
2025 Fall Introduction to ODE

Homework 8 (Due November 10 12:00, 2025)

物理三 黃紹凱 B12202004

November 10, 2025

Exercise 1. Suppose a, b, c are nonnegative continuous functions on [0,∞), u is a nonnegative
bounded continuous solution of the inequality

u(t) ≤ a(t) +

∫ t

0

b(t− s)u(s) ds+

∫ ∞

0

c(s)u(t+ s) ds, t ≥ 0,

and a(t) → 0, b(t) → 0 as t → ∞,
∫∞
0

b(s) ds < ∞,
∫∞
0

c(s) ds < ∞. Prove that u(t) → 0 as
t → ∞ if ∫ ∞

0

b(s) ds+

∫ ∞

0

c(s) ds < 1.

Solution 1.

Steps:

1. Choose a sequence that approaches the limsup of u(t) as t → ∞.

2. Split the integral appropriately and estimate the terms.

3. Combine everything and show that the limsup must be zero.

Method:

1. Let {tn}n∈N be a sequence such that tn → ∞ as n → ∞ and u(tn) → L = lim supt→∞ u(t).
By a change of variables, we have

u(t) ≤ a(t) +

∫ t

0

dr b(r)u(t− r) +

∫ ∞

0

ds c(s)u(t+ s).

2. Since b(t) ≥ 0 and
∫∞
0

ds b(s) < ∞, we have limR→∞
∫∞
R

ds b(s) = 0. This holds similarly
for c(t), so there exist Rb, Rc > 0 such that∫ ∞

Rb

ds b(s) < ε,

∫ ∞

Rc

ds c(s) < ε.

By the definition of L, there exists Tε > 0 such that u(t) ≤ L + ε for all t ≥ Tε. Let’s take
T = Tε +max{Rb, Rc}, and n sufficiently large such that tn ≥ T .

3. Now we will estimate each term at t = tn: First, since a(t) → 0 as t → ∞, there exists
N1 ∈ N such that for all n ≥ N1, we have a(tn) < ε. Next, we split the first integral:∫ tn

0

dr b(r)u(tn − r) =

∫ Rb

0

dr b(r)u(tn − r) +

∫ tn

Rb

dr b(r)u(tn − r).

The first term is bounded by (L+ε)
∫ Rb

0
dr b(r), and the second term is bounded byM

∫∞
Rb

dr b(r) <

Mε, where M = supt≥0 u(t). Similarly, we split the second integral:∫ ∞

0

ds c(s)u(tn + s) =

∫ Rc

0

ds c(s)u(tn + s) +

∫ ∞

Rc

ds c(s)u(tn + s).
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The first term is bounded by (L+ε)
∫ Rc

0
ds c(s), and the second term is bounded byM

∫∞
Rc

ds c(s) <
Mε. Combining everything, we have for all n sufficiently large,

u(tn) ≤ a(tn) +

∫ tn

0

dr b(r)u(tn − r) +

∫ ∞

0

ds c(s)u(tn + s)

= ε+ (L+ ε)

∫ Rb

0

dr b(r) +Mε+ (L+ ε)

∫ Rc

0

ds c(s) +Mε

= (L+ ε)

Ç∫ Rb

0

dr b(r) +

∫ Rc

0

ds c(s)

å
+ ε(1 + 2M).

Rearranging gives

L ≤ 1 +B + C + 2M

1− (B + C)
ε,

where B =
∫∞
0

dr b(r) and C =
∫∞
0

ds c(s). Since ε > 0 is arbitrary, we conclude that
L ≤ lim supt→∞ u(t) = 0. Since u(t) ≥ 0, we have limt→∞ u(t) = 0.

Exercise 2. For any real matrix D, detD ̸= 0, show there is a real matrix B such that eB = D2.
If C is a real matrix in Lemma 7.1 and there is a real matrix B such that eB = C, must there
exist a real matrix D such that C = D2 ?

Solution 2.

Steps:

1. Show the existence of B such that eB = D2 using Jordan canonical forms.

2. Discuss whether there must exist a real matrix D such that C = D2.

Method:

1. Let D ∈ Mn(R) be a real invertible matrix. Let λ be an eigenvalue of D with eigenvector v,
so Dv = λv. Then, we have

D2v = D(λv) = λDv = λ2v.

Therefore, the eigenvalues of D2 are λ2
i > 0, where λi are the eigenvalues of D and are

nonzero since detD ̸= 0. In its Jordan canonical form J such that D = PJP−1, let B be the
matrix such that each Jordan block corresponding to eigenvalue λ2

i is replaced by a Jordan
block corresponding to eigenvalue log(λ2

i ). Denote this Jordan form by JB , and we have

D2 = PJ2P−1 = PeJBP−1 = ePJBP−1

= eB .

Thus, such a real matrix B exists.

2.

Lemma 1 (Hale, Lemma 7.1). If C is an n × n matrix with detC ̸= 0, then there is a
matrix B such that eB = C.

That is, any invertible matrix has a logarithm. We will show that any such matrix has
a square root as well. Since there is a matrix B such that eB = C, consider the matrix
D = eB/2, then

D2 = eB/2eB/2 = eB = C

since B
2 commutes with itself. Thus, such a real matrix D exists.
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Exercise 3. Let X = X(t) ∈ Rn×n be the fundamental matrix solution of E ˙⃗x = H(t)x⃗, where
E is given by

E =

Å
0 Ik

−Ik 0

ã
and H = H(t) is symmetric and periodic with period T. Suppose H is a nonconstant matrix, and
let H = {X(t) : t ∈ R}. Must H be a subgroup of the symplectic group G := {M ∈ R2k×2k :
M ′EM = E} ? Justify your answer. Here, M ′ denotes the transpose of the matrix M .

Solution 3.

Steps:

1. Show that X(t) is symplectic for all t ∈ R, and hence H ⊆ G.

2. Show that H is not closed under matrix multiplication with a counterexample. Hence, H is
not a subgroup of G.

Method:

1. Let X(t) be the fundamental matrix solution of the system E ˙⃗x = H(t)x⃗. We will show that
X(t) is symplectic for all t ∈ R. Consider the matrix Y (t) = X(t)′EX(t). Differentiating
Y (t) with respect to t, we have

dY

dt
= Ẋ(t)′EX(t) +X(t)′EẊ(t).

Taking transpose of Ẋ(t) = E−1H(t)X(t), we have (EẊ)′ = (H(t)X)′. UUsing E′ = −E,
H ′ = H, we get Ẋ ′E = −X ′H. Substituting back gives Ẏ = 0. At t = 0, X(t) = I, so
X ′(t)EX(t) = Y (t) = Y (0) = I. Therefore, X(t) is symplectic for all t ∈ R, and H ⊆ G.

2. To show that H is not a subgroup of G, we will show that matrix multiplication is not closed
in H by constructing a counterexample with k = 1. Let

E =

Å
0 1
−1 0

ã
and H(t) = sin tI2, where I2 is the 2× 2 identity matrix. Then H(t) is non-constant in time,
symmetric, and periodic with period 2π. The system Eẋ = H(t)x can be written as®

ẋ2 = sin tx1,

ẋ1 = − sin tx2,

which is easily solved by the change of variable z = x1 + ix2. The solution is

z(t) = z(0) exp

Ç∫ t

0

sin s ds

å
= z(0)ei(1−cos t),

and the fundamental matrix solution is a rotational matrix given by

X(t) =

Å
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

ã
,where θ(t) = 1− cos t.

As can be seen, X(t) is symplectic, and since cos t ∈ [−1, 1], θ ∈ [0, 2], our set H is given by

H = {X(t) | t ∈ R} =

ßÅ
cosϕ − sinϕ
sinϕ cosϕ

ã
| ϕ ∈ [0, 2]

™
.

Now, pick t1, t2 such that ϕ1 = θ(t1), ϕ2 = θ(t2) are equal to
3
2 . Then, by property of rotation

matrices, we have

X(t1)X(t2) =

Å
cos 3 − sin 3
sin 3 cos 3

ã
,

where none of 3+2nπ lies inside [0, 2]. Therefore, X(t1)X(t2) /∈ H, and H is not closed under
matrix multiplication. Thus, H is not a subgroup of G.
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