + kerT , and kerT = {0 + kerT}, so by theorem T is one-to-
one. Next take some u ∈ imT , so there exists v ∈ V such that T (v) = u. Then for all
u ∈ imT , T (v + kerT ) = T (v) = u, so T is onto. Thus T is invertible.

From the above discussion, V / kerT ≃ imT .

(b) Take some arbitrary v ∈ V , then (T ◦ π)(v) = T (v+ kerT ) = T (v). This holds for all v ∈ V ,
so T ◦ π = T , and the diagram commutes.

(c) Assume dimV < ∞, let β be a finite basis for V . By theorem 2.2 we have imT = span(T (β)),
and by theorem there exists a linearly indepedent subset of T (β) that is a basis for imT , so
dim imT < ∞.

Consider the map T : V / kerT → imT as defined above, by the first isomorphism theorem
V / kerT ≃ imT . So by theorem 2.19 they have the same dimension: rankT = dim imT =
dim(V / kerT ) = dimV − dim kerT = dimV − nullityT , where the second last inequality is
by problem 2.1,40.

(d) Suppose u ∈ kerT , then T (u) = u+W = 0+W , so u ∈ W =⇒ kerT ⊆ U ∩W . Conversely,
take u ∈ U ∩ W , then T (u) = u + W = 0 + W . Therefore kerT = U ∩ W . Next, for all
u +W ∈ (U +W )/W , T (u) = u +W , so T is onto and imT = (U +W )/W . By the first
isomorphism theorem, U/(U ∩W ) ≃ (U +W )/W .

(e) Again use problem 2.1,40 and theorem 2.19,

dim((U +W )/W ) = dim(U +W )− dimW = dim(U/(U ∩W ))

= dimU − dim(U ∩W ).

Then dim(U +W ) = dimU + dimW − dim(U ∩W ).
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