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Exercise 1. Let f(y, t) and g(y, t) be continuous and satisfy a Lipschitz condition with respect
to y in a region D. Suppose |f(y, t) − g(y, t)| < ε in D for some ε > 0. If y1(t) is a solution of
y′ = f(y, t) and y2(t) is a solution of y′ = g(y, t), such that |y2(t0) − y1(t0)| < δ for some t0 and
delta > 0. Show that for all t for which y1(t) and y2(t) both exist, we have the inequality

|y2(t)− y1(t)| ≤ δ exp (K|t− t0|) +
ε

K
{exp (K|t− t0|)− 1},

where K is the Lipschitz constant. Hint: Use the Gronwall inequality.

Solution 1.

Steps:

1. Bound |y′2(t)− y′1(t)| using the Lipschitz condition and the given inequality.

2. Apply Gronwall’s inequality to obtain the desired bound.

Method:

1. Let K be the Lipschitz constant of both f and g with respect to y. Consider the difference

|y′2(t)− y′1(t)| = |f(y1(t), t)− g(y2(t), t)|
≤ |f(y1(t), t)− f(y2(t), t)|+ |f(y2(t), t)− g(y2(t), t)|
≤ K |y1(t)− y2(t)|+ ε.

Let u(t) = |y2(t)− y1(t)|, then we have

u′(t) =
y2(t)− y1(t)

|y2(t)− y1(t)|
(y′2(t)− y′1(t)) ≤ |y′2(t)− y′1(t)| ≤ Ku(t) + ε.

2. By assumption, we have u(t0) = |y2(t0)− y1(t0)| < δ. Let v(t) = u(t) + ε
K , then

v′(t) ≤ Kv(t), v(t0) < δ +
ε

K
.

By Gronwall’s inequality, we have

v(t) ≤ v(t0) exp (K|t− t0|) <
(
δ +

ε

K

)
exp (K|t− t0|).

Since u(t) = |y2(t)− y1(t)|, for all t ≥ t0, we have

u(t) = v(t)− ε

K
<

(
δ +

ε

K

)
exp (K|t− t0|)−

ε

K

= δ exp (K|t− t0|) +
ε

K
(exp (K|t− t0|)− 1) .

Similarly, for all t < t0, apply the same reasoning to the interval [t, t0] gives

u(t) = v(t)− ε

K
<

(
δ +

ε

K

)
exp (K|t− t0|)−

ε

K

= δ exp (K|t− t0|) +
ε

K
(exp (K|t− t0|)− 1) .
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Exercise 2. Let σ(t) ∈ C1([a, a + ε]), σ(t) > 0, and 0 < σ(a) ≤ 1. Suppose σ(t) satisfies the
differential inequality σ′ ≤ Kσ log σ, show the inequality

σ(t) ≤ σ(a)eK(t−a), for t ∈ [a, a+ ε].

Solution 2.

Steps:

1. Consider a change of variables to simplify the differential inequality.

2. Apply Gronwall’s inequality to derive the desired bound.

Method:

1. Consider the function ϕ(t) = log σ(t). Since σ(t) > 0, ϕ(t) is well-defined and differentiable
on [a, a+ ε]. We have ϕ(a) = log σ(a) < 0 and

σ(t)ϕ′(t) = σ′(t) ≤ Kσ(t) log σ(t).

Since σ(t) > 0, divide both sides by σ(t) to obtain

ϕ′(t) ≤ Kϕ(t).

2. Apply Gronwall’s inequality to ϕ(t) on the interval [a, t] for any t ∈ [a, a+ ε], we have

ϕ(t) ≤ ϕ(a)eK(t−a) = log σ(a)eK(t−a).

Exponentiating both sides now gives

σ(t) = eϕ(t) ≤ elog σ(a)eK(t−a)

= σ(a)e
K(t−a)

.

To obtain the desired inequality, note that since 0 < σ(a) < 1, we have ϕ(a) < 0 and
K(t− a) > 0 for t ∈ [a, a+ ε]. Then

ϕ(t) ≤ ϕ(a)eK(t−a) ≤ ϕ(a) (1 +K(t− a)) ≤ ϕ(a) +K(t− a),

which implies by exponentiation that

σ(t) = eϕ(t) ≤ eϕ(a)+K(t−a) = σ(a)eK(t−a), t ∈ [a, a+ ε].
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Exercise 3. For each fixed x, let F (x, y) be a nonincreasing function of y. Show that, if f(x)
and g(x) are two solutions of y′ = F (x, y) and b > a, then

|f(b)− g(b)| ≤ |f(a)− g(a)|.

Hence, deduce a result concerning the uniqueness of solutions. This is known as the Peano
uniqueness theorem.

Solution 3.

Steps:

1. Show that u(x) = |f(x)− g(x)| is a nonincreasing function of x.

2. Deduce the Peano uniqueness theorem as a consequence.

Method:

1. Consider the difference u(x) = |f(x)− g(x)|. Then,

u′(x) =
f(x)− g(x)

u(x)
(f ′(x)− g′(x)) =

f(x)− g(x)

u(x)
(F (x, f(x))− F (x, g(x))) .

Suppose f(x) > g(x), then u(x) = f(x)− g(x) > 0. However, since F (x, y) is nonincreasing
in y, we have F (x, f(x)) − F (x, g(x)) ≤ 0, and hence u′(x) ≤ 0. On the other hand, if
f(x) < g(x), then u(x) > 0 and u′(x) ≤ 0 again. Therefore, we have

u(x)u′(x) ≤ 0 =⇒ d

dx
(u(x))2 = 2u(x)u′(x) ≤ 0,

while the case f(x) = g(x) is trivial. Therefore, (u(x))
2
is a nonincreasing function for all

x ∈ R. Since u(x) ≥ 0, u(x) is also nonincreasing on R, and we have

|f(b)− g(b)| = |u(b)| ≤ |u(a)| = |f(a)− g(a)|, for all b > a.

2. As a direct consequence, suppose f and g are two solutions to the initial value problem
y′(x) = F (x, y(x)), subject to the same initial condition f(x0) = g(x0) for some x0 ∈ R, and
F (x, y) is a nondecreasing function in y. Then f(x) = g(x) for all x > x0. Thus, the solution
to the initial value problem y′ = F (x, y), y(x0) = y0 is unique.

This result may be what is referred to as the Peano uniqueness theorem in the problem
statement.

3


