

# 2025 Fall Introduction to ODE

Homework 6 (Due Oct 27 12:00, 2025)

物理/數學三 黃紹凱 B12202004

October 27, 2025

**Problem 1.** Let  $A = (a_{ij}) \in \mathbb{R}^{n \times n}$  satisfy  $a_{ij} = \frac{i}{j}$  for  $i, j = 1, \dots, n$ . Calculate  $e^{At}$  for  $t > 0$ .

**Solution 1.**

Steps:

1. Find formula for  $A^n$  using induction.
2. Use the Taylor series to find  $e^{At}$ .

Method:

Notice that

$$\begin{aligned} A^2 &= (a_{ij}^2) = \sum_{k=1}^n a_{ik} a_{kj} = \sum_{k=1}^n \frac{i}{k} \cdot \frac{k}{j} = \sum_{k=1}^n \frac{i}{j} = n \cdot \frac{i}{j} = nA, \\ A^3 &= A^2 \cdot A = nA \cdot A = n^2 A, \\ &\vdots \\ A^k &= n^{k-1} A. \end{aligned}$$

By induction, suppose  $A^k = n^{k-1} A$  holds for some  $k \geq 1$ . Then

$$A^{k+1} = A^k \cdot A = n^{k-1} A \cdot A = n^{k-1} \cdot nA = n^k A.$$

Thus, by induction, we have  $A^k = n^{k-1} A$  for all  $k \geq 1$ .

Let's compute the matrix exponential  $e^{At}$  using its Taylor series expansion:

$$e^{At} = I + At + \frac{(At)^2}{2!} + \frac{(At)^3}{3!} + \dots = I + \sum_{k=1}^{\infty} \frac{(At)^k}{k!}.$$

Substituting  $A^k = n^{k-1} A$  into the equation, we have

$$e^{At} = I + \sum_{k=1}^{\infty} \frac{(n^{k-1} At^k)}{k!} = I + \frac{A}{n} \sum_{k=1}^{\infty} \frac{(nt)^k}{k!} = I + \frac{A}{n} (e^{nt} - 1).$$

**Problem 2.** Suppose there is a constant  $K$  such that a fundamental matrix solution  $X$  of the real system  $\dot{x} = A(t)x$  satisfies  $|X(t)| \leq K$ ,  $t \geq \beta$  and

$$\liminf_{t \rightarrow \infty} \int_{\beta}^t \text{tr } A(s) ds > -\infty.$$

Prove that  $X^{-1}$  is bounded on  $[\beta, \infty)$  and no nontrivial solution of  $\dot{x} = A(t)x$  approaches zero as  $t \rightarrow \infty$ .

**Solution 2.**

Steps:

1. Show that  $\det X$  is bounded from below.
2. Show that  $X^{-1}$  is bounded on  $[\beta, \infty)$ .
3. Show that no nontrivial solution approaches zero as  $t \rightarrow \infty$ .

Method:

By lemma 1.5 (Liouville's formula) of Hale's Ordinary Differential Equations, we have

$$\det X(t) = \det X(\beta) \exp \left( \int_{\beta}^t \text{tr}(A(s)) ds \right), \quad t \geq \beta.$$

Let  $I(t) \equiv \liminf_{t \rightarrow \infty} \int_{\beta}^t \text{tr}(A(s)) ds$ . Since  $I(t) > -\infty$ , there exists some constant  $m > 0$  and  $T \geq t$  such that

$$I(t) \geq -m, \quad t \geq T.$$

Let  $m_0 = \min \{ \inf_{\beta \leq t \leq T} I(t), m \}$ , then Liouville's formula gives

$$|X(t)| = |X(\beta)| e^{I(t)} \geq |X(\beta)| e^{-m_0} \equiv A, \quad t \geq \beta.$$

In finite dimensional vector spaces, all vector norms are equivalent. Treat  $X(t)$  as an element of the vector space  $M_n(\mathbb{R})$ , the boundedness property  $|X(t)| \leq K$  for  $t \geq \beta$  implies that there exists some constant  $B_K > 0$  such that

$$\max |x_{ij}(t)| \leq B_K, \quad t \geq \beta,$$

where the left hand side is the max norm. Hence  $|x_{ij}(t)|$  is bounded for all  $i, j = 1, \dots, n$  and  $t \geq \beta$ , and every minor of  $X(t)$  is bounded uniformly for  $t \geq \beta$ . We have  $|\text{adj } X(t)| \leq C$  for  $t \geq \beta$ , and

$$|X^{-1}(t)| = \frac{|\text{adj } X(t)|}{|X(t)|} \leq \frac{C}{A}, \quad t \geq \beta,$$

so  $X^{-1}$  is bounded on  $[\beta, \infty)$ . Since every nontrivial solution of  $\dot{x} = A(t)x$  can be expressed as  $x(t) = X(t)c$  for some nonzero constant vector  $c$ , suppose there exists a nontrivial solution  $x(t)$  such that  $\lim_{t \rightarrow \infty} x(t) = 0$ . Then

$$|c| = |X^{-1}(t)x(t)| \leq |X^{-1}(t)| \cdot |x(t)| \rightarrow 0, \quad t \rightarrow \infty,$$

which is a contradiction. Therefore, no nontrivial solution of  $\dot{x} = A(t)x$  approaches zero as  $t \rightarrow \infty$ .