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Exercise 1 (Section 2.3, 9). Find linear transformations U, T : F? — F? such that UT = Ty (the
zero transformation) but TU # Ty. Use your answer to find matrices A and B such that AB = O
but BA # O.

Solution 1. Consider the transformations U, T : F? — F? defined by

7(5)= () ()= (65)

where a,b € F'. Here we show that U and T are indeed linear: Consider x1,x2,y1,y2,c € F, then

1+ cyn 1+ cy1 + T2 +cy2 1+ T2 Y1+ Y2 1 1
U = = +c =U +cU ,
(302 + cy2> (3?1 +cyr +x2 + C:U2> <9€1 + 962) <y1 + yz) <9€2> (yz)

T1 +cyr r1 +cyr + 22+ cys T1 + X2 Y1 + Y2 T Y1
T = = +c =U +cU .
<~T2 + cy2> <—($1 +copn +x2+ Cyz)) (—($1 + $2)> (—(y1 + yz)) <$2> (y2)

We can verify that for all a,b € F,

or(3)=v () = (o)
1o () =7 (057) = (L) # (0)-

Choose the standard ordered basis for F2, call it /3, and we have that

BE[T]/g:(ll 11>,AE[U][;=G })

satisfying AB = O, BA # O.

so UT = Ty. However,

Exercise 2 (Section 2.3, 12). Let V, W, and Z be vector spaces, and let T : V' — W and
U: W — Z be linear.

(a) Prove that if UT is one-to-one, then 7' is one-to-one. Must U also be one-to-one?
(b) Prove that if UT is onto, then U is onto. Must T" also be onto?

(c) Prove that if U and T are one-to-one and onto, then UT is also.

Solution 2.

(a) Suppose UT is one-to-one, then theorem 2.4 tells us that ker(UT) = {0}. Now suppose
there’s a v € ker T such that T'(v) =0, so (UT)(v) = U(T(v)) =U(0) =0, and v € ker(UT).
This implies v = 0, and ker T = {0}. By theorem 2.4 T is one-to-one.



In the above result, U is not necessarily one-to-one. Consider the following counterexample:
let V=Z=Rand W=R2 Let T:V — W and U : W — Z be given by

T(z) = (g) U(Zj) =z, 2,y €R.

Then for all x € R we have UT(z) = z, so UT = 1 is one-to-one and onto, but U is not
one-to-one.

(b) Suppose UT is onto, then for all z € Z there exists v € V' such that (UT)(v) = z. But then
UT(v) =U(T(v)) = z, and we get that for all z € Z, we also have w = T'(v) € W such that
U(w) = z, so U is onto.

Again take the counterexample described in (a), UT is onto but T is not onto.
(¢) Prove one-to-one and onto as follows:

(1) Since T and U are one-to-one, their kernels are trivial by theorem 2.4. Le. ker T = {0,},
ker U = {Ow }. Suppose v € ker(UT), then UT'(v) = U(T(v)) =0, s0 T'(v) € ker U =
T(v) = Oy, and then v € kerT = v = 0y. So the kernel of UT is trivial, and UT is
one-to-one by theorem 2.4.

(2) Suppose T and U are onto, then for all z € Z there exists w € W such that U(w) = z,
and for all w € W there exists v € V such that T'(v) = w. Then for all z € Z there
exists v € V such that UT'(v) = U(w) = z, so UT is onto.

Exercise 3 (Section 2.3, 13). Let A and B be n x n matrices (over F'). Recall that the trace of
A is defined by

n

Prove that tr(AB) = tr(BA) and tr(A) = tr(A?).

Solution 3. expand the matrix AB in index notation:
n
(AB)ij = ZAikBkj-
k=1

Then

n n n n

tr(AB) = Z Aik By = Z ZBkiAik = tr(BA4),

=1 k=1 k=1 1i=1

where the last equal sign is because we exchange the role of dummy index 7 and k. For AT, we
have (AT);; = (A),i, so (AT);; = (A)si, leaving the trace unchanged.

Exercise 4 (Section 2.4, 4). Let A and B be nxn invertible matrices. Prove that AB is invertible
and (AB)™! = B71A-L

Solution 4. By assumption, the inverses A=! and B~! exist. Then
(AB)(B™*A™Y) =1, = (B 'A™1)(AB),

so by the definition of matrix inverse, (AB)~! = B~1A~L

Exercise 5 (Section 2.4, 5). Let A be invertible. Prove that A’ is invertible and (A%)~! = (A=1)%.



Solution 5. First we claim that for two n x n matrices A, B, we have (AB)T = BTAT.

Proof.
[(AB)T];; = (AB)ji = > AjBri = » _(BT)ik(AT)gy = (BTAT),;.
k=1

k=1

Therefore, (AA™)T = (1,,)T =1, = (A")TAT, and (A1 A)T = (1,,)T =1, = AT(A~1)T. So
AT is invertible, with (AT)~! = (A~1)T.

Exercise 6 (Section 2.4, 10). Let A and B be n x n matrices such that AB = I,,.

(a) Prove that A and B are invertible. (If you want to use Section 2.4, 9, you need to prove it
first.)

(b) Prove A= B~! (and hence B = A~!). (We are, in effect, saying that for square matrices, a
“one-sided” inverse is a “two-sided” inverse.)

(c) State and prove analogous results for linear transformations defined on finite-dimensional
vector spaces.

Solution 6.

(a) Here we use the result of 2.4, 9: For n X n matrices A and B, if AB is invertible, then so is
A and B.

Proof. Let L4 and Lg be the left-multiplication transformation associated with matrices A
and B, respectively. Then L4, Lp € L(V,W), where dimV = dim W = n. By theorem 2.18,
AB is invertible iff LyLp = L 4p is invertible, where equality is due to theorem 2.15. Thus
L4Lp is one-to-one and onto. By exercise 2 (a) and (b) we know that Lp is one-to-one,
and L4 is onto, but by theorem 2.5 one-to-one, onto, and invertible are equivalent for linear
transformations in finite-dimensional spaces, so L 4 and Ly are invertible. Again by theorem
2.18, A and B are invertible. O

Since AB = I, is invertible, A and B are invertible.

(b) From (a) we know that B~! exists, so apply it to the right on both sides to get ABB™1 =
A=1,B~'=B"%

(c) We state the following analogous result: Consider linear transformations T,,.S € £(V'), where
V is finite-dimensional. Then if T'S = Iyy, T and S are invertible, with T = S~1.

Proof. Since T'S = Iy is invertible, T'S is one-to-one and onto, so S is one-to-one and 7T is
onto. By theorem 2,5 T and S are both bijective, and so they are invertible. Then we verify
that 7SS~ =T =1I,5"1 =81 O

Definition. A relation ~ on a set A is called an equivalence relation on A if for all x,y,z € A,
(i) (rveflexivity) = ~ x;
(ii) (symmetry) if x ~ y, then y ~ x;

(iii) (transitivity) if x ~ y and y ~ z, then = ~ z.

Exercise 7 (Section 2.4, 13). Let ~ mean “is isomorphic to.” Prove that ~ is an equivalence
relation on the class of vector spaces over F.



Solution 7. Let V, W, Z be isomorphic vector spaces, and T' € L(V, W), S € L(W, Z) be bijective.
We check the following criteria:

(i) Let Iy : V — V be the identity map, it is linear and bijective, so it is an isomorphism, and
V~V.

(ii) Suppose V ~ W, then there exists a bijective linear map 7': V. — W. Consider T~ : W —
V', by theorem 2.17 it is linear, and it is also invertible, so W ~ V.

(iii) Suppose V' ~ W and W ~ Z, then there exists linear bijective maps T : V' — W and
S W — Z.

Exercise 8 (Section 2.4, 17). Let V and W be finite-dimensional vector spaces and T': V — W
be an isomorphism. Let V[ be a subspace of V.

(a) Prove that T(Vp) is a subspace of W.
(b) Prove that dim V) = dim T'(Vp).

Solution 8.
(a) For T'(Vp) to be a subspace, it has to satisfy the following:
(1) Ow € T(Vp): Since V; is a subspace of V, Oy € Vj, then T(0y) = 0w € T(Vh).

(2) wy + cwy € T(Vy) for all wy,ws € T(Vy), ¢ € F: By definition of T'(V}), there exists
v1,v9 € Vp such that wy = T(v1),wy = T(v2). Then wy + cws = T(vy) 4+ T'(ve) =
T(’Ul + C’UQ) € T(Vo)

By the subspace criterion, T'(Vy) is a subspace of W.
(b) By the rank-nullity theorem, we have

rank T' + nullity 7' = dim 1},

where we restrict T' to the subspace Vp, so that rank7 = dim(im7) = dimT(Vp), and
nullity 7' > 0. In general dim7'(Vp) < dim Vj. But since T is an isomorphism, it is also one-
to-one, and by theorem 2.4 ker T' = {0}, dim(ker T') = nullity T’ = 0, so dim V = dim T'(Vp).

(There are extra exercises in the next page.)



Extra Exercises
You don’t have to hand in extra exercises, and solving them will NOT affect your grade.

Exercise 9. Recall that if W is a subspace of a vector space V', we define
VW ={v+W:veV}
to be the quotient space of V' modulo W with addition and scalar multiplication defined by
(1 4+W)+ (va+ W)= (v +v2) + W

for all v1,v, € V and
cv+W)=cw+W

forallv e V and c € F.
(a) Let V and W be two vector spaces and let T € (V,W). Prove that

V/kerT ~ImT
with the canonical isomorphism 7 : V/ker T — Im T given by
T(v+kerT) =T(v).
That is, you need to verify that
(i) T is well-defined; that is, prove that if v +ker T = v’ + ker T, then T'(v) = T'(v');
(ii) T is linear;
(iii) T is invertible (one-to-one and onto).
This is called the first isomorphism theorem.
(b) Let m: V — V/ker T be the natural quotient map defined by
m(v) =v+kerT,

which is clearly a linear transformation. Prove that the following diagram commutes;

v —IT s w

| A

V/kerT

that is, prove that T =T o 7. In this case, we say that T factors through V/ker T.
(¢) Assume that V is finite-dimensional. Use (a) to deduce the rank-nullity theorem.

(d) Let U and W be subspaces of a vector space V. Prove that
U+W)/W=U/(UNW)
by (a) via the map T : U — (U + W)/W defined by
T(u) =u+W.

This is called the second isomorphism theorem.

(e) Let U and W be finite-dimensional subspaces of a vector space V. Use (d) to deduce that

dim(U + W) =dimU + dim W — dim(U N W).



Solution 9.

(a)

We show the following:

(i) T is well-defined: Take v,v’ € V such that v + ker T = v’ + ker T, by problem 1.3,31
v —v" € kerT, so there exists some k € kerT such that v —v" = k. Then T'(v) =
T +k)=TwW)+T(k)=T("). Therefore, v+kerT = v'+kerT — T(v+kerT) =

T(v' +kerT).
(ii) T is linear: Let vy + kerT,vy + kerT € V/kerT and ¢ € F, then T((v; + kerT) +

c(va +kerT)) = T((v1 + cv2) + ker T') = T(vy + cvz). But T is linear, so this equals

T(v1)+ T (ve) = T(vy + ker T) + T (vg + ker T').

(iii) T is invertible: First let v + kerT € kerT, then T'(v + kerT) = T'(v) = 0, so v €
kerT = v+ kerT =0 +kerT, and ker T = {0 + ker T'}, so by theorem T is one-to-
one. Next take some u € imT, so there exists v € V such that T'(v) = u. Then for all
we€imT, T(v+kerT)=T(v)=u,soT is onto. Thus T is invertible.

From the above discussion, V/ker T ~ imT.

Take some arbitrary v € V, then (T o)(v) = T(v +ker T') = T(v). This holds for all v € V,
so T'om =T, and the diagram commutes.

Assume dim V' < oo, let 5 be a finite basis for V. By theorem 2.2 we have im T = span(7'(5)),
and by theorem there exists a linearly indepedent subset of T'(3) that is a basis for im T, so
dimimT < oc.

Consider the map T : V/kerT — im T as defined above, by the first isomorphism theorem
V/kerT ~ imT. So by theorem 2.19 they have the same dimension: rank7 = dimim7 =
dim(V/kerT) = dimV — dimker T" = dim V' — nullity T', where the second last inequality is
by problem 2.1,40.

Suppose u € ker T, then T'(u) = u+W =04+W,sou € W = kerT C UNW. Conversely,
take u € UNW, then T'(u) = u+ W = 0+ W. Therefore kerT = U N W. Next, for all
u+W e (U+W)/W, T(u) =u+W,so T is onto and imT = (U + W)/W. By the first
isomorphism theorem, U/(U NW) ~ (U + W)/W.

Again use problem 2.1,40 and theorem 2.19,

dim((U +W)/W) =dim(U + W) —dim W = dim(U /(U N W))
=dimU — dim(U N W).

Then dim(U 4+ W) = dimU + dim W — dim(U N W).



