
A model of gravitational lensing using an optical-mechanical

analogy

Jonathan (Shao-Kai) Huang, Jing-Hsiang Chen, Wei-Liang Guo, Kun-Huang Lin1

1Department of Physics, National Taiwan University

(Dated: May 28, 2025)

Abstract

Gravitational lensing is a strong evidence supporting the theory of General Relativity. Despite

its complexity, we used an optical analogy of spatially varying refractive index to mimic the effect

of gravitational lens: the refractive index n(r) is unity at large distances and increases near the

mass, mimicking how a gravitational field slows light. Using Fermat’s principle of least time, we

obtain the Euler–Lagrange equation that governs ray trajectories. This equation yields a conserved

quantity (flight invariant) along each ray’s path, analogous to the impact parameter of a light ray

in a gravitational field. By solving the Euler–Lagrange equation, we can obtain the trajectory of

each light ray through the medium. Upon finding the apparent position of the source(such as a

star) through these trajectories, we then rotate these ray paths based on the spherical symmetry

of the model, so as to simulate the image of a disk. The resulting images exhibit characteristic

ring-like and multiple-image patterns just like those seen in real observations, suggesting that the

refractive-index analogy accurately reproduces known gravitational lensing phenomena, providing

an intuitive and accessible framework for physics students.
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I. INTRODUCTION

The theory of relativity comprises two interrelated frameworks introduced by Albert Ein-

stein. Special Relativity (1905) governs the behavior of physical phenomena in the absence

of gravity, unifying space and time and predicting effects such as time dilation and length

contraction. General Relativity (1915) extends this framework by describing gravity as the

curvature of spacetime produced by mass. Together, these theories revolutionized twentieth-

century physics by superseding the Newtonian paradigm and introducing new concepts such

as four-dimensional spacetime and relativistic time dilation. In particular, Einstein’s theory

transformed our understanding of gravitation, leading to predictions of novel phenomena

(e.g. black holes, gravitational waves) and reshaping cosmology and astrophysics.

One notable prediction of general relativity is gravitational lensing – the deflection of

light by massive objects. When a massive body (such as a galaxy or cluster) significantly

curves spacetime, it causes the path of a light ray passing nearby to bend, much like an

optical lens. As a result, light from a distant source can be distorted, magnified, or split into

multiple images. Gravitational lensing thus provides a dramatic and observable demonstra-

tion of Einstein’s theory, and it has become a powerful tool for studying objects that would

otherwise be too faint or distant to see.

This report focuses on modeling gravitational lensing using an optical-mechanical analogy.

We adopt isotropic coordinates to express a spherically symmetric spacetime metric in a

form that is conformal to flat space. In these coordinates, the gravitational field of a mass

can be mapped to an effective refractive index for light(de Felice,F.,1971). Under this

analogy, light rays follow trajectories as if traveling through a medium with spatially varying

refractive index, enabling the use of geometric optics methods to derive light paths and lens

equations. This approach provides an intuitive framework for analyzing lensing geometries

while remaining equivalent to solving the null geodesic equations in general relativity.

For the following contents, in section 2, we review the historical context of relativity,

including Einstein’s original formulation of Special and General Relativity and early empir-

ical tests (such as Eddington’s solar eclipse experiment in 1919). In section 3, we introduce

the modeling framework for gravitational lensing, explaining the use of isotropic coordinates

and the optical analogy (treating gravity as a refractive medium) and in section 5, the de-

tailed derivation of light trajectories and lensing equations within the chosen framework is
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provided, using analogies to classical optics.

II. HISTORIC NOTES

To understand the theory of relativity and its implications in current scientific devel-

opments, in particular the ideas used in the paper we studied, it is helpful to get a basic

understanding of the history of its development, and put ourselves in the shoes of the sci-

entific giants that shone along the way. Here we present a historic recap, and theory will

follow afterward.

A. The Beginning

The history of the study of light and its interaction with gravitating bodies started with

Sir Isaac Newton (1643 – 1727) as early as in the 18th century. In his famous magnum opus,

Opticks (1704) [2], he proposed the corpuscular theory of light, in which he postulated

light to be made of small, discrete particles possessing definite momentum and finite velocity

(”corpuscules”). This theory, though long known to be wrong from light speed measurement

experiments in a medium, such as the Fizaeu experiment (conducted by Hippolyte Fizeau in

1851), paved the way for future progress on the refraction of light. Newton speculated that

gravity could act on light particles, potentially bending their paths near massive bodies,

though he never formulated it precisely. We shall return to this old theory in a moment

for a discussion on light trajectory. In the mean time, well-established scientists like Henry

Cavendish (1731 – 1810), the man who ”weighed the Earth”, also proposed the idea of light

bending near massive bodies.

Since the time of Galileo Galilei (1564 – 1642), most scientists have accepted and fur-

thermore adopted the idea that acceleration due to gravity is independent of the object’s

mass. Hence, it was not a stretch that Cavendish posited that gravity bends light. A long

time later in 1921, the Astronomer Royal, Frank Watson Dyson (1868 – 1939), who will

appear later as an important part, made excerpts of four of Cavendish’s astronomical notes

and published them. Among them was “an isolated scrap on the bending of a ray of light

by gravitation...” [18]

Already, we see that the effect of light bending under the influence of gravity is not so
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FIG. 1: Cavendish’s page “A.5”. Here he calculated the velocity that a particle has at an

arbitrary point of a hyperbola. For more details and a recap of his original derivation attempt,

the reader is welcome to read the source paper [18].

much a revolutionary insight brought forth by Einstein alone in the onset of the twentieth

century. Instead, it is appropriate to say that he stood on the shoulders of many giants in

the process of formulating his general theory of relativity.

However, it wasn’t until 1801 that the said deflection was first explicitly calculated and

published. The man in question was Johann Georg von Soldner (1776 - 1833), a less well

known physicist of the time, who calculated the deflection of light by gravity using Newtonian

mechanics. He predicted a small deflection of around 0.87 arcseconds for light grazing the

Sun. Unfortunately, since the deviation was way too tiny and there was no way to make

extensive observations during the day, not to say at the direction of the sun, his calculation

remained a theoretical curiosity and soon fell into oblivion.
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B. Theory of Relativity and the Eddington Expedition

In 1911, Albert Einstein (1879 – 1955), not knowing that an identical result had been

derived more than 100 years ago, revisited the idea of light bending using an early version

of special relativity. He arrived at a similar value as Soldner, and the publication brought

much spotlight for the problem. In modern notation, the deflection angle is given by

δ =

√
GM

bc2
, (1)

where b is the impact parameter.

In 1912, when the general theory of relativity had not yet been proposed, Einstein pre-

dicted the optical effect of what is now known as ”Einstein rings” based on calculations done

solely using special relativity.

The value for deflection angle turns out to be wrong, however, in the context of general

relativity. After adventing the general theory of relativity in 1915, Einstein recalculated the

correct value of deflection to be

δ =

√
4GM

bc2
, (2)

twice the original value. Now the question of which value was correct was in urgent need

to be tested, since its measurement implied a test of whether Einstein’s relativity would

triumph over the Newtonian theory of mechanics.

The sun was naturally the best subject of experiment given the measurement abilities of

the time, but the problem of how to measure directly at the direction of the sun and still

be able to pick out the light from distant stars remained a problem. The measurement of

deflection of light around the sun would comprise one of the three classic tests of general

relativity: light deflection around the sun, perihelion precession of mercury, and gravitational

redshift. [3]

Fortunately, the first observational confirmation came in 1919. During the solar eclipse

of 1919, led by Sir Arthur Eddington (1882 – 1944), joined by his colleague Sir Frank Wat-

son Dyson, whom we have mentioned earlier, a group of astronomers confirmed Einstein’s

prediction by observing distant stars whose light passed near the sun and was deflected. [8]

This provided the first empirical evidence for General Relativity — a landmark moment in

physics. The publication made headlines in the newspaper at the time, and Einstein - and

his theory of relativity - became known around the world. Despite it tremendous success,
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Eddington’s expedition wasn’t without turmoil.

The idea of an expedition was conceived as early as in 1916, just one year after Einstein’s

theory of general relativity was published. Dyson chose the 1919 solar eclipse because it

would take place with the Sun in front of a bright group of stars called the Hyades, and

the brightness would enhance the quality of observation. When 1919 came, two teams of

two people each were to be sent to make observations of the eclipse at different locations:

the West African island of Pŕıncipe, led by Eddington and joined by his colleague Edwin

Turner Cottingham at the Cambridge Observatory, and the expedition to the Brazilian

town of Sobral, carried out by Andrew Crommelin and Charles Rundle Davidson from the

Greenwich Observatory in London.

FIG. 2: The New York Times reported on the

Eddington experiment and Einstein’s theory on

November 10, 1919.

Despite the grand success, doubts soon

surfaced in the scientific world about

whether Eddington’s results were suffi-

ciently accurate and without biases, to be

used as concrete evidence of general rel-

ativity. Eclipse measurements using visi-

ble light retained considerable uncertainty,

and it was only radio-astronomical measure-

ments in the late 1960s that definitively

verified the amount of deflection as being

in complete agreement with the value pre-

dicted by general relativity.

Eclipse measurements of this kind, us-

ing visible light, retained considerable un-

certainty, and it was only radio-astronomical

measurements in the late 1960s that defini-

tively showed that the amount of deflection

was the full value predicted by general rela-

tivity, and not half that number as predicted

by a ”Newtonian” calculation.

Interestingly, the 1919 results were used as part of the systematic efforts by Nobel lau-

reate Philipp Lenard to discredit Einstein. This was in a time when Germany was overcast
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by radical national socialist views, and German scientists regarded ”German physics” as

superior over ”Jewish physics”. As mentioned above, Johann Georg von Soldner had, unbe-

knownst to Einstein, derived from Newtonian gravity for starlight bending around a massive

object, which corresponds exactly to Einstein’s own erroneous derivation of 1911. Lenard

claimed that this proved Einstein to be a plagiarist, and attacked Einstein for this.

What proved troublesome for Einstein wasn’t just his Jewish identity, but also the fact

that he resided in Germany at the time, and many outside Germany considered him to

be German. After the widespread success of Einstein’s theory was passed on around the

world, and various headlines were made about it, it seemed that newspapers in Belgium

generally ignored this grand event. Remember that the War had just ended, Belgium mostly

overrun by German forces, and so it is suggested that ”the hostility towards Germany among

the larger Belgian public, made the country largely inimical to the ideas of a scientist who

remained, after all, German”.[7]

The results from the Sobral expedition in Brazil were discarded due to a defect in the

telescopes used, and the discarded results actually fit the Newtonian model better [19]. It

is no wonder that some scientists accussed Eddington of making a biased result, in favor

of general relativity. Eddington developed the photographs on Pŕıncipe, and attempted to

measure the change in the stellar positions during the eclipse. On 3 June, despite the clouds

that had reduced the quality of the plates, Eddington wrote: ”... one plate I measured gave

a result agreeing with Einstein.” And it was this sentence that marked the beginning of a

new era for physics.

As history tells, Einstein faced backlash from the scientific community, for many at the

time could not understand his theory, nor did they believe it to be true. After the expedition,

Eddington played a major role in advocating Einstein’s theory, now that they had concrete

evidence of its validity over the Newtonian model.

After the expedition came to an end, their results were announced at a Royal Society

meeting. Later, during a dinner held at the Society, Eddington addressed the participants

by reciting a parody verse he penned himself [8]:

”Oh leave the Wise our measures to collate

One thing at least is certain, light has weight

One thing is certain and the rest debate

Light rays, when near the Sun, do not go straight.”
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This poem was written in the prose style of the Rubaiyat of Omar Khayyam, a famous

English translation of a Persian text attributed to Omar Khayyam [9].

C. Gravitational Lensing and A New Age for Cosmology

Although being the first to make quantitative prediction of gravitational lenses, Einstein

showed much pessimism toward their discovery. He said the following in a 1936 paper: ”Of

course, there is no hope of observing this phenomenon directly.” [15]

In 1937, another prominent name in astronomical physics joined the game. This was

Fritz Zwicky (1898 – 1974), a Swiss astronomer from CalTech famous for proposing the

existence of dark matter, and for his various works related to astronomy. Before making his

name as a prominent astronomer and phsicist, he studied and contributed to the study of

ionic crystals and electrolytes, before using the virial theorem to posit the existence of dark

matter, calling it dunkle Materie [10].

Then, in a 1937 paper, Zwicky posited that galaxies could act as gravitational lenses,

following the theory of Einstein [11]. It was not the first time Zwicky made curious claims

that seemed too wild to be true, such as being the first to produce artificial meteors and

thus launching the first objects into solar orbit [13], and suggesting launching pellets into

the sun to cause asymmetrical fusion explosions, thus propelling the entire solar system like

a spaceship toward another galaxy [14]. He remarked that with successful implementation,

it would only take 2500 years to reach Alpha Centauri, the nearest star (in fact, it is a

three-star system) to our home 1.

As remarked by Stephen M. Maurer [12], ”When researchers talk about neutron stars,

dark matter, and gravitational lenses, they all start the same way: ”Zwicky noticed this

problem in the 1930s. Back then, nobody listened...”

This time, it turned out that his idea was true, but took just a bit too long for scientists

to verify. It wasn’t until 1979, 5 years after Zwicky passes away, that a group of English and

American scientists, led by Dennis Walsh, Robert Carswell, and Ray Weyman, observed the

gravitational lensing effect for the first time.

The discovery was made using the 2.1m Telescope at Kitt Peak National Observatory in

1 This is said in Wikipedia - Frityz Zwicky to be in the reference [16], but it is in German so I am not fully

sure about its correctness
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Arizona, and was named the Twin Quasar since it is a quasar that appears as two images

due to gravitational lensing. The team noted that two quasars, as shown in the picture

below, seemed to be unusually close to each other, and that their visible light spectrum were

very close to each other. Although the authors suggested the possibility of a gravitational

lens, it was only a tentative result which was subsequently confirmed by various experiments

and analyses [17]. Thus, Einstein’s previous pessimism that gravitational lenses would never

be observed was, very much merrily, disproved.

FIG. 3: First image of the Twin Quasar taken by Dennis Walsh et al. at the Kitt Peak National

Observatory in Arizona, United States.

Following the discovery of the first gravitational lens, other projects continued searching

for and finding more gravitational lensing systems in the sky. These include the more recent

Hubble Telescope and James Webb Space Telescope, providing more and more exciting news

for the study of astronomy and cosmology.

III. MODEL

A. General Relativity

We know that the metric of a spherically symmetric object with mass m is given by the

Schwarzschild metric
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ds2 =
(
1− m

2r

)
dt2 −

(
1− m

2r

)−1

dr2 − r2dθ2 − r2 sin2 θdϕ2 (3)

We use the isotropic coordinate, whose defining characteristic is that its radial coordinate

(which is different from the radial coordinate of a Schwarzschild coordinate) is defined so

that light cones appear round. However, unlike the Schwarzschild coordinate, the isotropic

chart is not well suited for constructing embedding diagrams of these hyperslices. We then

use a suitable transformation to obtain the isotropic coordinate. Let r = r′(1 + m
2r′

)2, where

r′ is the radius of the isotropic coordinate.

1− 2m

r
= 1− 2m

r′
(
1 + m

2r

)2 =

(
1 + m

2r

)2 − 2m
r′(

1 + m
2r

)2 =

(
1− m

2r

)2(
1 + m

2r

)2 (4)

dr = dr′
(
1 +

m

2r

)2
+ r′d

(
1 +

m

2r

)2
=

[(
1 +

m

2r

)2
+ 2r′

(
1 +

m

2r

)(
− m

2r′2

)]
dr′

=
(
1 +

m

2r′

)(
1− m

2r′

)
dr′

(5)

Therefore,

ds2 =

(
1− m

2r

)2(
1 + m

2r

)2dt2 −
(
1 + m

2r

)2(
1− m

2r

)2 (1 + m

2r

)2 (
1− m

2r

)2
dr′

2 − r′
2
(
1 +

m

2r

)4 (
dθ2 + sin2θdϕ2

)
=

(
1− m

2r

)2(
1 + m

2r

)2dt2 − (1 + m

2r

)4 (
dr′

2
+ r′

2 (
dθ2 + sin2 θdϕ2

))
(6)

The above form of metric, so-called the isotropic coordinate, has a conformal Euclidean

spatial part. Therefore, the isotropic coordinate speed of the light c(r) in analogy to classical

optics can be obtained through letting ds2 = 0.

0 =

(
1− m

2r

)2(
1 + m

2r

)6dt2 − |dr′|2 (7)

c2(r′) =

∣∣∣∣dr′dt

∣∣∣∣2 =
(
1− m

2r

)2(
1 + m

2r

)6 (8)

In analogy to classical optics, we can read the refraction index (write r′ as r)
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n2(r) =

(
1 + m

2r

)6(
1− m

2r

)2 (9)

B. Simplified refraction index with similar behavior around the event horizon

Using the refractive index derived in previous section, if we introduce a new variable

ρ = r −m/2 then as r −→ m/2, Eq (7) becomes

n(ρ)2 =
16(m+ ρ)6

ρ2(m+ 2ρ)4
(10)

which diverges as 1/ρ2 in the vicinity of the surface of the event horizon. We now consider

an index of refraction with similar behavior in the proximity of the event horizon.

n(r)2 = 1 +
C2

r2
, C = 4m (11)

where C is a constant of unit length. Then r −→ 0 captures the leading-order behavior of

light around the event horizon, and r −→ ∞ captures the motion of light in a flat space-time.

C. General solution to the ray trajectory

To get the trajectory of light, we use the Fermat’s principle from classical optics in 2D

polar coordinate. Using the index of refraction derived from above, we need to maximize

the optical path

δL = δ

∫
F (θ, r(θ), ṙ(θ))dθ = 0 (12)

where ṙ(θ) = dr/dθ, and

F = n(r)
√
ṙ2 + r2 (13)

The trajectory is given by the Euler-Lagrange equation

∂F

∂r
− d

dθ

∂F

∂ṙ
= 0 (14)

∂F

∂r
= n′(r)

√
ṙ2 + r2 +

n(r)r√
ṙ2 + r2

(15)
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∂F

∂ṙ
=

n(r)ṙ√
ṙ2 + r2

(16)

d

dθ

∂F

∂ṙ
=

n(r)r̈√
ṙ2 + r2

− ṙ2n(r)(r̈ + r)

(ṙ2 + r2)3/2
+

n′(r)ṙ2√
ṙ2 + r2

=
n(r)(r̈r2 − rṙ2)

(ṙ2 + r2)3/2
+

n′(r)ṙ2√
ṙ2 + r2

(17)

where n′(r) = dn/dr is the derivative with respect to r. The Euler-Lagrange equation

then becomes

n′(r)r2 + n(r)r =
n(r)(r̈r2 − rṙ2)

(ṙ2 + r2)

which then leads to

n′(r)

n(r)
+
r2 + 2ṙ2 − r̈r2

ṙ2r + r3
= 0 (18)

If we define a new variable u(r) = ṙ/r and substitute ṙ = ur and r̈ = uṙ+u̇r = u2r+u′rṙ,

then the trajectory equation becomes

n′(r)

n(r)
+

1

r
− uu′

1 + u2
= 0 (19)

Integrating over the radius coordinate r, we obtain

rn (r)
(
1 + u (r)2

)−1/2
= B (20)

where B is an integration constant, an invariant, here called the flight invariant. The

flight invariant will be shown to be the impact parameter in the following sections. Substitute

u(r) = ṙ/r back, we get

1

B
r2n(r) =

√
ṙ2 + r2 (21)

The solution to the differential equation is

∫
B

r
√
r2n (r)2 −B2

dr = θ (22)

This 2D solution in polar coordinate is sufficient to describe all 3D ray trajectories by

making a rotation of the 2D plane, which simplifies the analysis a lot.
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D. Ray trajectory for the simplified refraction index

For the index of refraction in Eq (9), the integral in (20) can be rewritten as

∫
B

r
√
r2 + C2 −B2

dr = θ (23)

Using the appendix or an integration table, we can find the solution of Eq. (21) to be

r =
√
B2 − C2 csc

(√
B2 − C2

B
θ

)
for B > C (24)

and

r =
√
C2 −B2 csch

(√
C2 −B2

B
θ

)
for B < C (25)

The rays that are bent by the gravitation lens are described by Eq. (22) while the rays

that are attracted by the black hole and terminate at the origin are described by Eq. (23).

For both type of trajectories, when taking the limit θ −→ 0, the two trajectories all have

lim
θ→0

y = lim
θ→0

r sin θ = B, (26)

where y is the Euclidean coordinate. This means that the flight invariant can be interpret

as the impact parameter of the ray. Fig. 1 shows two categories of rays with C = 1

The following observation can be made about rays described by Eq. (22)

• A full trajectory of the ray is described for the argument of the cosecant ranging from

0 to π. Therefore, when
√
B2−C2

B
×2π < π, or equivalently B < 2√

3
C, the ray will make

a closed loop around the black hole, as shown in Fig. 1

• The radius r approaches infinity as the argument of cosecant goes to π. Thus, the

exiting angle θ2 can be written as

θ2 =
Bπ√

B2 − C2
(27)

• The exiting angle ∆θ spanned by two rays with different flight invariant ∆B is

∆θ =
dθ

dB
∆B ≈ πC

(B2 − C2)3/2
∆B (28)

Here we provide a ray trajectory visualization for various values of B.
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FIG. 4: Plot of various light ray trajectories corresponding to different values of B.

E. Optical Path

The optical path is given by the integral in Eq. (12), while integrating over the trajectory

will be divergent, we can calculate the difference of optical path if the space-time were not

curved, which converges. Simplifying the expression of F in terms of the flight invariant B

F =
1

B
r2n (r)2 (29)

We can rewrite the optical path difference ∆L as

∆L =
1

B

∫ θ

0

r2
[
n (r)2 − 1

]
dθ =

C2

B
θ (30)

Thus, the “stretch” accumulated near a gravitational lens is finite for B > C. However,

as the flight invariant B approaches the constant C, the optical path stretch approaches

infinity, and therefore the flight time ”stretches” to infinity as well.
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F. Einstein Ring

In the following section, we assume the observer is on the x axis and the gravitation lens

is centered at the origin.

An optical ray that starts its journey parallel to the x axis at an impact parameter B > C

is bent by a gravitational lens and crosses the x axis on the opposite side. The crossing of

the x axis (y = 0, or θ = π) is given by the point

Ps =

(
−
√
B2 − C2 csc

(√
B2 − C2

B
π

)
, 0

)
(31)

By reciprocity of light trajectories (that is, by invaraince under time-reversal), the rays

that originate from point Ps, which is on the x axis, will be parallel to the x axis if the

gravitation lens is centered about the origin. Thus, any plane containing the x axis also

contains a similar trajectory. By using a 2D trajectory and rotations around the x axis, it

is possible to construct a 3D representation

(x, y, z) =M(ψ) (x, y, 0) , (32)

where M(ψ) is the rotation matrix around the x axis:

M (ψ) =


1 0 0

0 cosψ − sinψ

0 sinψ cosψ

 , (33)

and ψ is the rotation angle about the x axis. This means that an observer on the x axis

will see a ring of image of the origin star, which is the well-known Einstein ring.

G. 2D and 3D Imaging

Consider a point source P , a distant observer on the x axis. We are interested in finding

where the image of the point source P will be seen by the observer if the gravitational lens

is centered at the origin. A 2D case with point P whose Cartesian coordinates (xP , yP ) is

considered first. The polar coordinates of the point P are

(rP , θP ) =

(√
x2P + y2P , arctan

(
xP
yP

)
+ 2πk

)
(34)
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where k is an integer related to the type of bend and the number of loops traced by

the optical ray around the gravitational lens. The flight invariant of the ray can be solved

by substituting Eq. (34) into Eq. (24). Since there’s no close form solution of the flight

invariant, a numerical solution is used instead. Different solutions may be determined nu-

merically for different values of k. The figure below illustrates a few values of k and their

flight invariant.

FIG. 5: Different k values and the corresponding ray trajectory around a massive body located

at the origin (0, 0). The light is emitted from the point P .

Now consider a point P in 3D space, the gravitational lens at the origin, and a distant

observer along the positive x axis. The coordinates of the point P are P = (xP , yP , zP ).

For a spherical gradient, all trajectories are in a plane and contain the origin. Thus, the

simplest way to find the 3D trajectory is to rotate the system of coordinates around the x

axis to place the given point P in the xy plane and then find the 2D trajectory as described

in the previous discussion. The rotation angle is
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ψ = arctan (yP , zP ) (35)

For a numerical example, consider a disk (which could be thought of as a galaxy) with

radius 0.3 kpc in the sky, offset from the x axis by 0.5 kpc and located behind the gravi-

tational lens, at x = −3. The Cartesian coordinates of the points on the circumference are

given by

(xP , yP , zP ) = (−3, 0.5 + 0.3 cosφ, 0.3 sinφ) (36)

where φ is a parameter ranges from 0 to 2π. The solution can be described as (B,φ) for

each φ. The first few ray trajectories are shown in the figure below.

FIG. 6: First few order solutions of the 3D imaging, and an observed image of a real galaxy.

H. Ray trajectory comparison to analytic solution in General Relativity

The Schwarzschild metric yields, we can calculate various terms of the connections.
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Γθ
rθ =

1

r
,

Γθ
ϕϕ = − sin θ cos θ,

Γϕ
rϕ =

1

r
,

Γϕ
θϕ = cot θ

Γt
rt =

m

r2
(
1− 2m

r

)
From these Γs, we can compute the geodesic equation of the angular part

(
d2θ

du2

)
+ 2Γθ

rθ

(
dr

du

)(
dθ

du

)
+ Γθ

ϕϕ

(
dϕ

du

)2

= 0(
d2ϕ

du2

)
+ 2Γϕ

rϕ

(
dr

du

)(
dϕ

du

)
+ 2Γϕ

θϕ

(
dθ

du

)(
dϕ

du

)
= 0(

d2t

du2

)
+ 2Γt

rt

(
dr

du

)(
dt

du

)
= 0

where u is the parameter of the curve. Plugging in the values of Γs, the above equations

can be simplified as

r
d2θ

du2
+ 2

dr

du

dθ

du
− r sin θ cos θ

(
dϕ

du

)2

= 0

r
d2ϕ

du2
+ 2

dr

du

dϕ

du
+ 2r cot θ

dθ

du

dϕ

du
= 0

d2t

du2
+

2m

r2
(
1− 2m

r

) dt
du

dr

du
= 0

(37)

The time component is rather simple. In fact, it can be written as

d

du

((
1− 2m

r

)
dt

du

)
= 0

dt

du
=

E

1− 2m
r

(38)

If we choose the initial condition θ = π/2, dθ/du = 0 at u = 0, then the θ part of Eq.

(37) yields

d2θ

du2
= 0, at u = 0 (39)
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So if we choose that initial condition, θ is a constant along the trajectory. Then we can

get two constants along the trajectory of the ray

θ =
π

2
,

l =r2
dϕ

du

(40)

where l is a relativistic analogy to the classical angular momentum, so we will refer it

as the angular momentum of the ray. Moreover, it’s convenient to consider the quantity

dϕ/dt

dt

dϕ
=

Er2

l
(
1− 2m

r

) (41)

For the radial part, we first consider the infinitesimal invariant length.

ds2 =

(
1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2 − r2dθ2 − r2sin2θdϕ2 (42)

For light, the infinitesimal invariant length is 0, so the light trajectory is

0 =

(
1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2 − r2dθ2 − r2 sin2 θdϕ2 (43)

Divide both sides by dϕ2, and choose θ = π/2, dθ/dϕ = 0, we immediately get the

trajectory of the ray.

0 =

(
1− 2m

r

)(
dt

dϕ

)2

−
(
1− 2m

r

)−1(
dr

dϕ

)2

− r2 (44)

Use the angular momentum to simplify the expressions, this finally leads to

(
dr

dϕ

)2

=
E2r4

l2
− r2

(
1− 2m

r

)
=
r4

b2
− r2 + 2mr

(45)

where b = E/l, The trajectory can be solved by numerically integrating over r

ϕ =

∫ ∞

r

dρ√
ρ4/b2 − r2 + 2mr

(46)
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FIG. 7: Trajectory from approximate

index of refraction field.

FIG. 8: Trajectory from general relativity

solution.

We are interested in the region where r → ∞, change the integrated variable to u = 1/ρ,

we get

ϕ =

∫ 1/r

0

bdu√
1− b2u2 + 2mb2u3

≈
∫ 1/r

0

bdu√
1− b2u2

= arcsin
b

r

(47)

So our model describes the ray perfectly as r → ∞ if we interpret b as B, the flight

invariant. We plot the Schwarzschild solution and the approximate solution according to

the paper below.

I. A Diversion into the Optical-Mechanical Analogy

1. The Theory

As mentioned above, Eq. (22) used the Fermat principle and variational calculus to derive

the desired trajectory of light in a varying index of refraction field. The observant reader
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may have noticed a striking similarity between Fermat’s principle,

δ

∫ Q

P

d3r n(r) = 0, (48)

and the principle of stationary action,

δS = δ

∫
dt L(r(t), ṙ(t), t) = 0. (49)

We shall build on this similarity and derive a full analogy, giving us an alternative way

to derive the ray trajectory equations in the paper without resorting to the Euler-Lagrange

equation.

Notice that the integral in Fermat’s principle is done over spatial coordinates, so we first

need to transform the action integral into an integral over space. The stationary action

integral is

S =

∫ t2

t1

dt L(r(t), ṙ(t), t)

=

∫ t2

t1

dt [E − V (r(t), ṙ(t), t)]

=

∫ t2

t1

dt [2T (r(t), ṙ(t), t)− E] .

(50)

Variation of a constant is identically zero, so

δS = δ

∫ t2

t1

dt 2T (r(t), ṙ(t), t)

= δ

∫ t2

t1

dt (v · p)

= δ

∫ Q

P

d3r |p(r(t), ṙ(t), t)|

= δ

∫ Q

P

d3r
√

2m (E − V (r(t), ṙ(t), t)).

(51)

where we have used the fact that

L = E − V = 2T − E.

Then the quantity
√
2m (E − V (r(t), ṙ(t), t)) in the stationary action variation corre-

sponds to the refractive index n(r in Fermat’s principle. Therefore, we have the optical-

mechanical correspondence:

E − n(r)2

2m
⇐⇒ V (r). (52)
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The physical interpretation of the correspondence is that the trajectory of a light ray in

a varying refractive index field obeys the same equation of motion as a particle of mass m

and energy E, moving under the influence of a potential

V (r) = E − n(r)2

2m
.

Therefore, we can derive the trajectory without having to resort to Fermat’s principle, and

thus without variational calculus.

In the historic notes section, we introduced Newton’s (now obsolete) corpuscular theory

of light, which treated light rays as being composed of discrete particles of nonzero mass,

which travel at some finite speed. We find the theory erroneous, since it would imply light

traveling at a speed of nc in a medium instead of c/n, but surprisingly the theory always

gets the trajectory right! We will apply this tool to solve the problem in the paper, as an

alternative way to derive the light bending equations.

2. Solving the Light Bending Equation

We start with the effective refractive index field

n(r)2 = 1 +
C2

r2
.

The corresponding potential according to the optico-mechanical analogy is

V (r) = E − 1

2m

(
1 +

C2

r2

)
.

This is a central force problem, so angular momentum conservation gives us

θ̇ =
l

mr2
,

where l is a conserved quantity we tentatively associate with some sort of angular momentum.

We shall make clear its physical essence later.

Newton’s equation of motion gives

mr̈ = mrθ̇2 − dV

dr
(53)

in the radial direction. As usual, we use the Binet transformation and substitute u = 1/r

into the equation. After standard calculations from Kepler’s first law we get

ṙ = − l

m

du

dθ
, r̈ = −

(
lu

m

)2
d2u

dθ2
, (54)
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and
dV

dr
=
C2u3

m
. (55)

Substituting the above into equ. (53), we get

d2u

dθ2
+

(
1 +

C2

l2

)
u = 0, (56)

which has the solution

u(θ) = αe
√

1−C2/l2θ + βe−
√

1−C2/l2θ. (57)

We discuss the two cases for the solution:

[1] l > C: the term inside the square root is positive, so the solution is hyperbolic, and

we have (relabeling the constants again as α and β)

u(θ) = α sinh

(√
1− C2

l2
θ

)
+ β cosh

(√
1− C2

l2
θ

)
. (58)

[2] l < C: the terms inside the square root is negative, so the solution is sinusoidal, and

we have (relabeling the constants again as γ and δ):

u(θ) = γ sin

(√
C2

l2
− 1θ

)
+ δ cos

(√
C2

l2
− 1θ

)
. (59)

It should be clear now what the quantity l holds for us: whether l exceeds C or not is

the sole factor determining the ”fate” of the light ray, that is, whether it shall fall into the

event horizon or skim past the massive body. Therefore, we identity it with the constant B

in the paper’s derivation, which further puts forth the idea that the flight invariant acts like

angular momentum for the light ray’s motion.

Then

r(θ) =


√
B2 − C2 csch

(√
B2−C2

B
θ
)
, B > C,

√
C2 −B2 csc

(√
C2−B2

B
θ
)
, B < C.

(60)

Therefore, we recover the previous trajectory for the light ray, without using variational

calculus.
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IV. SUMMARY

In summary, we use an index of refraction to mimic the effect of gravitational lens.

Moreover, around the event horizon, a rather simple refraction index can be used. By

Fermat’s principle, we get the flight invariant, which is an important quantity defining

the trajectories of a ray. Using the trajectories described by Euler-Lagrange equation, we

immediately solved the image of a distant star. And finally, after some rotations, we can

find out what a disk in the sky will look like described by our model, which matches the

real observation.
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V. APPENDIXES

A. Task Distribution

FIG. 9: This is the task distribution among the group members.

B. Obtaining the suitable transformation in the isotropic coordinate

The goal of this subsection is to derive the suitable transformation in the isotropic coor-

dinate, r = r′(1 + m
2r′

)2. For the Schwarzschild metric we know

ds2 =
(
1− m

2r

)
dt2 −

(
1− m

2r

)−1

dr2 − r2dθ2 − r2sin2θdϕ2 (61)

and in the isotropic coordinate we must satisfy

ds2 = ar′2dt2 − br′2(dr′2 + r′2dθ2 + (r′)2 sin2 θdϕ2). (62)

The associated metric tensor is given by

gµν =



(
1− rs

r

)
0 0 0

0 − 1
1− rs

r
0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ

 , (63)

which is, interestingly, diagonal.

From above we must have these relationships:(
1− m

2r

)−1

dr2 = b(r)′2dr′2, r2 = br′2r′2 (64)

now fist vanish the b(r′)2 so we get(
1− m

2r

)−1

r′2dr2 = r′2dr′2 (65)

26



take the square root of both sides for positive sign we can get the ODE

dr√
r2 − 2mr

=
dr′

r′

subject to the boundary condition r → ∞ as ρ→ ∞, and choosing the positive root so that

ρ→ ∞ when r → ∞.

Step 1. Change of variables. Notice that

r2 − 2mr =
(
r −m

)2 −m2 ,

so that under the square-root we have a difference of squares. A standard trick is to set

u = r −m,

so that r = u+m and

r2 − 2mr = (u+m)2 − 2m (u+m) = u2 −m2.

Hence
√
r2 − 2mr =

√
u2 −m2 ,

and

dr = du.

The ODE becomes
du√

u2 −m2
=

dr′

r′
.

Step 2. Direct integration. The left-hand side is the standard integral of the form∫
du/

√
u2 −m2 = cosh−1(u/m), but equivalently one may recall that

d

du

(
u+

√
u2 −m2

)
= 1 +

u√
u2 −m2

=

√
u2 −m2 + u√
u2 −m2

=
u+

√
u2 −m2

√
u2 −m2

,

so that ∫
du√

u2 −m2
= ln

(
u+

√
u2 −m2

)
+ constant.

Thus integrating both sides of the ODE gives

ln
(
u+

√
u2 −m2

)
= ln r′ + C =⇒ u+

√
u2 −m2 = eC r′ = K r′,

where K = eC is an integration constant.
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Step 3. Fixing the integration constant. As r′ → ∞, we require r → ∞, hence u =

r −m→ ∞. In that limit
√
u2 −m2 ∼ u, so

u+
√
u2 −m2 ∼ 2u ∼ 2(r −m) → ∞.

On the other hand K r′ → ∞ also, so consistency in the asymptotic region demands K = 2.

Thus

u+
√
u2 −m2 = 2 r′.

Step 4. Solve for r. Recall u = r −m, so

r −m +
√

(r −m)2 −m2 = 2 r′.

Rearrange to isolate the square-root,√
(r −m)2 −m2 = 2r′ − (r −m) = (r −m)

( 2r′

r −m
− 1
)
.

A more direct route is to square the relation

(r −m) +
√

(r −m)2 −m2 = 2r′

to get

(r −m)2 −m2 = (2r′ − (r −m))2 = (r −m)2 − 4r′(r −m) + 4r2′,

hence

−m2 = −4r′(r −m) + 4r′2 =⇒ 4r′(r −m) = 4r′2 +m2.

Thus

r −m = r′ +
m2

4r′
=⇒ r = r′ +m+

m2

4r′
= r′

(
1 +

m

2r′

)2
.

This is precisely

r = r′
(
1 + m

2r′

)2
,

C. Simulation Code

1. Ray trajectory from main paper
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1 import numpy as np

2 import matplotlib.pyplot as plt

3 from matplotlib.animation import FuncAnimation

4

5 C = 1.0

6 num_rays = 5

7 B_values = np.linspace(0.2,2, num_rays)

8 theta_range =[

9 np.linspace(0.01, 3.14, 100),

10 np.linspace(0.01, 3.7, 100),

11 np.linspace(0.01, 7.31, 100),

12 np.linspace(0.01,4 , 100),

13 np.linspace(0.01, 3.15, 100)

14 ]

15

16 def ray_trajectory(B, theta):

17 if B > C:

18 factor = np.sqrt(B**2 - C**2)

19 r = factor / np.sin(factor * theta / B)

20 else:

21 factor = np.sqrt(C**2 - B**2)

22 r = factor / np.sinh(factor * theta / B)

23 return r

24

25 fig, ax = plt.subplots(figsize=(8, 8))

26 ax.set_xlim(-4, 4)

27 ax.set_ylim(-4, 4)

28 ax.set_aspect('equal')

29 ax.set_title("Gravitational Lens Ray Trajectories")

30 lens = plt.Circle((0, 0), 0.1, color='black')
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31 ax.add_patch(lens)

32 ax.grid(True)

33

34 colors = plt.cm.viridis(np.linspace(0, 1, num_rays)) # colormap

35 lines = [ax.plot([], [], lw=1, color=colors[i], label=f'B ={B_values[i]:.2f}')[0] for i in range(num_rays)]

36 ax.legend(loc='upper left', title='B Values')

37

38 def init():

39 for line in lines:

40 line.set_data([], [])

41 return lines

42

43 def update(frame):

44 for i, B in enumerate(B_values):

45 theta = theta_range[i][:frame + 1]

46 try:

47 r = ray_trajectory(B, theta)

48 x = r * np.cos(theta)

49 y = r * np.sin(theta)

50 lines[i].set_data(x, y)

51 except Exception:

52 pass

53 return lines

54

55 ani = FuncAnimation(fig, update, frames=len(theta_range[0]), init_func=init, blit=True, interval=30, repeat=False)

56 import HTML

57 HTML(ani.to_jshtml())
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2. Ray trajectory with Schwarzschild metric

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from matplotlib.animation import FuncAnimation

4 from scipy.integrate import solve_ivp

5 num_rays = 5

6 rs = 1

7 b_values = np.linspace(0.2*rs,5*rs, num_rays)

8 u0 = 1e-5

9 du0 = [1 / b for b in b_values]

10

11 def geodesic(phi, y):

12 u, du = y

13 return [du, 1.5 * rs * u**2 - u]

14

15 #phi_min, phi_max, N = 0, 3.7, 300

16 phi_span = [

17 (0.01, 3.14),

18 (0.01, 3.31),

19 (0.01, 9.9),

20 (0.01, 4),

21 (0.01, 3.7)

22 ]

23 N=300

24 phi_vals = [np.linspace(*phi_span[i], N) for i in range(num_rays)]

25

26 param = {}

27 for i in range(num_rays):

28 sol = solve_ivp(geodesic, phi_span[i], [u0, du0[i]], t_eval=phi_vals[i], rtol=1e-8, atol=1e-8)
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29 u = sol.y[0]

30 r = 1 / u

31 x = r * np.cos(sol.t)

32 y = r * np.sin(sol.t)

33 param[i] = (x, y)

34

35 fig, ax = plt.subplots(figsize=(8,8))

36 ax.set_aspect('equal')

37 ax.set_xlim(-10, 10)

38 ax.set_ylim(-10, 10)

39 ax.grid(True)

40 ax.set_title("Light Ray Deflection by Schwarzschild Black Hole")

41 ax.set_xlabel("x")

42 ax.set_ylabel("y")

43

44 plt.plot(0, 0, 'ko', markersize=10)

45 horizon = plt.Circle((0, 0), rs, color='black', alpha=0.6)

46 plt.gca().add_patch(horizon)

47

48 colors = plt.cm.viridis(np.linspace(0, 1, num_rays)) # colormap

49 lines = [ax.plot([], [], lw=1, color=colors[i], label=f'b = {b_values[i]:.2f}')[0] for i in range(num_rays)]

50 ax.legend(loc='upper left', title='b Values')

51

52 def init():

53 for line in lines:

54 line.set_data([], [])

55 return lines

56

57 def update(i):

58 for j in range(num_rays):
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59 x, y = param[j]

60 lines[j].set_data(x[:i], y[:i])

61 #dot.set_data(x[i], y[i])

62 return lines# dot

63

64 ani = FuncAnimation(fig, update, frames=300, init_func=init, blit=True, interval=10)

65

66 from IPython.display import HTML

67 HTML(ani.to_jshtml())

3. Rays emerging from one source

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 def plot_csc_xy(B_values, Kvalues,C=1.0):

5 plt.figure(figsize=(7, 7))

6 for i in range(len(B_values)):

7 K=Kvalues[i]

8 B=B_values[i]

9 if (B > 0):

10 amplitude = np.sqrt(max(0, B**2 - C**2))

11 factor = amplitude / B if B != 0 else 0

12 if (i<4):

13 theta = np.linspace(0.0001, np.pi / factor, 3000)

14 elif(i<=7):

15 theta = np.linspace(2*np.pi / factor,3*np.pi / factor, 3000)

16 else:

17 theta = np.linspace((-2)*np.pi / factor,(-1)*np.pi / factor, 3000)
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18

19 elif (B < 0) :

20 amplitude = np.sqrt(max(0, B**2 - C**2))

21 factor = amplitude / B if B != 0 else 0

22 if (i<4):

23 theta = np.linspace(np.pi / factor, 0.0001, 3000)

24 elif(i<=7):

25 theta = np.linspace(3*np.pi / factor,2*np.pi / factor, 3000)

26 else:

27 theta = np.linspace((-1)*np.pi / factor,(-2)*np.pi / factor, 3000)

28 else:

29 continue

30 with np.errstate(divide='ignore', invalid='ignore'):

31 r = amplitude / np.sin(factor * theta)

32 r[np.abs(r) > 5] = np.nan # mask asymptotes

33

34 x = r * np.cos(theta)

35 y = r * np.sin(theta)

36

37 mask = x >= -2

38 x = x[mask]

39 y = y[mask]

40

41 if (B > 0):

42 if (i==4):

43 plt.text(x[-1]+0.1, y[-1], f'B={B}', fontsize='small')

44 elif (i<11):

45 plt.text(x[1]-2, y[1]+0.05 , f'$B={B}$', fontsize=10)

46 plt.text(x[1]-3, y[1]+0., f'$K={K}$', fontsize=10)

47 else:
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48 plt.text(x[-1]+0.1, y[-1] , f'B={B}', fontsize='small')

49 if (B < 0):

50 if (i<4):

51 plt.text(x[-1]-2, y[-1]+0.1 , f'$B={B}$', fontsize=10)

52 plt.text(x[-1]-3, y[-1]+0.1, f'$K={K}$', fontsize=10)

53 elif (6<i<9) :

54 plt.text(x[-1]-0.1, y[-1]-0.2 , f'B={B}', fontsize='small')

55 else:

56 plt.text(x[1]+0.2, y[1]+0.3 , f'B={B}', fontsize='small')

57 if (B > 0):

58 plt.plot(x, y, linewidth=1.0, label=f'B={B:.5f}')

59

60 elif (B < 0):

61 plt.plot(x, y, linewidth=1.0, label=f'B={B:.5f}')

62

63 plt.plot(-2, 2, 'ro', label='(-2, 2)')

64 plt.title(r"$r = \sqrt{B^2 - C^2}\,\csc\!\left("r"\frac{\sqrt{B^2 - C^2}}{B}\,\theta"r"\right),\quad C=1$""start from $(-2,2)$")

65

66 plt.axhline(y=1, color='black', linestyle='--', label='y = 1')

67 plt.axhline(y=-1, color='black', linestyle='--', label='y = -1')

68 plt.text(-1, 1.1, f'$y=1$', fontsize=10)

69 plt.text(-2, -1.2, f'$y=-1$', fontsize=10)

70 plt.text(-2, 2.2, f'$P(-2,2)$', fontsize=10)

71 plt.xlabel("x")

72 plt.ylabel("y")

73 plt.axis("equal")

74 plt.grid(True, linestyle="--", alpha=0.3)

75 plt.tight_layout()

76 plt.show()

77
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78 def main():

79 B_values = [ 1.06683, 2.5452, -1.416, -1.04722]#[1.598383,2.910835,-1.30869,-1.96239,-1.08135,-1.37749,1.055272,1.238319]

80 K_values = [1,0,-1,-2]

81

82 plot_csc_xy(B_values, K_values,C=1.0)

83

84 if __name__ == "__main__":

85 main()

4. Ray trajectories for varying B

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 def plot_csc_xy(B_values, C=1.0):

5 plt.figure(figsize=(7, 7))

6 cmap = plt.cm.viridis

7 colors = cmap(np.linspace(0, 1, len(B_values)))

8

9 for i, B in enumerate(B_values):

10 if B > 1:

11 amplitude = np.sqrt(max(0, B**2 - C**2))

12 factor = amplitude / B if B != 0 else 0

13

14 theta = np.linspace(0.0001, np.pi / factor, 3000)

15 with np.errstate(divide='ignore', invalid='ignore'):

16 r = amplitude / np.sin(factor * theta)

17 r[np.abs(r) > 3] = np.nan

18
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19 x = r * np.cos(theta)

20 y = r * np.sin(theta)

21 plt.plot(x, y, color=colors[i], linewidth=1.0, label=f'B={B:.2f}')

22

23 elif B < 1:

24 amplitude = np.sqrt(max(0, C**2 - B**2))

25 factor = amplitude / B if B != 0 else 0

26

27 theta = np.linspace(0.0001, 2 * np.pi, 3000)

28 with np.errstate(divide='ignore', invalid='ignore'):

29 r = amplitude / np.sinh(factor * theta)

30 r[np.abs(r) > 3] = np.nan

31

32 x = r * np.cos(theta)

33 y = r * np.sin(theta)

34 plt.plot(x, y, color=colors[i], linewidth=1.0, linestyle='--', label=f'B={B:.2f}')

35 if B == 1:

36

37 theta = np.linspace(0.0001, 2*np.pi, 3000)

38 with np.errstate(divide='ignore', invalid='ignore'):

39 r = 1/theta

40 r[np.abs(r) > 3] = np.nan

41

42 x = r * np.cos(theta)

43 y = r * np.sin(theta)

44 plt.plot(x, y, linewidth=1.0, label=f'B={B:.2f}',c='r')

45

46 plt.title("the light path for $C=1$ and $B$ from $0$ to $2$")

47 plt.xlabel("x")

48 plt.ylabel("y")
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49 plt.axis("equal")

50 plt.grid(True, linestyle="--", alpha=0.3)

51 plt.legend(loc="upper left", ncol=2, fontsize=7)

52 plt.tight_layout()

53 plt.show()

54

55 def main():

56 B_values = np.arange(0, 2.00 + 1e-8, 0.05)

57 B_values = B_values[B_values != 1.1]

58 plot_csc_xy(B_values, C=1.0)
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