
Homework 8
Linear Algebra I, Fall 2024
黃紹凱 B12202004
November 6, 2024

Exercise 1 (Section 3.3, 6). Let T : R3 → R2 be defined by

T (a, b, c) = (a+ b, 2a− c).

Determine T−1(1, 11). (Here, T−1 means the preimage of T ).

Solution 1. Recall the definition of the set-theoretic preimage: for x, y ∈ R,

T−1(x, y) ≡
{
(a, b, c) ∈ R3

∣∣T (a, b, c) = (x, y)
}
.

Suppose T (a, b, c) = (1, 11), then®
a+ b = 1,

2a− c = 11.
=⇒

®
b = 1− a,

c = 2a− 11.

So
T−1(1, 11) = {(a, 1− a, 2a− 11) | a ∈ R} .

Exercise 2 (Section 3.3, 9). Prove that the system of linear equations Ax = b has a solution if
and only if b ∈ Im(LA).

Solution 2.

( =⇒ ): Suppose s ∈ Fn is a solution to Ax = b, then As = LA(s) = b, so b ∈ ImLA.

( ⇐= ): Suppose b ∈ ImLA, then there exists some s ∈ Fn such that LA(s) = b. Then
LA(s) = As = b, so s is a solution to Ax = b.

Exercise 3 (Section 3.3, 10). Prove or give a counterexample to the following statement: If the
coefficient matrix of a system of m linear equations in n unknowns has rank m, then the system
has a solution.

Solution 3. rankA = rankLA = dim ImLA = m = dimFm. Since ImLA and Fm are finite-
dimensional, by theorem in textbook we have ImLA = Fm. Thus LA is surjective, so for any
b ∈ Fm, there exists some solution s ∈ Fm such that LA(s) = As = b.

Exercise 4 (Section 3.4, 3). Suppose that the augmented matrix of a system Ax = b is trans-
formed into a matrix (A′|b′) in reduced row echelon form by a finite sequence of elementary row
operations.

(a) Prove that rankA′ ̸= rank(A′|b′) if and only if (A′|b′) contains a row in which the only
nonzero entry lies in the last column.

(b) Deduce that Ax = b is consistent if and only if (A′|b′) contains no row in which the only
nonzero entry lies in the last column.
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Solution 4.

(a) We prove both directions:

( =⇒ ): Suppose rank(A′) ̸= rank (A′|b′). Then it must be the case that (A′|b′) has one more
linearly independent column (the (m+ 1)-th column ) of the form ei (r + 1 ≤ i ≤ n), where
r = rankA, since if 1 ≤ i ≤ r, by theorem 3,16 (b) there is a column bj(i) = ei, so the new
column would not be linearly independent from the rest.

By definition of the reduced row echelon form, the i-th row (r + 1 ≤ i ≤ n) of A′ is all zero,
so it is a row where the only nonzero entry lies in the last column.

( ⇐= ): Suppose (A′|b′) contains a row in which the only nonzero entry lies in the last
column. Suppose this row is the j-th row (r+1 ≤ j ≤ n). Suppose a solution x ∈ Fn exists,
then this row corresponds to the linear equation of n unknowns

aj1x1 + aj2x2 + · · ·+ ajn = 0 · x1 + 0 · x2 + · · ·+ 0 · xn = 0 = c ̸= 0.

Contradiction, so there cannot be a solution, Ax = b is inconsistent. By theorem 3.11
rank (A′|b′) ̸= rank(A′).

(b) Take the contrapositive on both sides of the result of (a), then apply theorem 3.11, which says
the fact that a system Ax = b is consistent is equivalent to the equality rankA′ = rank (A′|b′).

Exercise 5 (Section 3.4, 7). It can be shown that the vectors u1 = (2,−3, 1), u2 = (1, 4,−2),
u3 = (−8, 12,−4), u4 = (1, 37,−17), and u5 = (−3,−5, 8) generate R3. Find a subset of
{u1, u2, u3, u4, u5} that is a basis for R3.

Solution 5. Let

A =
(
u1 u2 u3 u4 u5

)
=

 2 1 −8 1 −3
−3 4 12 37 −5
1 −2 −4 −17 8

 .

We can use Gaussian elimination to put A into reduced row echelon form:

A =

 2 1 −8 1 −3
−3 4 12 37 −5
1 −2 −4 −17 8

 −→

0 5 0 35 −19
0 −2 0 −14 19
1 −2 −4 −17 8

 −→

1 −2 −4 −17 8
0 3 0 21 0
0 5 0 35 19


−→

1 −2 −4 −17 8
0 1 0 7 0
0 0 0 0 1

 −→

1 − −4 −3 0
0 1 0 7 0
0 0 0 0 1

 ≡ B.

B is in reduced row echelon form. Let bi denote the i-th column of B, we have b1 = e1, b2 = e2, and
b5 = e3. By theorem 3.16 (c) a1, a2, a5 are linearly independent. Since dimR3 = 3, by corollary to
theorem 1.10 {a1, a2, a5} is a basis. Therefore the desired subset is

{u1, u2, u5} =


 2
−3
1

 ,

 1
4
−2

 ,

−3
−5
8

 .

Exercise 6 (Section 3.4, 12). Let V denote the set of all solutions to the system of linear equations

x1 −x2 +2x4 − 3x5 + x6 =0
2x1 −x2 −x3 +3x4 − 4x5 +4x6 =0.

(a) Show that S = {(0,−1, 0, 1, 1, 0), (1, 0, 1, 1, 1, 0)} is a linearly independent subset of V .

(b) Extend S to a basis for V .
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Solution 6.

(a) By substituting (0,−1, 0, 1, 1, 0) and (1, 0, 1, 1, 1, 0) into the system of equations, we see thet
are solutions, so S is indeed a subset of V . Now we check for linear independence: Suppose
there exists scalrs c1, c2 such that

c1
(
0 −1 0 1 1 0

)⊤
+ c2

(
1 0 1 1 1 0

)⊤
= 0

Then (
c2 −c1 c2 c1 + c2 c1 + c2 0

)⊤
= 0,

so c1 = c2 = 0, and S is a linearly independent subset of V .

(b) We write the equation as Ax = 0:

Ax =

(
1 −1 0 2 −3 1
2 −1 −1 3 −4 4

)

x1

x2

x3

x4

x5

x6

 =

(
0
0

)
.

V is the solution set to the system Ax = 0. LA : F 6 → F 2 is the left-multiplication
transformation associated with A. Notice the reduced row echelon form of A

A =

(
1 −1 0 2 −3 1
2 −1 −1 3 −4 4

)
−→

(
1 0 −1 1 −1 3
0 1 −1 −1 2 2

)
≡ B.

rankA = rankB = 2, so by the rank-nullity theorem we have dimV = dim kerLA = n −
rankLA = 6 − 2 = 4. We need to find 4 linearly independent vectors in V . Consider the
augmented matrix (A|0) −→ (B|0), following the procedure outlined in the textbook, let
t1 = x3, t2 = x4, t3 = x5, and t4 = x6. We have

x1

x2

x3

x4

x5

x6

 = t1


1
1
1
0
0
0

+ t2


−1
1
0
1
0
0

+ t3


1
−2
0
0
1
0

+ t4


−3
−2
0
0
0
1

 .

Collect the 4 vectors above into B, then B ∪ S is a spanning set of V . Notice that
1
1
1
0
0
0

 =


1
0
1
1
1
0

−


0
−1
0
1
1
0

 ,


−1
1
0
1
0
0

 =


1
−2
0
0
1
0

+


0
−1
0
1
1
0

 ,

so we remove these two vectors, leaving us with


1
0
1
1
1
0

 ,


0
−1
0
1
1
0

 ,


1
−2
0
0
1
0

 ,


−3
−2
0
0
0
1




as a basis of V containing S.
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Exercise 7 (Section 3.4, 15). Prove that the reduced row echelon form of a matrix is unique
using Theorem 3.16.

Solution 7. From theorem 3.16, let rankA = r, then every column of the rediced row echelon
form of A (which we will call B) is of the form

d1e1 + · · ·+ drer,

for scalars d1, . . . , dr. Let the k-th column of B be denoted bk, then (d) of theorem 3.16 says that
if

bk = d1,ke1 + · · ·+ dr,ker =⇒ ak = d1,kaj(1) + · · ·+ dr,kaj(r),

where aj(1), . . . , aj(r) are linearly independent by (c) of the same theorem.

We claim that given ak (1 ≤ k ≤ n) all fixed, d1,k, . . . , dr,k are uniquely determined. Suppose
there are scalars d1,k, . . . , dr,k, d

′
1,k, . . . , d

′
r,k such that

ak = d1,kaj(1) + · · ·+ dr,kaj(r) = d′1,kaj(1) + · · ·+ d′r,kaj(r).

Then
ak − ak = 0 = (d1,k − d′1,k)e1 + · · ·+ (dr,k − d′r,k)er.

By the linear independence of aj(k), we have d1,k = d′1,k, ..., dr,k = d′r,k. Therefore

bk = d1,ke1 + · · · dr,ker

is unique.

(There are extra exercises in the next page.)
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Extra Exercises
You don’t have to hand in extra exercises, and solving them will NOT affect your grade.

Exercise 8.

(a) Show that for any A ∈ Mn×n(R), there exists B ∈ Mn×n(R) such that

AB = O and rankA+ rankB = n.

(b) Prove or give a counterexample that for any A ∈ Mn×n(R), there exists B ∈ Mn×n(R) such
that

AB = BA = O and rankA+ rankB = n.

Solution 8.

(a) Notice that the condition rankA + rankB = n hints at a use of the rank-nullity theorem.
Suppose dim kerLA = k, then let B = {v1, . . . , vk} be a basis for kerLA. Then we have

LA(v1) = · · · = LA(vk) = 0 ⇔ Av1 = · · ·Avk = 0,

where in the second set of equalities v1, . . . , vk are the coordinate vectors of v1, . . . , vk in the
canonical basis pf Rn. Let

B =
(
v1 · · · vk 0 · · · 0

)
=⇒ AB =

(
Av1 · · · Avk 0 · · · 0

)
= O.

Furthermore, since rankB = |B| = k = nullityA, rankA + rankB = n by the rank-nullity
theorem.

(b) To be finished...

Exercise 9. Let A ∈ Mn×n(C) be strictly column diagonally dominant, i.e.,

|Aii| >
∑

1≤j≤n, j ̸=i

|Aji|, i = 1, . . . , n.

Show that A is invertible.
Hint: Show that the system of linear equations Ax = 0 has only trivial solution.

Solution 9. Assume there is some vector 0 ̸= x ∈ Cn such that Ax = 0. Then there exists some
i (1 ≤ i ≤ n) such that |xi| ≥ |xk| for all 1 ≤ k ≤ n. Then xi ̸= 0, and

n∑
j=1

aijxj = 0

implies
aiixi =

∑
j ̸=i

aijxj .

Then

|aiivert =

∣∣∣∣∣∣∑j ̸=i

aij
xj

xi

∣∣∣∣∣∣
≤

∑
j ̸=i

∣∣∣∣aij xj

xi

∣∣∣∣
=

∑
j ̸=i

|aij |
∣∣∣∣xj

xi

∣∣∣∣ ≤ ∑
j ̸=i

|aij , |
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contradiction. So x = 0 is the only solution of Ax = 0. kerLA = {0} implies LA is injective, and
thus invertible, which then implies A is also invertible.

Definition. A graph G = (V,E) is a pair of finite sets V,E, and any element in E is a pair of
elements {u, v} in V . V is called the vertex set and E is called the edge set.

(This definition may appear frequently in the later extra exercises.)

A walk of length ℓ from u to w is a sequence u = v0, v1, v2, . . . , vℓ = w of vertices for which
{vi−1, vi} ∈ E for i = 1, 2, . . . , ℓ.

Let G = (V,E) with V = {v1, . . . , vn}. The adjacency matrix A of the graph G, denoted
by AG, is the n× n matrix defined by

(AG)ij =

®
1, {vi, vj} ∈ E;

0, otherwise.

Exercise 10.

(a) Show that for any bijection σ : {1, . . . , n} → {1, . . . , n}, the adjacency matrix of G defined
by {v1, . . . , vn} and {vσ(1), vσ(2), . . . , vσ(n)} are similar.

(b) What is tr(AG
2)?

(c) Fix a order of vertices {v1, . . . , vn} and a positive integer k. Show that (AG
k)ij is the number

of walks of length k, from vi to vj .

Solution 10.
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