2025 Fall Introduction to ODE

Homework 2 (Due Sep 15, 2025)
YW /B = KK B12202004
September 14, 2025

Problem 1 (Legendre Polynomials). Let P, be the Legendre polynomial of degree n. Prove that
|P!(z)] <n?and |P!(z)| < n* for -1 <z < 1.

Solution 1. The Legendre polynomial P, (x) satisfies the Legendre differential equation
(1—a2?)y” —2xy’ +n(n+ 1)y =0. (1)
We cite the paper "On a question by D. I. Mendeleev”. Zap. Imp. Akad. Nauk. St.

Petersburg. 62: 1-24. for the result referred to as Markov brothers’ inequality: Let P(z) € R[z]
be a polynomial of degree n, then for each integer k£ > 1, we have
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Furthermore, we claim that for x € [-1,1],
|P(z)| <1 (3)

Proof. From George Arfken et al. Mathematical Methods For Physicists, Second Edition, Academic
Press (1970) , we have the Schléfli integral representation of the Legendre polynomial:
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where z € C and C surrounds z. With the substitution ¢ = z 4+ v22 — 1e*?, we have

Pn(z):%/o d6 (2 + /2% — 1 cosh)" . (5)

This is the Laplace integral representation of the Legendre polynomial. For z € [—1,1], let =
cos ¢, then
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By Markov brothers’ inequality and equation , we have
P/ (z) < max ’P(k)(ac)’ <n? max |P(z)| =n?
—1<z<1 —1<z<1 (7)
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