
2025 Fall Introduction to ODE

Homework 3 (Due Sep 22 12:00, 2025)

物理/數學三 黃紹凱 B12202004

September 22, 2025

Problem 1. Give the solutions, where possible in terms of the Bessel functions, of the differential
equations

(a) x d2y
dx2 + (x+ 1)2y = 0,

(b) (1− x2) d
2y

dx2 − 2x dy
dx + n(n+ 1)y = 0

Solution 1. Bessel’s equation can be written in the form

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0, (1)

where ν is real and positive.

(a) We first solve the equation with the method of Frobenius. Multiply both sides by x to obtain

x2 d
2y

dx2
+ x (x+ 1)2 y = 0.

Notice that x(x + 1)2 is analytic and x = 0 is a singular point, so we assume a solution of
the form

y(x) =

∞∑
n=0

anx
n+r, a0 ̸= 0.

Substituting into the differential equation, we find the equation

r(r − 1)a0x
r + [r(r + 1)a1 + a0]x

r+1 + [(r + 1)(r + 2)a2 + a1 + 2a0]x
r+2

+

∞∑
n=3

[(n+ r)(n+ r − 1)an + an−1 + 2an−2 + an−3]x
n+r = 0.

(2)

The xr terms gives r = 0 or 1, but the xr+1 terms gives a1 = − a0

r(r+1) , which is undefined

for r = 0, so we must have r = 1. Solving for the coefficients of a0, a1, and a2, we find

a1 = −1

2
a0, a2 = −1

4
a0. (3)

Then from the recurrence relation
∞∑

n=3

[(n+ r)(n+ r − 1)an + an−1 + 2an−2 + an−3]x
n+r = 0,

thus

an = − 1

n(n+ 1)
(an−1 + 2an−2 + an−3) , n ≥ 3, (4)

we can recursively solve for an in terms of a0, giving the series solution

y(x) = a0

ï
x− 1

2
x2 − 1

4
x3 +

1

48
x4 +

47

960
x5 +

17

3200
x6 +

397

134400
x7

− 2537

2508800
x8 +

12091

541900800
x9 +

2684597

48771072000
x10 +

44458303

5364817920000
x11 + · · ·

ò
.

(5)

The other linearly independent solution may be found using the reduction of order method.
The above coefficients were verified with the following MATLAB code.
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function a = gen_coeffs_rational(N)

a=sym(’a’, [N+1, 1]);

a(1:3)=[1; -1/2; -1/4]; % initial values

for k=4:(N+1)

n=sym(k-1);

a(k)= simplify(-(a(k -1)+2*a(k-2)+a(k -3))/(n*(n+1)));

end

end

N=10; a=gen_coeffs_rational(N);

fprintf(’a_0 = %s\n’, char(a(1)));

arrayfun(@(i) fprintf(’a_%d = %s\n’, i-1, char(a(i))), 2:N+1);

(b) This is Legendre’s equation. The general solution is given by

y(x) = APn(x) +BQn(x),

where Pn(x) and Qn(x) are the Legendre functions of the first and second kind, respectively,
and A and B are constants. I will give a series expansion of Pn(x) in terms of a Fourier-Bessel
series on [0, 1]. First write

Pn(x) =
∞∑

m=1

amJl(αmx), (6)

where α1 < α2 < α3 < . . . are roots of Jl(x). Since Pn(x) and P ′
n(x) are piecewise continuous

on [0, 1], the Fourier-Bessel series converges. Let n, l ∈ Z, then the coefficients am are given
by

am =
1

2 [J ′
l (αm)]

2

∫ 1

−1

dxxPn(x)Jl(αmx)

=
2n−1

[J ′
l (αm)]

2

n∑
k=1

Ç
n

k

åÇ
n+k−1

2

n

åñ∫ 1

0

dxxk+1Jl(αmx) +

∫ 0

−1

dxxk+1Jl(αmx)

ô
=

2n−1

[J ′
l (αm)]

2

n∑
k=1

Ç
n

k

åÇ
n+k−1

2

n

åñ∫ 1

0

dxxk+1Jl(αmx) + (−1)k
∫ 0

1

dxxk+1Jl(−αmx)

ô
=

2n−1

[J ′
l (αm)]

2

n∑
k=1

Ç
n

k

åÇ
n+k−1

2

n

å
×
Ç®

2k+1Γ
(
l+k+2

2

)
αk+2
m Γ

(
l−k
2

) + α−(k+1)
m [(k + l)Jl(αm)Sk,l−1(αm)− Jl−1(αm)Sk,l−1(αm)]

´
+

®
2k+1Γ

(
l+k+2

2

)
αk+2
m Γ

(
l−k
2

) + (−αm)−(k+1) [(l + k)Jl(−αm)Sk,l−1(−αm)− Jl−1(−αm)Sk+1,l(−αm)]

´å
=

2n−1

[J ′
l (αm)]

2

n∑
k=1

Ç
n

k

åÇ
n+k−1

2

n

å
2k+2Γ

(
l+k+2

2

)
αk+2
m Γ

(
l−k
2

)
+

1

αk+1
m

{
(k + l)

[
Jl(αm)Sk,l−1(αm) + (−1)l+kJ−l(αm)Sk,−l+1(αm)

]
−

[
Jl−1(αm)Sk+1,l(αm) + (−1)l+kJ−l+1(αm)Sk+1,−l(αm)

]}
,

(7)

where we have used the series expansion for Pn(x)

Pn(x) = 2n−1
n∑

k=1

Ç
n

k

åÇ
n+k−1

2

n

å
xk, (8)

the symmetry condition for Jl(x)

Jl(−x) = (−1)lJ−l(x), (9)
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and the Bessel function integral identity from [Gradshteyn & Ryzhik] Table of integrals,
series, and products 6.561-13.∫ 1

0

dxxµJν(ax) =
2µΓ

(
ν+µ+2

2

)
aµ+1Γ

(
ν−µ
2

) +
1

aµ
[(µ+ ν)Jν(a)Sµ,ν−1(a)− Jν−1(a)Sµ+1,ν(a)] . (10)

Here we have defined the Lommel function Sµ,l to be

Sµ,l(x) =
π

2

ï
Yl(x)

∫ x

0

duuµJl(u)− Jl(x)

∫ x

0

duuµYl(u)

ò
+ 2µ−1Γ

Å
µ− l + 1

2

ã
Γ

Å
µ+ l + 1

2

ãï
sin

Å
1

2
(µ− l)π

ã
Jl(x)− cos

Å
1

2
(µ− l)π

ã
Yl(x)

ò
.(11)

Note that this function is also known as s
(2)
µ,l , while the first term inside square brackets is

known as s
(1)
µ,l .

For l ∈ Z, the Lommel function Sµ,l(x) satisfies the symmetry identity

Sµ,l(−x) = (−1)µ+1Sµ,−l(x). (12)

Finally, using the identity

d

dx
Jl(x) =

1

2
[Jl−1(x)− Jl+1(x)] , (13)

we have

am =
2n+1

Jl−1(2αm)− Jl+1(2αm)

∞∑
k=1

Ç
n

k

åÇ
n+k−1

2

n

å
2k+2Γ

(
l+k+2

2

)
αk+2
m Γ

(
l−k
2

)
+

1

αk+1
m

{
(k + l)

[
Jl(αm)Sk,l−1(αm) + (−1)l+kJ−l(αm)Sk,−l+1(αm)

]
−

[
Jl−1(αm)Sk+1,l(αm) + (−1)l+kJ−l+1(αm)Sk+1,−l(αm)

]}
.

(14)

Therefore, one solution is

Pn(x) = 2n+1
∞∑

m=1

1

Jl−1(αm)− Jl+1(αm)

∞∑
k=1

Ç
n

k

åÇ
n+k−1

2

n

å
2k+2Γ

(
l+k+2

2

)
αk+2
m Γ

(
l−k
2

)
+

1

αk+1
m

{
(k + l)

[
Jl(αm)Sk,l−1(αm) + (−1)l+kJ−l(αm)Sk,−l+1(αm)

]
−

[
Jl−1(αm)Sk+1,l(αm) + (−1)l+kJ−l+1(αm)Sk+1,−l(αm)

]}
Jl(αmx).

(15)

The other solution Qn(x) may be expressed in terms of Pn(x), ln(x), and the standard recurrence
relations for Legendre functions.

Problem 2. Determine the coefficients of the Fourier-Bessel series for the function

f(x) =

®
1 for 0 ≤ x < 1,

−1 for 1 ≤ x ≤ 2,

in terms of the Bessel function J0(x).

Solution 2. Suppose the Fourier-Bessel series of f(x) is given by

f(x) =

∞∑
n=1

anJ0(αnx), (16)
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where α1 < α2 < α3 < . . . are roots of J0(2x). Since f(x) and f ′(x) = 0 (except at x = 0) are
piecewise continuous on [0, 2], the Fourier-Bessel series converges. First we compute two integrals
using the identity J ′

0(2αn) =
1
2J1(2αn) and

d
du (uJ1(u)) = uJ0(u):∫ 1

0

dxxJ0(αnx) =
1

α2
n

∫ αn

0

duuJ0(u)

=
1

α2
n

[uJ1(u)]
αn

0

=
1

αn
J1(αn),

(17)

and ∫ 2

1

dxxJ0(αnx) =
1

α2
n

∫ 2αn

αn

duuJ0(u)

=
1

α2
n

[uJ1(u)]
2αn

αn

=
1

α2
n

(2αnJ1(2αn)− αnJ1(αn))

=
1

αn
(2J1(2αn)− J1(αn)) ,

(18)

where we have use a substitution u = αnx. Then, the coefficients an are given by

an =
1

[2J1(2αn)]
2

∫ 2

0

dxxf(x)J0(αnx)

=
1

[2J1(2αn)]
2

Ç
−
∫ 2

1

dxxJ0(αnx) +

∫ 1

0

dxxJ0(αnx)

å
=

1

2αn [J1(2αn)]
2 (−2J1(2αn) + J1(αn) + J1(αn)) ,

=
1

αn [J1(2αn)]
2 (J1(αn)− J1(2αn)) .

(19)

Therefore,

f(x) =

∞∑
n=1

1

αn [J1(αn)]
2 (J1(αn)− J1(2αn)) J0(αnx). (20)
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