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物理/數學三 黃紹凱 B12202004

November 9, 2025

Exercise 1. Let A(t) and B(t) be defined as

A(t) =

Å
−a 0
0 sin log t+ cos log t− 2a

ã
, B(t) =

Å
0 0

e−at 0

ã
, t ≥ 0,

where 1 < 2a < 1 + e−π. Is the system ẋ = [A(t) + B(t)]x unstable? Prove or disprove your
answer.

Solution 1.

Steps:

1. State the definition for a solution to be (Lyapunov) unstable.

2. Analyze the system ẋ = [A(t) +B(t)]x and find its solution.

3. Find a lower bound for the solution for some specific initial condition and time sequence.

4. Show the sequence grows without bound, and conclude the zero solution is not Lyapunov
stable.

Method:

1. A system is said to be unstable if there exists an ε > 0 such that for any δ > 0, there exists
an initial condition x(t0) with |x(t0)| < δ and a time t > t0 such that |x(t)| > ε.

2. The matrix A(t) +B(t) is lower-triangular, so we may directly solve for x1(t):

ẋ = [A(t) +B(t)]x =

Å
−a 0
e−at sin(log t) + cos(log t)− 2a

ãÅ
x1

x2

ã
.

First, we have ẋ1 = −ax1, which gives the solution x1(t) = x1(0)e
−at. Then substitute into

the second equation:

ẋ2 = x1(0)e
−at + [sin(log t) + cos(log t)− 2a]x2.

=⇒ ẋ2 − (sin log t+ cos log t− 2a)x2 = x1(0)e
−at.

This is a first-order linear ODE, so we can use the integrating factor method. The integrating
factor is given by

µ(t) = exp

Å
−
∫

[sin(log t) + cos(log t)− 2a] dt

ã
= e2atesin(log t),

where we used d
dt (t sin log t) = sin log t+ cos log t. Then, we have

x2(t) =
1

µ(t)

∫ t

0

ds
(
x1(0)e

−s sin log s
)
= x1(0)e

t(sin log t−2a)

∫ t

0

ds e−s sin log s.

Since we only have to find one solution, we set x2(0) = 0 for our following discussion.

Let tn = e2πn+
π
2 , then sin log tn = sin

(
2πn+ π

2

)
= 1. Similarly, let t̃n = tne

−π =
e2πn−

π
2 , so that sin log t̃n = sin

(
2πn− π

2

)
= −1. For each n ∈ N and ξ ∈ (0, 1), by

continuity of snie function, there exists δ > 0 such that sinx ≤ −1 + ξ whenever ξ ∈[
2πn− π

2 − δ, 2πn− π
2 + δ

]
. Therefore, sin log s ≤ −1 + ξ whenever t̃ne

−δ ≤ s ≤ t̃ne
δ.
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3. Let Sn =
î
et̃n+δ, et̃n−δ

ó
, then we have sin log s ≤ −1 + ξ for all s ∈ Sn. Thus,

e−s sin log s ≥ es(1−ξ), s ∈ Sn.

=⇒
∫ t

0

ds e−s sin log s ≥
∫
Sn

ds es(1−ξ) ≥ t̃n
(
eδ − e−δ

)
e(1−ξ)t̃ne

−δ

≥ 0, t ≥ et̃n+δ.

Evaluate x2(t) at tn gives

x2(tn) ≥ x1(0)e
tn(1−2a)t̃n

(
eδ − e−δ

)
e(1−ξ)t̃ne

−δ

= x1(0)
(
eδ − e−δ

)
tne

−πetn[(1−2a)+(1−ξ)e−πe−δ].

4. We have 1 < 2a < 1 + e−π, so 1 − 2a + e−π > 0. Consider the function f(ξ, δ) = (1 −
2a) + (1 − ξ)e−πe−δ, by assumption f(0, 0) > 0. Since f is continuous, there exists a disk
of radius C about (0, 0) such that f

(
ξ, δ

)
> 0 for all ξ, δ in the disk. Thus, we can choose

ξ ∈ (0, ξ) and δ = min{δ′, δ}, where δ′ is the bound given earlier by the continuity of sine.
Then tn

[
(1− 2a) + (1− ξ)e−πe−δ

]
> 0, and x2(t) → ∞ as n → ∞. Moreover, since x1(0) is

bounded, the norm ∥x(t)∥ → ∞ as t → ∞.

Exercise 2. Consider the ODE system

ẋ = A(t)x+ f(t, x), (1)

where A(t) ∈ Rn×n and f : Rn+1 → Rn is continous and satisfies |f(t, x)| ≤ C(t)|x|, for t ∈ R and
x ∈ Rn. Here, C(t) is a continous function satisfying∫ t+1

t

C(s) ds ≤ γ, t ≥ β,

for some constant γ = γ(β) > 0. Suppose the ODE system ẋ = A(t)x is uniformly asymptotically
stable with respect to the zero solution. Prove that there is a constant r > 0 such that the zero
solution of 1 is uniformly asymptotically stable if r > γ.

Solution 2.

Steps:

1. State the definition of being uniformly asymptotically stable with respect to the zero solution.

2. Show the Duhamel property.

3. Bound the solution x(t) using Gronwall’s inequality to prove the claim.

Method:

1. A system is said to be uniformly asymptotically stable with respect to the zero solution if for
every ε > 0, there exists a δ > 0 such that for any initial condition |x(t0)| < δ, the solution
x(t) satisfies |x(t)| < ε for all t ≥ t0.

2. We first prove a proposition.

Proposition 1 (Duhamel’s property). Let x(t) be the solution to the non-homogeneous
system ẋ = A(t)x+ f(t, x), t ≥ t0. Then, the solution can be expressed as

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

dsΦ(t, s)f(s, x(s)),

where Φ(t, t0) = X(t)X(t0)
−1 is the state transition matrix of ẋ = A(t)x.
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Proof. Let y(t) = Φ(t0, t)x(t). Then we have Φ(t0, t)X(t) = X(t0), so

(∂tΦ(t0, t))X(t) + Φ(t0, t) (∂tX(t)) = 0.

=⇒ ∂tΦ(t0, t) = −Φ(t0, t) (∂tX(t))X(t)−1 = −Φ(t0, t)A(t).

Thus, we have
ẏ(t) = Φ(t0, t) (ẋ−A(t)x) = Φ(t0, t)f(t, x(t)).

Integrating from t0 to t, we get

y(t) = y(t0) +

∫ t

t0

dsΦ(t, s)f(s, x(s)) = Φ(t0, t)x(t0)− x(t0) =

∫ t

t0

dsΦ(t0, s)f(s, x(s)).

=⇒ x(t) = Φ(t, t0)

ñ
x(t0) +

∫ t

t0

dsΦ(t0, s)f(s, x(s))

ô
= Φ(t, t0)x(t0)+

∫ t

t0

dsΦ(t, s)f(s, x(s)),

since Φ(t, t0)Φ(t0, s) = Φ(t, s) by the semigroup property.

3. For a linear time0varying system, uniform asymptotic stability of the zero solution is equiva-
lent to uniform exponential stability. Thus, there exist positive constants K and r such that
the state transition matrix Φ(t, t0) satisfies

∥Φ(t, t0)∥ ≤ Ke−α(t−t0), t ≥ t0.

Using the Duhamel property, we have

∥x(t)∥ ≤ ∥Φ(t, t0)x(t0)∥+
∥∥∥∥∫ t

t0

dsΦ(t, s)f(s, x(s))

∥∥∥∥
≤ Ke−r(t−t0)∥x(t0)∥+

∫ t

t0

dsKe−r(t−s)C(s)∥x(s)∥.

Let u(t) = ert∥x(t)∥, then

∥u(t)∥ ≤ K

ñ
ert0∥x(t0)∥+

∫ t

t0

dsC(s)ers∥x(s)∥
ô
= K

ñ
u(t0) +

∫ t

t0

dsC(s)u(s)

ô
.

Then

u(t) ≤ Ku(t0) +K

∫ t

t0

dsC(s)u(s) ≤ Ku(t0) exp

Ç∫ t

t0

dsC(s)

å
.

We can bound the term in the exponential using the assumption on C(t):

∥x(t)∥ ≤ Ke−r(t−t0)∥x(t0)∥ exp
Ç∫ t

t0

dsC(s)

å
≤ Ke−r(t−t0)eγ(t−t0+1)∥x(t0)∥

= Keγe−(r−γ)(t−t0)∥x(t0)∥.

Since r > γ, we have ∥x(t)∥ → 0 as t → ∞. More precisely, for any ε > 0, let δ = 1
K e−γε,

then
∥x(t)∥ = Keγe−(r−γ)(t−t0)∥x(t0)∥ < Keγδ = ε

whenever ∥x(t0)∥ < δ. Thus, the zero solution of the system is uniformly asymptotically
stable.
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