
Homework 7
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黃紹凱 B12202004
October 23, 2024

Definition. Let V be a vector space and W1 and W2 be subspaces of V such that V = W1⊕W2.
A function T : V → V is called the projection on W1 along W2 if, for x = x1+x2 with x1 ∈ W1

and x2 ∈ W2, we have T (x) = x1.

Exercise 1 (Section 2.5, 7). In R2, let L be the line y = mx, where m ̸= 0. Find an expression
for T (x, y), where

(a) T is the reflection of R2 about L.

(b) T is the projection on L along the line perpendicular to L.

Solution 1.

(a) From geometry, the reflection matrix is

R(θ) =

(
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
,

where tan θ = m. So we have

T (x, y) =

(
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)(
x
y

)
=

1

m2 + 1

(
(1−m2)x+ 2my, 2mx− (1−m2)y

)
.

The perpendicular unit vector is
1√

1 +m2(−m, 1)
,

and the magnitude of the projected vector is
√

x2 + y2 sinϕ, where ϕ is the angle between (x, y)
and L. So

T (x, y) =
√
x ∗ 2 + y2 sin((ϕ+ θ)− θ)(−m, 1)/

√
1 +m2,

plug in the formulas to get

√
x2 + y2

 y√
x2 + y2 1√

1+m2
− m√

1+m2

x√
x2y2

 =
1√

1 +m2
(y −mx).

So we have
T (x, y) =

1

1 +m2
(y −mx)(−m, 1).

Exercise 2 (Section 2.5, 9). Prove that “is similar to” is an equivalence relation on Mn×n(F ).

Solution 2. Denote matrix similarity by the symbol ∼, we will show that ∼ satisfies the rquire-
ments of an equiva;ence equation:

1. Reflexivity: For an n× n matrix A, In is invertible, so A = I−1
n AIn implies A ∼ A.

2. Symmetry: Suppose two n × n matrices A, B satisfy A ∼ B, so there exists Q such that
B = Q−1AQ. Then A = QBQ−1 = (Q−1)−1BA−1, so B ∼ A.
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3. Transitivity: Suppose A ∼ B and B ∼ C, then there exists invertible n × n matrices P , Q
such that B = Q−1AQ and C = P−1BP . Then C = P−1Q−1AQP = (QP )−1A(QP ), so
A ∼ C.

Exercise 3 (Section 2.5, 10). Prove that if A and B are similar n×n matrices, then tr(A) = tr(B).
Hint: Use Section 2.3, 13.

Solution 3. Assume A ∼ B, using the notation from last problem. Then there exists an invertible
matrix Q such that B = Q−1AQ. Recall the property of the trace that for three arbitrary matrices
A,B,C (such that the product is defined), tr(ABC) = tr(CAB).

Thus, tr(B) = tr(Q−1AQ) = tr(QQ−1A) = tr(A).

Exercise 4 (Section 2.5, 13). Let V be a finite-dimensional vector space over a field F , and let
B = {x1, x2, . . . , xn} be an ordered basis for V . Let Q be an n × n invertible matrix with entries
from F . Define

x′
j =

n∑
i=1

Qijxi for 1 ≤ j ≤ n,

and set B′ = {x′
1, x

′
2, . . . , x

′
n}. Prove that B′ is a basis for V and hence that Q is the change of

coordinate matrix changing B′-coordinates into B-coordinates.

Solution 4. We first show that B′ is a spanning set:

span(B′) = span ({x′
1, . . . , x

′
n}) =

n∑
j=1

ajx
′
j

=

n∑
j=1

aj

(
n∑

i=1

Qijxi

)
=

n∑
j=1

(
aj

n∑
i=1

Qij

)
xi

= span ({x1, . . . xn}) = span(B) = V.

By corollary 2 (a) of theorem 1.10, a spanning set with size dimV is a basis, so B′ is a basis for
V . Thus, Q is the change of coordinate matrix from B′ to B. .

Exercise 5 (Section 3.2, 14). Let T, U : V → W be linear transformations.

(a) Prove that Im(T + U) ⊆ ImT + ImU .

(b) Prove that if W is finite-dimensional, then rank(T + U) ≤ rankT + rankU .

(c) Deduce from (b) that rank(A+B) ≤ rankA+ rankB for any m× n matrices A and B.

Solution 5.

(a) Take some arbitrary v ∈ V , then by definition (T + U)(v) ∈ im(T + U). Then (T + U)(v) =
T (v) + U(v) ∈ im(T ) + im(U), so im(T + U) ⊆ im(T ) + im(U).

(b) From HW3 ex.7, we have the result that when W is finite dimensional, then two subspaces
W1,W2 ⊆ W satisfy

dim(W1 +W2) = dimW1 + dimW2 − dim(W1 ∩W2).

Notice that imT and imU are subspaces of W , so we have
dim(im(T + U)) ≤ dim(imT + imU)

= dim(imT ) + dim(imU)− dim(imT ∩ imU)

≤ dim(imT ) + dim(imU).
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Here the first inequality is due to (a), and the second is due to the above mentioned result.

(c) Let V = Fn, W = Rm, T = LA, and U = LB in (b). From theorem 2.15 (iii) we have
that LA+B = LA + LB , so rank(LA+B) = rank(LA + LB) ≤ rankLA + rankLB . Thus,
rank(A+B) ≤ rankA+ rankB, as desired.

Exercise 6 (Section 3.2, 20). Let

A =


1 0 −1 2 1
−1 1 3 −1 0
−2 1 4 −1 3
3 −1 −5 1 −6

 .

(a) Find a 5× 5 matrix M with rank 2 such that AM = O, where O is the 4× 5 zero matrix.

(b) Suppose that B is a 5× 5 matrix such that AB = O. Prove that rankB ≤ 2.

Solution 6. (a) Let the matrix M be given by
a1 b1 0 0 0
a2 b2 0 0 0
a3 b3 0 0 0
a4 b4 0 0 0
a5 b5 0 0 0

 ,

which is rank 2 by theorem 3.5 as required by the problem statement. Solving for the tuple
(a1, a2, a3, a4, a5), and similarly for (b1, . . . , b5), gives infinitely many solutions, we choose the
following solution

M =


1 0 0 0 0
−2 −7 0 0 0
1 3 0 0 0
0 2 0 0 0
0 −1 0 0 0

 ,

which has rank 2 by theorem 3.5.

(b) By theorem in textbook, any elementary operation on the matrix would preserve its rank, so
the rank cannot be any larger than the example given in (a), that is, 2.

Exercise 7 (Section 3.2, 21). Let A be an m × n matrix with rank m. Prove that there exists
an n×m matrix B such that AB = Im.

Solution 7.

Claim. A map T : V → W has a right inverse if and inly if T is onto.

Proof. We prove by the two directions: ( =⇒ ) Suppose there exists S : W → V such that
TS : W → W is the identity map. Since the identity map is onto, T is also onto by HW6 ex. 2.

( ⇐= ) Suppose now T is onto, then for every w ∈ W there is some v ∈ V such that
T (v) = w. Therefore we can define the preimage of T , which we call S, such that S : W → V is
given by S(w) = v for all w ∈ W , where v is chosen such that T (v) = w. Then for all w ∈ W , we
have (TS)(w) = T (v) = w, so TS = IW .

Using the above result, we have that A has a right inverse iff LA : Fn → Fm has a right
inverse, iff LA is onto, iff imLA = Fm, iff dim(imLA) = dimFm = m. The last iff is true because
the dimension of Fm and imLa is finite dimensional, and imLA ⊆ Fm, so by theorem in textbook
they are equal. Therefore, A has a right inverse iff rankA = rankLA = m.
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(There are extra exercises in the next page.)
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Extra Exercises
You don’t have to hand in extra exercises, and solving them will NOT affect your grade.

Exercise 8. Define

J =


1 1 1 · · · 1
1 1 1 · · · 1
1 1 1 · · · 1
...

...
... . . . ...

1 1 1 · · · 1

 ∈ Mn×n(R)

to be the matrix whose entries are all equal to 1. Consider the following subspace of Mn×n(R)

W = {A ∈ Mn×n(R) : AJ = JA}.

Find a basis and the dimension of W in terms of n.

Exercise 9. Let A ∈ M2×2(R) be a nonzero matrix such that tr(A) = 0.

(a) Show that there exists a vector v ∈ R2 such that {v,Av} is a basis for R2.

(b) Show that there exists an invertible matrix P ∈ M2×2(R) such that

P−1AP =

(
0 b
c 0

)
for some b, c ∈ R.

Exercise 10. Let A ∈ Mn×n(F ). Define LA and RA to be the linear transformations from
Mn×n(F ) to Mn×n(F ) by

LA(B) = AB, RA(B) = BA.

Show that rankLA = rankRA.
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