

2025 Fall Introduction to ODE

Homework 9 (Due November 17 12:00, 2025)

物理三 黃紹凱 B12202004

November 17, 2025

Exercise 1. Consider the IVP:

$$\frac{dy}{dt} = t + y, \quad y(0) = 1.$$

Perform the first three successive iterations (starting with $y_0(t) = 1$) to approximate the solution on the interval $|t| \leq 1$. Then, identify the pattern or the exact solution if possible.

Solution 1.

Steps:

1. Compute the first three successive iterations.
2. Identify the pattern and show that the exact solution solves the initial value problem.

Method:

1. Transform the ODE into an integral equation by integrating both sides. This gives

$$y(t) = y(0) + \int_0^t ds (s + y(s)) = 1 + \frac{1}{2}t^2 + \int_0^t ds y(s).$$

The first term in the successive iteration is $y_0 = y(0) = 1$. Then we have

$$y_1(t) = 1 + \frac{1}{2}t^2 + \int_0^t ds 1 = 1 + t + \frac{1}{2}t^2,$$

$$y_2(t) = 1 + \frac{1}{2}t^2 + \int_0^t ds \left(1 + s + \frac{1}{2}s^2\right) = 1 + t + t^2 + \frac{1}{6}t^3,$$

$$y_3(t) = 1 + \frac{1}{2}t^2 + \int_0^t ds \left(1 + s + s^2 + \frac{1}{6}s^3\right) = 1 + t + t^2 + \frac{1}{3}t^3 + \frac{1}{24}t^4.$$

2. The pattern suggests that the n -th iteration is given by

$$y_n(t) = 2 \left(1 + t + \frac{1}{2!}t^2 + \frac{1}{3!}t^3 + \cdots + \frac{1}{(n+1)!}t^{n+1}\right) - 1 - t \xrightarrow{n \rightarrow \infty} y(t) = 2e^t - 1 - t.$$

Since $t + y$ and $\frac{\partial}{\partial y}(t + y) = 1$ are continuous, Theorem 8.1 guarantees convergence. Differentiating $y(t)$, we get $\frac{dy}{dt} = 2e^t - 1 = t + y(t)$. Moreover, $y(0) = 1$. Hence, the exact solution is

$$y(t) = 2e^t - 1 - t.$$

Exercise 2. Consider the IVP:

$$\frac{dy}{dt} = y^2 + 1, \quad y(0) = 0.$$

- (a) Show that the solution exists locally using the existence theorem.
- (b) Demonstrate that the solution blows up in finite time (i.e., no global solution on all $t \geq 0$). Estimate the blowup time.

Solution 2.

Steps:

- (a) Show that the conditions of the local existence theorem are satisfied.
- (b) Demonstrate finite blowup time by solving the ODE explicitly and finding the time at which the solution becomes unbounded.

Method:

- (a) Recall the existence theorem from the textbook:

Theorem 1 (King Theorem 8.1, Picard-Lindelöf).

If f and $\partial f / \partial y \in C^0(R)$, where $R = \{(y, t) | |y - y_0| \leq b, |t - t_0| \leq a\}$, then the successive approximations $y_k(t)$ converge on I to a solution of the differential equation $dy/dt = f(t, y)$ that satisfies the initial condition $y(t_0) = y_0$.

Since $f(t, y) = y^2 + 1$ is a polynomial in y , it continuously differentiable in y . Thus, f and $\partial f / \partial y$ are in $C^0(R)$ for some region $R \subseteq \mathbb{R}^2$. By the Existence Theorem, there exists $\delta > 0$ such that a solution exists locally on $(-\delta, \delta)$, and can be found by successive iterations.

- (b) We can solve the ODE explicitly by separating variables:

$$\frac{dy}{y^2 + 1} = dt \implies \tan^{-1} y = t + C.$$

Applying the initial condition $y(0) = 0$, we get $C = 0$. Thus, the solution is

$$y(t) = \tan t,$$

where $\lim_{t \rightarrow \frac{\pi}{2}^-} y(t) = +\infty$. Therefore, the blowup time is $T^* = \frac{\pi}{2}$, and for $t \geq 0$ a solution exists only on $[0, \frac{\pi}{2})$.

Exercise 3. How could successive approximations to the solution of $y' = 3y^{\frac{2}{3}}$ fail to converge to a solution?

Solution 3.

Steps:

1. Show that the function $f(y) = 3y^{\frac{2}{3}}$ does not satisfy the Lipschitz condition near $y = 0$, so conditions of the Local Existence Theorem are not met.
2. Explain how this failure leads to successive approximations potentially failing to converge.

Method:

1. The derivative $f'(y) = 2y^{-\frac{1}{3}}$ of f becomes unbounded as $y \rightarrow 0$, and thus f does not satisfy the Lipschitz condition around $y(0) = 0$. Since the hypotheses of the standard local existence theorem (Picard-Lindelöf) are not satisfied, convergence of successive approximations is not guaranteed.
2. Let's solve the IVP explicitly by separating variables:

$$y^{-2/3} dy = 3dt \implies 3y^{1/3} = 3t + C.$$

Imposing the initial condition $y(0) = 0$, we get one solution given by $y(t) = t^3$, while the trivial solution $y(t) = 0$ also satisfies the ODE and the initial condition. In fact, using this result, we can construct infinitely many solutions of the form

$$y(t) = \begin{cases} 0, & 0 \leq t \leq a, \\ (t-a)^3, & t > a, \end{cases}$$

for arbitrary $a \geq 0$. To show successive approximation does not converge to a unique solution, consider the following initial functions: Let $y_0 = 0$ be the trivial solution, then successive approximations yield the trivial solution $y_n = 0$ for all n , and $y_n \rightarrow y(t) = 0$. On the other hand, if we choose $y_0 = t^3$, which satisfies $y(0) = 0$, then successive approximations will give

$$\begin{aligned} y_1(t) &= \int_0^t ds y_0(s) = \int_0^t ds 3s^2 = t^3, \\ &\vdots \\ y_n(t) &= \int_0^t ds y_{n-1}(s) = \int_0^t ds 3s^2 = t^3, \end{aligned}$$

converging to the non-trivial solution $y(t) = t^3$. Thus, depending on the choice of initial function, successive approximations can converge to different solutions or fail to converge altogether.