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Preface

rI-‘his book is intended for a two-quarter or one or two-semester
course in advanced calculus and introductory real analysis. The book is
classical in the sense that it deals with calculus and Fourier series in Euclidean
space. Only a few brief references are made to “modern” topics such as
Lebesgue integration, distributions, and quantum mechanics. We resisted
the temptation to include vector analysis (the Stokes theorem and so forth).
In most curricula, this topic comes earlier in the second year at a more
informal level (see, for example, J. Marsden and A. Tromba, Vector Calculus,
W. H. Freeman and Company, 1975) and possibly later in the context of
manifold theory for students who are so inclined.

In presenting the material, we have been deliberately concrete—aiming at
a solid understanding of the Euclidean case and introducing abstraction
only through examples. For instance, if Euclidean spaces«are properly
understood, it is a small jump to other spaces such as the space of continuous
functions and abstract metric spaces. In the context of the space of continuous
functions, we can see the power of abstract metric space methods. When
the general theory is presented too soon, the student is confused about its
relevance; consequently, much teaching time can be wasted.

The book assumes that the reader has had some calculus; that is, that he
or she knows how to differentiate and integrate standard functions. Strictly
speaking, the theory is developed logically and requires few prerequisites,
although a knowledge of calculus is needed for an understanding of examples
and exercises. Also, some brief contact with partial derivatives and multiple
integrals is desirable but not essential. Chapter 6, on differentiation, requires
the rudiments of linéar algebra; specifically, the student should know what
a linear transformation and its representing matrix is.

Each chapter is organized as follows. There are numerous sections con-
taining the definitions, statements of the theorems, examples, and fairly
easy problems. Once the student masters the theorems and is able to handle
the easy problems, he can move on to the end of the chapter to master the
technical proofs. Here, numerous further examples and exercises are given.
The easier exercises following each section enable the student to master the
material as he goes along. The exercises at the end of the chapter then often
require an integrated knowledge of the whole chapter or previous chapters

xi
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including theorem proofs. This plan has worked out well in lectures. When
the lectures are devoted to explaining the theorems with only selected proofs
given, it is much easier for the student to see what is going on. We found that
using this approach one or two sections can be covered in each lecture.

The introductory chapter contains essential terminological material.
Thestudent interested in theintricacies of set theory can consult the Appendix,
which has been kindly supplied by Professor I. Fary.

Chapter 1 contains material on the basic structure of the real line needed
for later developments. We spend a minimum amount of time on the algebraic
axioms and concentrate on the completeness property. The algebraic
axioms are usually covered in basic algebra courses, and since the student is
used to working with real numbers, it seems logical to accept the basic
algebraic skills as valid.

Chapters 2 and 3 treat the topology of R” in such a way as to just use the
basic metric structure of R". This is done to make the transition to other
metric spaces, such as the space of continuous functions treated later, almost
automatic.

A complete and early introduction of abstract metric spacesis avoided here.
Experience has shown that at this level almost two extra weeks are required
to achieve this abstraction because, for one thing, one has to go through
the usual “bizarre” metric spaces, which students find confusing. The
time saved can be used later for more useful topics like the Ascoli theorem,
the Stone-Weierstrass theorem, fixed-point theorems, and differential or
integral equations.

Chapter 4 continues the development, treating the basic facts about
continuity. Chapter 5 gives the more detailed properties of continuous
functions related to uniform convergence. A number of more specialized
topics are presented in Sections 5.5-5.9, from which a selection can be made.

Chapter 6 deals with differentiation, making some use of linear algebra.
All of the usual topics of differential calculus for functions of several variables
are treated. A fairly thorough treatment of maxima and minima is given,
including an optional discussion of the Morse lemma in Chapter 7. Chapter 7
has as its main topic a complete discussion of the inverse and implicit function
theorems. Existence theorems for ordinary differential equations and
Lagrange multipliers (constrained extrema) are also given.

Chapter 8 treats the basics of integration. Some may wish to teach this
material before Chapter 7. In this chapter, we deal with the Riemann
integral but do include Lebesgue’s theorem and sets of measure zero. An
optional section gives a quick look at distributions, illustrated by the §-
function.

The next chapter proves the two fundamental theorems concerning
multiple integrals: the reduction to iterated integrals and the change of
variables formula. Numerous applications are given.
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The last chapter, Chapter 10, gives a fairly thorough treatment of Fourier
series from the point of view of inner product spaces. Some topics such as
this are useful to students in introductory analysis courses, since it goes
well beyond just “rigorizing” many topics they already knew. One unusual
feature of our presentation is the inclusion of some applications to differential
equations and quantum mechanics.

Of course, teachers have different tastes concerning rigor, the role of
intuition, the choice of subject matter, and so forth. Perhaps a few remarks
on variations in the manner of presentation of the material in this book
will aid those who wish to adapt it to their own personal style.

First of all, in Chapters 2 through 4, it is possible to lay more emphasis
on abstract metric spaces without materially changing the text. It is, in fact,
a good exercise to have students do this adaptation themselves, because
once they see the “correct” proof in R", it becomes rather enjoyable, and
rewarding, to make the generalizations. In this regard, there is a table,
supplied by R. Gulliver, at the end of Chapter 5; the table indicates which
theorems hold for general metric spaces.

Some material in Chapter 5 is a bit more advanced and can be deferred.
Also, if a complete logical development is desired, differentiation and integra-
tion of functions of one variable should precede Chapter 5; this depends on
the background of the students. This material, in its most basic aspects,
is used in Sections 5.3, 5.6, and 7.5. In practice, we have found that it offends
only the best students to have to use some calculus before it is “correctly”
presented in the course. We find this healthy, but some may wish to switch
the order of presentation.

At the beginning of Chapter 6, it is good to review a little linear algebra;
specifically, the definition of the matrix of a linear transformation. This
is also a good time to look over Example 4 at the end of Chapter 4.

For a semester course, some topics have to be cut in order to reach
Chapter 10 (such as Sections 5.5-5.9 and 7.3-7.7). In a two-quarter course,
there is time to complete the entire text (perhaps omitting Sections 5.8, 5.9,
7.3,74,7.6,7.7,10.7, and 10.8).

The symbols used in this text are standard except possibly for the following:
R denotes the real number line, C denotes the complex numbers, R" denotes
Euclidean n-space, ““iff’ stands for ““if and only if,”” and § denotesthe end ofa
proof. The notation Ja,b[ is used to indicate the open interval consisting of
all real numbers x satisfying a < x < b. This European convention avoids
confusion with the ordered pair (a,b). The notation x — f(x) indicates that x
is mapped to f(x) by f. The notation f: A = R" — R™ means that f maps
the domain 4 inte R™. Occasionally = is used to denote ‘“‘implies.” The
symbol A\B denotes the members of the set A that are not members of B,
and x € 4 means that x is a member of 4.

Sections, theorems, and definitions are numbered consecutively within
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each chapter. A reference such as “Theorem 24 or “Exercise 3" applies to
material within the present chapter or section; otherwise, the chapter or
section number is cited.

We thank M. Buchner and W. Wilson who helped with the first draft
of the book, and I. Fary and R. Gulliver for the appendices. We also thank the
students of Math 104A-B at Berkeley, especially E. Wong, J. Lim, J. Wing,
and J. Seitz, for catching numerous small errors and stylistic points. We
thank our colleagues from whose old examinations many of the problems
are derived. Several colleagues deserve special mention, especially P.
Chernoff, I. Fary, R. Gulliver, and M. Mayer for reading portions of the
manuscript and suggesting several improvements. Sections 5.9 and 10.4
and a number of problems were adapted from class notes of P. Chernoff.
The remaining assistants, A. Erickson, A. Hausknecht, D. Heifetz, and
J. Macrae helped with portions of the manuscript, eliminated many errors,
and checked and prepared answers for most of the problems. Help was also
received from M. McCracken, W. A. J. Luxenburg, and R. Graff. We thank
I. Workman for a fine job of typing the manuscript and N. Lee for her
moral support.

Finally, thanks are extended to R. Abraham, K. McAloon, A. Tromba,
and M. O’Nan, officers of Eagle Mathematics Incorporated (an organization
of mathematics authors), for their suggestion that this book be written and
for their subsequent encouragement.

October 1973 JERROLD E. MARSDEN
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Introduction

Prerequisites;
Sets and Functions

-The student who wishes to use this book successfully should
have a sound background in elementary calculus, as well as some knowledge
of linear algebra (mostly for use in Chapters 6, 7, and 10) and a little multi-
variable calculus. Adequate preparation is normally obtained from two
years of undergraduate mathematics. Also required is a basic knowledge
of sets and functions, for which the necessary concepts are summarized below.
This material should be read briefly and then consulted as needed.

Set theory is the starting point of much of mathematics and is in itself a
vast and complicated subject. For brevity and better understanding, we
begin our study somewhat intuitively. The reader interested in the subtleties
of the subject can consult Appendix A at the end of the book for further
information.

A set is a collection of “objects” or “‘things™ called members of the set.
For example, the integers 1,2, 3, . . . form a set. Likewise the set of all rational
numbers (fractions) p/q form a set. If S is a set, and x is a member of S,
we write x € S. A subset of the set S is a set 4 such that every element of 4
is also a member of S; using symbols, (x € A) = (x € S). The symbol =
denotes “implies.” When A is a subset of S, we write 4 < S. Sometimes the
symbol 4 < S is used for what we denote as 4 «— S. We can also define
equality of sets by stating that A = B means that A « B and B « 4;
that is, 4 and B have the same elements. The empty set, denoted &, is a
set with no members. For example, the set of integers n such that n?> = —1
is empty. The empty set & often mystifies students and it is indeed a strange
concept—don’t overplay its importance at this stage.

When specifying a set we often list the members in braces. Thus we write

1



2 PREREQUISITES: SETS AND FUNCTIONS

N = {1,2,3,. . .} to denote the set of positive integersand Z = {. . .,—3,-2,
—1,0,1,2,3,. . .} for the set of all integers. An example of a subset of N is
the set of even numbers and is written as

A=1{246,.}={xeN]|xiseven} c N.

We read {x e N | x is even} as “the set of all members x of N such that x
is even.”

At this point, there is a notational distinction of which we should be aware.
Let S be a set. For a € S, {a} denotes the subset of S whose members consist
of the single element a. Thus {a} = S whileaeS.

For a general set S and for 4 = S and B < S, we define A UB =
{xe S| xe Aorx e B}, which is read “the set ofall x € S which are members
of A or B (or both).” The set A U B is called the union of A and B. Similarly,
one can form the union of families of sets. For example, let 4, 4,, . . . be
subsets of S. Then we define | ) A4, = {xeS|xe 4 for some i}. ThlS
union is also written | {AI,AZ,A3, .}. Note that 4 U B is the special
case with 4, = A, A, = B,and 4; = & fori > 2.

Similarly, one can form the intersections 4 N B = {xeS|xeAd and
x € B}, and ﬂ“’ A; = {xe S|xe A4, for all i}. Figure 0-1 presents these
operations dlagrammatlcally

For A, B = S we form the complement of A relative to B by defining

) B\A = {xeB|x¢ A4},

where x ¢ A means x is not contained in 4. See Figure 0-2.

The reader can prove (as is done in Example 1 below) that B\(4, U 4,) =
(B\4,) n (B\4,) and that B\{(4, n 4;) = (B\4,) u (B\4,) for any sets
A, 4,, B « S. This is an example of a “set identity.” Other examples are
given in the problems. ’

For sets A, B define the Cartesian product of A and B by A x B =
{(a,b) ] ae A and b e B}. It consists of the set of all ordered pairs (a,b). with
ae A and b € B. See Figure 0-3.

S 4Ansz

5/

(@ (b) ©
FIGURE 0-1 (a) Subset. (b) Union. (c) Intersection.



PREREQUISITES: SETS AND FUNCTIONS 3

A function f: A — B is a “‘rule” which assigns to each a e 4 a specific
element of B, denoted f(a). One often writes a — f(a) to denote that a is
mapped to the element f(a). For example (Figure 0-4), the function f(x) = x*
may be specified by saying x -+ x%. Here 4 = B is the set of all real numbers.

Note: In this book the terms ‘“‘mapping,” “map,” “function,” and
“transformation” are all synonymous.

FIGURE 0-2 Complement.

¥

s X
A4 a

FIGURE 0-3 Cartesian product.

FIGURE 0-4 Function.



4 PREREQUISITES: SETS AND FUNCTIONS

O f(x))
Ll \ Graphof f
@) 1=
B ; AXB
e }
e L—
A x

FIGURE 0-5 Graph of a function.

For a function f: A — B, the set A is called the domain of f and B is called
the target of f. The range of f is the set f(4) = {f(x)e B| x € A} which is
a subset of B. The graph of f is the set {(x,f(x))e 4 x B|xe A4}, as in
Figure 0-5. _

Someone paying careful attention to logical foundations may object
to using colloquial language such as “rule” and would be happier to define
a function from A to B as a subset of A x B with the property that any
two members of the set with the same first element are identical; that is,
the first element x determines the second, f(x). See Figure 0-5.

A function f: A —» B is called one-to-one (also called an injection) if*
whenever a, # a, then f(a,) # f(a,). Thus a function is one-to-one when
no two distinct elements are mapped to the same element.

An extreme example of a function which is not one-to-one is a constant
funetion, a function f: 4 — B such that f(a,) = f(a,) for all a,, a, e A.
See Figure 0-6.

We say f: A — B is onto or is a surjection when, for every b € B, there
is an a € A such that f(a) = b, in other words when the range equals the
target. It should be noted that the choice of A and B is part of the definition
of f, and whether or not f is one-to-oné or onto depends on this choice.
For example, f(x) = x? is one-to-one and onto when 4 = B and consists
of all real numbers x such that x = 0, is one-to-one but not onto when 4
is all those x such that x > 0 and B is all x, and is neither when both 4 and B
are all real numbers x. :

Forf: A —» BandD < A,welet f(D) = {f(d)e B|de D},andfor C = B,
define f~!(C) to be the set {ae A| f(a) e C}. We call f(D) the image of
D and f~!(C) the inverse image or pre-image of C.

"If f: A — B is one-to-one and onto, then from the definition it is not hard
to see that there is a unique function, denoted f~': B — 4 (not to be con-
fused with f~1(C) above or 1/f) such that f(f~'(b)) = b for all b € B and
Y f(a) = aforallae A. Wecall f ~! the inverse function of f. A one-to-one

* It is a convention that in definitions, “if” stands for *if and only if.” The latter is often written
“4ff," or <=. Of course in theorems it is absolutely necessary to distinguish between “if,” “only
if,” and “4ff.”
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FIGURE 0-6 Constant function.

and onto map is also called a bijection or a one-to-one correspondence.
[Warning: We can form f~'(C) for a set C = B even though f might not
be one-to-one or onto. For practice with these operations, see Exercise 3.]

The map f: A — A4 such that f(x) = x for all x € 4 is called the identity
mapping on A. One should distinguish the identity mappings for different
sets. For example, one sometimes uses notation like I, for the identity
mapping on A. Clearly, I, is one-to-one and onto.

Now consider two functions f: 4 — B and g: B — C. The composition
go f1 A — Cis defined by g o f(a) = g(f(a)). See Figure 0-7. For example,
ffixr>x?andg: x> x + 3,thengeo fix+> x> + 3and fog: x> (x + 3)°
(here A4, B, and C consist of all real numbers x).

Sometimes we wish to restrict our attention to just some elements on
which a function is defined. This is called restriction of a function. More
formally, if we have a mapping f: A — B and D « A, we consider a new
function denoted f | D: D — B defined by (f | D)x) = f(x) for all xeD.
We call f | D the restriction of f to D, and also say that [ is an extension
of /| D. The importance of these notions will become obvious in our later
discussions.

A set A is called finite if we can display all its elements as follows: 4 =
{a,,a,. . .,4,} for some integer n. A set which is not finite is called infinite.
For example, the set of all positive integers N = {1,2,. ..} is an infinite set.

In examining examples it may be difficult to decide if one infinite set has
more elements than another infinite set. For instance it is not clear at first
if there are more rational or irrational numbers. To make this notion precise,

FIGURE 0-7 Composition of mappings.



6 PREREQUISITES: SETS AND FUNCTIONS

we say that two sets A and B have the same number of elements (or have the
same cardinality) if there exists a mapping f: A — B which is one-to-one
and onto.

If an infinite set has the same number of elements as the set of integers
{1,2,. . .}, it is called denumerable. A set that is either finite or denumerable
is called countable. Otherwise, a set is called uncountably infinite, or just
uncountable. An example of an uncountable set is the set of all numbers
between 0 and 1. (We shall prove this in Chapter 1).

Let S be a set. A sequence in S may be viewed as a mapping f: N — S,
where N = {1,2,...}. Thus we have associated to each integer n an element
of S, namely f(n). One often suppresses the fact that we have a function by
simply considering a sequence as the image elements, say, x,, X3, X3, . . . OF
alternatively, just writes “the sequence x,” or {x,} ,. By a subsequence
of x,, x,, . . . We mean a sequence y,, y,, . . . such that each y, occurs in the
set {x,,x;....} and if i < j then y; = x;, y; = x,, where | < m. In other
words, a subsequence is obtained by “throwing out™ elements of the original
sequence and ordering naturally the elements which remain.

Worked Examples for Introductory Chapter

1. For sets 4, B, C < S, show that

ANnBuC)=AdnBudnC).

(Distributive law.)

Solution: The method is to show that each side is a subset of the other. So first
take.x e A n (B v C). This means x is a member of both 4 and B u C. Therefore,
xisin A and x is in either B or C. If x € B, then x & A n B, while if x €'C, then
x€An C.Hence xis in either AnBorAdn C;thatis xe(4d nB)u (4 n C),so
AnBuCiec(AnBu(dnC). Now let xe(4 nB)u (4 n C); thus x is in
either A " Borisin4n C.M xeAdn B, then xisin 4 and B, and in particular,
xisinAand Bu C,s0 xe A n (B u C). Similarly, if xe 4 n C, we conclude that
xeAdn(Bu€).Hence (A nB)u(AdnC)c An(BuC), and so we now have
equality. This can also be verified diagrammatically as in Figure 0-8.

2. Show thatfor 4, B < S,
Ac B <« S\Ad > S\B.
Solution: First we prove that 4 « B implies S\B — S\A4. Assume 4 — B and
x € S\B. Then x ¢ B and therefore x ¢ A4 (for x € A = x € B), hence x € S\A4, proving
that S\B < S\4. To prove the converse, suppose S\B < S\4 and xe 4. Then
x ¢ B implies x € S\B which in turn implies x € S\4 and hence x ¢ 4, contradicting
the hypothesis; therefore x € B, and 4 < B.

3. Let f(x) = x*(defined on the set of all real numbers) and B = {y | y > 1}. Compute
S7YB).



EXERCISES FOR INTRODUCTORY CHAPTER 7

ANBUC)=ANBUMANC)

FIGURE 0-8 Distributive law.

Solution: By definition, f~!(B) consists of all x such that f(x) € B; that is, all x
such that x* >-1. This happensiff x > lorx € —1.Thus f~1(B) = {x|x > 1} U
{x|x< -1}

4. Let A be a set and let 2(4) denote the set of all subsets of 4. Prove that 4 and 22(4)
do not have the same cardinality.
Solution: The reasoning here is a little tricky and is similar to various ‘‘paradoxes”
one finds in set theory (see Appendix A for further details). The result here is due
to the work of G. Cantor. Suppose that we have a bijection f: A — P(A); we shall
then derive a contradiction. Let B = {x € 4 | x ¢ f(x)}. There exists a y € 4 such
that f{y) = B since [ is onto. If y € B, then by definition of B we conclude that
y ¢ B. Similarly if y ¢ B, then we conclude that y € B. In either case we get a con-
tradiction. Actually the argument shows that there does not exist a function
[+ A — P2(A4) which is onto.

Exercises for Introductory Chapter

¥.1. The following mappings are defined by stating f(x), the domain A, and the range B.
: For A4, = A4 and B, < B, as given, compute f(4,) and /'~ 1(B,).

(a) flx) = x?, = {-1,0,1}, B =all real numbers,
Ao = {- L1}, B, = {0,1}
(b) I E ifx>0
J) = —-x%,  ifx<0 '

A = all real npmbers = B,
Ay =alx>0, B,={0}

© 1, ifx>0
S =10, ifx=0
—-1, ifx<0

A = B = all real numbers,
Ay = B, = all xwith -2 < x < 1.

' 2. For the functions listed in Exercise 1, determine if they are one-to-one or onto
(or both).
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PREREQUISITES: SETS AND FUNCTIONS

Let 2 A — B be afunction, C,,C, < B,and D,, D, = A. Prove
@ f7HCLV C) =SHC) VU STHCY)

(b) S(D, v Dy) = f(Dy) L f(D,)

© S7NC, N C) =SHC) N ST

(d) (D, 0 Dy) = f{Dy) 0 f(D).

. Verify the relations in Exercise 3 for the functions in Exercise 1 and the following

sets:

(@) C, =allx >0, D, = {~1,1},
C,=alx<0, D, = {0,1};

(b) C, =allx >0, D, =allx>0,
C,=allx <2, D,=alx> ~1;

(¢ C,=allx>0, D, = all x,

C,=alx> -1, D,=alx>0;

Prove a function f: 4 — B is one-to-one iff for all y € B, f~!({y}) contains at
most one point iff f(D, n D,) = f(D,)n f(D,) for all subsets D,, D, = 4.
Develop similar criteria for “ontoness.”

Show that the open interval* J0,1[ = {x|0 < x < 1} has as many elements as
there are real numbers, by setting up a one-to-one correspondence between J0,1{
and the real numbers R.

Let A be a finite set with N elements, and let 2(4) denote the collection of all
subsets of 4, including the empty set. Prove that 22(4) has 2V elements.

Prove that the set {...,—2,—1,0,1,2,3,. . .} is countable.
Show that if 4, A4,, . . . are countable sets, sois 4, U A, U+

Let & be a family of subsets of a set . Write { | & for the union of all members of
of .and similarly, define (| /. Suppose B = &f. Then show | & < U % and
N .

Let f. A— B, g: B— C, and h: C — D be mappings. Prove that ho (fo g).=
(h e [) o g (that is, composition is associative).

Prove that a map f: 4 — B is a bijection iff there is a map g: B — A such that.
fog = identity and g o f = identity. Show also that g = f~! and is uniquely
determined.

. Letf: 4 — Bandg: B — Cbe bijections. Then (g o f)isa bijection and (g N

S~ og~! [Hint: Use Exercise 12.]

Let o be a collection of subsets of a set S and & the collection of complementary
sets; that is, B € 4 iff S\B € /. Prove de Morgan’s laws:
@ S\Jo =2

b S\« =2
Here { ] o denotes the union of all sets in & (see Exercise 10 and page 2). For

* In this text, open intervals are denoted as Ja,b[ rather than (a,b). This European convention
avoids confusion with ordered pairs.
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example, if o = {4,,4,}, then (a) reads S\(4, U 4,) = (S\4,) N (S\4,) and
(b) reads S\(A; N 4,) = (S\4) U (S\4y).
¢15. Let A, B = S. Show that
AXB=g < A= or B=g.
*16. Show

@ (4 x Byu(d' x B)y=(du 4) x B
(b) (4 x Byn(d' x B) = (4 nA) x (Bn B).

217. Let f: A — B,g: B — C be given mappings. Show thatfor C' = C,(g o f)"}(C) =
P ()2



Chapter1

The Real Line and
Euclidean n-Space

A thorough lznowledge of the real line and n-space is indispensable
for a precise treatment of the caloulus of functions of several variables as
well as for a clear understanding of it. Much of this chapter may appear to
be review, the material perhaps having been covered in previous mathematics
courses. However, our discussion will be more rigorous and will give some
further properties in preparation for later work.

11 The Real Line R

Let us begin with the main properties of real numbers. The reader should be
familiar with the heuristic (that is, intuitive) arguments which justify the
real numbers. Begin with the positive integers 0, 1, 2, 3, ..., and then
adjoin negative integers and non-integral rationals. The system of reals is
obtained by adjoining to the rationals all the non-rational limits of rational
numbers. For example, the irrational number ﬁ is obtained as the limit
of an increasing (or monotone) sequence x, with x? < 2 and x, rational.
One might use a decimal sequence such as 1, 1.4, 141, 1414, ....Itisa
well-known fact first proven by Euclid that ﬁ is not rational (see Exercise 2
at the end of this chapter). _

Now the question becomes, how do we carry out the above program in a
formal manner? Actually, the process is a little long but not difficult, so
we shall just provide an outline here. The first thing to do is to isolate the
important characteristics which we want the reals to possess. These are as

10
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follows:

(I) Addition axioms. There is an addition operation “+ " such that for
all numbers x, y, z, we have
@) x + y = y + x (commutativity)
() x + (y + 2) = (x + y) + z (associativity)
(iii) there is a number O such that x + 0 = x (existence of zero)
(iv) for each x there is a number w denoted —x such that x+w=0
(existence of additive inverses).

(1Y) Multiplication axioms. There is a multiplication operation “-’ such that
(i) x -y = y - x (commutativity)
() x(y-2) = (x'y) 2 (associativity)
(iii) there is a number 1 ¢ O such that 1 - x = x (existence of unity)
(iv) for each x 5= 0 there exists a number » such that x-v =1
(existence of reciprocals), one writes v = x ™! and yx~' = y/x
() x-(y + 2) = x*y + x z(distributive law).

Any set or “‘number system” with operations -+ and - obeying these rules
is called a field. For example, the rationals are a field but the integers are not.
From now on, we will just write xy for x - y.

(III)  Order axioms. There is an ordering *“<” (more precisely, a relation)
such that
(i) if x < yand y < z, then x < z (transitivity)
() (x < yand y < x) <> (x = y) (reflexivity)
(iii) for any two elements x, y, either x < y or y < x (trichotomy)
(iv) ifx < y,thenx + z< y + z
(v) 0 € xand 0 < y implies 0 <

A system obeying characteristics (1), (II), and (I11) is called an ordered field.
By definition, x < y shall mean x < y and x # y. Other familiar symbols
may also be introduced. For example, the magnitude of a number x is |x|,
defined to be x if x = 0 and —x if x < 0. The distance between x and y
is |[x — y|. The magnitude obeys the triangle inequality: |x + y| < |x| + ||
as verified in Example 1 at the end of the chapter.

From these axioms follow all the usual manipulative rules that we have
lived with since high school. For example one can use the axioms to prove
that 0 < 1 (see Example 4 at the end of the chapter). The full details of the
above axioms are not important for us to work out at this time and we shall
just accept as valid without proof the usual rules of algebra with which we are
familiar.

Now, it should be obvious that these axioms cannot be enough to uniquely
characterize the reals because the rationals also obey these axioms. Thus we
require another condition to ensure that limits of rationals are included in
the system.
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In order to state this condition, a few additional definitions concerning
sequences are needed. Let x, be a given sequence of numbers. We say x,
converges to x if for any number ¢ > O there is an integer N such that
|x, — x| < & for all integers n = N. This is written-as limit x, = x or
X, — X asn — o0. e

The student has probably encountered convergence of sequences before;
intuitively it means that x, becomes arbitrarily close to x as n gets sufficiently
large. Later in Chapter 2 we shall study convergence systematically. For
now, it is just used to study the following completeness axiom.

The sequence x, is increasing (or non-decreasing) if x, < x,,, for all n.
A sequence x, is bounded if there is a number M such that |x,| < M for all
n=123,....

It is not hard to see that a sequence x, can converge to, at most, one point.
Indeed suppose x, converges to both x and y. Then |x — yl =[x — x, +
x, — y| < |x — x,| + |x, — y| by the triangle inequality. If |x — | > 0
thenusing|x — y|/2asoure, wecanchoose Nsolargethat|x — x,| < |x — y|/2
and |x, — y| < |x — yl/2 if n = N. Thus we would conclude |x — y| <
|x — y| which cannot be. Hence |x — y| = Oand so x = y.

We now state the completeness axiom.

(IV) Completeness axiom. If x, is an increasing sequence which is bounded
above, then x, converges to some number x.

The plausibility of condition (IV) is seen by considering the increasing
sequence of decimal approximations: 1, 1.4, 1.41, 1.414, . . . , which converge
to /2.

A number system satisfying axioms (I) through (IV) is called a complete
ordered field. Condition (IV) is equivalent to the condition that a decreasing
sequence-bounded below converges. We see this by noting that (x, — x) <
(—x, = —x) (see Exercise 18 at the end of the chapter). We are now ready
for the statement which coordinates the previous discussion.

Theorem 1+ There is a “‘unique” number system called the real
number system which is a complete ordered field.

The real number system is denoted R. For the moment, +co are not
included in R. In Theorem 1, *“‘uniqueness” means that any two systems
satisfying (I)~(IV) can be put into a one-to-one correspondence which is
compatible with +, -, and <. By compatibility with +, for example, we
mean that the number in the second system corresponding to the sum of the
two numbers from the first system is the sum of the corresponding two
numbers in the second system. We omit the proof of Theorem 1,* and rather

* The interested reader can find a proof outlined in, for example, L. J. Goldstein, Abstract
Algebra, Prentice-Hall (1973), Chapter IV,
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use it as our starting point. The proof is not difficult but is slightly laberious.
Existence of R can be done by verifying that the usual decimal expansions
have the required properties.

As mentioned above, we do not wish to take too much time to work out
all the detailed consequences of the axioms. However one of the “obvious”
‘consequences deserves special mention. Namely, the Archimedian property:
given any real number x there is an integer N such that N > x. (Here the

" integers may be defined by 2=1+1,3=2+1, 4=3+1, ...)
It is curious to note that this result depends on the completeness axiom and
cannot be deduced from the other axioms alone. The reader is asked to

. prove the Archimedian property in Exercise 30 at the end of the chapter.

The completeness axiom can be put into several other very important
_equivalent forms. In order to state these, we shall need some further basic
terminology.

Definition 1. Let S « R be a subset of R. Thus S is just some
collection of real numbers (for example, all the rationals between 0
I and 1). A number b is called an upper bound for S if for all xe S,
' we have x < b.

A number b is called a least upper bound of S if first, b is an upper
bound of S and second, b is less than or equal to every other upper
bound of S. See Figure 1-1.

an upper bound
S

DA IEA FASA TR

S U —

tle least upper bound

: FIGURE 1-1 Least upper bound.
E The set Jab[ = (ab) = {xeR|a < x < b} is called an open interval
" and [a,h] = {xe R|a < x < b} is called a closed interval.
©  For example, the closed interval [0,1], the open interval ]0,1[, and
i © all the rationals less than 1 all have a least upper bound of 1.
! Note: The least upper bound of S (also called the supremum of S) is
| denoted sup(S) or lub(S).
There can be at most one least upper bound for S. Indeed, if b and &
. are both least upper bounds and since b is less than or equal to every
i other upper bound, b < b’ and similarly ' < b, so we conclude that b = &'.
;; Thus, we may speak of the least upper bound.
' Asetneed not have any upper bound. For example, the whole real number
/- system has no upper bound, and the positive integers have no upper bound.
,In the “degenerate” case of the empty set &, we regard any number as an
~upper bound. ‘
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Observe that if b is an upper bound for the set S and b € S, then b is the
least upper bound. The proof of this is very simple. It must be shown that
if d is any upper bound for S, then b < d. But b € S and d is an upper bound,
sob < d as required.

A useful alternative to the definition of least upper bound is stated in
Theorem 2 and is sometimes easier to apply.

Theorem 2. Let S « R. Then be R is the least upper bound of S
iff b is an upper bound and for every ¢ > 0 there is an x € S such
that x > b — &.

The proof is found at the end of this chapter. But the theorem should
be pretty obvious because b sits just at the “top” (that is, to the “right’) of
the set S and there are no “gaps” between it and the set S, so for any ¢ > 0
we can take x just below b within a distance &. [ Warning : This sort of argument
is a plausibility argument intended to give you a feel for the statement—do
not confuse it with a rigorous proof.]

If S is not bounded above (has no upper bound), we shall say that sup(S)
is infinite and write sup(S) = + co. Similarly, a lower bound for a set S
is a number b such that b < x for all x € S. Also, b is called a greatest lower
bound iff it is a lower bound and for any lower bound c of S, ¢ < b. As with
least upper bounds, greatest lower bounds are unique if they exist. The
greatest, lower bound is sometimes called the infimum and is denoted inf(S .
or glb(S). As in Theorem 2, a number c is the greatest lower bound for a set S
iff cis alower bound and for every ¢ > Othereisan x € Ssuchthatx < ¢ + =
Also, if S is not bounded below, we write inf(S) = — co0. AR

Another notion we need is that of a Cauchy sequence.

Definition 2. A sequence x, in R is called a Cauchy sequence
if for every number ¢ > O there is an integer N (depending on &),
such that |x, — x,,| < e whenevern > Nandm = N.

3

This condition means intuitively that the sequence “bunches up”’; that
is, all the elements of the sequence are arbitrarily close to one another
sufficiently far out in the sequence.

Ifitis truethat x, converges to x, then x,, is a Cauchy sequence. Indeed, given
¢ > Ochoose N sothat |x, — x| < g2ifn > N.Then, forn,m = N,wehave
Xy — Xl =I5 — X + X — Xpl S |x, — %] + |x —x,| < &2+ ¢2=5,
which proves our assertion. The converse of this statement appears in
Theorem 3. Here we have used the triangle inequality |y + 2| < |y + |2l
The special case |a — b| < |a — ¢| + |¢ — b] is very useful, as in the above
instance. The next theoremagives some basic properties of real numbers.
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Theorem 3.
(i) Let S be a non-empty set in R which has an upper bound.
Then S has a least upper bound in R.
(ii) Let P be a non-empty set in R which has a lower bound. Then
P has a greatest lower bound in R.
(iii) Every Cauchy sequence x, in R converges to a number x in R.

This result should also be fairly apparent. Indeed, if a bounded subset of R
had no least upper bound, there would be a ““hole™ at the top of the set and a
sequence of members of S increasing toward that hole would not converge
to an element in R. Similarly, we must have (ii). Condition (iii) is seen as
follows: If we ignore the first N terms of a Cauchy sequence, we know that
the remaining terms will be bunched together. As we disregard more and
more terms, the remainder of the sequence becomes more tightly grouped
and squeezes down to some limiting number, the limit of the sequence. To see
more precisely how this is done requires more care and so the actual proof
is our only recourse. .

Using the methods of the proof we give, it is not too difficult to show that
conditions (i), (ii), (iii) are each equivalent to the completeness axiom for an
ordered field.

This concludes our brief discussion and review of the real line. Further
properties and practice are found in the worked examples which follow and
at the end of the chapter.

ExampL 1. LetS = {xe R|x? + x < 3}. Find sup(S), inf(S).
p

Solutiun: Consider the graph of y = x* + x (Figure 1-2). From
elemen .ry calculus we see that for x = —1/2, y is a minimum. Thus S
may be pictured as shown in Figure 1-2. The sup and inf clearly occur when

3>

S

[ P
PR
®

-1
3=

FIGURE 1-2
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x* + x = 3, or from the quadratic formula when

—1+./1+12 (-1+./13)
2 N 2

x =
Thus

Sup(S) = @i:—i)’ inf(S) = :.(_.\/—l_gi}.). .

ExampLE2. Letx, =0,x; = ﬁ,xz =2+ X, X =12 F Xpgsee e

Show that x, converges.

Solution: We shall show that x, is increasing and bounded above and
this will prove the assertion. Note that each x, is non-negative. First, then,
we must show r, = x,,; — x, = 0. Let us do this by induction. Clearly, it
holds for n = 0. Suppose it is true for n — 1; then

r"=X"+1—X,,=-\/27+xn_\/2+xn—1=

Xp — Xp-1
‘\/2+xn+'\/2+xn—l

_ !
(\/72 + xu + '\/2 + xn-—l)’

sor,_,; = 0implies r, = 0 and therefore x, is increasing. Now we want to
show that x, is bounded above. For example, one can prove by induction
that x,, < 5. Clearly, x,, x; < 5. Suppose x,_; < 5. Then

Xo =2+ Xy /2 +5<,/7<5,
and therefore x, is increasing and bounded above, so it converges.

ExampLE 3. Let x, be a sequence of real numbers such that |x, — x,,,| <
1/2". Show that x, converges.

Solution: 'We shall show that x, is a Cauchy sequence and the result then
will follow from Theorem 3 (iii). We can write by the triangle inequality,

|‘xn - xn+k| < |X,, - xn+l| + |xn+l - xn+2| +ooe + |xn+k—1 - xn+k|
1 1 1
= ? + *2"—+1' + o + 'im
2
\E,}'-
(sincea + ar + ar* + - =af(1 —)if0<r<1).

Thus |x, — x,| < /2" ' if m = n, and given & > 0, just choose N so
that 1/2¥~1 < g Hence we get a Cauchy sequence.
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“Example 4 is inserted to back up our claim that the usual rules of algebra
all follow from the axioms. In the exercises, conclusions like these may be
taken for granted.

ExampLE 4. Use the axioms for an ordered field to prove
(a) Negatives are unique;

(b) O0x = Ofor all x;

©) (—=x}—y) = xy;

d 0< 1.

Solution: For (a), wenotethatifx + w = Oandx + y = 0, then (adding
ytox+w=0), y+ (x+w=y+ 0=y By condition I(ii) the left
side is (y + x) + w=0+ w=w, so y=w. Thus the symbol —x is
unambiguous. .

For (b), we have 0 + 0 = 0 and so by II(i) and II(v) we obtain 0- x =
0+ 0)x =0-x + 0-x. Adding —(0 - x) to each side gives 0- x = 0.

For (c) we first claim (—x)y = —(xy). Indeed, by using II(i) and II(v),
(-x)y +xy=(—x+x)y=0-y=0 by (b). Next, (—1}—1) =1 for
(1-—1)-1)=0-(—1) =0 and the left side is (1}—1) + (—1}-1) =
-1+ (—1)—1), and by adding 1 to each side we get (—1)}(—1) = 1.
Then since we have proved (—1)(x) = —(1x) = —x, we get

(=x)(=y) = (=Dx(=Dy = (=D(—Dxy = Ixy = xy .

~ Finally, for (d), by III(iii) the only other possibility for 0 < 1is 1 < 0.
Adding —1 gives 0 < —1 (using III(iv)). Then using x = —1, y = —1in
III(v) gives O < 1 since (—1)(—1) = 1. Hence we must have 0 < 1, since
0+ 1.

ExAMPLE 5. Prove that 1/n — O asn — c0.

Solution: According to the definition, given any number & > 0, we
must prove that there is an integer N such thatifn > N then |1/n — 0| < &.
It will be so provided that 1/N < g, soitis only necessary to choose N > 1/e,
which is possible by the Archimedian property.

s+ 1 i

ExampPLE 6. Show that o —0asn — o0.

nt +1
Solution: We must show that g: gets small as n gets large.

S+l

n!

NGES DN SN N RN

T o (n—l)'\n—l

We can estimate how big is as.follows:
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2
Thus given & > 0 choose N such that N > \/_ + 1. Then n > N implies

/2
0< Y 1 \/_ \/_ ;<& This proves the assertion.

! \n—l

Exercises for Section 1.1
a1. Let S = {x|x® < 1}. Find sup(S). Is S bounded below?

¢ 2. In Example 2, let A = limit x,. Argue that 1 = ./2 + A, that is, that 1 is a root of
A% — 4 — 2 = 0. Find limit x,,.

n=+og
¢ 3, Show that 3"/u! converges to 0.

» 4. Consider an increasing sequence x, bounded above and converging to x. Let
S = {x,|n=123,...}. Argue that x = sup(S).

¢ 5. Let x, = «/n* + | — n. Compute limit x,.
n-=+og
#6. Let x, be a sequence such that |x, — x,.,] < 1/n. Do you think x, has to converge?

+7. P = Q < Rand P and Q are bounded above, show that sup(P) < sup(Q).

1.2 Euclidean n-Space R”

Throughout this book we shall be working with one-, two-, or three-
dimensional Euclidean space. However, in many important applications,
higher dimensional spaces arise as well. Therefore, it is important to treat
the general case, but we usually fall back on the case of one-, two-, or three-
space for visualization and intuition. '

Let us begin with a formal definition.

. '
Definition' 3. Euclidean n-space consists of all ordered n-tuples of
real numbers and is denoted R". Symbolically,

R™ = {(x,. - %) | %15 - X, € R} .

Thus R" is the cartesian product of R by itself » times, and can be
written R" = R x -+ x R.
Elements of R" are generally denoted by single letters which stand
for n-tuples x = (x,,. - .,x,), and we speak of x as a point in R".
Addition and scalar multiplication are defined in the usual way:

(1 oXp) + V1se s oVa) = (X1 F Yyseor Xy + 3
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X=X X Xy)

X+y =X Ty, %t X t)

1 Y= Y,
*
xl
FIGURE 1-3 Addition and scalar multiplication.
and

X yse + X)) = (00X 1,50+ 00X,) foraeR.

The geometric meaning of these operations are reviewed in Figure 1-3
in the case of three-space, n = 3.

For the next theorem the reader should recall the definition of a vector
space.

Theorem 4. Euclidean n-space with the operations of addition and
scalar multiplication previously defined is a vector space of dimensionn.

The proof is a straightforward check of the axioms for a vector space,
which we shall leave for the student in Exercise 16, p. 30. This theorem should
be no surprise. After all, a vector space is an abstraction of the basic properties
of vectors in euclidean space. We can show that R” has dimension n by
exhibiting a basis with n vectors, for example, the standard basis {e, =
(1,0,...,0), e, = (0,10,...,0),...,¢, = (0,0,....0,1)}.

In the standard basis, the components of x = (x,,. . .,x,) arejustx,,...,x,.
In another basis for R, the components would be different. This means that
if ey, ..., e, denotes the standard basis, x = )7_ xe;, butif /i, ..., f,
is another basis, x = Z’;= , Yuf; for possibly different numbers y,, . . ., y,.

Following are some fundamental operations in R".

Definition 4. The length or norm of a vector x in R" is defined by

n 1/2
x|l = (Z X?> )

i=1
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where x = (x;,. . ..x,). The distance between two vectors x and y
is the real number defined by

. 1 1/2
) =1 = = { S -}

The inner product of x and y is defined by

6y = Zxr}’:-
[E )

Thus we have ||x||*> = {x,y>. In R, the reader is familiar with another
expression for (x,y>, namely, {x,y> = ||x| |y| cos 8, where cos 8 is the
cosine of the angle formed by x and y. See Figure 1-4.

Now let us summarize the basic properties of these operations:

Theorem 5. For vectors in R", we have
(I) Properties of the inner product

(i) <x,¥y + y2> = oy + {Xy2d

(i) {x,my) = olx,y) for o real

(it) <x,y) = {y:x)

(iv) (x,x> = 0and (xx) =0iff x =10

®) 16| < x| 1yl (Cauchy-Schwarz inequality).

. Note: (v) follows from (i)~(iv).

(II) Properties of the norm

@ lxl =0
(i) x| =0iff x =0
(i) llox|| = lof [|x|| for real «

(i) Ix + yl < lx| + Iyl (triangle inequality).

FIGURE 1-4 Length and inner product.
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FIGURE 1-5 Triangle inequality.

(I1I) Properties of the distance
(i) d(x,y) = d(y.x)
(i) d(x,y) = 0
(iii) d(x,y) = 0iff x = y
(iv) d(x,y) < d(x,2) + d(z,y) (also called the triangle in-
equality).

Each of these properties should be pretty obvious geometrically. For
example, (iv) in (II) and (III) just expresses the fact that the length of one
side of a triangle is less than or equal to the sum of the lengths of the other
sides (Figure 1-5).

A set with a function d obeying rules (III) is called a metric space. A vector
space with a norm obeying rules (II) is called a normed space, and a vector
space with an inner product obeying rules (I) is an inner product space. As
we shall see in the proof, each of these sets (II) and (IIT) of properties follows
from the set of properties above it.*

The reader will recall from linear algebra the notion of a linear subspace.
In particular, an (n — 1)-dimensional linear subspace of R is called a
hyperplane. An affine hyperplane is a set x + H, where H is a hyperplane
and x € R"; x + H means the set of all x + y as y ranges through H; thus
x + H = {x + y| ye H}. See Figure 1-6.

Finally, generalizing the concepts from R?, we call x,y € R" orthogonal
iff {x,y> = 0. Two subspaces S and T are orthogonal iff (x,y> = O for all
xeS and ye T. Furthermore, if in addition, S and T span R", they are
* The famous inequality of I(v) should, for historical reasons, be called the Cauchy-Bunyak owski-

Schwarz inequality, although it is not uncommon to omit the Russian name in English writings
and to omit Schwarz's name in Russian works.
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X

mB

FIGURE 1-6 Hyperplane and affine hyperplane.

called orthogonal complements. This will occur iff S and T are orthogonal
and the sum of their dimensions equals » (Exercise 20). We define S+ =
{y e R"| {x,y) = Ofor all x e S}. Then it is not difficult to see that S and S*
are orthogonal complements. We shall not require too much of this linear
algebra of R" in our work in addition to these basic concepts, so further
discussion is not necessary here.

ExampLE 1. Find the length of the line segment joining (1,1,1) to (3,2,0).

Solution: This length is the length of the vector (3,2,0) — (1,1,1) =
(2,1,— 1) which represents the vector from (1,1,1) to (3,2,0). The length is

ExampLE2. InR3, find the orthogonal complement of theline x = y = z/2
(or x; = x; = x5/2 in different notation).

Solution: This line, call it I, is the one-dimensional subspace spanned by
the 'vector (1,1,2) (see Figure 1-7). The orthogonal complement is a plane
(through the origin since it is a subspace) and so has an equation of the form

Ax + By + Cz=0
that is,
{(4,B,C)x,y:2)> = 0,
that is, (4,B,C) is normal to the plane; but (1,1,2) is a vector perpendicular to
the plane so the orthogonal complement sought is the plane

x+y+2:=0.
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[ (1,1,2)

/.

X+y+22=0

x I/
FIGURE 1-7
Exercises for Section 1.2
L. If |x + y| = x|l + l¥|, argue geometrically that x and y should liec on some

line through the origin.
. What is the angle between (3,2,2) and (0,1,0)?
. Find the orthogonal complement of the plane spanned by (3,2,2) and (0,1,0) in R®.
. Describe the sets B = {xe R?| x| < 3} and Q@ = {xe R*] ||l < 3}.

W A W N

. Find the equation of the line through (1,1,1) and (2,3,4). Is it a linear subspace?

Theorem Proofs for Chapter 1

Theorem 2. LetS < R, Then b e R is the least upper bound of S iff' b is an upper bound
and for every ¢ > O there isan x € S such that x > b — &.

Progf: First, suppose b = lub(S) = sup(S) and ¢ > 0. We must produce an x¢ S,
such that b < x + ¢. If there were no such x, we would have b > x + ¢ for every
xeS, that is, b — ¢ > x, Thus b — ¢ is an upper bound strictly less than b and
therefore b.is not the least upper bound, which contradicts our hypothesis. )

Conversely, suppose b satisfies the given condition. Let d be an upper bound of S.
According to the definition of sup(S), we must show that b < d. Suppose in fact, b > d.
Lete = b — d. Thend = b — candd > xforallxe Simpliesh — & > xord = x + ¢,
and so our condition fails. Thus the supposition that b > d is wrong, and we may then
conclude that b < d as required. This completes the argument,

Note: In this proof, we found it convenient to use the following basic principle of
logic: showing that a statement P implies a statement ¢ (in symbols P = @) is equivalent
to showing ~Q = ~P where ~Q is the negation of Q. We call ~Q = ~P the
contrapositive of P = Q, whereas Q = P is the converse.
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Theorem 3.
(i) Let S be a non-empty set in R which has an upper bound, Then S has a least upper
bound in R,
(i) Let P be a noh-empty set in R which has a lower bound. Then P has a greatest lower
bound in R,
(iif) Every Cauchy sequence x, in R converges to a number x in R,

Proof* (i)Since S # (J we can choose some x, € S. Let us writey > Sif y is an upper
bound of S. Now pick the smallest integer N such that N> 1 and x, + N > S.
Such an integer exists because S is bounded above. Let x;, = x5 + N — 1. Thus
x; = x, and there are elements of S greater than x,; but none greater than x, + 1.
Similarly choose the smallest integer N, = 1 such that x; + N,/2 > S and let x, =
x; + (N, ~ 1)/2, If the reader will draw a picture of x, and x, everything should
become clear. Note from your picture that N, is either 1 or 2. Inductively define
X, = X4y + (Ny—y — 1)/2n where N,., is the smallest integer such that x,_, +
N,./n = S;thusN,_,is1,2,...orn. Thusthereareelements of S > x,and no elements
of S are > x, + 1/n. Furthermore x, < x; < x, < ' so that x, is an increasing
sequence bounded above.

Now we can apply the completeness property of R to deduce that x, — y for some
v e R. We shall show, that y is the least upper bound for S. First, let us demonstrate
that it is an upper bound. Supposethat x € Sand x > y.Selectnsothat0 < I/n < x — y,
which is possible, since 1/n — 0 as n — oo, Thus, x is an element of S greater than
x, + 1/n, which cannot happen by the way we chose x, above. So x < y,and y is an
upper bound. By Theorem 2, it remains to prove that for any given ¢ > 0 there is an
x € S sothat y < x + &. Choose n such that y < x, + &, which is possible as x,, — y.
By constriiction, there is an x e S, with x = X, Thus y < x, + ¢ < x + ¢, and the
proof of (i) is complete, ’ .

(ii) Consider the set —P = {—x|x e P}. By (i), —P has a least upper bound ce R
(— P is bounded above because P is bounded below), Also, one easily sees from the
definition that —c is the greatest lower bound required. (See Exercise 17 for another
proof.) : ’

(ili) Since the completeness axiom implies (i) and (i), as we just demonstrated, we
can make use of them to prove (iii). Thus let x, be a Cauchy sequence in R. For any
integer M = 1, consider the set

{xerM+ XM 200 }
(the “tail” of the sequence).

First, we show that this set is bounded above and below, Choose ¢ = 1. Thereisan N
so that #, m = N implies |x, — x,| < 1. Thus all members x,, are a distance <1 from
xy for mi = N. Since this omits only a finite number of terms (x,x,,. . .,xy), we obtain
our result (drawing a picture may help here).

Now, from what we showed in (i), sup{x X + 1. . .} exists; call it 4,,. This sequence
{Ap,Apgers -} is a decreasing sequence bounded below; 4y, < Ay since Aps;

is the sup of the set {Xp 4y Xare20 + -}  {XaXags 10 + -}3 S€€ Exercise 7, p. 18, Thus
A, converges to a point, say a € R. We shall prove that x, — a as well.

* This proof is a little difficult on first reading, and requires some time and experience to master.
1f it is not clear now, come back to it after completing Chapter 2,
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Given ¢ > 0, we can choose N, so that 0 < 4, — a < ¢/3 forn > N, since 4, — a.
Because x, is a Cauchy sequence, there is N, such that m,n = N,implies|x,, — x,| < ¢/3.
Because A, = sup{x,,%, .. ..}, there is, by Theorem 2, an N, so that 0 < 4, —
Xy, < &3, where Nj is the maximum of N, and N,. If N is the largest of N,, N,, and
n = N, we have

o — al < |x, — xp) + Ay, — xp| + Ay, —al < &3 +¢3+63=c¢,
which proves the assertion. §

We remarked earlier that (i), (ii), and (iii) are each equivalent to the completeness
axiom for an ordered field. We have shown one-half of the implication, namely, that
the completeness axiom implies (i), (ii), and (iii) for an ordered field. Exercise 11 will
outline the proof that (i), (ii), and (iii) each imply the completeness axiom.

Theorem 5. For vectors in R", we have
() Properties of the inner product
(i) <xpy + 320 = {0y + oy
(ii) <{x,ap) = alx,y) for a real
(iif) {x,p) = {yxD
(i) <xx) 2 0and {xx) =0iff x =0
() 1<)l < x| | »|| (Cauchy-Schwarz inequality).

I ) Properties of the norm

) lxl =0
(i) Il = 0 iffx = 0
(i) |ox|| = |l x| for real o
(iv) |lx + »ll < lxll + »| (triangle inequality).

(III) Properties of the distance
(i) dlx,y) = d()' )

(i) d(x.y) 2
(iif) d(x,y) = 0 iff x =
(iv) dix,y) < d(x,z) + d(z,y) (also called the triangle inequality).

Proof: (1) Properties (i) through (iv) are easily verified from the definition of <, >.
We shall deduce property (v) from (i)-(iv). Now, for any A€ R, 0 < [[4x + yI? =

x + pAx + p) = Axx) + 20x,3) + {»,y). Considered as a polynomial in 4,
we may locate its minimum at A = — {x,y)/||x[|% (if x = O, the assertion (v) reduces to
0 < 0, so we can assume x # 0). Thus, in particular, )

2
0< <—<"’y 2 ) e + z<—<x’y 2 ><x,y> + <

1112 1112

x,y?
0< (—%) -7,

and {x,p>? < | x||? | »|% Taking the square roots gives the desired inequality since
= |of.

that is
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(I1) (i) and (ii) follow directly from ¥(iv), and (iii) from X(ii). For (iv) we have, using I(v),

I + plI? = {x 4+ yox + 3> = ex) + 20D + )
< i + 21Kx0) + vl)?
< xll? + 2 01x) vl + )2
= (llxll + l»l)?

giving the required result.
For 111, (i) holds, since |x — y|| = |y — x| using II(iii). Also, (ii) follows from I1(i).
For (iii) we use II(ii). Finally for (iv) we use ITI(iii) as follows

dx,y) = |x ~ yl = llx = 2) + z — Y|
Slx—zl + 2z~ yl
= d(x,z) + d(z,) .

Notice how each succeeding set of properties is deduced from the previous set. §

Worked Examples for Chapter 1

1. For real numbers, prove that

(i) x < x|, —|x < x

(i) |xl <aw —a<x<awhereaz0

(i) |x = ¥ < |x| + 1yl

Solution:

(i) I x = 0, then |x| = x, while if x <0, |x| > x, since |x| = 0. In any case,
x < |x|. The other assertion is similar,

(ii) If x = 0, then we must show that 0 < x < a<> —a < x < a which is obvious.
Similarly, if x < 0, the assertion becomes 0 € —x < @)« {(—a< x < a),
which is again obvious. Here the fact is used that f ¢ < 0, (0 < x < y) =
0=cx 2 cp). :

(iii) By (i), ~|x] < x < x| and ~|y| < y < {y|. Adding, we obtain —(x] + |y]) <
x + y < x| + |y. Then, by (i), |x + y| < |5 + |y. In addition, this can be
proven by cases as we did (ii). Note that this is also a special case of Theorem
5, H(iv).

2. Let S be a set in R and x = sup(S). Show that there is a sequence x, x,, ... such

that x, — x, and x, € S.

Solution: For each k, use Theorem 2 to find an x, such that x, < x < x, + 1/k.

Then x, — x, since for a given ¢ > 0, we choose N = 1/g; then k= N implies

n<x<x,+eorlx —x) <e.

3. For numbers X, ..., Xy, Yy -+, ¥pand zy, .. ., 2,, Show that

(e} <(EEES)
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Solution: The CBS inequality (Theorem 5, I(v)) says that

O w2 < O wi(> ).

Applying this to the numbers w, = x,z; and y, gives
(ZXIJ’:ZI)Z < (Z(x‘z,)z)(Zy,z) .
Applying this again to x?, 27 gives
O =27 < (3 xH() )
Q. taz)®) < QY2
(Sl < (A3 )2(35%)

Squaring both sides, the result is obtained. (We have used the fact that if a, b > 0,
then a < b iff @ < b%)

or

and so

4. Suppose x € R and x > 0; show that there is an irrational number between 0 and x.
Solution: If x is rational, then since \/i is irrational, so is x/ﬁ (why?) and is

between 0 and x. On the other hand, if x is irrational, then x/2 is irrational (why?)
and lies between 0 and x.

5. Recall that one may define e* by e* = | + x + x¥2! 4+ x%/3! + «-+. (By the
ratio test, this series converges for all x € R. Hence this definition of ¢* makes sense.)
Show that ¢ = e! is an irrational number.

Solution: Suppose that e = afb for integers a and 4. Let k be an integer, k > b,

and leta = kt(e — 1 — 1/21—1/31 — --- 1/k!) so that « is a non-zero integer as well.
However, sincee = 1| + 1/2! + 1/3! + -+, we have
1 1
N S
S S S
Sh+1 0 (k4 1)?
1
=5

(The last equality follows using the geometric series y + y2 + <<+ = y/(1 — »),
0 <y < 1) But a < 1/kis impossible if o is an integer # 0. Thus e = a/b is also
impossible, and so e is irrational.

Surprisingly, to prove that ¢" is irrational for r rational is not at all simple, and the
proof that = is irrational is even harder.*

* See for example G. H. Hardy and E. M. Wright, 4n Introduction to the Theory of Numbers,
New York, Oxford University Press, Fourth edition, 1960. In fact, e and = are transcendental
numbers, which means they are not the roots of any polynomial with rational coefficients. This
was discovered by Hermite and Lindemann in 1873 and 1882. For an elementary account, see
M. Spivak, Calculus, W. A. Benjamin Co.
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6.

Let A and B be sets in R bounded from above. Let a = sup(4), b = sup(B) and let
the set C be defined by C = {xp | x € 4, y € B}. Show that, in general, ab # sup(C).
If a < 0 and b < 0, then prove that ab = inf(C). ¥ a >0 and » > 0, and 4, B
have only positive elements, then also prove that ab = sup(C)

Solution: As a specific instance, let 4 = {xeR| -10 < x < ~1} = ]-10,~1[
and B = 10,1/2[,sothata = —1,b = 1/2,and ab = —1/2. But C = ]~5,0[ and
sup(C) = 0.

Now we prove that if ¢ < 0 and & < 0, then ab = inf(C). For this, we use the
analogue of Theorem 2 for greatest lower bounds. First, let xe 4 and ye B. We
wanttoshow xy 2 ab. But, x < a,y<bor—-x>2 —a=20and —y > ~b =0,
so (using Axiom II(v) for R), (—x)(—~») = (—a)(~b) or xy > ab. Given ¢ > 0,
we want to find xe 4 and y € B so that ab > xy — &, or |ab — xy| < &. Choose
x and y so that a < x + &2(b] + 1), b <y + &/2|al, and b <y + 1. Then,
sinceluy| = |u| |v]and|y| < |b] + 1,weget (using thetriangleinequality)jab — xy| <
lab — ay] + lay — xy| =1dl|b — y| +la — A1yl <lal(e/2]a]) + (/206 + D)b] + 1) =e.

The last assertion can be proven in an analogous way.

Exercises for Chapter 1

¢ 1.

¢ 2.

?3,

s 4.

25,

¢ 6.

For each of the following sets S, find sup(S) and inf(S):
(a) {xeR|x* < 5}

() xeR|x*>7}

() {Ljz|n an integer,n > 0}

{d) {—1/n|nan integer, n > 0}

© {3,33,333,.. )

(f) the intervals [ab], [a,b[, Jab], or Jab.

Review the proof that ﬁ is irrational. [Hint: If there were a rational number m/n,
where m and 1 have no common factor, such that (m/n)? = 2, would m be even

or odd 7] Generalize this to \/I—c for k a positive integer which is not a perfect square.

(a) Let x > 0 be a real number such that for any ¢ > 0, x < &. Show that x = 0.
(b) Let S = 10,1[. Show that for any & > O there exists x € S, such that x < g,
x # 0. '

Show that d = inf(S) iff 4 is a lower bound for S and for any & > 0 there is an
xeS,suchthatd > x — &,

Let x, be a monotone increasing sequence bounded above and consider the set
S = {xy,%3,. . .}. Using Theorem 2, show that x, converges to sup(S). Make a
similar statement for decreasing sequences.

Let 4 and B be two non-empty sets of real numbers with the property that x < y
for all xe A4, y € B. Show that there exists a number ce R such that x < c <y
forallx e 4,y € B.Giveanexample of this statement being false for rational numbers
(it is, in fact, equivalent to the completeness axiom and is at the basis for another
way of formulating the completeness axiom known as Dekekind cuts).



EXERCISES FOR CHAPTER 1 29

# 7. Forsets 4, B = R,let A4 + B = {x + y|xe Aand ye B}. Show that sup(4 + B) =
sup(A4) + sup(B). Make a similar statement for inf’s.

+ 8. For sets 4, B « R, determine which of the following statements are true. Prove
" the true statements and give a counter-example for those which are false:
(a) sup(4 n B) < inf{sup(4),sup(B)}
(b) sup(4 n B) = inf{sup(4),sup(B)}
(c) sup(4 v B) = sup{sup(4),sup(B)}
(d) sup(4 U B) = sup{sup(4),sup(B)}.

#9. Demonstrate that if a subsequence of a Cauchy sequence converges to a point,
then the whole sequence converges to that point. -Give a counter—example if the
original sequence is not a Cauchy sequence.

¢ 10. For a given sequence a,, we define the numbers

lim sup(a,) = inf{sup{a, a4, . . }|n =12,...}
and
lim inf(a,) = sup{inf{a,.a,.,,.. .}|n = 12,.. .}

Show that
# (a) lim inf(a,) < lim sup(a,)
(b) lim sup(a,) = b iff for all ¢ > 0, there isan Nsothatbh + ¢ > g, foralln > N
andb — ¢ < a,forsomen = N
(¢) a, — biff im sup(a,) = lim inf(a,) = b
+ (d) let a, = (—1)". Compute lim inf(a,), lim sup(a,).

Note: limsup(a,) and lim inf(a,) always are defined (but could be +co)
although lim(a,) need not exist. Also, lim sup is short for /imit superior and lim inf
for limit inferior, and these are sometimes written as lim and lim, respectively.

11. Show that (i), (ii), and (iii) of Theorem 3 each implies the completeness axiom for
an ordered field. [Hint: (i) = completeness axiom is almost immediate. (ii) implies
(1) in much the same way as we showed in the proof of Theorem 3 that (i) implies (ii).
Therefore (ii) = completeness axiom. To show (iii) = completeness axiom, it
is sufficient to show (iii) = (i). To do this, define the sequence x, as in the proofl
of completeness axiom => (i) and argue that x, is a Cauchy sequence. Show that its
limit is the sup of the set in question, following the proof that the completeness
axiom = (i).] '

s 12. In R" show that
(@) 2 %1% + 2 Iyl = Ix + yI? + |x — y|* (parallclogram law)
®) Ix + ylIl Ix = pI < IxI* + Iy0*
(©) 4¢x,p> = |x + y|*> — |x — y|? {polarization identity).
Interpret these results geometrically in terms of the parallelogram formed by x and y.

#13. What is the orthogonal complement in R* of the space spanned by (1,0,1,1) and
(-1.2,00)7?
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# 14, (a) Prove Lagrange’s identity

015,

8 17.

218,

+ 2L
*22.

2 23.

224,
¢ 25,

5 26.

(S = ()50 - 5 oo

=1 =1 1st<jsn

using algebra techniques and use this to give another proof of the Schwarz

inequality.
1 172 u 1/2 " 1/2
{Z (o + y;)z} < (Z x?) + (Zy?) .
f= 1

(b) Show that
{1 =1

Let x, be a sequence in R such that d(x,,x,+,) < d(x,_,x,)/2. Then show that x,
is a Cauchy sequence.

. Prove Theorem 4. In fact, for vector spaces ¥y, ..., V,,showthat V=V, x - x ¥,

is a vector space.

Let S = Rbebounded below and non-empty. Thenshow that inf(S) = sup{xe R| x
is a lower bound for S}.

Show that in R, x, — x iff —x, - —x. Hence prove that the completeness axiom
is equivalent to the statement that every decreasing sequence x, > x, = x5 "
bounded below converges. Prove that the limit of the sequence is inf {x,,x,,. . .}.

. Let x = (1,1,1)e R?® be written x = Zj‘:ly‘f‘, where f, = (1,0,1), f, = (0,1,1),

and f; = (1,1,0). Compute the components y,.

. Let S apd T be non-zero orthogonal subspaces of R". Prove that if § and T are

orthogonal complements (that is, S and T span all of R") then § n T = {0} and
dim(S) + dim(T) = n, where dim(S) denotes dimension of S. Give examples
in R?, where the condition dim(S) + dim(T) = 1 holds, and examples where it
fails. Can it fail in R??

Show that the sequence in Example 2 can be chosen to be increasing.

(a) Prove:ifin R, x, — x, then b.xk — ax for any number a.
(b) If x, — x and y, — y, then prove s, = x, + y,converges to x + .

Let P « R be a set such that x > 0 for all x& P and for any integer k there is an
Xy € Psuch that kx, < 1. Then prove that 0 = inf(P).

If sup(P) = sup(Q) and inf(P) = inf(Q), does P = Q7

We say that P < Q if for each xe P, thereisa ye Q with x < y. Il P < @, then
prove sup(P) < sup(@Q). Is it true that inf(P) < inf(Q)? If P < Q and Q < P, does
P=0Q7 .

Prove that the real numbers form an uncountable set, but the rationals form a
countable set. [Hint: First recall how any number x,0 < x < | can be written as
adecimal and that any decimal represents a real number.Ifthe numbersx,0 < x < 1
werecountable, wecould arrange themass, = 0.g,,a,, . Letx = 0b,b,b;5 -,
where b, = lifa,, # | and b, = 2ifa,, = 1. Show that x # s, for all n. For the
rationals, employ Exercise 9 in Introductory chapter.]
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Suppose a, > 0 and g, — 0 as n — co. Given any & > 0, show that there is a
subsequence b, of a, such that }'* b, < .

Let x, be a Cauchy sequence in R and let 4, = sup{x,x,+, ..} and B, =
inf{x,,%, 41,- - -} Prove 4, converges to the same limit as B,, which in turn is the

same as the limit of x,,.

Forany x &€ R, x > 0 use the axioms for R to deduce the existence of y € Rsuch that
yi=x '
Use the axioms for R to prove the Archimedian property: for evéry x € R there

exists an integer N such that N > x. [Hint: Il # < xforalln = 1,2,3, ... use the
completeness axiom to prove that x, = n converges.]

Let A,Bc Randlet f: 4 x B— R.Isit true that
sup{f(x,) | (x.,y)e 4 x B} = sup{sup{f(x,y)|xe 4} |ye B}

or, the same thing in different notation,
. /,
sup f(x,y) = sup(sup f(xp)? Y5 -
yeB xed

(x,y)edxB

(a) Give a reasonable definition for when limit x,, = co.

(b) Let x, =1 and define inductively x,., = {x, + ** - + x,)/2. Prove that

Xy = L.

(a) Show that (log x)/x — 0 as x — 0. (You may consult your calculus text and use
for example I'Hopital’s rule).
(b) Show that #n' — L asn — 0.
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ChapFer 2

Topology of R”

In this chapter we begin our study of those basic properties of R”
which are important for the notion of a continuous function. We will study
open sets, which generalize open intervals on R, and closed sets, which
generalize closed intervals. The study of open and closed sets constitutes the
beginnings of topology. This study will be continued in Chapter 3.

Most of the material in this chapter depends only on the basic properties
of the distance function given in Theorem 5, Chapter 1. Recall that the
distance function d is given by

n 1/2
d(x,y) = {Z(x; - y;)z}' ,

i=1
and that the basic properties of d are

(i) d(x,y) = 0
(ii) d(x,y) = 0iff x = y'
(iti) d(x,y) = d(y,x)
(iv) 'd(x,y) < d(x,2) + d(z,p) (triangle inequality).

2.1 Open Sets
In order to define open ‘sets, we first shall introduce the notion of an e-disc.
Definition 1. For each fixed x € R" and ¢ > 0, the set

D(x,6) = {y e R*| d(x,y) < &}
32
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FIGURE 2-1 Theg-disc.

is called the e-disc about x (also called the e-neighborhiood or g-ball
about x). See Figure 2-1. A set 4 = R" is said to be open if for each
X € A, there exists an ¢ > 0 such that D(x,s) = A.

It is important to realize that the e required may depend on x. For example,
the unit square in R? not including the “boundary” is open, but the ¢’
needed get smaller as we approach the boundary. However, notice that the
¢ cannot be zero for any x. See Figure 2-2.

Consider an open interval in R = R!, say, ]0,1[. Indeed, this is an open
set (see Figure 2-3). However, if we look upon the set as being in R* (as a
subset of the x axis), it is no longer open. Thus for a set to be open it is
essential to specify which R" we are using.

There are numerous examples of sets which are not open. The closed unit
disc in R?, {xe R*| ||x|| < 1}, is such an example. This set is not open
because for a point on the “boundary” (that is, points x with ||x|| = 1),
every e-disc contains points which do not lie in the set. See Figure 2-4.

FIGURE 2-2 An open set.
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S

g-discinR & - disc inR?

FIGURE 2-3

Theorem 1. In R", for every ¢ > 0 and xe R", the set D(x.) is
open.

The main idea for the proof is contained in Figure 2-5. Notice in this
figure that the size of the disc about the point y € D(x,¢) gets smaller as y
gets closer to the boundary. The theorem should be “intuitively clear” from
this picture.

Some basic laws which open sets obey are the following.

Theorem 2.

(i) "The intersection of a finite number of open subsets of R" is an open
subset of R".

(ii)- The union of an arbitrary collection of open subsets of R" is an
open subset of R".

This result is perhaps not entirely clear intuitively. Some idea about the
difference between assertions (i) and (il) may be obtained if we realize that
it is not true that the intersection of an arbitrary family of open sets is open.
For example, in R', a single point (which is not an open set) is the inter-
section of all' open intervals containing it (why?). The remainder of this
chapter will rely heavily on the basic properties of open sets which were
given in Theorem 2.

|R2

FIGURE 2-4 A non-open set.



OPEN SETS 35
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— e

FIGURE 2-5 ¢-discs are open.

Note: A set with a specified collection of subsets (called, by definition,
open sets) obeying the rules in Theorem 2 and containing the empty set &
and the whole space is called a topological space. We shall not deal with

general topological spaces in this book, but rather with the case of R".
However, much of what is said below does apply to the more general setting.

ExampLE 1. Let S = {(x,5) e R*|0 < x < 1}. Show that S is open.

Solution: In Figure 2-6 we see that about each point (x,y) € S we can
draw the disc of radius r = min{x,] — x} and it is entirely contained in S.
Hence, by definition, S is open.

ExaMPLE2. LetS = {(x,y)e R*|0 < x < 1}.Is S open?

Solution: No, because any disc about (1,0) € S contains points (x,0) with
x> 1.

ExampLE 3. Let A — R" be open and B « R". Define
A+B={x+yeR'|xedandye B}.
Prove A + Bis open.

FIGURE 2-6



36 TOPOLOGY OF R”

Solution: Let xe A, y € B so that x + ye A + B. By definition, there
is an ¢ > 0 so D(x,s) = A. We claim D(x + y,) = A + B. Indeed, let
ze D(x + y,e)so that d(x + y,z) < &. But, d(x + y,2) = d(x,z2 — y) (why?)
soz —yed,andthenz =(z — ) + yeAd + B. Thus D(x + y,e) = 4 +
B,so 4 + Bis open.

Eﬁxe:lcises for Section 2.1
as1. Show that R?\{(0,0)} is open in R2.
0 2. Let S = {(x,y)& R? | xy > 1}. Show that S is open.
o 3- Let A = Rbeopenand B = R? be defined by
B ={(xy)eR?|xe4}.
Show that B is open.
¢ 4. Let B ¢ R be any set, Define
= {xeR"|d(x,y) < 1for some ye B} .
Show that C is open [Hint: Show that C = Uyen D(y,1).]

s 5. Let 4 = R be open and B = R. Define 4B = {xyeR|{xe 4 and ye B}. Is 48
necessarily open?

2.2 ’Interior of a Set

Definition 2. For any set 4 « R", a point xe A4 is called an
interior point of A if there is an open set U such that xe U < 4.
(It should be clear that this is equivalent to the following: there is
an ¢ > 0 such that D(x,) = A.) The interior of A is the collection
of all interior points of 4 and is denoted int(4). This set might be
empty.

For example, the interior of a single point is empty. The interior of the
unit disc, including its boundary, is the unit disc without its boundary.

We can”describe the interior of a set in a somewhat different manner.
The interior of A is in fact the union of all open subsets of 4 (the reader is
asked to show this in Exercise 22, p. 58). Thus by Theorem 2, or directly,
int(4) is open. Hence int(A) is the largest open subset of A. Therefore if there
are no open subsets of 4, int(4) = = . Also, it is evident that A is open iff
int(A) ="A (again, se¢ Exercise 22).

ExampLE 1. Let S = {(x,y) € R? |0 < x < 1}. Find int(S).

Solution: To determine the interior points, we just need to locate points
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about which it is possible to draw an g-disc entirely contained in S. By con-
sidering Figure 2-6, we see that these are points (x,y) where 0 < x.< 1.
Thus int(S) = {(x,») |0 < x < 1}.

ExampLE 2. s it true that int(4) v int(B) = int(4 v B)?

Solution: No. Consider in the real line, 4 = [0,1], B = [1,2]. Then
int(4) = ]0,1[ (why?) and int(B) = ]1,2[, so int{4) U int(B) = ]0,1[ u
11.2[ = ]0,2[\{1}, while int(4 U B) = int[0,2] = J0.2[.

Exercises for Section 2.2

1. Let S = {(x,y) e R*| xy > 1}. Find int(S).

2, Let S = {(x,9,2) e R |0 < x < 1,y* + 22 < 1}. Find int(s).

3. A  B,is int(4) < int(B)?

4/./150 you think it is true that int(4) n in{(B) = int(4 N B)? Try some examples.

/£

2.3 Closed Sets

Definition 3. A set B in R" is said to be closed if its complement
in R" (that is, the set R"\B) is open.

For example, a single point is a closed set. The set consisting of the unit
circle with boundary is closed. Roughly speaking, a set is closed when it
contains its “boundary points” (this intuition will be made precise in
Section 2.6). See Figure 2-7. ‘

It is entirely possible to have a set which is neither open nor closed.
For example, in R', a half-open interval ]0,1] is neither open nor closed.
Thus even if we know A is not open, we cannot conclude that it is closed or
not closed. The next theorem is analogous to Theorem 2.

0

FIGURE 2-7 Closed sets.
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FIGURE 2-8

Theorem 3.

(i) The union of a finite number of closed subsets of R" is closed.

(ii) The intersection of an arbitrary family of closed subsets of R"
is closed.

This theorem follows directly from Theorem 2 by noting that unions and
intersections are interchanged when we take complements (see Exercise 14
of the Introductory chapter). The proof is left to the reader (Exercise 23)
who should also show that (i) cannot be replaced by arbitrary unions.

"

ExampPLE 1. LetS = {(x,))e R*|0 < x < 1,0 < y < 1}.Is S closed?

Solution: See Figure 2-8. Intuitively, S is not closed because the portion
of its boundary on the y-axis is not in S. Also, the complement is not open
because any e-disc about a point on the y-axis, say (0,1/2), will intersect S
(and hence not be in R™\S).

FIGURE 2-9
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ExampLE2. LetS = {(x,y)e R*| x* + y* < 1}.Is S closed?

Solution: Yes. S is just the unit disc, including its boundary. The com-
plement is clearly an open set, because for (x,y) € R*\S, the disc of radius

e = ./x* + y* — 1 will be entirely contained in R*\S (Figure 2-9).
ExamPLE 3. Show that any finite set in R" is closed.

Solution: Single points are closed, and so we may apply Theorem 3(i).

. Exercises for Section 2.3
11, Let § = {(x,y) e R?*| x, y > 1}.Is S closed?

.. o
9 Let S = {x,y)e [R2 lx=0,0<y< 1} Is S closed? . ‘,\
?4 3. Redo Example 3 dlrectly, this time showing that the complement is open. ~ N“\:)

4. Let 4 = R” be arbitrary. Show R"\(int 4) is closed.
e5LetS = {x e R|xis irrational}. Is S closed?

2.4 Accumulation Points

There is another very useful way to determine whether or not a set is closed
which depends upon the important concept of an accumulation point.

Definition 4. A point x e R” is called an_accumulation point of a
set A if every open set U containing x. contains, some point of A
other than x. G 5

That is to say, an accumulation point of a set 4 is a point such that there
are other points of 4 arbitrarily close by. Accumulation points are also
referred to as cluster points.

Using Theofém 1, our definition that x be an accumulation point of 4 is
equivalent to the statement that for every & > 0, D(x,s) contains some pomt
yof Awithy # x.

For example, in R!, a set consisting of a single point has no accumulation
points and the open interval ]0,1[ has all points of [0,1] as accumulation
points. Note that an_accumulation point of a set need not lie in that set.
The definitions of accumulation points and closed sets are closely related
as shown by the next theorem.

Theorem 4. A set A = R"is closed iff all the accumulation points
of A belong to A.
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Notice that a set need not have any accumulation points (a single point
or the set of integers in R! are examples), in which case Theorem 4 still
applies and we can conclude that the set is closed. Another useful way to
prove that a set is closed is given in Theorem 9 which follows later.

Theorem 4 is intuitively clear because a set being closed means, roughly
speaking, that it contains all points on its “boundary,” and such points are
accumulation points. This sort of rough argument has a pitfall and one has
to, in fact, be more careful as some sets are sufficiently complicated that our
intuition may fail us. For example,consider 4 = {I/neR|n = 1,2,3,.. .} U
{0}. This is a closed set (verify!) and its only accumulation point is {0}
which lies in 4. But our intuition about “boundary” mentioned above is
not very clear for tl}is set, hence the need for more careful arguments.

ExampLt 1. Let S = {xeR|xe[0,1] and x is rational}. Find the
accumulation points of S.

Solution: The set of accumulation points consists of all points in [0,1].
Indeed, let y e [0,1] and D(y,e) = ]y — &,y + ¢[ be a neighborhood of y.
Now we know we can find rational points in [0,1] arbitrarily close to y
(other than y) and in particular in D(y,e). Hence y is an accumulation point.
Any point y ¢ [0,1] is not an accumulation point because y has an e-disc
containing it which does not meet [0,1] and therefore S.

ExampLE 2. Verify Theorem 4 for the set 4 = {(x,y)) e R* |0 < x < lor
x=2}

Solution: A is shown in Figure 2-10. Clearly, A is closed. The accumula-
tion points of A consist exactly of A itself which lie in 4. Note that on R,
[0,1] u {2} has as accumulation points [0,1] without the point {2}.

2,0

FIGURE 2-10
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i FIGURE 2-11

ExampLE 3. Let S = {(x,y)e R?*|y < x* + 1}. Find the accumulation
points of S.

Solution: S is sketched in Figure 2-11. The accumulation points con-
stitute the set {(x,y) |y < x* + 1} as is evident from the figure.

Exsrcises for Section 2.4 ,
->/1A~;"Find the accumulation points of 4 = {(»,y)e R*|y =0and 0 < x < 1}.

;

¢ 2.4 = Band x is an accumulation point of 4, is x an accumulation point of B as well?

» 3, Find the accumulation points of the following sets in R?.
"
" (a) {(m,n)| m,n integers}

(b) {{p.q)| p.q rational}
(c) {(mnfn,1/n)| m,nintegers, n 0}
@) {(1/n + 1/m0) | n,m integers, n # 0, m #0}.

e 4/.A"Let A = Rand x = sup(4). Must x be an accumulation point of 4?7

s 5. Verify Theorem 4 for the set 4 = {(x,y)e R? | x? + y + 2x = 3}.

2.5 Closure of a Set

The interior of a set A is the largest open subset of 4. Similarly, we can form
the smallest closed set containing a set 4. This set is called the closure of A
and is denoted cl{4) or sometimes A.

Definition 5. Let A — R". The set cl(4) is defined to be the inter-
section of all closed sets containing 4, (and so cl(4) is closed by
Theorem 3 (i1)).
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For example, on R', cl(]0,1]) = [0,1]. Also, note that 4 is closed iff
cl(4) = A (why?). The connection between closure and accumulation points
is the following theorem.

Theorem 5. Let A = R". Then cl(A) consists of A plus all the
accumulation points of A.

In other words, to find the closure of a set A, we add to 4 all the accumula-
tion points not already in 4. Theorem 5 should be intuitively clear from the
examples presented earlier.

ExAMPLE 1. Find the closure of 4 = [0,1[ U {2} in R.

Solution: The accumulation points are [0,1], so the closure is [0,1] U
{2}. This is clearly also the smallest closed set we could find containing A4.
ExaMPLE2. For any A « R", show that R"\cl(4) is open.

Solution: cl{(A) is a closed set and, by definition of a closed set, its
complement is open.

ExampLE 3. Is it true that cl(4 n B) = cl(4) n cl(B)?

Solution: No. Take, for example, 4 = [0,1],8 = ]1,2]. Then, A n B =
& and dl(4) n cl(B) = {1}.

Exercises for Section 2.5
#,l"i/lFind the closure of § = {(x,y)e R?| x > yz}
» 2. Find the closure of {i/n|n = 1,2,3,.. .} in R.
# 3. vLet A = {(x,y) € R?| x is rational}. Find ci(4).

¢ 4. (a) For A <= R", show cl{4)\4 consists of accumulation points of 4.
(b) Is it all of them?

5. Let A = Rand x = sup(4). Show x € cl(4).

2.6 Boundary of a Set

If we consider the unit disc in R?, we know what we would like to call the
boundary—the obvious choice is the unit circle. But, for more complicated
sets, such as the rationals, it is not as intuitively clear what the boundary
should be. Therefore a precise definition is needed.
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_ bd(4)

FIGURE 2-12 Boundary of a set.

Definition 6. For a given set A4 in R", the b_ojyg({qry is defined to be
the set
bd(A) = cl{(4) n cl(R\A).

Sometimes the notation 6A = bd(4)is used

Thus by Theorem 3(ii), bd(4) is a closed set. Also, note that bd(4) =
bd(R"\A4). From Theorem 5, we can deduce that the boundary is also de-
scribed as follows.

Theorem 6. Let A = R'. Then x €& bd(A) iff for every &> 0,
D(x,&) contains points of A and of R™\A (these points might be x itself).
See Figure 2-12.

The original definition states that bd(4) is the border between A and
R™A. This is also what Theorem 6 is asserting and therefore Theorem 6
should be intuitively clear.

ExampLEl. Let A = {xe R|xe[0,1] and x is rational}. Find bd(4).

Solution: bd(4) = [0,1] since, for any ¢ > 0 and xe[0,1], D(x,e) =
Jx — &,x + ¢ contains both rational and irrational points. The reader
should also verify that bd(4) = [0,1] using the original definition of bd(A4).
This example shows thatif 4 «— Bit does not necessarily follow that bd(4)
bd(B) (let 4 be as above and B = [0,1] in R). ;

ExampLE 2. If x € bd(A4), must x be an accumulation point?

Solution: No. Let A = {0} = R. Then A4 has no accumulation points,
but bd(4) = {0}.

ExampLE 3. Let S = {(x,y) e R*| x* — y* > 1}. Find bd(S).

Solution: S is sketched in Figure 2-13. Clearly, bd(S) consists of the
hyperbola x* — y? = 1.
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FIGURE 2-13

Exercises for Section 2.6
=/1"." Find bd(4) where 4 = {I/ne R|n = 1,2,3,.. .}.
10211' x & cl(4)\4, then show x & bd(A4). Is the converse true?
« 3. Find bd(4) where 4 = {(x,5)e R? | x < y}.
¢4.Ts bd() = bd(int A)?
o 5:;,'I':et A < R be bounded and x = sup(4). Is x € bd(4)?

2.7 Sequehces

Let us now consider some aspects of sequences. The definition of convergence
in R" is very similar to that for real numbers.

Definition 7. Let x, be a sequence of points in R". We say that x,
converges to a limit x in R" if for every open set U containing x
(also called a neighborhood of x), there is an N (depending on U)
such that x, € U whenever k > N. See Figure 2-14.

This definition coincides with the usual ¢ definition as the next theorem
shows.

Theorem 7. A sequence x, in R" converges to x € R" iff for every
¢ > O there is an N such that k > N implies |x — x,|| < e.
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FIGURE 2-14 Convergence of a sequence.

This theorem is entirely analogous to what we know about convergent
sequences of real numbers. See Section 1.1. There is another result which is
closely allied to the one above. We can show that:

Theorem 8. x, — x iff the components of x, converge to the
components of x as sequences of real numbers.

As the proof on page 50 shows, this follows easily from Theorem 7 and
the explicit formula for {|x, — x| .

We can use sequences to determine whether or not a set is closed. The
method is as follows:

Theorem 9.

(i) A set A « R" is closed iff for every sequence x, € A which con-
verges. the limit lies in A. )

(ii) For a set B « R", x e cl(B) iff there is a sequence x, € B with
X, — X.

The intuition behind this theorem is the same as that for Theorems 4 and 5.
One should note that these sequences in (i) and (ii) could be trivial, that is
x, = x for all k. )

As in the case of R!, we can define a Cauchy sequence in R". (The concepts
of monotone sequence and least upper bound also make sense if interpreted
coordinate-wise, but these are not very useful in R" for n # 1.)

De@nition 8. A sequence x, € R"is called a Cauchy sequence if for
every ¢ > Othereis an N such that [, k > N implies ||x, — x| < &.

Theorem 10. A sequence x; in R" converges to a point in R" iff’it
is a Cauchy sequence.
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This is a straightforward generalization of, and follows from, the corre-
sponding theorem for R (see Theorem 3 of Chapter 1).

As with R, this theorem provides an important test for convergence since
the Cauchy condition does not involve the limit point explicitly. Thus we
can often tell if a sequence converges even though we do not know the limit.

Note: In a general metric space (a set S and a real-valued distance
function d satisfying the rules of Theorem 5, III, Chapter 1) a Cauchy
sequence is a sequence x, € S such that for all ¢ > 0, there is an X such that
k,1 > N implies d(x,,x;) < e. The space is called complete iff every.Cauchy
sequence converges to a_ point-in-the-space. An example of an incomplete
space is the rational numbers with d(x,y) = |x — y|. Theorem 10 asserts then
that R" is a complete metric space.

ExampLE I. Shiow that the sequence (1/n,1/n%) converges to (0,0) asn — oo,

Solution: Each component sequence 1/n, and 1/n? converges to 0, so by
Theorem 8, x, = (1/n,1/n%) converges to (0,0).

ExaMpLE 2. Let x, € R™ be a convergent sequence with |x,|| < 1 for all n.
Then show that the limit x also satisfies ||x|| < 1. Is this true if < is replaced
with <?

Solution: The unit ball B = {yeR"| |y|| < 1} is closed. Hence, by
Theorem 9(i), x, € B implies x € B. This is not true if < is replaced by <,
For example, on R consider x, = 1 — 1/n.

ExampLE 3. Find the closure of 4 = {IneR|n = 12,.. .

Solution: We can use, for example, Theorem 9(ii). The sequence 1/n — 0
50 0 € cl(4). Taking other sequences from A will not yield any new points, so

cl(d) = 4 u {0} .
Exercises for Section 2.7
1. Find the limit of the sequence [(sin #)*/n,1/n*] in R%.

. Let x, — x in R™. Show that 4 = {x,|n = 1,2,...} U {x} is closed.

2

3. Let A ¢ R", x, & 4, and x, = x. Show that x € cl(4).

4. Verify Theorem 9 (ii) for the set B = {(x,y) e R* | » < y}.
5

. Let § = {x € R} x is rational and x* < 2}. Compute cl(S).
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2.8 Seriesin Rand R”

Just as in R!, we can consider series in R".

Definition 9. A series Z"" X, where x, € R", is said to converge to
1

xeR if the sequence of partlal sums s, = 5., X; converges to x,

and if so we write ) © x, = x.

As in Theorem 8, ZZ":O X, = X is equivalent to the corresponding com-
ponent series converging to the components of x,
Applying Theorem 10 to s, yields Theorem 11.-

Theorem 11. A series Y x, in R" converges iff for every & > 0,
thereisan N suchthatk > Nimplies |x + Xy + 00 + Xyl <
efor all integersp = 0,1,2,... .

In particular, taking p = 0 we see that if ) x, converges then x, — 0 as
k — oo (Exercise 2).

A series Y. x, is said to be absolutely convergent iff the real series Y. ||x,|
converges.

Theorem 12. If Y x, converges absolutely, then Y. x, converges.

This theorem is useful because it allows us to apply the usual tests for
real series (such as the ratio test) to the series ). ||x,| to test for convergence
of ¥ x,. Of course, it could happen that a particular test fails even though
Z X, is convergent, in which case some other method is needed.

Now we shall review the most important tests for the convergence, of a
real series. Some of the main facts are presented in the following theorem.
Some other tests for convergence will occur in the exercises and later in
Chapter 5.

Theorem 13,
@ If I < 1, then Z"" rt converges to 1/(1 — r) and diverges

(does not converge) 1f 1r|

(ify Comparison test If Z ak converges, a, =0, and 0 <
b, < a, then , b converges if Z , G diverges, ¢, > 0,
and 0 < ¢, < dk, “hen e dg dzverges

(iii)_p-series test: Z"" n~? converges if p > 1 and diverges to o
\(t/zat is, the par tlal sums increase without bound) if p < 1.

(iv) Ratio test: Suppose that 11£n1t (a,+1/a,) exists and is strictly

less than 1. Then ). a, converges absolutely. If the limit is
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strictly greater than 1, the series diverges. If the limit equals 1,
the test is inconclusive,
(v) Root test: Suppose that llmlt(la,,l)“" exists and is strictly less

than 1. Then Zn= , 9 converges absolutely. If the limit is
strictly greater than 1, the series diverges; if the limit equals 1,
the test is inconclusive.

(vi) The integral test: If f is continuous, non-negative, and monotone
decreasing on [1,+ o[, then Z:":l f(n) and [ f(x) dx converge
or diverge together.

ExampLE 1. Let x, = (1/n%,1/n). Does . x, converge?

Solution: No, because the harmonic series Y. 1/n diverges by (iii).

ExampLE 2. Let |x,| < 1/2"; prove ) x, converges and |Y'° x,| < 2

Solution: Verify the conditions of Theorem 11. Now

e + -0+ Xl < Il 4+ 4+ Il S 554+ + e

<

R2| -

Ingl: "il*—*

]
=

=1
] 2

(by the formula Y ™ ar" = a/(1 — r) for the sum of a geometric series). Thus,
givene > 0,choose N sothat 1/2¥~! < ¢. Hence Y x, converges. Moreover,
the partial sums satisfy

Isal < D Il < Z -l-k
k=0 k=0

Thus the limit s also satisfies ||s|| < 2 by Example 2 of Section 2.7. We
could also show Y’ |Ix,|| converges by direct comparison with the geometric

series y. 1/2". ,

ExampLE 3. Test for convergence: ). | n/3".

Solution: The ratio test is applicable;

so the series converges.

ExamprLE 4. Determine whether or not Z:’:l nf(n* + 1) converges.
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Solution: Observe that for x > 1, f(x) = x/(x* + 1)is positive and con-
tinuous. Since f'(x) = (—x* + DAx* + 1)* < 0, f is monotone decreasing.

© xdx lim b xdx
L X2+ 1 e |y x4+ 1

I}im [£log(x* + ]}

lim} log((6* + 1)2)

But, as b — oo, +log((6® + 1)/2) - oo, and so the series diverges by the
integral test. One can also proceed as follows: nf(n? + 1) > n/n* + n?) =
1/2n, s0 by comparison with the divergent series (1/2) 3 1/n we get divergence.

Exercises for Section 2.8
#1. Determine if ) , (sin n)/n?,1/n?) converges.
¢ 2. Show that the series in Example 2 converges absolutely.
3. Let Y x, converge in R". Show that x, = 0 = (0,.. .,0)e R".
*4. Test for convergence }\°_ (2" + n)/(3" — n).

* 5. Test for convergence }.°_  nl/3".

Theorem Proofs for Chapter 2

Theorem 1. InR", for every ¢ > 0 and x € R, the set D(x, &) is open.

Proof: Choose ye D(x,). We must produce an & such that D(y,e) = D(x,).
Figure 2-5 suggests that we try & = & — d(x,y), which is strictly positive as.d(x,y) < e.
With this choice (which depends on y), we shall show D(y,e') = D(x,s). Let z € D(y,&),
so d(z,y) < ¢/. We need to prove that d(z,x) < e. But, by the triangle inequality,
d(z,x) < d(z,y) + d(y,x) < & + d(y,x), and by the choice of ¢, &' + d(y,x) = ¢. The
result follows. J

Theorem 2.
(i) The intersection of a finite number of open subsets of R" is an open subset of R".
(i) The union of an arbitrary collection of open subsets of R" is an open subset of R".

Proof: (i) It suffices to prove that the intersection of two open sets is open, since
we can then use induction to get the general result by writing 4, n---n 4, =
(Al n- N An~l) N An‘

Let A, Bbe openand C = A n B; if C = (J, Cis open by a degenerate case of the
definition. Therefore, suppose x € C. Since 4, B are open, there are ¢, ¢' > 0, such that

D(x8) = A and D(x,) = B.
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Let &” be the smaller of g and ¢'. Then D(x,&") < D(x,¢) and so D(x,") < A4 and, similarly,
D(x,&") = B, so D(x,&") < C as required.

(ii) The proof for unions is easier. Let U, ¥, ... be the open sets with union A.
For x€ A4, x € U'for some U in the collection, Hence, as U is open, D(x,5) =« U = 4
for some ¢ > 0, proving that 4 is open. §

Theorem 4. A set A < R is closed iff all the accumulation points of A belong to A.

Progf: First, suppose A is closed. Let x € R" be an accumulation point and suppose
x¢ A. Set U = R\, the complement of 4. Now, by definition, U is open, contains x,
and is hence a neighborhood of x; but U n 4 = (J, contradicting the fact that x is
an accumulation point. Therefore x € A. Conversely, suppose A contains all its accumu-
lation points. Let U = R"\A be the complement of A. We must show U is open. Let
xe U. Since x is not an accumulation point of A, there is an &> 0 such that
D(x,5) n A = . Hence D{(xg) = U and, by definition, U is open. §

Theorem 5. Let A < R". Then cl(A) consists of A plus all the accumulation points of A.

Proof: Let B be the union of 4 and the accumulation points of 4. Any closed set
containing A contains B by Theorem 4. Therefore, it suffices to prove that B is closed,
for B will then be the smallest closed set containing 4. Let x be an accumulation point
of B. We want to show that x € B. Suppose that x ¢ 4 (or else x € B trivially). Now it
will be shown that x is an accumulation point of 4, which will complete the proof (B
will be closed, by Theorem 4). Let U be an open set containing x. There exists, by
definition,,y € U n B. Now, either y € 4, or y is an accumulation point of 4. In the
latter case, there exists z € U n 4. In any case, U contains some element of A4 (different
from x, since x ¢ 4), so x is an accumulation point of 4 as required. §

Theorem 6. Let A — R". Then x e bd(A) iff for every & > 0, D(x, €) contains points
of A and of R"\A (these points might consist of x itself)..

Proof: Let x € bd(4) = cl(4) n c(R"\A). Now, either xe A or xe R"\4. If xe 4,
then, by Theorem 5, x is an accumulation point of [R"\A, and the conclusion follows.
The case x € R"\4 and the converse are similar. ]

Theorem 7. A sequence x, in R" converges to x € R" iff for every ¢ > 0, there isan N
such that n > N implies ||x — x|| < s.

Proof: Suppose x, — x, and & > 0. Since D(x,5) is open, there isan N so k > N
implies x, € D(x,g), or d(x,x,) = ||*x — x| < & as required. Conversely, suppose the
condition holds and U is a neighborhood of x. Find & > 0 so D(x,5) ¢ U. Then there
isan N so k > N implies ||x, — x|| < ¢, thatis, x, € D(x,e) = U. |

Theorem 8. x, — x iff the components of x, converge to the components of x as sequences
of real numbers.

Proof: Let x, = (xi,...,x}) (we use superscripts for the components to avoid
confusion with the k). Suppose x, — x = (x!,.. "), Then, given ¢ > 0, choose N so
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k = N implies ||x, — x|| < & But,

" 172
Ik~ 2] <l = all = (Z (xh — x‘)2>
i=1

1 1

(why?), so that k > N also implies |x} — x!| <& Thus x} — x
xb = Xl

Conversely, suppose x;, — x/,foralli. Givene > 0, choose N so that |x} — x| < e/\/r_z
fork > Nandalli = 1,...,n(where N is the maximum of the N'’s required for each i).

Then

and similarly,

n

" I
llx — xl = (Zl (o — x‘)2>”2 < (Z f;)l e

=]

fork 2 N,sox,— x. |

Theorem 9.

(i) A set A = R is closed iff for every sequence x, € A which converges, the limit lies
in A. '
(i) For a set B c R", x € cl(B) iff there is a sequence x, € B with x, — x.

Progf:

(i) First, suppose 4 is closed. Suppose x, — x and x ¢ 4. Then, x is an accumulation
point of A4, for any neighborhood of x contains x, € 4 for k large. Hence x € 4, by
Theorem 4.

Conversely, we shall use Theorem 4 to show that A is closed. Let x be an accumulation
point of 4, and choose x, € D(x,1/k) n A. Then x, — x, since for any ¢ > 0, we can
choose N > 1/e; then k > N implies x, € D(x,g); see Figure 2-15. Hence, by hypothesis,
x e A, and so 4 is closed.

(i) The argument here is similar and we shall leave it as an exercise (Exercise 7). |

Theorem 10. A sequence x, in R converges to a point in R" iff it is a Cauchy sequence.

Proof: 1If x, converges to x, then for ¢ > 0, choose N so that k > N implies
llx, ~ xll < &/2. Then,fork, I = N, llx, ~ x|l = (3 — %) + (x ~ )l < |Ix — > +
[lx — x|l < &/2 + &2 = g, by the triangle inequality.

FIGURE 2-15 Accumulation points of a set.
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Conversely, suppose x, is a Cauchy sequence. Then, since |x} — xi| < [x, — x|,
the components are also Cauchy sequences on the real line. By completeness of R and
Theorem 3 of Chapter 1, x} converges to, say, x'. Then, by Theorem 8, x, converges
tox = (x!,...%). §

Theorem 11. A series Y. x, in R" converges iff for every & > 0, there is an N such that
k > N implies \|%, + xp4q + *+* + x4\l < & forall integersp =0,1,2,... .

Proof: Let s, = Y*  x. Then, by Theorem 105X, converges iff s, is a Cauchy
sequence. This is true iff for every & > 0 there is an N such that [ > N implies
lIs; = spaqll <eforallg=1,2,....But, s, — sl = %41 + <+ + x14l, so the
result follows withk =1 + landp = g — 1.

Theorem 12. If'Y x, converges absolutely, then Y. x, converges.

Proof: Thisfollows at once from Theorem 11 with the use of the triangle inequality
e + 0wl S el + o+ xell B

Theorem 13.

0 If il < 1, then 2""": o r" converges to 1/1 — r) and diverges (does not converge) if
Il = 1.

(ii) Comparison test: If 2“’ a, converges, @, > 0, and 0 < b, < a, then }7°
converges; if Zkul C, dwerges, ¢, >0,and 0 < ¢, < d,, then 2“’ d, diverges.

(iif) p-sertes test: 2‘” n~F converges lf p > 1 and diverges to oo (that is, the partial
sums increase wzthout bound) if p <

(iv) Ratio test: Suppose that limit |a,,+1/a,,| exists and is strictly less than 1. Then

n=+ o

2:":1 a, converges absolutely. If the limit is strictly greater than 1, the series diverges.
If the limit equals 1, the test is inconclusive.
(v) Root test: Suppose that limit (la,)""" exists and is strictly less than 1. Then 3> a,
B+ Q

converges absolutely. If the limit is strictly greater than 1, the series diverges; if
the limit equals 1, the test is inconclusive.

(vi) The integral test: If [ is continuous, non-negative, and monotone decreasing on
[1,+ oo, then Y= f(y) and §T f(x) dx converge or diverge together.

Proof:
(iy We have, by elementary algebra, that

=]

1 — !

Lbrdrd o +rm=
1-r

if r # 1. Clearly, r"*' = 0 as n— co if |r] < 1, and [r["*! = oo if |r| > 1. Thus we
have convergence if || < 1 and divergence if |r{ > 1. Obviously, N o diverges if
[r| = 1,sincer" 4 0.

(ii) The partial sums of the series 2“’ a, form a Cauchy sequence and thus the
partial sums of the series Zh b, also form a Cauchy sequence, since for any k and p
we have by + by, + -+ + b“,, S @ + @y + * 0+ @y, Hence Y° b, con-
verges. A positive series can diverge only to +co, so given M > 0, we can find k,
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such that k > k, implies that ¢; + ¢, + <+« + ¢, > M. Therefore, for k > k,,
dy+dy+ -4 dy>Ms0)"  dy alsodlverges to 0.

(iii) Firstsuppose that p < 1;inthiscase 1/ > 1/nforalln = 1,2,... . Therefore,
by (ii), 2‘” 1/u? will diverge if Z‘fz 1/n diverges. We recall the proof of this from
calculus ¥ If sg = 1/1 + 1/2 + -« + 1/k, then s, is a strictly increasing sequence of
positive real numbers. Write s,. as follows:

PR U CE L I C SR
S 27\37% 5767 77%

EARTRIeN ! +-~+1 21+4=+ 1+1 + 1+1+1+1 4o
k=T 41 2k 2 \4 4/."\8 8 8 8

TR ) IUY  DPUPRIY £ RPRNE
2 \2 2 2) 2°

Hence s, can be made arbitrarily large if k is made sufficiently large; thus 2:;1 1/n
diverges.
Now suppose that p > 1. If we let

I

i

1 1 P01
Sk=i;+§;+'3—p+ +k—p,

then s, is an increasing sequence of positive real numbers. On the other hand,

s _1 1 1 1 1 1 1
2k-t—-ﬁ+<ﬁ+'ﬁ>+<ﬂ+5+ﬁ-—p+ )
1 1 1 2 4 261
+ (gt ) <F R ey
1 1 1 1 1
=1-F+EF+ZF+"‘+(2,‘__I)”__I< i
1-—2['_'1

(why?) Thus the sequence {s;} is bounded from above by 1/(1 — 1/2°~!); hence
1 1/nf converges.
(iv) Suppose that limit |a,..;/a,| = r < 1. Choose 1 such that r < ' < 1 and let N

be such that n > N implies that

Ay 1
a"

1

Then |ay,| < layl (). Consider the series |a;| + <<« + lay| + layl ' + layl () +

* We can also prove (iii) by using the integral test for positive series (see vi of the theorem). The
demonstration given here however also proves the Cauchy Condensation Test: Let Z a, bea
series of positive terms with a,,, < a,. Then ) a, converges iff Z“’ 2/a,, converges (see G. J.
Porter, “An Alternative to the Integral Test for Infinite Series,” Amencan Mathematical Monthly
79 (1972), page 634).
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lay] ¢ -+ -+« . This converges to

lanl

"

lag| + <+ + lay-l +

By (ii) we can conclude that 3 | |a,| converges. If limit la,.1/a,l = r > 1, choose

such that 1 < ¢ < r and let N be such thatn > N 1mp11es that |a,.,/a,| > r'. Hence

lay+pl > ()" layl, so limit lay| = co, whereas the limit would have to be zero if the sum
n-+w

converged. Thus 2:’_1 a, diverges. To see that the test fails if limit|a,., /a,| = 1,
- n=+wm

consider the series 1 + 1+ 1 4 -+, and 2:’___1 1/n* for p > 1. In both cases
limit |a, . ,/a,} = 1, but the first series diverges and the second converges.
H-+ o0

(v) Suppose that limil(la,,l)”" = r < . Choose ' such that r < ' < | and N such

that n > N 1mplles that la'" < 3 in other words, |a,| < ()". The series |a;| +

lagl + <+ + lay—1l + W + )+ + «-- converges to |a;| + lay| + *** + lay-1| +

(r’)"/(l ~ r), so by (i), Y. | @ converges. If limit(ja,))'’" = r > 1, choose I < 1" < r
n—-+w

and N such that n > N implies that |a|' > ¢ or, in other words, |a,| > (+')". Hence
llmxt la,| = co and therefore, ' a, diverges.

To show that the test fails when 11m1t(|a [)}" = 1, observe that, by elementary

analysis,
1 1/n 1 1/n
limit(—) =1 and limit<—2> =1
n~+w \Nl = \ N

(take loganthms and use the fact that (log x)/x — 0 as x — c0.) But 2‘” 1/n diverges
and 2‘” 1/n? converges.

(vi) For this part we accept some elementary facts about integrals from calculus.
In Figure 2-16a the rectangles of areas a,, a,, . . . , a, enclose more area than that under
the curve from x = 1 to x = n + 1. Therefore, we have

n+1
a +a; +- - +a, ZJ J(x)dx
1
If we now consider Figure 2-16(b) and take the area from x = 1 to x = n we have
a,+a; +-- +a, \J S(x)dx

Adding a, to both sides
a+a,+ay+-+a,<a +J S(x) dx

Combining our two results, yields

n+1 #
J fMdx<a +a;+ - +a,<aq +Jf(x)dA
1

1

If the integral [ f(x) dx is finite, then the right-hand inequality implies that the series
2:‘; L% is also finite by the completeness property of R; p. 12. But if [P f(x) dx is
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FIGURE 2-16

infinite, the left-hand inequality shows that the series is also infinite. Hence, the series
and the integral converge or diverge together. §

Worked Examples for Chapter 2

1 Let § = {{x;,x,)e R*| (x| < 1,|x,] < 1}. Is § open or closed or neither? What
is the interior of §7
Solution: § is not open, since there is no neighborhood around any point of §
with x; = 1 which is entirely contained in §. See Figure 2-17. On the other hand
S is not closed, since

PZ\S = {(x;,x,) e R? I [x11 > 1, %] = 1}

and no neighborhood around a point of R*\S with x, = 1 is contained in R*|S.

Alternatively, we see that S is not closed by noting that the sequence (0, 1 - 1/n)
converges, but the limit point (0,1) does not lie in S (see Theorem 9).

We assert that int(S) = {(x;,%,) € R*||x;| < 1, |x,| < 1}. We cneck this by
showing that the members of this set are the interior points of 5. If [x,| < 1, |x,| < 1,
then the disc of center (x;,x,) and radius r = minimum{1 — |x|,1 — [x,|} lies in §.
The other points of § are not interior points as we have seen.
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FIGURE 2-17

As the student becomes more familiar with this type of argument, some of the
details may be omitted.

2. Show that if x is an accumulation point of aset § < R" then every open set containing
x contains infinitely many points of §.
Solution: We use proof by contradiction. Suppose there were an open set U
around x containing only finitely many points of S. Let x,, x,, . . ., x,, be the points
of S in U other than x. Let ¢ be the minimum of the numbers d(x,x,), d(x,x,), . . .,
d(x,x,), so that ¢ > 0. Then D(x,) contains no points of § other than x, which
contradicts the fact that x is an accumulation point of S.

3. I x = sup(S) for § = R, then x & cl(S).
Solution: By Theorem 5, it suffices to show that either x € §, or that x is an accumu-
lation point of S. By Theorem 2 in Chapter 1, for any ¢ > 0, there is & ye § with
d(x,y) < e. This means that if x ¢ S, x is an accumulation point of 5.

4. A sequence can converge to at most one point (limits are unique).
Solution: Let x, — x and x, — y. Given ¢ > 0, choose N such that k > N implies
lIxx — x|| < &/2, and M such that k > M implies ||x, ~ y|| < ¢2. Then,if k = N
k= M, we have ||x — y|| < ||x — x| + |lx, — y|| < ¢ (by the triangle inequality).
Since 0 < ||x — y|| < & holds for every g > 0, ||x — y|| = 0 and so x = y.

5. Write /' ="0(g) if g(x) > 0 for x sufficiently large and if f(x)/g(x) is bounded for x
sufficiently large. Write /" = o(g) if f/g goes to zero as x goes to +oco. Also write
[ ~ g (read fis asymptotic to g) if f/g — 1 as x = co. Prove the following:

(a) »* + x = O(x%

(b) x% 4+ x ~ x?

(©) Y™ = o(x).

Solution: We note that if /' is asymptotic to g then it will follow automatically
that f = O(g) (why 7). Thus (a) will follow from (b). But (b) is easy since we know that
(*? + x)/x* = 1 + 1/x goes to 1 as x goes to infinity. To prove (c) we note that
¢8% = x, 50 ¢ VPED)x = ¢! YEE-Io8X) Byt since log x — o as x — o0, +/log x/
logx— 0 as x — o so for x large, ./log x < (log x)/2 and hence for x large,
¢ V8 /x < e U932 which goes to zero as x — oo.
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Exercises for Chapter 2

v 1.

¢ 2.
¥ 3.

74,

25,
¢ 6.

7.
v 8.
2 9.
« 10.

s11.

4 13,

Discuss whether the following sets are open or closed:
(2) ]1,2[ inR! = R () [2,3]in R
(© ﬂ [-L1/n[in R (d) R"in R
(e) A hyperplane in R" (f) {re]0,1[ | ris rational} in R

(&) {(x,» E[RZIO<A l}in[R2 (h) {xeR”Illxll:l}in[R”.
Determine the interiors, closures, and boundaries of the sets in Exercise 1.

Let U be open in R" and U < A. Then show that U < int(4). What is the corre-
sponding statement for closed sets?

(a) Show that il x, — x in R™, then x € cl{x;,%,,. . .}. When is x an accumulation
point?

(b) Can a sequence have more than one accumulation point?

(¢) If x is an accumulation point of a set 4, prove that there is a sequence of distinct
points of 4 converging to x.

Show that x e int(4) iff there is an ¢ > 0 so that D(x,e) < 4.

Find the limits, if they exist, of these sequences in R2.

1
@ (¢-1r}) _ o (1)

o (e 5) 0 ().

Let U be open in R". Show that U = cl{U)\bd(U). Is this true for any set in R"?
Let § = R and S be bounded above. Show that sup(S) € § is closed.
Show that cl{4) = R"\(int(R"\4)).

Determine which of the following statements are true.

(a) int(cl(4)) = int(4)

b) cdiA)yn a4 =4

(¢) cl(int(4)) =

(d) bd(cl(4)) = bd(4) '
(e) If A is open, bd(4) < R"\4.

Show that in R", x,, — x iff for every ¢ > 0, there is an N such that m > N implies

llx,, — x|| < e (this differs from Theorem 7 in that here “<¢” is replaced by “<¢”)

. Prove the following properties (for subsets of R").

(a) int(int(4)) = int(4)
(b) int(4 w B) o int(4) L iny(B)
(¢) int(4 N B) = int(A4) N int(B).

Show that ci(4) = A U bd(A) and int(4) = A\bd(A).
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#14.

s 15.

a16.

a17.
»18.

» 19,

»20.

s 21.

» 22,

623,
v 24.

425,
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Prove the following (for subsets of R").
(a) cl(cl(4)) = ci(4)

(b) cl(4 v B) = cl(4) v cl(B)

{c) d(4 N B) < cl(4) N cI(B).

Prove the following (for subsets of R").

(a) bd(4) = bd(R"\4)

(b) bd(bd(4)) < bd(4)

(c) bd(4 U B) < bd(4) U bd(B) = bd(4 U B)UAUB
{d) bd(bd(bd(4))) = bd(bd(4)).

Leta, = \/2,a, = (/D% ..., a4y, = (/2. Show limit a, exists and compute
the limit.

If Y, x, converges absolutely in R", then show that . x,, sin m converges.

If x,ye R" and x # y, then prove that there exist open sets U and V such that
xeU,yeV,and UnV = .

Define a limit point of a set A to be a point x € R", such that if U is any neighborhood

of x,then U n 4 # (J.

(a) What is the difference between limit points and accumulation points? Give
examples.

(b) If x is a limit point of 4, then show that there is a sequence x, € 4 with x, — x.

(c) If x is an accumulation point of 4, then show that x is a limit point of 4. Is the
converse true?

(d) If=x is a limit point of 4 and x ¢ A, then show that x is an accumulation point.

(e) Prove: a set is closed iff it contains all of its limit points.

Foraset A and x € R", let d(x,4) = inf{d(x,y) | y€ A}, and for g > 0, let D(4,8) =

{x|d(x,4) < &}.

(a) Show that D(4,¢) is open. R

(b) Let A = R" and N, = {x € R"| d(x,4) < ¢}, where ¢ > 0. Show that N, is
closed and that A4 is closed iff A = () {N,|e > 0}.

(c) Give some examples.

Prove that a sequence x, is a Cauchy sequence in R" iff for every neighborhood
U of 0, there is an N such that k, ! > N implies x, — x,e U.

Prove that the interior of a set A < R" is the union of all the subsets of 4 which are
open. Deduce that A is open iff 4 = int(4). Also, give a direct proof of the latter
fact using the definitions.

Prove Theorem 3. [Hint: Use Exercise 14 of the Introductory chapter.]

Identify R**™ with R* x R". Show that 4 < R"*" is open iff for each (x,y)€ 4,
with x € R", y € R" there exist open sets U « R", V¥ <« R" with xe U, ye V, such
that U x V < A. Deduce that the product of open sets is open.

Prove that a set 4 = R" is open iff we can write 4 as the union of some family of
e-discs.
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«27.
¢ 28.

229.

30.

#31.
32,

¢ 33,

¢ 34,
l’ 35¢
> 36.

¢ 37.
# 38,
#39,

# 40.

241.
v 4.

43,
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Define the sequence of numbers a, by

1 L+ 1
ye ey Oy = P —
1+(10 1+an——1

Show g, is a convergent sequence. Find the limit.
Let § = {(x,y)eR?*|xp > 1} and B = {d((x,»),(0,0) | (x,y) € §}. Find inf(B).

Give examples of :

(a) an infinite set in R with no accumulation points

(b) a non-empty subset of R which is contained in its set of accumulation points

(c) a subset of R which has infinitely many accumulation points but which contains
none of them

(d) a set A4 such that bd(A4) = cl(4).

a0=1,a1=1+

Let 4, B — R"and x be an accumulation point of 4 U B. Must x be an accumulation
point of either 4"or B?

Show that any open set in R is a union of disjoint open intervals. Is this sort of
result true in R for n > 1 where we define an open interval as the Cartesian product
of n open intervals, Ja,,b,[ x - x Ja,b,[?

Let 4' denote the set of accumulation points of a set 4. Prove that 4’ is closed.
Is (A’ = A true forall A7

Let A « R" be closed and x,& 4 a Cauchy sequence. Prove x, converges to a
point in 4.

Let s, be a bounded sequence of real numbers. Assume 2s, < 5,1 + §,,;. Show
limit(sn+l -s,) =0 '

o

Let x, € R* and d(x,.,%,) < rd(x,,x,_,) where 0 < r < 1. Show x, converges.
Show that any family of disjoint non-empty open sets of real numbers is countable.

Let 4, B = R" be closed sets. Does 4 + B = {x + y|xe 4 and ye B} have to
be closed?

For A = R, prove bd(4) = [4 n c(R"\A)] U [el{A)\A].
Let x, € R" satisfy ||x, — x| < 1/k + 1/I. Prove that x, converges.

LetS < Rbe bounded above and below. Prove sup(S) — inf(S) = sup{x — y[xe §
and ye S}. '
Suppose in R that for all n, a, < b,, a, < a,4,, and b,,, < b,. Prove that q,
converges.

Let A4, be subsets of R", 4,.; = 4,, 4, # &, but ﬂ“’ A, = J. Suppose
xe ﬂ"=l cl(4,). Show x is an accumulatlon point of 4,.

Let A = R" and x € R". Define d(x,4) = inf{d(x,y) | y€ 4} (See also Exercise 20).
Must there be a z € 4 such that d(x,4) = d(x,z)?

Letx, = \/3, cvey Xy = /3 + x,.,. Compute limit x,.
i~
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44,

45,
46.
47.

48,

49,

50.

51,
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Aset A = R'issaid tobedensein B ¢ R"if B < cl{4). If 4 is dense in R" and U is
open, prove 4 n U is dense in U. Is this true if U is not open?

Show that x'°8* = o(e") (see Example 5, p. 56).

If f = o(g) and if g(x) = 0 as x — co then show that ¢/ = o(e?).

Show that limit(x log x)/e* = 0by showing that x = o(¢*/*)and that log x = o(e*/?).
Prove the following generalizations of the ratio and root tests:

(a) ifa, > Oand lim sup a,./a, < ltheny a,convergesandif lim inf a,,,/a, > 1

then ¥ a, dxverges,

(b) if a, = 0 and if hm sup\'/—,_, < 1 (respectively > 1) then Za converges
(respectively dlverges) (See Exercise 10, Chapter 1 for treatment of lim sup and
lim inf). '

Prove Raabe’s test: if a, > 0 and if a,,,/a, < 1 ~ A/n for A > | some fixed

constant and n sufficiently large, then 2 a, converges. Similarly show that if

a,.1/a, = | — i/ntheny a,diverges. [Hint:show that a, = O(:™*) by.considering
P, = H (1 — AJk) and establishing that log P, = — 4 log n + 0O(1).]
Use the above result to prove that the hypergeometric series converges whose
general term is
e+ A= DB A1) (f+ 0~ 1)
W= L2 n gy + 1)@ +n—1

where o, f8, and y are not negative integers,

Show that for x sufficiently large the function f(x) = (» cos? x + sin? x)¢** is
monotonic and tends to -+ oo, but that neither the ratio f(x)/x!2¢* nor its reciprocal
is bounded.

(a) Ifa, > 0,n=1,2,...,show that
lim inf 4, /4, < lim inf Ju, < lim sup \'/_ < lim sup u,, /u, .

(See Exercise 10, Chapter 1 for the definition of lim sup and lim inf.)

+ (b) Deduce that if lim u,,/u, = A then lim \Yu, = 4.
{

c) Show that the converse of part (b) is false by use of the sequence u,, = ty,,, =
AN .

. @) lim = /a1 = 26"

52,

.

&

~

, nso R

Test the following series for convergence.
) ~k

= e
(a),;)/](+1 ,;Ok +1

o, Jn+1 i log(lke + 1) - logk
© Z n? —3n+ 1 @ ,Z’l tan~ 1(2/k)

n=0

(e) isin(n’“), o real, >0 Pl0) i %; )
n=1

n=



Chapter

Compact and
Connected Sets

In this chapter, we study two of the most important and useful kinds
of sets in R". Intuitively, we want to say that a set in R" is compact when it is
closed and is contained in a bounded region, and that a set’is connected when
it is in “‘one piece.” As usual, it is necessary to turn these ideas into rigorous
definitions. Figure 3-1 gives some examples. The fruitfulness of these notions
is revealed in Chapter 4, where they are applied to the study of continuous
functions.

connected not connected

FIGURE 3-1 Compact and connected sets in R?.
61
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3.1 Compact Sets: The Heine-Bore!l and
Bolzano-Weierstrass Theorems

Our first task will be to introduce some terminology prior to giving a precise
definition of compactness for sets in R". We say that a set 4 = R" is bounded
iff there is a constant M = 0 such that 4 = D(0,M). Thus a set is bounded
when it can be enclosed in some (large) disc D(0,M) about the origin; in other
words, ||x|| < M for all xe A. A cover of a set 4 is a collection {U,} of sets
whose union contains 4; it is an open cover if each U, is open. A subcover of a
given cover is merely a subcollection whose union also contains 4 or, as we
say, covers A; it is a finite subcover if the subcollection contains only a finite
number of sets. For example, the set of discs {D((x,0),1) | x € R} in R* covers
the real axis, and the subcollection of all discs D((n,0),1) centered at integer
points on the real line forms a subcover. Note that the discs D{(n,0),1)
centered at even integer points on the real line do not form a subcovering
(why?).

Note: Open covers are not necessarily countable collections of open sets,

We now state the main theorem and an associated definition.

Theorem 1. Let A = R'. Then the following conditions are
equivalent ;
(i) Ais closed and bounded
(it Every open cover of A has a finite subcover.
(ili) Every sequencein A has a subsequence which converges to a point
of A.

Definition 1. A subset of R" satisfying one (and hence all) of the
conditions (i), (ii), (iii) of Theorem 1 is called compact.

The equivalence of (i) and (ii) is often called the Heine-Borel theorem, while
the assertion.that (i) and (iii) are equivalent is called the Bolzano-Weierstrass
theorem,

Note: For metric spaces, in general (ii) and (iii) are equivalent but (i) is
not equivalent to (i) and (iii); for arbitrary metric spaces one defines com-
pactness by either of properties (ii) or (iii). The equivalence of (i) with (ii) and
(iii) is a special and very important property of R".

The Bolzano-Weierstrass theorem is very reasonable intuitively. If 4 is
bounded, then any sequence of points in 4 must “bunch up” somewhere,
and the ““bunching point” (there can be more than one) must lie in 4 if 4 is
closed (see Theorem 9, Chapter 2).

The Heine-Borel theorem is less obvious intuitively. Perhaps the best way
to see its plausibility is to consider some examples.
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ExampLE 1. The entire real lipe R is not compact for it is unbounded.
Notice that

{Dn,1) =In — Ln + 1[|n = 0,£1,42,.. .}

is an open cover of R but does not have a finite subcover (why)?

ExampLE 2. Let 4 = ]0,1]. Consider the open cover {]1/n2[|n =
1,2,3,.. .}. (Why does the union contain all of 4?) It, too, cannot have an
open subcover. This time, condition (ii) fails because A is not closed; the
point 0 is “missing” from A. This collection is not a cover for [0,1] and any
open cover for [0,1] must have a finite subcover—the above phenomenon
cannot happen.

There is anothef equivalent way of formulating (iii) which is sometimes
useful.

(iiiy Every infinite subset of A has an accumulation point in A.

We shall leave to the student the task of showing that (iii) is equivalent to
(iii). (See Exercise 3, at the end of the chapter.)

There is an alternative way of stating condition (ii) in terms of closed sets.
This is done by means of the “finite intersection property for A4.” We say that
a collection of sets {4} has the finite intersection property for A iff the inter-
section of any finite number of 4, with 4 is not void. Then (i) is equivalent
to (ii)'.

(it) Every collection of closed sets with the finite intersection property
for A has a non-empty intersection with A.

As we shall see in the proof (p. 72), (ii) is the same statement as (ii)
expressed in terms of the collection of (closed) complements of the open
cover in (ii).

ExampLE 3. Determine which of the followmg are compact. )
@) {xeR|x = 0}.

() [0,1] v [2,3].

©) {(x.y)e R*|x* + y* < 1}.

Solution: (a) Non-compact because it is unbounded. (b) Compact because
it is a closed set and is bounded. (c) Non-compact because it fails to be closed.

ExamPLE 4. Let x, be a sequence of points in R* with ||x,|| < 3 for all k.
Show that x, has a convergent subsequence.
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Solution: Theset A = {xe R"|||x| < 3} is closed and bounded, hence
compact. Since x, € A, we can apply Theorem 1 (iii) to obtain the conclusion.

ExAMPLE 5. In Theorem 1 (ii), can “every” be replaced by “some?”

Solution: No. Let A = R and consider the open cover consisting of the
single open set R. This certainly has a finite subcover, namely itself, but R,
being unbounded, is not compact.

s
" ExampLE 6. Let 4 = {0} u {1,1/2,...,1/n,...}. Show directly that con-
dition (ii) of Theorem 1 holds.

Solution: Let {U,} be an arbitrary open cover of A. We must show that
there is a finite subcover. Now 0 lies in one of the open sets, say 0 e U,.
Since U, is open and 1/n — 0, there is an N such that 1/N, 1/N + 1),...lie
inU, . Let1eU,,..., 1N ~ 1)e Uy. Then U,, ..., Uy is a finite sub-
cover since it is a finite subcollection of the {U,} and it includes all of the
points of 4. Notice that if 4 were the set {1,1/2,. . .} then the argument would
not work.,

Exercises for Section 3.1

2’1, Which of the following sets are compact? gl
“(a) {xeR|0 < x < landxis irrational}, |« ‘ ‘
®) {xeR*|0<x< 1) vul e ‘
© {(xy) e R2 [y = 1} 0 {(xy) [ 2 + y* < 5} vl
22, Let r,,ry,r3, ... be an enumeration of the rational numbers in [0,1]. Show that
there is a convergent subsequence.

» 3. Let x, — x be a convergent sequence in R".
{a) Show that {x,} v {x} is compact.
(b) Verify explicitly condition (ii) of Theorem 1.

44, Let A be a bounded set. Prove cl(4) is compact.

2 5. Let 4 be an infinite set with a single accumulation point in 4. Must 4 be compact?

.

3.2 'Nested Set Property

There is an important consequence of Theorem 1 called the nested set
property.

Theorem 2. Let F, be a sequence of compact non-empty sets in R"
suchthat F, ., < F forallk = 1,2,... . Then thereis at least one

point in n:": ) F.



NESTED SET PROPERTY 65
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FIGURE 3-2 Nested set property.

Intuitively, the sets F, are getting smaller and smaller, so it seems very
reasonable that there should be a point in all of them. However if the F, are
non-compact the intersection can be empty (see Example 2). Thus the actual
proof requires more care.

One can prove this precisely by using the Bolzano-Weierstrass theorem.
Pick x, € F, for each k. Then the x, have a convergent subsequence, as they all
lie in F,, which is compact. The limit point then must lie in all of the sets
F, because they are closed (see Figure 3-2 and Exercise 4).

An even easier proof which uses Theorem 1(ji) is found at the end of the
chapter.

ExampLE 1. Verify Theorem 2 for F, = [0,1/k] = R.

Solution: Each F, is compact and clearly, F, ., = F,. The intersection
is {0} which is non-empty.
Exampri 2. Is Theorem 2 true if “compact non-empty” is replaced by
“open non-empty”’ or “‘closed non-empty?”’

Solution: No. Let F, = Jk,00[ or [k,o0[.

Exercises for Section 3.2
L. Verify Theorem 2 for F, = {xe R|x > 0,2 < x? < 2 + 1/k}.

2. Is Theorem 2 true if ‘“‘compact non-empty’ is replaced by ‘“‘open bounded
non-empty’’?

3. Let x, — x be convergent in R". Verify the validity of Theorem 2 for F, =
{x;|1 2 k} U {x}. What happens if F;, = {x, ]! = k}?

4, Let x, — x be convergent in R". Let & be a family of closed sets with the property
that for each 4 € s, there is an N such that k > N implies x, € A. Prove that
xend.
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3.3 Path-Connected Sets

The second important topic to be discussed in this chapter is connectedness.
We know intuitively to what kind of sets we would like to apply the term

“connected.” However, our intuition can fail in judging more complicated
sets. For example, how do we decide if the set {(x,sin 1/x)|x > 0} U
{(0y)| y e [—1,1]} in R? is connected ? See Figure 3-3. Therefore, we would
like to formulate a sound mathematical definition upon which we can depend.

There are, in fact, two different but closely related, notions of connectedness.
The more intuitive and applicable of these is that of path-connectedness, so
we begin with it. Our definition must first define what is meant by a curve
(or path) joining two points.

contmuous Here Xxmay or may not equal y andb = a. In Chapter 4,
we shall study continuous mappings in detail, but for now, let us
call ¢ continuous if

(e = ) = (ot) — (1))

for every sequence ¢, in [a,b] converging to some ¢ € [a,b]. (The
student will recall from earlier courses that, intuitively a con-
tinuoys path is one with no breaks or jumps in it.) A path ¢ is said
to lie in a set A if p(t) € A for all t € [a,b]. See Figure 3-4.

We say that a set A is path-connected if any two points in the set
can be joined by a continuous path lying in the set 4.

|R2

[y ey

FIGURE 3-3 Connected?
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FIGURE 3-4 Curve joining x, y in A.

For example, it is evident that the region 4 in Figure 3-4 is path-connected.
Another path-connected set is the interval [0,1] itself. To prove this, let
x,y €[0,1] and define ¢: [0,1] — R by ¢(f) = (y — x)t + x. This is a path
connecting x and y, and it lies in 4 = [0,1].

Using the above definition of path-connected, a little thought will con-
vince the reader that the set in Figure 3-3 is not path-connected, although
"the actual proof of this fact is not simple. Most of the time it is rather easy to
determine if a set is path-connected. Simply see if any two points can be
joined by a continuous curve lying in the set, and this is usually clear geo-
metrically. The second notion of connectedness is harder to check directly
but will be very useful. It appears in Section 3.4.

ExaMPLE 1. Which of the following sets are path-connected?
(@) [0,3].
(b) [1,2] u [3.4].
©) {(x,»)eR*|0 < x < 1}.
@) {(x,») e R*|0 < x* + y* < 1}.
Solution: Only (b) is not path-connected and is clear from a study of
Figure 3-5.

ExamPLE 2. Must a path-connected set be closed? Or open?

Solution: No; [0,1], J0,1[, [0,1[ are all path-connected.
ExaMPLE 3. Let ¢: [0,1] — R® be a continuous path, and ¥ = ¢([0,1]).
Show that ¢ is path-connected.

Solution: This is intuitively clear, for we can use the path ¢ itself to join
two points on ¥. Precisely, if x = ¢(a), y = @(b), where 0 < a< b < 1,
let c: [a,b] — R3, c(t) = ¢(?). Then, ¢ is a path joining x to y and ¢ lies in %.
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0 3 1 2 3 4
s 0§z P |

(a) v ¥

©

FIGURE 3-5

Exercises for Section 3.3

1. Determine which of the following sets are path-connected.
¢ (a) {»e[0,1]] x is rational}.
2 {b) {(x,y)e R*|xy = land x > 1} U {(x,y) e R? [xy<landx < 1}
= (o) {320 e R} »? + y? < z} U {(x,3,2) | x* + y* + 2% > 3},
s (@) () eR0<x < 1Ju{(0)]1 <x <2}
2. Let A = R be path-connected. Give plausible arguments that 4 must be an interval
(closed, open, or half-open). Are things as simple in R??

3. Let ¢: [a,b] =-R® be a continuous path and e < ¢ < d < b. Let € = {p{t) | ¢ <
t < d}. Must ¢~ (%) be path-connected?

3.4 Connected Sets

Definition 3. A set 4 = R" is called connected if there do not
‘exist two non-empty, open sets U, ¥ suchthat A c Uu V¥V, A n
U# B, ANV FandAnUnV =, '

Intuitively, the sets U and V would separate A into two pieces, and if
this happens, we want to say A is not connected (Figure 3-6).

The set in Figure 3-3 canbe shown to be connected but not path-connected ;
thus the two notions are not the same. However, there is a valid relation
between the two ideas, which is presented in the next theorem.
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~ - ~

~ -

FIGURE 3-6 A is neither connected
nor path-connected. ,

Theorem 3. If a set A is path-connected, then A is connected.

Use of this theorem is perhaps the easiest way to identify a connected set.
The theorem is reasonable, intuitively. In fact, the (false) converse theorem is
also reasonable. Here then is an example of two notions which are closely
related, and which are intuitively almost identical, but discerning the true
relationship between them requires more care. (The set in Figure 3-3 is
connected but not path-connected.)

Ifa set A is not connected (and hence not path-connected), we can divide it
up into pieces, or components. More precisely, a component of a set A is a
connected subset 4, = A such that there is no connected set in 4 containing
Ay, other than A, itself. See Figure 3-6. Thus we see that a component is a
maximal connected subset. One can define path-component in a similar way,
using path-connectedness instead of connectedness. Some properties of
components are found in the exergises of the end of the chapter.

ExampLel. IsZ = {...,-2,—1,0,123,. ..} = R connected?

Solution: No, for if U = ]1/2,00[, V = ]—00,1/4[, then Z = U L ¥,
ZnU={123,.}# T, ZnV={.,-2,—10} # FJ,and Zn U N
V = . Hence Z is not connected. It is also evident that Z is not path-
connected, but observe that this fact cannot be used to conclude that Z is
not connected.

ExampLe 2. Is {(x,y) e R?| 0 < x* + y* < 1} connected ?

Solution; As in Example 1d of Section 3.3, we know that this set is path-
connected. Hence, by Theorem 3, it is connected. To prove this directly
would be difficult.

Exercises for Section 3.4
\{""1. Is [0,1] U }2,3] connected? Prove or disprove.

N2 Is {(x,y) e R*|0 < x < 1} U {(x,0)| I < x < 2} connected? Prove or disprove.
VAR
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3. Let 4 = R? be path-connected. Regarding 4 < R? as a subset of the x — y plane,
_show that A4 is path-connected. Can you make a similar argument for connected ?

4. Discuss the components of:
(@ [0,1]u 23] =R
®Z=1{.,~2-10,12..}
(©) {x€[0,13] x is rational}.

Theorem Proofs for Chapter 3

Theorem 1. Let A < R". Then the following conditions are equivalent:
(i) A is closed and bounded.
(i) Every open cover of A has a finite subcover.
(iif) Every sequence in A has a subsequence whicl converges to a point of A.
(iiy Every collection of closed sets with the finite intersection property for A has a
non-empty intersection with A.

Proof: We shall first prove that (i) = (ii) = (iii) = (i), and then (ii) <> (iiy. First,
let us show that (i) = (ii), which is probably the most difficult. To do this, we begin
by proving a special case.

Lemma 1. The Heine-Borel property (ii) holds for closed intervals [ab]in R, |

Proof: Let % = {U,} be an open covering of [a,b]. Define 4 = {xe [a,b]|the
set i:a,x] can be covered by a finite collection of the U;}. We want to show that 4 =
[ab]. To this end, let ¢ = sup(4). The sup exists because 4 # & (since a€ A), and 4
is bounded above by b. Also, since [a,b] is closed, ¢ € [a,b] (see Example 3, Chapter 2).
Suppose ce U,,; such a U, exists since the U;’s cover [a,b]. Since U, is open, there is
an & > 0, such that Jc — &, + ¢ = U,,. Since ¢ = sup(d4), there exists an x € 4,
such that ¢ — ¢ < x < ¢ (see Theorem 2, Chapter 1). Because x € 4, [a,x] has a finite
subcover, say, Uy, . . ., Uy; then [a,c + &/2] also has the finite subcover Uy, ..., Uy,
U, Thus we conclude that c € 4 and moreover, that ¢ = b. Indeed, if ¢ < b, we would
get a member of 4 larger than ¢, since [a,c + ¢/2] has a finite subcover. The latter
cannot happen since ¢ = sup(4). §

Question. Why does this fail for Ja,b], [a,b[, or for [a,c0[?

Lemma 2. If A = R"is compact and x,& R" then A x {x,} is compact.

Proof: Let % be an open cover of 4 x {xo}, and ¥" = {V |V = {y|(y,xo)€ U},
Ue %}. Then 7 is an open cover of 4 in R", and hence ¥~ has a finite subcover of
A4, 7" = {V,,.. .. i}. Bach V;e 7" corresponds to a U;e %, and %' = {U,,...,U,} is
then a finite subcover in % of 4 x {xo}. &

Lemma 3. If [~R,R]""! = R""! has the Heine-Borel property, then [—R,R]" = R
las the Heine-Borel property. where [R,R]" = [~R,R] x * -+ x [—R,R], u times.
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Proof: Suppose [~R,R]""! has the Heine-Borel property and that % is an open
cover of [—R,R]". Let S = {xe [—R,R]|[[—R,R]""! x [—R,x] can be covered by
a finite number of sets in %}. Now —R € S, since [ — R,R]"™! satisfies (ii) by hypothesis,
and so by Lemma 2 [~ R,R]"™! x {~R} has a finite subcover in %, Also, S is bounded
above by R and therefore S has a supremum, say x,. We will show that x, = R which
will prove the lemma.

Let %' =% be a finite subcover of [—R,R]"™! x {x,}. For each (y,x,)€
[—R.R]"™! x {x,} there exists ¢, > 0 such that D((y,xo),\/i g,) is covered by %'. But
V, = D(y,g,) X Jxg — £,.%9 + g[ = D((y,xo),ﬁ &) S0 V, is covered by %'. Consider
the open cover ¥" = {V,|ye[—RR]""'} of [-R,R]""" x {x5}. By Lemma 2,
¥ hasa finite subcover of [~ R,RT"™* x {x¢},s2y {¥},,. . ,V,,,}. Lete = inf{s,,,. . w6y}
Then [~R.RT"™' x Jxg —exg + e[ =« UL, ¥, and so [=R.R]"™! x Jxo — &,
xq + &f is covered by %',

Now with this ¢, there exists x € § such that x; — ¢ < x < x,. Since x € S, there
exists a finite subcover #” < % which covers [—R,R]"™! x [~R,x], and @' L %"
is a finite cover of [~R,R]""! x [—R,xq + ¢[. Thus x, € S. Suppose x, < R, then
choose ¢ such that x, + 6 <R and x4+ 6 < xo + & Thus [—R,R]"! x
[—R,xo + 6] is covered by %' U %", and x, + 6 € §, a contradiction, and therefore
xo = R.

.We will be able to prove our main theorem after we have one more lemma with which
to work.

Lemma 4. If A satisfies (i), B is closed and B < A, then B also satisfies (ii).

Proof: Let {U,} be an open covering of B, and let V = R"\B. Then {U,V} is an
open cover of 4. If {Uy,...,Uy,V} is a finite subcover of 4, then {U,,.. ..Uy} is a
finite subcover for B. § ’

Theorem 1 Proof that (i)=- (ii): Since A4 is bounded, it lies in some cube
[—R,R}". By Lemma 3 and induction on », this cube satisfies (ii). By Lemma 4, 4 does
also, since A is closed. §

Theorem 1 Proof that (ii) = (iii): ' Suppose the sequence x, € A4 has no convergent
subsequences. In particular, this means that x, has an infinity of distinct points, say,
V1> Y2, - - - » Since there are no convergent subsequences, there is a neighborhood U,
of y, containing no other y;. This is because if every neighborhood of y, contained
another y; we could, by choosing the neighborhoods D(y,,1/m), m = 1,2, ... select
out a subsequence converging to y,. Also, we claim that the set y,, y,, ... is closed.
Indeed, it has no accumulation points by the assumption that there are no convergent
subsequences (see Exercise 4 at the end of Chapter 2). Now, by Lemma 3 above,
{y1,y2,. . .} satisfies (ii). But {U,} is an open cover which has no finite subcover, a
contradiction. Thus x, has a convergent subsequencgJTo show that the limit lies in A
amounts to showing that A is closed. We leave this to Exercise 20. §

Theorem 1 Proof that (iii) = (i): First, we show that A is closed. For this, we use
Theorem 9, Chapter 2. Consider a sequence x;, — x with x, € 4. By (iii), the limit lies
in A, so A is closed.
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Next, we prove that A is bounded. Suppose, in fact, 4 is not bounded. Then there
are points x, € 4 with |Ix)| = k, k = 1,2, 3, ... . This implies that the sequence x,
cannot have any convergent subsequences since, if y was a limit point, ||y|| =
I'Lmit llxil = oo (see Exercise 16). This is impossible if we have ye R". §

Theorem 1 Proof that (i) <> (ii): First, we prove that (i) = (iiy. Let {F,} be a
collection of closed sets and let U, = R*\F;,s0 U, is open. Suppose that 4 N (ﬂ;’il F) =
. Then, taking complements, this means that the U, cover 4. Being an open covering,
there is a finite subcovering (by assumption (ii)) say, 4 ¢ U, v+ U Uy. Then
An(F,n-nFy) =, so {F;} does not have the finite intersection property.
Thus if {F;} is a collection of closed sets with the finite intersection property, then
An {Fl} # Q'

Finally, we show (iiy = (ii). Indeed, let {U;} be an open covering of 4 and let
F;=R\U, Then 4 n (), F) = &, and so by (ii), {F;} cannot have the finite inter-
section property for 4. Thus 4 N (F; n - N Fy) = ¢ for some members F, ..., Fy
of the collection. Hence U, . . ., Uy is the required finite subcover. Hi

Theorem 2. Let F, be a sequence of compact nonempty sets in R* such that Fy,, < F,
forallke = 1,2,... . Then(\*  F, # &.

Proof: Let us observe that in the compact set 4 = F,,thesets F|, F,, ... have the
finite intersection property. Indeed, the intersection of any finite collection equals the
F, with the highest index. Thus, since (ii)’ holds for compact sets, we have

” Fin éle) = k(-jl{F,‘} #. B

Theorem 3. If a set A is path- connected, then A is connected.
Again, we begin by first proving a special case of the theorem.*

Lemma 5. The interval [ab] is connected

Progf: Suppose the interval were not connected. Then there would be two open
sets U and ¥ with U n [ab] # & and Vn[ab] # &, [ab] nUNnV = & and
[a,b] = U u V. Further, suppose that be V. Let ¢ = sup(U n [a,b]), which exists as
this .set is bounded above. Now U n [a,b] is closed, since its complement is V U
(R\[a,b]), which is open. Thus ce U n [a,b] (see Exercise 8, Chapter 2). Now ¢ # b,
since c ¢ V and b e V. Any neighborhood of ¢ intersects ¥ n [a,b] since ¢ # b and no
neighborhood of ¢ can be entirely contained in U as ¢ = sup(U n [a,b]), so that ¢ is
anaccumulation pointof ¥ n [a,b]. Butaswith U, V n [a,b]is closed,soce ¥ n [a,b].
This contradicts the fact that ¥V n U n [ab] = &. 1§

Proqof of Theorem 3: Suppose A is not connected. Then, by definition, there exist
opensets U, Vsuchthat A c UuV,AnUnV =g UnNnA4ds# JF,andVnA#£J.

* It is not necessary to prove Lemma 3 first; one can proceed directly as well, but it seems useful
to note that the crux of the argument has to do with connectivity of an interval,
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Choose xe U n dand ye ¥ n A. Since A4 is path-connected, there is a path ¢: [a,b] —
R"in A joining x and y. Set Uy = ¢~ '(U) and ¥, = ¢~ {V), so Uy, ¥, = [a,b]. Now
U, is closed, because if we let t, — t, with ¢, € Uy, then, by continuity of ¢, @(t,) — @(¢);
but since ¥ is open, ¢@{t) ¢ V, or else ¢(t;) € V for large k. Hence ¢(t)e U n Aorte U,,.
Thus U, is closed. Similarly, V¥, is closed. Let U’ = J~oo,a[ W (R\Vp), and V' =
Jb.00[ w (R\Uy), which are open sets. Observe that U’ n [a,b] # J (it contains a),
V' nfab] # & (it contains b), U' n V' = &, and U’ v V' o [a,b]. Thus [a,b] is
not connected, contradicting Lemma 5. §

Worked Examples for Chapter 3

1. Show that 4 = {xe R’ | ||x|| < 1} is compact and connected.
Solution: To show that A is compact, we show it is closed and bounded. To show
thatitis closed, consider R\4 = {xe R"||lx|| > 1} = B.Forxe B,D(x, |z}l — ) =
B (see Theorem 1, Chapter 2), so B is open, and hence A is closed. It is obvious that
A is bounded, since 4 < D(0,2) and therefore A is compact.

To show that A is connected, we show that A4 is path-connected. Let x, y€ 4.
Then the straight line joining x, y is the required path. Explicitly, use o: [0,1] — R",
o(t) = (1 — t)x + ty. One sees that @(t)e 4 since @) < (I — o) (x| + ¢[y] <
(1 — t) + t = 1 by the triangle inequality.

2. Let4 «R", xe d,and ye [R”\A. Let ¢: [0,1] — R" be a (continuous) path joining
x and y. Show that there is a ¢ such that ¢(t) € bd(4).
Solution: Intuitively, this result says that a path which joins a set to its complement
must pierce the boundary of the set at some point. See Figure 3-7.

Let B = {xe[0,1]|([0,x]) = 4} = [0,1]. Now B # J, since 0e B. Let
¢t = sup(B). We shall show that ¢(t) € bd(4). Let U be a neighborhood of ¢(t). Choose
t, € [0,t], t, — t,such that o(t,) € A. Thisis possible by definition of B. Then ¢(t,) € U
for large k by continuity of ¢. By definition of ¢, there is a point s such thatt < s, <
t -+ 1/k and such that ¢(s,) ¢ 4. Now s, — t, so by continuity of ¢, ¢(s)e U for k
large enough, Thus U contains points of 4 and [R"\A, and so, by Theorem 6 of Chapter
2, o(t) e bd(4).

3. Prove: A set 4 < Ris connected iff it is an interval—an interval is a set of the form
[ab], [a,b], Ja,b], or Ja,b[, where a or b can be =+ co on an open end of the interval,

3

pierce point

24

FIGURE 3-7 A path joining 4 and R"\A.
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Solution: We have already seen that intervals are connected because they are
path-connected. Now, for the converse, assume that A is not an interval. We shall
show that it is not connected. Saying 4 is not an interval means that there exist
points x, y,zsuch that x < y < z;x,ze A and y ¢ 4. (Why?). Then U = ]—o0,y[
and V = Jy,co[ areopensetssuchthat A c Uu ,UNnVnd=FUnA £ &,
and ¥V n 4 # . Thus 4 is not connected.

Exercises for Chapter 3

& 1. Which of the following sets are compact? Which are connected?

e 4,

o5,

6.

+7.

+ 8.

59,

@) {(x1,x2) e R?| x| < 1}

(b) {xeR"|lIx|| < 10}.

© {xe B |1 < x| <2).

(d) Z = {integers in R}.

(e) A finite set in R™.

(f) {x eR"||Ix|| = 1} (distinguish between the cases n = 1 and n > 2).
(g) Perimeter of the unit square in R2,
(h) The boundary of a bounded set.
() The rationals in [0,1].

(i) A closed set in [0,1].

. Prove that a set 4 = R" is not connected iff we can write 4 < F, U F,, where

F,,Fyareclosed, AnF, nF, = &, F nA+# @ F,nA+ &

. Prove the following assertions.

{a) A sét 4 is compact iff every infinite subset has an accumulation point in A.
(b) A bounded infinite set 4 has an accumulation point (not necessarily in 4).

Show that a set A4 is bounded iff there is a constant M such that d(x,y) < M for
all », ye A. Give a plausible definition of the diameter of a set and reformulate
your result.

Show that the following sets are not compact by exhibiting an open cover with no
finite subcover.

(a) {xe R*||Ix|| < 1}.

(b) Z, the integers in R.

Suppose that in Theorem 2 (nested set property), the diameter (F)) - 0. Show
that there is exactly one point in n{F,] (by definition, diameter (F,) =
sup{d(x,y) | x,y € Fi}). ‘

Let x, be a sequence in R* which converges to x. Let A, = {x4,%;,,. . .} and show
that {x} = ﬂ,‘f:l cl(Ay). :

Let A = R"be compact and x, a Cauchy sequence in 4. Then show that x, converges
to a pointin 4.

Determine (by proof or counterexample) the truth or falsity of the following
statements.
, (a) (4 compact in R") = (R"\ 4 connected).
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(b) (4 connected in R") = (R" 4 connected).
* {c) (A connected in R") = (4 open or closed).

- () (4 = {xeR"|||Ix|| < 1}) = (R"\4 connected). [Hint: Check the cases 1 = 1

10.

11.

v12.

5 13.

¢ 14,

15.

o 16.

ol7.

v 18.

v19,

v 20.

and n > 2.]

A set A is said to be locally path-connected* if each point has a neighborhood U
such that 4 n U is path-connected. Show that (4 connected and locally path-
connected) <= (4 path-connected).

(a) Prove that if 4 is connected in R* and 4 = B < cl(4), then B is connected.

(b) Deduce from (a) that the components of a set 4 are relatively closed. Give an
example in which they are not relatively open. (C « A4 is called relatively

. closed in A if C is the intersection of some closed set in R with 4.)

(c) Show that if sets B, and B are connected and B,n B # ¢J for all i, then
(U, B) is connected. Give examples.

(d) Deduce from (c) that every point of a set lies in a unique component.

(e) Use (c) to show R" is connected assuming just that lines in R" are connected.

Let S be a set of real numbers which is non-empty and bounded above. Let —S =

{xeR| —x e S}. Prove that

(a) —S is bounded below,

(b) sup S = —inf —S.

Let M be a complete metric space and F, a collection of closed non-empty subsets

of M such that F,,, < F, and diameter (F,) — 0. Prove that ﬂ;‘;l F, consists of

a single point.

(a) A point xe 4 in [R" is said to be isolated in a set A if there is a neighborhood
U of x such that U n 4 = {x}. Show that this is equivalent to saying that there
is an & > O such that forall ye 4, y # x, we have d(x,y) > &.

(b) A set is called discrete if all its points are isolated. Give some examples. Show
that a discrete set is compact iff it is finite.

Let K, < R"and K, = R" be path-connected (respectively, connected, compact).
Show K, x K, is path-connected (respectively, connected, compact) in Rytm,

If x, —» x, then prove that ||x,)| — ||x||. Is the converse true? Use this to give a proof
that {x e R"|||x|| < 1} is closed, using sequences.

Let K be a non-empty closed set in R*, x € [R"\K . Show there is a y € K such that
d(x,y) = inf{d(x,z) | ze K}. Is this true for open sets?

Let F, <R be defined by F,={x|2— 1/n < x* <2 + I/n}. Show that
(., F, # &. Use this to show the existence of\/i

Let ¥, « R™ be open sets such that cl(V,) is compact, ¥, # &, and cl(V,) < V,_
Prove ﬂ.=| v, # .

Prove that a set A with property (ii) of Theorem 1 is closed as follows. Let x be an

accumulation point of 4 and suppose x ¢ A4; for each ye 4, choose disjoint
neighborhoods U, of y and V, of x. Consider the open cover {U,}.

* This terminology differs somewhat from that of standard topology books.
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21. (a) Prove: a set 4 « R" is connected iff & and A4 are the only subsets of 4 which
are open and closed relative to 4. (A set U < A is called open relative to A if

U = ¥V n A for some open set V < R"; closed relative to 4 is defined similarly).

(b) Prove that ¥ and R" are the only subsets of R” which are both open and closed.

22. Find two subsets 4, B = R? and a point x, &€ R? such that 4 U B is not connected
but 4 U B L {x,} is connected.

23. Let Q denote the rationals i in R. Show that both Q and the irrationals [R\Q are not
connected.

24. Provethataset 4 « R'is ((ot connected if we can write 4 as the disjoint union of
two sets Band C with Bn 4 # J, Cn A # J and such that neither of the sets
B or C has a point of accumulation belonging to the other set.

25. Prove that there is a sequence of distinct integers ny,n,,...— co such that
l’imit sin(1,) exists.
- w

26. Show that the completeness property of R may be replaced by the nested set
property.

27. Let {x,};2, be a bounded sequence in R. Let S be the set of all limit points of {x,}.
(a) Prove that S is bounded and non-empty. Let x* = sup S, x, = inf S. x* is
called the limit superior of {x,} and is denoted by lim sup x, or ﬁ;xn. X, 18
called the limit inferior and is denoted by lim inf x, orlim x,. Prove the following.
(b) The definition coincides with that of Problem 10, Chapter 1.
(c) x*eS.
(d) Fot each ¢ > O there exists me N such that n > m = x, < x* + ¢.
(e) x* is the only number having both of the properties (c) and (d).
() {x,} converges <> x* = x,.
g)

(g) Let x, = (—1)"" (1 + 1/n). Find x* and x,,.

28. Let 4 — R" be connected and contain more than one point. Show that every point
of A is an accumulation point of 4.

29. Let 4 = {(x,y)e R*| x* 4 y* = 1}. Show that 4 is compact. Is it connected ?

30. Let Uk be a sequence of open sets in R". Prove or disprove that
(a) ka . U, is open,
(b) . U,is open

31. Suppose A4c [R" is not compact. Show that there exists a sequence F,oF,>
Fy---of closed sets such that F v N A # & forall k and

ﬂ F k) NA = Q .
=1
[Hint: A set in R" is compact iff every countable open cover has a finite subcover.]

32. (Baire Category theorem for R') A set § < R" is called nowhere dense . if
cl(S) n U # U for any non-empty open set U. Show that R" cannot be wntten as
the countable union of nowhere dense sets, R* = )i, S, [Hint: IfR" = U®_| 5,



@ 33,
234,

8 35.

0 36.
»37.

#38.

39.

40.
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find a non-convergent Cauchy sequence x, by carefully choosing nested balls
D(xyry) = lR"\(Sa [CARREVE NN

Let x, be a sequence in R? such that ||x,,, - x| < 1/(n* + n), n > 1. Show that
X, COTYErges.

Prove that any closed set 4 = R" is a countable intersection of open sets. [Hint: Let
U, = {ye R"|d(x,y) < 1/k for some x € 4}.]

Let the sequence a,, a,, . . . in R be defined by
a, = a;
a, =alt | —a,., +1, fn>1.

For what ae R is the sequence (a) monotone? (b) bounded? (c) convergent?
Compute the limit in the cases of convergence.

Let A « R be uncountable. Prove that 4 has an accumulation point.

Let 4, B = R" with 4 compact, B closed, and 4 N B = .
(a) Show there is an ¢ > 0 so that d(x,y) > ¢forallxe 4,ye B.
(b) Is (a) true if 4, B are merely closed?

(Cantor set.) Let F, = [0,1/3] U [2/3,1] be obtainec\ from [0,1] by removing the
middle third. Repeat, obtaining F, = [0,1/9] u [2/9,1/3] U [2/3,7/9] v [8/9,1].
In general, F, is a union of intervals and F, ., is obtained by removing the middle
third of these intervals. Let C = ﬂ‘f F,, the Cantor set. Prove:

(a) C is compact.

(b) C has infinitely many points. [Hint: Look at the endpoints of F,.]

(9 in(C) = &.

(d) Show that C is perfect, that is, is closed with no isolated points.

Show that 4 < R" is not connected iff there exist two disjoint open sets U, V such
that UnAd #£ @, VnA+# @ and 4 < Uu V. [Hint: Let Uy, ¥, be the open
sets from the definition; set 4, = A N U, 4, = ANV, and let U = {xe R"|
d(x,4,) < d(x,4,)} and V = {xe R*| d(x,4,) > d(»,4,)}.]

Let F, be a nest of compact sets (that is, Fy,, < F). Furthermore, suppose each
Fy is connected. Prove that [ {F,} is connected. (You may use the result of
Exercise 39.) Give an example to show that compactness is an essential condition
which cannot be replaced by “F, a nest of closed connected sets.” )



Chapter =~

Continuous
Mappings

To be able to obtain interesting and useful theorems, it is often
necessary to make certain restrictions on the mathematical objects one
studies. In this chapter we require that the functions studied be continuous,
and we will investigate some of the consequences of this restriction. In
Chapter 6 we study an even stronger réstriction, namely, that of differ-
entiability.

4.1 Continuity

First, let us examine intuitively the notion of continuity for real functions on
the real line R. Figure 4-1a shows a continuous function, and 4-1b shows a
discontinuous one. A continuous function has the important property that
when x is close to x,, f(x) is close to f(x.) (as shown in Figure 4-1a). On the
other hand, in Figure 4-1b, even if x is very close to x,, f{x) may not be
close to f(xg). The reader should be familiar with these ideas from basic
calculus.

In order to define continuity in precise terms, first the concept of the limit
of a function at a point is defined.

Definition 1. Let 4 « R*, f: 4 - R™, and suppose x, is an
accumulation point of A. We say that b € R™ is the limit of f at x,,,

written
limit f(x) = & ,°
xX=*Xx0

78
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%) .~_._._.,/

@ ’ (®)

FIGURE 4-1 (a) Continuous function. (b) Discontinuous
function.

if given any ¢ > 0 there exists § > 0 (depending on f, x,, and &)
such that for all xe A4, x # x5, |x — X0l < § implies that

1/ Ge) — Bl <e.

- Intuitively, this says that as x approaches x,, f(x) approaches 5. We also
write f(x) = b as x = x,. (Compare this with the concept of the limit of a
sequence.) Note that if x, is not an accumulation point, there will not be any
X # Xg, X € A near x, in which case the condition becomes vacuous.

Note that limxit f(x) may not exist; for example, let f: R\{0} = R be
=+ X0

defined by f(x) = 1if x < 0,2 if x > 0. Then 0 is an accumulation point of
R\{0} but limgt f(x)doesn’t exist. However, if f(x) = 1,ifx # 0,and f(0) = 0

then limgt f(x) = 1. Another example is f: R\{0} = R, f(x) = sin(1/x);

this function oscillates faster and faster near 0 and so cannot approach
any limit there. However, if 11m1t f(x) exists, then it is unique, so we are

justified in saying the limit of f at xo To clarify further, suppose 11m1t fix) =

band &'. To show b = &', let ¢ > 0 be given. Then there exist 51 > 0 and
8, > Osuch that |x — x,|| < &, implies | f(x) — b|| < g/2and |x — x| <
&, implies | f(x) — &'| < g/2. Let § = min{6,,8,}; then |x — x| < &'
implies |6 — &' < |6 — fG) + | f(x) =~ &' < &/2 + ¢/2 = ¢; thus |6 —
b'| < eforanye,andso |b — &'|| = 0,0rb = b'. (Compare with uniqueness
of the limit of a sequence, p. 56.)

We are now ready to define continuity of a function at a point.

Definition 2. Let A = R", f: A - R™, and let x, € A. We say that
[ is continuous at x if either x4 is not an accumulation point of 4 or

limit f(x) = f(xo)-
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Note that this requires the existence of limit f(x) in addition to specifying
X+ Xxq

its value. Definition 2 can be rephrased as follows: f is continuous at the
point x, in:its domain iff for all ¢ > 0, there is a § > O such that for all
xed, ||x — xgl < & implies || f(x) — f(xo)l| < &. In Definition 1 we
needed to specify that x # x, because f was not necessarily defined at x,,
but here there is no need to specify x # x, since our condition is certainly
valid if x = x,.
There is some additional notation that is useful. Suppose f is defined at
least on }xg,a] < R for some a > x,. Then
limit f(x) = &
x—xg
means the limit of / with domain A = Jx,,a]. In other words, for every e > 0
there is a & > 0 such that |x — x,| < 8, x > x, implies | f(x) — b < e.
Thus we are taking the limit of f as x approaches x, from the right. Similarly
we can define ’
limig flx) =05,
ey

the limit as x approachés Xo from the left. These are, for obvious reasons,
called one sided limits. It should now be clear to the reader how to define
expressions like limit f(x) = «, and so forth.

X=+oo

Definition 3. A function f: 4 — R™is called continuous on the set
B = A if f is continuous at each point of B. If we just say f is
continuous, we mean f is continuous on its domain 4.

There are other useful ways of formulatirig the notion of continuity. One
of these is particularly significant because it involves only the topology (that
is, the open sets), and so it would be applicable in more general situations.

Theorem 1. Letf: A — R"™ be a mapping, where A < R"is any set.
Then the following assertions are equivalent.
(i) fis continuous on A.

(i) For each convergent sequence x, — X4 in A, we have f(x,) —
S(xo)-

(iti) For each open set U in R™, f~Y(U) c A is open relative to A;
that is, f~Y(U) = V n A for some open set V.

(iv) For each closed set F — R™, f~Y(F) < A is closed relative to A;
that is, f~YF) = G n A for some closed set G.

Actually condition (ii) in this theorem has an analogous version for limits
which can be proved in the same way as (ii) is proved. Namely if f: 4 - R™
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and x, is an accumulation point of 4, then
limit f(x) = &
X+ XxXg
if and only if
lzmit ) =&

for every sequence x, € A which converges to x,.

From this theorem it is evident that our definition of a continuous path,
given in Chapter 3, coincides with continuity as we have defined it here.
In Section 4.3, we shall establish theorems which will enable us to establish
easily the continuity of the more common functions.

We shall now briefly discuss the plausibility of Theorem 1. First of all,
that (i) is the same as (ii) should be clear, for (i) means that f(x) is near f(x,)
if x is near x,, and (ii) is the same except that it lets x approach x, via a
sequence. The assertions (iii) and (iv) are also the same if we remember that
open sets are complements of closed ones.

Let us see what (iii} is telling us. Choose U to be a small open set containing
f(xo). Then f~Y(U) being open means that there is a whole open disc around
X, contained in f ~Y(U). For x in this disc, x is mapped to U, which represents
points near’ f(x,). In other words, using U as a measure of closeness of f(x)
to f(x.), if x is near enough to x, (namely, x e £ ~1(U)), f(x) will be near to
f(x,). This therefore represents the same idea expressed in (i).

ExampLE 1. Let f: R*" — R" be the identity function x - x. Show that f is
continuous.

Solution: Fix x, € R. By definition we must find § > 0 for given ¢ > 0
such that ||x — x,|| < & implies | f(x) — f(xo)ll < & But, clearly, if we
choose & = ¢, the definition becomes the statement that |x — x| < ¢
implies |x — xo| < &, which is a tautology. Hence f is continuous.

ExampLE 2. Let f: ]0,00[ — R; x — 1/x. Show that f is continuous.

Solution: Fix x4 €]0,00[; that is, fix x, > 0. To determine how to
choose 6, we examine the expression

1 1
|fG) — flxo)l = {;— Sc:
_ |xo — X|
| Xl
If|x — x,| < &, then we would get
] ]

If(x) = flxo)l <

I xo| X0
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2 bk
FIGURE 4-2 (

Now, if we make sure that 6 < x,/2, then we will have x > x,/2 (Figure 4-2)
0 &/x xo < (28/x%). Now given ¢ > 0, choose § = min(x/2,6x2/2). Then
the above argument shows that | f(x) — f(x,) < gif |x — xo| < 6. Thus f
is continuous at x,.

ExampLE3. Letf: R" — R™be continuous. Show that {x e R"*| | f(x)I| < 1}
is open. .

Solution: The above set is nothing but f~'{y| |y| < 1} which is the
inverse image of an open set, so by Theorem 1 (iii) it is open.

Exercises for Section 4.1

p1. (a) Let /: R —» R, x 1 x%, Prove that f is continuous.
(b) Let /1 R? = R, (x,y) Fsx. Prove that f is continuous.

v,2. Use (b) above to show that if U « Ris open, then 4 = {(x,y)e R? | x € U} is open.

»3. Let f:R* - R be continuous. Prove that 4 = {(x,5))eR*|0 < f(x,y) < 1} is
closed.

¢ 4. Give an example of a continuous function f: R — R and an open set U = R such
that f(U) is not open. :

¢ 5. Prove directly that condition (iii) implies condition (iv) in Theorem 1.

4.2 Images of Compact and Connected Sets

Now some important consequences of continuity shall be deduced. The first
thing to know is how compact and connected sets behave under continuous
mappings. It is crucial to distinguish between the terms image and pre-image
(that is, inverse image) in these theorems; compare the following with
Theorem 1 above.

Theorem 2. Letf: A — R™ be a continuous mapping. Then

(i) if K = Aand K is connected [respectively, path-connected], then
S (K) is connected [respectively, path-connected],

(it) if B = A and B is compact, then f(B) is compact.
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The result of (i) is clearest if we use path-connectedness, that is, if c(z) is
a path joining x and y in K, then f(c(¢)) is a path joining f(x) and f(») in
f(K). (See Theorem 3 below for continuity of f(x(1)).) Hence f(K) is path-
connected.

The result of (ii) is less obvious intuitively. However, if we use the Bolzano-
Weierstrass characterization of compactness it comes fairly easily, for if
f(x,) is a sequence in f(B), then x, has a convergent subsequence, so we get
a corresponding convergent subsequence for f(x,).

ExampLE 1. Let K = R* be compact. Prove that A = {x € R | there exists
a y such that (x,y) € K} is compact.

Solution: Let f: R* - R,(x,y) — x. Then fis continuous (see Exercise 1
of Section 4.1). We claim that A = f(K), so A would be compact by Theorem
2. To prove the cldim, let x € A. Then (x,y) € K for some y, so x = f(x,y) €
f(K). Conversely, if x = f(x,y) for some (x,y) € K, then x e A by definition.

ExampLE 2. Find a continuous map f: R — R and a compact K < R such
that £~ 1(K) is not compact.

Solution: Let f(x) = Ofor all x e Rand let K = {0}. Then f "}(K) = R
is not compact.

ExampLE 3. Let f: R* — R be continuous, and let 4 = {f(x) ] |x|| = 1}.
Show that 4 is a closed interval.

Solution: Clearly, A = f(S) where S = {x € R*| ||x|| = 1} is the unit
circle. Now S is connected and compact so 4 is connected and compact.
By Example 3, at the end of Chapter 3, A4 is an interval. But the only compact
intervals are the closed ones.

Exercises for Section 4.2

1. Letf: R — Rbecontinuous. Which sets below are necessarily closed, open, compact,
or connected?
(a) {xeR|f(x) =0}
(b) {xe R|f(x) > 1}. } '
(o) (/e lR‘x = 0}.
@ {fMeR|0<x< 1} o !

2. Verify Theorem 2 for f: R? = R, f(x,y) = 2% + p,K = B = {(x,y)| »* + y* < 1}.

3. Give an example of a continuous map f: R — R and a closed set B < R such that
J(B) is not closed. Is it possible if B is bounded as well?

4, Let A, B = R, and suppose 4 x B = R? is connected, Prove that 4 is connected.
5. Let 4, B < R, and suppose 4 x B « R? is open. Must 4 be open?
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FIGURE 4-3 Composition of mappings.

4.3 Operations on Continuous Mappings

It is intuitively plausible that the composition of continuous functions
should be continuous, as we shall now discuss. Recall that for f: 4 - R™
and g: B — R? with f(4) « B, we define the composition g o f: 4 — RP by
x + g(f(x)). If x is close to x,, then g o f(x) is close to g o f(x,) because
[f(x)is close to f(x,); hence g(f(x)) is close to g(f(x,)). See Figure 4-3.

This indicates the plausibility of the following result.

Theorem 3. Suppose f: A — R"™ and g: B — RP are continuous
Junctions with f(A) < B. Then g o f: A — RP is continuous.

For example, the function *" * is continuous because it is the composition
of the two continuous functions f(x) = sin x and g(x) = e*.

Note: We'shall accept as known from calculus the properties of the basic
functions such as sin x, %, and so forth. These will be used later in several
examples.

The following theorem gives some of the fundamental properties con-
cerning the arithmetic of limits,

Theorem 4. Let A = R", and let x4 be an accumulation point of A.
(/) Let f: A > R™and g: A - R™ be functions; assume limit f(x)

and llmlt g(x) exist and are equal to a and b respectwely Then
11m1t ( f + g)(x) exists and is equal to a + b (wheref + g1 A - R™

is deﬁned by (f + g)x) = f(x) + g(x)).
(i) Let f: A — R and g: A — R™ be functions; assume limit f(x)

and limit g(x) exist and are equal to a and b respectively, Then
llmlt(f g)(x) exists and is equal to ab (where f-g: A - R™ is
defined by (f - g¥x) = f(x)g(x).
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@i}y Let f:A — R and g: A = R™ be functions, assume li{'nit f(x)
and li_rpit g(x) exist and are equal 10 a # 0 and b respectinly’fnThen
fis ﬁ;ﬁt(;ero in a neighborhood of x4 and li_rpit (g/fXx) exists and is
equal to bja (where g/f: A — R" is deﬁneZI bxy0 (g/f)x) = g(x)/f ().

These results are eminently reasonable intuitively. For instance, (i) states
that if x is close to x, so that f(x) is close to a and g(x) is close to 5, then
Sf(x) + g(x)is close to a + b. From Theorem 4 we may deduce immediately
some basic properties of the arithmetic of continuous functions.

Corollary. Let A = R", x, € A an accumulation point of A.

() Let f: A~ R" and g: A — R™ be continuous at x,; then the
sumf + g: A - R"™ is continuous at x,.

(it) Let f A — R and g: A — R™ be continuous at x,; then the
product f - g: A — R™ is continuous at x.
(i) Letf: A - Randg: A - R"™ becontinuous at x, withf (x,) = 0;
then f is non-zero in a neighborhood U of x, and the quotient
g/f: U — R™is continuous at x,.

For example, we have seen that f(x) = x, mapping from R to R, is con-
tinuous, and therefore so is f(x) = x"; also, any polynomial a,x" +
Gy X"+ o+ ag.

Now consider f: R? — R. Think of f as a function of two real variables,
f(x,y). It is crucial to distinguish between continuity of f (sometimes called
joint continuity) and continuity in each variable separately. For example,
consider the function

0 ifxsO0andy+# 0;
fx.y) = .
1 ifeither x =0ory=0.
See Figure 4-4. In each individual variable, f is continuous at (0,0) (the
y
\

FIGURE 4-4 Separate and joint
continuity.
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mappings x — f(x,0)and y — f(0,y) are constant, and so are continuous),
but f itself is not continuous at (0,0) (why?). See Exercise 16 at the end of this
chapter for sufficient conditions on separate continuity needed to imply
continuity.:

ExampLE 1. Let f: R — R, f(x) = x sin x. Show that f is continuous.

Solution: We know x and sin x are continuous and f is the product of
two continuous functions and so is continuous.
ExampLE 2. Let f: R — R? be continuous. Show that g(x) = f(x* + x%) is

continuous.

Solution: g is the composition of f on the continuous function x 1+ x* +
x3 and so is continuous by Theorem 3.

ExaMmpLE 3. Let f(x) = x*/(1 4+ x). Where is f continuous?

Solution: We define f for x ¢ ~—1. Then, by Theorem 4(iii), f is con-
tinuous at all x # —1.

Exercises for Section 4.3

1. Where are the following functions continuous?

(a) f(x) = x sin(x?).

Lig - w3
0) £6) = 57 3% # L f(£D) = 0.
© 109 =22% 1 % 0,50 = 1. '

. Let,in R, a, — a and b, — b. Prove a,b, — ab by using Theorems 3 and 4.
. Let 4 = {x e R|sin x = .56}. Show that 4 is a closed set. Is it compact?
.Show i R—= R, x> \/l—;l is continuous.

. Show f(x) = /*? + 1 is continuous.

w A WwoN

4.4 The Boundedness of Continuous Functions
on Compact Sets

We are now ready to prove an important property of continuous real-valued
functions called the “boundedness theorem.” The boundedness theorem
says that a continuous function is bounded on a compact set and attains its
largest or maximum value and its smallest or minimum value at some point
of the set. The precise definitions will be stated in Theorem 5.
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FIGURE 4-5 An unbounded
continuous function.

To appreciate this result let us consider what can happen on a noncompact
set. First, a continuous function need not be bounded. Figure 4-5 shows
the function f(x) = 1/x on the open interval ]0,1[. As x gets closer to 0,
the function becomes arbitrarily large, but f is nevertheless continuous,
since f is the quotient of 1 by the continuous function x + x which does
not vanish on ]0,1].

Next, we can show that even if a function is bounded and continuous, it
might not assume its maximum at any point of its domain. Figure 4-6 shows
the function f(x) = x on the interval [0,1[. This function never attains a

0

FIGURE 4-6 A function with no
maximum.
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maximum value because even though there are an infinite number of points
asnear to 1 as we please, there is no point x for which f(x) = 1. From these
examples, it should be fairly plausible that, for a continuous function on a
compact set, these pathologies cannot occur.

Let us now state the theorem formally.

Theorem 5. Let A = R"and f. A — R be continuous. Let K = A
be a compact set. Then f is bounded on K, that is B = {f(x) | x e
K} < Ris a bounded set. Furthermore, there exist points x4, x, € K
such that f(x,) = inf(B) and f(x,) = sup(B). We call sup(B) the
(absolute) maximum of f on K and inf(B) the (absolute) minimum of
fonK.

It should be appreciated that this result is deeper than the usual derivative
tests for the location of maxima and minima that we learn from calculus.
For example, there are continuous functions on R which are differentiable
at no point; such functions cannot be graphed by a smooth curve so our
intuition is not as clear in these cases (see Exercise 19, p. 144).

ExampLE 1. Give an example of a discontinuous function on a compact set
which is not bounded.

Solution: Let f:[0,1] = R be defined by f(x) = l/x if x > 0 and
f(0) = 0. Clearly, this function exhibits the same unboundedness property
as does 1/x on ]0,1].

ExampLE 2. Verify Theorem 5 for f(x) = x/(x* + 1) on [0,1].

Solution: f(0) = 0, f(1) = 1/2. We shall verify explicitly that the
maximum is at x = 1, the minimum is at x = 0. (Elementary calculus helps
to determine this, but we shall give a direct verification.) First,as0 < x < 1,
x/(x* + 1) = Osincex > Oand x> + 1 = 1,50 f(x) = f(O)for0 < x < L.
Thus 0 is the minimum. Next, note that 0 < (x — 1)* = x? — 2x + 1, so
x? + 1 2 2x and hence for x # 0,

<

D]

x
x2+1 2x
s0 f(x) < f(1) = 1/2 and thus x = 1 is the maximum point.

ExampiE 3. Show that x, and x, in Theorem 5 need not be unique.

Solution: Let f(x) = 1 for all x € [0,1]. Then any x,, x, e [0,1] will do.
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Exercises for Section 4.4

¢ 1. Give an example of a continuous and bounded function on all of R for which Theorem
5 fails.

2. Verify Theorem 5 for f(x) = x* — x on [—1,1].

a 3. Let f: K = R = R be continuous on a compact K and let M = {xe K| f{x) is
the maximum of f on K}. Show that M is a compact set.

4, Let /14 cR"— R be continuous, x,y €A and c: [0,1] = R" a curve joining
x and y. Show that along this curve f assumes its maximum and minimum values.

9 5, Study Theorem 5 in the context of f(x) = (sin x)/x on ]0,00f.

4.5 The lntelimediate-Value Theorem

The intermediate-value theorem is perhaps well known from elementary
calculus. It states that a continuous function on an interval assumes all
values between any two given values. See Figure 4-7a. The noncontinuous
function f in Figure 4-7b never assumes the value 1/2. Briefly, this tells us
‘that while a discontinuous function can jump from one value to another,
a continuous function must pass through all intermediate values.

Another way the intermediate-value property can fail is if the domain 4
is not connected, as illustrated by the continuous function in Flgure 4-8.

Thus the crucial assumptlons are that f be continuous and f be defined
on a connected region. We shall see that the proof of Theorem 6 is quite
simple because of the way we have formulated the notion of connectedness
(see Example 1 below and the theorem proofs at the end of the chapter).

fx)

FIGURE 4-7 Intermediate-value theorem.
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— fx)
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4

FIGURE 4-8 Continuous function
with a disconnected domain.

Theorem 6. Let A = R" and f: A - R be continuous. Suppose
K < A is connected and x, y € K. For every number ¢ € R such that
J(x) < ¢ < f(y), there exists a point z € K such that f(z) = c.

Since intervals (open or closed) are connected (this was proven in Example 3
at the end of Chapter 3) the usual intermediate-value theorem becomes a
special gase of Theorem 6. However, notice that Theorem 6 is more general.
It applies, for example, to continuous real-valued functions of several
variables f[(x;,. . .,x,) defined on all of R", which is a connected set.

ExaMmpLE 1. Discuss a possible proof of Theorem 6 using the fact that f(K)
is connected. .

Solution: That f(K) is connected comes from Theorem 2. Hence f(K)
is an interval, possibly infinite. But if f(x), f(y) € f(K), in particular,
[f(x),f(3)] = f(K)since f(K)is an interval. Soif ¢ is the same as in Theorem
6, c e [f(x).f(»)] so ce f(K), so ¢ = f(z) for some z. This is in fact one
way of proving Theorem 6. Another is given in the theorem proofs section.

ExaMmpLE 2. Let f(x) be a cubic polynomial. Argue that f has a (real) root
X, (that is, f(x,) = 0).

Solution: f(x) = ax® + bx* + cx + d, where a s 0. Suppose that
a > 0.For x > 0, x large, ax® is large (and positive) and will be bigger than
the other terms so f(x) > 0 if x is large, x > 0. This requires some exact
estimates but should be intuitively clear. Similarly, f(x) < 0 if x is large
and negative. Hence we can apply the intermediate-value theorem to conclude
the existence of a point x, where f(x,) = O.
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ExampLE 3. Let f: [1,2] — [0,3] be a continuous function with f(1) = 0,
f(2) = 3. Show that f has a fixed point. That is, show that there is a point
Xo € [1,2] such that f(x,) = x,.

Solution: Let g(x) = f(x) — x. Then g is continuous, g(1) = f(1) — 1 =
~1, and ¢(2) = f(2) — 2 = 3 — 2 = 1. Hence by the intermediate-value
theorem, g must vanish at some x, € [1,2] and this x,, is the fixed point for

f(x).

Exercises for Section 4.5

7 1. What happens when you apply the method used in-Example 2 to quadratic poly-
nomials? To quintic polynomials?

2. Let f be continugus: R* = R". Let T = {(x,f(x)) | x € R"} be the graph of f in
R" x R". Prove that T is closed.

8 3. Let f: [0,1] — [0,1] be continuous. Prove that f has a fixed point.

#4, Let f:[a,b] = R be continuous. Show that the range of f is a bounded closed
interval.

> 5. Prove that there exists no continuous map of [0,1] onto ]0,1{.

4.6 Uniform Continuity

Sometimes it is useful to have available a slight variant of the definition of
continuity. Often the applications are technical ones, such as labor-saving
devices in proofs. Still, the notion of a uniformly continuous function is a
basic one and it is used widely. The exact definition is as follows.

Definition 3. Letf: A - R"and B = 4. Wesay that fis uniformly
continuous on the set B if for every.¢ > 0 thereisa § > 0 such that
x, ye Band d(x,y) < & implies d(f(x),f(y)) < e.

The definition is similar to continuity, except that here we must be able
to choose 6 to work for all x, y once ¢ is given. For continuity we were only
required to choose a § once we were given ¢ > 0 and a particular x,. Clearly,
if f is uniformly continuous, then f is continuous.

Forexample,consider f: R — R, f(x) = x*. Then fiscertainly continuous,
but it is not uniformly continuous. Indeed, for ¢ > U and X; > 0 givern, the
0 > Owe-need-isatleasragsmall-as ¢/(2x,), so if we choose x,, large, 6 must
get smaller. No single § will do for all x,. This phenomenon cannot happen
on compact sets, as the next theorem shows.
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Theorem 7. Let f: A - R™ be continuous and let K = A be a
compact set. Then f is uniformly continuous on K.

The use of merely bounded sets in Theorem 7 will not do, for consider
what can happen on the noncompact set ]0,1]. Let f(x) == 1/x. Then if we
examine the proof that f is continuous (Example 2, Section 4.1) we see again
that f is not uniformly continuous. Of course, we cannot make f continuous
on the compact set [0,1] because it is unbounded.

Another very useful criterion for uniform continuity is given in Example 2
below.

ExampLe 1. Let f:]0,1] = R, f(x) = 1/x. Show f is uniformly continuous
on [a,1] fora > 0.

Solution: The solution can be immediately drawn from Theorem 7,
since [a,1] is a compact set.

ExampLe 2. Let f: Ja,b[ — R be differentiable and suppose |/'(x)| < M.
Here, a or b may be 1 oo, and f” stands for the derivative of f. Show that f
is uniformly continuous on Ja,b[.

Solution: The definition of uniform continuity asks us to estimate
[f(x) —==f(y)| in terms of |x — y|. This suggests using the mean-value
theorem (see p. 156 for a review). Indeed,

&) = f) = f'(xofx ~ )

for some x, between x and y. Hence

f&x) = fO < Mx -yl

Given ¢ > 0, choose § = ¢/M. Then |x — y| < & implies

f&) = fON <M 6=M-¢/M=c¢.
Hence f is uniformly continuous.

The intuition here may shed some more light on uniform continuity.
Namely, this result says that if the slope of the graph of a function is bounded,
then it is uniformly continuous. This is often a good guide when examining
specific functions or their graphs.

ExaMpLE 3. Show that sin x: R — R is uniformly continuous.

Solution: d(sin x)/dx = cos x is bounded in absolute value by 1, so by
Example 2, sin x is uniformly continuous.



THEOREM PROOFS FOR CHAPTER 4 93

Exercises for Section 4.6

1. Demonstrate the conclusion in Example 1 directly from the definition.

2. Prove that f(x) = 1/x is uniformly continuous on {a,cof for a > 0.

3. Do you think a bounded continuous function on R has to be uniformly continuous?
4

. I f and g are uniformly continuous, R — R, must the product f g be uniformly
continuous? What if f and g are bounded?

W

. Let f(x) = |x|. Show that f: R — R is uniformly continuous.

6. Show that f: R— R is not uniformly continuous iff there exists an ¢ > 0 and
sequences x, and y, such that |x, — y,| < 1/nand |f(x,) — f(y,) > & Use this to
prove that f(x) = x2 is not uniformly continuous. .

Theorem Proofs for Chapter 4

Theorem 1. Let f: A—R"™ be a mapping, where A < R" is any set. Then the following

assertions are equivalent.

- (i) [ is continuous on A.

(i) For each convergent sequence x, — xo in A, we have f(x,) = f(xo).

(itl) Foreachopenset UinR™, f~YU) c Aisopenrelativetod thatis,f~4(U) =V A
Jor some open set V.

(iv) For each closed set F < R™, f~Y(F) < A is closed relative to A; that is, f~*(F) =
G N A for some closed set G.

Progf: The pattern of the proof will be (i) = (ii) = (iv) = (iii) = ().

Proof of (i) = (i): Suppose x, = x,. To show that f(x,) — f(x¢), let ¢ > 0; we
must find an integer N so that k > N implies d(f(x,),f/(x,)) < &. To accomplish this,
choose & > 0 so that d(x,x,) < & implies d(f(x),f(x,)) < &. The existence of a & is
guaranteed by the continuity of f. Then choose N so that k = N implies d(x;,x,) < 6.
This choice of N yields the desired conclusion.

Proof of (ii) = (iv): Let F = R™ be closed. To show f~!(F) is closed in 4, we use
the fact that a set B is closed relative to A iff for every sequence x, € B which converges
to a point x € 4, then x € B (see Theorem 9, Chapter 2). The reader should write out
the proof of this assertion. Here, let x, € /~!(F) and let x, — x, where x € 4. We must
show that x € f~4(F). Now, by (ii), f(x,) = f(x), and since f(x,) € F and F is closed,
we conclude that f(x) € F. Thus x € f~{(F).

Prodf of (iv) = (iif): Il U is open, let F = R™ U, which is closed. Then, by (iv),
f~YF) = G 4 for some closed set G. Thus f~1(U) = 4 n (R'\G), so f~Y(U) is
open relative to A4.

Proof of (iii) = (i): Given x, €4 and ¢ > 0, we must find ¢ so that d(x,x;) < &

implies d(f(x),f(xo)) < & Since D(f(x,),6) is an open set, f~YD(f(x,),¢)) is open by
(iii). Thus by the definition of open set and the fact that x, & f~1(D(f(%,),€)), there is a
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& > 0 such that D(xy,0) N 4 = f~YD(f(x,)€)). This is another way of saying that
(x €4 and d(x,xo) < 8) = @J().S(x0) < o). B :

To gain practice with these concepts, one might try proving (directly) other impli-
cations above; for example, (i) = (iii), or (i) = (i).

Theorem 2. Letf: A — R” be a continuous mapping. Then
D) if K < A is connected, then f(K) (s connected;
(ii) if B < A is compact, then f(B) is compact.

Proof: (i) Suppose f(K) is not connected. Then, by definition, we can write
JK)Yc UV, where UnVnflK)=0, UnflK)# &, VnfK)# &, and
U, V are open sets. Now, f~*(U) = U' n 4 for some open set U'; and similarly,
SYV) = V' n A for some open set V'. From the conditions on U, V, we see that
UnNVnK=g, KcUuV,UnK+#@, and V'K # &. Thus K is not
connected, which proves the assertion.

(i) Let y, be a sequence in f(B). By Theorem 1 of Chapter 3, it must be shown that
'y« has a subsequence converging to a point in f(B). Let y, = f(x,), for x, € B. Since B
is compact, there is a convergent subsequence, say, x,, — x for x € B. Now, by Theorem
1i1), f(xy,) = f(x), so f(x,,) is a convergent subsequence of y,. §

The path-connected part of Theorem 2(i) follows as in the text. In the proof of (ii) we
used the characterization of a compact set as a set in which every sequence has a
convergent subsequence. One may also use the Heine-Borel criterion for compact
sets (try it). Note that, in general, the continuous image of a closed set need not be
closed. THus compactness of B is crucial in proving that f(B) is both closed and bounded.

Theovem 3. Suppose f: 4 — R” and g:B— R are continuous functions with f(4) < B.
Thengo f: A — RF is continuous.

Proof: Let U = R be open. Then (g o f)~X(U) = /=g~ (U)). Now, g~\(U) =
U’ n B for some U’ open, and f~{U’' n B) = f~Y{(U’), since f(4) < B. Since [ is
continuous, f ~}U') = U" n A for U" open. Thus g o fiscontinuous by Theorem 1. §

The other conditions of Theorem 1 can just as easily be used in order to prove
Theorem 3. Instead of proving Theorem 4, we shall confine ourselves to proving its
Corollary. The general case is similar; the only complexity is in notation.

Corollary. Let A < R".
() Let f:4—R" and g: A - R™ be continuous. Then f + g: A — R" defined by
(f + gXx) = f(x) + g(x) is continuous. )
(i) Let 14— R and g: A - R™ be continuous. Then f-g: A — R™ defined by
(/- g)(x) = f(x)g(x) (multiplication of the scalar f(x) by the vector g(x)) is continuous.
(iif) Let f: A — Rand g: A — R"™ be continuous for A <« R". If f(x) # O forall x€ 4,
then g/ f is continuous on A.

Proof:- (i) Let xo€4 and suppose ¢ > 0 is given. Choose 6; > 0 such that
d(x,%) < 0, implies d(f(x),f(x0)) < &2 and &, > 0 such that d(x,x,) < 6, implies
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d(g(x)g(xe)) < €/2. Then let 6 be the minimum of é,, §,. Therefore, if d(x,x¢) < 6,
we have by the triangle inequality, '

IS + 9)x) — (f + g¥xolll = IL/(x) — S(x0) + g(x) — g(xo)ll
< 1) = Sl + llg(x) — glxo)ll
< z + foe.

2 2

(ii) Let xo,€A4 and suppose ¢ > 0. Choose &, such that d(x,x;) < 6, implies
[f(x) = f(xo)l < &/2 llg(xo)ll and |f(x)| < |f(xo)l + 1 (why is this possible?). Also
choose 8, such that d(x,x,) < &, implies that {lg(x) — g(xo)ll < €/2(lf(x¢)| + 1). Then
for § = min(6y,6,), d(x,%,) < 6 implies (by the triangle inequality)

Lfg(x) — faxoll = IL/(x)g(x) — f(x)g(xo) + S(x)g(xe) — S{xo)g(xo)l
< LS llg(x) — glxo)ll + 1S (x) = Slxo)l llglxo)ll
(using the fact that ||ax|| = |« ||x]| for x € R", « € R). Continuing the above estimate,
we get )
1 fg(x) = fg(xolll < (LS (xo)l + 1)e/2(f(xo)l + 1) + llglxo)ll &/2 llglxo)ll
e €
= '2' + '2' =E€.

(iii) By proof (ii), it suffices to consider the case 1/f for g/f = g - (1/f).

To show that 1/f is continuous, given x, € 4, choose J, such that | f(x) — f{xo)| <
(1 (xo)l/2) for ||x — x|l < &,. This is possible by the continuity of f. It follows that
|/() = (| f(x0)|/2). Now, given & > 0, choose §, such that ||x — x|l < &, implies

1f(x) = flxo)l < &S (xo)l%/2 .

Then if § = min{(d,,6,), [Ix — x,|| < & implies

1 1 JGxo) = f)| _ /) = SGxo)l
B < 3 <&
S(x) =) S(x0)f(x) |f(xo)l*/2

This shows that 1/f(x) is continuous at x,, and hence it is continuous on 4. §

Theorem 5. Let A < R" and f: A — R be continuous. Let K = A be a compact set.
Then f is bounded on K, that is B = {f(x) [ x € K} = R is a bounded set. Furthermore,
there exist points xq, x; € K such that f(x,) = inf(B) and f(x,) = sup(B). We call
sup(B) the (absolute) maximum of f on K and inf(B) the (absolute) minimum of f on K.

Proof: First, B is bounded above, for B = f(K) is compact by Theorem 2, so it is
closed and bounded by the definition of compactness. Second, we want to produce
an x, such that x; € K and f(x,) = sup(B). Now, since B is closed, sup(B) € B = f(K)
(see Exercise 8, Chapter 2). Thus sup(B) = f(x,) for some x, € K.

The case of inf(B) is similar. (The student should write out the details.) §

Note: We can also get the case of inf(B) by applying the above supremum case to
—/ and observing that the maximum of —f is the minimum of f.
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Theorem 6. Let A = R"andf: A — R be continuous. Suppose K < A is connected and
x,y € K. For every number c € R such that f(x) < ¢ < f(y), there exists a point z € K
such that f(z) = c.

Proof: Suppose no such z exists. Then let U = ]—oo,c[ = {teR|¢t < c} and let
V = Je,00f. Clearly, both U and V are open sets. Since f is continuous, we have
S~ U) = Uy n K for an open set Ug, and similarly, f~4(V) = ¥, n K. By definition
of Uand ¥,wehave Uy n ¥, n K = J, and by the assumption that {ze K | f(z) = ¢} =
@, wehave Uy u V> K. Also, Uy n K # (J,sincexe U; and V, n K # (J, since
y € V,. Hence, K is not connected, a contradiction. §

Theorem 7. Let f: A — R"™ be continuous and let K < A be a compact set. Then f is
uniformly continuous on K.

Proof: Given &> 0, for each x €K, choose §, such that d(x,y) < &, implies
d(f(x),f(y)) < &/2. The sets D(x,0,/2) cover K and are open. Therefore, there is a finite
covering, say, D(x,0,,/2); . . . ; D(xy,0,,/2). Let § = minimum 8,2, ..., §,,/2. Then
il d(x,y) < 6, there is an x; such that d(x,x) < é,,/2 (since the discs cover K), and
therefore d(x;,y) < d(x,%) + d(x,y) < d,,. Thus by the choice of 5., d(f(x),/(y)) <
16 S(x)) + A )TN < &2 + 62 = &. 1

Worked Examples for Chapter 4

1. Let f: 4 —» R be written as

) J&) = (i) o Sul)) -

Then show that f is continuous iff each component f; is continuous, { = 1,...,m.
Solution: Let f be continuous. If x, — x in A4, we must show that fi(x,) — fi(x)
for each i. But this is an immediate consequence of the fact that f(x,) — f(x), and a
sequence in R™ (here f(x,)) converges iff its component sequences converge (see
Section 2.7). The same reasoning proves the converse.

2. Letf: 4 — R"be continuous. For K « A4 aconnected set,show that {(x,/(x)) | x € K}
is connected in R" x R™ = R"*™, This set is of course just the graph of f.
Solution: Consider the n{appingg: K < R" = R" x R"defined by g(x) = (x,/(x)).
By the previous example, g is continuous. But g(K) = {(»,f(»))|x€ K}, and the
image of a connected set is connected, by Theorem 2.

3. Let f: A — R" be continuous at x, € 4, A4 open, and f(x,) # 0. Then show that f
is non-zero in some neighborhood of x,. '
Solution: Givene > 0 there is a neighborhood U of x, such that || f(x) — f(xo)]l < e
for all x € U, by the definition of continuity. For our purpose, choose ¢ = {| f(xo)ll-

Then || f(x) — f(xo)ll < |lf(xo)ll implies that f(x} # 0, because it is not true that
=)l < 1l/{xg)ll (they are equal). Therefore, on the neighborhood U determined

by & = || f(xo)ll, f is not zero.

4. Show that a linear map L: R” — R" is continuous.
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Solution: We shall show that for our given linear map L: R" — R™ we can find a
number M such that ||[L(x)|| € M ||x|| for all x € R". Then ||x — x,|| < &/M implies
IL(x) — L(xol = |IL{x — xo)ll € M |lx — xg|| < &, which will prove that L is
continuous.

Let M, = sup{||L{e)ll,. . -/IL(e,)li}, where e, ...,e, is the standard basis for
R". Then for x = (x,. . .,x,), and using the triangle inequality,

LGN = Iy Lies) + -+ + x,Liel < Ixgl L@l + « -+ |x] LGl
S My(Ixy| + -+ )
< Mun |l
Thus we can take M = nM, and we get our result.

5. A multilinear map L from R" x R" x «-- x R™* to R" is defined as a mapping
such that for each r, 1 < r < k, we have

L@, by, - o8, + Ab,. . @) = L{@y,e « e + o) + AL(@4,82,0 « b« o)

where the g, € R", b, € R™, and A € R. Show that a multilinear map is continuous.

Solution: Let ey, ...,e, be the standard' basis of R", and for x e R", let x =
(.. X" =)0 x'e;. Define fixed elements of R, .., for integers i; with
I<i<n,j=1,...,kby

Oy erlie = L(eil)' o) .
Then, it is true that

ny e

Lxgye « ooxp) = Z ce Zali,...,l,‘xlll SRR

=1 =1

which is the analogue of writing a linear transformation in terms of a matrix. Indeed,
by multilinearity,

Ny
: Yo 0 : :
Lixy,e . 0x) = L( Z xie; %, . .,Ak)

UES

5y

= Z Xt Lfey, X000+ 0y -
I
Repeating this k times gives the desired result.
From this formula it is clear that L is continuous since the functions x%, . .. , xf
are products of continuous functions and are thus continuous, and L is a sum of

these.
Another solution to this problem, which proceeds similarly to Example 4, is to

show that there is a constant M > Osuch that L(x,. . .,x) < M [[x¢|l -« - [ %, froth
which continuity can be deduced directly.

Exercises for Chapter 4

¢ 1. (a) Prove directly that the function 1/x? is continuous on ]0,c0[.
* (b) A constant function f: 4 — R"™ is such that f(x) = f(y) for all x, y € 4. Show
that f is continuous.
() Is the function f(y) = sin(cos(y?) - ¢¥) continuous? Justify your answer.
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(a) Prove that if f: 4 — R™ is continuous and B < 4, then the restriction f'| B is
continuous (f [ B is the function f but defined only at points of B).

{b) Find a function g: 4 — R and a set B = 4 such that g | B is continuous, but
g is continuous at no point of 4. [Hint: Let 4 = [0,1] and B the rationals.]

(@) I /1R — R is continuous and K = R is connected, is f~Y(K) necessarily
connected ?

(b) Show that if f: R" — R™ is continuous on all of R" and B < R" is bounded,
then f(B) is bounded.

Discuss why it is necessary to have in the definition of limit f(x) that x # x, by
x-+X0

considering what would happen in the case where f: R — R, f(x) = 0if x # Oand
SO = 1.

. Show that f: 4 — R" is continuous at x iff for every ¢ > 0 there is a > 0 such

that ||x — x|l < & implies || f(x) — f{x¢)ll < & Can we replacee > Oord > 0 by
e=0o0ré =07

(a) Let {c,} be a sequence in R. Show that ¢, — c iff every subsequence of ¢, has a
further subsequence which converges to c.

(b) Let f:R — R be a bounded function. Prove that f is continuous if and only
if the graph of fis a closed subset of R?, What if f is unbounded?

Consider a compact set B < R" and let /7 B — R™ be continuous and one-to-one.
Then prove that f~!: f(B) — B is continuous. Show by example that this fails
if’ B is not compact. (To find a counterexample it is necessary to take m > 1.)

Definesmaps @:R" x R"— R* and O: R x R* = R" as addition and scalar
multiplication defined by @®(x,y) = x + y and ®(4,x) = Ax. Show that these
mappings are continuous.

Prove the following “glueing lemma™: Let f: [a,b] — R" and g: [b,c] - R™ be
continuous. Define h:[a,c] - R" by h = f on_[ab[ and h =g on [be]. If
J(b) = g(b), then h is continuous. Generalize this result to sets 4, B < R".

. Show that f: 4 - R", 4 — R*is continuous iffforeveryset B < 4, f(cl(B) n A) =

cl(f(B))-

(a) For f: Ja,b[ — R, show that il f'is continuous then its graph I is path-connected.
Argue intuitively that if the graph of f is path-connected then f is continuous.
. (The latter fact is true, but is actually more difficult.)
(b) For f: 4 = R™, 4 = R", show that for n > 2 connectedness of the graph does
not imply continuity. [Hint: For f: R? — R, cut a slit in the graph.]
(c) Discuss (b) for m = n = 1. [Hint: On R consider f(x) = 0if x = 0, f(x) =
sin(1/x), x > 0.]

(a) A map f: 4 = R"— R" is called Lipschitz if there is a constant L > 0 such
that ||/(x) — Syl < L|ix — y||, for all x,y € 4. Show that a Lipschitz map
is uniformly continuous.

(b) Find a bounded continuous function f:R— R which is not uniformly
continuous.
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(c) Is the sum (product) of two Lipschitz functions again Lipschitz?
(d) Answer question (c) for uniformly continuous functions.

Let f be a bounded continuous function f: R* — R. Prove: f(U) is open for all
opensets U < R"ifffor all non-empty opensets V < R”, inf f(x) < f(y) < sup f(x)
forallye V. xev e’

. (a) Find a function f: R?* — R such that

lim lim f(x,y) and lir% lil'% Sx,y)
»

x=+0 y=0 =0 x-*

exist but are not equal.

(b) Find a function f: R? = R such that the two limits in (a) exist and are equal,
but f is not continuous. [Hint: f(x,y) = xy/(x* + y?) with f = 0at (0,0).]

{c) Find a function f: R? — R which is continuous on every line through the origin
but is'not continuous. [Hint: Look at the hint in (b), or the function r tan(6/4),
0 <r < ow,0 <6 < 2= in polar coordinates.]

Let fi, ..., fy be functions from 4 < R* to R. Let m; be the maximum of f, that
is, m; = sup(fi(4)). Let / =3’ f; and m = sup(f(4)). Show that m < ) m;. Give
an example where equality fails.

Consider a function f: 4 x B — R", where 4 < R", B < R'. Call f separately
continuous if for each fixed x, € 4, the map g(y) = f(xg,y) is continuous and for
Yo € B, h(x) = f(x,y,) is continuous. Say f is continuous on A uniformly with
respect to B if for each ¢ > 0 and x, € 4 there is a § > 0 such that ||x — x4f| < ¢
implies || f(x,y) — f{xg,¥)| < eforall y € B. Show that if /'is separately continuous
and is continuous on A uniformly with respect to B, then f is continuous.

Demonstrate that multilinear maps on Euclidean space are not necessarily uniformly
continuous. [Hint: Try f(x,y) = xy.]

Let 4 = R" be connected and let f: 4 — R be continuous with f(x) # 0 for all
x € A. Then show that f(x) > Ofor all x € 4 orelse f(x) < Oforall x € 4.

Find a continuous map f: R* — R" and a closed set 4 = R" such that f(4) is not
closed. In fact, do this when f: R? — R is the projection on the x axis (f(x,y) = x).

Give an alternative proof of Theorem 5 using the subsequence characterization of
compactness. {Hint: First argue that sup(B) < ov as follows. Say sup(B) = co
and choose x, so that f(x;) > k. Then to show sup(B)€ f(B), choose y, so
that f(y,) < sup(B) < f(») + 1/k and pass to a convergent subsequence.]

Which of the following functions on R are uniformly continuous?
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22.

23.

24.

25.

26.

27.
28.
29.

30.

31.

32.

33.

Give an alternative proof of Theorem 7 using the subsequence characterization of
compactness (Bolzano-Weierstrass theorem) as follows. First, show that if f is
not uniformly continuous, there is an ¢ > 0 and sequences x,,y, such that
d(x,,y,) < 1/nand d(f(x,),/(y,) = &. Pass to convergent subsequences and obtain
a contradiction to the continuity of f.

(a) Define the notion of a compact metric space by examining Theorem 1, Chapter 3.
Show that all the properties there except (i) are equivalent. Adopt any of these
other than (i) as the definition.

(b) Let X, Y be metric spaces and f: X — Y. Go through Theorem 1, p. 80,
and show that it remains valid.

(c) Let X be a compact metric space and f: X — X an isometry; that is,
d(f(x), f(¥)) = d(x,y)for all x, y € X. Show that f is continuous and must be a
bijection. [Hint: If x € X\ f(X) show there is a ¢ > 0 such that d(x,y) > ¢ for
all y ef(X). Use the sequence x, f(x), f(f(»)), . . . to contradict the compactness
of X.]

Letf14 « R" = R"™.

(a) Prove [ is uniformly continuous on A iff for every pair of sequences x,, y, of 4
such that (x, — y,) — 0, we have f(x,) — f(y) — 0.

(b) Let f be uniformly continuous, and x, be a Cauchy sequence of 4. Show f(x,)
is a Cauchy sequence.

(¢) Let f be uniformly continuous. Show f has a unique extension to a continuous
function on 4 = cl(4).

Let f:70,1[ — R be differentiable and let f*(x) be bounded. Show that lil'%it J®)
x-0*
and limlit J(x) exist. Do this both (a) directly and (b) by applying Exercise 24(c).
x=+i"
Give a counterexample if f*(x) is not bounded.

Let f: [a,b] — Rbecontinuously differentiable; that is, f*(x) exists and is continuous.
Prove [ is uniformly continuous.

Find the sum of the series )= _ (3/4)".

Let /:70,1[ — R be uniformly continuous. Must f be bounded !

Let /: R — Rsatisfy | /{x) — f(»)| < Ix — y|* Prove fis a constant. [Hint: Show

that f'(x) = 0.] ‘

(a) Let f: [0,00[ = R, f(x) = \/_Jt Prove [ is uniformly continuous.

(b) Letk > 0and f(x) = (x — x*/log xfor0 < x < land f(0) = 0,/(1) = 1 — k.
Show 3 [0,1] — R is continuous. Is f uniformly continuous?

Let f(x) = x"*==1 for x % 1. How should f(1) be defined in order to make f

continuous at x = 1?

Let A = R"be open, x, € 4,7, > 0and B, = {x € R"| |x — x¢|| < ro}. Suppose

that B,, = A. Prove that there is an r > rq such that B, < 4.

A set 4 = R" is called relatively compact when cl(4) is compact. Prove that 4 is
relatively compact iff every sequence in 4 has a subsequence which converges to a
point in R".
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34. Given that temperature on the surface of the earth is a continuous function,
prove that on any great circle of the earth there are two antipodal points with the
same temperature. [Hint: Let T: [0,2n] — R be a continuous function such that
T(0) = T(2%). Let f(x) = T(x) — T(x — =), and show that f(x) =0 for some
x €[0,27].]

35. Let f: R — R be increasing and bounded above. Prove that limit f{x) exists.

x=* + @



Chapter «J

Uniform
Convergence

In later parts of this book, many of the functions we discuss will be
defined by means of infinite sequences or series. To study such functions we
shall need to understand the concept of uniform convergence of a sequence or
series of (continuous) functions. In order to effectively deal with concrete
situations and examples, we will also consider several important tests for
uniform convergence. Perhaps the most helpful test in particular examples
is the Weierstrass M-test for series. Another test is the Cauchy Criterion
which is mainly of theoretical use. We also include the more refined tests of
Dirichlet and Abel.

In connection with uniform convergence we introduce a space whose
points are functions. On this space we introduce a norm and show that
convergence for this norm is exactly uniform convergence. The space is
proved to be complete in the sense that Cauchy sequences converge. A second
basic property of this space, called the Arzela-Ascoli theorem, establishes
compactness of a subset (in the sense of having the Bolzano-Weierstrass
property). An important result, called the Stone-Weierstrass theorem, is then
proved. This theorem enables one to approximate continuous functions by
polynomials, or by functions from other appropriate classes. Finally, some
applications of this machinery to differential and integral equations are given.

5.1 Pointwise and Uniform Convergence

The most natural type of convergence for a sequence of functions is probably
pointwise (or simple) convergence, defined as follows.

102
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Definition 1. A sequence of functions f;: 4 - R™, 4 < R"is said
to converge pointwise (or simply) to f: A - R™ if for each x € 4,
Ji{x) = f(x) (convergence as a sequence in R™). We often write
fi = f(pointwise) if f, converges pointwise to f.

While this type of convergence is very useful for certain purposes, there
are other situations where it is not. The main disadvantage of pointwise
convergence is that even if the functions f, are continuous, f need not be
continuous. For example, consider Figure 5-1 in which

0, PR
k

—kx + 1, 0<x<1-

) =

&=

In this case, for each x € [0,1], fi(x) converges. If x 5= 0, fi{x) — O (since
fi{x) = 0 for k large), while if x = 0, f,(x) — 1 (as f,(0) = 1 for all k). The
limit is thus

0, x50,

fx) = L x=o,

which is not a continuous function.

How can we avoid this type of behavior? No matter how large k is, there
are points where f, is not close to f. To remedy this a notion is introduced
guaranteeing that f, will be uniformly close to f (that is, close for all x € A)
as follows.

Definition 2. Let f,: A — R™ be a sequence of functions with the
property that for every ¢ > O there is an N such that k > N implies

¥

©, 1) 4

FIGURE 5-1 Pointwise convergence.
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| filx) — f(x)| < e for all x € A. Under these conditions we say
fi converges uniformly to f and we write f, — f (uniformly).

The condition | fi(x) — f(x)|l < & means that f, is within & of f everywhere.
We think of f, as being within the & “ribbon” of f. See Figure 5-2.

Perhaps another example will make the idea clearer. On R consider the
sequence

0, x <k,

1, x =k,

Julx) =

(k =1,2,3,...). Then f, — O (pointwise) because for each x e R, f,{x) = 0
for k large (k > x). However, f, does not converge to zero uniformly, for
there are points x such that f(x) — 0 is not small no matter how large k is.

Let us observe that if f, — f (uniformly) then f, — f (pointwise). This is
because for any x € 4, and ¢ > 0 we have an N such that || fi(x) — f(x)ll < ¢
if k > N, that is fi(x) — f(x). We make similar definitions for a series of
functions.

Definition 3. We say the series Z;‘;, g, converges to g pointwise,
and write ) ® g, = g (pointwise) if the sequence s, = Z:; L9
converges pointwise to g. Also, we say Z;‘; , 9 = ¢ (uniformly)
or Y g, converges to g uniformly if s, — g (uniformly). For a
sequence f, (or series ). g,) we say that f, (or Y. g,) converges
uniformly if there exists a function to which it converges uniformly.

The first basic property of uniform convergence is its connection with
continuous functions given in the next theorem.

A

FIGURE 5-2 Uniform closeness. (a) F:AcR—- R.
(b) F: A < R— RS,
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Theorem 1. Let f: A — R™ be continuous functions, and suppose
that f, — f (uniformly). Then fis continuous.

Thus, uniform convergence is a strong enough condition to guarantee
that the limiting function of a sequence of continuous functions is continuous.
In view of the preceding examples, this should not be unreasonable.

Corollary 1. If g2 A — R™ are continuous and )'> g, =g
(uniformly), then g is continuous.

This follows by applying Theorem 1 to the sequence of partial sums.

ExaMPLE 1. Let f(x) = (sin x)/n, f,: R — R. Show that f, — 0 uniformly
asn — oo. '

Solution: 'We must show that | f,(x) — 0| = |f,(x)| gets small independent
of x as n — 0. But |f,(x)| = |sin x|/n < 1/n which gets small independent
of xasn — oo.

ExaMPLE 2. Argue that the series for sin x,
3

X +x5
sinx = x 5

converges uniformly, 0 < x < r.

Solution: We must show that
l)k 2k+1

(-
Sulx) = Z 2k + 1)1

converges uniformly to sin x. To do this, estimate the difference:

2k+ 1 © (r)2k+ 1

: k
5,(x) — sin x| = — ~
) —sinxl = | 3 (0| < %

But this gives a number independent of x which — 0 as n — co since it is

the tail of a convergent series. Thus the convergence is uniform. Note that

continuity of sin x follows from this, a result we knew already.

3

ExampLE 3. Let fi(x) = x", 0 < x < 1. Does f, converge uniformly?

Solution: First we determine the limit point by point. We have £(0) = 0
for all n and fi(x) = 0if x < 1, but f,(1) = 1 for all n. Thus f, converges
pointwise to

0, x # 1,
fx) =
1, x = 1.

It cannot converge uniformly because this limit is not continuous (Figure 5-3).
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¥

x=0 x=1
FIGURE 5-3 The sequence f,(x) = x".

Exercises for Section 5.1 ‘
1. Let f,(x) = (x — 1/n)%,0 < x < 1. Does f, converge uniformly?
2. Let fi{x) = x — x",0 < x < 1. Does f, converge uniformly?

3. Let f,: R — R be uniformly continuous and let f; converge uniformly to /. Do you
think that f is uniformly continuous? Discuss.

4. Let f(x) = x", 0 < x < .999. Does f, converge uniformly?

5. Let n12

Six) = \; prTe 0<x<1.

”

Discuss how you might prove f is continuous.

5.2 The Weierstrass M-Test

We shall now consider some tests for uniform convergence. The first is of
theoretical use and is entirely analogous to the Cauchy Criterion for a
sequence in R®. It is also called the Cauchy Criterion.

Theorem 2. Let f,: A = R" be a sequence of functions. Then f,
converges uniformly iff for every ¢ > 0 there is an N such that
L,k > N implies || fu(x) — fix)| < eforall xe A.

For the case of series, the Cauchy Criterion takes the following form
when applied to the sequence of partial sums (as in Theorem 10, Chapter 2):
The series Z"" g, converges umformly iff for every ¢ > O there is an N such
that k > N implies ||gu(x) + -+ + g4, () < &for all x € A and all integers
p=0,1,2,.
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Using the above, we can obtain the following important technique for
determining the uniform convergence of a series, called the Weierstrass
M-test.

Theorem 3. Suppose g,: A — R™ are functions such that there exist
constants M, with ||lg,(x)| < M, for all x€ A, and )" M, con-
verges. Then Z >, 9x converges uniformly (and absolutely)

It is not always possible to use the M-test but it is effective in the majority
of cases. For more refined tests, see the Dirichiet and Abel tests in Section 5.8.

Theorem 3 is, in fact, fairly clear intuitively, since the constants M, give
a bound on the “rate of convergence,” the point being that the bound is
independent of x. (More exactly, the tail of the series ). g,, which represents
the error, is bounded by that of ). M,, which — 0 independent of x.)

ExampLE 1. Show that
© &, (sin nx)?
Y g =) ——5—
1 1 h
converges uniformly

Solution: Let M, = 1/n*. Here |g,(x)| < M, since |sin nx| < 1. Hence
by Theorem 3 the convergence is uniform.

0= 5 (%)

Solution: Here we cannot choose an M, for the nth term, because x" is
not bounded. We do not therefore expect uniform convergence on all of R,
but we can prove uniform convergence on each interval [ —a,a] by letting
M, = (¢"/n!)* which is an upper bound for the nth term on [ —a,a]. The
ratio test shows ) M, converges since

M"+1 n! 2 an+1 2 a 2
M,,_((n+1)!(a">_(n+1> '

which converges to zero, which is less than one. Hence we have uniform
convergence on [ —a,a] and so by Theorem 1, we get continuity of f on
[ —a,a]. Since a was arbitrary, we get continuity on all of R.

ExaMPLE 2. Prove that

is continuous on R.

ExaMpLE 3. Suppose a sequence f,(x), 0 < x < 1 converges uniformly and
£, is differentiable. Must f(x) converge uniformly?

Solution: The answer is no. In general, control on the derivatives gives
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control on the functions via the mean-value theorem, but not vice versa
For example, letf,(x) = [sin(n®x)]/n. Then f, — 0 uniformly, but f(x) =
n cos(n®x) does not converge even pointwise (set x = 0, for example).

Exercises for Section 5.2

1. Discuss the convergence and uniform convergence of

x"
X) = c>0,n=12,....
(a) fi(x) > O,n=1,2
e—x’ln
() fix) = xeRn=1,2....

«©

R . x"
2. Discuss the uniform convergence of Z—z, ogxg . ,
1 hn

2 x"
3. Prove that f(x) = ), is continuous on [0,1].
1 n

i 1
4. Discuss the uniform convergence of ) ———.
Bonee of X )
o o

5. If Y a, is absolutely convergent, prove . a, sin nx is uniformly convergent.
1 1

5.3 Integration and Differentiation of Series

For a sequence or series converging uniformly, statements can also be made
concerning integration and differentiation of the limit function. The question
that needs to be answered is whether or not these operations can be performed
term by term. For the integration process the answer is yes as can be seen
from the next theorem. The general definition of integrability is found in
Chapter 8, but the basic properties of integration and differentiation are
assumed known from elementary calculus for continuous real-valued
functions of a real variable.

Theorem 4. Suppose fi:[ab] =R are continuous functions
(a,b € Ryand f, — f uniformly. Then

b b
Jfk(x) dx —*J f(x)dx .
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Corollary 2. Suppose g,: [a,p] = R are continuous and Z;":l Jx
converges uniformly. Then we may interchange the order of integra-
tion and summation

b » w0 b
> gux) dx =’;1 J gu(x) dx .

ak=1 a

The corollary follows easily from Theorem 4 applied to the sequence of
partial sums.

Intuitively, the theorem should be fairly clear, because if f; is very close
to f, then its integral (the area under the curve) should be close to that of f.
But be careful here. Indeed, this result is false if f;, only converges pointwise!
(See Example 1.) '

Note: Actually, there is a theorem with a much wider scope than the
above, called Lebesgue’s Dominated Convergence theorem. One version of
this result states that if f, converges pointwise to f and the f, are uniformly
bounded (that is, |f(x)] < M for all k =1, 2, ..., xe[ab]), then the
conclusion of Theorem 4 remains valid. We shall be content in this book with
the more elementary form of the result in Theorem 4. (See however, Section
8.8)

Can we take the same liberties with derivatives? The answer to the question
of term-by-term differentiation of a uniformly convergent sequence or series
is no as we saw in Example 3 above. This result is a good illustration of the
sort of care that is often needed to turn an intuitively plausible statement
into one of actual fact. Thus we need more assumptions than just uniform
convergence. Sufficient conditions are given in the following theorem.

Theorem 5. Let fi: Jab[ = R be a sequence of differentiable
functions onthe openinterval Jab[ converging pointwisetof: Ja,b[ —
R. Suppose the derivatives f), are continuous and converge uniformly
to a function g. Then fis differentiable and ' = g.

Corollary 3. If the g, are differentiable, the g; are continuous,
Z;‘;l gs converges pointwise, and if Z;":l gy converges uniformly,
then '

(Z gk> =D G-
k=1 k=1
As usual, the corollary follows by applying the theorem to the sequence

of partial sums.

ExaMpLE 1. Give an example of a sequence f,: [0,1] — R which converges
to zero pointwise, but for which {} f. does not converge to zero.



110 UNIFORM CONVERGENCE

area = |

1
x=1/k x=1
FIGURE 5-4

Solution: Let f, have the graph in Figure 5-4. Thus, f; is such that
fSfi=1forall k=1,2,3,.... Furthermore, for each x, fi(x) — 0 as
k — oo (clearly if x = 0 and if x > 0, then f(x) = 0 as soon as k > 1/x).

ExampLE 2. Let g,(x) = nx/(1 + nx), 0 < x < 1. Examine Theorem 5 in
this case.

Solution: For x = 0 we see that as n — oo, g,(x) — 1, since g,(x) =
x/(x + 1/n). But, for x = 0, g,,(x) = 0. Thus g, converges pointwise but not
uniformly. The convergence is uniform only on each interval [§,1] where
§>0. .

The derivative is g,(x) = (1/n)/(x + 1/n)*. This — 0 uniformly on [4,1],
but g,(0) — co. Thus the conditions of Theorem 5 hold only on [§,1] for
& > 0. The limit function is not differentiable at x = 0.

ExaMpLE 3. Verify that [Se'dr=e* —1, using & = )2 x"/n! and
Theorem 4.

Solution: By the Weierstrass M-test, e* = = Y™ x"/n! converges uniformly
on any finite interval. I. Thus by Corollary 2, applied to the interval [0,x],

J edt = JLdt

] t"+ 1

T+ D,

x

x2

+.‘.

X
ﬁ+

2

= —1.
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Exercises for Section 5.3
1. Investigate the validity of Theorem 4 for the sequence f, defined by

nx
) = o <x<1.
Jix) T’ 0<x<1

2. Show that the sequence {f,} defined by
L) = m*xy(l — x)

converges pointwise to /' = 0 on [0,1], and then use Theorem 4 to show that the
convergence is not uniform.

3. Investigate the validity of Theorems 4 and 5 for f,(x) = \/; x"(1 — x). [Hint:
Locate the maximum of f,(x).]

4. Verify that {§sintdt = 1 — cos x, using

A2n+1

sin x = Z( (2n +

5. Verify that sin’ x = cos x, using the series in Exercise 4 and Corollary 3.

5.4 The Space of Continuous Functions

Fix a set A = R" and consider the set ¥ of all functions f: 4 — R™. Then
Vis easily seen to be a vector space. In ¥ the zero vector is the function which
is 0 for all x € A. Also, we define (f + g)(x) = f(x) + g{x) and (Af)(x) =
Mf(x)) for each 1eR, f,ge V. Now let € = {fe V| [ is continuous}.
If there is danger of confusion we write ¥(4,R"). Then % is also a vector space
since the sum of two continuous functions is continuous and, for each aeR
and fe¥,we haveafe %.

Let %, be the vector subspace of ¥ consisting of bounded functions:
%, = {f €% | f is bounded}. Recall that *f is bounded” means that there
is a constant M such that || f(x)| < M for all xe A. If 4 is compact, then
%, = % by Theorem 5, Chapter 4.

For fe @, let | || = sup{l|l f(x)Il | x € 4}, which exists since f is bounded.
The number | f|| is a measure of the size of f and is called the norm of f.
See Figure 5-5. Note that || /|| < M iff | f(x)|| < M for all x e 4.

What we are trying to do here is to look at the space %, in the same way
as we look at R". Namely, each point (that is, vector) in %, (which is a
function) has a norm, so we can hope that many of the concepts developed
for vectors in R" will carry over to %,,. Such a point of view is useful in doing
analysis, and some important results (see Section 5.5) can be proved by using
the methods of R" on the space %,. For this program to be successful, the
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LEA

-iri

FIGURE 5-5 Norm of a function.

first task is to establish that the basic properties of a norm studied in
Chapter 1, Theorem 5 are valid.

Warning: Although we have a norm, we do not have an inner product
associated with it such that || f||* = {f,f>. Other spaces of functions which
we study in Fourier analysis (Chapter 10) do have such an inner product.

Theorem 6. The function ||| on €,(4,R™) satisfies the properties
of a norm:

OASl =0, and | fl =0ifff =0,

@) lof Il = lod I fIl, for ae R, f& Gy,
(@iey 1f + gl < | fI + lgll (triangle inequality).

These are the basic rules we need to talk about open sets, convergence,
and so forth. For example, write f, = fin €, iff | i, — f|| — 0. Recall that
a vector space with a norm obeying these rules (i), (ii), (iii) is called a normed
space. Essentially all of the resuits of Chapter 2 still hold in the context of
normed spaces using the same proofs, and we shall use some of them in the
following discussions and ‘proofs. The connection with uniform convergence
is simple.

Theorem 7. (f, — f (uniformly on A)) <> (f, = f in €, that is,
Ife = fIl = 0).

Also remember that a sequence f, is called a Cauchy sequence if for any
g > 0 there is an N such that k,! > N implies | f, — fill < & A normed
space is called complete if every Cauchy sequence converges. Another name
for a complete normed space is Banach space. Completeness is an important
technical property for a space, since often we may be able to prove a sequence
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is Cauchy and we want to deduce its convergence to some element of the
space.

Theorem 8. €, is a Banach space.

The space €, is only one of a host of spaces of functions of great importance
inanalysis. While the rules in Theorem 6 (compare with Theorem 5, Chapter 1)
allow us to introduce notions of open sets, convergence, etc. as in R", the
space %, is quite different from R” in other respects. For instance, as we have
mentioned, %, does not have an inner product which gives the norm | - |,
(Exercise 48, at the end of this chapter). Another is that. %, is not finite-
dimensional. In Sections 5.5, 5.6, and 5.7 we shall see some specific problems
to which this theorycan be applied.

ExaMpLEl. Let B = {fe %([0,1],R)|f(x) > O for all x € [0,1]}. Show that
B is an open set in €([0,1],R).

Solution: By definition, for fe€ B we must find an & > 0 such that
D(fe) ={ge%||f — gl <&} =B. So fix feB. Now, since [0,1] is
compact, f has a minimum value at some point of [0,1], say, m. Thus
f(x) = m > Oforall xe[0,1]. Lete = m/2. Thenif | f — ¢g| < e, the resuit
is that for any x, | f(x) — g(x)| < ¢ = m/2. Hence g(x) = m/2 > 0,s0g € B.

ExaMPLE 2. What is the closure of the set B in Example 1?

Solution: We assert that the closure is D = {f e % | f(x) > 0 for all
x €[0,1]}. This is a closed set because if f(x) = 0 and f, — f uniformly,
and hence pointwise, then f(x) = 0 for all x. To show D is the closure, it
suffices to show that for f e D there is f, € B such that f, — f (why?). Simply

let f, =f + 1/n:

ExXAMPLE3. Suppose we haveasequence f, € ), suchthat || f,.; — £l <r,
where ) r, is convergent, r, > 0. Prove that f, converges.

Solution: 'We have, by the triangle inequality,
"f;x - f;|+k" < "f;; - f;:+1" + ||f;;+1 - f;:+2" + o+ "f;;+k—l - f;|+k"
STy Py + 0+ g
Since ) r, is convergent, this expression — 0 asn — 00 since it is less than

or equal to s — s,.., where s, is the nth partial sum and s is the sum. Hence
[ is a Cauchy sequence, and so converges.
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Exercises for Section 5.4
v 1. Let B = {fe%,(RR)|f(x) > 0 for all xeR}. Is B open? If not, what is int(B)?
52. What is the‘closure of B in Exercise 1?

3. Do you see a connection between Example 3 above and the Weierstrass M-test?
Discuss.

v 4, let

1/ nx
X)) == 3 <x< 1.
£ n(l + nx) 0<x
Show f, — 01in €([0,1],R).

s 5. Let f; be a convergent sequence in €,(4,R™). Prove {, | k = 1,2,...} is bounded in
@ (A4, R™. Is it closed ?

5.5 The Arzela-Ascoli Theorem

This theorem is closely related to the notion of compactness in the space %,
introduced in Section 5.4. As we saw in Chapter 3, in R" there are several
equivalent ways of formulating the notion of compactness. But in more
general spaces, such as %, these different ways are not equivalent. Specifi-
cally, in Theorem 1 of that chapter, (i) will not be equivalent to the others,
but (ii), (i), (iii), and (iii)’ are all mutually equivalent. An examination of the
proof shows this (see also Exercise 21, at the end of this chapter).

In more general spaces, we adopt one of (ii), (ii), (iii), or (iii)’ for the
definition of a compact set. The reason for this choice and not (i) is because
as we already know in R", conditions (ii) through (iii)’ are the most useful
in proving the key theorems; (see Chapter 4).”

The Arzela-Ascoli theorem gives conditions under which a set in € is
compact. Specifically, this is proved in terms of the Bolzano-Weierstrass
property. To state the theorem we need a little terminology.

Definition 4. Let B < %(4,R™). We say that B is an equicontinuous
.set of functions if for any ¢ > Othereisa d > Osuch thatifx, ye 4,
d(x,y) < 6 implies d(f(x),f(y)) < e for all fe B,

This definition is the same as that of uniform continuity except that now
we also demand that & can be chosen independent of f as well as x,,.
The Arzela-Ascoli theorem is as follows.

Theorem 9. Let A = R* be compact and let B = 4(A,R™). If B is
bounded and equicontinuous, then any sequence in B has a uniformly
convergent subsequence.
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Thus a set in €(4,R™) will be compact if it is closed, bounded, and equi-
continuous. Thisresult is not really intuitively clear but it is very fundamental
for an analysis of the space % of continuous functions.

ExampLEl. Let f,: [0,1] — R be continuous and be such that | f,(x)] < 100
and the derivatives f, exist and are uniformly bounded on ]0,1[. Prove f,
has a uniformly convergent subsequence.

Solution: We verify that the set {f,} is equicontinuous and bounded.
The hypothesis is that | f;(x)| < M for a constant M. Thus by the mean-value

theorem,

lfx) — )l < Mx — o,
so given & we can choose 6 = ¢/M, independent of x, y, and n. Thus {f,}
is equicontinuous. It is bounded because || f;| = JSup |fax)| < 100.

ExampLE 2. Is the result of Example 1 valid if we omit “] f,(x)| bounded?”

Solution: No, for let f(x) = n. Then f, =0 but.clearly there is no
convergent subsequence.

ExampLE3. LetI: 4([0,1],R) — Rbedefined by I(f) = [& f(x) dx. Prove I
is continuous.

Solution: 'We must show that f, — f in € implies I(f,) — I(f). But this
is an immediate consequence of Theorem 4.

Exercises for Section 5.5

1. Show that in Example 1, f, bounded can be replaced by f,{0) = 0 with the same
conclusion.

2. In Theorem 9, need the whole sequence be convergent?

3. (a) Show that .

{fe #([0,11,R) U S(x)dxe ]0,3[}
0

is open.
(b) Show that, within the space of all bounded functions on a set 4, the space €, is'
closed.

4, Let B < 9([0,1],R) be closed, bounded, and equicontinuous. Let /: B — R,
I(f) = [§ f{x) dx. Show that there is an f; € B at which the value of I is maximized.

5. Let f,: [a,6] - R be uniformly bounded continuous functions. Set
F(x) =an(t)dt, a<x<h.

Prove F, has a uniformly convergent subsequence.
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5.6 Fixed Points and Integral Equations

In this section we want to give a brief indication of how analysis on the space
%(A,R™) can be used in several applications.

In many physical problems one considers integral equations; these have
the form

fx)=a +J k(x,»)f (y) dy , 6

where a = f(0) and k are given. We suppose k is continuous.
For example, f(x) = ae* solves the differential equation df/dx = f(x)
which is the same as

fx)=a +J f(y)dy.

One can use the Arzela-Ascoli theorem to analyze Eq. 1 (see also Exercise
45, at the end of this chapter). However we shall confine ourselvesto studying
Eq. ! under some special hypotheses, for which the following theorem is
applicable.

Theorem 10 (Contraction Mapping Principle). Let T: €, (AR™) —
%(A,R™) be a given mapping such that there is a constant 1,0 <
A < 1 with

IT() — Tl < A1 — gl

for allf, g € €,(A,R™). Then T (is continuous and) has a unique fixed
point; that is, there exists a unique point Jo € (4, R™) such that

T(fo) = fo~ ’

Note: The proof is actually valid for any complete metric space. The
condition on T then reads d(T(x),T(y)) < Ad(x,y). Such a map T is called a
contraction; it shrinks distances by a factor A < 1.

The method of proof is called the method of successive approximations.
We start with any f € €, and form the sequence

L T T2 = T(TY), T(f) = T(TTS, . ..

We then show that this sequence is Cauchy, so converges in €, and the
limit function gives the solution. Observe that the method is constructive.
One can successively compute the members of the approximating sequence.
Observe that if we started with the solution, or by luck hit it during the
iteration, the sequence ‘“‘stops.”
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Application of Theorem10. If sup {5 lk(x,y)ldy = A < 1 then
xe[0,r]

Eq. 1 has a unique solution on [0,r].

Indeed, define T(f) by

T(f)x) = a +J k(x,y).f (y) dy .

Thus a solution of Eq. 1 is a fixed point of T and vice versa. In order to apply
Theorem 10 we must verify that T is a contraction: |T(f) — T(g)| <
Af — gl-Here 4 = [0] and m = 1. Now

IT(f) - T(g)ll = sup |T(f)x) — T(g)x)l

xe[0,r]

_ sup f keI 0) — g0l dyf

xe[0,r} | JO

(s&p]J e ) dy) T

=4lf -4l

since | f(y) — g(y)| < | f — gl, a constant. Hence T is a contraction and so
has a unique fixed point, which represents the desired solution.

Later in the book we shall see additional applications of this sort of
method. It should be clear that these techniques are very important in the
theory of differential and integral equations.

ExaMpLE 1. Give an example of a complete metric space X and a map
T: X — X with d(T(x),T(y)) < d(x,y) but with T not having a unique fixed
point.

Solution: Let X = R with the usual distance d(x,y) = |x — yl. Let
T(x) = x -+ 1. Clearly, there is no x so x = x + 1. But |[T(x} — T(y)| =

Ix — yl.
This example shows that in Theorem 10, it is essential to have 4 < 1;

A = 1 will not do.

ExampLe 2. Show that the method of successive approximations applied to
fx) =1 + [% f(y) dy leads to the usual formula for ¢*.

Solution: Begin with the zero function 0. Since T(g) = 1 + [% g(y) dy,
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we get:
TO) = 1;
T20) = T(TO) =1 + | dy =1 + x;
0

V‘x 2
T(T*0) = 1 + (1+y)dy=1+x+x_2_;
Jo
(*x 2 2 3
TTO) =1+| (1+y+5)dy=1+x+% +5;
Jo 2 2 31
xr-!

So this sequence converges to e*.

ExampLE 3. Let k{x,y) = xe™ ™. On what interval [0,r] does the method of
the text guarantee a solution for Eq. 1?

Solution: Evaluate 4 and check that 4 < 1. Now

.

A = sup J xe ™ dy
xe[lo,r]JO
=sup(l —e®)=1~¢"

xe[0,r] -

Thus we get a unique solution on any interval [0,r].

Exercises for Section 5.6

1. For what o is T(x).= ox a contraction on R?

2. Find a series expression on [0,5] for the solution of Exercise 1 if k(x,y) = x and
a=1. .

3. For what interval [0,r], r < 1is f: [0,r] = [0,r], x > x? a contraction?

4. Let T: €([0,r],R) = €([0.-],R) be defined by T(f/)x) = of (x) + {5 k(x)(») dy.
For what «, k is T a contraction?

5. Convert dy/dx = 3xy, y(0) = 1 to an integral equation and set up an iteration
scheme to solve it. ‘
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5.7 The Stone-Weierstrass Theorem’

In the study of continuous functions and uniform convergence, two of the
most basic results are the Arzela-Ascoli theorem, discussed above, and the
Stone-Weierstrass theorem which will be discussed here. This list of theorems
is expanded when courses are taken in topology.

The aim of the Stone-Weierstrass theorem is to show that any continuous
function can be uniformly approximated by a function which has more easily
managed properties, such as a polynomial. Such polynomial approx1mat10n
techniques are 1mportant theoretically and in numerical work.*

We begin by giving the resuit for the special case of the real line. This was
first proved by Weierstrass, but here we present a version due to Bernstein.

Theorem 11. “Let f:[0,1] — R be continuous and let ¢ > 0. Then
thereis a polynomial p(x)suchthat |p — f|| < e.In fact thesequence
of Bernstein polynomials

" I
IOEDY @f(;j)x*u -

converge uniformly to f as n — oo, where

n\ n!
k) k!(n— k)

denotes the binomial coefficient.

The first statement here is a consequence of the second. The second can
be easily understood if one knows a little probability theory, which is
assumed only for the.following paragraph of discussion. Needless to say,
Bernstein’s knowledge of probability theory undoubtediy helped him with
the understanding and the proof of this theorem.

Now, an illustration follows. Imagine a “‘coin’’ with probability x of getting
heads and, consequently, with probability 1 — x of getting tails. Then one
computes that in n tosses, the probability of getting exactly k heads ig.

(Z)xk(l _ X)""k.

Suppose in a gambling game called “n-tosses,” f(k/n) doliars is paid out
when exactly k heads turn up when n tosses are made. Then the average
amount (after a long evening of playing “n-tosses’’) paid out when n tosses

* See for instance McAloon, Tromba, Calculus, Chapter 12, Harcourt Brace Jovanovich Inc,,
1972.
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are made is
;Zo (,’;) Flemx*(l — xP~* = p(x) .

Here f{(k/n) is f at the fraction of tosses which are heads. Now imagine n very
large, that is a great number of tosses. Then we expect that in a typical game
of n-tosses, k/n will be very close to x = probability of k heads (= fraction
of the time k heads occurs) so our average payout should be very close to
f(x). Hence when n is large, we expect p,(x) to be close to f(x). This is the
intuitive reason for the validity of the result. The actual proof is a little
complicated, as might be expected from the complexity of the game.

Even for simple f such as f(x) = \/§, finding an approximating poly-
nomial is not trivial.

We can rephrase the theorem as follows. Let £ denote the set of all poly-
nomials p: [0,1] — R. Then the first statement of the theorem asserts that
2 is dense in ¢([0,1],R); that is, cl(#?) = €([0,1],R).

Stone discovered a very useful generalization of the theorem above by
allowing for more general sets than [0,1] and by replacing £ with a general
family of functions satisfying certain properties. The proof makes use of the
above special case. The theorem is very useful in various branches of analysis
(for example, we shall use it in Chapter 10 in our study of Fourier analysis).

Tlteorem 12. Let A = R" be compact and let B < €(A4,R) satisfy
(i) B is an algebra; thatis,f,ge B,acR=f+ geB,f g B, "
and af € B;
(it) the constant function x +— 1 liesin &;
(i) B separates points; that is, for x,ye A, x # y there is an
fe B such that f(x) = f(¥).
Then B is dense in €(A,R); that is, cl(B) = €(4,R).

ExampLe 1. Let p, be a uniformiy convergent sequence of polynomials and
f = limit p,. Must f be differentiable?

n

Solution: No, for any continuous function is, by Theorem 11, such a
limit-and there are plenty of continuous functions which are not differen-

tiable, such as .
0, 0

<
S = {2x— 1, i<

ExampPLE 2. Prove directly from Theorem 11 or from Theorem 12 that the
polynomials on [a,b] are dense in ¥([a,b],R).
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Solution: (a) We know that if f: [0,1] —» R is continuous and ¢ > 0 then
there is a polynomial p with || f —.p| < & Now let g: [a¢,b] = R be con-
tinuous and let us rescale and set

fx)=gxb —a)+a), 0<x<1,
so f: [0,1] — R. Find p as above and, rescaling backwards et

q(x)=p(g)c a))> a<x<b,

so ¢: [a,b] — R. Thus ¢ is a polynomial as well. We claim |g — q|| < e.

Indeed,
x—a
a)> - ”((b = a)> !

so g — gll <e, since | f — pll < e. Thus the polynomials on [ab] are
dense.

(b) In Theorem 12, we let A = [a,b], and set & = {ge ¥([a,b],R)| g
is a polynomial}. Then & clearly satisfies (i) and (ii). It also satisfies (iii) for
if x 5= y we can let

ey =t

50 f(x) ¢ f(y). Thus & is dense by the theorem.

509 = ate) = lf((b

Exercises for Section 5.7

1. Show that there is a polynomial p(x) such that |p(x) — sin x| < 1/100 for
0<x<2n

2. Suppose p,, is a sequence of polynomials converging uniformly to f on [0,1], and S
is not a polynomial. Prove that the degrees of the p, are not bounded. [Hint: An
Nth degree polynomial p is uniquely determined by its values at N + 1 points
X, - -« » Xy Via Lagranges interpolation formula '

_§ o)

i=1 nl(xl)(x - xl) ’

where 7{x) = (X — Xo)(x — X1) " (x — xy).]

px)

3. Prove that the polynomials in ¥([a,b],R) are not open. Can a subset of a metric
space ever be both open and dense?

4, Consider the set of all polynomials p(x,y) in two variables x, y e [0,1] x [0,1].
Prove this set is dense in €([0,1] x [0,1],R).

5. Consider the set of all functions on [0,1] of the form

hx) =) ae®,  a,beR.
=~

Is this set dense in €([0,1],R)?
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5.8 The Dirichlet and Abel Tests

In some cases in which we would like to determine if we have uniform
convergence, the Weierstrass M-test fails. For such instances mathematicians
have devised other tests. The first test below was created by the Norwegian
mathematician Niels Abel, and the second is credited to P. G. Dirichlet,
a German (of French origins) who worked in the first part of the 18th century.
These tests are useful in many examples, and are especially useful during the
study of Fourier and power series. They are important when we have uniform
convergence but not absolute convergence.

Theorem 13 (Abel’s Test). Let A= R" and ¢,: A >R be a
sequence of functions which are decreasing; that is, @, /(x) < @,(x)
Jor each x € A. Suppose there is a constant M such that |, (x)] < M
for all xe A and all n. If Z , Julx) converges uniformly on A,
then so does )™ | ¢,(x) f(x)-

We get useful tests for ordinary series when we take the special case in
which ¢, and f, are constant functions. One has a similar test if the ¢, are
increasing, which can be deduced by applying the above to —¢,. A related
test is the Dirichlet test.

Theorem 14 (Dirichlet Test). Let 5,(x) = Z:‘n=l Julx) for a sequence
fii A € R" = R. Assumethereis a constant M such that |s,(x)] < M
forall xe A and all n. Let g,: A < R™ - R be such that g, - 0
unIfO' ml}’» Gy = 0 and In+ l(x) < gn(x) Then z f;,(x)g"(x) con-
verges uniformly on A.

For example, consider the alternating series Y, (—1)"g,(x), where g, > 0,
g,(x) = 0 uniformly, and g,,,; < g,. Let f(x) = (—1)". Then |s,(x)] < 1 so
that > (—1)"g,(x) converges uniformly. Note that, as a special case, an
alternating series whose terms decrease to zero is convergent.

Notice that these theorems are similar but are not the same. The con-
ditions on ¢, in Theorem 13 do not imply that ¢, converges uniformly.
Also, in Theorem 13, we do not require ¢, = 0. The proofs of these theorems
are effected by a device known as Abel’s partial summation formula,
described in the proofs.

ExaMpLE 1. Show that Z;"'(sin nx)/n converges uniformly on [é,m — ],
o> 0.

Solution: 'We want to apply Theorem 14 with f,(x) = sin nx and g,(x) =
1/n. The only hypothesis which is not obvious is IZ?-_- , Jix)l < M. To show
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this requires the use of a technique as follows. Write
2 sin(Ix)sin(zx) = cos[(I — 3)x] — cos[(! + 3)x]
and add from I = 1, ..., n. We get a collapsing sum so
2 sin(3x)(sin x + * - + sin nx) = cos $x
— cos(n + Yx

< 2.
Thus

sinx + -+ sinnx < 7,
|sin Zx|

which gives a bound on ZL , fix). The bound is good as long as sin x/2 is
not zero. For example, on [6,mr — §] we get a good bound. Note that the
arguments needed here are somewhat more delicate than the M-test.

ExaMpPLE 2. Show that Z'l"’ (—1)” e~"*/n converges uniformly on [0,co[.

Solution: This time apply Theorem 13. Let ¢, (x) = ¢™"™. For x = 0,.
@, is decreasing and |e™"*| < 1 (why?). We know already that Z;" (=1)/n
converges, so by Abel’s theorem, the series converges uniformly.

ExaMPLE 3. Let © (1)
) =2, e
1
Show f is continuous.

Solution: The solution is immediate from Example 2 and Corollary 1.

Exercises for Section 5.8

Test the following series for convergence and uniform convergence.

- X" —-nx
fl.zn_'e ’ 0<x<1
| SR
w(__l)uxl( ‘
Iz.z " s ngsl
w0 (___1)"
3. : ogx<00~
;m+ﬂ
rdhzsmnx S 0<d<x<n—96
1
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5.9 Power Series and Cesaro and
Abel Summability

In this section we consider some additional optional topics in the theory of
infinite series. We shall begin by studying power series.

Definition 5. A power series is a series of the form )’ a;x* where
the coefficients a, are fixed real (or complex) numbers. Let

1
li Hlad = =3
11!1 iup |zl R
R is called the radius of convergence of the power series, and
{x | Ix| = R} is the circle of convergence (x may be real or complex).

See Exercise 10, Chapter 1 for the definition of lim sup and note that 0 <

R < +00; Rmaybe0 or + co. Thereason for the terminology in Definition 5
is brought out by the following result.

Theorem 15. )™ a,x* converges absolutely for |x| < R, con-
verges uniformly for |x| € R’ where R’ < R and diverges if |x| > R.
(The theorem gives no information if |x| = R.)

These convergence prdperties clearly distinguish R uniquely.

Corollary 4. The sum of a power series is a C*® function inside its
circle of convergence. It can be differentiated termwise and the
differentiated series has the same radius of convergence.

The method of proof is to make use of the previous results on termwise
differentiation of series.

If limit |a,/a, ., ,| happens to exist, then this limit is R, the radius of con-
n—too

vergence. This is easily segn by using Theorem 15 together with the ratio
test. We ask the reader to prove this for himself.

Next, the concept of Cesaro summability is examined.
Definition 6. Set
n 1 n
=Zak, a,,=—ZS,‘;
k=1 n =1

thus ¢, is the arithmetic mean of the first n partial sums of the
series. Note the formula

n k _
g, = Z (l - l)ak.
k=1 n
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The series Y, 2_, a, is called Cesaro I-summable or (C,1) summable
to A if limit g, = A. If this is the case, write

Ya=4 (CI).
k=1

The idea here is to find some way to attach meaning to otherwise di-
vergent series. For example,

t=1-14+1-1+- C,1).
Here S, =1,0,1,0,.

i 1,1,2,2,3,3,.

Thus g,, = n/2n, 05,4+, = n -+ 1/(2n + 1) and so limit o, = 1/2.

However; we can introduce a yet more powerful method of summation by
averaging the ¢,’s, just as the (C,1) method was based on averaging the S,’s.
That is, we define the (C,2) sum of the given series to be 1m1t (o, +
g, + + - + o,)/n if the limit exists.

The reader can easily see how to define (C,r) summability for arbitrary
values r = 1,2,..., obtaining successively more powerful methods of
summation. Some basic properties of (C,1) summability follow.

() If Y a, = A(C,1) and ) b, = B(C,1), then ). (aa, + fib) = ad +
BB (C,1).

@) If }° @, = A(C,1), then }'® @, = 4 — a, (C,1) (“decapita-
tion”).

(ili) Regularity:1f)> @ = Aintheusualsense,then) > a, = 4 (C,1).
(Obviously this property is crucial; any se f—respectmg summation
method must have it.)

Proof of (iii): Wehave S, — A. So, given B < A, there is an n, such that

n=ng =S, = B. Now

1
o'll=;l_(Sl+“.+SHQ+SH0+1+“‘+SH) '

n_no

1
Z—(S 4t S,) B.

Hence lim inf o, = B. Since B < A was arbitrary, lim inf g, = 4.
n—tco

n=*oo

A similar proof shows lim sup ¢, < A. Accordingly, limit o, = 4.

Next we turn to another method of summation called Abel summation
(although it was actually invented by Euler).
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Definition 7. )" '@, is summable to 4 in the sense of Abel if
limit )’ ax* = 4. Wewrite )" ~a, = A (Abel).

x—+1-

For instance, vs;e again have
t=1—-14+1-1+-- (Abel)
since f(x) =1 — x + x* — -+ = 1/(1 + x) for |x| < 1 and this — 1/2 as
x—1—.
Note that (at least in this example) the Abel method gives the same resuit

as the (C,1) method. Actually, this is always the case, as we shall see below.
First we shall prove that Abel summability is regular.

Theorem 16 (Abel). Ify° ~a, = Athen )™  ax* converges for
bl < 1 and limit Lo, Xt = A.

Thus, if a power series converges throughout a closed interval, its sum is
continuous, even at the endpoints.
Actually, Abel’s method is more powerful than the (C,1) method.

Theorem 17. > a, = A (C,1) implies ). a; = A (Abel).

It is interesting to ask for conditions under which a Cesaro summable
series (or Abel summable series, and so forth) is actually convergent in the
usual sense. Along these lines we give a result of G. H. Hardy.

Theorem 18. If Y a, = A(C,1) and if a, = O(1/n) (that is, if
la,| < M/n for a constant M and n large), then . a, converges
(to A) in the usual sense.

Note: Theorems of the above type are known as “Tauberian,” after
A. Tauber, who proved:such a theorem relating Abel summability to
ordinary convergence.

ExampLE 1. Find the radius of convergence of ). x* and ) x*/k!

Solution: In these cases we can use the formula

. .| a
R = limit | —=~

n—co

Ay 41

The first example gives R = 1 and the second gives

!
R = limit((n * 1)‘) = limitln + 1) = o0 .

Hind: n! n—+co
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Thus ). x* converges (to 1/(1 — x))if |x| < 1 and )’ x*/k! converges (to €*)
for all x.

ExAMPLE 2. Show that )% (—1)*k is not summable (C,1).
Solution: Herea,: —1, +2, -3, +4, =5, +6,...
S —1, +1, —2, +2, =3, +3,...
T: -1, 0, -2, 0, =3, O,...
n 1

ne
—_ ——

2n — 1 2

Om= 0, 030y = —

Thus limit o, does not exist. However, the (C,2) sum is —1/4 (Exercise).

H= o o

ExampLE 3. Show )™  (—1)*k = —1/4 (Abel). Here

;21 (=Dt = x ;g—cz (—1Fx*

xd 1
dx1 + x

X

=—a—-+—;c-)3, |X|<1.

This - —1/4asx — 1—, so

S (— 1)k = _Zli (Abel) .
k=1

Exercises for Section 5.9
1. Compute the radius of convergence of
Y x*/k*  and of PRIE ,
2. Show that
YTt =3k + Ix¥, —l<x<l
k=0

(1 - x)2 k=0
by differentiating an appropriate series.

3.Showthat2/3=14+0—-1+14+0-1+14+0—-14--- (CI)
(Note that insertion of zeros can alter the Cesaro sum.)

4.Showl +0—14+1+0—-+=2/3 (Abel).
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Theorem Proofs for Chapter b

Theorem 1. Letf,: A — R"™ be continuous functions, and suppose that f, — f(uniformly).
Then f is continuous.

Proof: Since f, — f uniformly, given ¢ > 0, we can find an N such that k > N
implies that | fi(x) — f(x)l < &/3 for all xe A. Consider a particular point x, € 4.
Since fy is continuous, there exists a 6 > 0 such that (|x — x,ll < 8, xe 4) =
(w09 = Jwxo)ll < &/3). Then for [x = xoll < 8, 1/(x) = flxll < I(%) = /w0l +
1/ = Sulxoll + WSfalxg) — S(xo)ll < &/3 + &/3 + /3 = &. Since x, is arbitrary, f
is continuous at each point of 4, hence it is continuous. §

Theorem 2, Let f,: A = R"™ be a sequence of functions. Then f, converges uniformnly iff
Jor every £ > 0 there is an N such that I, k = N implies | f{x) — (x| <& for all
xe A.

Progf: If f, — f uniformly, then given ¢ > 0, we can find an Nsuch that k > N
implies || fi{x) — f(x)]| < &/2 for all x, Thenif k,[ = N, | fi(») = fi*) < | 1:») = F(D)] +
1) = A < e/2 + ¢/2 =&

Conversely, il given ¢ > 0, we can find an N such that &k, /> N implies
1/x) = f{x)l < e for all x, then fi(x) is a Cauchy sequence at each point x, so fi(x)
certainly converges pointwise to, say, f(x). Moreover, we can fird an N such that £,
[ = N implies || fi(x) — fi(x)]l < &/2 for all x:.Since fi{x) — f(x) at each point x, we can
find for each x an N_ such that / > N, = || fi(x) — f(*)| < ¢/2. Let | > max{N,N.}.
Thenk > N = [/ — SO < 1AG) = A + 1) — 0] < g2 + o2 = <.
Since this”is true for each point x, we have found an N such that k > N=
| 5x) = S < & for all x. Hence f;, = f (uniformly). §

Theorem 3. Suppose g,: A — R™ are functions such that there exist constants M, with
lax) < M, for all xe A, and 2 . M, converges. Then 2 g, converges uniformly
(and absolutely).

P oof Since 2 M, converges, for every ¢ > 0 there is an N such that k > N implies
My + -+ + M| <sforall p=1,2,...(sec Theorem 11, Chapter 2). Fork > N
we have, by the triangle inequality,

lg(x) + -+ Gua N < gl + ==+ + | Grea (3
SMy+ + My, <¢

for all x € A. Thus by the Cauchy criterion for series, ), g, converges uniformly. [

Theorem 4, Suppose f,: [a,b] — R are continuous functions and f, — [ uniformly. Then

b b
f Ju() dx —>f J(x)dx

a
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Corollary 2. Suppose g,: [a,b] = R are continuous and Z:’: . 9 converges uniformly.
Then we may interchange the order of integration and summation

b @ o b
ng(x) dx =kZ; J gi(x) dx .

k5
Proof: For integrals recall that if |f(x)] < M then
be(x)dx < Mp - a).
For ¢ > 0 choose N such that k; N implies | f(x) — f()| < &/(b — a). Then
L o) dx - J ) d] = J Ut - fo d| < =

as required.
For the corollary, let f, = 3%  g;; then f, = f = }'® g, (uniformly), and so by
the above

b b
Jfk(x)dx *Jf(x)dx- i

Theorem 5. Let f,: Ja,b[ = R be a sequence of differentiable functions on the open
nterval lab[ converging pointwise to f:Jab[,— R. Suppose the derivatives f} are
continuous and converge uniformly to a function g. Then [ is differentiable and f* = g.

Proof:* Write fi{x) = fi{x,) + §%, [i{%) dt, where a < x, < b. This is possible by
the fundamental theorem of calculus. Letting k — oo, we get f{(x) = f(xg) + |3, g(¢) dt
using Theorem 4. Hence [’ = g again by the fundamental theorem. Here g is con-
tinuous by Theorem 1. [

Theorem 6, The function || || on €,(A,R") satisfies
O Il =0,and ||If|| = 0ifff = 0;
(i) lof|| = |of IS ]l; for a e R, f€Fy;
(i) |f + gl < SN + lgll (triangte inequality).
Proof: (i) and (ii) are clear. For (iii),
IS + gll = sup{|i(/ + g}l | x € 4}
< sup{||l S| + llg)l | x e 4}

by the triangle inequality in R™, Now, since sup(P + Q) = sup(P) + sup(Q) (Exercise
7, at the end of Chapter 1), and

{1/ + lg)l | > 4} = (LA + gyl | »,y € 4}

we have
sup{|S)|I + llgt)| | xe 4} < I + gl - @
Theorem 7. (f, — f (uniformly on A)) < (fy, = [ in @y; that is, || f, — [| = 0).

* Note: Actually one can prove the theorem even if f} are not continuous, but it requires
more-work; see Apostol, Mathematical Analysis, p. 402.
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Proof: This is nothing more than a transcription of the dcfinitions, The student
should write it out. §

Theorem 8, ¥,iis a Banach space.

Proof: Let f, be a Cauchy sequence. By Theorem 2, f, converges uniformly to f.
Since |/ (x)]l < IIfill + 1 for k large, f is bounded, and by Theorem 1, f is continuous,
Thus f € €, and therefore f, converges in €,. §

The proof of the Arzela-Ascoli theorem is a little long and involved. It may be omitted,
if desired, in a less ambitious course.

Theorem 9. Let A < R" be compact and let B < €(A,R™). If B is bounded and equi-
continuous, then any sequence in B has a uniforinly convergent subsequence.

To prove this, we first prove a lemma.

Lemma 1. Let A < R" be any set. Then there is a countable set C < A whose closure
contains A.

Proof: The points in R" with rational coordinates are a countable set (see the
Introductory chapter). Call them x,, x,, . . . . Consider for each integer n the discs

1 1
D(x,,;;), D(xz,;;>, e

These clearly cover all of R", Whenever one of these, D(x;(1/n)), meets A, select one
point from D(x,,(1/n)) N A, and the collection so obtained will define our set C. Now C
is countable since this collection {D(x,,(1/r)) | L,n € N} is countable.

We claim that cl(C) = A4. Indeed, let xe 4, & > 0. Choose n 50 1/n < g/2. Now x
lies in some D(x,,{1/n)) for some value of /, so there is'a point in C n D(x,,(1/n)), say y.
Thus d(x,y) < dx,x) + dlx,y) < 1/n + 1/n < &. Hence xe cl(C),socl{(C) > 4. B

We shall need to exploit compactness of 4 in the following way.

P
Lemma 2. Let'A be compact and C be constructed as above. Then for any 6 > 0 there
Is a finite set C; © C sap Cy = {yy,... W} such that each x& A is within & of some
veC.

Proof: Choose n so 1/n < 6. Then in Lemma 1, there is a finite number of the
collection D(x,(1/n)), D(x,,(1/n)), . . . which cover 4, because A is compact. Then C, is
defined as those members in this finite collection which were chosen for C. The result
then follows as in Lemma 1. §

Now we turn to the proof of the theorem. Let C be as constructed in Lemma 1, say
C = {x,,x,.... }. Let f, be our sequence in B. Now {,} is bounded, so, in particular,
the sequence f,(x,) is bounded in R™. It follows from the Bolzano-Weierstrass theorem
in R that there is a subsequence of f;(x,) which is convergent. Let us denote this
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subsequence by

Sl fiales)s - ooy fiadX)s - o o

Similarly, the sequence f,{x,): k = 1, 2, ... is bounded in R™; hence it has a sub-
sequence

Jaa(xa)s Saalea)s « <o fafxa)s - -

which is convergent. Continuing the process, the sequence f(x3):k = 1,2,... is
bounded in R™, so some subsequence

Sau(xa)s farxa)s oo s Sanlxa)s oo -

is convergent. We proceed in this way and then setg, = f,, so that g, is the nth function
occurring in the nth subsequence. .

Diagramatically, g, is obtained by picking out the diagonal:

e fis 0 S o+ (first subsequence)
" fau '+ (second subsequence)

* fas +- (third subsequence)

f;ﬂ ./;12 f;x:i

(nnth subsequence)

\

This trick is called the “diagonal process’ and is useful in a variety of situations.

From the construction of the sequence g,, we see the sequence g, converges at each
point of C; indeed g, is a subsequence of each sequence f,,: k = 1,2, ... .

We shall now prove that the sequence g, converges at each point of 4 and that the
convergence is uniform and this will prove the theorem. To do this, let ¢ > 0 and let §
be as in the definition of equicontinuity. Let C; = {y;,. . .} be a finite subset of C
such that every point in 4 is within § of some point in C, (see Lemma 2). Since the
sequences

(970 @y - -5 (934)
all converge, there is an integer N such thatif m, n = N, then )
lg.(y) — gf¥)ll <e fori=1,2,...,k.

For each x € 4, there existsa y, € C, such that | x — y,| < &. Hence, by the assumption
of equicontinuity, we have

“gu(x) - gn(yj)“ <é
foralln = 1,2,....Therefore, we have
“gn(x) - gm(x)” < ”gn(x) - gu(yj)“ + ”gu(yj) - gm(yj)“ + ”gm(yj) - gm(x)“
<e+e+eo=3e,
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provided m, n = N. This shows that
lg, — gul <3¢ formnz=N,

so the uniform convergence of the sequence g, on 4 follows from the Cauchy Criterion
(see Theorem 2).

Instead of proving Theorem 10, the following more general result is established.

Theorem 10'. Let X be a complete metric space and let T: X — X be a contraction:
d(T(x), T(»)) < Ad(x,y), where 0 < A < 1 is a fixed constant. Then T is continuous

and has a unique fixed point.

Progof: That T is uniformly continuous is immediate, for given ¢ > 0 we can use
& = ¢fA; d(x,y) < & implies d(T(x),T(y)) < A6 = &.
Let xy € X, and let x, = T(xp), X3 = T(x), .. Xpur = T(x,) = T Y{x,). We
claim x, is a Cauchy sequence. Note that
(X, 11,%,) = AT(x,),T(x,-1))
A d(Y(U' n—-1 )
= A d(T(x,-1),T(x,-5))

)' d(Yu 1"n )

) < A d(Txg,%,).

Hence
A%y 1) S DX %00 1) + AXpp 15X 02) o0 X X0)

LS AL e AP T )
Now since A < 1,y A" is a convergent geometric series, so given ¢ > 0 there is an N
such that # > N implies (A" + -+« + A"*¥~1) < g/(d(Tx,,%,)). Hence n > N implies
d(x,,%,+4) < 6. Thus we have a Cauchy sequence, and by the assumption of complete-

ness, x,, — x for some x € X.
We claim Tx = x. Indeed, x = limit x,, so Tx = limit T(x,) by continuity of T.
But Tx, = x,,, 50 Tx = limit x,, ':u;c. T
Finally, x, the fixed poi;:ic; unique, for suppose that Tx = x and Ty = y. Then
dixy) = d(Tx,Ty) < Ad(x).

If d(x,y) # 0 we would get 1 < 4, a contradiction. Hence d(x,y) = 0,50 x = y.

Theorem 11. Letf: [0,1] = R be continuous and let ¢ > 0. Then there is a polynomial
p(x) such that ||p — f|| < &. Infact, the sequence of Bernstein polynomials

& /n\ [k -
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converge uniformly to f as n — oo where
n n!
k) ki — k)
Proof: The binomial theorem asserts

(x + yy i ( )r"y""‘. )

denotes the binomial coefficient.

Differentiating Eq. 1 with respect to x and multiplying by x gives the identity

nx(x + yy-t = Zk( ) ' 2)

k=0

Similarly, by differentidting twice,
w(n — Dx*x + y) Zk(k -1 ( )Y"y“"‘" . (3)

Let (for notation) ry{x) = (Z)x"(l — x)""* Thus Egs. 1, 2,and 3read, withy = 1 — x

Zrk('c =1, Y knfx) =nx, Zk(k — 1) = n(n — 1)x?
=0 =0 =5

It follows that we have the identity

i(k — nx)’rfx) = n XZZIk(Y - ZIIYZI(Ik(Y + Zk rilX)

= n?x? = 2nx-nx + [nx + nfn — 1)x?] “)
=nx(l — Xx).
Now choose M such that | f(x)] < M on [0,1]. Since f is uniformly continuous there

is, for ¢ > 0,a 8 > Osuch that |x — y| < § implies |f(x) — f(y) < e.
We want to estimate the expression

1) = po)l =

=[5 -1 () )ta

To do this, divide this sum into two parts; those for which [k — nx| < dn and those for
which [k — nx| = én. If |k — nx| < dn, then |x — (k/n)l < 6, so |f(x) — flk/n) < &,
and therefore, remembering that r,(x) > 0, these terms give a sum < e ), rf{x) = .
The second type of terms have a sum

SIM Y o) <

2 2
|k—ux|28n 6

(%) —kiof(k/n)rk(x)

Z(k — nx)?ryx)
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which, by Eq. 4, is
IMx(l — x) M
—— < o
162 26%n
since x(1 — x) < 1/4 (why 7). Thus we have proven that for any ¢ > O thereisa é > 0
such that

M
[JO) = pd)l < & + TR

Thus if  is sufficiently large, M/(26%1) < € so

[f(x) = pfx)l < 2
ifn > M/26%. Thus p, — f uniformly. §

Theorem 12. Let A < R" be compact and let B <« C(A,R) satisfy
(i) & is an algebra;
(ii) the constant function x v 1 liesin B;
(iii) & separates points.
Then A is dense in €(A4,R).

Proof: Let us introduce some notations as follows:

(f v 9)fx) = max(f(x).g(x)) and (/' A g)x) = min(f(x).g(x)).

(See Figure 5-6.) Let & be the closure of #. Then by continuity of addition and multi-
plication, we see that 4 also satisfies (i), It clearly satisfies (ii), (iii). Thus 4 is closed and
what we then want to show is that & = #(4.R).

By the preceding theorem and solution (a) to Example 2, Section 5.7 we can find a
sequence of polynomials p,(t) such that

1
|14 — pf0)] < = for —-n<t<n.
n .

Thus
176 ~ PN < > i< S <.

This proves that for f€ 4, | f| € &, because p, o f € & since & is an algebra.

fveg
f
j)?f ~
4 g AN
f f fAg &

FIGURE 5-6
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Now we have the identities

fvg=f:g+U;m’

(an exercise for reader),so if f,;ge %,/ v gand f A g liein & as well.
Let he ¥(4,R) and x,, x, € 4 with x; # x,. Choose g € # such that g(x,) # g(x,)
(which is possible by hypothesis (iii)), and let .

Jax¥) = aglx) + B,
o D) = )] _ [obeahtx;) — hxi)gxs)]
[g(x,) — g(x3)] fg(xy) — g(x;)]

The numbers of a, f# are chosen so Jerxax1) = h(xy) and [, (c5) = Hlxy).
Lete > Oand xe A. For y e A there is a neighborhood U(y) of y such that

Sd2) > h(z) — & ifzeU(y). "

where

and p

This is simply by continuity of #. Let U(y,),. . . , U(y,) bea finite subcover of 4, which is
possible by the Heine-Borel theorem. Set f, = f,. v **- v f,,.. Thus, as above,
Jf.€ % and [f{z) > h(z) — ¢ for all ze A. Also, f,(x) = h(x). Thus there is a neighbor-
hood V(x) such that f{y) < A(y) + gif y € V(x). Let V(x,), . . ., V(x,) cover 4 and set

S=fo Aot A S

Then again e %. Now f(z) > h(z) — & for all ze A because S (4) > h(u) — ¢ for all
ue A and also for ye 4, ye V(x) for some x; so f{(y) < S (») < Wy) + & Thus
|f(2) — h(2) < e,50he B. Thus B = ¥(4,R). §

For both Theorems 13 and 14 which follow Abels partial sunmation formula is
employed; this is contained in the next lemma,

Lemma 1. Consider two sequences a,, ay, - ..and by, by, ... of real numbers. Let
s, =a, + -+ a, Then

L] L] N
Zakbk = 5,bp41 = Zsk(bk+1 - by
k=1 k=1

=s5,by + Z(Sn = 5 by — By
k=1

Proof: Note thatg, =5, — 5,.1. Then

" "

Zakbk = Z(Sk = Se)by = Z-kak - Zsk—lbk s
k=1 k=1 1 £=1

k=

where 5, = 0, Now .

i
Zsk—xbk = Zskbk+1 = Sbns1 s
k=1

k=1
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so we obtain the first result. The second equality is obtained by putting
bpat =kZ::1(ka —b)+ bx

in the first equality. §

Theorem 13 (Abel’s Test). Let A < R™and ¢,: A — R be a sequence of functions which
are decreasing; that is, ¢, (x) < @,(x) for each x € A. Suppose there is a constant M
such that |p (X)) < M for all xe A and alf n. If 2 f"('c ) converges unifornly on A,
then so does ). ° | @ (x)f(x).

Progf: Let
5,(x) =kz fx) and ) =) eu0AX).
=1

Then, by the second equality of the lemma, we find that

) = 1) = (5%) = 5lDPL0) + Y (5:0) — 5N P 10) — @40

k=m+{
for n > m, so that
i
%) = ru) < Islx) = sl [+ Y 150 = 5 [@ps 1 (5) — @)l
k=m+1
since

Prr 1 S P, [Prer — Ol = P~ Prsy
.
Given ¢ > 0, choose N so that n, m > N implies |5,(x) — 5,.(x)] < &/3M for all
x€ A. Then

L

Z (Pk(x Pres1(%)]

k=nr+

6‘\
S‘L

Ir) = ol < 5 +

€ €
§ + (3 )[(pm+l(x (pn+l(x)]
! <& €
§ + <3 >[|(Pm+1(x| + a4 ()]
<8 + € + .
37373

forall x € A. Hence by the Cauchy Criterion (Theorem 2), f,{x) converges uniformly. §

Theorem 14 (Dirichlet Test). Let s,(x) = 2 f,,,(x) Jor a sequence f,: A < R" = R.

Assume there is a constant M such that Is,,(x)l < M for all xe A and all n. Let

ga: A « R™ — R be such that g, — 0 uniformly, g, >0, and g, (x) < g,(x). Then
- J{x)g,(x) converges uniformly on A,
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Proof: We use the same notation as in the above proof, writing ¢, = g,. Now,
however, to compute r, — r,, we use the first equality in the lemma, Namely,

r,,(x) - r,,,(x) = n(x)(PrM- x(x) - sm(x)(pm+x(x)

- Z SN Pas 1(x) — i)

k=m+ 1

so that, since ¢, = O and ¢, < @,

|I',, X) - rm(x)l < M((PM-l(x) + (pm+t(x))

FHMY (@)~ Pee)
k=m+ 1

= M@ 1(X) + Qo 1(X) + P 1(X) — Pry1(x)
T = 2Mp,(0).
Now, given ¢ > 0, choose N so that m > N implies @,(x) < &2M for all x. Then
m,n = N implies |r(x) — r,{x)] < &, which proves the assertion. §
Theorem 15. 2;’: Oakx“ converges absolutely for |x| < R, converges uniformly for .
|x| € R where R"< R and diverges if |x| > R.
Progf: Let R' < R. Choose R with R < R" < R, Then, for n sufficiently large,

1 T
", < s that is, |a,] < (%) .

Hence if |x| < R', we have
RI
la.x"| < (F)' .

Since R'/R" < 1, we have uniform absolute convergence in the disk |x| < R’ by the
Weierstrass M-test.
On the other hand, suppose y, a,x" converges. Then a,x" — 0, 50 |a,%'] < 1 for n

large. Thus V|a,| < |x|~! for n large. Hence R™! = lim sup /|a,| < |x|7%, that is,
<R @ '

Covollary 4. The sum of a power series is a C® funciion inside its circle of convergence.
It can be differentiated termwise and the differentiated series has the same radius of
convergence.

Progf: 'The series obtained by termwise differentiating is ) ka,x*~*. The radius of
convergence is R’, where

1/R = limsup ¥k|a .

But \"/;Z — 1 (why?), so

1 1 .
o lim sup Y|a) = 2 thatis, R = R.



138 UNIFORM CONVERGENCE

Thus, by Corollary 3, the differentiated series converges uniformly inside uny smaller
circle, and therefore it is the derivative of the sum of the original series. By induction,
we see that the original series is differentiable any number of times. §

Theorem 16 (Abel) If 2:’ o =A then 2,:,0 ax* converges for |x| <1 and
11m1t zk o WXt = A,

Proof: By changing a,, we can assume 4 = 0. Since g, is bounded (in fact a, — 0)
the series ) a,x" converges for |x| < 1 by Theorem 15 on the radius of convergence.
Write S, = ) _ &, Since S, is bounded as n — co, the series Y St llkewxse
converges for |x] < 1. Now, since 4 = 0, S, — 0 as n — co. Write f(x) = Zk 0 @
|x] < 1. Then
oo
S0x) = 8o + 2, (Sk = Se-)x*

k=1

= (1 — x)iS,‘x".

k=0
Since S, — 0, given ¢ > 0 we can find n, so that |S,| < & for 1 > ngy. Then

no

[flx) <1 — %) ZS,J" + (1 — X) i ex*

k=0 k=1o+ 1

<(1-x fs,,x" + (1 — x) exmri(] — x)°1

k=0

<1 -9|) S +e.

Accordingly, lim sup |f(x)| < e Since ¢ > 0 was arbitrary,
x=+ 1
lin}itf(x) =0. §
jrarad

Theorem17. Y a, = A(C,1) implies ¥, a = A (Abel).
Proof: As before, we may suppose 4 = 0. Write S, = )" _ a., T, = 2;::0 S
Then, by assumption, T, = O(n). Hence S, = T;, — T,., = O@manda, = §, — S, =
O(n). Accordingly all three series ., a,x%, 2 Sx*, and ¥, T,x* converge if I'cl < 1. Also,
S =Yax=01-xY 5x*
=(1 — x)*Y Tx",

Now, as T, = O(n), given ¢ > 0 we may choose 11, so that 1 > n, implies |T;| < en

Accordingly,
1l < (1= %2 D) T + (1 — x)* ) ekt
k<no k>no
SU -0 D T+ (1 — 0 ex(l —x)°2
k<no

and we find limit sup | f(x)| < & Thus, as in the previous theorem, lin}it J(x)=0. B
X=§ - E2ndt Sad
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Theorem18. IfY a,= A (C,2)andifa, = O(1/n) theny a, = A.

Proof: We can as usual, suppose that 4 = 0. Write S, = )" @, T, = )} S;. Then
the first hypothesis is written as T,, = o(n). The second hypothesis implies there exists a
constant C with |a,| < C/n for all n.

We want to show S, — 0. If not, then for some § > 0, |S,| = & for infinitely many
indices n. It can be assumed (by reversing all signs if need be) that S, > & for infinitely
many values of #n, But if S, > d and r > S, we have

Sr=Su+an+l +an+2+'“+ar

>6-cf[—— 4ol
-+ 1 r

26—Clog<:—;>.

This will be >8/2 r;rovided Clog (r/n) < 6/2, that is, r/n < €¥*¢ = A. (Note that
A > 1). Hence we have

5 '
([An] —n)s < Z S, = TE)-n] - 7:: .
2 r=nt
(Here [x] means the largest integer <x.) Now the right side of this inequality is o(r),
but the left side is of the order (1 — 1)dn/2, a contradiction. Hence S, must tend to 0. §

Worked Examples for Chapter 5

1. () If f, — f (pointwise) and g, — g (pointwise), then show that f, + g, — f + ¢
(pointwise) for functions f,g: 4 =« R" —» R",

(ii) Answer the same question for uniform convergence.

Solution:

(i) For xe A4, we must show that (f, + g,)(x) = (/' + g)x). Given ¢ > 0, choose
N, sothat k = N, implies || fi{x) — f(x)|| < &/2 and N, so that k = N, implies
lg{x) — g(x)| < &/2. Then let N = max(N,N,) so that k& > N implies (by the
triangle inequality)

IUe + g0 — (F + @)l < 1Ax) — SGI + lglx) — gl < &
(ii) Repeat the argument in (i) where each statement is to hold for all x € 4.

2. Prove that a sequence f;: 4 — R" converges pointwise (uniformly) iff its components
converge pointwise (uniformly).
Solution: The portion of the example on pointwise convergence follows from the
fact that a sequence in R™ converges iff its components do (see Chapter 2). However,
write out the argument again so its validity for uniform convergence can be seen.

Let x = (x',....x")e R™ Then |x| < |x| < 37" 1l Indeed, the first inequality

is obvious and the second follows from the triangle inequality if we write x =
(x'0....0) + (0x20.....0) + + - + (0,0,.. .,x™).
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Applied to f, = (/'1,.. ../, we have

|fix) = S0 < 1) = Sl salef ix) = [

Now if fi(x)is a ‘Cauchy sequence for all x, so is fi(x) by the first inequality. Hence
Ji converging pointwise implies that f} converges pointwise. The same inequality
and Theorem 2 show that if f, converges uniformly, so does f}.

Conversely, suppose fi(x) converges for each i and v, Choose W, such that
k, } = N; implies | fi(x) — fi(x)| < ¢/m. Then if N = max(N,,...,N,), k, I = N
implies || fi() — S| < &/m + - -+ + &/m = ¢, 50 fi{x) converges.

For uniform convergence we repeat the argument with each statement holding
forall xe 4.

3. Find an example of a sequence f, converging uniformly to zero on [0,c0[, with each
{& f1{x) dx existing (that is, converging), but [§ fi{x) dx — + co. Does this contradict
Theorem 47

Solution: Let

,  if0 << x<k?

3

&=

flx) =

,

s if x > k2.

0
Then f, — 0 uniformly, since |_ﬂ(x)l < 1/k for all x. However,
@© k2
j fx¥)de=—=k— 0.
N k

This does not contradict Theorem 4 because that theorem dealt with finite intervals.
4. (Dini’s theorem). Let 4 < R” be compact and f, a sequence of continuous functions

Jit A — Rsuch that

(a) fi{x) > Oforxe 4;

(b) f, — O pointwise;

(©) flx) < ffx) whenever k > /.

Prove that f, — 0 uniformly.

Sotution: This example requires a little care because we are trying to deduce uniform
convergence from pointwise convergence plus some other hypotheses and we know
that the result won’t be true without these extra ones (study Figure 5-1, where all the
hypotheses here are valid, except f,(0) = O as k — o).

Given ¢ > 0 we want to find an Nso that |fi(x)] < eforallk > N and all xe 4.
For edch x € 4, find N, so that | f{x)| < &2 if k = N,. We write N, to emphasize
that this number depends on x. Here we have used hypothesis (b). By continuity of
fi{x) there is a neighborhood U, of x such that |fi{y) — flx)| < &/2 for ye U
The neighborhoods U, y_form a covering of 4, so by compactness there is a finite
subcover, say centered at x,, ..., Xy Let N = max(N,,,.. ..N,,). Now let x & 4,

24 T xar

k = N.Thenxe U,,y, for some/, so | fy,(x) — fy(x) < &/2. Thus, using (c),

0 < A) < 0 < fu) = uld + Ll = fufwd] <5 +3 = ¢.

Therefore fi(x) < e for k > N, xe 4 and so we have uniform convergence.
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5. Preamble. Consider the alternating series 2:; (= 1)y/n which converges (see
Theorem 14 above). However, we cannot rearrange the terms of the series, or else
we may get divergence. In fact, the series ) (—1)"i1 can be rearranged to yield any
desired sum! This was discovered by Riemann (see Exercise 17).

To be able to rearrange series, it is necessary to have absolute convergence.
First, let us define a rearrangement, Let 2:;; a, be a series. A rearrangement is the
series 2:’: L Qatirs where g is a permutation of {1,2,3,. . . }, or more precisely, a bijection
o {1,23,...} - {1,2,3,.. . }.

Prove the following theorem,

Theorem. Let g, R™ and suppose Zk , 9 converges absolutely; that is,
zk . [lgill converges. Then any rearrangement of the series zk_ gy also con-
verges absolutely, and to the same Finit.

Softution: Let g, be the rearranged series. Given ¢ > 0, there is an N such that
n = N implies *
"ghu + e + “gn+[l“ <e&.

Now choose an integer N, so that ¢(n) > N whenever n > N,. (We can do this
because there are only finitely many integers » for which a(n) < N because ¢ is a
bijection). Thus if n > N,, we have a(n + k) > N, so by the above,

Hgn'(u)" LR "gn'(n+p)“ <é&.

By the Cauchy Criterion then, Y. g, converges absolutely (Theorem 10, Chapter 2).

To show that the limits are the same, given ¢, select N, > N, where N is as above
so that if 1 < n < N, then n = o(k) for some k, 1 < k < N,. This is because such
k are finite in number and ¢ is onto. Then let Ny, = max(N,,N,) and so for m > N,

m © mt
Z gn’(k) - Z nl Z gq(k) Z Gn — Z n
k=1 n=1 k=1 n=1 n=No+1
m No ©
< Z oty — Z gn“ + Z In
k=1 n=1t n=No+1
n ©
= Z Gagm + Z gn
n=No+1 n=No+ 1

<ege+e=12.
Here we have used the fact that

@© No @©
Y g =) g+ D g
n=1 n=1 n=No+ 1
and that
m No nt
Z oty ™ Z In = Z Gatn) »
k=1 nm=g n=No+ 1

which holds by construction of N,.

Thus the series zk Jouy CONVErges to 2“’ 0 which is the desired conclusion.
The result of this example is closely related to important rearrangement theorems
for double series (see Exercise 51).
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Exercises for Chapter 5

e 1.

' 4,

» 8.

(a) Letf, beasequenceof functions from A4 < R"to R™ Suppose there are constants
my, such that || filx) ~ f(x)|| < m, for all x& 4 and that m, — 0. Prove that
Ji — [ uniformly.
(b) If m, = me R and |fi(x) — ffx)| < |m, — my for all xe A4, then show that
J, converges uniformly.
. Determine which of the following sequences converge (pointwise or uniformly).
Check the continuity of the limit in each case.
(sin x) 1
. b 0,1].
(a) p on R ()(ch+1)on] 1[
X
0,1 d) ———onR
()(k:c+1 n J0L- @ 5o
(e) (1,((:—(;55-)2), a sequence of functions from R to R2,
c
. Determine which of the following series 2:; , i converge (pointwise or uniformly).
Check the continuity of the limit in each case.
0, x<k giR-R
@ g = {(—1)", x> L
@ |x <k, g R—-R
(b) gufx) =
.| Wk
(= 1)¥ )
() gudx) = \/I— cos(kx) on R. (d) gifx) = x*on ]0,1[.
e
x
Let 1,2 R be defined b —
e £ [1,2] = Rbe defined by 409 = .

(a) Prove that 32 f,(x) is convergent for x e [1,2].
(b) Isit umformly convergent?

(c) Is f? (2‘;’ Sx)dx = 2‘;’ 3 ffx) dx?

. Suppose f, — funiformly, where f;: 4 — Rand g, — g uniformly whereg,: 4 - R

and there is a constant M, such that |lg(x)]| < M, for all x, and a constant
M, such that || f(x)| < M, for all x. Then show that fig, — fg uniformly. Find a
counterexample if M, or M, does not exist. Are M, and M, necessary for point-
wise convergence?

. Prove that the sequence f,: 4 — R™ converges pointwise iff for each x& 4, fi(x)

is a Cauchy sequence.

. For functions /4 — R, form ¥, as in the text. Show that we always have

/gl < [Lf1- llgll. Discuss with examples.

Does pointwise convergence of continuous functions on a compact set to a con-
tinuous limit imply uniform convergence on that set?
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» 11.

13.
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315,

16.
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Suppose 2"’:’: , 9x converges uniformly on 4. If x, = X, in 4, prove that
gn(xk) d Z gu(xO) .
1 . =i

For the sequences and series of Exercises 2 and 3, when can we integrate or
differentiate term by term?

us=

(a) Must a contraction on a metric space have a fixed point? Discuss.

(b) Let /1 X — X, where X is a complete metric space (such as R) satisfying
d(f(x),f(»)) < d(xp) for all x, ye X. Must f have a fixed point? Discuss.
What if X is compact?

. A function f: 4 - R, 4 = R" is called Jower semicontinuous if whenever x, & A

and A < f{(x,), there is a neighborhood U of x, such that A < f{x)forallxe U n A.

Upper semicontinuity is defined similarly.

(a) Show that f is continuous iff it is both upper and lower semicontinuous.

(b) If f, are lower semicontinuous, f, — f pointwise and f;, ,(x) > fi(x) then
prove that f is lower semicontinuous.

(0) In(b) show that f need not be continuous even if the f, are continuous.

(d) Let f:[0,1] - R and let g(x) = su}g inf f(»). Prove that g is lower semi-
continuous. 820 by=sl<s

In Theorem 5, show that f, — f uniformly. [Hint: Use the mean-value theorem].

Let f: X — X be a contraction on a compact metric space X. Show that
® f%X) is a single point where /" = fofo* o f (n times). Is this true if
R? ‘

n=1

Let g, € R™ and let f, bea subsequence of g,. Provethatif ). g, converges absolutely,
then Y f, converges absolutely as well. Find a counterexample if Y g, is just
convergent.

Observe that in Example 5, the same argument applies in any normed space. Use
this observation and the space €, to prove the following:

Theorem. Let g2 4 < R" — R" be bounded. continuous, and suppose Y., g,
converges uniformly and absolutely. Then any rearrangement also converges
uniformly and absolutely, and to the same limit.
Let 2;‘; 0% be a convergent, not absolutely convergent, real series. Given any
number x, show that there is a rearrangement Y. b, of the series which converges
to x. [Hint: Let p, denote the nth positive term of a, and — g, its nth negative term.
Non-absolute convergence implies that both of these series Y. p,, . g, diverge. Let
X, =x — 1fn and y, = x + 1/n. Choose k,, so that s; = p; + -+ + p,, > x,

and /, so that ry = py + -+ + p,, — ¢, — *** — g1, < ¥1. Then choose further
terms so that s, =p, + -+ p, —q — =@, Fpy, +o Py > X
Repeat this, obtaining a series with partial sums sy, r, 55, 13, . . . . Argue that we

can choose, for & large enough, x;, < 5, < y, and x;, < 1y < y,, from the fact that
P Gy — 0. Show that this is the desired rearrangement.]

Give an example of a sequence of discontinuous functions f, converging uniformly
to a limit function f which is continuous.
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19.

Construct the function g(x) by g(x) = x| if xe [—1/2,1/2] and extend g so that it
becomes periodic. Define

@ n—1
oy = 325

+ (a) Sketch g and the first few terms in the sum,

»*

20.

21.

22.

23.

24.

25.

26,

27.

28.

(b) Use the Weierstrass M-test.to show [ is continuous.
(c) Prove f is differentiable at 1#0 point [Hint: It would be helpful to consult
Gelbaum and Olmsted, Counterexamples in Analysis, p. 38].

2, (sin nx\ , . .
Prove that Z -~ |x* defines a continuous function on all of R.
n=l n

(a) Prove that if 4 < R" is compact, B « ¥(4,R™) is compact <> B is closed,
bounded, and equicontinuous. Note: One half of this, <, was proved in the
text.

(b) Let D = {fe %([0,1],R) | |f1| < 1}. Show D is closed and bounded, but is
not compact. Construct a sequence in D which is not equicontinuous and then
make use of (a).

Let B = ¥(A,R™) and A4 compact. Suppose for each x, € 4, and & > 0 there is a
é > 0 such that d(x,x,) < & implies d(f(x),f(x,)) < ¢ for all fe B. Prove B is
equicontinuous,

Let /: R — R and suppose f o f is continuous. Then must f be continuous?

A metric space X is called second countablé if there is a countable collection U,,
U,,...of open sets in X such that every open set in X is the union of members of
this collection. Prove that such an X has a countable subset C such that cl(C) = X.
(We then say that X is separable). Prove conversely that a separable metric space
is second countable.

Let g: [0,1] — R be continuous and one-to-one. Show that g is either increasing or
decreasing. ;

Let k(x,y) be a continuous real-valued function on the square U = {(x) |0 < x < 1,
0<y< 1} and assume |k(x)| < 1 for each (x,y)e U. Let 4:[0,1] > R be
continuous. Prove that there is a unique continuous real-valued function f(x) on
[0,1] such that

1

Six) = A(x) +f kCey)f(y) dy .

0

Let /2 Ja,b[ = R be uniformly continuous, and suppose that x, — &, Show that
limit f(x,) exists.

n-+w

Let f,(x) = x/n. Is f, uniformly convergent on [0,396]? On R?
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29. Discuss the uniform continuity of the following.

¢

(@) f(x) = x?, xe]-1,1[

C ) f(x) =27, xe[0,00[.

30.

s31.

3 32,

33.

034,

035,

« 36.

» 37,

¢ 38.

39,

Q) f6) =e%  xe[000[.

H{d) f(x) = xsin@, 0<x<1L,f(0)=0
)

(e) f{x) = sin[In(l + x%)], -l<x<L,f(-1)=0.

Discuss and prove the statement “Every continuous function on a compact metric
space is uniformly continuous.”

Let a, be a convergent sequence of real numbers, a, — a. Letb, = (a, + *-* + a,)/n.
Show b, — a as well.

Discuss and prove the following. Let X and Y be metric spaces and [ X —» Y
continuous. Suppose f(X) consists of two distinct points. Then prove X is not
connected.

Let f,:[0,1]— R be a sequence of increasing functions on [0,1] and suppose
J, = 0 pointwise. Must f, converge uniformly ? What if f, just converges pointwise
to some limit /7

Find a sequence f;: [0,1] —» Rofdifferentiable functions such that f, — 0 uniformly,
but such that f7(1/2) does not converge to 0.
Let /1R — R be continuous and bijective. Show that f~! is continuous (see
Exercise 7, Chapter 4. For a generalization, see M. Hoffman, Continuity of Inverse
Functions, Mathematica Magazine (not yet published).)
Let f(x,y) = x%y/(x* + y?). Discuss the behavior of f near (0,0) with regard to the
limits
a) limit  f{xy),
(@) o (fo.o;f( V)
(b) lim[lim f(x)],

2= 0y
{¢) lim[lim f(xy)].

»=+0"x~+0

Suppose f: R — R is continuous and f(1) = 7. Suppose f(x) is rat%ﬁal for all x.
Prove f is constant.

Prove 1+ 1/2+ 1/4+ 1/8 + +++ converges and 1 — 1/2 4+ 1/3 — 1/4 + --
converges, but not absolutely.

A function g: [0,1] — Ris called simple if we can divide up [0,1] into subintervals
on which g is constant, except perhaps at the end points. Let f:[0,1] — R be
continuous and ¢ > 0. Prove there is a simple function g such that | f — g|| < .

. (a) Define 8: ¥([0,1],R) — R, f +> f(0). Prove é is continuous and is linear.
(b) Let g: R — R be continuous. Define F: ¢([0,1],R) = #([0,1],R) by F(f) =
g o f. Prove that F is continuous; prove that if g is uniformly continuous then
F is uniformly continuous.
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41,

42,

43,

45.

46.

-

47,

48.

Show that there is a polynomial p(x) such that |p(x) — |x? < 1/10 for
—1000 < x < 1000.

Study the possibility of replacing the sequence of Bernstein polynomials in Theorem
11 by a sequence of Lagrange interpolation polynomials (see Exercise 2, Section 5.7
for the definition and properties) to effect the proof of the theorems in Section 5.7.

Let %[ — 1,1],R) denote the set of even functions in ([ — 1,1],R).
(a) Show %, is closed and not dense in 4.
(b) Show the even polynomials are dense in ¢, but not in ¥.

. Projects: Examine the possibility of extending the Stone-Weierstrass theorem to

(a) complex valued functions (keep the same hypotheses on % except add ‘f ¢ &
implies /'€ #” ~(overbar) denoting the complex conjugate);

(b) non compact domains (consult Simmons, Introduction to Topology and Modern
Aunalysis);

(c) Use (b) to study the density of the Hermite functions in a suitable space of
continuous functions (the Hermite functions are defined and studied in, for
example, Courant-Hilbert, Methods of Mathematical Physics, I).

Let f(t,x) be defined and continuous for ¢ € ¢ < b and xe R". The purpose of
this exercise is to show that the problem dx/dt = f(tx), x(a) = x, has a solution on
an interval t € [a,c] for some ¢ > a (it is unique only under more stringent condi-
tions). Perform the operations as follows: divide [a,b] intonparts to = a,...,t, =
b, and define a continuous function x, by

{x;,(t) = ftpxlt)),  H <t <ty

" x(a) = xq.

Put A (1) = x;(t) — f(t,x,(¢)) so that
xn(t) = xO +j‘f(s:xu(s)) + A"(S) dS M
0 .

Use the Arzela-Ascoli theorem to pull out a convergent subsequence of the x,,.
This method is called polygonal approximation; compare with Sections 6 and 7.5.

(a) Let f,: R” — R? be a sequence of equicontinuous functions on a compact set
K converging pointwise. Prove that the convergence is uniform.
(b) Let 2
X) =, 0 x<g1.
i) [x? + (1 — nx)?] SO
Show that f, conVerges pointwise but not uniformly. What can you conclude
from (a)?

Let f,: K = A — R™ be a sequence of equicontinuous functions. Suppose that f,
converges on a dense subset of 4. Prove that the sequence converges on all of 4.
Does this shed any light on the proof of Theorem 97

Prove that the norm on %([0,1],R) is not derived from an inner product {,) by
171 = /<S>, as the norm on R is. (An inner product on a vector space S is a
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function ¢,>: S x S — R satisfying the property in Theorem 5, Chapter 1.) [Hint:
Show that the property in Exercise 12a, Chapter 1 fails, and note that this property
follows only from the fact that the norm on R” derives from an inner product satisfy-
ing the properties in Theorem 5, Chapter 1.]

Let S be a set and let & denote the set of a/f bounded real valued functions on S;
endow £ with the sup norm. Prove that 4 is a Banach space.

Let f: R — R be a uniform limit of polynomials. Prove that fis a polynom1al
Consider a double series
L
Z 2 where Gy € R,m,n = 0,' 1,2,....
mn=0

Say that it converges to S if for any ¢ > 0 there is an N such thatn,m = N implies

nnmn

Z a,; — S

k=0

<é.

Define absolute convergence in the obvious way. Prove that if 2
absolutely convergent, then the sum can be rearranged as follows:

5 =5 (5 ) = 5 (3 m).

mm=0 n=0 m=0 \u=0

n,m= 0 P 18

Interpret this result in terms of summing entries in an infinite matrix by rows and
columns,

Can we differentiate the series

Yk+l
Z ) 0<x<l
“\k k+ 1

term by term?

Evaluate the following limits:

1 —cosx

) limit =5
(ii) 1m1t (1 + sin 2x)'*

1

1
(iii) limit — — —-
x=+0+sinx X

Test the following infinite series for convergence or divergence:

L& JJklogk
- k; K+ 2%+ 3

k! 3k
Vi) Y -

&~ Rt

+ (iid) i ?2—-

=
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55.

56.

57.

58.

59.

Prove that /4 = 1 — 1/3 + 1/5 — 1/7 + - - - starting from

(L4 x3)t =) (-1 |d <.

k=0

Test the folfowing series for absolute and conditional convergence:
o0
(a) (=1)'n"s, o real

=
8 &

(—1)flogk

b
®) 4 Jclog log k

k

(=1
P

g

Prove that if

(a) J{x), g(x) continuous, 0<x< o

®) 1) < g(x), =1,2,3... 0<x<ow

(c) fy{x) = f(x) uniformly, 0 < x < R, for any R < co and
@) e gx)dx <o

then limit [% f,(x) dx = [§ f{x) dx.

Prove the following convergence tests (seé, for example, Exercise 49, p. 60).
Uy y <1-— l _

, o>1
n  nlogn

@) u, >0,

n
=Y u, converges,
Up i 1 1

21---

u, n  nlogn
=Y u, diverges.

(b) Uy > 0,

(a) Letp > 1 with 1/p -+ 1/g = 1. Fora, b, t > 0 prove that
. L ar=4q
absa_.t_.*.bf
p q

and that ab is fhe minimum value of the right side. (One way to prove this is to
use elementary calculus.)
(b) Prove Hélder's inequality: ay, b, = 0,p > 1,1/p + ljg =1

n n Lip /0 Lig
- Lo < (Sa) (]

[Hint: Imitate the proof of the Cauchy-Schwarz inequality, using part (a).]
(c) ‘Prove Minkowski’s inequality: ay, b, = 0,p > 1

n N n 1/p n g
= Z(ca +b>> s(ZaL’) +<Zbﬁ> .
[Hint: Write ( ! o ! !

Z(ak + by = Z (@ + b 'y + Z (a + by~ by,
i 1 1

and use Hblder’s inequality in a clever way.]
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The series 2:’: . X"/l converges if |x| < 1. For which complex x with |x| = 1 does
it converge?

Let Y, a,x" have radius of convergence R. Show Y. ay(x — b)* converges inside the
disc of center b, radius R.

Find the radis of convergence:

Y XK/ + 1), Y xMlog k.
(Binomial series.) Consider

ia(ot-— Deevfo— k + 1)\:"
= k! T

Assume o is not an integer > 0. Show the radius of convergence is R = 1. (See
Exercise 49, Chapter 2 on the hypergeometric series for behavior of the series at
x=t1)

Does 1 + 1/2 + 1/3 + - -~ converge (C,1) or (Abel)?

Let f(x) be continuous, 0 < x < co. We normally define
@© R

J S(x) dx = limit J S(x)dx,
o R=4w fg

if the limit exists. By analogy with (C,1) summability, define a notion of “(C,1)
integrability from 0 to c0,” and prove that your method of integrability is regu/ar,
that is, agrees with the usual [ if the latter converges.

Define 1, inductively by t; = 1,and t,,, = t,/(1 + ) where §is fixed,0 < f§ < I.
Prove that 2:;1 t, converges. [Hint: Try to show that there is a constant C such
that 1, < C/n'/?]

Let 4 = {j/2*e[0,1]|n =123, ..,/=012...,2" and let /14 - R satisly
the following condition: there is a sequence g, > 0 with 2:":1 &, < oo and

918

Prove that f has a unique extension to a continuous function from [0,1] to R.
[Hint: Show that | f(t,) — f{t;) < 22:‘;" &nif|t; — t;] < 1/2V and apply Exercise
24, Chapter 4.]

<g,foralln >0, j=12,...,2".

Let A = R" be compact and let B < ¥(4,R™ be compact. Prove that B is equi-
continuous as follows:

(a) Prove that the map E: €(4,R™) x 4 = R" (f,x) — f(x) is continuous;

(b) use uniform continuity of E restricted to B x A4 to deduce the result.

(This method of proof is due to J. Allen.)
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APPENDIX TO CHAPTER 5:

When can R” be replaced by ‘‘metric space’ ?

by R. Gulliver

In this book we have concentrated much of our attention on concrete metric
spaces, especially R". The question naturally arises, how general are the
results we have obtained? In many exercises we have already asked . the
reader to verify that some results hold in general metric spaces (see for
example p. 100). In the table below are gathered together some of the im-
portant results, (including some not formally stated as theorems in the text)
and the general contexts in which they are valid are stated. The proofs are,
in almost every case, the same as those given in the text. The reader should
pick out some of these theorems and verify that this generalization is indeed

valid.

Theorem

Valid in
Metric spaces?

Chapter 2

Theorem 1: For all ¢ > 0 and x € R", D(x,¢) is open.

Theorem 2: (i) the intersection of.a finite number of
open sets is open; (ii) the union of any collection of
open sets is open,

Theorem T (reverse of Theorem 2 for closed sets).

Theorem 4: A = R" is closed iff all accumulation
points of 4 in R” belong to 4.

Theorem 5: cl(A) consists of 4 plus all its accumulation
points in R", .

Theorem 6: x € bd(4) iff every neighborhood of x in
R" contains points of 4 and points of R"\A4.

Theorem 7: x, — x iff for all ¢ > 0 there exists N such
that if k > N then ||x, — x| <e.

Theorem 8: x,xe R" x, — x iff each sequence of
components of x, converges to the corresponding
component of x.

Theorem 9: A = R" is closed iff for all sequences {x,],
x, € A which converge in R", the limit is in 4.

Theorem 10: A sequence {x,} in R" converges iff it is
a Cauchy sequence.

Theorem 11: For x,& R Y x, converges iff for all
g > 0 there exists N such thatif k > Nandp 2 0
then ||x, + Xppy + 0 F Xl <é

Yes.
Yes.

Meaningless in a general
metric space.

Yes.

= Yes.

< is the definition of a
complete metric space;

Valid in complete normed
space (= Banach space).
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Theorem

151

Valid in
Metric spaces?

Theorem 12: x, e R 1 Y ||x,]| converges in R then
Y x, converges in R".

Theorem 13: (iv) Ifl’imit [l o I/l ]l exists and is <1
g

then Y x, converges. {Also (v) is valid).

Baire Category Theorem: The intersection of a
countable number of dense open subsets of R” is
dense in R",

Theorem: R" has a countable dense subset.

Chapter 3
Theorem 1: The following are equivalent for 4 < R":
(i) A is closed and bounded.

.(if) A has the Heine-Borel property.
(iii) A has the Bolzano-Weierstrass property.

Theorem 2: {F,} a sequence of non-empty compact
subsets of R" with Fy., = F,. Then [\  F, is
non-empty.

Theorem 3: If 4 is path-connected then it is connected.

Theorem: If A4 is open « R" and 4 is connected, then
it is path-connected.

Proposition: 4 a closed subset of 4, 4 compact = 4
is compact.

Proposition: 4 a closed subset of R", x ¢ A = there
exists y € 4 with d(x,y) = inf{d(x,2)| z€ A}

Chapter 4

Theorem 1: For f: 4 — R"®, 4 < R, these are equiv-
alent:
(i) f is continuous on 4.
(ii) For each sequence x, — x, x, € 4, x € 4, there
holds f(x,) = f(x).
(iii) For all open sets U = R™, f~}(U)is a relatively
open subset of A.

\iv) Forall closed sets K = R™, f~}(K)isa relatively
closed subset of A4.

Valid in Banach space.

Valid in Banach space.

Valid in complete metric
space.

This defines a “separable”™
metric space; not always
true. However, %(4,R")
is separable, for 4 =« R”
compact (prove thisusing
the Stone-Weierstrass
theorem).

No! However, (ii) and (iii)
are equivalent, and each
implies (i). If 4 has (ii),
we call it compact.

Yes (using the above defini-
tion of compact).

Yes.
In a normed linear space.

Yes.

No!

Yes (replace 4 by one met-
ric space, R™ by another
metric space)

(continued)
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Theorem

Valid in
Metric spaces?

Theorem 2: 4 = R” and.f: 4 — R" continuous. Then
(i) If K = A is connected, then f(K) is connected.
(ii) If K = A is compact, then f(K) is compact.

Theorem 3: A= R", f14-R" Bc f(4) c R",

g:B—-Re, If f and g are continuous then
gof: A — RFis also continuous.

Theorem 4: Sums and scalar products of continuous
functions are again continuous.

Theorem 5: A = R" compact, f: A — R continuous.
Then f(A) is bounded and contains its sup and inf.

Theorem 6: A <= R" connected, f: 4 — R continuous.
For any x, ye 4 and ce R with f(x) < ¢ < f(y),
there exists z e 4 such that f(z) = c.

Theorem 7 (Heine’s Theorem): 4 «— R" compact,

[ 4 — R” continuous. Then f is uniformly con-
tinuous on 4.,

Chapter 5

Theorem 1: f, — f uniformly, f;, /14— R 4 < R",
Ifeach f, is continuous then f is continuous.

Theorem 3 (Weierstrass M-test): 4 < Rg,: 4 — R™,
9ullup < M, and ¥ M, converges. Then Y g,
converges uniformly.

Theorem 8: For 4 « R, ¥,(4,R™) is a Banach space.

Theorem 9 (Arzela-Ascoli): 4 = R® compact, B =
%(A,R"). B is compact iff B is closed, bounded, and
equicontinuous.

Theorem 12 (Stone-Weierstrass): 4 « R compact,
B« €(4,R). If B is an algebra which separates
points and if the constant functions are included in
B, then B is dense.

Yes.

Yes.

In a normed space.
Yes.

Yes.

Yes..

A may be any metric space;
R™ must be replaced by a
Banach space.

A any metric space; R"
must be a Banach space.

A may be any compact
metric space, but R" must
be R™,

A may be any compact
metric space.

Further results on metric spaces:

Theorem: If X is a complete metric space, 4 a closed subset of X, then A is a complete

metric space.

Definition: A metric space X is totally bounded if for all ¢ > 0 there exists a finite set

{*1,. « w%,} © Xsuchthat X < | Ji_, D(x,6).

Theorem: Let X be a metric space. X is compact iff X is complete and totally bounded.



Chapter 6

Differentiable
Mappings

In this chapter we shall discuss the notion of a differentiable map from
R" to R™. We shall start right in with the general case since the reader should
have some familiarity with the derivative for functions of one variable.
Pertinent facts from one variable calculus will be brought in as they are
needed.

Starting with this chapter a certain amount of linear algebra will be used.
In particular the student should now review the notion of a linear trans-
formation and its matrix representation.* We shall be defining the derivative
as a linear mapping; the connection with partial derivatives will be found in
Section 6.2. After this we will generalize the usual theorems of calculus to
the multivariable case (such as differentiability implies continuity, the chain
rule, mean-value theorem, Taylor’s theorem, tests for extrema, and so forth).

6.1 Definition of the Derivative

For a function of one variable f: Ja,b[ — R we recall that f is called
differentiable at x, € Ja,b[ if the limit

f'(xo) — lllllllcl;t f(xo + hz - f(xo)

exists. We recall that one also writes df /dx for f'(x). Equivalently, we may

* See for example, M. O’Nan, Linear Algebra, Harcourt Brace, Jovanovich, (1971).

153
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write the above formula as

limit f(xo + h) = f(xo) ~ f'(xc)h =0

h—0 h
that is,
i 100 = J00) = SO = x9) _
x—+xp X = Xo

or, what is the same,

it 09 = S00) = Sxodx = x9)l _

xxo e — ol

We recall that this number f(x,) represents the slope of the line tangent to

the graph of f at the point (x4, f(xo)). See Figure 6-1.

To generalize this notion to maps f: 4 =« R" — R™ we make the following

definition.

Definition 1. A map f: A = R" - R™is said to be differentiable at
Xo € A if there is a linear function, denoted Df(x,): R" — R" and
called the derivative of f at x, such that

N f(x) = f(xo) = Df(xo)x — xo)ll =0.

= % = Xol

Here, Df (xo}(x — X,) denotes the value of the linear map Df(x,)
applied to the vector x — x,& R", s0 Df(xc)(x — xo)e R". We
shall often write Df (x,) - h for Df (xo)(_h). (In this definition, as usual,

FIGURE 6-1
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y=f(x) + Df(x) (x = %) z=fx) + Df ) ( ~ %,
xz \ e
f
|
|
|
|
|
L - X,
/ %
_ y
; %,
(@ f R-R ®) £ R2>R

FIGURE6-2 (a) f: R— R. (b) f: R® » R.

we exclude x = X, in taking the limit, since we are dividing by
lx — x,l, and take the limit through those x € 4).

More explicitly, it may be rewritten by saying that for every ¢ > 0 there
isad > Osuch thatxe 4, and‘ llx = x|l < 9 implies

"f(x) f(xo) - Df(xo)(x - xo)" - & "x - xo"

In this formulation we can allow X = xo_smce then both s1des reduce to zero.

Intuitively, x = f(xo) + Df(xo)(x — Xo) is supposed to be the pest affine
approximation® to f near the point x,. See Figure 6-2. In this figure we have
indicated the equations of the tangent planes to the graph of f.

If f is differentiable at each point of A4, we just say f is differentiable on A.
We expect intuitively (as in Figure 6-2) that there can be only one best linear
approximation. This is in fact true if we assume that 4 is an open set. If we
compare the definitions of Df (x) and df/dx = f'(x), we see that Df (x)(h) =
S'(x) - k (the product of the numbers f'(x) and h e R). Thus the linear map
_Df(x) is just multiplication by df/dx.

Theorem 1. Let A be an gpen set in R" and suppose [: A — R™ is

e B

differentiable at x,. “Then Df (x,) is uniquely determined by f.
ExampLE 1. Let f: R — R, f(x) = x*. Compute Df(x) and df/dx.

* An affine mapping is a linear mapping plus a constant,
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Solution: In this case we know from elementary calculus (or from rules
developed below) that dx®/dx = 3x*. Thus in this example Df(x) is the

linear mapping hi— Df(x) - h = 3x%h

ExampLE 2. Show that, in general, Df is not uniquely determined.

Solution: For example, if 4 = {x,} is a single point any Df(x,) will do,
because x € 4, |x — x4/ < & holds only when x = x,, in which case the

erpression 156 = fxo) = Df Gxo)x = o)l
is zero. The definition is then fulfilled in a trivial way.

Note: Ifthe proof of Theorem 1 is examined closely one sees that Df(x)
is unique (assuming it exists) on a wider range of sets than open sets. For
example, the theorem is valid for closed intervals in R or generally for closed
discs in R".

At this point it is convenient to recall some facts about derivatives of
functions of one variable. Specifically, recall the logical steps leading up to the
important mean-value theorem. We shall shortly be generalizing these ideas
to functions of several variables.

Fact 1. Iff:ab[ — R is differentiable at c € la,b[ and f has a
maximum (respectively minimum) at ¢, then f'(c) = 0.

Proof: Let f have a maximum at c. Then for h = 0, [f(c + h) —
f©)]/h <9, and so letting h — 0, h > 0 we get f'(c) < 0. Similarly for
h < Owe obtamf(c) = 0.Hence f(c) = 0. §

The reader should be familiar with the geometric significance of this result.

Fact 2. (Rolle’s Theorem). If f:[ab] — R is continuous, f is
differentiable on la,b[ and f(b) = f(a) = 0, then there is a number
c € Ja,b[ such that f'(c) = 0.

Proof: If f(x) = O for all x € [a,b] we can choose any c. So assume f
is not identically zero. From Chapter 4, we know that there is a point ¢,
where f assumes its maximum and a point ¢, where f assumes its minimum.
By our assumption and the fact that f(a) = f(b) = 0, at least one of ¢, ¢,
lies in Ja,b[. If ¢, € Ja,b[ we get f'(c,) = 0 by Fact 1; similarly forc,. §

Fact 3. (Mean-Value Theorem). If f:[ab] — R is continuous
and differentiable on lab[, there is a point c € Ja,b[ such that

f@®) - f(@) = f'(c)b - a).

Proof: Let o@(x) = f(x) = f(a) — (x — q)[f(b) — f(@]/(b — a) (see
Figure 6-3) and apply Rolle’s theorem.
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fx) o(x)

FIGURE 6-3

Covollary. If, in addition, f' = 0 on Ja,b[, thenf is constant.

Proof: Applying Fact 3 to f on [a,x] we have f(x)~— f(a) =
SeXx — a) = 0, so f(x) = f(a) for all xe[ab], and therefore f is
constant. ‘

_ The list of basic theorems continues to include differentiability implies
continuity, sum rule for derivatives, quotient rule, chain rule, and Taylor’s
theorem. These will all be dealt with below in the general case of functions
of several variables, but the reader may wish to review the one variable case
first.

ExampLE 3. Let f: ]Ja,b[ — R be differentiable and |f'(x)| < M. Prove that
|f(x) — f) < M |x — y| for all x, ye Ja,b[.

Solution: By the mean-value theorem,

f&) = f) = f'e)x — »)

for some ¢ € }x,y[. Taking absolute values gives the result.

Exercises for Section 6.1 ;
1. Compute Df(x) for /1 R — R, f(x) = xsin x.
2. Prove that D(f + g) = Df + Dg.

3. Letd = {(x,y)e R? I 0 < x < 1,y = 0}. Prove that the conclusion of Theorem 1 is
false for this 4. [Hint: Take, for example, f{x,y) = 0 and show that Df(x,y) = 0
and Df(x,y)(l1,k) = k both satisfy the definition.]

4, Let f: R" = R"™ and suppose there is a constant M such that for xe R, || f(x)| <
M ||x||%. Prove [ is differentiable at x, = 0 and that Df{x,) = 0.



158 DIFFERENTIABLE MAPPINGS

5. T f:R— Rand |f(x) < |x|, must Df(0) = 07
6. Does the mean-value theorem apply to f(x) = \/_'; on [0,17? Does it apply to

g(x) = \/Hon‘[—l,l]?

6.2 Matrix Representation

In addition to the above, there is another way to differentiate a function f
of several variables. We can write it in component form f(x,,.. .,x,) =
(f10e1se - -Xh- + 1o SuX15e « %)) and compute the partial derivatives, df;/0x;
forj=1,...,mand i = 1,...,n, where the symbol 0f;/0x; means that
we compute the usual derivative of f; with respect to x; while keeping
the other variables x;, . .., X;—1, X{+1, - - - » X, fixed. Explicitly, Definition 2
follows.

Definition 2.  9f}/0x, is given by the following limit, when the latter
exists:

of; .
“a;li (15 - o0Xp) = l}mét

{fi(xls' - Xy + hs' . 'sxn) B f}(xlr - 'sxn)}
h .

In Section 6.1 we saw that Df(x) for f: R —» R is just the linear map
multiplication by df/dx. This fact, which was obvious from the definitions,
can be generalized to the following theorem.

Theorem 2. Suppose A = R" is an open set and f: A — R™ is
differentiable. Then the partial derivatives 0f,/0x, exist, and the matrix
of the linear map Df (x) with respect to the standard bases in R" and
R™ is given by

N
(o o .. o
0x; 0x, 0x,

A

Ty Oy 0x,,
Yo D .. D
\Ix1 0x; . ox, )

where each partial derivative is evaluated at x = (Xy,. . .,X,).
This matrix is called the Jacobian matrix of f.

In doing practical computations one can usually compute the Jacobian
matrix easily and Theorem 2 then gives us Df. In some books, Df is called
the differential or the total derivative of f.
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One should take special note when m = 1, in which case we have a real-
valued function of n variables. Then Df has the matrix

o U
0x, 0x,
and the derivative applied to a vector e = (ay,. . .,a,) is

n a
Df(x)-e=). (—7—f7af.

i=1 .

It should be emphasized that Df is a linear mapping at each x € A and
the definition of Df(x) is independent of the basis used. If we change the
basis from the standard basis to another one, the matrix elements will of
course change. If one examines the definition of the matrix of a linear trans-
formation* it can be seen that the columns of the matrix relative to the new
basis will be the derivative Df(x) applied to the new basis in R” with this
image vector expressed in the new basis in R™. Of course, the linear map
Df (x) itself does not change from basis to basis. In the case m = 1, Df(x) is,
in the standard basis, a 1 x n matrix. The vector whose components are
the same as those of Df(x) is called the gradient of f, and is denoted grad f

or Vf. Thus for
of of >

fiAcR —>R,gradf=(5;c—l',.~s5‘3‘c:

(Sometimes it is said that grad f is just Df with commas inserted!).

An important special case occurs when f = L is already linear. Then
from the definition (see Example 2 below) we see that DL = L, as expected
since the best affine approximation to a linear map is the linear map itself.
Thus the Jacobian matrix of L is the matrix of L itself in this case. Another
case of interest is a constant map. Indeed one sees that a constant map has
derivative zero; zero is the linear map f: R” —» R™ such that f(x) = 0 =
©,. . .,0)for all x e R".

ExampLE 1. Let f: R » R?, f(x,y) = (x?,x3y,x*y?). Compute Df.
Solution: According to Theorem 2, Df(x,y) is the linear map whose
matrix is

/_afl _afl N '
Ox 0y 2x 0
afz afz — 2 3
L oy || XY %
4x3y?  2x*
o o y y
\ Ox 0y

where ./i(xay) = x2’ fZ(x’y) = Xay, fB(X’y) = x4y2.
* See M. O’Nan, Linear Algebra, Harcourt Brace Jovanovich, New York, (1971), Chapter 5,
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EXAMPLE 2. Let L: R" — R™ be a linear map (that is, L(x + y) = L(x) -+
L(y) and L{ax) = aL(x)). Show that DL(x) = L.

Solution: Givenxy,ande > Owemustfindé > Osuchthat|x — x| < 6
implies
I1L(x) — L(xo) — DL(x)* (x = Xo)ll < &llx — xol -

But with DL(x) == L the left side becomes
IL(x) — L{xo) — Lix — xo)l ,
which is zero since L(x — xg) = L(x) — L(x,) by linearity of L. Hence
DL(x) = L satisfies the definition (with any 6 > 0).
ExampLE 3. Let f(x,y,2) = x(sin y)/z. Compute grad f.
Solution: grad f = (9f/0x,df/0y,0f/0z), and here
of _(siny) 9f _ x(cos y) o _ _ X{sin y)

0x z dy z 0z 72

’

SO

grad f(x,y,2) = ((sm ») ’x(cos y)’~ x(snzl y)> .

zZ zZ Z

Exercises for Section 6.2

1. Let f: R = R2?, f(x,,2) = (x*p,xe"). Compute Df.

2. Let /1 R? = R, (x,y,2) s e¥**¥**#*_ Compute Df and grad f.

3. Let L be a linear map of R* — R™, g: R" — R™ such that |g(x)| < M ||x|?, and let
J(x) = L{x) + g(x). Prove Df(0) = Er -

4. Let f(x,y) = (xy,y/x). Compute Df. Compute the matrix of Df(x,y) with respect to
the basis (1,0), (1,1) in R?2.

5. Discuss the possibility of defining Df for f, a mapping from one normed space to
another. '

6.3 Continuity of Differentiable Mappings;
Differentiable Paths

The reader might recall from elementary calculus that a differentiable map
is continuous. This is appealing intuitively since having a tangent line (or
plane) to the graph is stronger than having no breaks in the graph.

For real functions of a single variable, we recall the proof: let f: Ja,b[ = R
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be differentiable at x,. Then
mit(f(x) — £(xo) = ll_rplt(—f(—)——f—g—)> (x — xo)

= f'(xo)" lmlt(x — Xo) = f'(x0) 0 =0
so Hmit(f(x) — f(x,)) = 0 which implies f is continuous at x,.
x—rxo

These ideas are readily generalized to the case of f: 4 « R" - R™ and
the next theorem follows.

Theorem 3. Suppose A « R'isopenandf: A — R™ isdifferentiable
on A. Then fis continuous. In fact, for each x, € A there is a constant
M>0 and a 8,>0 such rthat |x — x.| <&, implies
| f(x) — fxoll € M ||x — xoll. (This is called the Lipschitz
property.)

Earlier we examined the special case of real-valued functions, f: R" — R.
The case of a function ¢: R — R™ is also important. Here ¢ represents a
curve or path in R™ In this case Dc(t): R — R™ is represented by the vector
/dcl\

dt

dc"l
\dt )

where c(t) = (c,(2),. . .,c,,(t)). This vector is denoted c(t) and is called the
tangent vector ‘or velocity vector to the curve. If we note that £'(t) =
I,imgt(c(t + h) — ¢(t))/h and use the fact that [c(t + h) — c(t)]/h is a chord

which approximates the tangent line to the curve, we see that c'(f) should
represent the exact tangent vector (see Figure 6-4). In terms of a moving
particle, (c(t + h) — c(t))/h is an approximation to the velocity since it is
displacement/time, so ¢'(t) is the instantaneous velocity.

Strictly speaking we should always represent ¢'(t) as a column vector,
since the matrix of Dc(t) is a 3 x 1 matrix. However this is typographically
awkward, and so we shall write c(t) as a row vector.

ExamPLE 1. Prove that f: R — R, x 1 |x| is continuous but not differ-
entiable at 0.

Solution: f(x) = xforx > Oand f(x) = —xforx < 0so fis continuous
on ]0,co[ and ]— c0,0[. Since | 1mét f(x) = 0 = f(0), f1is also continuous at
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c(tt+h)~ c(t)

FIGURE 6-4

0, so f is continuous at all peints. Finally, f is not differentiable at 0, for
if it were,
0
(LD =IO 1)

x—'o X - x—+0

would exi'st. But for x > 0, f(x)/xis +1 and for x < 0itis —1. Hence the
limit cannot exist.

ExAMPLE 2. Must the derivative of a function be continuous?

Solution: The answer is no, but an example is not obvious. Perhaps
the simplest known example is

o = x? sin(i), x#£0,

. 0, x=0.
See Figure 6-5.
To demonstrate the differentiability at zero we shall show

f()

-0 as x—-0.

Indeed, |f(x)/x| = |x sin(1/x)| < |x| — 0 as x — 0. Thus f'(0) exists and is
zero. Hence f is differentiable at 0. Now, by elementary calculus,

f'(x) = 2x sin(-i) — cos(i—), xs0
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¥

FIGURE 6-5

As x — O the first term — O but the second term oscillates between + 1 and
—1so limgt J'(x) does not exist. Thus f' exists but is not continuous.
X

ExampLE 3. Let c(t) = (t*,t,sint). Find the tangent vector to c(t) at
c(0) = (0,0,0).

Solution: c'(t) = (2t,1,cos t). Setting t = 0, c'(0) = (0,1,1) which is the
vector tangent to c(t) at (0,0,0).

Exercises for Section 6.3

1. Let .
x?, il xisirrational ,

o) = {0, if x is rational .

Show f'(0) exists. Is f continuous at 0?
2. Is the Lipschitz condition in Théorem 3 enough to guarantee differentiability?
3. Must the derivative of a continuous function exist at it§ maximum?

4, Let f(x) = xsin(l/x), x # 0 and f(0) = 0. Investigate the continuity and differ-
entiability of f at 0.

5, Find the tangent vector to the curve c(f) = (3t%,¢',t + %) at ¢ = 1.

6.4 Conditions for Differentiability

Since the Jacobian matrix provides an effective computational method, we
should like to know if the existence of the usual partial derivatives implies
that the derivative Df exists. This is, unfortunately, not true in general.
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fix, y) =x
X
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FIGURE 6-6

For example, take f: R* — Rdefined by f{(x,y) = xwheny = 0, f(x,y) = y
when x = 0, and f(x,y) = 1 elsewhere. Then 0f/0x and 0f/dy exist at (0,0)
and are equal to 1. However, f is not continuous at (0,0) (why?), so the
derivative Df cannot possibly exist at (0,0). See Figure 6-6. (See the Examples
and Exercises for more exotic examples.)

It is quite simple to understand such behavior. The partial derivatives
depend only on what happens in the directions of the x and y axes, whereas
the definition of Df involves the combined behavior of f in a whole neighbor-
hood of a given point.

We can, however, assert the following.

Theorem 4. Let A = R be an open set and f: A = R* —» R™.
Suppose [ = (f1, - - Jo)- If each of the partials 9f;/0x; exists and
is continuous on A, thenf is differentiable on A.

- i . . . .
Let us now discuss the directional derivative.

Definition 3. Let f be real-valued, defined in a neighborhood of
Xo € R" and let ¢ € R" be a unit vector. Then

P (CRLLRS [

d
Ef(% + te) t

=0

is called the directional derivative of f at x, in the direction e.

From this definition, the directional derivative is just the rate of change of
f in the direction e; see Figure 6-7.
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We claim that the directional derivative in the direction of e equals
Df(x,) - e. To see this just look at the definition of Df (x,) with x = x, + te;
we get

if |t| is sufficiently small. This proves that if f is differentiable at x, then the
directional derivatives also exist and are given by

limit Sxo + te) — f(xo)

t—0 t

S(xo + te) — f(xo)

t

— Df(xo)-e| <éelel|l foranye>0

= Df(xo) e .

In particular, observe that df/0x, is the derivative of f in the direction of
the ith coordinate axis (with e = ¢; = (0,0,. . .,0,1,0,. . .,0)).

Notice that for a fiinction f: R? — R the directional derivatives Df (x,) - e
can be used to determine the plane tangent to the graph of f (compare
Figure 6-2). Namely, the line I, z = f(x,) + Df(x,) ‘'te is tangent to the
graph of f since, as in Figure 6-7, Df(x,) - e is just the rate of change of f in
the direction e. Thus the tangent plane to the graph of f at (x,,f (xo)) may
be described by the equation

z = f(xo) + Df(xo)  (x — Xo),

(see Figure 6-8). Since we have not defined rigorously the notion of the

z

slope of
= tanf
= directional
derivative

FIGURE 6-7 Slope of / = tan § = directional
derivative.
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z=f(x) + Df(x) - (x — %))

Xy =Xy, e« w%¥n,0)

X1

FIGURE 6-8

tangent plane to a surface, we shall adopt the above equation as a definition
of the tangent plane.

ExampLE 1. Show that the existence of all directional derivatives at a point
does not imply differentiability.

Solution: We consider f: R? — R,

xy

T, xt# -y,
fey) ={ &*+ ) -
0, xt=—y.
Then if e = (e;.e,),
1 1 t?ee, te e,
- L L R = 3
tf(elsez) f e + te, 126 + tez—)e

as t — 0 (the case e, = 0, however, gives zero). Thus each directional
derivative exists at (0,0), but f is not continuous at (0,0) since for x* near
-y with both x, ysmall, f is very large. (For instance, given é and M, choose
(x,y) such that x* = —y + ¢ and ||(x,y)]| < 6. Then f(x,y) = xy/e, which
for & small can be made larger than M. Thus f is not bounded on D((0,0),6)
for any 6 > 0 and so is not continuous at (0,0).) Hence, by Theorem 3, f is
not differentiable at (0,0).

Note: This example shows that existence of all directional derivatives
would not be a convenient definition of differentiability since it would not
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even imply continuity. This is the reason one adopts the more restrictive
notion in Definition 1.

ExamPLE 2. Let f(x,y) = x* + y. Compute the equation of the plane
tangent to the graph of fatx = 1,y = 2.

Solution: Here Df(x,y) has matrix

of of
(ag};) = (2x,1)

so Df(1,2) = (2,1). Thus the equation of the tangent plane becomes

.I x — 1
z=3+(2,1)(y_2>=3+2(x—l)f(y—2)

that is,
xX+y—z=1.

Exercises for Section 6.4

1. Use Theorem 4 to show that

(xy)?
fly) = {VEH Y

0, (x,») = (0,0)

» () # (00),

is differentiable at (0,0).

2. Investigate the differentiability of

Xy
Sy = —\\/‘2—1———)}—2 )

at (0,0) if £(0,0) = 0.
3. Find the tangent plane to the graph of z = x? + y*at (0,0).
4. Find the equation of the tangent planeto z = x* + y*atx = 1,y = 3.

5. Find a function f: R? —+ R which is differentiable at each point, but the partials are
not continuous at (0,0). [Hint: Study Example 2, Section 6.3.]
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6.5 The Chain Rule or
Composite Mapping Theorem

One of the most important techniques of differentiation is the chain rule
(“functlon of a function ruie”). For examp e, to differentiate (x® + 3)% let
y = x® + 3 and first differentiate 3®, getting 6y°, then muitiply by the
derivative of x* + 3 to obtain the final answer 6(x® + 3)%3x2. There is a
similar process for functions of several variables. For example, if 4, v, and f
are real-valued functions of two variables then

af au af ov
v ox

The general theorem is now given which includes all of these as special cases.

—f (u(x,y),0(x,y)) =

§ Theorem5. Letf: A — R™bedifferentiable ontheopenset A = R"
and g: B — R? be differentiable on the open set B < R™, and suppose

1 that f(A) = B. Then the composite g o f is differentiable on A and
D(g o f)xo) = Dg(f(%o)) © Df (xo)-

Note that this formula ‘is logical because Df(x.): R* —= R™ and
Dg(f(xg)): R" — RF so their composition is defined.

Recall that the product of two matrices corresponds to the composition
of the correspondmg inear maps they represent. Thus from Theorem 5 we
get the 1mportant fact that the Jacobian matrix of g o f at x = (x,. . ..X,)
is the product of the Jacobian matrix of g evaluated at f(x) with the Jacobian
matrix of f evaluated at x (in that order). Thus if h = go f and y = f(x),
then

(090 ... 20)(% ... %)
ayl aym axl aX"
Dh(x) =
\ayl aym) \axl aX")

where 9g,/0y; are evaluated at y = f(x) and 8f,/0x; at x. Writing this out,
we obtain, for example,.

oh, ag1 af,
axl = ay, ox,

This situation occurs when we “change variables.” For example, suppose
f(x,y) is a real-valued function, and let x = r cos 6, y = r sin 8 for the new
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variables r, 8 (polar coordinates). We form the function
h(r,0) = f(r cos ,r sin 6) .

Then
oh af of
' = o s6+5;s1n6
and
oh of . of
i arsm6+ayrcos6.

The reader should derive similar formulas for spherical coordinates
(r..0), where x = rcosfsing, y=rsinfsing, z = rcos ¢ (spherical
coordinates are discussed in detail in Section 9.5).

The chain rule (Theorem 5) is also called the composite function theorem,
since it tells us how to differentiate composite functions.

Another illustration may clarify matters. Suppose we have functions
u(x,y), v(x,y), wlx,y), and f(u,v,w), and form the function h(x,y) =
S (u(x,y),0(x,y),w(x,y)). Then Theorem 5 yields

oh _ofou o oo o ow
0x Oudx  Ovdx owox

We can see this formula (as an illustrative case) roughly as follows, write

[h(x + Ax,y) — h(x,y)]
Ax

Lf(u(x + Ax,y)o(x + Ax,y)w(x + Ax,y))
- f(u(xsy)sv(x + AX,y),W(X + Axsy))]
Ax

[f(u(x,y)0(x + Ax,y)w(x + Ax,y))
- f(u(x,y),v(x,y),w(x + Ax,y))]
Ax '

[f (u(x, y),0(x,y),w(x + Ax,y)) — fu(x,y),0(x,y),w(x, )]
Ax

+

Now this is approximately (using f(u + Au,v,w) — f(u,v,w) = Au df [ou),

af Au af Av af Aw
duldx " GvAx ' owAx '

So, letting Ax — 0 gives the formula.

ExampLE 1. Verify the chain rule for f(u,v,w) = u*v + wv® and u = xy,
v=sinx,w= ¢
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Solution: Here h(x,y) = f(u{x,y),v(x,y),w(x,y)) is given by

h(x,y) = x?y* sin x + €* sin? x
so, directly,

h
g_x = 2xy*sin x + x%y* cos x + e*sin® x + *2sin x cosx .
On the other hand,
Of ou 0Of ov  of ow ou , 00 ov , 0w
dox Tovax Tawax - Wt T Ma T %

= 2xy* sin x + x%y* cos x + 2¢* sin x cos x
+ ¢ sin? x,

Which is the same result. The formula for oh/dy can be checked similarly.

ExampLE 2. Let f: R — R and let F: R* — R be given by F(x,y) = f(xy)
Verify oF oF

Ox yb;'

Solution: By the chain rule,

oF
i SF(xy)y
and

oF

—a; = f (xy)x 3

so the statement is clear.

Exercises for Section 6.5

1. Write out the chain rule for'
hix,y 2) = flulx,,z),00e.y),w(y.2)) -
2. Verifil the chain rule for
u(x,y,2) = xe’ ,

v(x,p,2) = (sin x)yz ,
and
S(u,0) = u® + vsinu
with
hey,2) = flu(x,yz)w(x,p.z) .

3. Let F(x,y) = f(x* + y?). Show that x(9F/dy) = y(0F/dx).
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4, Write out the chain rule for spherical coordinates, as we did in the text for polar
coordinates.

5. Let fiR—+ R and F:R? - R be differentiable and satisfy F(x,f(x)) = 0 and
OF /By +# 0. Prove that f'(x) = —(8F/0x)/(0F [8y) where y = f(x).

6.6 Product Rule and Gradients

Another well-known rule of differential calculus is the product rule or
Leibnitz rule.

be differentiable_ functions. Then gf is differentiable and for x € A,
D(gf)x): R* = R™ s given by D(gf)x) e = g(x}Df(x)" e) +

2 (Dg(x) - e)f(x) for all eeR". (Note that this makes sense since
g(x) € R and Dg(x) - e e R). i

g Theorem 6. Let A — R*beopenandletf: A - R"andg: A - R

We sometimes abbreviate this result by saying that

D(gf) = gDf + (Dg)f

but the precise meaning is as stated in the theorem.
The reader is undoubtedly familiar with the product ruie from elementary
calculus. In terms of components, the theorem simply states that

e g
L= {2) (2)e

For quotients, we have a similar resuit. If g % 0, then
D({) _(g-Df — f-Dg)
= 5 .
g g
In order to prove this formula, it suffices, by Theorem 6, to demonstrate it
for the case 1/g. This reduces it to a problem in elementary calculus with
which the reader should be acquainted, so we shall omit details.*

Other rules of differentiation are encompassed in the statement that D is,
linear; that is, D(f + g) = Df + Dg and D(4f) = ADf for 1 € R, a constart,
The reader will be able to supply the proofs without difficulty.

Letusconsiderthe geometry of gradientsa little further. Let f: A\: R" — IR
be differentiable. Then we have the gradient \\

grad f(x) = (af L )

* (See McAloon-Tromba, Calculus, Harcourt Brace Jovanovich (1972), Section 3.3).
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grad f(x,)

FIGURE 6-9

Hence the directional derivative in direction & is (see Theorem 2 above)

Df(x)-h = {grad f(x),n>

= rate of change of f at the point x in direction 4 .

Consider now the “surface™ S defined by the equation f(x) = constant.
We asser’t that grad f(x) is orthogonal to this surface (this is intuitive since
we have not been precise about the nature of this surface—see however
Section 7.7). To prove this, consider a curve c(t) in S with its tangent vector
c'(0) where ¢(0) = x,. We assert that

grad f(xo),c'(0)) = 0.
Now since c(t) € S, f(c(t)) = constant. Differentiating and using the chain
rule, we get
. Df(e@)-c(®) = 0.
Setting ¢t = 0, and using Df(x) - h = {grad f(x),h), gives the desired
relation. See Figure 6-9.
Note that we may describe the tangent plane to S: f(x) = constant at
Xo by {grad f(xo),x — xo> = 0, since grad f(x,) is orthogonal to S.
It is also evident from the equation

Cerad f(xo)h> = llgrad f(xo)| cos 6

(where ||k| = 1 and 0 is the angle between grad f(x,) and k) that grad f(x,)
is the direction in which f is changing the fastest. It is not unreasonable
because if we suppose that f represents the height function of a mountain,
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then f = constant are the level contours. To climb or descend the mountain
as quickly as possible, we should walk perpendicular to the level contours.
(Figure 6-10).

These facts are actually of value in practical optimal control problems.
In such problems one is given a function f(x,,. . .,x,) and the problem is to
maximize or “‘optimize” f by some practical scheme. A common method is
to take a trial point x, and proceed along a straight line in the direction of
the gradient of f to reach a new point at which f will be larger (at least if
we do not go too far), and repeat.

ExampLE 1. Find the normal to the surface x* + y* + 22 = 3 at(1,1,1).

Solution: Here f(x,y,z) = x* + y* + z* has gradient grad =
(2x,2y,2z) which, at (1,1,1), is (2,2,2). Normalizing, the unit normal is

(U/3A/31/3).°
ExampLE 2. Find the direction of greatest rate of increase of f(x,y,z) =
x2y sin z at (3,2,0).

Solution: The direction is that of the gradient vector, which is
(2xy sin z,x? sin z,x%y cos z) which becomes (0,0,18) at (3,2,0).
ExampLE 3. What is the tangent plane to the surface x> — y* + xz = 2
at (1,0,1)?

Solution: Here grad f(1,0,1) = (3,0,1) so the tangent plane is
{x — 1,y,z — 1),(3,0,1)> = 0, thatis, 3x + z = 4.

polygonal approximation path
for an optimization problem

level contours

a path of steepest ascent

FIGURE 6-10 Direction of steepest
ascent is orthogonal to the level contours.
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Exercises for Section 6.6

1. Prove

d
7 S(xo + th) = Df(xy) - h

=0
by using the chain rule, where f: R” — R®.
. Find the unit normal to the surface x? — y2 + xyz = 1 at (1,0,1).
. Find the equation of the tangent plane to the surface x? — y? + xyz = 1 at (1,0,1).
. In what direction is f(x,y) = ¢y increasing the fastest?

. Let f:R" —+ R, g: R" — R. Show grad(fy) = fgrad g + g grad f.

[« B N S S |

. Show that grad f being the normal to the tangent plane is a moré general description
of the tangent plane than the description in Section 6.4.

6.7 Mean-Value Theorem

We will now consider two very important theorems. These are the mean-
value theorem and Taylor’s theorem. First, let us turn our attention to the
mean-value theorem. In Fact 3, Section 6.1 we recalled the proof of the
mean-vatue theorem of elementary calculus, which stated thatif f: [a,b] — R
is continuous and if f is differentiable on Ja,b[,, there exists a point ¢ € Ja,b[
such that f(b) — f(a) = f'(c)b — a), where f' = df/dx.

Unfortunately, for f: A = R® — R™ this version of the mean-value
theorem simply is not true. For example, consider /> R — R?, defined by
f) = (®,x?). Letustrytofinda csuch that 0 < ¢ < land f(1) — f(0) =
Df(c)(1 — 0). This means that (1,1) — (0,0) = (2¢,3¢?), and thus 2¢ = 1 and
3¢? = 1.1t is obvious that there is no ¢ satisfying these equations.

Experience leads us to believe that some restrictive condition might
provide a valid theorem. In this case, for the above version to hold, f must
be real-valued. In order to give the correct theorem let us first make precise
the meaning of “c is between x and y” for ¢, x, y e R".

We say c is on the line segment joining x and y, or is between x and y if
¢ =(1— A)x + Ay for some 0 < 4 < 1. See Figure 6-11.

We are now prepared to state our next theorem.

Theorem 7.

(i) Suppose f: A = R" —» R is differentiable on an open set A.
For any x, y € A such that the line segment joining x and y lies
in A (which need not happen for all x, y), there is a point ¢ on
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FIGURE 6-11

that segment such that

) — fx) = Df(c)y — x) -

(ii) Suppose f: A = R" — R™ is differentiable on the open set A.
Suppose the line segment joining x and y lies in A and f =
(fise - o»f)- Then there exist points cy, . . . , c, on that segment
such that

fO) = fx) = Dfifedy — %), i=1,...,m.

An important alternative formulation of the mean value theorem is given
in Example 5, at the end of the chapter.

Examprel. Aset A = R"issaid to be convex if for each x, y e A the segment
joining x, y also lies in 4. See Figure 6-12, Let A = R” be an open convex
set and let f: A — R™ be differentiable, If Df = 0, then show that f is
constant. (Generalizations of this are given in Exercise 9, at the end of the
chapter.)

Solution: For x, y e A we have for each component f; a vector c; such

that
J(¥) — fix) = Dffe)ly — x) .

Since Df = 0, Df; = 0 for each i (why?), and so f(y) = fi{x). It follows that
f(») = f(x), which means that f is constant.

not convex convex

(a) (b)
FIGURE 6-12 (a) Not convex. (b) Convex.
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ExampLE 2. Suppose f: [0,00[ — R is continuous, f(0) = 0, f is differ-
entiable on ]0,00[ and f* is non-decreasing. Prove that g(x) = f(x)/x is non-
decreasing for x > 0.

Solution: From the mean-value theorem we see that a function h: R —» R
is non-decreasing if #'(x) = 0, because x < y implies that

h(y) — h(x) = K(c)y — x) = 0.
Now .
g0 = [xf '(X)x: f(x)]

and

Jx) = flx) = f(0) = f(c) - x < xf'(x)

since 0 < ¢ < xand f'(x) = f'(c). Thus xf'(x) — f(x) = 0,s0g = 0 which
implies that g is non-decreasing.

Exercises for Section 6.7

1. If f: R — Risdifferentiable and is such that f”(x) > 0, prove f'is (strictly) increasing,.
Define your terms.

2. Prove I'Hopital’s rule: if f', g' exist at X0, 9'(Xg) 7 0, and if f{x,) = 0 = g(x,), then

limit& = —,(:Y—Ol.
xx0 g(x)  g'(xo)

3. Use Exercise 2 to evaluate
. .sinx
(a) limit ——,
x=0 X

e —1

(b) limit

x-+0

4, Which of the following sets are convex?
@ {(x.»)eR*|y >0},
(b) (xeR"|0 < IIx] <1},
- (©) R\{0}. :
5. Let 1 4 = R" — R be differentiable with 4 convex and suppose ||grad f(x)]| < M

for xe A. Prove |f{x) — f(»)| < M ||x — y| for x,ye 4. Do you think this is
true if 4 is not convex?

6. Let f: R — R be differentiable. Assume that for all xe R, 0 < f'(x) < f (x).‘Show
thatg(x) = e *f(x)is decreasing, If / vanishes at some point, conclude that f is zero.
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6.8 Taylor's Theorem and Higher Derivatives

Next, we would like to discuss Taylor’s formula for the general case of
functions f: 4 « R" = R™. To be able to do this, we must first discuss
derivatives of higher order. For f: R* — R there is no problem defining
partial derivatives of higher order; we just iterate the process of partial

differentiation
B _ oo
0x, 0x, 0x,\0x,” )’

and so on. However, regarding the derivative as a linear map needs a little
more care.

The second derivative is obtained by differentiating Df, if it exists, and is
accomplished as follows.

Definition 4. Let L(R",R™) denote the space of linear maps from
R" to R". (If we choose a basis in R" and R™, then L(R",R™) can be
identified with the m x n matrices and hence with R"™) Now

' Df: A — L(R",R™); that is, at each x & A we get a linear map Df (x,).
If we differentiate Df at x, we get a linear map from R” to L(R",R™)
by definition of the derivative. We write D(Df(xo)) = D*f(xo)-
We define the map B, : R" x R" — R™ by setting B, (x,,x;) =
[D%f (xo)x1)](x2).

This makes sense because D?f(x,): R* — L(R",R™) and so D*f(x,)x,) €
L(R",R™); therefore it can be applied to x,. The reason we do this is that
B,, avoids the unnecessary use of the conceptually difficult space
L(R",Rm) ~ an.

By definition, a bilinear map B: E x F — G, where E, F, G are vector
spaces, is @ map which is linear in each variable separately; for example,
in the first variable this means B(oe, + fe,,f) = aB(e,,f) + BB(e,,f),
where e,, e, € E, fe F, and «, f € R. The map B, defined above is easily
seen to be a bilinear map of R* x R" — R™,

Now, with a bilinear map B: E x F — R, we can associate a matrix for
each basis e;,...,e, of Eand f,, ..., f, of F. Namely let

a;; = B(ei,fj) .
Then if

n m
x=inei and y=Zy,-fj,
i=1 =1
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we have
B(x,y) = Z ;%Y
Lt

a1 Qm\( N1
= (X1,X350 « 0X,)

Ay s Gy Y
Note: For the second derivative, we shall by abuse of notation, still

write D?f(x,) for the bilinear map B, obtained by differentiating Df at x,
as described above.

Theorem 8. Letf: A « R" — R be twice differentiable on the open
set A. Then the matrix of D*f(x): {R" x R" — R with respect to the
standard basis is gwen by

o . ¥ )
axl 0x4 0x, 0x,
of ... 97
’ \_0x, 0x, ox, 0x, )

where each partial derivative is evaluated at the point x = (x,. . .,X,).

For higher derivatives, proceed in an analggous manner. For example,
D3f gives a trilinear map for each x, D3f(x): R* x R" x R" — R™, We do
not associate a matrix with this map, but rather a quantity labeled by three
indices; which, as above, is just 83/(0x, 0x; 0x;) for each component f,.
(Such quantities are called tensors.)

Before proceeding with Taylor’s theorem, a very important property of
the second derivative shall be given: the matrix in Theorem 8 is symmetric,
that is,

aZf Zf

axi axj axj ox;

Theorem 9. Let f1 A — R be twice differentiable on the open set A
with D2f continuous (that is, the functions 9f/(dx, 0x,) are con-
tinuous). Then D*f is symmetric; that is,

D?f (x)(x1,%z) = D*f (x)xz:%y)
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or, in terms of components,

*f o

Ox; 0x;  0x; 0x;

From this, it can be proven that all the higher derivatives are symmetric
as well under analagous conditions. The case f: 4 — R™ is handled by
applying the above to the components of f.

The symmetry of second derivatives represents a fundamental property
not encountered in single variable calculus. Let us verify these principles
through an example.

Suppose f(x,y,z) = €% sin x + x2y* cos® z, so f: R* — R. Then

)
% = e:.cos x + ye™ sin x + 2xy* cos? z,
0 .
g = xe¥ sin x + 4x%y® cos® z,
dy
and .
o

= xe™ cos x + € sin x + xye™ sin x + 8xy® cos? z
5y 5 + + xy + 8xy
which is the same as 8f/0x dy.
Theorem 9 is not as obvious intuitively. However, some intuition can be
gained from the proof.

Definition 5. A function is said to be of class C" if the first r deriv-
atives exist and are continuous. (Equivalently, this means that all
partial derivatives up to order r exist and are continuous, see
Theorems 2, 3, and 4). A function is said to be smooth or of class C®
if it is of class C” for all positive integers r. '

Using the formula in Theorem 5 (thé coordinate form is easiest) one can
show that the composite of C" functions is also C" (see Exercise 23).
Taylor’s theorem is as follows:

Theorem 10: Let f: A =R be of class C" for A = R" an open set.
Let x, y € A and suppose that the segment joining x and y lies in A.
Then there is a point ¢ on that segment such that

r—1

- 1
FO) = f6) = 2 1 POy = %se 0y = )

1
+ r_"D'f(C)(y = X5y — X)
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where D*f(x)(y — X,. ..,y — X) denotes D*f(x) as a k-linear map
applied to the k-tuple (y — x,.. .,y — x). In coordinates,

D)y — Xy . Yy — X)

Setting y = x + h, we can write the Taylor formula as
Sx + h) = f(x) + Df(x)-h + -+

bl DY) - (e ) + Ry ()

(r— 1!
where R,_ (x,h) is the remainder. Furthermore,
-1(X,h)
——2t 0 ash— 0.
IIhII’ !

There are other forms in which the remainder term can be cast which are
given in the proof of the theorem. This theorem is a generalization of the
mean-value theorem (in which case r = 1) and of Taylor’s theorem en-
countered in one variable calculus.®

From Taylor’s theorem we are led to.form the Taylor, series about x,,

This need not converge to f(x) even if f is C*. If it does so in a neighborhood
of x,, we say f is real analytic at x,. To show-f is real analytic amounts to
showirig that the remainder term (1/r)D'f(c)(x — Xg,. - X — Xo) = O as
as r — oo. This then is used to establish the usual power series expressions
for sin x, cos x, and so forth. (See Section 5.9 for a discussion of power
series).

»

\l""

kf(xo)(x — Xgse « X — Xg) .

i

ExaMmpLE 1. Verify Theorem 9 for f(x,y) = yx?*(cos y*).

Solution:
a 0> .
a_{c = 2xy cos y?, aygx = 2x.cos y* — 4xy* sin y* ;
9 . 02 .
%} = x% cos y* — 2y*x? sin y?, 5x_£; = 2x cos y* — 4y*x sin y* .

* See McAloon and Tromba, Calculus, Harcourt Brace Jovanovich (1972), Section 10.5.
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Exampre2. If fis C™ on R and for every interval [ a,b] there is a constant M
such that | f™(x)| < M" for all n and x € [a,b], show that f is analytic at

each x, and ”
7= 3 L sy

n=0
Solution: The remainder is

S

M" _ [
: < lx — Xl
ni

nl

(x — xo)

3

which — 0 as n — oo, since by the ratio test, the corresponding series
converges. Observe that the convergence is uniform on all bounded intervals
(why?). '

ExaMpLE 3. Give an‘example of a C*® function which is not analytic.

0, x<0,
f(X)={

e x>0.

Solution: Let

The only place where smoothness of f is in doubt isat x = 0. But, forx > 0,
1
1 — -1/x
J'6)=ze",

which — 0 as x — 04 (by I'Hépital’s rule, for example). Similarly, one sees
f®(x) — 0 as x — 0+. Thus using the mean-value theorem we see that f
is C* at 0 and f™(0) = 0. Hence the Taylor series about x = 01is identically
zero, so f is not equal to its Taylor series about x = 0, and therefore f is
not analytic.

ExampLE 4. Compute the second order Taylor formula for f(x,y) =
sin(x + 2y), around (0,0).

Solution: Here f(0,0) = 0,

¥ 0.0 = ) =
a(O,O)—cos(0+2 =1,

%(0,0) =2cos0 +2-0)=2,

az
-éx—fz(0,0) =0,
%,

5?(0,0) = O Py
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and
o
3% 3y (0,0) = 0.
Thus
ShK) = h + 2k + R,(hk), (0,0),
where

Ry(1k), 0.0)/[(hJ)1F - 0 as (k) — (0,0) .

Exercises for Section 6.8

1. Verify Theorem 9 for f(x,y) = (e*"*¥**)xy?.

2. Use Example 2 to establish the Taylor series and analyticity of %, sin x, cos x on
all of R.

3. Let

1) = x? sin(%), xe]-L,x#0,

0, x=0.

Investigate Taylor’s theorem for f about the point x = 0.

4. Find the Taylor series representation about x = 0 for log(l — x), -1 < x < 1 and
show, that it equals log(l — x) on —1 < x < 1 and also show that it converges
uniformly on closed subintervals of ]~ 1,1]. '

5. Verify thatif the conditions in Example 2 are met then we can differentiate the Taylor
series term by term to obtain f'(x).

6. Compute the second order Taylor formula for f(x,y) = e* cos y around (0,0).

6.9 Maxima and Minima

There is a very important application of Theorem 10 which provides us
with a method for determining the maxima and minima of functions. As we
might expect [rom our knowledge of functions of one variable the criteria
involves the second derivative. Let us first recall the real variable case.

If f: R —» Rhasalocal maximum or minimum at x,, and f'is differentiable
at x,, then f'(x5) = 0. Furthermore if f is twice continuously differentiable
and if f"(xo) < 0, x4 is a local maximum and if f"(x,) > 0, it is a local
minimum,

We want to generalize these facts now to functions f: A « R" — R. Let
us begin by giving the relevant definitions.
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Definition 6. Let f: 4 « R* —» R where 4 is open. If there is a
neighborhood of x, € 4 on which f(x,) is a maximum, that is, if
Sf(xo) = f(x) for all x in the neighborhood, we say f(x,) is a local
maximum for f. Similarly, we can define a local minimum of f.
A point is called extreme if it is either a local minimum or a local
maximum for f. A point x, is a critical point if f is differentiable
at x4 and if Df (x,) = O.

The first basic fact is presented in the next theorem.*

Theorem 11. Iff: A = R* — R is differentiable, A is open, and if
Xo € A is an extreme point of f, then Df (xo) = 0; that is, x4 is a
critical point.

The proof is much the same as for elementary calculus. The result is intui-
tively obvious since at an extreme point the graph of f must have a horizontal
tangent plane. However, just being a critical point is not sufficient to
guarantee that the point is also extreme. For example, consider f(x) = x3.
For this function O is a critical point, since Df(0) = 0.But x®> > Ofor x > 0
and x®> < 0 for x < 0, so 0 is not extreme. Another example is given by
f(x,y) = y* — x*. Here 0 = (0,0) is a critical point, since 9f/0x = —2x,
of/éy = 2y,so Df(0,0) = 0. However, in any neighborhood of 0 we can find
points where f is greater than 0 and points where f is less than 0. A critical
point which is not a local extreme value is called a saddle point. Figure 6-13
shows how this terminology originated.

In the case of f: 4 « R — R we have already mentioned that f(x) is a
local maximum if f'(x) = 0 and f"(x) < 0. Recall that this is geometrically

¥y ¥y

minimum maximum

FIGURE 6-13

* The problem of *maximizing™ vector funt.:tions is important in economics. See S. Smale,
“*“Global Analysis and Economics,” p. 537 in Dynamical Systems, M. M. Peixoto, ed., Academic
Press, N.Y. (1973).
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clear if we remember that f"(x) < 0 means f is concave downwards. To
generalize this the concept of the Hessian of a function g at x,, is introduced.

Definition7. Ifg: B = R" — R,is of class C?,the Hessian of g at x
is defined to be the bilinear function H, (g): R" x R" —» R given
by H, (9)(x,y) = —D*g(x,)(x,y) (note the minus sign).* Thus the
Hessian is, as a matrix, just the negative of the matrix of second
partials.

A bilinear form, that is, a bilinear mapping, B: R* x R* - R is
called positive definite if B(x,x) > 0 for all x £ 0 in R" and is
called positive semidefinite if B(x,x) = 0 for all x € R". Negative
definite and negative semidefinite bilinear forms are defined
similarly.

Now we can make the following generalization to the multj-variable case.
Theorem 12.

() Iff: A = R" > Ris a C? function defined on an open set A and
Xo is a critical point of f such that H, (f) is positive definite,
then f has a local maximum at x,.
(it) If f has a local maximum at x,, then H, (f) is positive semi-
definite.
The case for minima is covered by changing “positive” to “negative’ in
the above theorem. Note that a minimum of f is a maximum of —f.
As we havenoted, the matrix of H, (f) with respect to the standard basis is

(L9 . %)
0x, 0x, 0x, 0x,
o ...

q 0x, 0x, 0x, 0x, )

where the partial derivatives are all evaluated at x,.

When we have n = 1, Theorem 12(i) reduces to the one variable test
Sf"(x0) < 0.Asin thecasen = 1, onecan have a maximum or a saddle point
or a minimum if f"(x,) = 0 (in this case the test fails). For example, f(x) =
—x* has a maximum, x° a saddle point, and x* a minimum at x, = 0,
although f”(0) = 0. For a test in these cases see Exercise 17.

* This minus sign is purely conventional and is not of essential importance, The reader who is
so inclined can make the appropriate changes in the text if he desires to set H,, = +D?%g(xo).
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It might be helpful to mention a few facts from linear algebra, which will
be helpful in using the above theorem. Let A, be the determinant of the
matrix

(Lo o)
0x, 0x, 0x, 0x;

I AU i |

L 0x; 0x, 0x;, 0% )

This is the matrix of the Hessian with the last n — k rows and columns
removed. Then the symmetric matrix H, (f) is positive definite iff A, > 0
for k = 1, ..., nand positive semidefinite only if A, = Ofork = 1,..., n.
We shall not prove this here in general. In Example 1 below we prove it for
2 x 2 matrices, which will often suffice. There is also a criterion for the
negative definite case given below. Thus if A, > O fork = 1, ..., n, thenf
has a (local) maximum at the critical point x,. This is probably the best way
to apply Theorem 12. If A, < Ofor any k, f cannot have a maximum at x,.
Similarly, f has a (local) minimum at x, if H,(f) is negative definite. By
changing thesign of H,(f)in the above and using properties of determinants,
it follows that H, (f) is negative definite iff A, < 0 for k odd and A, > 0
for k even, and H, (f) is negative semidefinite only if A, < 0 for k odd and
A, =2 0 for k even. Thus f has a minimum at x, if A, < 0 for k odd and
A, > Ofor k even.

If A, > O for some odd k or A, < O for some even k, then f cannot have
aminimum value at x,. In fact, if A, < Ofor some even k, f can have neither
a maximum nor minimum at x,, and x, must be a saddle point of f (see
Exercise 21).

This theorem is also useful in mechanics when f is the potential of a
system, for then a minimum corresponds to stability, and the maxima and
saddle points correspond to instability.*

ExampLE 1. Show that the matrix

s

is positive definite iff a > 0 and ad — b > 0.

* See Marsden and Tromba, Vector Calciilus, W. H. Freeman Co. (1975), Chapter 4 for details.
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Solution: Positive definite means that

a blix
[;c,y][ ][ } >0 if (x,y) 5 (0,0),
b dily

thatis,ax? + 2bxy + dy* > 0.First, suppose thisistruefor all (x,y) # (0,0).
Setting y = 0, x = 1 we get a > 0. Setting y = 1 we have ax* + 2bx -+
d > 0 for all x. This function is a parabola with a minimum (since a > 0)
at 2ax + 2b = 0, that is, x = —b/a. Hence

2
o~ m(-2) 4 a>0
a a

that is, ad — b* > 0. The converse may be proved in the same way.

ExAMPLE 2. Investigate the nature of the critical point (0,0) of
flx.y) = x* —xy + y*.
Solution: Here

of o of of
a~2x~y, 5?-2, 5-x—a;-—- 1,5;-—- x+2y,

so the Hessian is

B -2 1

1 -2]
Here A = —2 < 0and A, =4 — 1 = 3 > 0 so the Hessian is negative
definite. Thus we have a local minimum.
Exercises for Section 6.9
| [a b]
b d

is negative definite iff ¢ < O and ad — b* > 0,

1. Prove

2. Investigate the nature of the critical point (0,0) of f{x,y) = x? + 2xy + y? + 6.
3. Investigate the nature of the critical point (0,0,0) of f(x,3,2) = x? 4+ y? + 22? + xyz,

4, (This exercise assumes a good knowledge of linear algebra.) Let 4 be a symmetric
matrix. Show that if 4 is positive definite the eigenvalues of A (which exist and are
real since 4 is symmetric) are positive.

5. Determine the nature of the critical point (0,0) of x* + 2xy* — y* + x* + 3xy +
¥+ 10,
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Theorem Proofs for Chapter 6

Theorem 1. Let A be an open set in R" and suppose f1 A - R" is differentiable at x,.
Then Df(x,) is uniquely determined by f.

Proof: Let L, and L, be two linear mappings satisfying conditions of Definition 1.
We must show that L, = L,. Fix ee R", |le] = 1, and let x = x, + de for AeR.
Then note that .

ILy - Ae — L, - Ae]

W =% — x| and _g|L,-e - Ly-ef = a

Since 4 is open, x € 4 for 4 sufficiently small. By the triangle inequality

I Ly(x — %) = La(x — xg)|

~ < |Lyre—Lye| =

lx = xol
2 6 = flxo) = Lilx — xo)l .
e ~ xoll 1]~
17Gx) = flxg) = Lylx — xo)) v
+ S e
Ilx ~ xol

As A — O these two terms each — 0,50 L, - ¢ = L, - e. Our selection of e was arbitrary,
excepl that |e|| = 1. But for any ye R", y/||ly|l = e has length 1 and, by linearity, if
Li(e) = Lyle), then L (y) = L,(¥). B

Theorem 2. Suppose A < R" is an open set and [» A — R" is differentiable. Then the
partial derivatives df}/0x; exist, and the matrix of the Hnear map Df(x) with respect 10
the standard bases in R" and R™ is given by

(an o . o)
Ox;

0x, ox,
ox, 0x, ox,

by Y . Uy
\6:(1 0x, 0x,

where each partial derivative is evahiated at x = (xq,. . ., %)

Proof: By definition of the matrix of a linear mapping, the jith matrix element of
Df{(x) is given by the jth component of the vector Df(x)- ¢; = Df(x) applied to the ith
standard basis vector, e;. Call this component a;;. Now let y = x + he, for he R and
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note that ‘
1/) ~ f(x) ~ Df(x) - {y — )|
Iy ==l

- "f(xh- re 3 + hs- . .,x") - f(xlw- . wxu) - th(x) ) ei"
Il '

Since this — 0 as & — 0, then so does the jth component of the numerator, which means
thatash — 0,

(F/CTEE S .;ci,il—— Sfxi o wx) — hay Ny
]

Therefore, we have

= timig D18t ) = S 6]
10 h 0x;

Theorem 3. Suppose A = R" is open and [+ A — R™ is differentiable on A. Then fis
continuous. In fact, for each x, € A there is a constant M > 0 and a &, > 0 such that
lx — xoll < 8o implies |f(x) — flxo)| € M |x — xo|l. (This is called the Lipschitz
property.)

For the proof we need to recall that if L: R" — R™ is a linear transformation, there is
a constant M such that ||Lx| < M, ||x|| for all x € R" (see Example 4 at the end of
Chapter 4). Here we shall be taking L = Df(x,).

Proof: To prove continuity, it suffices to prove the stated Lipschitz property,
for given ¢ >"0 we can choose § = min(d,,6/M). To do this, let ¢ = 1 in Definition 1.
Then there is a 6, so that |x — x,|| < &, implies

1/0) = flxe) = DF(xo)x — xolll < Ix — Xl
which in turn gives
1) = Sl < IDSGxo)x — )l + llx — Xl

(here we use the triangle inequality in the form || y}| ~ ||z| < |y ~ z||, which follows by
writing y = (y — z) + z and applying the usual form of the triangle inequality). Let
M = M, + 1 and use the fact that |Df{x¢)(x — Xo)| € M, llx — X, to give the
result. §

Theorem 4. Let A = R" be an open set and f+ A < R* — R™. Suppose [ = (f;,. . wfy)-
If each of the df/ox, exists aud is continuous on A, then [ is differentiable on A.

Proof: 1f Df(x) is to exist, its matrix representation must be the Jacobian matrix by
Theorem 2. Thus we need to show that with x € 4 fixed, for any ¢ > O thereisa § > 0
such that ||y — x| < 8,y € A implies

1) = &) = D)y — 0l < elly — x|

To do this, it suffices to prove this for each component of [ separately (why?).
Therefore we can suppose m = 1.
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We can write f(y) — S(x) = (P10 ba) = S(¥0020 - ¥ F S0V 020) —
f(xl,-\'z,_}’3»- . -,J’.,) + f(xl TP LTI 'vyu) - f(x,,xz,:c3,y4,. coYn) t f(xl" sy
Vo) — J(x4,. . x,). Now we use the mean-value theorem which enables us to write
J1se e o) = J(X1,Y05 - w2) = 0f/0x1(uy, P2, )y — x1) for some u; between
x; and y; (¥,,. . .., are fixed). We write similar expressions for the other terms and get

g g
f(y) - f(x) = (‘ai' (ulryzv . -J’u))()’l - xl) + (‘ai‘ (.\’1,“2,}’3,- . -J’u))(}’z - xz) dooeee
X1 x
7
+ (a—{“ (x1:%3;. . .,xn~x,u.,)>(y., -X).

n

a .
Therefore, since Df(x)(y — x) = ) a_rf (X150 X )P~ XD,
£19%

+-..

} ly — x|

using the triangle inequality and the fact that |y; — x}} < ||y — x|. But since the terms
9f/dx, are continuous, and y, lies between y, and x,, thereis a § > 0 such that the term
in braces is less than ¢ for ||y — x}| < . This estimate proves the assertion. [

0 0
"f(y) - f(.’() - Df(x)(y - x)" < {"anx‘(ux1y2a' . wyn) - __f_(x“. . '1xu)

Ox,
of

a
5'\'—" [ A T a(x“, < Xy)

+

Theorem 5. Letf: A — R"™ be differentiable on the open set A < R" and g: B — R? be
differentiable on the open set B < R™, and suppose that f(A) < B. Then the composite
geo [ is differentiable on A and D(g o [)(x,) = Dg(f(xy)) = Df (x).

Proof: To show D(g o [)(xo) ' y = Dg(f(xy)) - (Df(xs) - ¥), we want to show that
limit lgo f(x) — g o flxo) = Dg(fxe)) * (Df(xg)x — x| -

*¥o I% = xol

0.

To do this, estimate the numerator as follows:

lge Sx) = g ° flx0) ~ Dglfxo)) - (DS (xo)lx — X))
= g/ (x)) = g(f(x)) — Dglf (xo)f(x) — S{xo)) + Dglf (xo))(f(x) ~ Slxo)
—= Df (xo)x = o))l

< gl ) — g(f(xo)) — Dglf(xoS(x) — SExolll + IDgl o) S(x) — Sxo)
= Dfg)ix — xo))l
by the triangle inequality. Since f is differentiable, there is a , and M > 0 such that
1) — Sixo)ll € M ||x — x,| whenever |x — x| < &g, by Theorem 3. Now given

& > 0, there is, by the definition of the derivative, a §; > Osuch that ||y ~ f{x,)ll < J;
implies of

lg(y) ~ g(/(x0)) ~ Dgf(xol)y — Slxa)ll < (-2%) Iy ~ Sexolll
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Thus |x — xg]] < 6, = min{8y,6,} implies

llglf(x)) — g/ (xo)) — Dglf (x)lS(x) = S(xo)) <E

lx — xql 2’

Since Dg(f(xo)) is a linear map, we know that there is a constant M such that
1Dg(f (o))} < M - ||y for all y eR™, where it can be assumed M # 0. Now by
definition of the derivative there is §; > 0 such that ||x — x¢| < &, implies

6 = Sso) = Dftollx = xll _ &

I = ol 2

Then ||x — x| < &, implies

I1Dg(/ o))/ (x) — S{xo) — DfCxollx ~ xo)l

I — xoll

< M - f(x) ~ f(xo) ~ Df(xo)x — JH))H

- I = xoll

Let 6 = min{d,,6,}. Thus [|x — x| < & implies

lg ° f(x) = g ° f{xo) — Dg(f{x0)) - D (xo)x = X,)l

x — ol
llg(f(’f)) ~ g(f{xo)) — Dg(/{xo))(f(x) = SExo))l
. llx — xoll
+ 1 Dg(f Ceo))(f (x) — f(x0) = Df(xo)(x — x))| LA ’
lx — Xl 22

which proves the formula. B

Theorem 6. Let A = R" be open and let [+ A - R" and g: A = R be differentiable
Junctions. Then gf is differentiable and for x € A, D{gf)(x): R" - R" is given by
D(gf }(x) * e = g(x)(Df(x)* e) + (Dg(x) - e)f(x) for alle eR".

Proof: Givene > 0 and xq € A4, choose § > 0 such that [|x — x| < & implies
(i) lgt)l < lglxo)l + 1 =M

mnum—fm»—whmx—%msiam—xm

(ii)) llg(x) — glxo) — Dglxo)x — Xo)ll < lx = xoll5

LA
31/ Gl

3
. 9 = gl < ——

) llgto) = gleolll < 5

where | Df (xo)y]| < M ||y, ((iii) and (iv) are needed only if f(xy) # 0 and Df(x;) # 0).
Why is the choice of § possible?
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Then we have for |x — Xp|| < §, using the triangle inequality,
Ng(x)S () — g{xo)S () — glxo) Df(xo)(’f — Xg) = [Dglxo)x — xo)1/(xo)|
< oGS ~ gl sa) = GBS — o)l
+ IgeDf (ro)x = %) ~ g("o)Df(Yo)(Y ol
+ ||g(’f)f(’fo) —gx0)S (o) — [Dg(’fo)(’f = xo)JS o)}

ellx = xol 81l — ol
< MT 3MM"Y Xoll +W I/ Ceo)l

=clx—xl. @

Theorem 7.
(i) Suppose [ A < [R” — R is differentiable on the open set A. For any x,y € A such
that the line segment joining x andy lies in A there is a point ¢ on that segment such that

JO) = fx) = Df(e)y — ).

(i) Suppose f: A = R" = R" is differentiable on the open set A. Suppose the line segment
Joining x and y lies in A and [ = (f,. . ,J,). Then there exist points c,,. . .,c,, on
that segment such that

fa(}’) - f;(x) = Df;(C;)(y - x): i= 1: ey

Proof: (i) Consider the function A:[0,1] — R defined by A(1) = f((1 — 0)x + 1y).
The function 4 is differentiable in ¢ on 0,1[. Thereisa ¢, € ]0,1[ such that 4(1) — A(0) =
R(t,)(1 — 0) by the ordinary mean-value theorem. Now A(1) = f(y) and A(0) = f(x).
Differentiating using the chain rule, we obtain A'(t) = Df((1 — to)x + te¥)y — %),
since the derivative of (1 — ¢)x - ¢y with respect to ¢ is y —, x (explain). Hence we can
takec = (1 — to)x + foy.

(ii) This follows by applying (i) to each component of f separately. f

Theorem 8. Let [: A = R" - R be twice differentiable on the open set A. Then the
matrix of D*f(x): R" x R" — R with respect to the standard basis is given by

Cy ) )
Ox, O0x, 0x; 0x,

¥
\ dx, 0x; Ox, 0x,

where each partial derivative is evaluated at the point x = (x,. . .,X,).
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Proof: The matrix representation of Df: 4 — R" is given by the row vector
(0f/oxy,. . .Of/dx,) so that by Theorem 2, in a version suitable for row vectors
D% A —» R" is given by

- .
o o )
dxy dxy 0Oxy 0x, ox, dx,
% A -
\0x, dx; 0Ox,0x, dx, dx, )

Regarding D% as a bilinear map will not change the matrix representation as a con-
sideration of the definitions shows. §

Theorem 9. Let f: A — R be twice differentiable on'the open set A with D2f continuous
(that is, the functions 8%f/0x, 8x, are continuous). Then D is symmetric, that is,
D (x)x,%5) = D*f(x)(x;.x,)
or,in terms of components,
dx;0x;  0dx; 0x;
Proof: We want to show D% (x) * (y,2) = D*(x) - (z,); that is,
oy o

ax;8x;  Ox,0x;

By holding all other variables fixed, we are reduced to the two-dimensional case. Thus
we can assume [ is of class C? on 4 < R? and is real-valued.
Consider, for fixed (x,y) € 4 and small h, k, the quantity (see Figure 6-14)

Spi = [fx + by + k) — flxy + 0] = [l + hy) ~ fxp)].

Let us define the function g, by gu(u) = f(u,y + k) — f(u,y), and observe that the
formula for S , can be written'

) Shi = gx + h) — gilx) .
Thus, by the mean-value theorem, S , = gi(c,s) * # for some ¢y, lying between x and
x + h. Hence '
af af
Spx = {5; (cxmy + k) — E (Ck,hvy)} “h

2

[
= W (Craticn) * bk

for some dj, , lying between y and y + k.
Now S, is “symmetrical” in 4, k and x, y. By interchanging the two middle terms
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¥y
x, y+k) (x+h y+tk)
x, ) x+hy)
x
FIGURE 6-14

in S, 4, we can derive (in the same way) that

2

B
oxay (Ch.k:dh,k) < hlc .

hE =

Equating these two formulas for S, ,, cancelling &, k, and letting /1 — 0, k — 0 (using
continuity of D?f) gives the result. §

Note: A refinement is this result: if /' is C* and 9%//dx dy exists and is continuous,
then 9%f/dy dx exists and these are equal. This requires more work than the above,
but the idea is the same (Exercise 24).

Theorem 10. Let f2 A — R be of class C" for A = R" an open set. Let x, ye A and
suppose that the segment joining x and y tes in 4. Then there is a point ¢ on that segment
such that

r=1 1 1
J0) = J) = 2, 5 DY@ = %oy = 9 + = DI = X0y = ).
k=1 v H
Proof: If we remember that

%f (x + thy = Df(x + th)+ h

1 af
= — ¢ N
‘; F (x + thh

from the chain rule, then we can integrate* both sides from ¢ = 0 to ¢ = 1 to obtain

1 n

flx + W) — f(x) =f Z -aa—é(x + thh, dt .
i

o i=10"
We now want to integrate the expression on the right-hand side by parts, Remember

* We assume the reader is familiar with the fundamental thcorem of ealculus, A detailed dis-
cussion of integration, including this theorem, is given in Chapter 8.
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the general formula,
H 1 d H
fuﬁdt ju—lf-dt+uu
,  dt . dt

0

In our case, we let u = (§f/dx)(x + th)h,and let v = ¢ — 1, Therefore,

n 1 n
> f fi(x + thyh dt Z f (1 - 07 il (X + thihhy dt + h,.f?i(x)
ax; 0 dx, 0, 0x;

i=14J0 k=1

since
du oY
dt ~ dx;0x,

(x + thhhy

from the chain rule, and

1 o

= —a-; (X)h, .

1 af
v = (t — 1)—6?‘(:( + th)h;

=0

Thus we have proved the identity

J(x+ k) — flx) = Z ——-(’c) hi + Ry(hx) ,

where

n 1 aZf
Ryhx) =) L(I -1 pro (x + thihhedt .

Lk=1

Since |4 < [|A]l, we have

n
[Ry(h,xo)] < nhnz{z f(1~ 0=

ik=14J0

a*r .
a’(k (XQ + th)

af.

If we integrate R,(/,%,) by parts again with

2

ikl
ax, axk

(x + thyhhy

u =

and

v —(t~ 172,
we get !

Lie— 12 *f 1 9%
Ry(h,x) = — e (2 thhh by dt = (xX)l;h; .
1{hx) gkL 7 on %, axk(’f + thhdyh dt + .ij 3%, 3%, (Vb

Thus we have proved that

fx+h=7f (r)+Zh,af(r)+ Zhh’ oy ()+R2(h'c),

id=1
where

le-17 9y
R ) = — e .
2(h,x) l%fo 7 %, 0% o, (x + thihhh, dt

Now the integrand in the last formula is a continuous function and is therefore bounded
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on a small neighborhood of x (remember it has to be close to the value of the function
at x), Thus for a constant M > 0 we get, for ||A| small,

IRy () < A1° M

In particular note that R,(h,x,)/|l41> < |A] M —» 0 as h — 0. The formulas stated
in the theorem for the remainder (Lagrange’s form of the remainder) is obtained by
applying the second mean-value theorem for integrals. Recall that this states that™

b b
jf (¥)g(x) dx = [ (C)j glx) dx

provided f and g are continuous and g > 0 on [a,b]; here ¢ is some number between
a and b. Thus we obtain

" 1 2f
Ry(h,xo) = Z L(l - t) (A + thyhh, dt

fk=1

1
=j (1 — D (x + thy(h,h)dt

—

= D/ (c)h.h)

N

where c lies somewhere on the line joining x toy = x + h.

Similarly,
n t - 1)2 a3f
Rallxa) = sz 2 0% 0% 0%,
He -

e (x + th)h by dt

D*f(x + .th)+ (hh,h) dt

i

1)
2

i

b’|»—-e

D*f(c) (h,h,h)

where c lies somewhere on thelinejoining xtoy = x + h.One can proceed by induction
using the same method to get the general result. [

Remarks: 1. Actually, with more effort one can prove a stronger theorem. Namely

if fis C", then
S+ by = f(x) + Z D"f(x) (e o) + Ry(xh)

where R, (x,h)/|h|" — O as h — 0, h € R". We leave the investigation of this point to the
interested reader.

2. There is another proof of Theorem 10 which uses Taylor’s formula from one
variable calculus as follows. Let g(t) = f(x + t(y — x)) for x € [0,1]. Applying Taylor’s
formula on R we know there is some f € [0,1] such that

r-1

1 1
— = — at® — a4l
g(1) = g(0) k; 71990 + ="

* Sec McAloon and Tromba, Calculus, Harcourt Brace Jovanovich (1972), p. 280.
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Note that g(i) = f(y) and g(0) = f(x). Let p(t) = x + t(y — x). Then g = f° p and
Dp(t)(1) = y — x for all x, so by Exercise 6b,

g"(e) = D*gle)L. - 1) = DY (pONDpEX1),. - .Dp(e)D)
= D'ff(-" + t(y - "‘))(y T Xy x) .
Substituting, we get

r—1

1
1) = flx) =), D0 = ey~ 3)

k=1
1 14
+ ;—'Df(x + Wy — Wy — % .0y ~ %)
which completes the proof, with ¢ = x + i{y — x).

Theorem 11. Iff: A = R" — R is differentiable, A is open, and if x, € A is an extreine
point of [ then Df (x3) = 0O; that is, x,, is a critical point.

Proof: I Df(xq) # 0, we can find an x € R" such that Df(xq)x = ¢ # 0,say, ¢ > 0.
Then we can find a § > 0 such that

bl < & = |Lf(xq + k) — f{xq) — Df(xo)hll < z—h 70

Pick A >0 such that A|x|| <. Then ||f(xq -+ Ax) — flxg) — Df(xg)dx| < ¢
ANxN/2 |x)| = cA/2. Now Df(xg)dx = Ac. Therefore we must have f(xq + Ax) —
S(xo) > 0. Similarly, | /{xq — Ax) — f(xg) + Df(xg)Ax|| < /2 implies f{xq — Ax) —
(o) < 0. Since f(xq + 4x) > f(x0) and f(xo — Ax) < f(xo), we see that f(x) is
not a local extreme value, That is, we can find points y arbitrarily close to x4 such
that f(y) > f(xy). and similarly, there are points y arbitrarily close to x, such that
JO) < flxq). B

Theorem 12.

(@) Iff: A ¢ R* > Risa C? function defined on an open set A and x,, is a critical point

of [ such that H,(f) is positive definite, then f has a local maximum at x,.
(it) If.f has a local maximum at xq, then H([) is positive semidefinite.

Proof: (i) H(f)x,x) > 0 for all x # 0 in R" implies D?f(xo)(x,x) < 0 for all
x # 0 in R". By Example 5, Chapter 4 we know that a bilinear function is continuous.
Hence D*f(x,)(x,x) is a continuous function of x, Moreover, § = {x e R"| |x|| = 1}
is compact, so there is some point ¥ € Ssuch that 0 > D2f(x,)(%,%) = D?f(x,)}x,x) forall
x€5. Now let & = —Df(xq)(%%). Then D¥(xo)(x,%) = 1512 DX (o) /I3 /131 <
—¢ ||x))? for any x # 0 in R". Since D?f is continuous, there is a § > 0 such that
ly ~ %ol < & implies |D%f(y) — D*f(xo)]l < €/2 and we may also pick our & such
that D(x4,0) = A.Iy e D(x,,6), Taylor’s theorem may be used to obtain f(y) — f(x,) =
Df(xo)(y — xo) + (1/2)D*f(c)(y ~ ¢,y — %o}, where ¢ € D{x4,8). Thus

ID%f(e) ~ D*f(xoll < &2
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implies
sz(c)(y — Xg,y — X} € sz(xo)(y - Xg,) — Xo)
+ IDHINy — x40 — xo) — D (xo)y — Xo.y — Xo)l
< =y = Xl + @2y = xol?

i

~(e/2)y ~ xol*.
Remember that Df{x,) = 0, since X, is a critical point. Thus Taylor’s theorem gives
S) = Jxo) = (12D [Ny — Xo,p — %) < (/282 1y = %)% < 0.

Hence f()) < f(x,) for all y € D(x,,8), ¥ # X, and so f has a local maximum at x,.

(i) To prove this part of the theorem we argue by contradiction. Let { have a local
maximum at x, and suppose D?f(x,)(x,x) > 0 for some x € R". Now consider g(t) =
—f(x¢ + tx).Since f is defined in a neighborhood of x4, g is defined in a neighborhood
of 0, We have D2g(0)(1,1) = — D?f(xo)(x,x} < 0. Using the proof of (i), there is a é such
that || < 8, ¢t # 0 implies g(t) < g(0). Thus |t| < & implies f(xq + tx) > f(x;), s0 f
does not have a local maximum at x,. This contradiction implies that D2f{(x)(x,x) < 0
forall x e R". Hence H, . (f)}(x,x) > Oforall xe R". §

Worked Examples for Chapter 6

L Let [:1Bc R"— R where B= {xeR'| x| <1} be continuous and et f* be

differentiable on int(B). Suppose f(x) = 0 on bd(B). Show that there is a point
X, € int(B) for which Df{(x,) = 0.
Solution: This is the multidimensional version of Rolle’s theorem. If f is identically
zero, the theorem is trivial. Therefore, suppose f(x) # 0 for some x € int(B). Then
S attains a maximum, or minimum, at some interior point. since B is compact.
Thus there is an extreme point x, € int(B) and hence by Theorem 11, Df{x,) = 0.

2. Show that for a bilinear map fiR' x R” - R", we have Df(xq.y,)(x,y) ="

J(x0.y) + f(x,6). (The map f(x,y) is called bilinear when it is linear in each of x
and y separately; see Example 5, Chapter 4.)
Solution: We know that f is differentiable because from its matrix representation,
we see that the partial derivatives exist and are continuous, Since f(x,)) is a linear
function of x, the derivative in direction (x,0) is Df(x4,54)(¢,0) = f(x,¥,), ds in
Example 2, Section 6.2. Similarly, Df{x0,9,)(0,5) = f{(xy.»). Thus, since Df(x,,¥,)
is linear, and (x,y) = (x,0) + (0,), we have Df{(xo.po)(x.y) = f{xp.0) + f(x,¥0)-

3. Find .the Jacobian of f{x,y) = (sin(x sin y).{x + »)%); /1 R? » R,
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Solution: We have

afy J ... _ . d . o s
o (sm(:: sin y)) = cos(x sin y)g} (x sin y) = sin y cos(x sin y);

a2 _ d _ .

T = 2 F D) oo+ y) = 2x k)

% = cos(x sin y) _(?__ (x sin y) = cos(x sin y)x cos y;
dy oy

i)

L2 o+ ).

dy

Thus by Theorem 2, the Jacobian matrix (where x = x, and y = x,) is
sin y cos(x sin y) x cos y cos(x sin y)
2Ax + ) 2x + )

Jacobian matrices generally are not symmetric and indeed need not be square.
Symmetry is only a property of the second derivative of a function /: R* — R.

4, Find the critical points of f(x,y) = x* — 3x% + y? and determine whether f has a
(local) maximum, (local) minimum, or saddle at each of these critical points.

Solution: The critical points are precisely those points (x,y) for which

g{=3x2——6x=0
dx
and " of
=2y =0
oy 4

Solving for x, we see that x = 0 or x = 2. Therefore the critical points of f are (0,0)
and (2,0). The matrix of the Hessian at (x,y) is

ikl oy
"o ox maxay —6x + 6 0
52 2 h
e o _2
dy dx dy oy

At+(0,0) the matrix of the Hessian is

[ 6 0
0 -2
and A, = +6, A, = —12. Hence f has a saddle point at (0,0). At (2,0) the matrix

f the Hessian i
of the Hessian is [_ 6 0]
0 -2

and A, = —6,A, = 12 and so f has a local minimum.
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5. Let A be an open convex set in R* and let f: R" — R™ be differentiable with a con-
tinuous derivative. Suppose |Df(x)y|| < M |yl for all xe 4, y e R". Prove the
mean-value inequality:

IGes) = SEl < M llx; — xal

Solution: For n = 1,m = 1 this follows directly from the mean-value theorem.
To get the general case we can proceed as follows. By the chain rule, we have
(djdn)f(tx, + (1 — 0xy;) = Df(tx; + (1 — )x,) - (x; — x,). Integrate both sides in ¢
fromt = 0tot = 1to obtain f(x,) — f(x;) = [§ Df{tx; + (1 — 6)x,)- (v — x,) dt.
The integral here is defined as the integral of the component functions. Taking
absolute values and using the hypothesis on Df now gives the result desired, We
used the fact that the absolute value of an integral is less than or equal to the integral
of the absolute value, a fact which will be reviewed in Chapter 8 (the case of vector
functions is similar—Exercise 2 at the end of Chapter 8.)

Exercises for Chapter 6

1 ffid <R - R"and g: B = R" — R are differentiable functions on the (open)
sets A and B, and «, f§ are constants, prove that af + fg: A nB < R" - R" is
differentiable and D(of + fg)(x) = aDf(x) + BDg(x).

—~2. Show that for /4 =« R —» R™, il df,/dx exists fori = 1, ..., m, then Df exists.

—3. Let f:[0,00[ — R be continuous and let f be differentiable on ]0,c0[. Assume
f(0) =0 and f(x) - 0 as x — +co. Show that there is a ¢ e ]0,00[ such that
Se)=0.

4, If f1 4 < R" — R™is a constant function, then show that Df{(x) = 0 for all x € 4.

-- 5. Calculate the Jacobians of the following functions.

@) f(x.p) = sin(x? + y3). (b) f(xy,2) = (zsin x,z sin ).
(9 S{x.y) = xy. @) flxpz) = x2 + y2

(@) f(x.y) = (sin(xp),cos(y),x?y?). () Slxypz) = 0"

®) flx.p.2) = xpz. (h) f(x.p.2) = (2% ,% tan(xpz)).

6. (a) If /14 <« R" > R"and g: B = R" — R’ are twice differentiable and f(4) = B,'
then for x4 € 4, x, y € R", show that

D¥(g o f{xo)}x.y) = D*glxo)XDf(x) * x,Df(x¢) * ¥)
+ Dg(f(xq)) - D*f{x)(x.3) .

(b) If p: R" -+ R" is a linear map plus some constant and /14 <« R" — R is
k-times differentiable, prove that

D¥f o P)(xo)(x1;~ < %) = DY (p(xo)(Dp(xo)(x1)ss + - Dp(x)(xy)) -
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— 7. Find the critical points of the following functions and determine whether they are

10.
11.
i2.

13.

local maxima, local minima, or saddle points,
() flx,y) = x* + 6x% + 3y? — 12xy + 9x.
®) flx,y)=sinx + 2~ 2y + L

(¢) f{x,y,2) = cos 2x - sin y + z2..

@) flxp,2) = (x + y + 2)%

. Show that if f* 4 = R?* — R has a critical point x, € 4 and

A (72f aZf _ ( aZf )2
T 8x, 0x, Gx,0%, \dx, dx,

at x4, then

2
(a) A > Oand > 0 imply f has a local minimum at x,.

dxy Ox,

2

(b) A > Oand < 0 imply f has a local maximum at x,.

dx 0x,
(c) A < 0implies x, is a saddle point of f.

. Let X = R"be an open set with either of the following (non-equivalent) properties.

(1) For some x, € X, each x € X can be joined to x, by a straight line,

(2) For some xy € X, each x € X can be joined to x, by a differentiable path.

Give some examples of such sets which are not convex. If f: X — R with Df = 0,
then prove that f is constant, Argue that for X open the following are equivalent:
(a) Condition (2) above,

(b) path-connectedness,

(c) connectedness.

[Hint: See Exercise 11, Chapter 3 for (b) < (c). It is easy to show that (a) = (b).
For (b) = (a), show first that any two points can be joined by a finite collection of
line segments and then “smooth out” the corners.]

Prove the analogue of Theorem 12 for minima, [Hint: Apply Theorem 12 to —/.]
Prove the analogue of Theorem 5, Chapter 5 for /1 4 = R" — R™

A function f: R" — R is called homogeneous of degree i if f{tx) = "f(x) for all
xeR" t eR, If fis differentiable, show that for x e R,
L Df(Rs = mi),

that is, of
l; X; 6_‘;; = nf(x) .

[Hint: Let y(t) = f{tx) and compute g'(}) using the chain rule.] Show that maps
multilinear in & variables (see Examples 5, Chapter 4) are homogeneous of degree k.
Give other examples,

Use the chain rule to find derivatives of the following, where f(x,y,2) = x? + yz,
g(x,y) = ¥* + xy, and h(x) = sin(x).

(a) F(x,p,2) = f(h(x),g(x.»).2).

(b) G(x,p.z) = h(f(x,y,2)g(x,y)).

() H(x,p,2) = g(f{x,y,1(x)),g(z.y))-

Also find general formulas for the derivatives of F, G, H,



14.

15,

16.

17,

18.

19.

20.

21.

23.

24,

25.
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(a) Extend Example 2 to multilinear maps,

(b) By applying the result in (a) to the case of the determinant map det: R =
R" x +++ x R" = R, show that 4 € R" is a critical point of det iff .4 has rank
n— 2

Let /1 R — Rbedifferentiable. Assume there is no x € Rsuch that f(x) = 0 = f"(x).
Show that § = {x{0 < x < 1,f(x) = 0} is finite.

If /1 R" - R" is differentiable and Df is constant, then show that f is linear plus
a constant and that the linear part of f is the constant value of Df.

Iff: 4 « R" - Ris of class C" and Df{(xg) = 0, D¥(xg) = 0, ..., D" f{(xg) = 0
but D'/ (xg)(x,. . .,x) < Oforallx e R",x # 0,then prove that fhasalocal maximum
at x (use Taylor’s formula).

Prove that the equation x* + bx + ¢ = 0 where b > 0 has exactly one solution
x € R, [Hint: Use Rolle’s theorem. ]

In each of the following problems, determine the second-order Taylor formula
for the given function about the given point (x4,4).

(a) f(xwy) = (x + y)Z, Xo =0,y = 0.

(b) f(xwy) = ex+y1 -EO =0, Yo = 0.

(©) flxy) = m,xo = 0,y5 = 0.

d) fx.p) = e™¥ 7 cos(xy), Xo = 0, o = 0.

(e) f(x,y) = sin(xp) + cos(xy), xp = 0, yo = 0.

) flx,y) = e* W eosy, xg = 1,9y = 0.

Let L: R — R" be a linear map. Define |L| = inf{M | |Lx|| < M |x|| for all
x € R*}. Show that |||l is a norm on the space of linear maps of R" to R™.

(@) If, for /14 « R* = R, at xp, A, > 0 for k odd. or A, < 0 for k even, then
show that f cannot have a (local) minimum at x,.
(b) If A, < Ofor k even, prove that f has a saddle point at x,,.

. Give an examplc of a continuous map f: ]J0,1[ - R whose graph is not closed,

Can this happen for f: 4 = R — R where 4 is closed?
Write down the first four terms in the Tuylor expansion of log(cos x) about x = 0.

Let f(x,y) be a real-valued function on R2. Use the proof of Theorem 9 to show that
if f is of class C! and 92f/@x dy exists and is continuous, then §2f/dy dx exists, and
P
axdy  ayax

(this is weuker than saying that f is of class C2), Generalize.

Let /1 R" — Rand suppose df/dx;,i = 1,...,nexistand dffdx;,i = 1,...,n — 1
are continuous, Then prove that [ is differentiable.
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26.

27.

28.

2.

30.

31
32

33.

34,

35,

(@) If /: R — R and f' exists on a neighborhood of x = a and limi} S(x) =1,

then prove that f*(a) = /. [Hint: Use the mean-value theorem.]

(b) Can f(x) = .{1’ ¥<0

’ be the derivative of any function?

0, xz0,

Let /1 A — R be continuous, A < R" open. Assume that all directional derivatives
exist and define at each x5 € 4, a linear map Df(x,). Must f be differentiable?
[Hint: Consider f(x,p) = x%p./x% + p?/(x* + y%), a function suggested by
F. Weisler. ]

Let f be differentiable on [a,b]. Verify that f(x) satisfies the conclusion of the
intermediate-value theorem (remember /' need not be continuous) [Hint: If we
seek x, such that f*(xo) = ¢, consider g(x) = f(x) — cx and inf g(x)].

Let f(x) = xe™", xe[0,0[,n =0,1,2,... .

(a) Show f(x) = o J,(x) exists. Compute [ explicitly.

(b) Is f continuous?

(c) Find a suitable set on which the convergence is uniform,
(d) May we differentiate term by term?

Suppose f: R — R is bounded and has a continuous derivative, What is right and
what is wrong in the following string of conclusions?

We want to prove that the set T of all points at which f assumes its (absolute)
maximum is closed. Since f is differentiable it is continuous, Hence it assumes its
maximun, that is, T is not empty. Denote by S the set of pointsat which f'(x) = 0.
Then T < S. On the other hand, if x € S, then f'(x) = 0, hence f either achieves
a maximiim or a minimum there. Ifit achieves a maximum, we must have f(x) > 0.
Hence T' = S n {x]| f(x) = 0}. {x| f(x) = 0} is closed and so is S; therefore T is
closed.

Is T really closed or not?

‘Let 4 = R" be compact and construct the normed space ¥(4,R) as in Chapter 5.

Define, for x4 € 4, 6,1 €(4,R) = R; f+— f{x,). Prove &, is continuous.

Let fiR? = R, f(x,9) = (xp(® = y*)/(x* + y?) if (x,p) # (0,0) and f(0,0) = 0.
Show 8% /dx dy and 8%f/dy dx exist at (0,0) but are not equal.

Use Taylor’s theorem to préve the binomial theorem

(a + .Y)" = i(;:)akxu-k .

£=0
Consider the sequence of real numbers (a continued fraction)
1 1 1
2724 (122 + 2 + 1/2)7
Show that it is convergent and find the limit [Hint: Prove that the even terms and
the odd terms are monotone.]

Let f:]a,b[ —» R be twice differentiable. Suppose f vanishes at three distinct
points. Prove there is a ¢ € Ja,b[ such that f*(c) = 0.



36.

37.

38.

39.

40.
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Suppose f:[0,1] = R is continuous, [ is differentiable on 0,1, and f(0) = 0.
Assume | f'(x)] < |f(x)], 0 < x < 1. Prove f(x) = 0 for all x[0,1].

Let f: R? — Rbe C2, fis called hartnonic if02f/ax? + 8*f/dy* = 0. Assume (X4,,)
is a strict local maximum and f is harmonic. Prove that all second derivatives of f*
vanish at (xg,¥0).

Find the equation of the plane tangent to the following surfaces at the indicated
points.

@ z=x+y% (00

b)z=x*—y"+x (1,0}

©z=@+y, (2.

Analyze the behavior of the following functions at the indicated points,
@ z=x*-y"+3x, (0,0
(b) z = Ax?* — By? + Cxy, (0,0).

Find the equation of the tangent plane to the surface S given by the graph of
@ fley) = /X + 92 + (P + ) at(1,02);
(b) fe,y) = /x> +2xy —y* +1  at (1,1,\/3).




Chapter 7

The Inverse and
Implicit Function Theorems
and Related Topics

\; V e know from linear algebra that a system of linear equations

»

ap Xy + 0+ aX, = Y

Ap1 Xy + -+ ApnXy = Vn
can be solved uniquely for x,, . . . , x, if the matrix A = (g;;) is non-singular,

that is, if det(4) s O, where det(4) denotes the determinant of 4. What about
functional equations? When can we solve a system of the form

il ox) = 0

f;l(xls' . .,X,,) = Y

forx,, ..., x,? The object which generalizes the determinant is the Jacobian
determinant defined by Jf(x) = det(Df(x)), where x = (x;,...x,) and

204
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f = (f1.. . ..f,). Written out in coordinates, at x = (xy,. . .,X,),

o ..
0x, 0x,
Jf(x) =
o ... O
5x1 ’ 5x,,
Sometimes one writes
a(fl" . ’f;l)
O(X g5« +sXy)
instead of Jf and
O(f1se - o fu)
a(xl,- . .,X,,) (XI’. ) .’x")

instead of Jf(x). If Jf(x) = 0, one might expect to be able to solve f(x) = y
for x. The theorem which justifies such results is the main subject of Section
7.1. We shall also consider the case when we wish to solve f(x,y) = Ofor y
(implicit function theorem). In the latter sections we shall apply some similar
existence theorems to ordinary differential equations and an important
theoretical result called the “Morse lemma.”” The final section is concerned
with extremum problems in the presence of constraints.

7.1 [Inverse Function Theorem

Notice that Jf(x) # O implies that Df(x): R* — R" is a linear isomorphism
(that is, its matrix is invertible). Thus, from the fact that the best linear
approximation is invertible, we want to conclude that-the function itself
is invertible.

There are, however, some restrictions. To appreciate these, examine the
case f: R — R. It is true that if f is C' and if f'(xo) # O, then f is invertible
(one-to-one) in a neighborhood of x,. Geometrically this is quite clear, for
Sf'(xo) # 0 means f has a non-zero slope at, and consequently near, x,
(see Figure 7-1).

Thus our main concern will be with local invertibility, that is, with in-
vertibility of f(x) for x near x, and y near y, = f(x,).

It is easy to compute the derivative of the inverse function f~!(y) from
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FIGURE 7-1

the chain rule: from f~1(f(x)) = x, we get (df ~'/dy) - f'(x) = 1, so

=1 1
Ay |epw  dffdx’

To actually check that f~! is differentiable requires a little more care.

If f'(xq) = O, then f may or may not be invertible near x,; in Figure 7-1,
[ is not invertible near x,, but f(x) = x® is invertible near x, = 0. In the
case where f'(x,) = 0, then, no conclusion can be drawn (some further
analysis would be required). In general, f'(x,) # 0 does not guarantee that
we can solve f(x) = yfor all y. For example, there is no x5 such that f(x;) =
y1 for y; as in Figure 7-1. Also, from the same figure we see that solutions
are generally not unique, for f(x,) = f(x,). There will be a unique solution
only if our attention is restricted to a suitably small neighborhood of x,.

Therefore, all we can expect is that f is invertible near f(x,). That is,
for y close to f(x,) we can solve uniquely for some x near x, such that
f(x) = y. The question of “how near?” is a subtle one requiring detailed
analysis of the proof. Fortunately, for many purposes, this is not important.

Theorem 1 includes the single variable situation just described as a special
case.

Theorem1. Let A = R"beanopensetandletf: A « R® - R" be
of class C! (that is, Df exists and is continuous). Let x,e A and
suppose Jf(xo) 5% 0. Then there is a neighborhood U of x, in A and
an open neighborhood W of f(x,) such that f(U) = W and f has a
Clinversef™': W — U. Moreover, for ye W,x = f~ (), we have

Df~'(y) = [Df ()]
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the inverse of Df(x) meaning the inverse as a linear mapping (corre-
sponding to the inverse matrix). If f is of class C?, p = 1, then so is
foi

Saying that f has an inverse f~! means exactly that we can uniquely
solve f(x) = yforx e U given any ye W.

The proof of the theorem depends on a certain existence argument. That
is, for y near y, we need to prove the existence of an x such that f(x) = y.
The basic technical tool which is used is the contraction mapping principle;
see Section 5.6. In Section 5.6 we saw how that result could be used to prove
the existence of solutions to some simple integral equations. In Section 7.5
we shall use these same sorts of arguments to solve differential equations as
well,

ExampLE 1. Consider the equations (x* + y*)/x = u(x,y), sin x + cos y =
v(x,y). Near which points (x,y) can we solve for x, y in terms of u, v?

Solution: Here the functions are u(x,y) = fi(x,¥) = (x* + y*/x and
v(x,y) = fo{x,y) = sin x + cos y. We want to know the points near which
we can solve for x, y as functions of 4 and » and to compute dx/du, and so
forth, According to the inverse function theorem we must first compute
o(f1,/2)/0(x,y). Observe that for f = (f,,f,) we take its domain to be
A = {(x,y) e R* | x # 0}. Now

% a_fl 3x4 _ y4 4y3

ot _|0x dy| | x
a.y)  |af, ofy| .
™ a_y cos X —sin y
(sin y) 4y?
= —;i—-(y“ - 3X4) — —;—'COSX .

Therefore, at points where this does not vanish we can solve for x, y in
terms of u and v. In other words, we can solve for x, y near those x, y for
which x 5¢ 0 and (sin y)(y* — 3x*) 5 4xy?® cos x. Such conditions generally
cannot be solved explicitly. For example, if x, = n/2, y; = /2, we can
solve for x, y near x,, y,, because there, 9(f,,f3)/0(x,y) # 0.

The derivatives 0x/du, etc., are obtained according to Theorem 1 by
inverting the Jacobian matrix. In the 2 x 2 case this comes down to the

*If /14 = R* > R™is C! and Df(x,) is one-to-one, then f is also loeally one-to-one near x,.
Similarly if Df(x,) is onto, then f is onto some neighborhood of f(x,). These more general
results follow from Theorem 1 by the methods of Sectlon 7.2; see Exercise 11 at the end of thls
chapter.
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following:
1w a1
du  Jfx,y)0° o0 Jflx,y) 0y’
dy -1 ov dy 1 0du

u Jfey)0x’  Ov Jf(x.y) 0x

(see Example 2, at the end of the chapter for more details).
In this example,

ox —(x? sin y)

Au {(sin y)y* — 3x% — 4y°x cos x} .

Notice that the answer is expressed in terms of x and y and not u, v. Thus
0x/0u is evaluated at the point u(x,y), v(x,y).

The inverse function theorem is useful because it tells us that there are
solutions to equations and it explains how to differentiate the solutions,
although it may be impossible to solve the equations explicitly.

ExAMPLE 2. Let u(x,y) = ¢" cos y, v(x,y) = ¢*sin y. Show that (x,y) —
(u(x,),0(x,y)) is locally invertible, but is not invertible.

Solution: Here

. ou Ou . .
a(u, v) a 5; e Cosy i —e sy
ax.y) |ov ov| . .

a ‘{‘y e smy e cosy

= ¢**(cos®> y + sin® y) = 2* # 0,

Hence by the inverse function theorem the map is locally invertible. It is
not (globally) one-to-one, however, because

u(x,y + 2m) = u(x,y),  vlx,y + 27 = v(x,)) .

Notice that for f: R — R if f is differentiable and if f'(x) # O for all x,
then f”(x)is either >0 or <O since f” satisfies the intermediate value theorem
(see Exercise 28, Chapter 6), hence f must be (globally) one-to-one as f is
always increasing or decreasing. The example above shows that this need
not be the case in R?,
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Exercises for Section 7.1

. Let u(x,y) = x* — y2, v(x,y) = 2xp. Show that the map (x,y)+s (u,v) is locally
invertible at all points (x,y) s (0,0).
dx dx dy @ .
2. Compute ;7%’ -(7—3, 0—?:—, EJUJ- in Exercise 1.
~ 3. Let f(x) = x + 2x%sin(1/x), x # 0, f(0) = 0. Show that f*(0) s O but that f is
not locally invertible near 0. Why does this not contradict Theorem 17

4. Let L: R* - R be a linear isomorphism, and f(x) = L(x) + g(x), where ||g(x}|| <
M ||x||* and fis C'. Show [ is locally invertible near 0.

--5. Investigate whether the system
u(x,y,2) = X + xyz ;
vxpz) =y Fxy
w(x,p,2) = z + 2x + 3z2

can be solved for x, y, z in terms of u, v, w near (0,0,0).

7.2 Implicit Function Theorem

In studying the implicit function theorem we are again interested in the
existence and differentiability of certain functions. Undoubtedly, the student
has worked with functions defined implicitly before; however, he or she
may not know why the manipulations are justified. Possible questions we
would like to ask will be more obvious after looking at some examples.

Suppose we consider those x and y related by an equation F(x,y) = O.
We would like to say that this defines a function y = f(x) (one says that
y = f(x) is defined implicitly), and we would like to compute dy/dx. As in
the previous section, given such an F, one generally cannot solve for 'y
explicitly, so it is important to know that such a function does indeed exist
without having to solve for it.

To motivate the next result, consider the function F(x,y) = x* + y* — 1.
We are interested in those x and y related by F(x,y) = 0, which is just the
unit circle. A function f(x) is a “solution™ iff F(x, f(x)) = O for all x in the
domain of f. Clearly, f must be given by f(x) = +./1 — x?, and either of
these is a solution. We note therefore that f need not be unique. Given (x,,,)
such that F(x4,y,) = 0, we would like to know if we can find f(x) such that
F(x,f(x)) = 0 and f is differentiable and unique near (xq,y,). If xo # £1,
this is true if f is taken to be the appropriate square root. The given y,
determines which square root must be selected. See Figure 7-2. The points
Xo = 1 are exceptional for several reasons. First, f is not differentiable

)
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¥

Fx,y)=0 T~
>, ») i N

L/

FIGURE 7-2

there and second, near x, = +1, f could be either square root, so it is not
uniquely determined. These exceptional points are exactly the places where
OF/dy = 0. Thus, in general, we want some condition like dF/dy 5= 0 to
guarantee that, locally at least, we can find a unique differentiable f such

that F(x, f(x)) = O.
In the general‘ case we shall have a function F: R" x R" — R™, and
consider the relation F(x,y) = 0, or written out,

Fl(xlr . -;xmylr . -sym) = 0

Fm(xlr * *rxmyl’* . *5ym) = 0 s

and we want to solve for these m unknowns y,, . . ., y, from the m equations
interms of x,, . . ., X,,.
The theorem is as follows.

Theorem 2. (Implicit Function theorem). Let A = R" x R™ be an
open set and let F: A — R™ be a function of class C? (that is F has p
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continuous derivatives where p is a positive integer). Suppose (xq,Yo) €
A and F(xq,y,) = 0. Form

oy, OVm
A=
oy, OVm

evaluated at (xq,y,), where F = (F,,. . .,F,). Suppose that A # 0.
Then thereis an open neighborhood U < R"of xo and a neighborhood
V of yo in R™ and a unique function f: U — V such that

F(x,f(x)) = 0

Jor all x e U. Furthermore, f is of class C?.

Actually, we shall see that this theorem follows fairly easily from the
inverse function theorem. The intuitive reason for the validity of the theorem
and the necessity for the restriction A ¢ 0 should be clear from the above
example. From the equation F(x,f(x)) = 0 one can determine Df using the
chain rule. First, take the case m = 1. Then, by the chain rule,

aF aF o
o Fen o) = 2o+ 5oL
So we get the important equation (notice the minus sign):
of _ OF|ox,
ox;  OFfdy "

The reader is especially warned that in

(0F[0x;)
(0F[0y)

itis incorrect to “‘cancel” the dF’s to obtain dy/dx;. Thus, while such memory
devices are sometimes useful, they do have limitations.
We can formulate the general solution analogous to the above.
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Corollary 1. In Theorem 2, 0f,/0x; are given by

(8 . O (OF . OFTYOR O
Ox 1 : aX" ay 1 ay nt axl axn
\ax 1 aX" J \ay 1 ay m_ \ax 1 aX" J/

where ~ ! denotes the inverse matrix.

The proof is similar to the case m = 1 given above and will be left as an
exercise.

ExampLE 1. Consider the system of equations
xu 4+ yp?=0;
xv® + y*ub = 0.
Are they uniquely solvable for u, v in terms of x and ynear x = 0, y = 1,
u = 0,v = 07 Compute du/ox at x = 0, y = 1if it exists.

Solution: Here we have F(x,y,u,v) = 0 where F stands for the left-hand
sides of the given equations. We want to see if we can solve for u(x,y), v(x,y).
Thus we form

aFl aFl

u o x 2w
A=lor, or,|”

0%z Oz 205" 3yp?

Pl 6y“u”" 3xv

which, at the given point is equal to 0. Thus the implicit function theorem
states that we cannot expect to uniquely solve for u, v in terms of x and y.
To actually determine solvdbility would require a direct analysis not provided
by the implicit function theorem.

Exercises for Section 7.2

1. Check directly where we can solve the equation F(x,y)=y* +y+3x+1=0
for y in terms of x.

2. Check that your answer in Exercise 1 agrees with the answer you expect from the
implicit function theorem. Compute dy/dx.
x2— 2 xp

3. Consider (x,y) -+ (m, m) Does this have a local inverse near (0,1)?
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~4. Discuss the solvability in the system
Ix+ 2 +z224+ut+0vr=0;
dx+ 3y 4zt +v+w+2=0;
x+z+wHut+2=0,
foru,v,wintermsof x,p,znearx =y =z=0u=v=0,w = —2.

5. Disc;uss the solvability of
y+x+uw=0;

uxy +v=20,

for u, v in terms of x, y near x = y = u = v = 0 and check directly.

7.3 Straightening-Out Theorem

We now give another consequence of the implicit function theorem which
is an important technical tool in the study of surfaces. This result states,
roughly speaking, that if f: 4 « R" — R has a non-zero derivative at a
point x,, then in a neighborhood of x,, f can be “straightened out”; in fact,
f can be deformed into the map which is the projection onto the coordinate
axis x, by composing it with a “coordinate change,”” which means (by
definition) a smooth function which has a smooth inverse. See Figure 7-3,
where the coordinate change is denoted h, and in which h straightens out
the surfaces of constant f to be planes. The exact result is stated in the next
theorem.

Jfoh = constant

FIGURE 7-3
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¥

S = congtant

(M.
N

FIGURE 7-4

Theorem 3. Let A = R" be an open set and let f: A - R be a
Sunction of class CP, p = 1. Let xq € A and suppose Df(x,) # 0.
Then there is an open set U, an open set V containing x,, and a
function h: U = V of class C?, with inverse h™': V — U of class
C?, such that

] SlbGys. . ) = X, -

This theorem has a generalization to functions f: A « R" - R", m < n,
given in Exercise 3 at the end of the chapter.

The plausibility of the theorem is seen from Figure 7-3. The function of h
is to twist things in a way so that the level surfaces of f become planes of
dimension n — 1. The condition Df(x,) # 0 comes in to guarantee that
the surfaces f = constant are ‘‘non-degenerate” or intuitively, have
dimension n — 1. An example will clarify this point.

ExampPLE 1. Let f(x,y) = x* 4 y*. Can we “straighten out” f near (0,0)?

Solution: No, not necessarily, because Df(0,0) = 0. Indeed, this is clear
intuitively because the surfaces of constant f degenerate at (0,0) from being
circles to being a point (Figure 7-4), Clearly, there is no way we can deform
the surfaces f = constant near (0,0) to planes. But we can do this at any

point (x4,y0) # (0,0).

ExamPLE 2. Let f(x,)) = x* + x + y. Can f be “straightened out” near
(0,07

Solution: Yes, for Df(0,0) = (1,1) ¢ 0.
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Exercises for Section 7.3
1. At what (x,y) can f(x,y) = x2 — 2 be “straightened out™'?

2. Sketch the graphs of f = constant in Exercise 1 and explain your answer
geometrically.

3. Can f(x,9) = x* + y* + 1 be straightened out near (0,0)? Near (0,1)?

7.4 Further Consequences of the
Implicit Function Theorem

Theorcm 3 says that we can find a function # which “straightens out” the
domain of f so that f o h is simply a projection. Analogous to this we can
look for a function g which “straightens out” the range of f so that go f
looks like a projection. :

Theoremd. Let A < RPbeanopensetandf: A — R"afunction of
class CT and p < n. Let x, € A and suppose the rank* of Df(x) is p.
Then there are open sets U and V in R" with f(x,) € U and a function
g: U — V of class C" with inverse g~': V — U also of class C" such
that g o f(X1,. . »Xp) = (X1, . %p0,. . ,0) for all (x,,. . ,x,) e A.

The intuition is given in Figure 7-5, which should be compared to Figure
7-3. In the present case the function g flattens out the image of f. Notice
that this is intuitively correct; we expect the range of f to be a p-dimensional
“surface” so it should be possible to flatten it to a piece of R?. Note that the
range of a linear map of rank p is a linear subspace of dimension exactly p,
so this result expresses, in a sense, a generalization of the linear case.

Touse Theorems 3 (or 4) we must have the rank of Df equal to the dimension
of its image space (or the domain space). However, we can use the inverse
function theorem again to tell us that if Df(x) has constant rank m in a
neighborhood of x,, we_can_straighten out. the domain_.of f.with.some
invertible function h such that f o h depends.only on x4, . .., X, Then we
cdn also apply Theorem - 4. This is the essence of the followmg theorem and
its corollary. Roughly speaking, the theorem says that if Df has rank m on
R, thenn — m variables are redundant and can be eliminated. For example,
if f(x,y)) = x — y, f: R* > R, Df has rank 1, and so we can express f
using just one variable, namely, let h(x,y) = (x + y,y)so that fo h(x,y) = x,
which depends only on x.

* Recall that the rank of a linear map is the dimension of its image. Equivalently, by linear

algebra, the rank is the size of the largest square submatrix with non-zero determinant (see
any linear algebra text, such as O'Nan, Linear Algebra for details).



216 THE INVERSE AND IMPLICIT FUNCTION THEOREMS

) % )

FIGURE 7-5

Theorem 5. Let f: A =« R" — RY (where A is open in Ry be a C”
Sfunction such that Df(x) has rank m for all x in a neighborhood of
Xo € A. Then there is an open set U < R" and an open set V <« R"
with xqoe V and a function h: U — V of class C" with inverse
h~': V — U of class C" such that f o hdepends onlyonx,, ..., x,.
Thut is fo h(X,, + XpoXms 19+ - X)) = [ (X150 - X,) fOr some CT
function f. See Figure 7-6.

3 =z
il

FIGURE 7-6
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Corollary 2. Let f: A = R" - RN (where A is open in R") be a
Sunction of class C” such that Df (x) has rank m for all x in a neighbor-
hood of xo € A. Then there is an open set U, — R", an open set
U, « R" with x, € U,, an open set V, around f(x,), an open set
V, = RY, and functions h: U, — U, and g: V, — V, of class C" with
inverses of class C" such that g o foh(x,,. . .,X,} = (X1, . s%;0,- . .,0).

Some further applications of the implicit function theorem to surface
theory and Lagrange multipliers (extremum problems with constraints) are
given in Section 7.7. Also, in the sections below some (optional) topics are
treated by these same or similar methods.

ExampLe 1. Let f: R* » R?, (x,5) = (x + y>,xp,y + »?). Can the range
of f be “straightened out” near (0,0)?

Solution: Here we employ Theorem 4. First, we compute the Jacobian
matrix:

1 3y
y x
0 142y
wﬁich, at (0,0), is
10
00
0 ’1

This matrix has rank 2 (since there is a 2 x 2 submatrix with. non-zero
determinant). Hence Theorem 4 applies, so we can straighten out the range.
It will be, intuitively, a two-dimensional surface near (0,0).

ExampLe 2. Let f: R? = R, f(x,y) = x* + y. Can f be expressed as a
function of only one variable near (0,0)?

Solution: Yes, since (by Theorem 5), Df(0,0) = (0,1) 5= 0. Note that
this can also be answered by using Theorem 3.

Exercises for Section 7.4

1. Let f:R? = R3, (x,y) = (x + »*%xp,y?). Can the range be straightened out near
(0,0)? Near (0,1)?

2. What does Theorem 5 say about f: R® = R?, (x,y,2) = (x2 + 2y%,z% + 3xy) near
(0,0,0)? Near (0,1,0)?
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3. What does Corollary 2 say about f:R®— R% (x,2)b (x + 2p,6x + 12y,
x + y* + 2% near (0,0,0)?

4, Examine the statement of Corollary 2 in the case where f is a linear mapping.

7.5 An Existence Theorem for
Ordinary Differential Equations

In calculus we learn how to solve simple linear differential equations;
for example, one learns that the solution to d?x/dt* + k*x = 0 is x(f) =
A cos(kt — o) for constants 4 and w. It is interesting to investigate whether
or not general differential equations always have solutions. This will be
the main concern here. The methods one uses are constructive and suitable
for numerical computation; that is, a definite sequence of approximating
solutions is constructed.
An example may clarify matters.

ExampLE 1. Consider the non-linear equation dx/dt = x*, x(0) = 1. Can
we compute x(1)?

Solution: In this case we can solve the equation explicitly: we have
dx/x? = dt, so integrating, —1/x =t + C, that is, x = —1/(t + C). At
t=0,x=1,50C= —1Thusx = 1/(1 — 1) is our solution. This is the
only solution starting at t = 0, with x(0) = 1. At t = 1 the solution x(t)
biows up. Thus x(1) is not defined. Note that we cannot find a differentiable
solution x(t) defined for all ¢t = 0. (Figure 7-7).

This example points out the important fact that in general our solutions
x(t) may be defined and differentiable only for a small t-interval.

x(1)

x()
1=x(0) ¢

i e e i i e i i i i i i

t=1
FIGURE 7-7
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Another statement is important here. If we allow vector differential
equations, then higher order equations may be reduced to first-order ones.
Example 2 will illustrate this.

ExaMPLE 2. Reduce d’x/dt* + kx = 0 to a first-order equation.
Solution: We let y = dx/dt and write:

which is first order in thé vector (x,y), and is equivalent to the original
equation. )

The main existence and uniqueness theorem will now be given. In the
theorem, we write D(x,,r) for the closed ball of radius r about x,, so

D(xor) = {ye R"| xo — yll <1} .

Theorem 6. Let f: [—a,a] x D(xq,r) = R" be a given continuous
mapping.Let C = sup{|l ft.x)ll | (t,x) € [—a,a] x D(xo.r)}.Suppose
there is a constant K such that

I1/@x) — fE < Klx — yl

for all te [—a,a], x, ye D(xo,r). Let b < min{a,r/C,1/K}. Then
there is a unique continuously differentiable map x:[—bb] —
D(xq,r) = R" such that

x(0) = x, (initial condition) ,

dx

75 = S X)) .

The main condition on f is this Lipschitz condition: )

Ifex) — fenl < Kjx =yl -

Here K is called the Lipschitz constant and we say f is Lipschitz in the
variable x. To verify this condition one often uses the following device.

Device: If D, f(tx) denotes the derivative of f for fixed r, and
1D, ft,x)yll < K |y| forall y € R" then f'is Lipschitz with Lipschitz constant
K. For example, if n = 1 this holds if |gf(tx)/ox| < K on —a <t € q,
—r<X —Xg ST,



220 THE INVERSE AND IMPLICIT FUNCTION THEOREMS

One sees this by using the chain rule as follows:

d
75/ + s — y) = Doflty + s(x = ¥) (x — ).,

so, integrating between s = Oand s = 1,
1

0

fx) — f(t.) =J D flt,y + s(x — y))- (x — y)ds.

Taking absolute values then yields the resuit. The device is the method we
normally would use to determine K. Note that if f is C* such a K will always
exist (why?).

Often f is independent of ¢, in which case we say we have an autonomous
system. If f is merely continuous, the existence (but not uniqueness) of x({t)
in Theorem 6 is true; see Exercise 45 at the end of Chapter 5.

The idea of the proof of Theorem 6 is to use successive approximations;

start with
X l(t) = an
and write

Xa(t) = Xo +Lf (s,%4(s)) ds

x3(t) = Xo +Lf (s,%,(s)) ds

s t
0 = %o + [ f60,- 00
. 0
Then one wants to prove x,(t) converges to a solution x(t) which will satisfy
t
x(t) = xo +J S(s,x(s)) ds
0

(this equation is equivalent to the differential equation plus the initial
condition).

If we compare this with Chapter 5, Section 6, we see that what is really
going on is the search for a fixed point of the map of one function to another
given by

W)= xo +Jlf (s, ¥(s)) ds

and we might expect that we can use the contraction mapping principle.
We can indeed and this is how the actual proof goes.



ORDINARY DIFFERENTIAL EQUATIONS 221

a+n?

4l ")\ g
9|

LA

- : " )6‘
(e
(,,*gf FIGURE 7-8

EXAMPLE 3. Compute b for Example 1.

Solution: Heredx/dt = x*,x(0) = 1isourequation. Let, for the moment,
a, r be undetermined. Now

c

sup{lft.x)| | —a<t<a-r<x—1<r}
=sup{x?*| —r<x—1<r}
' =+ 1)?
(see Figure 7-8). Thus r/C = r/(r + 1). Also, 8f/0x = 2x, so
K=sup2x]| —r<x—1<r}
=20r+1).
Since a is not involved we can just choose a large enough so that it does
not interfere, say, a = 100. Then, by the theorem, we must choose

b<mm%4;7—iﬁ%.
(r + 1)7720r + 1)

This will work for any choice of r. For example, if we let r = 1 we get a
time of existence b < 1/4. This is not as good as we found directly (a time
of existence <1) but one can reapply the theorem to get a new time of
existence at t = 1/4 and gradually work out to any r < 1. But we could
never go past¢ = 1.

Exercises for Section 7.5

1. Solve dx/dt = 1 + x%, x(0) = 0 by the method of successive approximations. Is
" x(t) defined for all ¢ > 07

2. Compute b from Theorem 6 for Exercise 1.
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3. Show that dx/dt = \/x, x(0) = 0 has two solutions:

0, t<0,
x()=0 and  x() =42
N T t>0

Does this contradict Theorem 67

4. Consider the equation dx/dt = te* sin x, x(0) = 1. Obtain an estimate on how
long we can define the solution x(¢).

5. Let 4 be an n x n matrix and consider the linear system

dx =4 R
m x(1), x()eR".

(a) Show that a solution is
tA4 B _ < Bt
x(f) = ¢“x(0),  wheree Z T

(b) The time of existence here extends for all ¢; can this fact also be derived from
Theorem 67

7.6 The Morse Lemma

In Chapter 6, Section 9 we saw that the Hessian of a function f: R" — R at
a critical point determined the local behavior of f near this point. The
Morse lemma carries this result one step further. It states that if, for example,
S has a local minimum at x,, not only does f.look like a paraboleid but
that we can change the coordinates (as in Sections 7.3 and 7.4) so that
[ really *is” a paraboloid in the new coordinates. The “lemma” (it really is
a “‘theorem”™) also applies to saddle surfaces.

The Morse lemma is fupdamental in more advanced work in topology
and analysis, but even here it helps us understand the shape of functions
near a critical point.

Theorem 7. Let A = R® be open and f: A — R a smooth (that is,
[ is infinitely differentiable) function. Suppose Df (xo) = 0 and the
Hessian of f at xq is non-singular. Then there is a neighborhood U
of x, and a neighborhood V of 0 in R" and a smoothmap g: V - U
with a smooth inverse such that f o g = h has the form

h(y) = fxo) — [y7 + ¥3 + -+ yi] + ier + - + 321,

where A is some fixed integer between 0 and n.
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One calls g a change of coordinates and we speak of y = g~ '(x) as the
new coordinates.

A critical point at which the Hessian matrix A = —8%f/dx; 0x; is non-
singular is called a non-degenerate critical point. Thus Theorem 7 gives a
rather complete description of functions in the neighborhood of a non-
degenerate critical point. The number 4 is called the index of the critical
point. Figure 7-9 illustrates the graphs of the quadratic forms —y? — -+ —
yi 4+ yi.1 + - + y? for various indices in R?,

For functions of two variables it is easy to determine the index; namely,
if A is positive definite (see Section 6.9) the index is 2; if A is negative definite
the index is zero and otherwise it is one. (Note how this ties together with
Theorem 12 of Chapter 6.)

In general, to find the index one needs to know a little more linear algebra.
The knowledgable reader can check that the index is exactly the number of
positive eigenvalues of A.

ExampLE 1. What is the shape of the surface z = X2 + 2xy + 2% + ?
near (0,0)?

Solution: We have a critical point at (0,0) and the Hessian is

: o0%f -2 =2
A = —_ = .
ox; Ox; —2 _4
which is negative definite since —2 < 0, and det(A) = (—2)(—4) —

(—2)—2) > 0. Thus the index is 0 and near (0,0) the surface is approximately
a paraboloid and in some other coordinate system it is exactly a paraboloid.

ExampLE 2. Compute the index of x> — 3xy + y* + 8xy? + 6 at (0,0).

Y3

Y2

A Rt

index = 0 index =1 index=2

FIGURE 7-9 (a) Index = 0. (b) Index = 1. (c) Index = 2.
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Solution: -(0,0) is a critical point and the Hessian is

=[5

which is neither positive definite nor negative definite. Thus we have index 1
and hence a saddle point at (0,0).

Exercises for Section 7.6
1. Compute the index of 2x? + 6xpy — »* + y* at (0,0).

2. What is the shape of the surface x* + 3xy — y? at (0,0)?
3. Does Theorem 7 apply to x* — 2xy + y*>? What happens?
4

. Let f(x,y) = x* + »? + 3y® + 8x* + x%¢*sin x + 6. Show that there exist new
coordinates &, n, where
¢ =&xy), 1 =nxy)
for which
Sy =8 +n"+6
in a whole neighborhood of (0,0).

5. (a) If f has a non-degenerate critical point at x, € R" show that there is a neighbor-
hood of x, containing no other critical points.
(b) What are the critical points of the function f(x,y) = x2y??

7.7 Constrained Extrema and
Lagrange Multipliers -

In' some problems we want to maximize a function subject to certain
constraints or side conditions. Such situations arise, for example, in economics. .
Suppose you are selling two kinds of goods, say, I and IT; let x and y represent
the quantity of each sold. Then let f(x,y) represent the profit we earn when
x amount of I and y amount of II is sold. But our production is limited by
our capital, soweare constrained to work subject toarelation, say,g(x,y) = 0.
Thus we.want to maximize f(x,y) among those x, y satisfying g(x,y) = 0.
The condition g(x,y) = 0 is called the constraint in the problem.

The purpose of this section is to briefly discuss some methods which will
enable us to handle this and similar situations, Theorem 8 is the main result.

Theorem 8. Letf: Uc R*— Rand g: U « R" - R be given C!
functions. Let xq € U, g(xo) = co and let S = g~ '(c,), the level set
for g with value c,. Assume Vg(x,) # 0. If f|S, which denotes f
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restricted to S (that is, to those x € U satisfying g(x) = c,) has a
maximum or minimum at x,, then there is a real number A such that

Vf(xo) = 4 Vg(x,) .

The idea of the proof is as follows. Recall that the tangent space | to S at

this definition by considering tangent s to pathse(t) which he in S, as follows
if c(t) is a path in S, c(0) = x,, then ¢ (0) is a tangent vector to S at x, since

& glel) = ey = 0
and, on the other hand, by the chain rule,

T od
9C0)| = Vglxo) £(0),

so ¢'(0) is orthogonal to Vg(xo) = bes 0 0o ey et ey @
NUW‘lf'f']'S hasa maximum at x,, then certalnly f (c(t)) has a maximum
att = 0. Hence,

v

d
0 = = fce)

e Vf(x0) - ¢'(0) .

Thus Vf(x,) is also perpendicular to the tangent space to S at x, and so
V[! o) and Vg(xo) are parailel. Since Vg(xo) s 0 it follows that Vf(xo)
isa multlple of Vg(xo), which is exactly the conclusion of the theorem.

Let us extract from this proof the geometry of the situation and formulate
a corollary as follows.

Corollary 3. If f, when constrained to a surface S, has a maximum
or minimum at Xx,, then Vf(x,) is perpendicular to S at x,
(see Figure 7-10).

These results tell us that to find the constrained extrema of / we must
look among those x, satisfying the conclusions of the thedrem or the
corollary. We shall give several illustrations of how to use each.

When the method in Theorem 8 is used we must look for a point x, and
a constant 4, called a Lagrange multiplier, such that Vf(x,) = 4 Vg(x,).
This method is more analytical in nature while the method of Corollary 3
is more geometrical.

Unfortunately, for constrained problems there is no simple test to dis-
tinguish maxima from minima as there was in Section 6.9 for unconstrained
extrema. Therefore one must examine each x, separately using the given
data or other geometric arguments.
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¥4
grad f(x,, 3,5 2,) = Vf(%,, ¥, )

tangent plane to §

S,

e |

FIGURE7-10 Thegeometry
of constrained extrema.

ExampLE 1. Let S = R? be a line through (—1,0) inclined at 45°, and let
[ R* = R, (x,t) — x* + t*. Find the minimum of f on S.

Solution: Here S = {(x,y)|y — x — 1 = 0} so we choose g(x,y) =
y — x — 1. The relative extrema of /| S must be found among the points
at which Vf is orthogonal to S, that is, is inclined at —45°, But Vf(x,t) =
(2x,2t) and. has the desired slope whenever x = —t, or (x,t) lies in the line L,
through the origin inclined at —45°. This can occur for a point (x,t) lying
in the set S only for the single point at which L and S intersect (see Figure
7-11). Reference to the level curves of f indicates that this point, (—1/2,1/2),
is a relative minirhum of f | S (but not of f).

ExaMpLE 2. Let f: R? — R: (x,y) — x? — y?, and S be the circle around
the origin of radius 1. Find the critical points of f on S.

Solution: Here S = g7 (1), where g: R? = R, (x,y)+ x? + y*. The
level curves, tangent spaces, and gradients are shown in Figure 7-12. Clearly,
the gradient of f is orthogonal to S at the four points (0, £ 1), (£ 1,0), which
are relative minima and maxima, respectively, of | S.

This problem can be performed analytically by the method of Lagrange
multipliers. Clearly,

of of
f(X,y) = (5’5;> = (2x’_2y)
and
Vg(x,y) = @2x,2y) .

Thus, according to Theorem 1, we seek to find a 4 such that



CONSTRAINED EXTREMA AND LAGRANGE MULTIPLIERS
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FIGURE 7-11 Locating the

critical points of f restricted to S.
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FIGURE 7-12
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(2x,—2y) = i2x,2y)
(x,y)e8, orx*+y*=1.

These are three eguations which can be solved for the three unknowns x, y,
and A. From 2x = A2x we conclude either x = 0 or A = 1. If x = 0 then
y = *+land —2y = AR2yimpliesd = —1.If4 = 1,theny = Oand x = +1.
Thus we get the same points (0,4 1), (- 1,0) as before. As we have mentioned,
the method only locates potential extrema; whether they are maxima or
minima or neither must be determined by other means.

If the surface S is defined by a number of constraints,

gl(xlv . ~’xxx) =0

gz(xl" . "xn) =€y

gk(xl" . "xn) = Cy

(above we just had one g), then Theorem 8 may be generalized as follows.
If f has a maximum or minimum at x, on S, there must exist constants
Ay - A, such that

g Vf(xg) = 41 Vgilxo) + -+ + 4 Vgulxo) .

This may be proved by generalizing the method used to prove Theorem 8.
This argument is left to the interested reader. Let us now give an example of
how this more general formulation may be used.

ExaMmpLE 3. Find the extreme points of f(x,y,2) = x + y + z subject to
the conditions x2 + y? = 2,and x + z = 1.

Solution: Here there are two constraints,
gix,yz)=x*+y* —2=0

and
galx,yz)=x+2—-1=0.

Thus we must find x, y, z and 4, and 4, such that

Vf(X,y,Z) = '11 Vgl(x’y’z) + )'2 ng(x’y’z)
and

g1(x,y,2) = 0
gz(x’y’z) = 0 B
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that is, ‘
1=24,"2x+ 4,1
1=4,-2y+4,-0
1=24-0+4,-1
and
x2 4 yr =2
Lx+z=1.

These are five equations for x, y, 2, 4,, and 1,. From the third, A, = 1 and
$0 2x4, = 0, 2y, = 1. Since the second implies 4, # 0, we have x = 0.
Thus y = +./2 and z = 1. Hence our points are (O,iﬁ,l.). By inspection
one can show that (0,\/5,1) gives a maximum, (0,—\/5,1) gives a minimum.

ExampLE 4. Maximize f(x,y,z) = x + z subject to the constraint
P+ +2=1

Solution: Here we use Theorem 1. We seek 4 and (x,y,z) such that

1= 2x4
0 =2yl
1 =224

and-
X +y+z22=1.

Since 4 ¢ 0, we get y = 0. From the first and third equations, x = z and
43%x? — 41222 = 0; from the fourth, 442x? + 41%z% = 4A%, which together
imply 84%x* = 44> and so x = +1/,/2 = z. Hence our points are
(1/ﬁ,0,1 /ﬁ) and (— I/ﬁ,O,— l/ﬁ). Clearly, the first yields the maximum
of f, the second the minimum. Since S is compact, f must achieve a maximum
and a minimum on S.

ExaMpLE 5. Find the largest volume a rectangular box can have subject to
the constraint that the surface area be fixed at 10 square meters.

Solution: Here, if x, y,z are the lengths of the sides, the volume is
f@x,y,2) = xyz. The constraint is that 2(xy + xz + yz) = 10, that is,
xy + xz + yz = 5. Thus our conditions are

vz =My + 2)
xz = AMx + 2)
xy = My + x)

Xy 4+ xz+yz=295.
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First of all, x % 0, for x = 0 implies yz = 5and 0 = Az, s0 4 = 0 and
yz = 0. Similarly, y # 0, z # 0, and x + y # 0, and so forth. Elimination
of A from the first two equations gives yz/(y + z) = xz/(x + z), which
gives x = y. Similarly, y = z. Using the last equation, 3x* = 5, that is,
x = \/5_/3 Thus x =y =z = \/3_/3, and so xyz = (5/3)*2. This is the
solution. It should be geometrically clear that the maximum occurs when
X =y=z

Exercises for Section 7.7
In Exercises 1-5 find the extrema of f subject to the stated constraints.

Lfeeys)=x—y+z, x*+y*+22=2

2. flxy)=x—p, 2*—y?=2

3. fxy) =2z, x*+ 2p? =13

4, f(xp) = 3x + 2y, 2x%2 +3y? =3

5. f(xyz)=x+y+z, x2—p2=1, 2x+z=1

Theorem Proofs for Chapter 7

Theorem 1. Let A < R" be an open set and let [2 A = R" = R" be of class C*. Let
Xo € A and suppose Jf(xo) # 0. Then there is a neighborhood U of x, in A and an open
neighborhood W of f(x;) such that f(U) = W and [ has a C! inverse f~': W — U.
Moreover, fory e W, x = f~!(y), we have :

‘ ‘ Df='(y) = [Df(x]!
If fisof class C*,p > 1, thensois f~!. .

The proof of the inverse function theorem is not especially easy in its technical
details, but this theorem represents one of the most important cornerstones of analysis
so should be mastered. A proof will be given based on the contraction lemma (see
Section 5.6). This technique is,useful as it 1s applicable to many situations. :

We begin by recalling the contraction lemma. Here we use the special case of a closed
subset of R".

Lemma 1. Let M be a closed subset of R", and d the distance function on R". Let fbe a
mapping of M into M. Assume there exists a constant K, where'0 < K < 1, such that
Jor any two points x and y in M we have d(f(x), f(¥)) < Kd(x,y). Then there exists a
unique x € M such that f(x) = x (x is called a fixed point of f). ’

Before beginning the proof of the inverse function theorem, it is helpful to have a
technical lemma about the set of invertible linear maps {(or equivalently, the set of
invertible matrices). Now an m x n matrix (or a linear map from R" — R™) is simply an
mn-tuple of real numbers, since a matrix 4 with entries (a,) can be regarded as an



THEOREM PROOFS FOR CHAPTER 7 231

nin-tuple (@ s - @1play,- - olgtse - ) It makes sense then, to say that a certuin
subset of the set of all matrices is open or that a map from the set of m x n matrices to
the set of p x ¢ matrices is differentiable. Let L{R",R") denote the set of all n x n
matrices (or linear maps from R" to R") and let GL(RR",R") denote the set of all invertible
matrices {or invertible linear maps from R to R"), which is called the general linear
group. Thus GL(R",R") = {4 e L(R",R" |det 4 % 0}, Let ¥~ ': GL(R",R") — GL{R",R")
denote the map which takes an invertible matrix 4 to its inverse 4!, The lemma that
we need is Lemma 2,

Lemma 2.
(i) GL(R",R") is an open subset of L(R",R").
(1) £~ is a C* mapping.

Proof:* (i) The determinant mapping det: R" x -+- x R" (n times) » R is an
n-linear map. (Recall that the determinant is linear in the rows,) Hence by Example 5,
Chapter 4, which shows that a multilinear map from R™ x +++ x R™ to R™ is con-
tinuous, the determinant mapping is continuous, and, by Example 2, or Exercise 14
at the end of Chapter 6, it is differentiable. Because the set consisting of zero {0} is
closed, we have that det™*({0}) is closed (by Theorem 1, Chapter 4). Hence
L(R"RM\det~*({0}) is open. But L(R",R"\det~}({0}) is the set of all those n x n-
matrices with non-zero determinant, and these are exactly all the invertible matrices
GL(R"R").

(if) It is easy to see, from the explicit expression for the inverse of a matrix, that
%~ is C=, Indeed, the expression for the inverse of the matrix 4 is 47! =
(det A)™ ' adj 4, where adj 4 is a matrix such that (adj A4),; = (—1)'*/ det 4(j | i),
where det A(j | i) denotes the determinant of the matrix obtained from 4 by deleting
the jth row and ith column. As (det 4)~ ! is a real differentiable function of 4, we only
need to show that the mapping adj: L(R",R") — L(R",R", which takes a matrix to its
adjoint, is C*. Regarded as a function from R™ to R™, the adjoint is simply an n>-tuple
of functions like (adj ), = (—1¥*/det A(j| i). Now as we have mentioned a multi-
linear map from R™ x -+ x R™ to R"is C*. Thus each of the n? component functions
of adj is C*. Hence the adj map is C*. #

Proof of Theorem 1: For the sake of clarity we will now break up the proof of
Theorem 1 into a number of steps.

Step 1:  Simplification to a special case.

We will prove the theorem below for the case when Df{x,) is the identity transforma-
tion. Here we show that this is indeed sufficient to prove the general case.

Let 4 = Df(x,); then A~ ! exists, and by the chain rule

DA™Y o f)(xg) = DA™Y (f(x0)) o Df(xo) = A7 ! o Df(x,) = identity transformation .

Now if the theorem is true for A7 ! o f, then the theorem is also true for f. Indeed, if
g is an inverse for A~ ! o f, the inverse for f will be go A7 1.

Wecan make one further simplifying assumption, namely, that x, = 0 and f(x,) = 0.
To see this, let us suppose we have proven the theorem for the special case x; = 0 and

* For a more “intrinsic™ proof sce Dicudonné, Foundations of Modern Analysis, p. 179.
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Sf{xg) = 0. We want to see how to prove the general case from this. Let A(x) =
JSx + x¢) — f(xo). Then 4(0) = 0 and Di(0) = Df(x,), so D/(0) is invertible. Then if /
has an inverse near x = 0, the required inverse for f near x, is given by

ST =Yy ~ flxg) + xq .

In summary, Step 1 demonstrates that it is sufficient to prove the theorem under the
assumptions x4 = 0, f(x,) = 0 and Df(0) is the identity. This will be assumed in the
remainder of the discussion.

Step 2: Application of the contraction lemma to get a local inverse.

If we bear the preceding remarks in mind, it follows that what we would like is two
neighborhoods of 0 such that given any y from the first neighborhood of 0 there is a
unique x from the second neighborhood such that f(x) = y. To do this, consider the
function g, defined by g,(x) = y + x — f(x). If for some closed neighborhood of
zero this is a contracting mapping, then it has a unique fixed point, say x, and so
x =y + x — f(x) or x is the unique point belonging to the neighborhood such that
JS(x) = y. Now construct this neighborhood: define g(x) = x — f(x); then Dg(0) = 0.
Assume g to be of class C?, with p > 1. This means in particular that Dg is a continuous
function, and so by continuity at 0 there exists an r > 0 such that ||x|| < r implies
|Dgy(x)Il < 1/2n, where g = (g,,. . ..¢,). By the mean-value theorem, given x ¢ D(0,r)
thereare pointscy,c,, - . . ,¢, in D(0,r)such thatg(x) = g{x) — g,(0) = Dg{c)ix ~ 0) =
Dg{c))(x). Therefore

n n I "x" r
lotl <3l = . IPaideaoll <. WDgel Il < 557 <5,
i=1 i=1 =1
using the C_B.S. inequality.
This establishes that g maps the closed r-ball D(0,r) into the closed r/2-ball
D(0,7/2). Now let y be any member of D(0,1/2). The mapping g, takes D(0,r) into D(0,1);
for [|¥] < r/2 and x e D(0,r) implies

g, = Iy + g1 < Iyl + lgCl <5 +3 =r.

Let x, and x, be any two points in D(0,r). Then [lg,(x,) — g,{x2)ll = liglx,) — g(x )il
and by the mean-value theorem as above, [g(x,) — g(x,)ll < (1/2) [[x, — x,], and so
g, is a contracting map (with constant K = 1/2). Now we apply the contraction lemma,
which implies that there is a unique fixed point x € D(0,r) for g,, and as we observed
before, this implies f(x) = y. This means that f has an inverse f ~!: D(0,//2) « R" —
DO, = R ' .

Step 3: " The inverse is continuous.
Let x, and x, € D(0,r); then recalling the definition of g, we get

lxg = 2l S USG) ~ S+ 1g(x1) — gl < 1S (x0) = S+ (1/2) 1xy = %,

and hence ||x; ~ x,]| < 2 [ f{x,) — S{x,)ll. Therefore if y, and y, € D(0,1/2), we get
1/=1) = S 7Y w2l € 21y — p2ll, s0 f ! is continuous.

Step 4:  For suitably small r, the inverse is differentiable on D(0, r/2).
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We were given that Df(0) is invertible, that Df: 4 = R" — R™ is continuous, and we
have shown that GL(R*,R") is open in L{R",R"). Together, these facts show that for all
x in some neighborhood around 0, [Dg(x)] "' exists. If this neighborhood does not
contain D(0,r/2), r is restricted further until this is the case. Hence we can assume
[Df(x)]~ ! exists for all x e D(0,r/2). Moreover, we can assume ||[[Df(x)]~ 'y < M |y
for all x € D(0,r/2) and y e R" by continuity of Df(x)"! (see Example 4, Chapter 4).

Now, for y,, y, € D(0,r/2), x, = f~}p)and x, = [~ y,),

L™ ) = £ ) = [DFG)] ™ (0 = 2ol
vy — yali
% = %~ DDA () — S
176en) — 7ewo)l ' ,
_ [ lx, — %, ] DA 6]~ MDA, — Xa) — (fx)) — S}

/G = Fo A '
Using |x, — x;) < 2 1£(x,) — f(x;)l and [ Df(x;)™ 'yl < M lly| gives that the above
s IDF (), — x5) — (F2) =G

%, — xall

< 2M

The last expression has a limit zero as |x, — x,|| = 0, by the differentiability of f at
x,. This shows that f~! is differentiable at y, with derivative [Df(x,)]"! =
2/ E A6 )] N

In the theorem we set W = D(0,/2) and U = f~ (W), both open sets.

Step 5: [~ D(0,;r/2) = R" is of class C”.

From Step 4 it follows that /'~ !': D(0,r/2) — R" is differentiable on D(0,r/2) and that
Df ~'(y) = [Df(f ~'(»)]"!. We have shown that f~':D(0,//2) = R" is continuous;
Df is continuous by assumption; and the inversion mapping from GL(R",R" (the in-
vertible linear maps from R" to R") to GL(R",R") is continuous and, in fact, C* by Lemma
2. This implies that Df " ! is a continuous map from D(0,r/2) into L(R",R"). Hence f ™!
is of class C'. Again look at Df ~!(y) = [Df(S~'(»)]"' and observe that since f ™! is
of class C!, Df is of class C?~! and since inversion is C®, Df ™! is of class C'. Hence
f~'is of class C2. Continuing in this way by induction we finally conclude that £~ is
of class C”.

Theorem 2, (Implicit Function theorem.) Let A = R" x R™ be an open set and let
F: A — R™ be a function of class C*. Suppose that (Xo.90) € A and F(x4,y,) = 0. Forin

OF,  oF,
ay, OV
A =
oF,  oF,
ayl aym
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evaluated at (xy,y,), where F = (F|,. . ., F,), and suppose that A # 0. Then there is an
open neighborhood U < R" of xq, and a neighborhood V of y, in R™, and a unique
Sunction [+ U — V such that

: F(x,f(x)) =0

Jor all xe U, Furthermore, f is of class C*.

Proqf: Define the function G: 4 « R" x R" = R" x R™ by G(x,) = (x,F(x)).
Since F is of class C” and the identity mapping is of class C®, it follows that G is of class
C?. The matrix of partial derivatives of G (Jacobian matrix) is

1 0 0 0 0 )
0 1
0 - 1 0 — 0
aF, _9F, oF,  OF,
axl 0:(,, ayl aym
- or,, oF, oF, dF,,
\axl axn ayi aym J

The determinant of this matrix evaluated at (xq,y,) is equal to

oF,  OF,

ayl aym
A=

oF,, oF,,

ayl aym

evaluated at (xg4,y,). Therefore, by hypothesis, JG(x4,y0) # 0 and thus by the inverse
function theorem, there is an open set W containing (x,,0) and an open set S containing
(xg,¥0) such that G(S) = W and G has a C™-inverse G~!; W — S. From the definition
of an open set we see that there are open sets U <« R" and ¥V < R" with xy & U and
yo€ Vsuch that U x V < § (see Exercise 24, Chapter 2), Let G(U x V) =Y < W.
Thus G: U x ¥V — Yis a CP-diffeomorphism (this means that G is of class C” and has
inverse G™1: Y = U x V also of class CF). Now G~! is of the form G~ !{(x,w) =
(x,H(x,w)), where H is a C? function from Y to ¥, since G is of this form, as is easy to sce,
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Let z: R" x R™ — R™ be defined by n(x,y) = y, so F(x,H(x,w)) = © o G(x,H(x,w)) =
noGoG ™ (x,w) = w. Also observe that because G~! is of the form G~ !(x,w) =
(x,H(x,w)), if (x,w)e Y, theh xe U, Define f1U — V by f(x) = H(x,0), Then, as
F(x,H(x,w)) = w, we get F(x,f(x)) = 0. Also, as H is of class C?, f must also be of class
C#, By Theorem 1, H(x,w) is uniquely determined. Since f must be given by H(x,0), f
is seen to be unique as well,

Theorem 3. Let A < R" be an open set and let f+ A — R be a function of class C?,
p = 1. Let xy € A and suppose f(xq) = 0 and Df(xo) # 0. Then there is an open set U,
an open set V containing xq, and a function h: U — V of class CP, withinverse h™1: V — U
of class C*, such that

f(h("lv . n» = xn M
Progf: Since Df{x,) # 0, there must exist some i such that (3f/9x;)(x;) # 0. Define
g. R” - R by (‘xls' . ~’xn) g (xlv R R E e S TR 's‘xn-lrxi)‘ The permUtation map

g is linear and hence C* and because f is C? we have by the chain rule that f o g is of
class CP. So (8(f o g)/0x. g™ )xo) = 8f(xq)/@x; # 0, which implies that fog is a
function of the type described in the hypotheses of Theorem 2, with m = 1. Hence,
just as in the proof of Theorem 2, if we define G: 4 <« R"7! x R— R""! x R by
G(x,y) = (x,f o g(x,y)), there are open sets W = R" and U < R" with x, € W and
(%8, . x5 1,0)e U (where xq = (x§,...,x5)) such that G: W — U has an inverse
G™':U— W of class C?. Now, (fog) o G xy,. . ox,) = (0 G)o G~ x,e . 0x,) =
x,, where n: R"~! x R — R is the projection on the last coordinate, Define ¥ = g(W)
and i:U 5 V by h = goG~1'. Then / is a C” function with C? inverse, since both g
and G™! have this property; and f{i(x,,. . .,x,) = x,. i

It is possible to prove a theorem that is more general than the one above, using a
similar technique. That is, if f: 4 © R" = R™f >, and Df(x,) as a linear map has
rank m, then f can locally be made to look lLk'e a pro;ectlon on the last i factors by
composing it after a smooth function with smooth inverse. In Exercise 3, we state this
exactly and give a hint as to the proof. Note that here the range has dimension less than

or equal to that of the domain. In the following theorem the opposite is the case

et b s e e

Theorem 4. Let A < R bean open set and f: A — R" afunction of class C" aiu{VVS n.
Let xo € A and suppose the rank of Df(x,) is p. Then there are open sets U and V-in'R"
with f(x,) € U and a function g: U — V of class C" with inverse g~ ': V — U of class C"
such that g o f(x,. . ,x,) = (3150« %50, . 0) for all (xy,. . . x;) € A.

Proof: Since Df(x,) has rank p, some p x p submatrix of Df{(x,) has non-zero
determinant. By relabeling, if necessary, we may assume )

A

ax, ox,
#0,

yr oy

d0x, ox,
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where [ = (f1,. . ,f™. Define p: 4 x R""F = R" by ¢(x,y) = f(x) + (0,y). Then the
matrix of D¢ is

( afl afl N
= Ve —, 0, ..0
0x, ox,

a r a r
R

ox, ox,

afp+1 afp+l
N , oo 0

ox, ox,
A

9 0x, ox, Y,

and
ot . aft
ox, ox,
z J(P(xo»o) = ’ ' #0.
arr are
ox, ox,

%Xa, 2)

Hence by the inverse function theorem there is an opén set U around f{¥;), an open
set V around (x4,0), and a function g: U — V of class C" such that g = ¢!, Then
g(f(x) = g(f(x) + (0,0)) = (x,0) as desired, 1l

Theorem 5. Let f1 A = R" — RY (where A is open in R") be a C" function such that
Df(x) has rank m for all x in a neighborhood of x, € A. Then there is an open set
U < R"and an open set V < R" with xq € V and a function h: U — V of class C" with
inverse ™' V = U of class C" such that f o h depends only on x,, ..., x,. That is,
S ol(x s, XXt » %) = f(xp50 . x,) for some CT function f.

Proof: Let N, be the kernel of Df{x,); that is, let Ny = {y e R"| Df{xp) -y = 0}
(a subspace of R" of dimensjon # — m) and let M be an m-dimensional complement of
Noin R", thatis, M n Ny = {0} and {x + y | xe My e Ny} = R" Letc,,...,c,be
a basis for M and ¢4y, ..., c, be a basis for N,. Now each x &€ R" can be written
uniquely as x = i, (x)¢, + ** + W (x)c,’ Define G(x) = (0,. . ..00 4 (%) . W, (x)).
Then G is linear and hence smooth. Now Df(x,) has rank m, so Df(x,}R") is an m-
dimensional subspace P of RY, Moreover, the set {d, = Df(xo)c; |1 < i< m} is a
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basis for P. Any x € RY may be written uniquely as
X = (pl(x) dl +oe At (P,,.(x) dm + (pm+l(x) dm+l + oo + (pN(-") dN ’

where d,, . . ., dyis a basis for RY, with d,, . . . , d,, the basis for P given above, Define
H: RY = R" by H(x) = (@ (%), - -s®x(x),0,. . .,0)-

Now let g(x) = H(f(x)) + G(x). Then g maps R" to R", and as H and G are linear, we
have Dg(x,) - s = DH(f(xp)) o Df (xo)(s) + DG{xo)(s) = H(Df(xo)s)) + G(s). If we write
the matrix of the linear transformation Dg(x,) in terms of the bases ¢, . . ., ¢, and the
standard basis, we get the identity matrix. Hence Dg(x,) is invertible, We may use the
inverse function theorem to find an open set U around H(f(x,)) + G(x,) and an open
set ¥ around x4 and a smooth inverse function g~!: U — V. Now for each xe V,
Dg(x) is invertible, That is, Dg(x) must be a one-to-one linear map of R" onto R", We
may assume rank {Df(x)} = m for all x € 4 (otherwise restrict / to an even smaller
neighborhood of x,). For x € 4, Df(x)(R") is an m-dimensional subspace, say, P, of
RN, Now if s € M, Dg(x)* s = H(Df(x)-s) + G(s) = H(Df(x) s). Thus il x e V, Df(x)
restricted to M must be a one-to-one linear map of M onto P,. That the mapping is
onto follows from the fact that M and P, both have dimension /. Similarly, H must bea
one-to-one linear map of P, onto R™. Denote the.inverse of this map by L,.: R" — P,.

Let h =g~ ':U — V; we shall show that fo h(x,,...x,) does not depend on
Xptts -+ Xy. To do this we may assume that U is a ball, It suffices to show that
D,f, = 0, where D, f, is the derivative of f; = f o h restricted to {0} x R"™™, that is,
we are showing df,/0x, = 0,i = m + 1, ..., n. It of course follows that f| is constant
with respect to X4, . . ., X,- Now f = f, 0 g, 50

Df(x) -y = Df\(g(x)) - Dg(x)* y = D fi(g(x)) - HDf(>) - y) + D, filg(x)) - G(») . (1)

Since Gis a mapping of R" onto {0} x R"~™, it suffices to show that D, fi{g(x))o G(y) = 0
for y € R", Returning to Eq. 1 and using L, o H = identity, we obtain

D, fi(g(x)) o G(y) = Ly o H(Df(x) - y) — D1fi(g(x)) o HDf(x) - ¥)
= (Le — D1 /fi(g(x)) o H(Df(x) - ¥)

forally € R*, Now L, — D, fi(g(x))is defined on R" x {0} and H o Df{x) maps M onto
R™ x {0}. Hence to show L, — D, f(g(x)) = 0, it suffices to show

(Le — Du/i(g(x)) o H(Df(x) - ) = 0

for y € M. But this follows because for y € M, G(y) = 0, and so D, fi(g(x))e G(y) = 0.
Therefore L, — D, f,(g(x)) is identically zero and thus D, fi(g(x)) = 0. §

@

Corollary 2. Letf: A = R — RN (where A is open in R") be a function of class C” such
that Df(x) has rank m for all x in a neighborhood of xo € A. Then there is an open set
U, =« R", an openset U, <\R" with Xo € U,, an open set V, around f(x,), ar open set
V, < RY, and functions h: U, — U, and g: V; — V; of class C" with inverses of class C"
such that g o f o h{xq,.. .,x,) = (X(y - sX:0,. . ,0).

Proof: By Theorem 5 there is a C" function 4: U — V with C" inverse, such that

S o0 o XXt 1o+ %) = J(X1a + X0)
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for some f: W = R™ — R", Now Df has rank m (since / is invertible), so by Theorem 4,
there is an invertible C” function g, such that

o Df(xl»' . ':xm) = (xl" . "xnnos' . ';0) .

Define gon R by g(xlv . "xn) = (g()(xlv . 'sxm)’xnl+l7— . ';xn)' Then g is also C" and
invertible and we have
goSoh(xy . x) = (%1 %0y . 40) .

Themem 6. Let f:[— a,a] x D(xq,) = R* be a given continuous mapping. Let
= sup{||f(£,x)] | —a < t € a, x € D(xo,r)}. Suppose there exists a K € R such that
for allte[~ a,a] and x,y € D(xg.r),

1/(t%) = Sey)l < K lIx ~ yll

and that b < min{a,r/C,1/K}. Then there is a unique continuously differentiable map
x: [—b,b] = D(xy,r) such that

x0) =x, and % = f(¢t,x(0) .

Proof: The differential equation and the initial condition x(0) = x, is clearly
equivalent to the condition

t
x(1) = xo +jf (5:x(s)) ds
0
Consider %([ ~b,b],R™ which we know (from Chapter 5, Section 4) is a complete
metric space, Let
A = {pe®([~bb],R)| @) = xoand o) & D(xq,1)} .

Then 4 = #([-b,b],R" is closed (why?) and therefore 4 is also a complete metric
space, We will apply the contraction mapping principle proved in Section 5.6 to this
space A4, ’

Define F: 4 — A4 by*

Flo)t) = xo +jf (s,0(s)) ds

First we must show F(p) e 4. Clearly, F(@) e ¢([ —b,b],R". Also, F(p)0) = xg, and
for all te [—b,b],

IF()e) — xof = ‘U’f(s,fp(s)) 119“ Sf [f(sp(shll ds < b-C <r
0 0
since b < r/C. Thus F(g)t) € D(x,,r), so F(g) € A

* |1, f{s,p(s) ds is obtained by intcgrating each component of f; the result is a vector, The
inequality

jf (s.(s) ds|} < j I/ (s.0(sNl| ds
4] 4]

is analogous to the similar result for the case of real functions—we accept it here; sce Chapter 8
for a detailed discussion.
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Next, for o, Y e A4,
1E(@) — FOp)I = _sup I F(@)s) — Fip)ol

<t<bh

= sup
~b<i<h

< sup | 1 f(s.00) — Sisb(s) ds

—bstsh

L(f (5:0() = S{s.(s)) df”

{*t

< sup § K |lp(s) — y(s)l) ds

-bEt$bJO

t
< sup KJ lo — Wil ds < Kb llo — ¥l
0

—-b<tSh

where Kb < 1.

Therefore if welet k = b+ K < 1, d(F(e),F({)) < kd(e,}) and so I is a contraction
and thus has a unique fixed point: x = F(x). This fixed point x(¢) is the unique solution
we were seeking,

The iteration scheme mentioned in the text comes about because, as we saw in the
proof of the contraction mapping theorem, the unique fixed point is the limit F(¢) as
1t — oo for any @ € 4. We chose ¢(f) = x,.

Theorem 7. Let A = R" be open andf: A — R a smooth function. Suppose Df (xg) = 0

and A = [—0%/dx, 0x] is non-singular. Then there is a neighborhood U of x, and a

neighborhood V of 0 in R" and a smooth map g: V — U with smooth inverse such that
Jog(y) = fixg) = ¥} + - + p§] + [Vhey + o + 5]

Jorallye V. Here ) isa fixed integer 0 < A < n,

Proof:* 1t is easy to see that we lose no generality if we assume x, = 0 and
Sxg) = 0.
Write

. . _ ! d,/‘(txls' . 'stxn)
Sxe o 0x,) —L T dz

1 n a
= Zx,—f(zx,,. L otx,)dr
oiTt Ox
Thus we see that if we set
Lo
. gil{xp oK) = 'é"f(txlv s otx,) dt,
0 0%
then

"

S 5) =Y X0 )
=
Since x, = 0 is a critical point, §f/dx,;(0) = ¢,(0) = 0. Also, g; are smooth functions—
one only needs to justify differentiating under the integral sign—you may accept it now,
‘or refer ahead to Example 2 at the end of Chapter 9 for detailed justification,

* The proof makes use of some facts on quadratic forms; see O’Nan, Linear Algebra, Chapter 7.
An alternative, perhaps simpler proof, kindly supplied by A. Tromba, is given in Exercise 33,
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Since g(0) = 0 we can apply the same procedure as above to write

n
gi(xls' . "xn) = Z‘xjhlj(xls' . '3xn)
=t

for certain smooth functions hy;, and therefore

i

S X)) = Z XX {1 s X)
1

ij=
We can assume h;; = fy, by replacing I, by I-zu = 1/2(ly; + h,;) if necessary, which does
not alter the expression for f. Note that at zero 82(/dx, dx; = 2h,(0), so 4,£0) is non-
singular,

Now S is written in a way analogous to a quadratic form, What we want to do is to

“diagonalize” it. Proceed by induction. Suppose there exist coordinates u,, . .., u, in
a neighborhood U, of 0 such that
Som ) o )+ 2w Hy e ) M
hijzr

on U, where r > 1 and H,, are symmetric. We have this as above for r = 1. (Co-
ordinates u,, .. ., u, means, as in the text, that (u,,. , .,u,) are invertible functions of

(xl” . '!xn)‘)
We can make a linear coordinate changein u,, . . . , u, in order to diagonalize
2 sy (0) .
ij2r

In particular, since H,(0) is non-singular the diagonal terms are non-zero. Thus we can
assume H,(0) # 0. Let g(u,,. . .,u,) = |H,(uy,. . .u,)|"/%; in some smaller neighbor-
hood U, = U, of 0, g will be a C® non-zero function, Define

) Vi=w 1#r

wme=wmeb+ Eﬁﬁ;@] @

>r Hrr(ul" > "un)

The Jacobian at 0 is

10 e . 0
0 1

1 0

oV . W, av, v,
__(_l______)= 2 9(0) i 4
o(uy,. . ., u,) ox, ox,

1
0 0
0 0 1
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which is non-singular. Therefore, by the inverse-function theorem (u,,. . ..u,) s
(V>- + ., ¥,) is a C® map with a C® inverse on some smaller neighborhood U, of 0, In
other words, (V,,. . .,V,) will serve as coordinates,
Now consider
ururHrr(ulv . n + 2 Z uju er(uls >y ): (3)
J=rt

which are the terms in Eq. 1 with either I or j = r, Here we have used symmetry of H; I
Comparing Eq. 1 with Eq. 2 we see that Eq. 3 equals

1 2
i VrVr - E: [Z uiIilr(ul» . ')un)] 3

i>r

the plus or minus coming about because H,, = +g?, where we use -+ if H,, is positive
and — if H,, is negative,
From this we see that Eq. 1 becomes
f=) + > Z VVH (Vys. . V)
i<r
for new symmetric H'U. Thus we have inductively gone from » tor + 1in Eq. 1, Hence
itis true for r = 1 + 1, which proves the theorem.* §

Theorem 8. Let 1 Uc R" > R and g: U = R"— R be given C* finctions. Let
x0€ U, glxy) = c, and let S = g~(co) the level set for g with value c,. Assume
Va(xo) # 0. If f | S has a maximum or minbmum at x, then there is a real number A such

that
Vf(xq) = 4 Vg(xo)

Proof: The only thing not complete about the sketch of the proof given in Section
7.7is that we need to know thatif v L Vg(x,) then v = ¢'(0) for a C* curvec(¢) in S, with
c(0) = x,.

This can be established as follows, By Theorem 3 there is a change of coordinates 4
such that g(h(x,,...,x,)) = x,. Thus A~(5) is the coordinate plane x, = co. Let
w = Dh™!{x,) " v. We claim that the last coordinate of w is zero, that is, w lies in the
plane x, = c,. Indeed let e, = (0,0,. . .,1). We shall show that {w,e,) = 0. But from the
chain rule, g(i(x,,. . .,X,) = X, 1mphes

<Vg(x0):Dh(y0) ! W> = <ern>

where h(yo) = Xo. But the left side is {Vg(x,),v) = 0. Now let ¢(r) = Ay, + tw).
This lies in S, ¢(0) = x, and from the chain rule, c (? =y,
The proof may now be completed as in the text,

Worked Examples for Chapter 7

1. (Product rule for Jacobians,) Let f: 4 < R" - R, g: B =« R" - R", and f(4) < B,
Then show that for xe 4,
Jg. %) = JLSx)  Tx)
(product of real numbers).

* Although the applications of this theorem to topology are fairly advanced, the reader interested
in this material may consult J, Milnor, Morse Theory, Princeton University Press, 1963,
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Solution: By the chain rule,

D(g o f)x) = Dg(f(x)) e Df(x)

which may be interpreted either as composition of linear maps, or as a matrix
product. Since the determinant of a matrix product is the product of the determinants
we immediately get the required result,

2. Consider equations u = fi(x,y) and v = f,(x,y). Show that they are invertible near
(xowo) iff
oo, 9.0,

ox dy dy ox

does not vanish at (xo,). If x(u,v), p(u,v) are the solutions, show that

ox _tov  ox 10w
u  Ady’ v Ady’

ay 1 0dv ay lﬁu

du  Adax’ oy Adox’

Solution: This is just a special case of Theorem 1 for #n = 2, Here A is exactly the

Jacobian determinant. The matrix of derivatives of the solutions is, by Theorem 1,

the inverse of the matrix of derivatives of fj, f,. Since the inverse of the matrix

(a b} is I/A( a _b} , where A =2@d — bc, we get the stated result,

c d -c a

3. Let4 <« R'beanopensetand f: 4 < R" —» R"a one-to-one continuously differenti-
able function such that Jf(x) = det(Df(x)) # 0 for all x € A, Show that f(4) is an
open setand f~!: f(4) = A is differentiable.
Solution: Let y € f(A) and suppose y = f(x). Since f is continuously differentiable
and Df(x) has non-zero determinant, the inverse function theorem tells us that there
exist open neighborhoods U of x and ¥ of y such that f | U (the restriction of f to
U)is a C* diffeomorphism (that is, it has a C* inverse) of U onto V, Hence V < f(4),
so f{4) is open. Now (/| U)™* = f~!| f(U) and (f| U)~! is differentiable at y,
and so f ! ié differentiable at y, Hence, f ! is differentiable on f(4).

4. Consider the following equations:

X2 —yu=20,
xy +uw =0,

Using the implicit function theorem describe under what conditions these equations
can be solved for u and v, Then solve the equations directly and check these
conditions,

Solution: Define f1: R* = R by fi(x,y,u,v) = x* — yu and define f,;: R* = R by
fleyup) = xp + w, Let f1 R* —» R? bedefined by f = (/},/,); then f is a smooth
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function. The matrix

o %
du dv {_y 0}
o ¥| Llv v
ou odv

has determinant —yu. If (x,y.u4,00) is such that y,u, # 0, then the hypotheses of
the implicit-function theorem are satisfied, and so there are neighborhoods 4 of
(x0yo) and B of (ug,v,) and a unique continuously differentiable function g: 4 — B
such that f(x,y,9(x,»)) = 0 for all (x,y)e 4. If we let u = g, and v = g, (where
g = (9,,9,)), then u and v are the solutions to the simultaneous equations. Thus
these equations can be solved uniquely for u and v in neighborhoods around
(xowo) and (uqv,) satisfying the equations provided that youq # 0, which is
equivalent to requiring x, and y, # 0 since f(xgwg g o) = 0, 0r X3 — youye =0
and xoy, + ugvg = 0.

By direct computation, the solutions are u = x%/y and v = — y%/x, which are
valid except when x, = Oory, = 0.

5. (Functional dependence.) Let 4 < R" be an open set and let the functions fi, .. .,
Jy. A — R be smooth. The functions f, . . . , f, are said to be finctionally dependent
at x, € 4 if there is a neighborhood U of the point (fi(x,), . ./i{xo)) € R" and a

" smooth function F; U — Rsuch that DF % 0 on aneighborhood of (f;(xo). . ../(xo)),
and

F(fi(x)s o filx) =

for all x in some neighborhood of x,.

(i) Show thatif f}, ..., f, are functionally dependent at x,, then
1o oofa)
=0atx,.
a(rlv M n) 2 YO
(i) If
a(fl""’j:n—-l) a(fx,...,f;,)
—#* 0  and =0
A3xys v s Xu—1) O(X g5 + oXy)
on a neighborhood of xg, then show that f;, . . ., f; are functionally dependent,

and further,

f = G(fl: . n— ) ’
for some G.

Solution:  Letf = (fi, . ../,).

(i) Wehave F o f = 0, s0 DF(f(x)) o Df(x) = 0. Now il Jf(x,) # 0, Df(x) would be
invertible in a neighborhood of x,, implying DF(f(x)) = 0. By the inverse
function theorem, this implies DFF(y) = 0 on a whole neighborhood of f(x,).

(ii) The conditions of (ii) imply that Df has rank n — 1. Hence by Corollary 2 there
are functions g, A such that

gofoh(xy . X)) = (X wXe10) .
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Let I be the last component of g. Then

F(fie o uf) =0
Since g is invertible, DF = 0.
It follows from the implicit-function theorem that f, = G(f,,.. ..f,_,), that
is, we can locally solve

F(fi,.of=0

for f, = G(f,,.. .fu-1), provided we can show A = dF/dy, # 0. Now, as we
saw above,

DF(f(x))- Df(x) = 0,

or, in components, if y = f(x),

CA
ox, ox,
oF  ar\| ’
(LS D
. /| . .
%o o
\z?:cx 0:(,,)
If 8F /3y, = 0, we would have
(o .. &)
" axl axn—l
oF oF '
<_3° . 's—'—'> ’ =0 ’
ayl ayn—l .
Bt By
q ax, 0x,— Y

or

i <6F oF ) —0
dy, " .,aJ’n-x ’

since the square matrix is invertible by the assumption that

171 PR |

#0.
a(xlv . 'vxn—l)

This implies DF = 0, which is not true. Hence 8F/dy, # 0, and we have the
desired result.

The reader should note the analogy between linear dependence and functional
dependence, where rank or determinant conditions are replaced by the analogous
conditions on the Jacobian matrix.
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Exercises for Chapter 7

—-1. Write an expression for 8f/ax if f(x,y) = g(x,h(x,y)) where g, i: R* —» R.

2. Consider the following set of p equations in # + p unknowns.

/4‘

Xy o A Xy T @ pXaa, =0

a1 Xy 4o+ QX + Ayt 1%¥n+ 1 + o ".’ Qi tpXntp = 0

What does the implicit function theorem say about the solution of these equations
for the unknowns X, y, . . . , X,+,7 Does it reduce to a theorem you know from
linear algebra?

. Prove the following generalization of Theorem 3. Let 4 — R" be an open set and

f:4 =« R* = R™", m < n, a function of class C”. Let x, € 4 and suppose f(x,) = 0
and rank Df{(xy) = m. Then there is an open set U, an open set V containing x,,
and a function h: U — V of class C?, with inverse #~!: V — U ofclass C” (thatis, a
Cr-differeomorphism), such that f{(i(xy,. . %) = (Koo 150 - %) [Hint: If Df (x;)
has rank n there must exist j;, . . . ,j,, such that the matrix (D, /), 1 < i,k < m, is
invertible, Define the permutation map g: R" = R" by

g(xh° M "xn) = (‘xl?' . "'xj:—hxn—m'H?xj;'H?' . ':xjm—hxmxjm+1v . wxn—m?xj;?‘ N "xjm)
and make appropriate modifications to the proof of Theorem 3.]

Let /2 R" —» R and g: R" — R" be functions of class C'. Define 4: R" = R by
Kx) = f{g(xy)s - gulxn), where g = (gy,. . .,,) and x = (x,,. . .,X,). Show that

gi(xy) 0
Dh(x) = Df(gl(xl)v . °vgn(xn))
0 GnlX%n)
. (a) Define x: R? = R by x{r,0) = r cos U and define y: R* - R by y(r,6) = rsin 0.
Show that Be)
X,y
a(r,0) {ro.lo) =10

(b) When can we form a smooth inverse function r(x,y), 6(x,)? Check directly and
with the inverse function theorem.
(c) Consider the following transformations for spherical coordinates:

x(r,@,0) = rsin ¢ cos 6 ;
Yr@,0) =rsingsin g ;

z(rp,0) = rcos ¢ .
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10,

Show that
a(x,y,z)

=rsine.
0. 0) r®sin @

(d) When can we solve for (r,0) in terms of (x,y,2)?

. Let f satisfy the conditions of the inverse-function theorem and let g be the local

inverse g = f~!: W o U. Let x, € U and let y, = f(x,). Consider the case n = 3
and show that
0.1 DiSfiylxo) Dy f3(x0)

Jxo)D1gdyo) = 6,2 Dafolx0) Dafilxo) |,
5;,3 Dafz(xo) D:sf:s(xo)
where 6, , = 1ifi = jand 0if{ # j. From this deduce the following expression for
Dygy:
O f2.3)/0(,%3)
Ao Soaf 0% % 55%3)

Also, obtain expressions for the other eight partial derivatives D g;.

Dy, =

. Determine whether the “curve’ described by the equation x? + y + sin(xy) = 0

can be written in the form y = f{(x) in a neighborhood of (0,0). Does the implicit
function theorem allow you to say whether the equation can be written in the form
x = h(») in a neighborhood of (0,0)?

. Let £x,v5,20) be a point of the locus defined by z* + xy —a=0,

224+ x2 -3y - p =0,

{a) Under what sufficient conditions may the part of the locus near {x,,y0,2,) be
represented in the form x = f(z), y = g(2)?

(b) Compute f*(z) and g'(z).

. Let f;, f», /3 be continuously differentiable functions from R* to R. Give sufficient

conditions so that the equations
Sibkyzt) =0,  flkyz) =0, filxpz) =0
can be solved for x, y, z4n terms of ¢.

{a) Let f: R? - R? be smooth and suppose that

o _ah s P
ox ay’ ay ox

(These equations are called the Cauchy-Riemann Equations and arise naturally
in complex variable theory.*) Show that Jf(x,y) = 0iff Df(x,y) = 0; hence f'is
locally invertible iff Df(x,y) ¢ 0. Prove that the inverse function also satisfies
the Cauchy-Riemann equatjons.

(b) Show that the conclusion of (a) is false (by giving an example) if f does not
satisfy the Cauchy-Riemann equations.

* See for example, J. Marsden, Basic Complex Analysis, W. H. Freeman Co, (1973),
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(a) Suppose that f: R" — R™ is of class C! and Df(x,) has rank m. This means that
Df(x,) as a linear map is onto. Then show that there is a whole neighborhood
of f(x,) lying in the image of f.

(b) Suppose /: R" — R" is C! and Df(x,) is one-to-one. Show f is one-to-one on a
neighborhood of x,.

Show that the implicit function theorem implies the inverse function theorem.
Prove Corollary 1.

(Based on Example 5.) Prove thatif fi, ..., f are functionally independent on R"
(that is, Df has rank k for f = (/.. . /i), k < m)and g, f,,. .., fi are functionally
dependent, then locally we can write g = F(f},....f).

Consider the map %~ !: GL(R",R") — GL(R",R"), 4 A~!, taking a matrix to
its inverse. Show that the derivative of this map is given by

D¥ Y A) B= —A"'oBoA"!

(consult Lemma 2 in the proof of Theorem 1). [Hint: Differentiate the relation
%~ Y4) o A = identity with respect to 4.]

Does the function 4 in Theorem 3 have to be unique? Discuss.

Give a direct proof of the Morse lemma for functions f: R — R. Does it apply to
1
(a) f{x) = x3, or () flx) = x sin(;) ?
Let f: R* = R? be F(x,yu,v) = (4 + vx + yup + v* — x). At what points can
we solve for F(x,y,u,u) = 0 for u, v in terms of x, y? Compute du/0x.
Let /:R— RbeC!and -
u=f(x,
=~y + X (x).
If f*(x,) % 0 show that this transformation is invertible near (x,,y) and has the
form
x=/"'w,
y=—v+u .
Show that the equations
2=y ¥+ 024+ 4=0
2y + 3y -2+ 3+ 8=0
determine functions u(x,y), v(x,y) near x = 2, y = —1 such that u(2,—1) = 2,
¥(2,—1) = 1. Compute du/dx.

“If flxp,2) = 0 then 8z/dy - 8y/dx - 8x/0z = —1.”” What do you think this really
means.* '

* Thermodynamics books are notorious for such mystifying statements.
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22.

23.

24.

26.

27,

28.

29.

30.

31

32,

33.

Let f(x,p) = (3p{x* — yH)/(x* + y? for (x,y) # (0,0) and f(0,0) = 0. Is f of class
C?? [Hint: See Exercise 32 at the end of Chapter 6.]

Let C = R" be a closed subset such that xe C = ax e C for o = 0.
(a) Discuss what C “looks like.”
(b) Let f: C —» R" be continuous and f{oux) = af(x) for xe C, & > 0. Show that
there is an M such that
IFCl < M |
forallxeC.

Let f(x,y,2) = x? — yz — sin(xz) and g(x,y,z) = (x cos y,xsin y cos z,xsin y sin z),
Compute the derivative of f o g.

. Let D(0,r) = {xe BR"| ||lx|| < r}. Let f: D(0,r) — R" be a map with

@ I/G) ~ SOl < 13 lix — ¥l (b) 1/ O)l < 2/3r.

Prove that there is a unique x € D(0,r) such that f(x) = x.

Show that there exist positive numbers p > 0, ¢ > 0 such that there are unique
functions u, v from ]—1 — p,—1 + p[into ]I — g,1 + g¢f for which

xe"™ + u(x)e"™ = 0 = xe*™ + y(x)e"™
forallxe]—1 — p,—1 + pland u(—1) = 1 = v(—1).

Obtain an estimate on the length of time the solution of dx/dt = 2x3%¢™, x(0) = 1
exists.

Let 4 = R" be compact and let B < ¥(4,R) be compact (see Section 5.5). Show
that thefe is an fy € B and an x, € A4 such that g(x) < folx,) for all ge B and
xeA.

Let a, > a,+; > 0 and a, — 0. Let f(x) = 3 ax". Show that f(x) is con-
tinuous on [ —1,0].

Is it possible to solve
xp? + xzu + ypp? =3

wlyz + 2xv — utp? =2
for u(x,y,z), v{x,y,2) near (x,p,2) = (1,1,1), (u,v) = (1,1)? Compute dv/dy.

Consider the equation dx/dt = 1 + tx, x(0) = 0. Examine the iteration scheme
given in the text to obtain a power series expression for the solution. Examine the
radius of convergence,

Compute the index of the function x* + y* — 7x — 8y + xy + 16 + (x — 2)°
atits critical point x = 2,y = 3. Discuss the nature of the function near this point.

Give another proof of Theorem 7 as follows. Assume x, = 0 and f(x,) = 0. Use
Taylors theorem to write f{x) = 1/2D%((0)" (x,x) + 1/2R(x,x) = 1/2{A,x,x) so
that for each x, 4, is a symmetric linear transformation of R*. By assumption, 4,
is an isomorphism. By Lemma 2, p. 231, 4, is an isomorphism if x is near to 0.
Let Q, = AqA4; ! so that Q, = I. Using a power series, we can define the square
root T, of Q, for x close to 0, thatis, T? = Q,. Show that @ 4, = 4,0F, where T
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means the transpose matrix, and using the power series for T, show that the same
equation holds for T, Let S, = T;! and conclude that A, = §.4,S7T. Let
h(x) = STx and show that DA(0) = I; now apply the inverse function theorem to
conclude that / is locally invertible. Let g = A~ !, Show that

Jx) = (1/2){Aghlx),h(x)>

and deduce that f o g(x) = (1/2)D?*/(0)(x,x). Finally, use a linear change of co-
ordinates to diagonalize the quadratic form (1/2)D?/,

Find the relative extrema of f | S in Exercises 34-37: use both Theorem 8 and
Corollary 3,

34, 1R = R, (x) X2 + 32, S = {(x2)| xeR}
35, iR = R, (x) s x2 + 32, § = {(x,9)]|** - y* = 1}.

36, 1 R2 = R, (x ) s X2 — 2, S = {(x,cos x)| xe R}

37. 1R = R, (xp2) o X2 + y2 4+ 22, S = {(xy2)| 2= -2 + 2% + y2}.

38.

39.

40.

A rectangular box with no top is to have a surface area of 16 square meters. Find
the dimensions that maximize the volume.

Design a cylindrical can to contain 1 liter of water, but uses the minimum amount
of metal.

Let f, be monotone increasing continuous functions on [0,1]. Suppose F(x) =
=, Julx) converges for each x e [0,1]. Prove that F is continuous.



Chabier 8

Integration

r-‘[‘he reader is undoubtedly familiar with the integration process
for functions of one variable and how to apply this to practical probiems
involving area, volume, arc length, and so on. Some familiarity with simple
situations involving muitiple integrals would be useful but is not essential.
The purpose of the next two chapters is to review, solidify, and extend this
knowledge. In this chapter we will formulate the basic definitions for a
general theory of integration. The connection with the usual method of
evaluating integrals by antiderivatives is made by the fundamental theorem
of calculus.

The powerful computational theorems for multiple integrals will be given
in the next chapter. These are Fubini’s theorem, which enables us to reduce
a multiple integral to iterated single integrals, and the change of variables
formula, which enables us to change to a more convenient system of co-
ordinates such as polar or spherical coordinates. To obtain a satisfactory
theory of multiple integrals, even for continuous functions, it is convenient
to introduce the notion of a set of “measure zero.” We shall see that one of
the main theorems states that a function is integrable iff its discontinuities
form a set of measure zero. As a result, a function with a finite or countable
number of discontinuities will be integrable.

Although the manipulations which are required for integration in dimen-
sions larger than one are considerably more complicated, the basic idea of
integration remains the same. We begin by recalling these ideas in one and
two dimensions.

250
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8.1 Review of Integration in R and R?

First, let us look briefly at the basic ideas involved in integration in one and
two dimensions. These cases provide the clues on how to generalize to
functions of several variables. In our discussion, let f be a non-negative
real-valued bounded function defined on some bounded subset 4 < R.

When we say that we want to integrate the function f over the set 4 we
mean that we would like to find the area under the graph of f (see Figure 8-1).
To do this, note first, as 4 is bounded, that there s a closed interval [a,6] = 4.
We consider f to be defined over the whole interval [a,b] by letting f be zero
on [a,b]\4. Next, partition [a,b], which means that we pick points x, =
A, Xy, ev . Xy1, X, = binsuchawaythata = x; < x;, <" < x,., <
x, = b. Denote such a partition by P, that is, P = {x,,. . .,x,}. Then,
form the two sums

U(f.P) = ;’z [sup{f(x) | x € X041 1110641 — X))

and
n—1
/

L(f.P) = iZ [inf{f(x) | x € [x;%;4 11} 10 1 — %) s

called the upper and lower sums, respectively. The first sum is the sum over
all intervals [x,,x, . , ] of the maximum (= sup) of f in that interval times the
length of the interval and has value equal to the area of the shaded region
shown in Figure 8-1. Since f is assumed to be bounded, the sup exists in

FIGURE 8-1
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[xi,x

11Xy, ]

i+l

FIGURE 8-2

each interval. The second sum is the sum over all intervals [x;,x;. ] of the
minimum or inf of f in that interval times the length of the interval and is
the hatched region shown in Figure 8-1. The boundedness of the functions
again guarantees that the inf exists.

Since f is bounded, say, —M < f < M, we see that —(b — a)M <
L(f,P) < U(f,P).< (b — a)M for any partition P of [a,b]. Let

S = inf{U(f,P)| P is any partition}
and
" s = sup{L(f,P)| P is any partition} .

If we again look at Figure 8-1, it seems reasonable to expect that as the
size of the intervals in P get smaller, U(f,P) decreases while L(f,P) increases,
and in the limit of* decreasing size of the intervals of P, the numbers U(f,P)
and L(f,P)should converge to a common value. This leads us to the following
definition.

Definition 1. Wesay that fis Riemann integrable (or just integrable
or the integral exists, for short) if s = S. The common values = S
is denoted by [, f or by [, f(x) dx.

It should be noted that integrability does not really involve smoothness
or continuity properties of f. In fact, some badly discontinuous functions
can still be integrable.

Now suppose f: 4 =« R* - R is a bounded non-negative function (see
Figure 8-2), where 4 is a bounded set.

The graph of the function f is a surface in R?, and the integration process
is used to find the volume under this surface. We enclose 4 in some rectangle
[a1,6,] % [as,0,] and extend f to the whole rectangle by defining it to be
zero outside of A. Then we divide [a,,b,] x [a,,0,] into smaller rectangles
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by partitioning [a,,b,] by, for example, a, = x, <X, < ** < X,_; <
b, = x, and partitioning [a,,b,] by, 82y, @, = Yo < ¥y <" < Yoy <
by = Y, thus forming mn rectangles [x,%;.,] % [¥;5;+,]. Then we form
volumes inf{f(z)| z€ [x;x141] % [pyjeid} - (Giuy — X)00 — ») (the
shaded block of Figure 8-2) and sup{f(z)|ze [x,%;s1] X [¥pyjerl}
(X;41 — X);+1 — ;) (the shaded block plus the cross-hatched block of
Figure 8-2). Next we sum these volumes over all i and j (that is, all the mn

“subrectangles” of the rectangle [a,,6,] x [a;,6,]), and get two values
L(f,P)and U(f,P), where P stands for the partitioning. Again, ifsup{L( f,P)| P
is a partition} = inf{U(f,P)| P is a partition}, we say f is (Riemann) inte-
grable over A and define the (Riemann) integral of f over the set 4, written
§afior f4 ] flx.y)dxdy, by

'L [ = sup{L(f,P)} = inf{U(£,P)} .

One thing about this procedure may seem puzzling. Why do we insist that
1nf{ U(f,P)} = sup{L(f, P)}" At first, we might think that this relation will
always hold. However, this is not always the case, as the next example shows.

ExaMmpLE 1. Consider inf{U(f,P)} and sup{L(f,P)} for the following
function

fi[01]«R-R

1, x irrational,
fx) =

0, x rational .

defined by

o f

It is not difficult to see that inf{U(f,P)} = 1 and sup{L(f,P)} = O (because
on any interval f is always one at some points and zero at others, so the inf
on any interval is zero and the sup is one). Therefore, the integral of this
function over the set [0,1] does not exist for our purposes. In more
advanced work the integral of such a pathological function can be defined,
but we shall be dealing mostly with “‘decent functions” for which the integral
exists.

ExampPLE 2. Suppose f:[a,b] — R is (Riemann) integrable and f = 0
Show {2 f(x) dx = 0.

Solution: By definition, the integral is the infimum of sums of the form

n-1
Z( ‘sup f(x)>'(xi+1 - X;)

i=0 \xe[xi.xi+1]
over all partitions. But each of these sums U(f,P) is non-negative since f = 0

Hence the integral is = 0 since the inf of a set of non-negative numbers is
also non-negative.
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Exercises for Section 8.1

1. Show directly from the definition that dx = (b — a).

2. If fand g are mtegrable on [a,b] and if f = gon[ab],show [° f > [ g.

3. Show that for f: [a,b] — R and P any partition of [a,b], U(f,P) = L(/,P).

4. Let f:[a,b] = R — Rbeintegrable and f < M. Prove that [ f(x) dx < (b ~ )M

8.2 Integrable Functions

In essence we have already introduced all the ideas needed for a theory of
integration of bounded functions over bounded sets for arbitrary dimensions.
Most of what remains is to formalize the statements for the case R".

Let f: A « R" — R be a bounded function with domain a bounded set 4.
Let [a,,b,] x -+ x [a,,b,] be a rectangle which encloses 4. Furthermore,
let f be defined over the whole rectangle by setting it equal to 0 at points not
contained in 4. Let P be a partition of [al, 1] % o x [a,b,] obtained by
dividing each [g;,6;] by points xk, ..., x, and forming the mm, - - m,
rectangles

[xjoxjoead % oo x [65,65 441, where 0 < j; < m;.

Define the volume of the rectangle B = [a,,b,] x ** x [a,,b,] by o(B) =
(b, — a))b; — ay) (b, — a,). Let L{f,P) denote the lower sum of f for
P, defined by

CL(f,P) = RZP [inf{ f(x) | x € R}Ju(R) ,

the sum being over all subrectangles R of the partition P, and let U(f,P)
denote the upper sum for P; U(f;P) = Y pep [sup{f(x) | x € R}]o(R). Now
we observe some properties of L(f,P) and U(f,P). From the definition we
see that for any partition P, L( f,P) < U(f,P). Now suppose P’ is any partition
which is a refinement of or is finer than P this means that each subrectangle
belonging to P’ is contained in a subrectangle belonging to P. Then we see that
L(f,P) < L(f,P). Indeed, we can observe that the minimum of f on a
rectangle is less than or equal to the minimum on any rectangle contained
in it. Similarly, U(f,P") < U(f,P). This has the following consequence. If ¥’
and P" are any two partitions of [a;,b,] x <<+ % [a,,b,], then L(f,P") <
U(f,P"). To clarify this, let P be a partition of the rectangle which refines
both P' and P”, which we can always arrange by using all the subdivision
points of P’ and P”; then L(f,P") < L(f,P) < U(f,P) < U(f,P").

As before, the set {L(f,P)| P is any partition} is bounded from above and
thus has a sup. The set {U(f,P) | P is any partition} is bounded from below
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and thus has an inf. Let s = sup{L(f,P)| P is a partition} and S =
inf{U(f,P)| P is a partition}; then s < S. With this notation we can make
another definition.

Definition 2. Let L f =S, called the upper integral of f and let
[af = s, called the lower integral of f.1f s = S, we say f is Riemann
integrable (from now on we will just use the word integrable) and de-
fine the integral of f over the set 4 by

Jf = sup{L(f,P)| Pisapartition} = inf{U(f,P)| Pisa partition} .
A .

Instead of {, f, the notation [, f(x)dx or { -« [, f(x;,. ..x,) dx, - - - dx,
is frequently employed. If f: [a,6] — R, the notation ? f or [¢ f(x) dx is also
used.

There is an important equivalent characterization of the Riemann integral
as presented in the next theorem.

Theorem 1 (Darboux’s Theorem). Let A = R" be bounded and lie
in some rectangle S. Let f: A — R be bounded and be extended to S
by defining f = O outside A. Then fis integrable with integral I iff for
anye > Othereisad > Osuch that if Pis any partition into rectangles
Sy,...,Sywithsides <6 andifx, €Sy, ..., xy € Sy, we have

N
D feS) —I| <.
i=1

We call 3%, f(x)v(S;) a Riemann sum.

This theorem is an important tool for proving many properties of the
integral. In Example 1 the theorem was rewritten for the special casen = 1
in order to gain some insight into the meaning of the theorem. There it is
shown why the theorem is intuitively plausible.

A condition closely related to Theorem 1 follows.

Riemann’s condition: fis integrable iff for any ¢ > O there is a
partition P, of S such that 0 < U(f,P,) — L(f,P,) < s.

The proof of Riemann’s condition will be given along with the proof of
Theorem 1 at the end of the chapter.

Notice that if f is continuous we can realize the upper and lower sums as
special Riemann sums since f assumes its maximum and minimum at some
point of the interval. If f is continuous on the whole rectangle S (= interval
if n = 1) then it follows easily from uniform continuity of f (see Section 4.6)
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¥

FIGURE 8-3

and Riemann’s condition that f is integrable. We shall, in fact, prove a more
general result in Theorem 3 below.

ExampLE 1. Interpret the Riemann sums geometrically, for f: [a,6] — R.

Solution: Let P:a = x4 < x, <‘** < X, =) be a partition and let
¢; € [x;,%;+1]. By definition the Riemann sum is

n—1
R =.Z fedxivy — %),

»

which is the total area of the rectangles represented in Figure 8-3, with the
area of rectangles below the x-axis counted with a negative sign. We observe
that L(f,P) < R < U(/f,P), so the result in Theorem 1 is plausible.

EXAMPLE 2. Show [§ x dx = 1/2 using the definition of the integral. Com-
pare with a geometrical computation.

Solution: Break up [0,1] into n equal parts

o) {5]

Using this as a partition, note that on [i/n i + 1)/n], f(x) = x hasinf = i/n
and sup, = (i + 1)/n. Thus, calling this partition P,

i+ 1] [t
wn =352 ]
1o 1
=S O+ =S0+2++n
n* & n
1
3

ne(n+1)

=
DI bt
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-

area=% (base) X (height) =

FIGURE 8-4
and
Lp =St Lost s -t
(/:P) & n? n—1)
11
_Fi(n — D(n)

1
where, werecall, 1 + 2 + -+ k = 3 k(k + 1). Thus

U(f:P)=%(1+1> and L(f,P)=%(1—%>.

n

These both converge to 1/2 as n — oo. Thus from Riemann’s condition (or
Darboux’s theorem) we see that f is integrable with integral = 1/2. This
is also geometrically obvious from Figure 8-4.

Exercises for Section 8.2 .

@ Give a formal proof that if R is any Riemann sum for a function f and partition P,
then L(f,P) < R < U(/,P). )

{2iLet f:[0,1] = R,
N fx) =0 ifx#12;

a2y =1.
Prove [ is integrable and [} f{x) dx = 0.

3.Let f:[02] 2 R, f(x) = 0,0 < x < 1,and f(x) = 1, 1 < x'< 2. Compute, using
the definition, [ f(x) dx.

4. Let A < R"and let f(x) = 1 for x € 4. What do you think [, fshould be?
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5. Evaluate [} (3x + 4) dx using the definition and compare the answer with a geo-
metrical computation of area.

6. Let f:[a,b] — R be continuous. Use Riemann’s condition and uniform continuity
of f to prove that f is integrable.

8.3 Volume and Sets of Measure Zero

On the real line one usually integrates over intervals. However, in R" we
wish to integrate over more complicated sets. We must be sure that the sets
we are dealing with are restricted in such a way that the partitioning in the
definition of integrability is reasonable. Here, “reasonable” means, roughly
speaking, that the boundary of the set is not too complicated. Our immediate
goal is to develop enough machinery so that we can make these ideas precise.
First, let us define the volume of a set.

Definition3. If A — R",define the characteristic function1 4 of A by
1, xe 4,
0, x¢A.

We say that A4 has volume if 14 is integrable, and the volume of A is
the number

LR = R, 14(x) = {

J 14(x) dx = v(d) .

(If A4 is a bounded set, it makes sense to talk about integrability of
14) ;

This definition is natural because the region under the graph of 1, is just
*“cylindrical” with height one and base A (Figure 8-5). We shall also use the
phrase “A has content” to mean the same as “A has volume.” Sometimes a
set which has volume is called Jordan measurable.

.Notice that in the case of n = 1 when 4 = R, we speak of v(4) as the
lengtk of A and when A = R?, we use the term area of A4 for v(A).

We say A has volume zero (or content zero)if v(A4) = 0. From the definition
of the integral this is equivalent to the statement that for every ¢ > 0 there
is a finite covering of 4 by rectangles, say, S, . . ., S,, such that the total

volume is <g; that is,
it

Z v(Si) <&

=1
where ©(S;) is computed for rectangles as before. (The details are worked
out in Example 1 at the end of the chapter.)
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It is useful to allow countable coverings as well as finite ones. These ideas
were systematically introduced for the first time by Henri Lebesgue around
1900.

Definition4. AsetA — R"(notnecessarily bounded)is said to have
measure zero if for every ¢ > 0 there is a covering of 4, say, S,,
S5, ..., by a countable (or finite) number of rectangles such that
the total volume ) = (S)) < & Recall that S, S,, . . . are said to
cover A when (J® | §; > A.

It is important to realize that these concepts depend on the space in
which we are working. To illustrate the point, consider an example.

ExampLE 1. Show- that, regarded as a subset of R?, the real line has
measure zero, but as a subset of R it does not.

Solution: To prove the first assertion, given ¢ >0, we want to find
rectangles S, S,, . . . which enclose the x-axis and have total area <e. Let

S — [ s .] X € €
FELTRI Ty @i 2y |
See Figure 8-6. Now

. 2 o

FIGURE 8-5
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FIGURE 8-6

Thus

N|m

since 1/2 4+ 1/4 4+ 1/8 + --- = 1.1t is clear that the real line as a subset of
itself cannot have measure zero because in covering it by intervals the total
length of the intervals will be +oo.

"'Ms

This demonstration is typical of the way one proves a set has measure
zero. Another example of a set of measure zero is the sphere

S={xeR| x| =1}.

From the definition of volume it is clear that'if 4 has volume zero, then 4
has measure zero. Indeed, if 4 has volume zero and ¢ > 0, we can even
find a finite covering by rectangles for 4 with total volume <e. Also, note
that if 4 has measure zero and B «— A then B has measure zero as well.

The main advantage of measure zero over volume zero is indicated in the
following theorem.

Theorem 2. Suppose Ay, A,, ... have measure zero in R". Then
Ay v Ay v - has measure zero in R”.

From this we conclude, for example, that any set comprised of a countable
number of points has measure zero.

ExampLE 2. Consider the set 4 of rationals in [0,1] = R. The set A does
not have volume, that is, 1, is not integrable. Indeed, the function that has
the value 1 on rationals, O on the irrationals, is not integrable as we have
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seen in Example 1, Section 8.1. Nevertheless, the set 4 does have measure
zero because a point has volume and measure zero, and A consists of
countably many points, so Theorem 2 applies.

Exercises for Section 8.3
1L Argue that {(x,y) € R* | x2 + y* = 1} has volume zero.

Does the x-axis in R? have volume zero? Can you even cover it by finitely many
rectangles?

3. If 4 < [a,b] has measure zero in R prove that [a,b]\4 does not have measure zero
in R. (Exercise 10, at the end of the chapter shows that [a,b] does not have measure
zero.)

4. Use Exercise 3 to sliow that the irrationals in [0,1] do not have measure zero.

5, Must the boundary of a set have measure zero?

8.4 Lebesgue’'s Theorem

We now consider a theorem which is probably one of the most important
results in integration theory. We feel intuitively that most “decent” functions,
like continuous ones, ought to be integrable since the area under their
graphs should be definable. To settle the question of exactly how decent is
“decent” we have the theorem of H. Lebesgue. With this theorem Lebesgue
opened up new advances in integration theory by stressing the measure zero
concept. It led to the success of the fundamental subject of measure theory.
One learns this subject in more advanced courses.*

Theorem 3. Let A « R*be bounded andletf: A — R be a bounded
function. Extend f to all of R® by letting it be zero at points not
contained in A. Then fis (Riemann) integrable iff the points at which
the extended f is discontinuous form a set of measure zero.

We can draw two important conclusions from this result as stated in the
following two corollaries.

" Corollary 1. A bounded set A = R" has volume ifff the boundary
of A has measure zero.

Corollary 2. Let A = R" be bounded and have volume. A bounded
Sunction f: A — R with a finite or countable number of points of
discontinuity is integrable.

* For further discussion, see Section 9.7 and Royden, Real Analysis, Macmillan.
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This result includes most functions one meets in practice. For example,
a continuous function on an interval [a,b] is integrable because [a,b] has
volume (the boundary consists of two points). Piecewise continuous functions
are integrable for the same reason. (A function is called piecewise continuous
if it has a finite number of points of discontinuity.)

Notice that integrability of f in Theorem 3 depends on the extension of f.
For instance, if 4 is the set of all rationals in [0,1] and f is identically one,
Srestricted to A is continuous on 4 but the extended f is nowhere continuous
and in fact is not integrable. In Corollary 2 it is not necessary to extend f.
This is accounted for by the fact that A is assumed to have volume, having
regard for Corollary 1.

Another useful result is as follows.

Theorem 4.

(i) Let A = R" be bounded and have measure zero and let f: A — R
be any (bounded) integrable function. Then {, f(x) dx = 0.

(i) Iff: A - Risintegrable andf(x) > Ofor all x and{, f(x) dx =
0, then the set {x € A | f(x) # O} has measure zero.

This theorem is not unreasonable. Indeed, a set of measure zero is “small”
with, essentially, zero volume so the integral of any function over it ought
to be zero. The second part is likewise reasonable.

ExampLE 1. Let
79 X, -1<x<0
(x) = .
. 3x + 8, 0<x<1

Show f is integrable on [—1,1]. )
Solution: The set [ —1,1] has volume and f has only one discontinuity at
x = 0. Thus by Corollary 2, f is integrable, since f is bounded.

ExaMmPLE 2. Let f(x) = sin(l/x), x > 0, f(0) = 0. Show f is integrable on
[0,1]. ‘

Solution: Here f has one point of discontinuity at x = 0. Also, | f(x)| < 1
so fis bounded. Thus by Corollary 2, f is integrable.

ExampLE 3. Let f(x,) = x? + sin(1/y), y # 0 and f(x,0) = x*. Show fis
integrable on A4 = {(x,y)| x* + y* < 1}.

Solution: Here fis bounded on A = interior of unit disc in R?, and has
discontinuities on the line y = 0 which is a set of zero measure in R?. Also,
A has volume (its boundary has zero volume). Hence, by Corollary 2, f is
integrable.
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Exercises for Section 8.4

1} Let f(x) = x* on [—1,17]. Prove f is integrable.

2. Let f(x,y) = 1ifx 5 0, f(0,y) = 0. Prove [ isintegrable on 4 = [0,1] x [0,1] = R2.
ié,_"‘ Compute [, fwhere f,4 are as in Exercise 2.

4 Let 4 = R" be open and have volume, and let f: 4 — R be continuous, f(x) = 0
" and f{xp) > 0 for some xq€ 4. Show {, > O.

5. Letr,,r,,...be an enumeration of the rationals in [0,1] and let

U= UD<rka_lT¢') s
k=1 2

ant open set. Discuss whether or not U has volume.

8.5 Properties of the Integral

We now present some of the elementary properties of the integral. For the
case of functions on an interval, the reader is probably familiar with some
of these properties.

Theorem 5. Let A, B< R",ceRand f,g: A — R be integrable.
Then
(i) f + gisintegrableand [, f + g = {4 f + (49
(ii) cf isintegrable and §,cf = c {4 f.
(iii) | f| is integrable and |{, f| < {41f].
() Iff < g then [, f < [ag.
(v) If A has volume, and | f| < M, then|[, f| < Mv(A).
(vi) (Mean-Value Theorem for Integrals.) Iff+ A — R is continuous,
A has volume and is compact and connected, then there is an
Xo € A such that [ 4 f(x) dx = f(xo)v(A).
The quantity {, f/o(A) is called the average of f over A.
(vii) Letf: A w B — R.If A and B are such that A ~ B has measure
zero, and f| A n B, f| A, and f| B are integrable, then f"is
integrable and { ;.5 f = 4 + [ .

This last conclusion is quite useful. For example, if a < b < ¢ on R,
(vii) implies that

ff(x) dx = rf(X) dx + ch(x) .
a a b
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FIGURE 8-7

In the plane, if A and B are as depicted in Figure 8-7, the integral over
their union is the sum of the individual integrals because the intersection
has zero measure (it is a point).

ExampPLE 1. If A, B have volume show directly (without Theorem 5(vii))
that A U B has volume.

Solution: We must show bd(4 U B) has measure zero (see Corollary 1).
But
bd(4 v B) = bd(4) v bd(B)
(see Exercise 15, Chapter 2) so that as the right side has measure zero, so
does the left.

ExampLE 2» Give a geometrical interpretation of property (iii) above for
f:[ab] - R

Solution: % f(x) dx represents the area under the graph of f with the
portion below the x-axis counted negatively. The magnitude of this is clearly
less than (or equal to) the area under the graph of| f|; see Figure 8-8.

FIGURE 8-8
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Exercises for Section 8.5
1. If4,,4,,...have volumeand 4 = 4, U 4, U - - -is bounded, does 4 have volume?
2. Give a geometrical motivation for properties (iv) and (v) in Theorem 5.

3. Set {2 f(x)dx = —[¢ f(x)dxifa > b. Establish
3 b 3
J S(x)dx =J Sx)dx +J S(x)dx
a a b

for all a, b, ¢ (not assuming a < b < ¢ as we did in the text).
4, Let 4, B have volume and 4 N B have zero volume. Show that

U(A U B) = v(4) + u(B)"

8.6 Fundamental Theorem of Calculus

Now that we have characterized a large class of integrable functions, we
may still ask what is a practical way to compute integrals. The answer in
one dimension is, of course, that we use antiderivatives and the usual tech-
niques of integration. The techniques for higher dimensions are given in the
next chapter.

For f: [a,b] = R, an antiderivative of f is a continuous function
F:[ab] — R such that F is differentiable on Ja,b[ and F'(x) = f(x) for
a < x < b. The following theorem provides an effective method for com-
puting integrals of a wide class of functions.

Theorem 6 (Fundamental Theorem of Calculus). Let f: [a,b] = R
be continuous. Then f has an antiderivative F and

rf(x) dx = F(b) — F(a) .

If G is any other antiderivative of f, we also have [} f(x)dx =
G(b) — G(a).
ExampLE 1. [¥%sin xdx = 1, because d(—cos x)/dx = sin x and
~co8(r/2) — (—cos(0)) = 1. The reader should be familiar with these ideas.

Recall the basic intuition concerning Theorem 6. Namely, one sets
F(x) = [* f(y) dy. Then suppose f > 0 for simplicity. F represents the area
under the graph of f from a to x. The fact that F' = f comes about because
f(x) is the rate at which this area is increasing. Indeed, this ought to be
clear because F(x + Ax) — F(x) ~ f(x) Ax (Figure 8-9).
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area = f(x) Ax

FIGURE 8-9

We assume the reader knows, or is willing to review, the basic integration
techniques which are obtained from this theorem, such as the method of
substitution (chain rule) and integration by parts. These shall be taken for
granted in some discussions to follow.

ExaMPLE2. Let F(x) = [; f(t) dt.Is F differentiable if f is merely (Riemann)
integrable?

Solution! No, continuity in Theorem 6 is essential. For example, let

69 0, 0<x<1,
X} =
1, le<x<g2.
Then .
) 0<xx<1,
F(x) =
x — 1, l<x<2.

Thus, F is continuous but not differentiable at x = 1 (see Figure 8-10).

y y

/
X

FIGURE 8-10




IMPROPER INTEGRALS 267

Exercises for Section 8.6
1. Evaluate {3 (x + 5) dx.
2. Evaluate [§ (x + 2)° dx.
3. Evaluate [§ x¢*" dx.
4

. Let f:[a,b] -+ R be Riemann integrable and |f(x)] < M. Let F(x) = % f(t) dt.
Prove that |F(y) — F(x)] < M |y — x|. Deduce that F is continuous. Does this
check with Example 27

5. Let f:[0,1] = R, f(x) = 1 if x = 1/n, n an integer, and f(x) = 0 otherwise.
(a) Prove f is integrable. (b) Show [§ f(») dx = 0.

8.7 Improper Integrals

We often find it is necessary to integrate unbounded functions or to integrate
over unbounded regions. Integrals of unbounded functions or integrals over
unbounded regions are called improper integrals. These lead to convergence
problems quite analogous to those for an infinite series.

One usually defines improper integrals by

wa(x) dx = 1m1tJ f(x) dx,

k-

or if the function 4 is unbounded near 0, by

b b
J I{x) dx = limitJ h(x) dx ,
0 g—0 Je
and so forth. Our definitions conform to these notions as will be explained
below. However, a word of caution is advisable at this point. Namely, we
do not define
J Sf(x) dx = limit f (x) dx .
k= o

If we did, consider what would happen for f(x) = x; [® ., x dx would be zero,
while {& x dx and {2, x dx would not exist; they would be +oo0 and — o0,
respectively. Thus if one wishes to retain additivity of integrals, one must
proceed more carefully. One possible procedure to avoid this “cancelling of
infinities” is to break up f into positive and negative parts, as indeed we
shall do below.

Generally, improper integrals are of two types, depending on whether it
is the function or the domain which is unbounded First, we shall consider
the case of unbounded regions.
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y

n=1

a‘ A—._:[a, 00[
FIGURE 8-11

Note. The case of R! is probably the most important, so if this is the
primary concern of the reader, proceed directly to the computational
methods given in Theorem 8 and use that theorem as the definition of
improper integrals.

To start the discussion, suppose f > 0is bounded and 4 < R"isarbitrary,
possibly unbounded. Extend f to the whole space as usual by setting f = 0
outside 4. See Figure 8-11.

Definition 5. Define |, f to be limit f;_, ;- / if this limit exists,

where [—a,a]" = [—a,a] x -+ x [—a,a] (a cube with side of
length a). Here f should be bounded and integrable on each [ —a,a]".
If {, f exists (and is finite), we say f is integrable.

Theorem 7. For f > 0 and bounded and integrable on any cube
[—a,al", f is integrable iff the following condition holds: for any
sequence B, of bounded sets with volume such that (i) B, < By, and
(i) for any cube C we have C < B, for sufficiently large k, then
limit {5, fexists. In this case limit [y, f = [4 f.

This theorem is reasonszle in that we get {, f no matter how we expand
out to infinity. See Figure 8-12.

Observe that if f > 0 is integrable and 0 < g < f, then g is integrable as
well for [, 4 g is increasing with a and is bounded by the integral of f, so
it converges as a — 0.

Next, let us treat the case of an arbitrary function f > 0 that is unbounded
and defined on an unbounded region. The significance of these conditions
in the case of R will be given shortly. Unfortunately, one cannot just drop
the requirement that f is bounded and use the definition in Theorem 1
because that actually would imply that f is bounded (this is not obvious).
Another way to proceed is as follows.
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: FIGURE 8-12

Definition 6. For each positive real number M, let
), <M,

X)) =
Tu) 0, ) > M,
(see Figure 8-13).
Thus f,, is bounded by M and f,, > 0. Hence we can define
{4 fu as in Definition 5. Note that {4 fu increases as M increases,

and 0 < fy < f. We then define
f [ = limit f Tu
A M-w JA4
if this limit is finite, and in that case we say f is integrable.

As before, if f = 0 is integrable and 0 < g < f, then g is also integrable
(this is called the comparison test).

FIGURE 8-13
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FIGURE 8-14

Definition 7. Fora general function f: 4 — R (thatis, f might not
be positive), we let

o e Twso,
/ (x)'{o, @ <0,
and
[, sw<o,
/ (x)"{o, 69> 0,

(see Figure 8-14).

Thenifboth {, f* and{, f~exist,welet{, f= [, f* =, f~
and say f is integrable.

Observe that |f| = f* + f~. Then if f is integrable, so is |f] and
§alfl=Taf* +0af™ 214 1.

Conversely, if [ | f] exists, then both | f* and | /~ must be finite, since
they are non-negativeand 0 < f+ < |f],0 < f~ < |f]. Thus f is integrable
iff | f] is integrable. '

While integration in higher dimensions is important and does occur in
practice, the case of the real line deserves special attention. In this case
there is a method for computing integrals which is particularly simple to use.

Theorem 8. )
(i) Suppose f: [a,0[ — R is continuous and f > 0. Let F be an
antiderivative of f. Then fis integrable iff limit F(x) exists. In this
. X=t o0

case
j f =j fx)dx = {limit F(x)} — F(a).
[n’m[ X+

(if) Supposef: Ja,b] — Riscontinuous andf > 0. Thenfisintegrable
iff
b
limitJ~ S(x) dx

=0+ Jate

exists. This limit equals % f(x) dx.
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The generalization of this statement to R” is given in Exercise 26 below.
Instead of [, fexists,” one often says “, f converges.” As with infinite
series, it is necessary to be able to test an improper integral for convergence
or divergence. Some of the tests closely resemble those used for series.

One of the most useful tests is the comparison test. If [ f(x) dx converges
and f> 0and 0 < g < f, then [® g(x) dx converges. The reason, as stated
earlier, is simply that [ g(x) dx increases as b — oo and is bounded above
by [ f(x) dx, so it converges.

In our treatment of improper integrals, we have used what amounts to
the most natural approach on R®. Our method is particularly desirable
because most of Theorem 8 remains valid (this is outlined in Exercise 26).
However, in the special case of R! = R, it is also useful to consider a weaker
type-of convergence, called conditional convergence. Here we define

f f (x) dx (conditional) = llmltf S(x) dx
a b=+ Ja

if the limit exists. This is not the same as our earlier deﬁnltlon (called absolute
converyence) because We demanded that the limit hold separately for f * and
S~ . An example will serve to point up the difference.

ExampLE 1. Let f(x) = (sinx)/x. Show [ f is conditionally but not
absolutely convergent.

Solution: If { were integrable on [1,00[, then | f| would be also. But then
|Gsin x)| . " |(sin x)I 2 [ |(sin x)| 2 &1
w7z = Wt > -
J‘l x x> x o Z k-1 X dX/nksz

since on the interval [(k — Dm,kn], 1/x > 1/kn and J_ . |(sin x)| dx = 2.
But )"__ 1/k — o0 asn — o0, so [T|sin xi/x dx = +oco.
However 11m1t {4 (sin x)/x dx exists. To see this, note that an integration

by parts gives

b o b b

sin d(cos cos b coS X

f_fdx=—f cosx) _ _ +cosl—f = dx ,
1 1 1

x x b

and |7 cos x/x? dx exists because

|cosx| bq 1
<| mdxe=1-2=
L o y x? =3

which converges as b — co0. So [P (sin x/x) dx is conditionally convergent.

One can give refined tests like the Dirichlet test for series to obtain
conditional convergence when absolute convergence fails. See Exerc1se 31lat
the end of this chapter.
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ExamPLE 2. We give some standard improper integrals which are useful
in conjunction with the comparison test. They may all be proved by direct
integration, successive integration by parts, or by other tricks.

() j‘mx” dx

{coﬁverges ifp < —1,
1

divergesifp = —1 ;

a convergesifp > —1,
(b) j‘ xP dx
0 divergesifp < —1;
{* o
() e *xP dx converges for all p ;
J1
fa
(d) | e'xPdx  diverges for all p ;
JO
(fa
(e) | log x dx converges ;
JO
"o 1
) ( ) dx diverges .
J1 \Jog x

For instance,
xp+ 1 e

j‘x"dx= p+1}’

p:,é _17
1
log x [, p=—1.

Now logc — w0 as ¢ — 0, and ¢?*! = wwasc = o0 if p + 1 > 0, that is,

p > —1. This gives (a). Part (b) is similar and (e) and (f) can be proved in
the same way. We outline (c) in Exercise 2 below and (d) is similar to that.

ExampLE 3. Show ;

j‘ -——I———dx converges .
1 /% + 1

Solution: This is improper at x — oo. Now for x = 0,

x—-3/2

1 1
< =
Jx3+1 0 /xP
and [P x~%?2 dx converges by (a) of Example 2. Hence, by comparison,
this integral converges as well.
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Exercises for Section 8.7

1. Let f: [a,00[ — Rbe Riemann integrable on bounded intervals. Show [ fexists iff for
every ¢ > 0 thereis a T'such that ¢, t; > Timplies [;? f(x) dx < e (this is called the
Cauchy criterion).

2. Establish formula (c) of Example 2 as follows. Prove e”*x?*? — 0 as x — oo and

o
. . 1
then compare the integral with f —5 dx.
1 X
3. Show [} e~*x? dx converges if —1 < p.

® sin x
4, Show | —s——dx is convergent.
o X + 1

o &

5. For whatocisf x
1+

1

dx convergent?

x*

8.8 Some Convergence Theorems

In Chapter 5 we saw that uniform convergence is sufficient to allow us to
interchange limit and integration operations (see also Example 2 at the end
of this chapter). In this section we shall refine that result.

A course at this level is not the proper place for an exhaustive treatment
of convergence theorems, since they fit in more naturally in advanced courses
in measure and integration. Therefore we confine ourselves to an illustrative
theorem—the monotone convergence theorem. The result will be needed in
Chapter 10 for Fourier series.*

Theorem 9 (Lebesgue’s Monotone Convergence Theorem). Let
g, [0,1] — R be a sequence of non-negative functions such that each
improper integral _f}) g.{(x) dx exists and is finite. Suppose that
0 < g, < g,and that g, (x) - 0 for each x € [0,1]. Then

. 1
limitf g (x)dx = 0. '
n=+o 0

At this point the reader should return to the examples in Section 5.3 to
see that they are in accord with this theorem. Certainly if the g,’s are not
decreasing the result is not true, as examples in that section show.

* For 2 more complete discussion of convergence theorems in the Riemann theory, see W. A.J.
Luxemburg, Arzeld’s dominated convergence theorem for the Riemann integral, Am. Math.
Monthly, 78 (1971) 970-979.
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Covrollary 3. Let f,, f:[0,1] = R be non-negative functions and
suppose 0 < f, < fo,, < f and suppose [§ f(x) dx exists as an
improper integral, Furthermore, suppose f,(x) - f(x)forallx € [0,1].
Then
1 1
limitj‘ fi(x) dx =J Sx)dx .
n—+ o0 0 0
This result follows by applying Theorem 9 to the functions g,(x) =
J(x) — f{x) which decrease monotonically to zero. The details shall be left
to the reader.
We used the interval [0,1] for definiteness but any other interval could

be used as well and the results could also generalize to R".
‘The result we will need in Chapter 10 follows as a corollary.

Corollary 4. If f:[a,b] = R, f = 0 and the improper integral
fb f* < oo exists, then |2 (f — fy)* > 0as M - .

Here we use Theorem 9 with g, = f — f, (fi is defined in the previous
section).

ExampLE 1. Prove:

»

1
limitj‘ e xldx =0 ifp>—1.

n—+o 0

Solution: Theorem 9 applies. The functions g,(x) = e~ "™x? < x” so are
integrable and moreover, the g, decrease pointwise to zero.

ExaMPLE 2. Let g, be non-negative and integrable on [0,1]. Let g(x) =
2>, 9,(x) and assume g(x) is integrable. Prove

1 o] 1
fg(x)dx=zjg,,(x)dx.
0 n=1 J0

Solution: Let
1

n 1 n
) = gx)dx, so f fifx) dx =k21 f gi(x) dx .
k=1 =

0

Now the f,(x) increase to g so by Corollary 3 their integrals converge to the
integral of g.
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Exercises for Section 8.8

1. Show that Theorem 8 can be proved using the methods of Chapter 5 if the g, are
continuous.

1 ,x of
2, Evaluate limitf de
[¢]

[l n

1 e—nx)
3. Evaluate limit | ———=—dx .

Lifad 1] \/~

8.9 The Dirac é-Function;
Introduction to Distributions

Around 1930, in hfs famous book The Principles of Quantum Mechanics,
Dirac emphasized the usefulness of the -function, Wthh he defined by the

following properties:
0, ifxs0,
o(x) = {

o0, ifx=0,
and

j‘m x)dx =1.

One can imagine approximations to § where f, — & in some sense (Figure
8-15), but § itself is hard to visualize directly. Physicists quickly realized (as
engineers had done independently) the usefulness of such ideas and proceeded
to use the d-function in their computations. For example, to describe the
charge density ¢ of a point charge with charge e it is convenient to write
¢ = ed.Oneimagines ¢d as a limit of well defined charge densities ¢, smeared
out over small areas which concentrate down to a single point as.n — co.

At the same time as the physicists and engineers were computing, mathe-
maticians sat back in quiet amusement, occasionally pointing out that this

area underf;z =1

FIGURE 8-15
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d-function business was really all nonsense because no such function can
exist. The definition does not really make sense, as anyone can plainly see.
To add to the mathematician’s enjoyment, Dirac proceeds to differentiate
this function 6. ;

But the physicists turn out to have had a good idea after all. Today,
distributions, of which ¢ is an example, are indispensible in the study of
partial differential equations. But it took mathematicians almost 20 years to
establish the theory of distributions satisfactorily. This was done by L.
Schwartz and S. L. Sobolev around 1948, although hints of the theory had
occurred in the works of earlier mathematicians as well. We will give only
the briefest glimpse of the theory.

In actual computations, § almost always appears under the integral sign
in the form

j5(X)f (x) dx = f(0) . )

We can see the idea behind Eq. 1 from Dirac’s definition because & being
zero away from x = 0 means that only f(0) counts, so one ought to have

j(s(X)f (x)dx =1 (0)j5(X) dx = f(0).

Eq. 1 is the clue as to how to proceed. Namely, consider the space €,(R,R)
of bounded continuous functions on R (Section 5.4). Then, regard

5: € R,R) - R, f1- (0) .

Thus we do not regard & as a function on R at all, but a function on %,(R,R)
which maps f to .f(0). This operation is well defined and ¢ is easily seen to
be continuous (see Exercise 40, Chapter 5). .

Thus it is possible to circumvent the difficulty with Dirac’s definition by
taking a whole new point of view; namely think of § as being an assignment
of a number to each function f. This assignment stands for the symbolic
expression | 6(x)/(x) dx. Now any continuous function g also defines such

an operation; it sends f to
-]

g(x)f(x) dx .

Thus distributions (of which linear maps from €, to R are examples) include
more than just ordinary functions.
How does one differentiate §? For this, note that if g is differentiable, then

® dg B ) df .
f_ TS0 dx = —f o)

@

provided f is zero for large |x|, as can be seen by an integration by parts.
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Thus dg/dx sends f to the same number that g sends —df/dx to. Thus it is
logical to define 6" by

O AV )
5(f)—5< dx)— ).

This leads us to restrict €, to the functions f which are C! and vanish for
large |x|. Thus we might as well use C*® functions vanishing for large enough
|x]. We are led to the next definition.

Definition 8. Let 2 denote the C*® functions which are identically
zero outside some interval (2 is called the Schwartz space). A
distribution T is a linear map* T: @ — R. The derivative T" is
defined by T': @ — R, f+— T(—df /dx).

If g is a continuous function it is customary to use the same symbol g for
the distribution that maps f — |2, g(x)f(x) dx.

This is the elegant reformulation due to the founders of distribution
theory. Much work remained to prove significant theorems about distribu-
tions, and this led to an important vitalization of the theory of partial
dijferential equations. The physicists were pleased and everyone was happy.

Exercises for Section 8.9
1. Show &"(f) = f"(0).
2. Let T, and T be distributions. Say T,, — T if T,(f) — T(f) for all f € 2. Show that

n
__e-nxz -3,
n

3. If T, — T'(see Exercise 2), show that T}, — T', Discuss and compare with Section 5.3.

4. Find a sequence of continuous functions g, such that g, — &',

Theorem Proofs for Chapter 8

Theorem 1. (Darboux’s Theorem.) Let A < R" be bounded and lie in some rectangle S.
Let f: A — R be bounded and be extended to S by defining [ = 0 outside A. Then f is
integrable with integral I iff for any € > 0 there is a & > 0 such that if P is any partition
into rectangles Sy, . .., Sy with sides <§and if x, € Sy, ..., xy € Sy, we have

N
‘Z Fee(S) — 1] <e.

* Strictly speaking, one must require T to be continuous in the sense that if f, — f uniformly
on bounded sets and all derivatives of f, converge uniformly to those of / on bounded sets,
then T{f;) — T(f). The actual topology on 2 is a bit complicated however.
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Riemanw’s condition: f is integrable iff’ for any € > 0 there is a partition P, of S
such that 0 < U(f,P,) — L(f,P,) < e(and hence also for every partition P finer than P,).

Proof: We shall show that the conditions */ integrable,” *f satisfies Riemann’s
condition,” and ' satisfies Darboux’s condition™ are equivalent. This will be done in
four steps.

Step 1. If fis integrable, then [ satisfies Riemann’s condition.
Proof: Given e > 0, there is a partition P} such that

U(LP) < I +%,

where I = [, f. We can do this since I = inf{U(f,P)| P is a partition}. If P is
finer than P, then we know
g
U(f,P) S U(f,P) < I+ 3
Similarly, choose P; such that for P finer than P; we have
&
L(f,Py>1— 3

Let P, = P, u P..If P is finer than P,, we have

I-%<L(f,P)<U(f,P)<I+%,

SO 4
0 < U(f,P)~ L(SP) <&,

which is Riemann’s condition.
Step 2. If fsatisfies Riemann’s condition, then f is integrable.

Proof: For any ¢ > 0 there is a P, such that

0< U(P)~ L(fP)<ce.
This implies that S = s. Indeed, for each P we have
L(fP) < s< S ULP)

soif Utf,P,) — L(f,P,) < g,wealsohaveS — s < gforeverye > OandhenceS = s.
Step 3. If fsatisfies Darboux’s condition, then f is integrable.

Proof: We shall show that the I given in Darboux’s condition will be the same as

S = inf{U(f,P) | P is a partition} and also the same as 5. To accomplish this, given
& > 0, we shall produce a partition P such that

WP -1l <&,

which will show that S < I. Similarly, we will have ] < s,andthen I < s < S <[
will imply s = § = I.
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For this, choose § > 0 such that if P is a partition with sides <, then

|3 feelS) — 11 < 2,

where Sy, . . ., Sy make up the partition P. Now we may choose x; such that
&
1fGe) — Slsl'P(f)l < EIGE
Then .
IU(LP) = 1| < IU(SP) = 2o 1euS)l + 1) fxu(S) — 1.
Now
&ev(Sy) €
[UUAP) = 3 Sxo(S)l < z( G " 2

so that [U(f,P) — I| < eas required. The case for lower sums is similar.

Step 4. Iffis integrable then f satisfies Darboux’s condition.

Proof: Suppose that f is integrable with integral I. We will show, in two steps, that
foranye > 0, there isa § > 0 such that if P is any partition into rectangles Sy, . . . , Sy,
with sides <d and if x; € Sy, ..., xy € Sy, we have

Ww(sS) - I <e.

Step4.A. Let P be a partition of the rectangle B = R". Given ¢ > 0, we shall show
that there exists a § > 0 such that for any partition P' into subrectangles with sides less
than &, the sum of the volumes of the subrectangles of P’ which are not entirely contained
in some rectangle of P is less than e.

In order to see this clearly, let us examine the cases n = 1 and n > 1 separately.
First, suppose that we are working on the interval [a,b]; suppose that the partition P
consists of N points. We assert that the é that is needed is simply given by ¢/N. Clearly
then, the length of the intervals in P' which are not contained in an interval of P is
N X § = (maximum number of intervals not contained entirely in an interval of
P) x (maximum length of each such interval of P') = ¢.

Next let us turn to the general case.

Let the partition P consist of rectangles ¥, ..., V). We denote the total “area” of
the faces lying between any two rectangles by 7. Let § = ¢/T and let P’ be any partition
of B into subrectangles of sides less than §. Then for any rectangle S e P’ such that S is
not contained in one of the ¥, S intersects two adjacent rectangles. Now one can see
that v(S) < 64, where 4 is the total area of faces between two subrectangles contained
in S (see Figure 8-16). Thus ) g.p v(S) < 6T = &.

Step 4.B. Since f is bounded, there exists an M > 0 such that |f(x)| < M for all
x€S. There exist partitions P, and P, of S such that I — L(f,P,) < &2 and
U(f,P;) — I < g/2. Choose a partition P which refines both P, and P,. Then
U(f,P) — I < ¢/2 and I — L(f,P) < ¢/2. By Step 1 there exists a § > 0 such that for
any partition of P into rectangles of sides < & the sum of the volumes of the subrectangles
not contained in some subrectangle of P is less than ¢/2M. Let S, . . ., Sy be a partition
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rectangles in P

A = area of this face

FIGURE 8-16

into subrectangles of side less than d; let Sy, . . . , Sk be the subrectangles contained in
some subrectangle of P, and let Sk, ..., Sy be the remaining subrectangles.
Letx; €Sy, ..., xy €Sy. Then

N

N K
LS GhlS) = 2 J0AS) + 3, SehlS) < UUP) + M

=U(f,P)+%<I+s.

"

Similarly,

uMz

f (e(S) 2 L{S,P) — 5 > I~¢.
Therefore

N -
Z FOu(S) -I!<a i

In some later proofs it will be convenient to have the following technical fact at hand.

In the definition of measure zero, one can use either closed or open rectangles.

Proof: Let A = R". First, suppose that given & > 0 there are open rectangles
Vi, V5, . . .covering 4 of total volume <e&. Let B; = cl(V)). Then B,, B,, . . . are closed
rectangles covering 4 with the same total volume <e.

Conversely, given ¢ > 0, suppose we have a covering by closed rectangles B;, B,, . . .
with total volume < &/2". Then let ¥, be the open rectangle containing B; with twice the
side. Then v(V)) = 2"v(B), so

“Z o) = 23 0(B) < ¢

i=1

This same argument also works for content zero. See Exercise 11, p. 293. §
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Theorem 2. Suppose Ay, A,, . ..have measure zero in R". Then Ay U A; U -+ has
measure zero in R".

Proof: Since all of the 4; have measure zero, there is a covering of the 4; with
rectangles By, B, .. . such that Z;‘; , UB;) < &/2'. Since the collection By;, B, . ..

covers the 4;, the countable collection of all B;; covers 4; U A, U -+ . But
Ly o o o &
ZU(Bu)=ZZ(Bu ZZ_.—E‘
Li=1 =1 f= =1

Since ¢ is arbitrary, 4, U A; U * -+ has measure zero. §

Note: It has not yet been justified that we can sum up the v(B;) by first j, then i,
If this is true, then the terms can be rearranged in an absolutely convergent double
series. That it is indeed true follows from Exercise 51, Chapter 5.

Theorem 3. Let A = R" be bounded and let f: A — R be a bounded function. Extend |
to all of R" by letting it be zero at points not contained in A. Then f is (Riemann) integrable
iff the points at which the extended f is discontinuous form a set of measure zero.

Progof: Consider some rectangle B which contains 4. Then we must show that the
function f is integrable on A iff the set of discontinuities of the function g, which equals
S on A and zero elsewhere, has measure zero.

It is useful for the proof to have a measure of how “bad’ a discontinuity is. In order to
do this, we define the oscillation of a function h at x,, written O(h,x,), to be
inf{sup{Jh(x,) — h(x;)| | x,,x; € U} | U is a neighborhood of x,}. Note that the inf is
taken over all neighborhoods U of x,. Thus O(h,x,) > 0, and we claim that O(h,x) = 0
iff h is continuous at x,. To see this, note that h is continuous at x, iff for any ¢ > 0,
there is a neighborhood U of x, such that sup{|/i(xo) — #(x,)| | x; € U} < ¢, and this is
equivalent to O(f1,x,) = 0. We are now ready 1o begin the proof—for convenience it is
broken into two steps. Remember g: B — R, g(x) = f(x)if x € A and g(x) = 0, x ¢ 4.

Step 1. We assume the set of discontinuities of g has measure zero. Thus if we let

= {x|O(g,x) > ¢} for ¢ > 0,and D = {discontinuities of g}, then D, = D.Ifyisan
accumulation point of D,, every neighborhood of y contains a point of D,. Then every
neighborhood U of y is a neighborhood of a point of D,, and by construction of D,,
sup{| f(x;) — f(xz)l | x1,x, € U} > e. This implies O(f,y) > ¢ and so yeD,. This
proves that D, is a closed set. Since D, < B, D, is bounded and therefore compact. Now
D, has measure zero, since D, < D, so by definition there is a collection By, B,, . .. of
(open) rectangles which cover D, such that Z‘““:l v(B;) < &. We know that a finite
number of the B; cover D,, since D, is compact. Suppose By, ..., By cover D,.
Certainly, Z‘ u(B) < &.

Now pick a partltlon of B. We can divide up the rectangles of the partition into two
(not necessarily disjoint) collections, C1 and C2, defined as follows.

C1: Those rectangles which are contained in some B;,i = 1, ..., N.

C2. Those rectangles which do not intersect D,.
For each rectangle S which does not intersect D,, the oscillation of g at each point of the
rectangle is less than e. Hence we can find a neighborhood U, of each point x of the
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rectangle, such that My{g) — my{g) < ¢, where My(g) = sup{g(x) | x € U} and my(g) =
inf{g(x) | x e U}. Now S is compact, so a finite collection of the open sets U, covers S.
Pick a refined partition such that each rectangle of the partition is contained in U, for
some U,, in the finite collection which covers S. If we do this for each S in C2, we get
a partition P such that

U(g,P) — L(g.P) < ) (Ms(g) — ms(g))u(S) +SZCZ(MS(9> — mg(g))u(S)

SeCl

< ev(B) + Z 2Mu(S) , (where | f(x)] < M on A)

SeCl

< ev(B) + 2Me , since Z v(S) < Z v(B) <

SeCl

But ¢ is arbitrary, so by Riemann’s condition, g and hence f is integrable.

Step 2. Suppose g is integrable. The set of discontinuities of g is the set of points of
oscillation greater than zero. Hence {discontinuities of g} = D, U Dy, U D5 U~
where Dy, = {xe B|O(g,x) = 1/n}. Now by Theorem 1, we can find a partition P of
B such that U(g,P) — L{g,P) = 3., (Ms(g) — ms(g))u(S) < &. Now Dy, = {x€ Dy | x
lies on the boundary of some S} U {x € Dy, | x € interior (S) for some S} = S; U S,.
The first of these sets, S, has measure zero, since we can cover the boundary of a
rectangle with arbitrarily thin rectangles. Let C denote the collection of rectangles of
the partition which have an element of Dy, in their interior. Then, if S € C,

1

Mylg) - milg) > —

and

Lsus) < 3 (455) — msaiS) < 3 0405) ~ mslghl) <

Hsec

Hence C is a collection of rectangles which covers S, and Z v(S) < ne. Wecan find a
collection C' of rectangles which covers §; with Z v(S) < . Then C U C covers
Dy, and ZSE coc v(S) < (n+ 1. But ¢ is arbltrary, so D,, has measure zero.
Finally, {discontinuities of g} = D, U Dy;; U Dy;3 U - * - has measure zero by Theorem

2. B

Corollary 1. A bounded set A < R" has volume iff the boundary of A has measure.zero,

Proof: By Theorem 3 it suffices to show that the set of discontinuities of 1, where

0, x¢4,
L= xea,

is the boundary of 4. But if x e bd(4), then any neighborhood of x intersects 4 and
R\ A. Hence there are points y in the neighborhood such that 1,(x) — 1,(y) = 1. Thus
1, is not continuous at x. If x ¢ bd(A4), then there is a neighborhood of x which lies
entirely in 4 or R"\4. In either case 1, is constant on this neighborhood so 1, is
continuous at x. §
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Corollary 2. Let A = R" be bounded and have volume. A bounded function f: A — R
with a finite or countable number of points of discontinuities is integrable.

Proof: The discontinuities of the extended function g, which is equal to f on 4-and
zero at points outside 4 are simply the discontinuities of f together with possibly some
discontinuities of g on the boundary of 4 for the same reason as in the above proof.
But bd(4) has measure zero by Corollary 1. Hence it is sufficient to show that a count-
able set has measure zero. But this follows at once from Theorem 2 and from the fact
that a point has measure zero, §

Theorem 4.
(i) Let A = R" be bounded and have measure zero and let f: A — R be any bounded

integrable function. Then {, f(x) dx = 0.
@) If f: A — R is integrable, and f(x) = 0 for all x and (4 Jx) dx = 0, then the set
{x € 4] f(x) # 0} has measure zero.

Proof: (i) We make the following observation about a set with measure zero,
namely, that a set of measure zero cannot contain a non-trivial rectangle, that is, a
rectangle [ay,b,] x -+ x [a,,b,] such that a; < b, for each i, The reason is that a
subset of a set of measure zero must be of meéasure zero and a non-trivial rectangle
cannot have measure zero. This last assertion is intuitively clear; the details are given:
in Exercise 17. Let § be a rectangle enclosing 4 and extend f to S by setting it equal to
0 on S\A4; let P be any partition of S into subrectangles Sy, ..., Sy, and let M be such
that f(x) < M for all x € 4.

Then

N N
LULP) =" ms(f)(S) < MY ms{1,)u(S)) -
i=1 i=1

Suppose mg,(1,4) 0 for some i, such that §; is a (non-trivial) rectangle. This means that
S; = A, which contradicts the opening remarks of the proof. So for any non-trivial
Sisms,(14) = 0. For any trivial S;, (S;) = 0. Hence 3¥  ms(1,)u(S;) = 0 or L(/,P) < 0
Now sup f(x) = —inf — (f(x)), so

XeSy

U(,P)= 3, sup fx)u(S) = — . inf — f(x)u(S)) = —L(—1,P),

SieP xeS8; Siep *& 51

and by the same arguments as above, L(—f,P) < 0. Hence —L(—f,P)= U(f/,P) 2 0
Since P was arbitrary, for any partition @ of S, U(f,Q) = 0 = L(/,Q), hence

ff> 0 >ff,

4 J4
[r-fr-lr=e
A Ja 4

(if) Consider the set 4, = {xe 4] f(x) > 1/m}; we shall first show that A, has
content zero.
Suppose we are given ¢ > 0. Let S be a rectangle enclosing 4 and extend f to S by

and so, since f is integrable,
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setting it equal to 0 on S\A. Let P bea partition of the rectangle S such that U(f,P) < ¢/m.
Such a partition exists by the fact that {4 f = 0.If S, . . ., Sk are the subrectangles of
the partition P which have non-empty intersection with 4,,, then if M, (/) is the sup of f
on S,
K

Zv(s‘ . mMg(f)uS) < ¢,

i=1 =1
sincemMg,(f) > 1. Therefore Sy, . .., Sk is a cover by closed rectangles of the set 4,, such
that Z‘": . v(S;) < e. Hence 4,, has content zcro. Since 4,, has content zero, it also has
measure 2ero.

Finally, observe that

{xed|fx)# 0} = 4,.
m=1
Thus, by Theorem 2, this set has measure zero. §

Theorem 5. Let A,B < R", CeR, f,g: A - R be integrable. Then

() S+ gisintegrableand [, f + g = [, f + 4 9.

(i) of isintegrable and [, of = ¢ [, f.

(i) | [ is integrable and |(, f] < [41/].

() Iff < g, then [, f < {19.

(v) If A has volume, and | f| < M, then|[, f| < Muv(A).

(vi) (Mean-value Theorem for Integrals). If f:A — R is continuous, A has volume
and is compact and connected, then there is an xq€ A such that [, f(x)dx =
J(xo)o(A4).

(vii) Let ftAUB—R. If A and B are such that A~ B has measure zero and
fl4 n'B, f| A, and [|B are integrable, then [ is integrable and {5 f =

Saf + sl

Proof: (i) Let S be a rectangle enclosing 4 and let f and g be extended to S by setting
them equal to zero oh S\A. Suppose ¢ > 0 is given. By Thecorem 1, there isa 6, > 0
such that if P, is any partition of S into subrectangles S7, . . . , Sy with sides less than
dyand if x; €8y, ..., xy € Sy, then

N &
(x)v(Sy) —f fl < 3"
=1 4

Similarly, there is a §, > 0 such that if P, is any partition of S into subrectangles
Ry, ... ,.Ry with sides less than 8, and if x; € Ry, .. ., Xpy € Ry, then

€
R) — -,
J(R) Lgl < 5

If we let § = min(d,,5,), then if P is any partition of § into subrectangles T}, ..., Ty
with sides less than § and if x; € T}, . . ., xg € T, then

<EeE.

K
2, lge) + SC(T) ff
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Hence by Theorem1 1 we may conclude that f + g is integrable and [, (/ + g) =
.[A f+ .[A g.

(ii) Suppose ¢ > 0 is given. Let S be an enclosing rectangle for 4 with f extended to
Sasin (i). Let & > 0 be such that if P is any partition of S into subrectangles Sy, . . . , Sy
with sides <d and if x; € Sy, ..., xy € Sy, then

Z Fx)(S;) f fl

This implies that

N
of (xJu(S) — cf f ‘ <eE.
=1 4

Hence ¢f is integrable and [4¢f = c [, f.

(iii) This part is most easily proved as a corollary of (iv), which will therefore be
proved first. !

{iv) Let P be any partition of the enclosing rectangle S. As f < g, we see that

U(/,P) < U(g,P).
So

ff = nf{U(f,P) | P is any partition}
4

< inf{U(g,P)| P is any partition} =f g
4

Hence [, f < [4 9.

(iif) We use the fact that if f is continuous at a point x in its domain, then |f] is
continuous at that point since | f] is the composition of y +— |y| following f. Hence, if f
is integrable over A, then by Theorem 3, | f] is integrable over 4. Now —|f] < f < |f],

so by (iv) =4 1/1 < [4f < [41/], and therefore {[, f1 < [41/1.
(v) If P is any partition of the enclosing rectangle S into subrectangles S, . .., Sy,
then

N
f 1< UQSLP) = 32 Ms (1S S)
4 &
N
< M‘ZM&(IA)U(S() = MU(14,P).

This implies that [, | f] < Muv(4), and so

f Sf 1< Mu(4) .
A

(vi) Letm = inf{f(x)| x € A} and M = sup{f(x) | x € 4}. By assumption, m and M
are assumed values, as 4 is compact (Theorem 5, Chapter 4). Let 1 = ([, f/)/v(4).
(If v(4) = 0, the theorem follows from Theorem 4(i).) Then by (v), m < 1 < M.
Hence by the intermediate value theorem, there is an x,e 4 such that f(x) = 4,
which proves the assertion.

Remark: More cureful reasoning shows that compactness of 4 is not necessary;
see Exercise 19.
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(vii) Let f; = [+ 14, /3 =f- 1g,and f; = S 1,5, o these represent the extensions
of /| A, f| B,and f| A ~ B required by the definition of integrability. By assumption,
J1s f5, and [y are integrable and, for example, {5 /+ 1, = [, by definition. Now
S=N+ [ - fs0by(i)

f f=f f1+f fz—f fs
AuB AuB AuB AuB
=ff+ff—f /.

A4 B AnB

Since 4 N B has measure zero, we have by Theorem 4(j) that {,., f = 0. §

Theorem 6. (Fundamental Theorem of Calcdlus). Let f:[ab] -+ R be continuous.
Then [ has an antiderivative F and

b
ff(x) dx = F(b) — F(a).

This same formula holds for any antiderivative of f.

Proof: Define F: [a,b] — R by F(x) = [ f(y)dy. We claim F is an antiderivative
of f. Let x € Ja,b[ and let h > 0 be such that Jx,x + h{ < Ja,b[. Then

X+ x % 0t
Fix + b — Fix) _ Ja S(y)dy —Lf(y) dy B ( ) f(y)dy>

h h - h

Now given & > 0, choose h such that | f(y) — f(x)| < e forall y&Jx,x + h[; such a
choice is possible by the continuity of f. Therefore,

X+ x4 ft —
(F7820) | 720

sf"“‘ fO) — [ f(X)

Th
= f(x) (the limit through /& > 0).

ch
<—=z.

h

limit

b0+

Hence Flx + h) — F(x)
h

Similarly, we can show

F(x) — F(x — h)
h

‘lirr(l,i_t = f(x)  (thelimit through i < 0) .

Hence F' exists and F'(x) = f(x). From the definition of F, we get
b

ff(y) dy = F(b) — F(a) .
The function F is easily seen to be continuousat a and b. Now let F, beany antiderivative
of f. We shall show that F; = F + constant. Since Fj(x) = F'(x) = f(x) for all
x & Ja,b, we have (F; — FY(x) = 0 for all x € Ja,b[. By Example 1 Section 6.7, if a
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function has zero derivative on an interval, it must be constant on that interval. So
F, = F + constant. Hence

b
ff(J’)d}' = F(b) — Fy(a)
for any antiderivative F, of f. |

Theorem 7. For f = 0 bounded and integrable on any cube [ —a,a]", f is integrable iff the

Jollowing condition holds: for any sequence B, of bounded sets with volume such that
() B, < By and (i) for any cube, C, and we have C < B, for sufficiently large k, then
IETl.t {5, [ exists. In this case I}Ti.t (s .S =1{at .

Proof: Suppose [ is integrable. Then if [ —a,a]" = B, = [—b,b]", we have

[ ssss] s
[-a,a)* By [-b.b)

since [ 1i_ g < S Lp, € [ 1y 4 Where 1, is the characteristic function of the set 4.
Hence as lixyit fia,ap S exists, so does I;if-?i.t (5, /» and the limit is the same. We used
hypothesis (ii) about B, so that we could, by choosing k large, have [ —a,a]" < B, for
any given a.

For the converse, [, / is an increasing sequence in k, using (i), and has a limit. Say
s [ — Cask — co.Thusas /< Cflorall kand for each a, [ —a,a]" = B, for some
k, j'[_,,‘,,]n f < C for all a. Hence as a — oo this is an increasing function of a bounded
above so it converges (why?).

Theorem 8.
(/) Suppose f:[a,00[ — R is continuous and f = 0. Let F be an antiderivative of J.
Then f is integrable iff limit F(x) exists. In this case
X+ o0

Jdx =fmf dx = {lix_r’li‘t F(x)} — F(a).

[a,00]

(fi) Suppose f: Ja,b] — R is continuous and [ = 0. Then f is integrable iff
b
limitf f(x) dx
20 Jatg

exists. This limit equals [* f(x) dx.
Proof: (i) §t-bn S Liamy = faf for b > a, and f; f = F(b) — F(a). Hence limit (L)
exists iff ll}m'lt F(b)does, and {7 f = (lgmit F(b)) — F(a). e

(ii) The second part is a little trickier. For ¢ > 0 define /* to be 0 on [a,a + &] and /
on Ja + ¢,b]. We proceed by first giving two preliminary steps.
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FIGURE 8-17

Step 1. If M = sup{f(x})|a + ¢ < x < b}, then, recalling that f,(x) = f(x) if
f(x) £ M and zero otherwise, we have

b b (]
ff‘=f fSJ Iu
a a-te a

because f < fy;on [a,b]. Note that fy; might not be zero on [a,a 4 &], asin Figure 8-17.

b b
ffM—ff”SMa.

This is because f < Mon [a,a + €], and for x € [a + g,b], fu(x) = f(x), so

) b a+c ) ) ate
ffm—ff”=< fm+f+f>~f+f= u<eM

since fy < M.

Now, to demonstrate the thebrem, first suppose [ fo, — I as M — oo. Notice that
since f = 0, [ fy increases as M increases. We must show that [ f* also converges to I
as ¢ — 0..It clearly increases to something < I by Step 1. But, given § > 0, choose M
such that I — [ fyy < §/2. Then if we let ¢ = §/2M, by Step 2, [ /iy — [ f* < &/2.
Hence I — [ f* < 6. Thus lif,’(i,tffc =1

The converse follows in much the same way, again using Steps 1 and 2 to show that if
{re—=1Ithen{fyy -1 &

Step 2. For any ¢ and M,

In order to prepare for the proof of the monotone convergence theorem, we first
prove the following lemma.* :

* This proof of the monotone convergence theorem was pointed out by R. Gulliver.
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Lemma. Suppose [ is Riemann integrable, f: [0,1] = R, |[f| < M, and [} /' Z o > 0.
Then E = {xe [0,1]] f(x) = /2} contains a finite union of intervals of total length
1= of/dM.

Proof: Let P be a partition of [0,1] such that 0 < [} f — L(/,P) < «/4. So
L(f,P) 2 3a/4. We will now show that the intervals R € P with R < E satisfy the con-
clusion; let [ denote their total length, We have

3a < L(f,P) = . inf f(x}o(R) + > inf f(x)(R)
4 ReP xeR ReP xeR
RcE R&E

<sMi+Ea-p<mi+l
2 2
Sol > a/4M, as claimed. §

Theorem 9. (Lebesque’s Monotone Convergence Theorem). Let g,: [0,1] » R be a
sequence of non-negative functions such that each improper integral [§ g, < oo. Suppose
that 0 < g,41 < g, and that g,(x) — 0 for each x € [0,1]. Then limit fbg, =0

Proof: Wehave0 < [} g,., < [} g, that s, the integrals form a bounded decreas-
ing sequence, so A = limit [} g, exists, and A > 0. We wish to show 1 = 0, so assume
H—+ o0

4> 0. Note that [§ g, = 4for all n. Consider E, = {x € [0,1]] g,(x) = 24/5}. Observe
that E, ., < E,. We want to apply the lemma, but g, might not be bounded. However,
g, < gy since [} g, exists as an improper integral, [§ g,y — [§ g, as M — co. Here

gdx), gux) <M,
M, gx)zM,

So we may choose M > 24/5 such that 0 < [} (g; — g.p) < 4/5. Then for all n,
0< [4(gn — gum) < [ gy ~ g1a) < A/5, 50 that [§ g.ar = 44/5 = «. Note that since
M > 21/5, E, may also be described as {x € [0,1] | g,u(x) = 24/5}. Therefore, by the
lemma, E, contains a finite union of intervals of total length > A/5M. Now define

guM(x) = {

o
D = | {x€[0,1]] g, is not continuous at x} ;
n=1

so D has measure 0. Thus D is contained in the union U of a countable number of
disjoint open intervals with total length </5M. It may be readily seen that E, is not a
subset of U. Observe that if x, is an accumulation point of E, but is not in E,, then g,
must be discontinuous at xy, so xoeD < U. That is, c|(E,) < E, u U. Define
F, = cl(E,)\U: by what we have just shown, F, < E,. But F, is compact and F,,, <
F,. Therefore, by the Cantor Intersection theorem, [} F, # &, and hence

- E, # . But this means that for some x & [0,1], g.(x) = 24/5 > 0 for all n,
contradicting the hypothesis g,(x) — 0. §

Corollary 4. If f:[ab] —» R, f 20, and the improper integral [° f* < co, then
folf = JuP »0as M - 0.
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Proof: Apply the monotone convergence theorem with g, = (/' — f)*. Since
(f = for1)* S (f — fi)* < f?, the integrals [% g, exist, by the comparison theorem,

andg,+1 < g §

Worked Examples for Chapter 8

1. Show that a bounded set 4 = R" has zero volume iff it can be covered by a finite
number of rectangles of arbitrarily small total volume.

Solution: Suppose A has zero volume and let ¢ > 0 be given. Let S be a closed
rectangle containing 4 and let 1, be the characteristic function of 4 (i.e. 1, equals 1 on
A and 0 on S\A). Then by definition of zero volume, there is a partition P of § into
subrectangles S, . . . , Sy such that U(1 ,,P) < & Let P, be the collection of all those
subrectangles S; whlch intersect A. Then U(1 ,,P) is simply ZS P v(S), and so Pyisa
collection of rectangles covering A with a total volume <e.

Suppose, on the other hand, that given ¢ > 0 A can be covered by a finite
number of rectangles of total volume <e. Let these rectangles be V;, ..., V.
Let S be a closed rectangle containing 4 and let P be a partition of S into sub-
rectangles S, ..., Sy, such that each S is either contained in some V; or has at
most its boundary in common with some V;'s—the partition is defined by using all
theedges of the ¥"s. Then U(1 ,,P) = 2 | v(V) < e Thisimplies that inf {U(1,,P) Y| P
is a partition} = 0,and hence L(1,,P) = 0 for any partition P/, since0 < L(1,,P) <
U(1 4,P) for all P. Therefore 4 has volume, and this volume is zero.

2. Let f, be a sequence of bounded (Riemann) integrable functions defined on [a,b].
Suppose”f, — f uniformly. Then prove that f is integrable on [a,b], and

b b
fﬁt(X) dx ~>ff (x) dx

Solution: First,'observe that f is bounded. Indeed, suppose we choose fy such that
|fylx) — f(x) < 1 for all x. Then, using the triangle inequality,

Sl < 1)l + 1.

Therefore, since fy is bounded, so is f.
By Theorem 1, we must find a number I, such that for every ¢ > O thereisad > 0,
such that

-x-)—Il<e

for any subdivision xg, X5, . . . ,x, of [a,b] with{x, — x,_;| < dandx,_, < x} < x,.
By Theorem 4, Chapter 5, we expect I = 11m1t & filx) dx. Now [% fi(x) dx is a
Cauchy sequence. To see this, note that

b b
fﬁ(x) dx —ff:(X) dx

Hence, the sequence converges to a value which we call I.

<& ifAM) — Sk <

_&
b-a’
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Given ¢ > 0, choose N such that k = N implies | [% fi(x) dx — I < &/3. Now
choose N, such that k > N, implies | fi(x) — f(x)| < &/(3(b — a)) for all xe [a,b]
and choose N, = max(N,N,;). Now since fy, is integrable, there is a § > 0 such
that for |x, — x,_;| < &,

" b
kzlfwz(xo(xk — Xy) —ffwz(ao dx

<&
3

With this choice, we have by the triangle inequality,

Zf(xl)(xk - X_y) — I] < ka(xD(xk — X)) — szz(x;t)(xk - :xk—l)]

k=1

+ Zsz(xk (x, — Xp-1) ffN,(x dx

E & ¢
dx — Il <=-+=-+-=
+J;f~z(x)x ]<3+3+3 &
which proves the assertion.
Remark: In Theorem 4, Chapter 5, we established the more restrictive result
that if f;, f were continuous (and hence integrable), then

b
rf(x) dx = llé_rflitf Julx) dx

This of course is also shown by the proof just completed. The above method also
workson 4 = R".

. Show that {§ x* dx = a®/3 by using the fundamental theorem. Verify this answer

directly by showing that for any given & > 0, there exists a partition P of [0,a], such
that U(x?,P) — L(x*,P) < ¢ and that

3

inf{U(x?,P) | P is any partition} = sup{L(x?,P)| P is any partition} = Ll

w

Solution: The function F defined by F(x) = x*/3 is an antiderivative of f(x) =
since F'(x) = x*. Thus by the fundamental theorem

3

rxz dx = F(a) — F(0) = “?
[}

In order to verify our answer using the upper and lower sums, we partition [0,a}
into the n subintervals [0,a/n], [a/n,2a/n], ..., [(n — Da)/n,a]. If we call this
partition P, then

wwtn =50 5= (5 - ()G v s

(see Exercise 25) and

n k— 1 3 n=-1 3 1
s (522 ((E) - )b om0
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a® 1 1
a® 1 1

From these expressions we see that by choosing n sufficiently large we get
U(x*,P) — L(x*P) < ¢ and inf{U(x*P)| P is any partition} = sup{L(x*,P)| P is
any partition} = a/3.

4. Findf el
©.f (1 + %)

Hence

and

Solution: We are integrating a non-negative function defined on an unbounded set,
so by definition

f ax lim'tr ax
e = limijt | ——— .
(,p (X + 1)? ase Jo (x + 1)2

Since
d—1/(x + 1) _ 1
dx s+ 12
we can use the fundamental theorem to obtain
f “dx 1 + 1 a
. x4+ D2 @+ O+ (@+1’
Hence .

li itr dx 1 f dx
mit| —— =1= |
a0 o (x + 1)2 [04c0[ (x + 1)2

Exercises for Chapter 8

1. (a) Let f: 4 <« R" - R, where 4 is bounded and f is bounded and integrable
over A..Consider another bounded integrable function g: 4 — R such that
g(x) = f(x) except on a set § = A of measure zero. Then assuming f and ¢
. are integrable on S and A4\S, prove {, g = [, f.
G)Iff:A<R" —-Rand g: 4 « R" —» R are bounded functions, integrable on
thebounded set 4,and [ 4]/ — g| = 0, then prove f(x) = g(x)forall x € 4, except
possibly for a set of measure zero.

2. Give a proof of Theorem 5(iii) directly from Darboux’s theorem and the triangle
inequality for real numbers. Now go back and fill in the gap in Example 5, Chapter 6.

3. Prove that an increasing function f: [a,b] — R is Riemann integrable. [Hint: at
each discontinuity x, of f, limit f(x) < limiE f(x), and we can find a rational r,
X~+xp = X=+Xp
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such that (limit f(x)) < r, < (limit‘ S(x)). Show that the discontinuities of f are
countable.]

Show that f(x) = x2"*! for n an integer > 0, is not (absolutely) integrable over R,
even though limit [*, f exists.
a-+o

In R?, prove that any subset of the xy-plane has measure zero.

I f1A<R" - R and g: 4 = R" - R are bounded integrable functions on the

bounded set 4 such that f(x) < g(x) for all xe 4 and v(4) # 0, then show
(4] < [4g. [Hint: Employ Theorem 4(ii).]

Let f:[a,b] » R be continuous and differentiable on Ja,b[. Assume f(a) = 0,
fb) = —1and [® f(x) dx = 0. Prove that there is a c & Ja,b[ such that f'(c) = 0.
Compute the following integrals.

(a) f2*sinxdx. °
(b) b x*(sin x) dx.

. Give a proof of Theorem 5(i), (ii), (iii), (iv), and (vii) for improper integrals. (The

parts of Theorem 5 omitted here do not make sense if 4 has infinite volume.)

(@ I A= A4, U A, U U Ay, all sets having volume, then show v(4) <
N u(d).
(b) If 4 is compact, then show that A has measure zero iff 4 has content zero.
Show that a bounded set B has volume iff bd(B) has content zero.

If § is a closed or open rectangle show that the two definitions of volume coincide.
That is, prove that (31 = (b; — ay)(b; — a;)* - (b, — a,) where either § =
[ap,b] % -+« x [a,b,] or §=TJa;,by[ x -+ x Ja,b,[. [Hint: For the closed
rectangle use the partition consisting only of the rectangle S. This statement for
open rectangles then follows from Exercise 1.]

Prove that 4 has measure zerg iff for every ¢ > 0 there is a covering of 4 by sets
Vi, Va, . . . with volume such that 37 o(V) < e.

. Prove that a bounded function f: S — R is integrable on the rectangle S iff thereis a

number I such that for any ¢ > 0 there is a partition P, such that for any refinement
P of P, and any choice of x; & §; for S;€ P, IZS'GP See(S) — Il < e.

. Is [& x? dx convergent for any p? If so, which p?

. Generalize Example 2 on page 290 to functions f: 4 =« R" — R..

. (a) Suppose f;, — [ uniformly on 4 < R". Let 4, be the points of discontinuity of

Jx (extended). Show that the discontinuities of f (extended) are contained in
Ay U 4, U -+ . [Hint: Study Theorem 1, Chapter 5.]

(b) Use (a) to give another proof for Example 2.

(c) Find functions f,: 4 — R which are integrable and such that f, — f pointwise,
but f is not integrable. [ Hint: Consult Gelbaum and Olmsted, Counterexamples
in Analysis, Bxample 5, Chapter 7.]



294 INTEGRATION

17.

18.

19.

20.

2L

22.

23.

24,

25.

(a) Let P, denote the division of [a,b] into 2" equal subintervals and form L(f,P,),
U(f,P,) for f:[a,b] = R bounded. Show that f is integrable iff 11m1t L(f,P,) =
llrmt U(f,P,). Why do these limits always exist?

(b) Generallze (a)for 4 = R".

Let f:B — R be integrable, f 2 0. If 4 « B and f is integrable on A4, then
{41 < [5 f. Is this true if we do not assume f = 07

(a) Generalize the mean-value theorem for integrals (Theorem 6(vi)) to the case
where 4 is any bounded connected set. [Hint: If M = sup{f(x)|x € A} and
m = inf{f(x) | x € A}, then we do not necessarily have a and b € 4 such that
f(@) = mand f(b) = M.If A = [, f/u(A), then as usual m < 4 < M. Consider
separately the cases A = m, 4 = M, m < A < M. For the first two cases use
the fact that if g > 0 and [ g = 0, then g(x) = 0, except for a set of measure
zero (Theorem 4(ii)). For the last case we can pick points x and y € 4, such that
J(x) < 2 < f(y), and then we can apply the intermediate-value theorem as in
Theorem 6(vi).]

(b) If @(x) = 0 for x € a connected bounded set 4 = R, ¢ is continuous and
increasing in x and f is integrable, then fip is integrable and {, fio = @(c) [4 f
for some point ¢ € 4. (This is the “second mean-value theorem.”)

Suppose f:70,6] — R is continuous, positive, and integrable on ]0,6]. Suppose
further that as x — 0 from the right, f(x) increases monotonically to +co. Then
prove that gf(e) — 0 ase — 0.

Show that [ x77 sin x dx converges if p > 1. Show that if 0 < p < 1, then the
convergence is conditional.

The gamma function is defined by the improper integral I'(p) = (¢ e~ xP~1 dx.
Show that the integral is convergent for p > 0.

(@) If ¢: [a,B] - R" is a continuous function, then show that the set S = graph
¢ = {(xo(x) | xe[a,b]} = R""! has content and measure zero. [Hint:
First, consider the case n = 1 and use the definition of continuity.]

{(b) For ¢:R — R" continuous, show that graph ¢ has measure zero. [Hintr
Graph ¢ = {J, sraph (¢ | [—n.n]).]

(c) Let f:[a,b] » R be integrable. Show the graph of f has volume zero by
considering the difference of the upper and lower sums for f.

(d) Show that the ellipse x* + 3y* = 9 in R? has volume zero.

Give an example to show that the following is not equivalent to the integrability of
Jf. For any & > 0 there is a 6 > 0 such that if P is any partition into rectangles
81, ..., Sy with sides <4, there exist x; € Sy, . . ., xy € Sy such that

N
‘Zlf(xov(so - II <e.

Prove that

M:

k =
| 2

n(n 4+ 1) and {'L-: _n(n 4+ 1)(2n + 1)

Py 6
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These formulas were used in Example 3. [Hint: Let S = Z o1 k- Write down
S backwards and consider S + S. Consider the 1dent1ty (k+ 1 - k® =
3k* + 3k + 1 and observe that

i{(k+ P -k =@m+1° -1
k=1

k>+n.
1

Consider a set A = R", where 4 is bounded and has volume. Let f: 4 = R* — R,
f 2 0, but allow f to be unbounded. Suppose C; is a sequence of compact sets with
volume, C, < 4 with C; increasing to 4, and assume v(C;) ~» v(4) (this is actually
automatically true as shall be seen in Exercise 12, Chapter 9). Then f is integrable
iff f is integrable on each C; and 1‘1_x:mt {¢, f exists and in this case

ff= limitf f.
A i~ C

Prove that if / 4 = R" — R is continuous, 4 is open with volume, and [, f = 0
for each B = A with volume, then /' = 0. [Hint: Use Theorem 5(vi).]

and

n

Yk + 1° — k%) —3<Zk2>+3<

k=1

M:

k

Alternatively, use induction. ]

[Hint: Study Theorem 8(ii).]

Let f:[0,1] — R be integrable and be continuous at x,. Show that the map x—
{3 J(») dy is differentiable with derivative f(x,). Give an example of a discontinuous
integrable f for which this map is not differentiable. For bounded integrable f prove
this map is always continuous, and in fact, Lipschitz.

Show that the Cantor set C < [0,1] has measure zero (see Exercise 38 at the end of
Chapter 3).

(a) Let f:[ab] — R be differentiable and assume that f* is integrable. Prove

[a /() dx = f(b) - fla).
(b) Must s always be integrable?

Prove the following analogues of the Weierstrass and Dirichlet tests for uniform

convergence using the Cauchy criterion (Exercise 1, Section 8.7).

(a) Let f:[a,00[ x [c,d] — R and suppose there is a positive function M(x),
x € [a,00[ such that |f(x,s) < M(x) for all se[c,d], and [ M(x)dx < co.
Then F(x) = [ f(x,5) dx converges uniformly in s. I f{(x,s) is continuous in x,
s, prove F is continuous.

(b) Let f: [a,00[ x [c,d] — R be continuous and suppose | [ f(x,s) dx| < M for a
constant M for all r > a, se[cd]. Suppose ¢(x,s) is decreasing in x and
o(x,5) = 0 as x — co uniformly in s. Prove F(s) = [* ¢(x,s)/(x,s) dx con-
verges uniformly.
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» 32,

s 33,

034,
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e 36,

37.

38.
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9 40,

41.

For x > 0 define L(x) = [{ 1/t dt. Prove the following, using this definition.
(a) L is increasing in x.

(b) L(xy) = L(x) + L(y).

() L'(x) = 1.

d) L(1)=0.

(e) Properties (c) and (d) uniquely determine L. What is L?

Let /1R — R be continuous and set F(x) = ¥ f(y)dy. Prove F'(x) = 2xf(x*).
Give a general theorem.

Let f: [0,1] = R be Riemann integrable and suppose for every a, b with 0 < a <
b < 1 there is a c,a < ¢ < b with f(c) = 0. Prove [§ f = 0. Must f be zero?
What if f is continuous?

Let A, = Un[(n + 1) + (n + 2) + -+ + (2 + n)]. Prove limit(1/mA4, = 3/2 using
the Riemann integral. e

Prove that limit (n!)!"/n = e™! by considering Riemann sums for [§ log x dx
based on the partition I/n < 2/n < +-+ < 1.

(a) Under what conditions is J2 f(@()e'(¢) dt = 58 f(x) dx?

(b) Evaluate | dx/((1 — x)/1 — x*) using x = cos #.

Let /:[0,1] = R,
0, if x is irrational ,
Sy =<1 . p
" -, ifx=-,
q
where p, ¢ > 0 with no common factor. Show f is integrable and compute [} f.
Prove that

- 1 1 1
log2 = lix_'fgt[m + T2 + + Zn] .

[Hint: Write the expression in brackets as

1 ¢ 1
ngo k

and use Riemann sums.]
Let R({ab]) = {/:[a,b] — R| f is Riemann integrable}. Set
b
d(f.9) =f 1fx) — g(x)l dx .

Is d a metric on the space R([a,b])?

Find an open subset of R contained in ]0,1[ which does not have volume as follows.
(a) Review the construction of the Cantor set (see Exercise 38, Chapter 3).



42.

43.

47,

48.

49.
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(b) Modify the Cantor set by letting C, be obtained from C,_, by removing the
middle 1/2%th from each interval of C,_; and letting Cy = [0,1]. Set C =
ﬂf:l C-

(c) Show that o(Cy) = [Tk, (1 — 1/2) = 1/4.

(d) Let U be the complement of C. Compute the boundary of U and using (c)
show that it cannot have measure zero. ez

This exercise also produces an example of a compact set C with empty interior

which does not have volume,

Find a subset 4 of [0,1] such that A = cl(int A) and yet bd(4) does not have
measure zero. (This exercise requires care and patience.)

. (n) ) (21:) . ((n — 1)1z> no-
sin{ - Jsin{ — } -+ - sin = .
C\n n n n-1

Use this identity to evaluate [§ log sin x dx.

It is a fact that*

. Discuss generalizations of Theorem 9 to R".
45.
46.

Discuss generalizations of Theorem 9 from [0,1] to [0,00].

(a) Suppose U = ]—-1,1[ x ]-1,1[ = R?, f: U - R. Assume that f/dx and
df/dy exist at each point of U and are bounded on U, where (x,y) are the standard
coordinates for R?. Show that f is continuous at (0,0).

(b) Show by example that boundedness of the partial derivatives is necessary in
part (a); mere existence is not enough.

For every o > 0 compare [§ x* dx with ZN n*and 3V~ i, and hence determine

= A

ottt

N-oo |

For any function f(x) continuous over the reals define the sequence f,(x) =
n[ZH &) dé for n=1, 2,3, .... Show that df,{x)/dx exists even if df{(x)/dx
does not, and that f(x) = limit f,(x), and that convergence to the limit is uniform

when f is uniformly continuous.

Suppose {I,} is a collection of open intervals whose union covers a closed interval

- C on the real axis; show that some positive ¢ exists such that every subinterval of

50.

C no wider than ¢ lies entirely in at least one of the I,’s. ,

State whatever lemmas, theorems, and so forth are needed to justify each of the
following assertions.
(8) limit 3= 27*sin(k/n) = 0.
n-+co
(b) If f(x) is given by a power series converging in ]~ 1,1[, then the same is true for
J'x).
(©) Let f(x) = tan(nx/2) and set a, = f“(0)/n!. Then } = a, is not a convergent
series. (Do not attempt to compute a,,.)

* See J. Marsden, Basic Complex Analysis, W. H. Freeman, San Francisco, p. 24.
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51.

52.

53.

54,

(d) If f(x) is differentiable on [a,b] with |f;(x)| < 10 for all n, and x € [a,b] and
Ji{x) — 0 at each x, then f,(x) — 0 uniformly.

2k
(e) flx) = Z cosg x) has a continuous derivative.
) x2 x99 100
Nler—1-—x-% —o I gl x
) x—3 551 To1 for > 0.

g) fix) = Z ;% is continuous in the closed interval [ — l,lj.
1

h) I te“"—l a
( iTcl) sin bx b

(i) Y7 la,l < oo then fu (3 a, cos nx) = 3= a, s_n_nL
(j) For some integer n, n > 101°°(10g n)t000

Explain the following: A function defined on [0,00[ but not infinitely often
differentiable cannot be expressed as the sum of a Dirichlet series

—nt

Ms

=

=
i
Q

[Hint: let t = —log x]

Let Q be the set of points (x,y) € R? that can be expressed in the form (sin 8 + sin ,
cos 8 — cos i) for some (8,¥). Find an interior point of Q (that is, a point which
together with a disc around it belongs to Q).

Show that the series

& 1
k; 2% — I sin(kx)
is uniformly convergent on R.

Prove the “‘dominated convergence theorem for series”: If
(i) for each k, aj — a, as n — o0, a, and g} € R™;
(if) for each n and k, ||aj| < by, lla,| < by, some b, € R; and
(iti) 2.7 | by is convergent (so by the comparison test, Z;f; , & and Z;‘;‘ ay are
convergent); then

i Ms

o
Z a,asn — oo .

Give an example to show that condition (iii) is necessary, even if it is assumed that
2., aiand 3, a, are convergent.



Chapter J

Fubini's Theo/r/em
and the Change of
Variables Formula

9.1 Introduction

N

There are two fundamental integration theorems which help us to evaluate
multiple integrals. The first result concerns the evaluation of multiple
integrals by means of iterated integration. Using this method, wecan calculate
the value of a multiple integral by performing successive single integrations.

ExampLE 1. If 4 is the square defined by0 < x < 1and 0 < y < 1, then .

J‘(x 4+ y)x dx dy =J‘ ( [x + yx] dy)
A x=

(1)

7
12°

1

1

-P-I»—-

1
3t
If A is not a square but say a triangle then we extend the function to a
square by letting it be zero outside 4. Then, in the above process, the y
integration becomes cut off at some point which depends on x, as indicated
in Figure 9-1.
The intuition behind this method is as follows. For a given function

S, 0<x<1,0<y < 1, the number {8 f(x,y) dy is the area under
the graph of f on the line x = constant. Integrating this area over x gives

299
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y y

1
J flx, y)dy 2(x)
o/ [0 9)ay
0

/ g(x)

dx
FIGURE 9-1 Iterated integrals.

the volume under the graph. This then suggests that [, f(x,y) dx dy =
16 (8 f(x,y) dy) dx. A precise result will be given in Theorem 1, called

Fubini’s theorem.
The second basic theorem of this chapter is called the change of variables

formula. This is used in conjunction with the above method to evaluate
certain types of integrals. The following example is typical.

ExaMPLE 2. Suppose we wish to evaluate [, (x* + y?) dx dy where 4 is
the unit disc, 4 = {(x,y) € R? | x* + y* < 1}. This is easiest to evaluate
ifwechange the variables to polar coordinates (r,6). Thechange of coordinates
is given By

x = rcos 6, y=rsinf,
for r > 0, 0 < 8 < 2n. Then we have the “rule” dx dy = r dr df. Since
x?2 + y* = r%, we have

n

J(xz + y)dxdy =| r?rdrd
4 Ja
1 2r
. = J‘ 3 do dr
ur=0J0=0
n . i
”=02nr dr 2

The justification of the “rule” dx dy = r dr df in Example 2 is given by
the change of variables formula (Theorem 3 below). Notice that the extra
factorrisjust the Jacobian d(x,y)/d(r,0) = r.Howeverit is easy to heuristically
“justify” the rule by regarding dr and df as infinitesimals. Namely, dr
represents a radial infinitesimal while r df represents an infinitesimal arc
length. Thus r dr df is the area element in a sector bounded by r, r + dr
and 8, 8 + dO (see Figure 9-2).
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area = rdrdf

df

FIGURE 9-2
In the case of bne dimension the change of variables formula is very easy.
It states that if f is continuous on [a,b] and we have a mapping ¢: [o,f] —
[a,b] with @(2) = a, p(B) = b, ¢’ exists and is continuous, then

b i
f S(x)dx =J Slp)o' () du .

To prove this, first find an F such that F' = f which is possible by the
fundamental theorem, and observe that

J‘bf(x) dx = F(b) — F(a) .

Now let G(u) = F(p(u)). By the chain rule,
G'(u) = Flo)e'u) = flo)e'@) .

Hence, again by the fundamental theorem,

, .
f fle)e'(w) du = G(B) — G(@) = F(b) — Fla)

as required. (This theorem is also true if f is not continuous, but is merely
integrable as we shall see below.) This technique is often called “integration
by substitution” and its power is well known to the student. '
ExampLE 3. To integrate | (1 + x?)!° x dx, let y = 1 + x? and note that
y =2x,50f (1 4+ x¥)% dx = (1/2) [ y*% dx = (1/2) [ y* O dy = y'/22 +
C (C a constant).

The generalization of this result to higher dimensions is contained in the
statement of the change of variables formula; while it is a good deal more
subtle to prove, it is easy to understand and along with Fubini’s theorem is
the most powerful computational method we have.
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Exercises for Section 9.1
1. Evaluate {§ x*¢** dx.

1.
2. Evaluatef szx dx.

o Cos* x

3. Evaluate [, (x + y*) dx dy where 4 = [0,1] x [0,1].
4. Bvaluate [, e 7> dx dy where 4 is the unit disc in R?.

5. Evaluate [, dx dy where 4 is the triangle in R? bounded by the lines x = 0, y = 0,
x+y=1 .

.9.2 Fubini's Theorem

Let us now state the first of our two basic theorems. We start by giving

Fubini’s theorem for the case of the plane R?,
,,I/L/u/ Cesr e e

Theorem 1. (i)' Let A be the rectangle described by a < x < b,
c <y <d,andlet f: A — R be continuous. Then

b d
[r-[([re0s)e
ad cb
=j (J S(x,y) dX) dy:

b/ (d .
J (J Sfx.y) dy) dx

means that the function

The expression

d
" g(x) =j fGx.) dy.

14

is'integrated froma to b,
(i) Suppose in (i) that f is integrable and the function f,: [c,d] — R
defined by f.(y) = f(x,y) is integrable for each fixed x € [a,b]. Then

b d
[r-[ (o)

One can similarly assume that

b
J S(x,y) dx

a



FUBINI'S THEOREM 303

exists for each y and obtain

d b
[r-[([rs)o

As usual, we can apply this to a non-square region 4 by extending f
to be zero outside 4 and applying the above to a containing rectangle.
Examples are given below.

To be able to drop the assumptions of continuity or existence of the
iterated integrals and replace them by just integrability of f is, unfortunately,
not possible. To obtain such a general result the student will have to wait
for more advanced courses in measure theory. However in actual practice,
the above theorem is completely adequate. As mentioned in Section 9.1, the
result is, intuitively, entirely reasonable.

The following corollary is a typical application of Theorem 1. This
corollary can often be used effectively by breaking up a complicated region
into smaller regions to each of which the corollary applies.

Corollary 1. Let ¢, ¥: [a,b] — R be continuous maps such that
o(x) < Y(x) for all xel[ab] and let A = {(x,y)|a < x < b,
o(x) € y € Y(x)}. Let f: A — R be continuous. Then

b/ ((x)
(7= o av) ax
A a \Jo(x)

There is an entirely analogous theorem with the roles of x and y inter-
changed. The corollary is an immediate consequence of the theorem if we
remember that f is extended to be zero outside 4. Theorem 1 and Corollary 1
are easily extended to multiple integrals, as shown in Theorem 2.

(see Figure 9-3).

Y(x)
[ 5, y3ay
(x)

| |
L e ,'
| |
! !

FIGURE 9-3 Fubini’'s theorem.
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Exercises for Section 9.1
1. Evaluate [§ x%¢** dx.

Lsin
2. Evaluatef 2x dx.

o C0s* x

3. Bvaluate [, (x + y*) dx dy where 4 = [0,1] x [0,1].
4. Evaluate [, e™**">" dx dy where 4 is the unit disc in R?.

5. Evaluate [, dx dy where 4 is the trianéle in R? bounded by the lines x = 0,y = 0,
x+y=1.

9.2 Fubini's Theorem

Let us now state the first of our two basic theorems. We start by giving

Fubini’s theorem for the case of the plane R2.
Loateaa] CeSe ot T

Theorem 1. (i). Let A be the rectangle described by a < x < b,
c<y<d,andlet f: A - R be continuous. Then

b d

Lf =J (J S dy) dx
d b

=J (J fx,) dX) dy.

The expression )

b/ (fd o
j (J fix,) dy) dx

rd
g(x) =j fx.y)dy.

means that the function

is'integrated from a to b.
(i) Supposein (i) that f is integrable and the function f.: [c,d] — R
defined by f,(y) = f(x,) is integrable for each fixed x € [a,b]. Then

b d
Lf =J (J Sex,) dy) dx .

One can similarly assume that

b
j S(x,y)dx
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exists for each y and obtain

d b
Lf =J U S,y dx) dy.

As usual, we can apply this to a non-square region A by extending f
to be zero outside 4 and applying the above to a containing rectangle.
Examples are given below.

To be able to drop the assumptions of continuity or existence of the
iterated integrals and replace them by just integrability of f is, unfortunately,
not possible. To obtain such a general result the student will have to wait
for more advanced courses in measure theory. However in actual practice,
the above theorem is completely adequate. As mentioned in Section 9.1, the
result is, intuitively, entirely reasonable.

The following corollary is a typical application of Theorem 1. This
corollary can often be used effectively by breaking up a complicated region
into smaller regions to each of which the corollary applies.

Corollary 1. Let ¢, : [a,b] - R be continuous maps such that
o) < Y(x) for all xe[ab] and let A = {(x,y)|a < x<b,
ox) <y < Y(x)}. Let f: A = R be continuous. Then

b/ [Fix)
Jf =j (J fx,y) dy) dx
A a o(x)

There is an entirely analogous theorem with the roles of x and y inter-
changed. The corollary is an immediate consequence of the theorem if we
remember that f is extended to be zero outside 4. Theorem 1 and Corollary 1
are easily extended to multiple integrals, as shown in Theorem 2.

(see Figure 9-3).

Yix)
[ 65 vyay
$(x)

FIGURE 9-3 Fubini’s theorem.
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0,0,1)

// (1,0,0)

x
FIGURE 9-4

Theorem 2. (i) Let A < R" and B < R" be rectangks and let
fiA x Bc R" x R"— R be continuous. Define, for each x € 4,
i B @ R" = Rby f,(y) = f(x,3). Then

" j f= (J S,y dy) dx =j (J 1) dy) dx.
AxDB JAa B A B

(ii) If fis integrable and f, is integrable for each fixed x, then again

f =J (j fe) dy_) dx.
JAxXB A B

Similarly, if {4 f(x,y) dx exists for each y,‘then

S =J (J f&.) dx) dy .
JAXB B A

-In practice, this theorem may be used repeatedly to reduce a problem to
iterated one-dimensional integrals.

ExaMmpLE 1. Evaluate

(x+y+2?dxdydz
4 . g

where A is the three-dimensional volume sketched in Figure 9-4.

Solution: We proceed in the following manner. Here A is simply the set
{(x,92)eR®|x >0,y >0,z > 0and x + y + z < 1}. Hence 4 consists
Lot
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of those points (x,y,z) for which x 20,y 20, x + y< [, and 0 € z €
1 —(x+y). Let B={(x,5)|x>0, y>0 and x + y < 1}. Then by
Theorem 2, and remembering that f is zero outside 4,

1—(x+y)
j(x+y+z)zdxdydz=j<j (x+y+z)zdz)dxdy.
A 0

B
Similarly, B consists of those points (x,y) for which x € [0,1]and y € [0,1 —x],

1f1=-x{"1-(x+y) .
J(x+y+Z)ZdXdydz=Jj j (x +y+2P2dzdydx.
4

0J0 0

Now use the fundamental theorem to evaluate these integrals. First note

that a 33
W—/—=(X+Y+Z)z, )

so performing the z integration yields

”ljl‘x<(x +y +1—(x +y)°
3

J(x +y +2P2dxdydz =
4

vO0JoO

3
_(x+);+0))dydx

fl1l~-x 1 (x + )’)3) M .
= = =22 Vdydx. .
J G-

v

Again, using the fundamental theorem, the integration yields

(=% x+0=-x) ®*
( 3 12 +'17)dx

(/1 x 1 x*
I Y LR P
0(3 3 12+12)
1 15-10+1 I

1
st0" w10

For improper integrals it is generally sufficient to apply the theorem first
on a bounded region and then take limits. See Example 1, at the end of the
chapter.

ExampLE 2. In the following integral change the order of integration and
evaluate: [§ {2 xy dy dx.

Solution: Theregion in question is shown in Figure 9-5 (see Corollary 1).
In the reverse order, we get

1y 1.3
y 1
xydxdy:J —dy =5.
jﬂjﬂ ] 2 8
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FIGURE 9-5

Exercises for Section 9.2
1. Show that the volume of region A4 in Example 1 is 1/6.

2. Draw the region corresponding to the integral [§ [§" (x + ) dy dx and evaluate.

3. Interchange the order of integration in Exercise 2 and check that the answer is
unaltered.

4. Let A be the region in R® bounded by the planes x = 0, y = 0, z = 2 and the
surface z = x* 4+ y2. Show that

fxdxdydz:Sﬁ.
4

15

9.3 Change of Variables Theorem

Next we turn to a rigorous statement of the change of variables formula for
multiple integrals.

Theorem 3. Let A ¢« R" be an open bounded set with volume and
let g: A — R" be a C' mapping which is one-to-one, Jg(x) # 0 for all
xe A and IJg(x)I, 1/|Jg(x)| are bounded on A. Let B = g(A) and
assume Bhasvolume. For f: B — Rbounded and integrable, f = g|J(g)|

is integrable on A and
jf=j(f°g)l-’gl,
B 4

Lf()’w YDAy dy, —Lf(g(xp- X)) 3o %) dx, - dx,.

(e o ."'M

that is,
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The proof of this theorem requires some subtle manipulations but we can
give a fairly simple intuitive proof as follows.

To begin, let us suppose we isolate a small rectangle S in 4. Then g is
approximately affine near S, so g(S) is approximately a parallelepiped. See
Figure 9-6. If g were affine, the volume of g(S) would be |(det §)| v(S) where
g is the linear part of g. However, g(xy) +. Dg(xO) approximates g well
near x, and is affine, so v(g(S)) = |Jg| v(S). Thus

flg(x) Vgx)l dx ~ f(y) dy

where y = g(x), and so “adding” these infinitesimal quantities gives the
result. '

ExampLE 1. What isthe volume of the parallelepiped spanned by the vectors
1,1,1), 2,3,1), (0,1,1) in R*?

Solution: These vectors are the images of the standard basis under the
linear mapping with matrix

1 2
1 3
11

L =)

By Theorem 3, the volume of the image set B is |det g| times one, the volume
of A (the unit cube in R?). This determinant is easily seen to be 2, so the
volume required is 2.

ExampLe 2. Evaluate [} [§ (x* — y*) dx dy using the change of variables
u=x%—y%v=2xy.

4 ¢ B
N
S g

FIGURE 9-6 Change of coordinates.
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FIGURE 9-7

Solution: Take B = ]0,1[ x ]0,1[ and let g be the map taking (u,) to
the corresponding (x,), so g~ 1(x,y) = (x* — y%,2xy). The region A4 corre-
sponding to B is shown in Figure 9-7. We can check that g: 4 - B is one-
to-one and

Jg(u,w) = ! = !
= T ) T A+
since
o(u,v) 2x —2y
e = = 4(x* + y?),
3y |2y 2x &=+
which is non-zero. Thus by Theorem 3 our integral is*

 dudv 1
X+ P = = | wdudy,
Lu (x +y)4(x2+y2) 4Luuv

Each integral can also be evaluated directly:

11 11 -
JJ(x‘*—y‘*)dxdy=J (——y4)dy=0.
oJo o\S

2 (1 (v2/4)
Jududv:jj ududv=0.
A 0 Jwa)-1

Exercises for Section 9.3
1. Show that Theorem 3 contains the one variable theorem discussed in Section 9.1
as a special case.

2. What is the volume of the parallelepiped spanned by (1,1,1,1), (0,1,1,0), (2,0,3,0),
(1,1,0,1) in R*?

Similarly

* Strictly speaking, one should apply Theorem 3 only to the integral ! f! (x* — y*)dx dy
and then let ¢ — 0 in order to make Jg(u,v) bounded (a refinement shows that this assumption
is actually not necessary).
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r3. Transform [§ [1 (x* + y?) dx dy using the change of variablesx = u + v,y = u — v,

4, Show that the volume of the parallelepiped spanned by vectors vy, ..., v, in R" is
given by |det A;|'/* where A, = {v,v;>.

5, Show that the area of the ellipse x*/a* + y?/b* < 1 is rab by making a change of
variables and reducing the problem to one of finding the area of a circle.

9.4 Polar Coordinates

One standard application of the change of variables formula is to the
evaluation of integrals using polar coordinates. The function which changes
from polar coordinates to the standard rectangular coordinates is g(r,0) =
(r cos G,r sin 8).

cosf —rsinf

Jg(r0) = =rcos?f + rsin?f =r.

singd rcosf

If we consider g to be defined on the set {(r8)|r > 0,0 < 6 < 2z}, then
Jg(r,0) is never zero and g is one-to-one on this set. We leave to the student
the verification that g is one-to-one. Although the image of this function
excludes the set of points on the x-axis with x > 0, this is a set of measure
zero and therefore does not contribute to the value of an integral. (See
Theorem 8.4, and Figure 9-8.)

ExampLE 1. Consider a thin plate in the shape of an annulus with inner
radius 1, outer radius 2, and mass density equal to 1/r* at all points a distance
r from the center. Compute the total mass. See Figure 9-9. If we let B denote
the annulus, then B is the image (except for points on the positive x-axis)
under the polar coordinate map g of 4 = {(r6)|0 < 8 < 2r,1 < r < 2}.

FIGURE 9-8 Polar coordinates.
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x t

FIGURE 9-9

Hence the required mass is given by

j(x2 + y*)73% dx dy =j (1/r®) g dr dO = j 1/r? dr d6
B A A

2n "2 2n
=j‘ j‘llrzdrdﬂ =j‘ (=12 + 1)df = .

0 J1 0

Exercises for Section 9.4

Evaluate the integrals in Exercises 1 and 2 using polar coordinates.

I [pexp(x* + y¥)dxdy  where D = {(x,y) | x** + y* < 1}.

2. [pin(x* + y*)dxdy  whereD = {(x,)|x = 0,y = 0,a®> < x* + y? < b?}.

3. Find the area of a circle of radius r using polar coordinates.

9.5 Spherical Coordinates

The same techniques which were applied to polar coordinates can also be
applied to spherical coordinates. Here, let g(r,0,0) = (rsin ¢ - cos 6,
rsin @ - sin @,r cos ¢) and consider g to be defined on {(r,¢.0) [ r>0,
0 <0< 2n0 < ¢ < n}. See Figure 9-10. The image under g of this set
is all of R? except for the part of the xz-plane where x > 0. But we know
(see Exercise 5, Chapter 8) that this is a set of measure zero and so can be
safely neglected in integrals. The Jacobian determinant is given by

sin@cos@ rcos@cosf —rsingsind

Jg(r,p,0) = |singsin@ rcosepsind rsin ¢ cosf
cos ¢ —rsin @ 0

r?sin @ .
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FIGURE 9-10 Spherical coordinates.

Hence Jg(r,p,0) # 0 in the region specified above; g is also one-to-one on
the region. Therefore the change of variables formula can be used to give

j fx,y,2) dxdy dz
a(4)

=f S(r cos 0 sin @,r sin @ - sin @,r cos @)r? sin ¢ + dr do df .
4

ExampLE 1. Suppose we are given the function f(x,y,z) = x* + y* + z2
and we want to integrate it over the set B = {(x,y,2) | x* + y* + 2% < 1}.
Then B is the image under g of 4 = {(rng,0)|0 <r < 1,0 < 0 < 2z,
0 < ¢ < m} (except for the points of B on the xz-plane where x > 0). Hence

n

J(x2 + ¥y + 2D dx dydz = | r? |Jgl dr do 4o
B Ja

=|r? r?singdrdpd) (sincesing > Oin
J4 therelevant region)
\ f2r (e (1

= er‘*sin(pdrd(pdﬂ

JO JOJO

(f2r *n o
_ J smq;d(pdo

v JO 5

1 [ 4
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Exercises for Section 9.5
1. Show that [, el®**¥*+2%) 4x dy dz = 4n(e — 1)/3 where D is the unit ball in R®.
2. Let D be the unit ball in R®. Bvaluate
' dx dy dz

p /2 + x>+ ¥ + 2*

9.6 Cylindrical Coordinates

Cylindrical coordinates are treated much the same way as polar and spherical
coordinates. The appropriate mapping is g(r,8,2) = (r cos 8,r sin 8,z) on the
set {(r,0,2) [ r> 0,0 < 8 < 2n}. SeeFigure 9-11. The Jacobian is Jg(r,8,2) =
r, so the change of variables theorem becomes

j‘ S(x,y,z) dx dy dz =j‘ SrcosO,rsin 0,2)r dr df dz .
g(4) A

This is useful for triple integrals which have “cylindrical symmetry” as
opposed to “spherical symmetry”’ problems for spherical coordinates.

ExampLE 1. Evaluate [, ze™**7>* dx dy dz over the region
" R={xy2)]|x*+y*<10<z<1}.

Solution: Here we get

1 2n 1 ) T
J- J J ze "rdrdfdz==(1 —e"Y).
z=0 J0=0 Jr=0 2

z

FIGURE 9-11
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Exercises for Section 9.6
1. Evaluate [,z./x* + y*dxdydz where D = {(x,y,2) |1 £ x** + y* < 2,1 €2 < 2}.

JI=3T
2. Work out f f f z(x* + y?) dx dy dz by using cylindrical coordinates.
0J-1J-VTTR2

3. Make a change of variables to evaluate [p exp( )dx dy where D =
o<y x0<x< 1)

5

9.7 A Note on the Lebesgue Integral

Several times in this and the previous chapter, we have hinted of the existence
of another theory,of integration. There is such a theory called the Lebesgue
theory. We shall now discuss the need for this theory and its basic underlying
differences from the Riemann theory.

The need for the Lebesgue integral is largely a technical one. Namely,
some functions might not be Riemann integrable and we might wish to
integrate them anyway. For example, such a function can occur as a limijt
of Riemann integrable functions (a uniform limit of Riemann integrable
functions is Riemann integrable, but a pointwise limit need not be). 1t is
desireable, however, to work with ‘“‘complete” spaces which contain limits
of Cauchy sequences; for example R" in Chapter 2 and ¥(4,R) in Chapter 5.
In the next chapter on Fourier series we shall see a useful space of functions
with the property that convergence in this space may be pointwise but not
necessarily uniform. The Riemann theory is not sufficient to integrate such
limit functions.

Henri Lebesgue’s problem was to find a more general theory of integration
than the Riemann theory and which, moreover was more useful technically.
Actually, this is a simplification—the factual history is more complicated.
For example, his work first received prominence when he used his ideas
to give a characterization of Riemann integrable functions (see Theorem 3,
Chapter 8).*

Here we can give only the briefest glimpse of the ideas. To develop them
fully requires a course in itself (see for example H. L. Royden, Real Analysis).

The basis of Lebesgue’s theory is as follows. For the Riemann integral,
the area under the graph of a function was divided into vertical rectangles
in order to define the integral. But why could it not be divided into horizontal
rectangles just as well? See the illustration in Figure 9-12.

Intuitively this type of subdivision, where we take a partition on the y-axis
rather than the x-axis, ought to yield the same area. But in fact, there is a

* For historical details see, for example, M, Kline, Mathiematical Thought From Ancient to
Modern Times, Oxford (1972).
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y f y

FIGURE 9-12 (a) Riemann approximations.
(b) Lebesgue approximations.

technical difference and Lebesgue’s idea (horizontal rectangles) is what we
want, This also leads to more complicated mathematics and let us now see
why.

Let f: [a,b] - Rand suppose fis bounded and >0.Lety, < y, < +-* <
¥, be a partition of the range of f. Our candidate for an approximating sum
is (look at Figure 9-12 to see this):

Z (¥i+1 — ¥ - (length of the “interval” {x [ Jx) =y .

The technical point is that {x | f(x) = y;} = I, might be a complicated set;
after all the Riemann theory can already handle “‘decent” functions, so we
have to be prepared to handle fairly complex ones. Thus our problem is that
if I, is a eomplicated set, how do we compute its length? This is where a
main part of the Lebesgue theory comes in. One first has to develop the
idea of the measure (or length) of a set. This turns out to be a bit complicated,
but once this measure theory is developed, one can then proceed with the
study of the Lebesgue approximating sums given above. Note that we
already have seen one aspect of “measure” in Chapter 8 when we studied
sets of measure zero. This concept is taken directly from the Lebesgue theory.

The conclusion is, therefore, that with considerably more eflort, a more
comprehensive theory of integration (which includes the Riemann theory as
a special case) is possible. In more advanced areas of mathematics, the
technical rewards are more than worth the extra effort involved.

Theorem Proofs for Chapter 9

Theorem 1. (i) Let A be the rectangle described by a < x < b, ¢ < y < d, and let
[ A — R be continuous. Then

] d
f f=f (ff(x,y) dy) dx
A a c
d ]
=f (ff(x,y) dx) dy .
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(ti) Suppose in (i) that f is integrable and the function f_: [c,d] — R defined by f(y) =
J(x,) is imtegrable for each fixed x € [a,b]. Then

b d
Lf =f (ff(x,y) dy) dx .

One can similarly assume that

b
f S(x,y) dx

d b
Lf =f (ff(x,y) dx) dy:

Proof: As (i) is a special case of (ii), we only need to prove (if). Let g:labp]l e R -R
be the function defined by

exists for each y and obtain

d
glx) = ff (x,y) dy .

We must show that g is integrable over [a,b] and that

b
ff=fg(X)dX~
A a

Suppose a = xy < x; < <x,=band c=y, <y, <+ <y, =d are par-
titions of the intervals [a,b] and [c,d]. Denote by P, the partition of [a,b] given by
the sets V; = [x,_,,x,], denote by P, the partition of [c,d] given by the sets W, =
[¥;-1»;); and denote by P, the partition of 4 given by the sets

Su = [x‘_l,x‘] X [J’j—uJ’j] .

L(f;P,) = ZJ ms, ([ (S;;)

= Z (Z g (1) W,))v( V)
i

where mg(/f) is the minimum (inf) of " on the set S. For x e ¥, we have m;, &) < my (1),
where f is defined by f,(») = f(x,y). Hence

Then

d
> ms (W) < 3 my (fI(W) sff,(y) dy = g(x). ,
y) i ¢
As this inequality holds for any x € V,, we get
S s, (S o(W)) < my,(g) -
7

Therefore )
LUPy) < D my(gW(V) < Lig,Py) -
i

From this and from a similar argument for upper bounds we obtain the inequalities

L(f,P4) < L{g.Prayy) < Ulg,Puy) < U(SLPY) .
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Since f is integrable over A4, the above inequalities show that g is integrable and

b d b
(s}
a \Je a A

Using the same argument as above, we can show that if we assume [% f(x,y) dx exists
for each y, we get
ds b
f S =f (ff(m’) dX> dy.
A4 c a

Corollary 1. Let @, y: [a,b] = R be continuous maps such that ¢(x) < y(x) for all
xelablandlet A = {(x,3)| a < x < byp(x) < y < Y(x)}. Let [ 4 = R be continuous
or piecewise continuous. Then

b Wi(x) '
ff =f (f Jx.y) dy) dx .
A a (x)

Proof: Let S = [a,b] x [c,d] be a closed rectangle enclosing 4 and extend f to S
by setting it equal to 0 on S\A. The two sets graph(p) = {(x,p(x))| x € [a,b]} and
graph(y) = {(c(x)) |x € [a,b]} are ‘(by Exercise 23, Chapter 8) of measure zero.
Thus the set of discontinuities of f defined on S is of measure zero, and thus f is
integrable over S. Also for any x, f is continuous on [c,d], except possibly at ¢(x) and
Y(x), and so f, is integrable for any x € [a,b]. Thus we may apply Theorem 1 to get

b f*d b Yr(x)
ff=ff=f ff,(y)dydx =f( L(y)dy)dx. I
A S ade a p(x)

The proof of Theorem 2 is entirely analogous to the above proof, and so it will be left
as an exercise.

We therefore turn to Theorem 3. The proof of this can be very laborious if not dealt
with effectively. In particular the idea given in the text, p. 307 is hard to make precise
if we interpret it too literally. The proof we give here is due to J. Schwartz in the
““American Mathematical Monthly,” 61 (1954) 81-85.

Theorem 3. Let A < R" be an open bounded set with volume and let g: A — R" be a
C! mapping which is one-to-one, Jg(x) # 0 for all xe A and |Jg(x), 1/Jg(x)| are
bounded on A. Let B = g(A) (an open set by the inverse function theorem) and assume B
has volume. For f: B — R bounded and integrable, f o g |J(g)| is integrable on A and

ff=f(f°g)ngl
B A

AG1se - s
J‘f(ylv . -’yn) dyl ) .’dyn =J‘ f(g(xlr . 'yxn))"(gl——'”g'ldxli e ’dxn .
B A

(x50 + X,,)

that is

Note: By a careful analysis of the proof one can show that f and |Jgl, |[Jg|~! need
not be assumed bounded (see Section 8.7 for improper integrals and see also the remark
on p. 326).
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The first stage of the proof consists of establishing our formula when g = L is a
linear map, in which case JL = det L. This yields the geometric interpretation of
det L: it is the factor by which volumes are changed under the transformation L.

Since we do not want to assume this from linear algebra, we will go through the proof
in some detail. We do need, however, to recall these two standard facts from linear
algebra: (i) det TS = det T det S, and, (i) any matrix is a product of elementary
matrices (see M. O'Nan, Linear Algebra, pages 91 and 241).

Lemma 1. . [fL: R" — R"is a linear map and A < R" is a set which has volume (that is,
[a 14 exists), then the volume of L(A) is |det L] - v(A) ie. [ymls=[4ldetL]. (Sec
Figure 9-13.)

Proof: We will first consider the special case where A is a rectangle and L is a linear
map whose matrix in: terms of the standard basis is of one of-the following two types:

10 o /1() 0)
01 01
1
1 1
L, = c or L,= 1
10 10
\0 . () ]y \0 - 01)

(The first matrix is obtained from the identity matrix by replacing a single diagonal 1
by a constant c¢. The second matrix is obtained from the identity matrix by writing a
single one anywhere off the diagonal. These are called the elementary matrices.)

L Y
T
‘i L(A)

al e
7/

FIGURE 9-13 Image of a rectangle
under a linear map.
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2 !' > o AL VAR
(L0 0,0 L0

(2) (b)

FIGURE 9-14 Image of a rectangle
under an elementary matrix L.

(0 0)

If4 = [a;,b,] x -+ x [a,b,] and c s in the ith row, then
Li(4) = [a,by] x <+ x [eaneh] x -+ x [ayb,] ,

so that obviously the volume of L (4) = v(L,(4)) = lc| v(4) = |det L,] v(4).
Now if the 1 off the diagonal is in the (i,f) position, then

Ly(A) = {01, + Xm0+ XpX e 1ae + X0 | X, € [auby ]}

for 1 €k < n. (See Figure 9-14.) It is clear from the illustration that the volume in
Figure 9-14b is the same as in Figure 9-14a, because they both have the same base and
the same height. This fact can be verified analytically as follows. The set L,(4) can be
broken up into three regions:

" {(xl,. cwXim 1% F XX s %) | X € [ag,0,]

forl <k< and g ta<x +x<aq +by}

{15+ oXim 10X XX 0w 10e - %) | Xe € [a00]

fori<k<n and @ +b,<x'+x<a +b

{Gepe X1y + XX g g5 Xg) l x, € [a,b;]

forl <k<n and g+ b <x+x<b+bj}.

By Fubini’s theorem, the volume of the first set is
by —a) by ~ a- Wby = A ) By~ 4o Yy — apey)

ay+ by agtaytby—x;
(b, — agf (f 1 dx,> dx,
a;+aj ay
Now by the fundamental theorem

ap+by aytaptby—x a;+ by
f (J‘ 1 dxj> dx, =f (a; + by — x;) dx;
aytay aj aytay

= (a; + bj)(bj - a_]) - é(a‘ + bj)z - %(a‘ + aj)z

= '%(bj - aj)z .
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Thus the volume of the first set is

(by —ay) (bioy ~ @ Wby — apeq) o (by-y - aj-1)
(bjey — aper) by — an)%(bj - 01)2

We can perform a similar integration over the third set to find that its volume is the
same as that of the first. The second set is a rectangle with volume

(by — ay)- - (bymy — a1 Mbyur — a:+1)"'(b1-1 - aj—l)(bj+1 — Q)
(b, — a)a; + b, — a — b)b; — aj) .

The volume of L,(4) = sum of the above three volumes = (b; — a;)*-- (b, — a,),
that is, the same as that of the rectangle [a,,b,] X -+ x [a,b,]. Thus we have
v(L,(A)) = |det L,| v(A), since det L, = 1. :

Now let 4 be an arbitrary set with volume and let L; be one of the elementary matrices.
Assume that det L; # 0 (that is, ¢ s 0 if L; is an elementary matrix of the first type).
Let S be a rectangle enclosing 4 and let P be a partition of é1 into subrectangles
Sy, ..., Sy, such that

U(L,P) — o(4) < e2|det L))" and  o(d) — L1 ,P) < e |det L))"

Then if we consider the sets V, = U {S;]S; = 4} and W, = U {S;|S;n 4 # &},
we have the result for rectangles that v(L{V})) = |det Lj| L(1,,P) and v(L (W) =
Jdet L} U(14,P). So u(L(W,)) — v(L(V))) < &, and thus L(4) has volume and v(L(4)) =
|det L v(4). If det L, = 0, that is L, is a matrix of the first kind with ¢ == 0, then
(L{(S)) = 0 for any rectangles S, so v(L(4)) = 0 for any set 4 with volume.

Now let L be any linear map and let 4 be any set with volume. From fact (ii) men-
tioned earlier, we can write L = L,L, - - L,, where the L; are elementary matrices.
By repeated application of what we have proved above, it follows that L(4) has volume
and

v(L(A4)) = [det L,| |det L,| -+ -|det L,| v(A4) = |det L| v(4). §

Lemma2. Ifthe theorem is true for the functionf = 1,then it is true for any integrable f.

Progf: 1If the theorem is true for /" = 1, it is true for any constant function (why?).
Now let f be any integrable function on g(4). Let S be a rectangle enclosing g(4) and let
P be a partition of g(4) into rectangles S, ..., Sy. Recall that we define mg(f) =
inf{f(x)] x € S;}. Denote by mg,(f) the constant function on §; with constant value
ms(f). Then

N
L(f,P) st‘(f w(sS) Z f mg,(f) '

N
Z f (ng(f)og) Wgl < Z f (fog) gl
i=1Jg=4(5) =1

~4Sy

=f (f=g)Jgl =f(f°g) I7gl
~¥S) A

Hence

f fSJ(fcg)ngl .
o(4) A
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A similar argument with Mz (/) = sup{f(x)| x € S;} shows that

f f>f(f°g) gl
(4) A

f f=f(f°g)ngI- i
a(A) A

Lemma 3. The theorem is true if g is a linear transformation.

f 1=f [det gl =f Vgl
{4} A A

since g = Dg. By Lemma 2,

so that

Proof: By Lemmal,

f f=f(f°g)ngI- i
a(A) 4

One more key observation is given in Lemma 4.

Lemma 4. If the theorem is true for g: A — R" and for h: B — R", where g(4) = B,
then the theorem holds for hog: A — R".

Progf: Make the following computation:

” r
f f= f—.:f (S h)\Th
heg(A) J(g(A)) alA)

"

= | (fohog)lJhleg)lJgl
4

"

=\ (folhoghlU(hog). &
A

o

Some special notations will enable our proof to run more smoothly. If x € R*, so that
X = (X1, < X,), WE put |x] = max |x]. This “norm™ has the convenient property that
B Lign

in terms of it, a cube with center p and side of length 2s can be characterized by the
restriction |x — p| < 5. If 4: R" — R" is the linear transformation represented by the
matrix a;;, so that

Alx) = Alxy,. . x,) = ( Za”xj,. . .,Za,,]x]> s
j=1

=1
we put

i
Al = max a; .
l l 15ign 1___le ”l

Thus, |4(x)l < |4l ixl. We also introduce the Jacobian matrix j(x) = (j,{(x)) of the
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transformation g(x) = (g,(x) - - - g,(x)) by putting

. 9g,(x)
Julx) = ——.
t axk
If C is a cube in the open set 4, such that C is the set of all x characterized by
a condition of the form [x ~ p| < s, then v(C) = (25)". We have, by the mean-value
theorem,

o) = 910) = Yl + 0% = poss = 1),
where 0 < 0,(x) < 1. It follows immediately that
lgt) — gp)l < s max |jy)l ;
that is, g(C) is entirely contained in the cube defined by
) |z = g(p) < s max L) »

so we see that if g(C) has volume, then

wg(C) < { max | ()" v(C)} . ' )
To ensure that g(C) has volume, we prove another lemma.

Lemma 5. If h: U c R"— R" is a C' map which is one-to-one, Jh{x) # 0, U is a
bounded open set, and C is a set with volume such that cl(Cy < U, then lC) has volume.

Progf: Itis sufficient to show that the boundary bd(h(C)) has content zero. First show
that bd(h(C)) = h(bd(C)). Indeed, let x e bd(K{C)). Then to show x e h(bd(C)), let
y = h™'(x). Then we must show y € bd(C). Let V be a neighborhood of y, and suppose
V < U. Then h(V) is an open neighborhood of x, since #~! is continuous. Thus, k(V)
contains points of A(C) and R"\i(C), since x € bd(h(C)). Then as h is one-to-one, V
contains points of 4 and R"\C, so y e bd(C). Applying this argument to h™!, we see
that in fact bd(A(C)) = A(bd(C)).

To show that i(bd(C)) has volume zero, given & > 0, cover bd(C) with rectangles
B,, ..., By of total volume < & Equation 1 showed that /{bd(C)) lies in a covering by
rectangles with total volume (max [Jh(x))e. Here the maximum is over B; U -+ U By.
This shows that A(bd(C)) has volume zero. §

By Lemma 3 we see that if 4 is a linear transformation and $ has volume, then
(A~ YS)) = det{A™ Hu(S)

(take f = 1 on 47%(S), f/ = 0 on the complement, and apply Lemma 3). Now in Eq. 1
let S = g(C) which we now know has volume; then since

3

[det(4 ") v(g(C)) < {I;leacx 4~ ‘j(y)l},v(C) ,

we obtain

00 < et fmax L4~ 0 0. e
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Now, let the cube C be subdivided into a finite set C, - - - C); of non-overlapping cubes
with centers x, - « - x,, and,suppose that § is greater than the length of a side of any of
them. Apply Eq. 2 to each ‘of Cy - C,, taking, however, 4 = j(x,) in applying Eq. 2
to C;; then add. This gives

‘M n
wg(C)) Zldet(J(xx {I;Lacx |j"‘(x:)i(J’)|}v(C:)~

Now, since j(x) is a continuous (matrix-valued) function, j~'(z)i(y) approaches the
identity matrix §,; as z approaches y, and hence

{max i~ ‘(xi)i(J’)I} <14 n(6),
yely
where 1(5) approaches zero with 8. This gives

M
wg(C) < [1 + n(8)] Y Idet(i(x))l (Cy) ;
i=1

as § approaches zero, the sum on the right approaches [ |Jg(x)l dx, and the inequality
becomes

wg(C) SJ [Jglx) dx . ©)
c

If we examine the proof éf Lemma 2 more closely and remember f = 0 outside B we
get from Eq. 3 that
f fSJ(fcg)ngl‘ @
o A

” (4)

Actually, Eq. 4 is enough for the theorem because Eq. 4 can be applied equally well to
-1
g~ toget

a(4)

f(fog) IJgl <f (fogog™Ygog™'l-Wg™|
A -

ie.

ff"gl-’gl <f /. )
A o(4)

Combining Egs. 4 and 5 gives the theorem. J§

Worked Examples for Chapter 9
1. Use the change of variables formula and polar coordinates to show that
f e % dx = \/;

(the function e~ is called the Gaussian function; see Figure 9-15).
Solution: To use polar coordinates, we want to employ the expression x? + y?.
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I X
FIGURE 9-15 Gaussian function.

Therefore let us consider '
I, =f e ¥V dx dy
An

where A4, is the ciréle centered at the origin of radius b. Thus

b 2
I, =f f e " rdfdr
r=0 0=0

which we evaluate by iterated integrals to obtain

b

I, = ZRJ‘ re " dr = n(l — e”%)
r=0

since

%(e”z) = ~2re”",

On the other hand, we want to relate I, to
b
f e~ dx .
-6
To sec how this is accomplished, note that the improper integral
f e F P dx dy = limit n(l — e %) = x.
R? b+ o0

Since the integral exists and e~ ** =%

323

2 0, we can evaluate the improper integral any

way we please (Theorem 7, Chapter 8). Let us evaluate [ e™**~* dx dy using the

rectangle [ —b,b7% = [—b,b] x [~b,b]. Thus

f e Y dxdy = limitf e dx dy
R? [—bbT?

b0

but

v b b 2
f eV dx dy = (J‘ e dx)(f e dy) = (J‘ e dx)
[=b,b12 -5 AN S -b

by Fubini’s theorem, and the fact that e=**=»* = ¢~*¢~*. Hence

b 2
limit (J‘ e dx) = 7.
b+ o0 —-b

3
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Thus, as e™** > 0, we have

o
f e Fdx = /n
-
as required.

2. (Differentiation under the integral sign.) Suppose f: [a,b] x [¢,d] — Ris continuous
and dffdy exists and is continuous on [a,b] x [c,d]. Let

b
F(y) =ff (x.y) dx

Then prove F is differentiable and

by
F(y) =f (.;g () dx

a

Solution: Consider

Fy + B) ~ F(y) f o

T gy ) ax| =

Py + By = flxy) o
L — E;(X,y) dx

af af
f y(x, o) = 5;(x,y) dx
for some ¢, , between y and y -+ h, by the mean-value theorem. However, df/dy is
continuous and hence uniformly continuous on [a,b] x [c,d]. Thus given & > 0,
choose é > 0 such that
’ o o
‘ (xo:J’o) y (xiy) ‘ <

(b —a
if Ix — xgl < dand |y — ygl < 8. Therefore let || < 6. Then

h) — R 9
F(J’+2 (y)_f T (o) dx

g

In part, this result justifies differentiation under the integral sign. There are analogous
theorems for improper integrals.

Y e - (x )

dx<‘[;'—"ii—a(b-—a)=5.

3. Compute the volume of the ball of radius r in R* and center the origin (that is, of the
set {x e R"| x| < r}).
Solution: Use induction on the dimension #. Of course in R the ball is simply the
open interval J—r,;[ and has volume 2r. Suppose we have computed the volume
of the n — 1 ball of radius r to be a,_ """ (at first, one guesses the answer will be of
this form; this is reasonable since the n — 1 ball is an n — 1 dimensional object).
Then, since the boundary of the n-ball has measure zero, we may apply Fubini’s
theorem. For each fixed x,, 0 < x, < r, the cross section of the n-ball of radius r,
which is denoted as B(n,r), is

{(xn- . .,x,‘_,,x,,)le +o xr?-d < r2 - xr?} 3



WORKED EXAMPLES FOR CHAPTER 9 325

which is an (n — 1)-ball of radius (r* — x2)!/2. Hence Fubini’s theorem allows us

to write
r
f 1 =f (f dx, - - - dx,,_1>dx,,
Bln,r) - Bn—1.(r2-2)1/2)

ettt "

r o
=J‘ an—l((rz - -x,z|)”2)"_x dx,, .

Now let x, = rsin@ for 0 <0 < #/2, and hence (r* — x2)!/* = rcos 0 and
dx,/d0 = rcos 8 > 0 on ]0,7/2[. Thus

J‘ I =J‘ an—l((rz - x'?)l/Z)n—l dxn,
Bli,r)

-r

= ZJ - ((r? = XY dx,

0

nj2
= ZJ‘ a,_{rcos 6)"'r cos 0 d6

0

nj2
= 2a,_ ,r"f cos” 8 do

[¢]
nj2
= qr" where g, = 2a,,_,f cos" 0d6 .
[¢]
Using elementary calculus, one finds
(n—1)n-3)--
/2 5 m-“n(n —7) n odd Foe
f cos" 0d0 =
0 n—-1n-3: = .
e e neven .
M2 2
Hence we have
v(B(1,r)) = 2r
1
4 )
WBB,)) = 2a; 1 (;) = <-§>nr3 ¢
oBlés) =2-a ‘,‘4‘<3 (T
e 8/ \2) 2

o(BG,r) = 2-a, 1’

e (9 -

in
Cf{\
o
NG
]
N
Gl o
SN
]
1Y
Tin
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4. Improve the change of variables formula by replacing “A4 is open” with “A has
volume.”
Solution: There are two ways in which this can be done, and both shall be given as
theorems. N

Theorem. Let g: D < R" — R" be of class C', where D is open. Furthermore, let g
be one-to-one and Jg(x) # 0 for all xe D. Let B = g(D). Suppose D and B have
volume. Let A = B have volume and f: A — R be integrable. Then

f (f°g)IJgI=ff-
=14 4
Proof: Extend f to B by letting f = 0 outside 4. Then by Theorem 3,

f(ft’g) /gl =ff.
D B

Now since f = 0 outside 4, fog is zero outside g~'(A4), and our conclusion
follows. §

Theorem. Let B have volume and f: B — R be integrable. Let A have volume and
suppose g:int(4) = R" — int(B) = R" is C', one-to-one, onto, and Jg(x) # 0 for
all xe A. Then if f+ B — R is integrable,

ff=ff°gngl.
B A

Proof: Since B has volume, and bd(int(B)) < bd(B), int(B) has volume (since
bd(B) has measure zero). Also, int(B) U ((bd(B)) n B) = B, and so by Theorem 8,

Chaptel 8,
f f ff‘
ial(B) B

Hence we get the result by Theorem 3. §

Notice that the conditions on g are equivalent to the existence of a C' inverse for
g (by the inverse function theorem). .

Remarks: In these two theorems one can show that Jg(x) # 0 can be dropped as
a hypothesis (then g does not necessarily have a C' inverse). This is outlined in Exer-
cise 5. Exercise 15 asks the reader to prove the change of variables formula for
improper integrals. This becomes fairly easy using the usual change of variables
formula and our discussion of improper integrals from Chapter 8.

Exercises for Chapter 9
1. Use cylindrical coordinates g(r,8,z) = (r cos 8,r sin 6,z) on
{(r.0,2) [ r>00<0 < 2n}

to calculate the integral over 4 = {(x,y.2) | x* 4+ y* < Llzl < 1} of f(x,,2) =
(* + y3)2
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2. Give a counter example to show that the change of variables formula does not hold
if g is not one-to-one, even though Jg(x) # 0. [Hint: take f = 1 and g(x,y) =
(e* cos y,e* sin y).]

3. Evaluate the following integrals.
(a) [, x*y?dxdy, where 4 = {{(x3)|0 <x <0<y <2+ xx <1}

(b) [, sin(x?* + y?)dx dy, where 4 is the unit disc.

(c) _L: m dx dy dz.

(d) 4 y/</x dx dy, where A is the unit square = {(x,y) [0<x<10<y<1}
{€) J4xdxdy,where 4 = {(x,y)|0 < x < ﬁ,O <y < sin x?}.

() [5for*drdd. .

@ L) J7 (2 + 3y*x) dy dx.

4. Compute the volume of the following sets:
(a) A tetrahedron with the base area 4 and height h;
{b) A cone with base radius r, and height ho;
© {y)|x* <y <1 —x%;
@ {2 | x>+ >+ 22 < 1 and  z < 1/2}.

5. S{n‘d 's Theorem. The purpose of this problem is to prove a simplified version of a
fairly difficult theorem known as Sard’s theorem.* In our case the statement of the
theorem is as follows.

Theorem. Let g: A = R" — R" be of class C', where A is open. Let B =
{x e A|Jg(x) = 0}. Then g(B) has measure zero.

Of course the set B in this theorem need not have measure zero (to see this take g
to be a constant mapping). Before outlining the proof, we ask the reader to assume
the result and show that in Theorem 3, the assumption that Jg(x) # 0 can be
omitted (provided the (open) set of points where Jg(x) # 0 has volume).

The theorem is proved as follows. First show that if U is a closed rectangle in A4,
it suffices to show that g(U n B) has measure zero (show that g(B) is the countable
union of these intersections). In fact, we shall show g(U ~ B) has content zero.

Next, prove these two facts. For any ¢ > 0, there is a § > 0, such that for
x,ye U, x — y|| <, wehave

flglx) — g(y) — Dglx)- (x — p) < ellx -yl
Also there is an M such that
fgx) — gyl < M}y — x|} .

Let U have sides of length . Choose N such that if U is divided into N" rectangles
(of sides [/N') and S is such a rectangle, then for x, y € S the above inequalities hold.
(Choose N = [/8). Suppose x € S n B. Then find a hyperplane H in R" (thus H is

* A general treatment can be found in Milnor, Topology from the Differentiable Viewpoint, or
in Sternberg, Lectures on Differentiable Geometry.
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some (n — 1)-dimensional subspace) such that

{Dglx)y ~ x)| ye S} = V.
Next show that {g(y)| y €S} lies in a cylinder of height <2¢n(//N) and base
1 — 1 cube of side <2M n(l/N). Hence show that g(U n B) lies in N" rectangles of
total volume <g K, where K = 2"M"~! (nf'l", a constant independent of N. This
will prove the result.
6. Find [, xy sin(x* — y*)dx dy, where
A={xn|0<y<lx>y ad x*-p*<l}.

7. Prove:
(a) If A has volume and 4 is defined as

A= inf{ Z (S)) | $1,3.. . . is a countable cover of 4 by open rectangles} ,
i=1

then we have v(4) = A.
(b) Let 4 be a bounded set with volume and let 4, be a sequence of sets with
volume such that the A; are non-overlapping (that is, have non-intersecting

interiors) and such that
Then show that

8. (a) If 14 =« R* - Jab[ and v: B = R? — Jcd[ are two fuuctions of class C'
from the open sets 4 and B onto the intervals Ja,b[ and Jed[ such that
u(x,y) = u(x',y") and v(x,y) = v(x',y") only when (x,y) = (x',y’), and

du dv  Ovou

R
ox dy 6x6y?ts

at any point (x,y))eA N B, W = {(x,y) |a < ulx,y) < b,e < v(x,y) < d}, and
if 1 is an integrable function on W, then show that

d b du v Ovdu :
' (2 O
Lf ”f (2) <ax N ax@y) udo

(b) Use (a) to evaluate
f (x* + yHydxdy,
w

where W = {(x,y)|x > 0,y > 0,1 < x* — y* < Lxy < 1}.

9. Suppose f: Ja,b[ = R and g: Je,d[ = R are two integrable functions and define
FGe.y) = f(x), 3(x,p) = g(») (assume f and g are bounded). Then prove

b 'd
f Jxp)G(x.y) dx dy = (ff (x) dx)(f g(x) dx) .
{41 [e,d) a .
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10. Use Fubini’s theorem and the fundamental theorem of calculus to give an alterna~
tive proof of Theorem 9, Chapter 6. [Hint: If 8*(/x, 8x; > 9%/dx, dx,, integrate
the difference over a small rectangle.]

I1. Let S = {(x,y) e R? | x rational, 0 < x < 1, and write x = p/m in lowest form,
y = kfm, k = 1,...,m — 1}. Then show that the interated integral

f f lgdydx =0
[
[0,11%[0,1}

12. If A is a bounded set with volume and 4, is a sequence of sets with volume such that
Ay ® A4, and 4,V A4, U= 4, then v(4) — v(4) as i - oo. [Hint: Use
Exercise 7 or the monotone convergence theorem].

but that

doesn’t exist.

13. Suppose C = 4 x B, v(C) = 0, and

I (y) = 1, if(xyeC,
eV = 0, otherwise,

is integrable over B for each x € 4. Let C, = {y € B| (x,y) € C}. Then show C, has
volume zero in A for all x except possibly a set of measure zero. Give an example
where v(C,) # 0 for some x.

14. (a) Prove Theorem 2. [Hint: As in Theorem 1, it suffices to prove (ii). Do this in
exactly the same way as for Theorem 1.]

(b) Prove the following generalization of Corollary 1. Let 4 = R" be a closed
rectangle and let p: 4 <« R"— R" and y: 4 < R"— R" be continuous
functions,such that (x) < Y (x)forallxe 4,1 < j < m.LetD = {(x,y)e R" x
R"|xe4 2 x) < ¥, < Yylx),l <j<m). See Figure 9-16. Let f: 4 - R

graph of ¢

/

FIGURE 9-16 The set D.
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15.
s 16.

18.

¢ 20.
21,

22.

w23.

be continuous, define B, = R" by
Bx = {y € lRmI(pj(x) s yj s l/I,]('x):l S ] < m} s

define f,: B, = R"— R by f(»), and define g: 4 = R"— R by g(x) = [, /..
Then g is integrable over Aand [, g = [, f.

Investigate possible generalizations of Theorem 3 to unbounded regions.

For what values of p is r” integrable in R?, where

r=/xt 4yt 4220

. Let f: [0,1] - R,

n*, i x=1/n,
o) = {o, i xe[01],x# In.
Prove f is integrable and [ f(x) dx = 0. (Warning: f is not bounded.)
Let 4 be a closed rectangle in R". Let C < 4 have volume. Prove that for any

& > 0 there is a compact set K < C such that y(C\K) < ¢, and a compact set
L o C such that o(L\C) < &.

.Let A= R' B< R" have volume and f: 4 — R, g: B — R integrable. Let

F(x,y) = f(x) + g(y). Show

f Flx,y) dx dy =<f f>v(B) + (Jg>v(f1) .
AXDB A B

Compute the area of the region D = {(x,y)| 1 € x <3x* <y < x* + 1}.

Suppose g: R — R is differentiable everywhere, and that |g'(x)} < M for all xe R.
Show that, if ¢ is small enough, the function f which is defined by f(x) = x + eg(x)
is one-to-one..

Let f and g be two integrable real-valued functions on [a,b]. Let

_ ), i) = g(x)
h(x) = max(f(x),g(x)) = {g(x), i 1%) < g0)

Show that h(x) is integrable.
Let fi(x) = Y™ _ (1/2™sin mx be defined for all x € R.

=1

(a) Show 1},’.".‘& J{x) exists. [Hint: Show f(x) is a Cauchy sequence.]
(b) Show the sequence converges uniformly.

(c) Show [2* (n@it f,,(t)> dt = 0.

. True or False

{a) If fis a continuous function on [0,1], then f is bounded on [0,1].

(b) If f: S — R is a continuous functjon, where S is a compact subset of R, then
J(S) is compact.

{¢) An integrable function on [0,1] must be continuous on [0,1].
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(d) If U and V are open subsets of R, then U x V = {(x,y)| x € U,y e V'} is open
in B2

{e) Iff and g are integrable functions on [a,b], then f/ — 2g is integrable on [a,b].

(f) Any bounded sequence in R" must have a convergent subsequence.

{(g) If f is a continuous real-valued function on [0,1] such that f(x) = 0 for all

xe[0,1] and [§ f{x)dx = 0, then f{x) = 0 for all xe [0,1].

If f is an infinitely differentiable real-valued function on R, then f must have a

power series expansion about each point of R.

() X1, fis 3 f3, - - . are all continuous real-valued functions on [0,1] such that
flx) = lj_xnlt J(x) for each x € [0,1], then f}, f5, f3, - - . converges to f uniformly
on [0,1].

(§) Hagay,a;5...15a sequence of real numbers and r is the radlus of convergence
of po° ax, then L2, aa" converges.

() Iffy, fos fas o - converges to f uniformly on [a,b] and if f, is integrable for each
n=1,2,3,.%.,then f is integrable on [a,b].

M Iffi,fofs. .. converges to f uniformly on [a,b] and if £, is differentiable on
Jabl foreachn = 1,2, 3, ..., then f is differentiable on Ja,b[.

(m) An open connected subset of R" is arcwise connected.

(n) If f is a differentiable real-valued function on J0,1[ and f(1/2) = f(x) for all
x € J0,1[, then f'(1/2) = 0.

(0) Iffisan integrable function on[0,1] and & > 0, then there exists a step function
g on [0,1] such that {3 |/ — gl < e.

(p) Every closed and bounded subset of R contains its least upper bound.

{(q) If f(x) has a power series expansion on }~r,r[, then f is differentiable on
J—ryf.

(r) If f is integrable on [a,b] and on [b,c], where a < b < ¢, then f is integrable
on [a,c].

(s) Iff:R"— R" is continuous and § is closed in R™, then f~*(S) is closed in R".

(t) If a series Z“‘ a; converges conditionally, then the sequence of partial sums
Z;‘_ a; is bounded.

(u) Iffisacontinuous real-valued function on Ja,b[ then there existsa dlﬂ'erentlable
function F on Ja,b[ such that f = F' on Ja,b[.

=

(h

=

25. Suppose that f; f;, f2, f3, - . - are continuous real-valued functions on [0,1] and
suppose f, — f uniformly on [0,1] as n — co. Prove that each of |f1, |f,], |/l
[f3l, . . . is integrable on [0,1] and that [} |f,| — [5 |/] asn = co.

26. Compute 1.
(a) limit(1 4 2% + - + n¥Yr** !, where k > 0. '
Hn—+o

1 1 1
b) limit| ——r- —). -
(),}Tm<n+l+n+2+ +2;1) A

27. Show, if /"(x) > 0 for all x that f is convex upward, which means

f<x + y) ICRSIO}
2 2
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29.

s 30.

31

» 32.

33.

34,

» 35,

[Hint: Consider the auxiliary function G(x) = f(x ; y) J (x) 42‘f (y) for

fixed y.]

. Suppose f(x) is continuous on ]—1,1[, f(0) = 0 and f(x) # 0 il x # 0. Prove:
log(l +
limit M exists. It equals what?
x50 Sx)

Let C be a cube in R, f, g: C — R bounded and integrable. Suppose f(x) < g(x)
for all x in a dense subset § of C (that s, cl(S) = C). Show that [ f < [, g.

Suppose A < R"and A4 has zero volume. Suppose f: 4 — Risa bounded function.
Prove f is integrable and [, /' = 0.

Consider the following theorem.

Theorem. Let A be an open subset of R", ¢: A — R" a one-to-one continuously
differentiable map whose jacobian J¢ is nowhere zero on A. Suppose that the function
[ @(A) = R is continuous and is zero outside a compact subset of p(A4) and that
Jotn [exists. Then [ [ = [, ([ ¢) [Tl

Suppose A;,f = 1,2, . .. are open subsets of R" such that the theorem is true for
each 4, and the restriction of ¢ to 4;. Let 4 = | J4,. Show that the theorem is true
for A and ¢.

Suppose f is bounded, defined on [0,6], b > 0 and suppose [*f exists for all
0 < ¢ < b. Show [} f exists.

Suppose S = R"has volume and ¢ € R. Define 1S = {(rx,,.. .tx,) | (x,,. . .,x,) € S}
Show ¢S has volume and vol(tS) = |¢|" vol(S). [Hint: define the map ¢: (y1,. . ,y,) =
N/t wyt)]

True or False If false give a counterexample; if true give a reason.

(a) Suppose f is integrable on A4 and g is-a function on A4 such that g < f. Then g
is also integrable on A. .

Suppose A has volume and [ is continuous on 4. Then {, f exists.

Suppose A has volume and [, /" exists. Then f is continuous on 4. ‘
Any bounded subset of R? has zero volume when considered as a subset of R®.
Suppose I = [0,1], ¢, and ¢, are continuous functions: I — R with ¢,(x) <
@a(x) for. all xel. Then the set S = {(x,y) |xel, ¢,(x) <y < p,(x)} has
volume.

b
(c
d
(e

—_— e O

u)

i 1
Compute limit log<1 + )
=



Chapter I1\J

Fourier
Analysis

Fourier analysis arose historically in connection with problems
of mathematical physics such as heat conduction and wave motion. This
subject has now evolved into a vast theory with many applications, both
mathematical and physical. This chapter is intended to give a brief but basic
working knowledge of some Fourier methods, to introduce the student to
the general theory,* and to delineate some fundamental applications.

Probably the best motivation for the study of Fourier analysis is obtained
by examining a vibrating string. Although this topic is the subject of a
detailed discussion later, here we are primarily interested in an heuristic
approach. Further applications (for example, to quantum mechanics) are
presented in later sections.

Consider then, a string of length / with clamped ends and which is free to
vibrate when plucked, The position (vertical displacement) of the string is
represented by a function y(¢,x), where ¢ is the time and x € [0,/]. See Figure
10-1. It is a fact from elementary physics that y obeys the wave equation

?y %y ,
2~ ¢ ax?
where c is a constant determined by the nature of the string and the tension
in it,} That the string has clamped ends entails that y(t,0) = y(t,l}) = 0 for
all ¢,
* A thorough treatment of the general theory requires concepts which are beyond the scope of
this book. For this more advanced work, we refer the reader to books such as Zemanian,
Distribution Theory and Transform Analysis, or to Rudin, Real and Complex Analysis.
t For a discussion of this point and other physical situations in which the wave equation arises
(for example, sound waves, water waves) see R. P. Feynman, R. B. Leighton, and M, Sands,
The Feyriman Lectures on Pliysics, Addison-Wesley (1963), Ch. 47-51.

333
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y{t, x)

i BN
~__~—

FIGURE 10-1

To simplify matters, let us first look at the case of special solutions,
called standing waves; these are solutions of the form y(t,x) = (cos wt)u(x),
where y(t,x), as above, represents the vertical displacement at x at time ¢,
and w is the frequency. Thus |u| represents the amplitude or wave shape.
Physically, a standing wave is a synchronous up and down motion which
repeats its shape periodically after time t = 2n/w, such as occurs when a
string produces a pure note.

Certain solutions which correspond to fundamental solutions or harmonics
are given by

Wt x) = sm( 7: )cos(w,,t) n=0,1,2,...,

where @, = nnc/l is the frequency. For n = 2 and ¢t = 7/w,, we obtain the
illustration in Figure 10-1.

It is both important and remarkable that any solution y(x,t) descrlbmg
the motion of the string can be decomposed into harmonics; that is, written
as a series;

(x t) = Z Cuyu(x t) = Z c u,,(x)cos(w,,t)
n==]

where y, is as above, and u,(x) = sin(nrwx/l). We think of u; as the first
harmonic component of y, u, the second, and so forth. Thus a complicated
looking vibration (such as occurs on a violin string) is in reality an infinite
combination of simple harmonics, where each harmonic component appears
with weight c,. In Figure 10-2, we illustrate how summing three sine curves
of varying amplitudes can lead to a more complicated curve. For a general
curve, one requires an infinite combination of sine curves.

The purpose of Fourier analysis is to carry out this procedure of decom-
position using a general method. For finite regions (such as [0,[] above)
the appropriate method to use is Fourier series, while on an infinite region
(the whole real line, for instance) Fourier integrals are required.

The series obtained from sin nx, cos nx, or "™ are called the classical
Fourier series. For other types of problems (the harmonic oscillator in
quantum mechanics, for example), other types of basic solutions enter and
arbitrary solutions need to be expanded in terms of these basic solutions
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1 2N\ LN =3
2 N_
FIGURE 10-2

(for the quantum mechanical harmonic oscillator, for instance, Hermite
functions are used). Therefore, it is useful to discuss the general theory of
expansion, which will be done in Sections 10.1 and 10.2.

InSections 10.3,10.4,and 10.5 we will study the special case of trlgonometrlc
Fourier series, and show that the expansion procedure is justified. To
justify this for other families of functions often requires an examination of
special situations—for instance, the differential equation giving rise to the
problem.

In this regard, there are two main theorems. The first deals with the
important concept of mean convergence and states that any square integrable
function has a Fourier series which converges in the mean. As we later
explain, this must not be confused with convergence at each value x (called
pointwise convergence). For the latter, one must use the basic theorem of
Jordan (or Dirichlet-Jordan). The mean and pointwise convergence properties
are proved in Theorems 8 and 9, respectively.

Some further theorems on convergence, such as justifying term-by-term
differentiation, are given in Section 10.6.

A few simple but important applications of Fourier methods are presented
in Section 10.7. There we study special cases of three problems—the wave
equation, the Dirichlet problem (Laplace’s equation) and the heat equation—
all from the point of view of Fourier series. The discussion is quite rigorous
and we are careful about differentiability properties, assumptions concerning
initial or boundary values, and the manner in which these values are assumed.

In Section 10.8, an informal treatment of Fourier integrals is given,
stating the basic properties and definitions without proofs (these are left for
a more advanced course). Hopefully, however, the student will obtain some
perspectlve of the role of Fourier integrals and their relatlonshlp to Fourier
series.
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Finally in Section 10.9 a brief glimpse is given of quantum mechanics
and how the machinery of Sections 10.1-10.3 can be used to establish some
of the basic results of the subject.

10.1 Inner Product Spaces

Before we begin our study of Fourier series themselves, we must learn
certain concepts which will enable us to simplify the job. These ideas are
really quite easy and reveal an important geometric aspect of Fourier series.
In this chapter we also need some basic facts about complex numbers. The
reader should therefore glance at the appendix to this section before
proceeding if he is not already familiar with the elementary properties of
complex numbers.

In Chapter 1 we studied the inner product ¢, ) on R". Now we want to
extend these notions to an arbitrary vector space V. In the present chapter,
V is no longer finite dimensional, but is a space of functions which is infinite
dimensional-——as was the space ¥(4,R") studied in Chapter 5. For example,
V might be a space of functions f: [0,2n] — R. This is a vector space if we
take the usual definitions, (f + g)(x) = f(x) + g(x) and (f)(x) = af(x).
The expression {f,g> = (3" f(x)g(x) dx is called the inner product of f and g.

It is important to allow complex values, for the simple reason that it is
often more convenient to work with ¢ than with sin 8 and cos . In the
complex case, we let*

2

(fgd = f " @) dx

0

where Raa is the complex conjugate of g(x). The reason we use g(x) is so
that we can (as in the real case) define the length or norm of f by

2r
112 = <45 =L |f()|* dx

(for complex numbers z, we recall that |z|? = zZ is a positive real number).

It is this sort of space V that the reader should keep in mind when studying
the next two sections. Later on, we shall be explicitly dealing with this space,
or spaces like it.

Our study begins with general spaces with inner products rather than the
special one above (which is actually the one of most interest to us) because
it is conceptually and notationally simpler to work with the notation ¢, )
than with integrals. At this point only the following basic properties of
{, ) are significant.

* Physicists use the convention of putting the bar over the f.
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Definition 1. Let V be a complex vector space (this is just a vector
space where we allow complex numbers for scalar multiplication).

An inner product on Vis a mapping {, >: V x V — C (where C
denotes the complex numbers) with the following properties.

(@) <af + bg,hy = al{fh) + b{g,h), for all f, g, heV and
a,beC.
(i) <fhy> = <hp.
@i)) <£./> = 0,and <f,f> = 0 implies f = 0.

From (i) and (i) we deduce that <h,af + bg) = @<h,f> + b<h,g). Notice
that if all quantities were real, we would have the same properties as the
usual inner product on R" (Theorem 5, Chapter 1). As we have stressed, in
general, V is not finite dimensional, so we must avoid using (finite) bases
and matrices.

Theorem 1. The space V of continuous functions f: {a,b] = C
Jorms an inner product space if we define

b
S =j J(x)g(x) dx .
The integral of a complex-valued function is defined as

b b b
j S(x) dx =j Ji(x) dx + ij fo(x) dx,
where f = f; + if,. The properties of complex integrals are similar to and
may be deduced from real integrals. Some of these are listed in the appendix
to this section.
The structure of an inner product space allows us to introduce many
of the ideas considered in Chapter 1. The norm of f,denoted | ||, is defined by

1112 = <>
and the distance between f and g by
df.g) = If — gl

(see Theorem 5, Chapter 1). '

We use the same language as in R" by analogy. For example, we say f
and g are orthogonal if {f,g> = 0. Since V is a vector space, we can also
talk about linear dependence and other related ideas we saw in R". The
following theorem develops the analogy with R” further.

Theorem 2 (The Cauchy Schwarz Inequality). Let f, g belong to
the inner product space V; then

IKfgdl < If1 gl -
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Furthermore, all the properties listed in Theorem 5 (11),(I111), Chapter
1 hold (I1 (iii) also holds for o complex).

We can also introduce the notions of topology exactly as before (see
Chapter 2). The main concept for us here is that of convergence of a sequence
or series. A definition now follows.

Definition 2. Let V be an inner product space and let f, be a
sequence in V. We say f, converges to f and write f, — f if
IS, = fII = 0; that is, for every real number ¢ > 0 there is an N
such that n > N implies || f, — f|| < e. Similarly, a series Z;’”: L Gn
converges to f if the sequence of partial sums s, = Z:=1 I
converges to f.

Suppose our space V consists of the functions f: [a,b] = C(see Theorem 1).
Then the Cauchy-Schwarz inequality reads

b 2 b b
U S()9(x) dX) < (j el dX) (j lgGal* dX) :

The triangle inequality ([|f + gll < [f]l + lgl) becomes what is called
Minkowski’s inequality and reads

b . 1/2 b 1/2 b 12
U I£(x) + glx)l dx} < U £ dX} + U lg()l? dx} .

With this inner product on the space of functions V, convergence is called
convergence in the mean. It is quite different from pointwise or uniform
convergence and is generally much weaker. We write f, — f (in mean),
f, — f (pointwise); and f, - f (uniformly) to distinguish these types.

Thus f, = f (in mean) is the same as

(j 1) = S dX) -0.

For example, consider the function f, defined by f(x) =1 — nx for
0 < x < 1/n and f,(x) = 0 for all other x ¢ [0,1]. Then f, — 0 (in mean),
but f,.does not converge to f = 0 pointwise (at x = 0 specifically) and
therefore not uniformly. See Figure 10-3. One could contemplate other
types of convergence such as | |f, — f| - 0, but the one above is the most
appropriate for Fourier series because of that theory’s close connection
with inner product spaces.

Uniform convergence implies mean convergence (see Exercise 3, at the
end of this chapter and Theorem 4, Chapter 5). However, pointwise con-
vergence does not in general imply mean convergence (see Section 5.3).
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FIGURE 10-3

The space V of'Theorem 1 is easily extended to include other functions
such as piecewise continuous functions (see Theorem 3). However, even if
¥ is extended to all Riemann integrable functions it still suffers from a serious
deficiency—it is not complete; that is, a Cauchy sequence may not converge.
As in R", a definition follows.

Definition 3. A sequence f, in an inner product space V is a
Cauchy sequence when for any ¢ > Othereisan N suchthatm,n > N
implies [|f, — f.ll < &. An inner product space is called complete
if every Cauchy sequence converges. A complete inner product
space is called a Hilbert space.

In order to make V in Theorem 1 complete, the concept of the Lebesgue
integral must be used. Fortunately, our elementary discussion does not
require this notion, but the student should be aware that a solution to this,
problem can be found. Of course, for the beginner in the subject, it is more
important to get an intuitive grasp and a working knowledge, and this then
is our goal.

Hence, the question is, can we work with more general functions and
still have an inner product space? The answer is really quite simple. The only
place in Theorem 1 where continuity was used was in the statement that

j‘b|f (*®)dx =0  implies f =0

a

(see the proof of Theorem 1). For a general f,

~j‘blf (x)l dx =0  implies f(x) = 0

except possibly for those x in a set of measure zero (see Theorem 4, Chapter 8).
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If we regard such an f as actually zero (modify f on this set of measure zero
if necessary) then Theorem 1 carries over. We shall not try to make this
any more precise because it is a technical point which tends to obscure
what is going on. With that understanding, the next theorem follows.

Theorem 3. Let V = %2 be the space of functions f: [a,b] — C,
such that |f|* is integrable (that is, [ |f(x)|*> dx < o0). Then the
space V is an inner product space with inner product

b ——
S =j S (X)g(x) dx

b 1/2
Il = U LS dX) .

Another convenient class of functions which forms an inner product
space is the class of sectionally continuous (or piecewise continuous) ones.
They are defined as follows.

and norm

Definition 4. A function f: [a,b] — C is sectionally continuous if
[a,b] hasa finite partitiona = x, < x; < -+ < x, = bsuchthat f
is continuous and bounded on each open section Jxi%i4:[,
i=0,...,n—1,

”

APPENDIX . TO SECTION 10.1:
Complex Numbers -

The reader is possibly familiar with some aspects of complex numbers. We
shall now quickly review the basic properties of these numbers.

We define the set C of complex numbers to be the set of ordered pairs of
real numbers {(a,b) (that is, elements of R?) which we shall write a + bi.
For example 3 + 2i = (3,2),2i =0 + 2i = (0,2), i = 0 + 1i = (0,1), and
so forth. We define the operations + and - as follows:

@+b)+(ct+dy=(@+c)+ @+ d)i;
(@ + bi): (c + di) = (ac — bd) + (ad + bc)i .
The reader may verify that the complex numbers with these operations do
form a field (defined in Chapter 1); that is, all the usual algebraic rules for
addition, subtraction, multiplication, and division hold.

Complex numbers are generally denoted z. Thus z stands forz = a + bi =
(a,b). Also, we usually just write z,z, for z, - z,.
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Using the definition of -, we see that the imaginary unit i satisfies
=0+1)-0+1)=—

Thus i? = —1, which is written as i = ./ —1.

Since we have defined the complex numbers to be ordered pairs of real
numbers, they may also be naturally associated with points in R2, Thus,
in particular, the metric on R? induces a metric on the complex numbers.
Also, from the norm on R? we get a norm for z = a + bi defined as
la + bil = \/a* + b* = ./(a + bi)a — bi). The relation between a -+ bi
and a — bi is sufficiently important to be given a name. We call a — bi the
complex conjugate, or simply the conjugate of a -+ bi, and we write 7 for
the conjugate of the complex number z. Thus using our definition of norm
above, we have

2> =z-%.

Important properties of the complex conjugate are that z,z, = Z,Z,,
7, +2, =%, +%,andz,/z;, = 7/, (see Example 2).

We want to think of the complex numbers as an extension of the real
numbers and therefore associate (or identify) the real number a with the
complex number a + 0i. Then a complex number may be thought of as

the sum of a real number a and a real multiple of i = ./ —1. In the number
a + bi,aiscalled the real part and b is called the imaginary part to distinguish
the two numbers in the ordered pair. Since we associated the real numbers
with numbers of the form a -+ 0i, we see that a number is real iff its imaginary
part is zero, Thatis,a + biisreal iffa + bi = a — bi, which can be written
aszisrealiffz = Z.

It is useful to have a definition of ¢*, where z may be a complex number.
Since we want ¢” to coincide with the usual definition for a real and we
want e** = ¢* - ¢, we only need to define ” for 8 real. We define & =
cos 0 + isin # and hence "% = e%cos b + isin b). Then since cos 0 -+
isin0 = 1, we have ¢**% = ¢, and so our definition agrees with the usual
definition in the case where a is real. The reader may also check (Exercise 1)
that et *22 = g% - %2,

Complex numbers are represented (as already stated) by points in IRZ
Using polar coordinates we can thus write

z=re" =rcosf + irsinf,
where r = |z| and 6 = arg z, the argument of z; see Figure 10-4.

Any function f:[ab] - C may be divided up into two real-valued
functions, f; and f;, such that f(x) = f;(x) + if;(x) (that is, define f;(x) as
the real part of f(x) and f,(x) the imaginary part}. Then we make the natural
definition

a

jbf (x) dx =rf1(X) dx + irfz(S) dx
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FIGURE 10-4

if both f; and f, are integrable over [a,b]. In this case f is called integrable
over [a,b]. It is easily seen that
(i) % cf(x) dx = c [4 f(x) dxfor any complex number c and any integrable
function f;
() 2 /() + g(x)] dx = [5 f(x) dx + [ g(x) dx for integrable functions
f and g; and
@) 2 f(x)dx = 3 f(x) dx.
One can also prove
(iv) If% ftx) dx| < {b1f(x)| dx with a little more effort.
Similarly, f'(x) = f(x) + if5(x) can be defined, and the usual rules for
derivatives hold.

ExampLE 1. Show that it is impossible to define an order on the complex
numbers satisfying all the order axioms (see Chapter 1).

Solution: We must have either i < 0 or i > 0. Suppose, first of all,
that i < 0. Then 0 < —i, and s0 (—)i < (=)' 0=0=> —(-1) < 0=
1<0. Then —120, so (—1)(1)<0= —-1<0. But —1 >0 and
—1 0= —1 =0, which is not possible. On the other hand, suppose
i 2 0. Then i(j) 2 0= —1 > 0, which again leads to a contradiction.
Hence such an ordering of the complex numbers is impossible.

ExampLE 2. For complex numbers z,, z,, prove that z,z, = 2,Z,,12,z,| =
lz,] - |z,], and |z,/z,] = |z,|/lz,] if z, # 0. Also, show that |z, + z,| <
|z;] + |25l

Solution: First, we show that 7|z, = Z,Z,. Let z; = x| + iy, and
2, = X%, -+ iy,. Then

2123 = X1X; — Y1y2 T XY, T X2¥1)
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and so
Z1Z; = X1X3 — Y1Y2 — X1y, + X331) .
Also,
Z1Z; = (%) — iy )2 — 1y2) = X1 X3 — y1y; — X1 y; + %,1)

and therefore 7;z; = 7,Z,.

To show that |z,z,] = |zy||z,], note that |z|?|z,)* = 2,7, ' 2,7, =
(212,)z12,) = |2,2,|* by the above.

To prove that |z,/z;] = |z,|/|z,], write z, = z, - z,/z,. Then, by what has
been shown, |z,| = |z,| |z,/z,|, which implies that |z,/z,| = |z,|/]z,].

Finally, |z, + z,| < |z,| + |z,| is simply the triangle inequality for points
in R?, which was proved in Chapter 1, Theorem 5.

ExampLe 3. If fi, ..., f, are orthonormal vectors in the inner product

space V, that is, {fi,f;p =0, if i # j, {fi.f;> = 1. Prove that f,...,,
are linearly independent.

Solution: Suppose ZL . ¢uf; = 0. We must show that ¢; = 0. Fix i, and
letg = 2;=; ¢;f;; then form <g, f;>. We have

9. f> = Z $eifp S

II

Z e Snf>
=Y

(where 6; = 1ifj = i, and is zero if j # ). Since g = 0, we obtain ¢; = 0,
and so we have the desired result.

ExampLE 4, Let V be an inner product space and f, ge V, g % 0. Define
the projection of f on g as the vector h = {f,g>(g/llgll?). Show that h and
f — hare orthogonal, and interpret this result geometrically.

Solution: We compute as follows.
Chaf = by = <hyf) — |l
_ $a:.10Xfg> _ LSg29X19>9>

lgl? lgh*
_Se e St _
lgl? lgl*

since {f,g> = {(g,f)>. Hence h and f — h are orthogonal. The geometric
significance of this is illustrated in Figure 10-5.
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FIGURE 10-5

Exercises for Section 10.1

Exercises 1~7 deal with complex numbers; 812 deal with inner product spaces.

1.

b5,
s 6.,

Prove that

(a) e - e = g1 *72,

(b) e* # 0 for any complex number z.

(c) |e"| = 1 for any real number 0.

(d) (cos @ + isin 0)" = cos nf + isin nd.

. Show

(a) ¢ = 1iff z = k 27i for some integer k.
(b) et = e iff z; — z, = k 2=i for some integer k.

. Use the power series for cos x and sin x to prove ¢ = 3 z*/k! for z = ix.

(As usual, 0! = 1))

. Prove:”

(@ fodflx)dx = c [l flx)dx

for any complex number ¢ and any integrable complex-valued function f.
®) Ja (/&) + g(x)) dx = [, /(x) dx + [2 glx) dx
for any integrable complex-valued functions f and g.

Compute [} ™ dx.

(a) For z = re” and w = pe'” show that zw = rpe*”, Interpret this result
geometrically.
(b) Interpret geometrically the process of multiplication by i.

. For complex-valued functions (on an interval or an open subset of R"), discuss the

sum, chain, product, and quotient rules for derivatives. Also, prove the funda-
mental theorem of calculus for complex functions on intervals.

. Generalize Theorem 1 to functions defined on a set in R",

. Prove the following in an inner product space (compare Exercise 12, Chapter 1).

(@ {fg> =0=1|f +gl* = |/I* + lg|* (Pythagoras theorem).
(b) 419y = (S +gl* = 1S — gl®) = (IS +igh* ~ If — igl?).
© 2071 +20g1* = If +gI* +1f - gl*

@ IS +gl- 0 =gl <US1* + gl
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#10. Show that

(] 2 b
ff(X) dx| <(b- a)f |/ Go)? dx

and deduce that a square integrable function on [a,b] is also integrable. Is the
converse true?

¢11. Let ¢, ..., ¢, be orthonormal vectors in V and f € V. Define the projection of f
on @y, ..., ¢, by g =31 <fip>p:. Show that g and f — g are orthogonal.
Interpret geometrically. ,

212, (a) In an inner product space prove that | | f]| — lgli| < |/ — gl. In particular,

I/ < ligh + 1/ — gll. [Hint: Write f = (f — g) + g and apply the triangle
inequality. ] )

(b) If f;, — f (in mean), prove || /,|| is a bounded sequence.

10.2 Orthogonal Families of Functions

In this section we study some general properties of orthogonal vectors in
an inner product space. This is the basic general theory underlying Fourier
analysis and is remarkably simple. The core of the problem, however,
is treated in the next section. The main notions developed in this section are
that of a general Fourier series, a complete orthonormal system, and the
relations between these concepts.

Let V be a vector space with an inner product {,>. A vector pe V is
called normalized if | @|| = {@,p>'/* = 1. For ge V, if g # 0, then g/lg| is
normalized. Also, recall that f and g are called orthogonal vectorsif{ f,g> = 0.

A sequence ¢g, ¢, ¢, ... in V is called an orthonormal family if each
@; is normalized and ¢,, @; are orthogonal if i # j. These conditions may
be restated as

P10 = 6y
where 6;; = Lifi = jand 0 if i # j.

Ultimately, we shall study the space V = %2 consisting of the square
integrable functions f:[a,b] —» C with {f,g> = [} f(x)g(x) dx, as was
stressed in Section 10.1, but for now, our discussion will be restrained to
general inner product spaces.

The object of Fourier analysis is to write each f € V in the form

f = Z Cr®y 5
k=0

where ¢, € C, and ¢,, ¢, . . . is a given orthonormal family. In general, one
cannot do this; however, if this can be done for each fe V, the family
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Pgs @1, - - - 18 called complete. (This is not to be confused with the unrelated
notion of complete in the sense that Cauchy sequences converge.)

The sum Z‘” ¢, ¢, is understood to be taken in the sense of ‘“‘mean
convergence,” that is, if s, = Zk o CPr> then IIZk o Cu®r — Sull = 0 as
n — oo. The questions of pointwise or uniform convergence (in case V is a
space of functions) are more subtle and will be dealt with in the ensuing
sections.

Our first job is to determine the constants ¢, in the expression for f.
This is very easy and reasonable if we keep in mind the geometric intuition.
We refer specifically to the fact that in R, if ¢,, ..., e, is an orthonormal
basis, each x € R" is written

n
X = Z x:€; ,
=1
where x; = {x,¢;>. The latter is called the projection of x along ;. The same
is true in general.

Theorem 4. Let V be an inner product space and suppose [ =
Z,‘::O ¢,y for an orthonormal family, @4, @, . . . in V (convergence

in the mean) and f € V. Then ¢, = {f,0,0) = @[ >-
We gather some important terminology in the following definition.

Definition 5. An orthonormal family ¢4, ¢,,... in an inner
product space V is called complete if every f € V can be written
[ =22 aoe Wecall 3> (f,0,>0, the Fourier series of f
with respect to @q, @4, . . . , and {f,¢,) the Fourier coefficients.

Theorem 4 says that the only candidate for representing f in terms of
the ¢, is the Fourierseries with ¢, = {f,¢,>. Also,notethatsaying ¢g, ¢4, . . .
is complete can be stated as the condition that each f is “equal” to its
Fourier series, that is, the Fourier series of f converges in the mean to f.
Thus {¢,} is complete iff for every feV, |f — Yu_, {fi@ud>oul = 0 as
n— oo.

Before proceeding with the theory, let us give some examples (which will
be complete orthonormal families).

First, there are the classical Fourier series where @, are taken to be the

functions
inx

(pn':ﬁ?

These will be studied in greater detail later and will be shown to be a complete
orthonormal family in ¥V = #2. For now, note that the Fourier series for

n=0,+1,+2,...,xe[0,2x].
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J:[0,2%] — C for this family is given by

ihx

& e
kZm\/_Z—T—E

where
1 2w .
o = —\/—2;; L Sx)e™™ dx = {fp>

(the term is e”** because we use the complex conjugate of g in {f,g)).
After we prove completeness (Section 10.3), we can assert that f equals its
Fourier series in the sense of convergence in the mean.

Another family closely related to the above is -

1 cosmx sinnx

2_1[ H \/;E H \/;E H
Accepting that this is orthonormal, the reader should write out the Fourier
series of a function with respect to this family.

The above are really the only orthonormal families which are directly
pertinent to our later discussions. However, for reference we give other
classical examples which arise in practice. To describe these, the Gram-
Schmidt process will be reviewed first.

Given an inner product space V and linearly independent vectors

mn=12,....

gosJ15 92, ... In V, one can form a corresponding orthonormal system
@gs @1, . . . by the Gram-Schmidt process. To do this, take
9o
Po = m >
o, = 91~ $0::00000)
lg: — <g1-@0>0ll
0, = [92 = <92:921001 — 9g2.00>P0]

- gz — <g2,01001 — {g2,90>@0ll ’

and so on. Geometrically this is the “obvious” thing to do. It is left to the
readerto verify that the process leads to an orthonormal family; see Exercise 2.

The normalized Legendre polynomials are obtained by applying the
Gram-Schmidt process to the polynomials, 1, x, x%, ..., x",...on [—1,1].
It can be shown by induction (a fairly tedious but straightforward proof)
that the nth normalized Legendre polynomial is

@n+1) da
/2" 2"ml) dx"

On R = J—o0,00[ the Gram-Schmidt process applied to the functions
xe™*? n =0,1,2,...gives the normalized Hermite functions, and applied

P,(x) = (% — 1),
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to the functions x"¢™*, n =0, 1,2, ... on [0,00], it gives the normalized
Laguerre functions.

These functions are more properly treated in the context of differential
equations where they represent fundamental solutions of certain differential
equations, just as sin nx was the fundamental solution for the vibrating
string.

Let us continue with the general theory. The next result is called Bessel’s
inequality.

Theorem 5. Let @q, ¢, . . . be an orthonormal system in an inner
product space V. For each fe V, 3\ KK f,¢:)|* converges and we
have the inequality

> KhodP < A1
=0

In particular, note that the Fourier coefficients ¢, = {f,¢,> converge to
0 as k — co. Thus Bessel’s inequality gives some control over the behavior
of the Fourier coefficients. Some motivation for this result is given below.

Recall that ¢,, @, ... is a complete orthonormal system iff for every
f€eV,wehave

£ =3 oo,
£=0

Parsevdl’s theorem relates completeness of a system @, @, . . . to Bessel’s
inequality as follows. :

Theorem 6. . Let V be an inner product space and @q4, @y, ... an
orthonormal system. Then @g, @y, ... is. complete iff for each
S €V, wehave

1117 = 3 KfgdP

i

Hence, we see under what conditions Bessel’s inequality becomes an
equality. This theorem gives many useful relations in Fourier series, but
usually it is not very practical for telling when a given family @4, @4, ... 1s
complete (see, however, Exercises 7 and 75 at the end of the chapter). For
this, one usually uses direct techniques, which are given in Section 10.3,

Geometrically, Parseval’s relation may be regarded as a generalized
Pythagoras’ theorem. Recall thatif g is perpendicular to i (that is, {g,h) = 0),
then |lg + hl? = lgll®> + |hl* (Exercise 9, Section 10.1). This is the ordinary
Pythagoras theorem for right triangles. Now if Z:”: o S, = f, then f
is a sum of orthogonal vectors {f,p,>®,, so | f]|? should equal the sum of
the squares of the lengths of {f,@,>®,. But, since ¢, isnormalized, {f,¢,>9,
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has square length |[{f,¢,>|?, so we should get || f|*> = = ol< f,0.01%, which is
Parseval’s relation.

If we have an incomplete orthonormal system, then intuitively speaking,
there are some terms missing on the right-hand side and so only an inequality
prevails, namely, Bessel’s inequality.

We have seen in Theorem 4 that it is natural and, indeed, obligatory
to choose the Fourier coefficients ¢; = {f,¢,> when expanding f = Z;'; o Ci®i-
There is another reason for this choice which aids in the geometric under-
standing and is as follows.

The constants c;, for which the length

”f - ;ﬂ o

is smallest, are ¢; = {f,p,>, the Fourier coefficients (that is, the choice
¢; = {f,9;) vields the best mean approximation). This is reasonable because
Z‘ o /0@, is just the projection of f on the space spanned by ¢o, - . . , @,
and the shortest distance to a plane from a point is the perpendicular distance.
See Figure 10-6. The precise statement is given in Theorem 7.

Theorem 7. Let V be an inner product space and ¢q, @1, ..., @,
a set of orthonormal vectors in V. Then for each set of numbers

t()a tl: ce vy tm
”f - i L@yl = ”f - i S0
kS0 k=0

Equality holds iff t, = {f,px)-

This concludes our brief treatment of the general theory. The remainder
of the chapter is devoted to the study of the classical cases of the orthonormal

%
/ ‘

Lf~{f 00— o)y

VAR

"oo
FIGURE 10-6
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families

inx M
{e - O,il,..} and { 1 smnxcosmx = 1,2,..}

NG NNV

on [0,2n] or [ —n,x]. The cases of corresponding orthonormal families on
other intervals follow easily from this (see Exercise 3).

We cannot stress too strongly the fact that f = Z;l o <f>@1>p) means only
that the sum converges in the mean to f and that this does not entail pointwise
convergence without some additonal conditions. In the general situation
(see Section 10.3) we usually do have mean convergence, but in order to
obtain pointwise or uniform convergence, we require more careful hypotheses,
such as continuity or differentiability assumptions on the function f.

ExampLE 1. Let V be an inner product space and @4, ¢,, ... a complete
orthonormal system. Then show that ¢,, ¢,, . . . is not complete.

Solution: 1Ife,, ¢,, .. .werecomplete, we could write f = 22; {000,
for each f e V. Take f = ¢,; then we would have

Po = Z {PosP>P: -
=1

But {go,0;» =0, i=1,2,..., s0 @o =0, which is impossible since
looll = 1. Hence @4, @3, . . . is not complete. As an alternative method of
solving the problem observe that Parseval’s relation

1717 = 3 Khedl

does not hold for f = ¢,, because the left side would be 1, while the right
side would be 0. Similarly, @y, @y+;,... Or any proper subcollection is
not complete:

ExampLE 2. If @g, @, ... is a complete orthonormal system in an inner
product space ¥, and f is orthogonal to each g;, then f = 0.

Solutioh: Since the system is complete, we can write
f= Z So09:
i=0
By assumption, each {f,¢;> = 0, so that f = 0. If VV were a Hilbert space,

the converse to this would also be true. See Exercise 14, at the end of this
chapter.
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ExampLE 3. Show that the functions

cOos mx sin nx

NCARNAev

are orthonormal on [0,2x].

Solution: In effect, this problem means that

2r 2 2n 2
j‘ (__L) dx = 1, j‘ cos’ mx - _ 1,
o \/27 0 T

(normalization) and

m=12,...;n

f2n 1 ‘j‘z 1
cosmxdx = 0,
JO \/in 0 \/5 i3
f2n
- (cos mx)(sin nx) dx = 0, all m,
JO
f2n
- (cos mx)(cos m'x) dx = 0, m#m;
JO
f2n

1

2% sin? nx
o T

sinnxdx =0 ;

n;

!

- (sin nx)sinn'x)dx =0, n#n';

1,2,...

dx

351

1

(orthogonality). Each of these relations may be verified by elementary

techniques. An easier way is to note that

1 2n
inx = il —
E e™eT M dx = 5nm
[

because if n % m,

2r
j‘ el(n-—m)x dx = - 1 ei(u—m)x
0 i(n — m)

3

2r
=0.

0

Taking the real and imaginary parts of this relation for all n, m gives the

desired relations above.
This example also shows that

einx
=

is an orthonormal system on [0,2%].

n=0,+1,+2,..

ExampLE 4. Let f: [0,2n] — C be such that

j‘lef(x)lz dx < o0 .

0

J
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Then show that
2n
limitj‘ f(x)sin nx dx = 0

n—+co
0

and
2r
limitj‘ f(x)cos mx dx = 0.

=+ o0 0

Solution: By Example 3, the sets
cos mx

{Sif/%x n=1.2,.. } and { \/E m=12,.. }

are orthonormal families. Hence, by Theorem 5, the Fourier coefficients
of f with respect to these systems converge to zero, and the result follows
immediately. As an exercise, a direct proof can be tried (see p. 416).

The reader may legitimately ask where the hypothesis

2z
1o =j‘ f(x)]? dx < o0
0

is used in this solution. This is required so that we can form the inner product
space V of such functions,.and obtain the upper bound | f||*> < o so the
series of Theorem 5 will converge.

»

Exercises for Section 10.2

1. Take the case V = R", Show that any n orthonormal vectors form a complete set.

2. Let gq, g1, g2, - .. be linearly independent vector§ in an inner product space,
Inductively define
ho n=1 I
hy = y Po = 3 h 3 s =
10 = go> Po ol n Z {GnsPic? P> P ||h,,||
Show that ¢, @4, @3, . .. are orthonormal. Why must we assume that the g’s are

linearly independent?

3. (a) Su'ppose ®o(x), ¢ (%), . . . are orthonormal functions on [0,27]. Then show that

the functions '
2n 2nx
pulx) = / %( ] )

sinnx Ccos nx

(b) Write the family obtained by modifying ——
as in (a). J2n f f /2

(c) Write the Fourier series of f for the families obtained in (b).
(d) Show that if the ¢, in (a) are complete, so are the /.

are orthonormal on [0,/].
—=to [0,/]
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sin nx cos mx
4. Assume for the moment that the functions —— are complete on the

Nty

interval [0,27] (this will be proved later).
(a) Apply this to the function x to show that

© o
sin nx
XxX=n-— ZZ
n=t1 1

(convergence in the mean).
(b) Using the Fourier coefficients found in (a), apply Parseval’s relation to show that
nt &1 ’
6 e i \
4 @ 1 "
(¢) Use the same procedure on x* to get ‘9‘6 = Z =

=1 11

5. Prove that the Fourier-series of a sum of two functions is the sum ofthe Fourier series.

! sin(n + 1/2)0}
2 kO = — T
,;1 oo l: sin §/2

6. Prove that

[Hint: First, note that
e“’(l - eina)

em +ezm I +enm= =
I —€

and take the real and imaginary parts.] This result will be important to us later.

10.3 Completeness and Convergence Theorems

This section will investigate the problem of the convergence of the Fourier
series of a function. We see that the Fourier series of a given function is
completely determined by that function, but there is no prior guarantee
that the series converges or, if it does converge, whether or not its sum is
the given function. The type of convergence we obtain depends on the
hypotheses we place on f. The important results are summarized in Table
10-1; further convergence theorems are given in Sections 10.4 and 10.6.

It is possible to weaken slightly the hypotheses of the pointwise con-
vergence theorems presented, but this makes little difference in practice
and requires lengthy expositions on topics such as functions of bounded
variation. We shall discuss those slightly sharper results in the optjonal
Section 10.4.*

* We should also like to mention that there is a deep result of L, Carleson which states that for
|/1? integrable, the Fourier series of f converges pointwise to f, except possibly on a set of
measure zero. However, this result is far beyond the scope of this book. See Acta, Math, 116
(1966) p. 135.
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TABLE 10-1 Convergence Properties of Fourier Series

Hypotheses on the function f Convergence of Fourier series

2n '
f S dx < o0 Converges in mean to f

0
J, f" both sectionally continuous Converges pointwise (and in mean) to

[fex+) + f(x=)]
2
f continuous, [’ sectionally continuous Converges uniformly (Section 10.6),
pointwise, and in mean to f

The practical aspects of Fourier series (that is, examples and computational
methods) are given in Section 10.5.
From now on, we deal primarily with the following two orthonormal

systems:
(a) Exponential system

elnx
Jan’

(b) Trigonometric system

1 sinnx cos mx
A 2n ’ \/E ’ \/1_5- ’
on the intervals [0,27] or [ —=,x].
These two systems are closely related. Indeed, the trigonometric system
is obtained by taking the real and imaginary parts of the exponential system

(see Exercise 1).
The Fourier series of a function f: [0,27] — C with respect to the expo-
nential system is the series

n,m=12 ...

N

2]
Z c,e™ = limit Z c,e™
© N=w =y

n= -

where the Fourier coefficients are given by

1 [ !
C, = -j Sf(y)e=™ dy

2n o

(we have gathered two ./2n’s for convenience and for historical and con-
ventjonal reasons).
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The Fourier series of a function f with respect to the trigonometric
system is

ay & .
7+Za,,cosnx+b,,smnx,
n=1

where the coefficients are given by
1 2r
a,,=~j‘ Jf(x) cos nx dx, n=0,1,2,...
T Jjo

and

1 2= !
b,,=~j‘ S@sinaxdx, n=12,...".
T Jjo

The reader should review Sections 10.1 and 10.2 if these statements are
not clear.

The partial sums for the trigonometric series and the exponential series
are the same (Exercise 1). Thus, if we can prove theorems for one system we
will automatically obtain theorems for the other. The system used depends
on the particular problem and, to some extent, personal taste. Examples of
computational differences are given in the Section 10.5.

The primary goal here is to give theorems which enable us to say that a
function “equals’ its Fourier series. If we take the equality to be convergence
in the mean, then this is a problem of completeness of the orthonormal
system. Fortunately, and this is one of the main theorems of the subject,
the above systems are complete. On the other hand, if we take the equality
to mean pointwise or uniform convergence, then extra conditions must be
put on f.

Let us first deal with completeness; the theorem is as follows.

Theorem 8. The exponential and trigonometric systems on [0,2r]
(or [—m,x]) are complete in the space V = £* of functions,
f:[02n] = C with [3"|f(x)]* dx < oo (the integral may be
improper).

This means that for any function f with | f|? integrable (that is, f is square
integrable), f equals the sum of its Fourier series in the sense of convergence
in the mean.

The proof of this result is a little involved; completely different proofs of
related results which will follow, especially Theorem 9, might be more
easily understood. (See also Exercises 75 and 76 at the end of the chapter for
alternative proofs of Theorem 8.)

It is false that we always get pointwise convergence. Indeed, one can
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The shaded “area” - 0
or, more precisely

mn
fo If@e) = 5, (0) I%dx >0

FIGURE 10-7

even construct a continuous (periodic) function f whose Fourier series
diverges at a given point.*

Let s, be the nth partial sum of the trigonometric Fourier series for the
real function f. Then the intuition behind Theorem 8 is illustrated in
Figure 10-7. Notice that each s, is a nice smooth function (a trigonometric
polynomial) but as n — c0, s, may still converge to something discontinuous
as illustrated. If we demand uniform convergence, f/ must be continuous by
Theorem 8, Chapter 5. Thus if f is discontinuous, we get mean convergence,
but never uniform convergence.

The above theorem also follows, in special cases, from somewhat easier
theorems given later in Section 10.6. The technique of the proof of Theorem 1
is important, for it shows that Fourier series in higher dimensions are also
complete (see Exericse 18 at the end of the chapter). Theorem 8 has the ad-
vantage that it is valid for a wide class of functions f. However, it does not
deal with the question of pointwise convergence. The next theorem does
answer this question. -

To state the theorem, we need some additional terminology. For this
theorem we may use either real or complex functions, but it is often enough
to consider real functions, for if f = f; + if;, the Fourier series of f is that
of fi + i (that of f,) (why?). '

Suppose thén, that f: [0,2z] — R (or [—=,n] — R) has a possible dis-
continuity at x, € [0,27]. In case x, = 0 or 2 this shall mean that we are
to take the function f extended to be periodic; that is, define f(x + 2m) = f(x).
This is reasonable because the Fourier series itself is periodic. This periodic
extension is illustrated for two cases in Figure 10-8. Now recall that we define

S(xg+) = limit f{x) = limit f(x)
x—+xgp+ X—+X0
x> Xxg

if it exists (see p. 80). This means that for every ¢ > O, there is a § > 0

*This uses more advanced methods; see, for example, Widom, Drasin, and Tromba, Lectures
on Measure and Integration Theory, p. 153, Van Nostrand Mathematical Studies # 20,
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f(x) Isin (x/2)I

k-

0 2 2
(a) (b)
FIGURE 10-8 (a) Continuous at 0. (b) Discontinuous at 0.

such that if |x — x| < d and x > xg, then | f{x) — f{x,-+)| < &. Intuitively,
Sf(xo+) means the value of f just to the right of x,. See Figure 10-9. Of
course, f(xy+) may not exist; look at Figure 10-9b. One defines f(x,—)
in an entirely analogous way. A discontinuity, x,, where both f(x,—)
and f(xy+) exist, is called a jump discontinuity and f{xy+) — f(x5—) is
called the ]ump of f:at xy. The jump can, of course, be either posmve or
negative, and is zero iff f is continuous at x,.

Suppose f is differentiable on some open interval Jx,,x, + ¢[. Then we
can form f” on this set, and hence can talk about f'(x,+) if it exists (by the
above definition). Similarly, we can form f’(x,—). Intuitively, f'(xy+) is
the slope of f just to the right of x,. For instance, in Figure 10-8a,
f0+) = Li_r’x(l)ii(d/dx)(sin x/2) = 1/2 and in Figure 10-8b, f'(0+) =

There is a slightly weaker definition of f’(xq+) which is sometimes
important. The above definition demanded that f'(x) exists for x > x, and
for f'(xg+) = limigr J'(x) to exist. It is easy to prove that if this is so, then

X-+Xxg

f'(x()"*') — 'l,i_l:x(}i}:.{f(xn + h)h_ f(x0+)}

(see Exercise 39 at the end of the chapter). For the following theorem the
existence of this limit is sufficient, so we shall adopt it as our definition, with

y

ol
e N l /\ /\
- W\

(b)

FIGURE 10-9 (a) Jump discontinuity.
(b) f(x, +) does not exist.
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y
|
%
flxyt) 7 |
(Fx D + fleg—) s\
2 i
fxg=) f
}
l X
0 X, 2r
FIGURE 10-10
S'(xg—) similarly defined by
¢ e ) f(Xe—) = f(xo = B)
S =) = il:l-»n(}lf{ h ’

The proof that this second method is actually a weaker assumption is left
to the reader in the same exercise.

Observe that f is differentiable at x, iff f(xy+) = f(xy—),f(%¢ +), and
J'(xg—) exist, and are equal.

The next theorem contains the principal result on pointwise convergence.

Theovem 9. Let f:[027] — R (or f: [ —n,x] — R) be sectionally
continuous, have a jump discontinuity at xq, and assume that f'(x,+) -
and f'(xy—) both exist. Then the Fourier series of f (either in
exponential or trigonometric form) evaluated at x; converges to
Lf(xo+) + f(xo—)]/2. In particular, if f.is differentiable at x,,
the Fourier series of [ converges at xq to f(xq).

If x4 is an endpoint of the interval, then as mentioned previously the
numbers f(x,+) and f(x,—) are computed for the function after it is
extended to be periodic (see Figure 10-8). In the section on theorem proofs,
we give two proofs of this result. The first is quite short. The second, which
is the classical proof, is longer but is also useful for other purposes required
in Section 10.4, so it is included as well.

Notice that the Fourier series does not necessarily converge to f(x,) at a
jump discontinuity but to the average of f(xy+) and f(x;—). A typical
example is a step function (see Figure 10-10).

Theorem 9 is very nice because it gives us conditions which are easily
verified in examples, and which do hold in most cases of interest. Further-
more, even in simple examples it is difficult to prove directly (without
Theorem 9) that the Fourier series converges to the function.
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In Theorem 9 we also have mean convergence of the Fourier series to f by
Theorem 8. However, Theorem 9 tells us that in addition, the Fourier series
converges at points where conditions of the theorem hold. Pointwise con-
vergence is a more delicate and sometimes more useful condition.

ExampLE 1. Suppose f: [0,2n] - C has [2*|f(x)I> dx < co. Then show

that

© 2

1
2

= — o

2% 2z
j () dx = j f(X)e™"= dx
0 0

2

j‘z“ S{x)sin nx dx

Solution: Let

V=9= {f: [0,2n] — C|IIfI? =j‘z,‘lf(x)lz dx < oo} )

0

Then, by Theorem 8,

inx

{w ) = =
n _\/‘2‘1";

is a complete orthonormal family in V. Thus, by Theorem 6, Parseval’s
relation holds, and so

n=0,+1,4+2,.. }

1717 = 3 Kudl? -

ne —-x

Here
2

S = f " fxYon) dx

]
=j‘2nf(x)e—lnx dx
. o

s0 the first equality follows. Let us recall that

© N
2 - 2
X Kfgpl means  limit 3] [Kfign)
for the exponential functions (that is, they are taken in the order
©o> @1, O_1, Py @3, + » -). (However, here the terms are positive, so the
series can be rearranged arbitrarily, by Example 5 at the end of Chapter 5.)
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The second equality follows by applying the same procedure to the
complete orthonormal family,
nm=1,2,.. } .

N v

One can also derive the second equality from the first by writing e~ =
cos nx — isin nx, squaring and gathering terms, and noting that the
cross-terms from n and —n cancel.

ExampLE 2. For the following functions on [ —x,x], state whether we have
mean or pointwise convergence of the Fourier series and what the series
converges to at x, = 0.

: -2, x <0,
(a)f(x)—{z, >0,
x <1,
b) f(x) = { f1L x>l
(©) f(x) = sin x.
1+ x, x <0,

@dfx) =y (1)
X sin %) x> 0.

»

Solution: The graphs of these functions are given in Figure 10-11.
Each function is piecewise continuous, and the discontinuities are jump
discontinuities. This is obvious except perhaps for (d). There, f(x) =
x sin(1/x) — 0 as x — 0, since |x sin(1/x)| < Ix], so f(0+) = 0.

Also, at 0, f'(0+) and f'(0—) exist in cases (a), (b), and (c). All of these
are fairly obvious. For instance, in (a), f(x}) =2 for x > 0, and so
11_{:31} S'(x) = 0 exists. In case (d), this is not true. Here, for # > 0, we have

0O + h)h— JO+) _ sin(%) ’

whicli does not convergeas h — 0. Thus Theorem 9 does not apply in this case.
However, in each case we do have mean convergence by Theorem 8. At
x = 0, the Fourier series converges in (a) to 0 = [f(0+) + f(0—)]/2,
in (b) to 0, in (¢) to 0, and in (d) our theorems fail. (One can show the con-
vergence of the Fourier series in (d) to 1/2 by a direct analysis.)

ExampLE 3. Find an example of a function f such that the Fourier series
of f converges pointwise and in the mean to f, but does not converge
uniformly.
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P

5
i»—

(c) (d)
FIGURE 10-11
Solution: Let
(o, —t<x<0,
1
f 'iy X = 03
B 1, O<x<m,
L
\2’ B '

The discontinuities of f are jump discontinuities (see Figure 10-12). From
Theorem 8, the Fourier series of f converges to f in mean, and by Theorem 9,
it converges pointwise, since f(xg) = [f(xo+) + f{xy—)]/2 at each point.
However, the Fourier series cannot uniformly converge to f, because
each s,(x) is continuous and if s,(x) — f(x) uniformly, f would be continuous
(Theorem 1, Chapter 5), which.is not the case. !

FIGURE 10-12
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Exercises for Section 10.3

1. (a) Show that the nth partial sum of the trigonometric Fourier series of a (real or
complex) function is equal to the nth partial sum of the exponential series. [Hint;
prove this by writing €™ = cos nx + #sin nx.]

(b) Write the corresponding series on [ —7,7].

(c) Show that if, on [—=,n], f is even (that is, f(x) = f(~x)), then in the
trigonometric Fourier series, all 5, = 0.The series is then called the cosine series.

(d) Repeat question (c) for f odd; that is, if f(—x) = —f(x) show all a, = 0. The
series is then called the sine series.

2. For f:[0,2n] — R, show that fis continuous at zero (in the sense of f being periodic)
iff f(0) = f(2n) and f is continuous in the usual sense at both points 0 and 2z in
[0,27], that is, limit J(x) = f(0), and lirrzlit Jx) = f@2n).

3. Suppose f: [0 1] - Chas [} | f(x)|> dx < oo. Then show that

f |f(x)|2 dx = }l‘ ff(x)ein2nx/l dx‘
0 ; =_i i
= 7
2
5ot
mx2n
m= 1 ( ! )dx

4, For each of the following functions on [ — n,n] determine whether the Fourier series
converges pointwise or in mean, and what the pointwise limit is if it exists,

(a) f(x) = x"(consider all possible values of n;n = ..., -3, -2, -1,0,1,2,...).
0
(b) fix) = {([)(;’ . i ; Oj for some ke R,
(©) f(x) = tan x. . -
(d) flx) = e"‘l{l
e x>0,
(e) fx) = {0’ £ <0

5. Use the theorems of this section to justify your manipulations in Exercise 4, Section
10.2.

10.4° Functions of Bounded Variation
and Fejér Theory*

There is a theorem similar to the Jordan theorem (Theorem 9 above), but
which holds under more general conditions and which also gives a criterion
for uniform convergence. We shall just state this theorem without proof

* This section is optional and may be omitted without loss of continuity.
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(although it is quite similar to the proof of Theorem 9, it is just a little more
intricate). We shall be content to prove a weaker version in Section 10.6
and to prove a related theorem of Fejér.

To understand the theorem, the notion of a function of bounded variation
is needed. Let f: [a,b] — R. Say that f is of bounded variation if there is a
number M such that for all partitions ¢ = x5 < x; <-- < x,=b of

[a.b], . )
0w = G < M

Roughly, saying that f is of bounded variation means that the graph of
f has finite arc length. The conditions of Theorem 9 imply that f is of
bounded variation on some closed interval containing X, but being of
bounded variation is generally a weaker condition. One can show that a
function is of bounded variation iff it is the difference of two bounded
monotone functions.* It follows (see Exercise 3, p. 292) that if f is of bounded
variation, then its discontinuities are all jump discontinuities and are
countable in number.

The Dirichlet-Jordan theorem is as follows (the proof is omitted).

Theorem 10. Let f: [0,2n] — R be a bounded function.

(i) If f is of bounded variation on an interval [x, — &% + €], {for
some ¢ > 0) about x,, then the Fourier series of [ evaluated at
xq converges to [ f(xq+) + flxo—)]/2.

(i) If f is continuous and of bounded variation, then the Fourier

" series of f converges uniformly to f.

Both Theorem 9 and the Dirichlet-Jordan theorem give sufficient con-
ditions for the Fourier series to converge. Exercise 34 gives an example to
show that the conditions are not necessary. Useful, necessary, and sufficient
conditions are not known.

As we have remarked, the Fourier series of a continuous function need
not converge pointwise. By the Dirichlet-Jordan theorem, such a function
cannot be of bounded variation. Fejér’s theory covers this case by weakening
pointwise convergence of the series to Cesaro summability of the series.
Let us recall from Section 5.9 that sequence ay, a,, . . . is said to converge:
in the sense of Cesaro or (C,1)if o, = (a; + -+ + a,)/nconverges. Ifa, — x,
then ¢, — x, but not necessarily conversely. For series, this criterion is
applied to the partial sums.

In 1904 Fejér proved the remarkable fact that although the Fourier
series of a continuous function need not converge pointwise, it is always
(C,1) convergent.

* If fis of bounded variation, set v(x) = sup{3,f., | flxe) —fxr=1)| I a=xy<Sx; S S

x, = x}, the variation of f. Write f= p — q, where p = v + fJ2, g = v — f2. One checks that
p and ¢ are increasing. The converse is easy to verify.
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Theorem 11 (Fejér). Let f be piecewise continuous on [0,2n] and
suppose f(xy+) and f(x,—) exist. Then the Fourier series of f con-
verges (C,1) at xg to [f(xo+) + f(xq—)1/2. If [ Is continuous, the
Fourier series converges (C,1) uniformly to f.

Note that no assumption of bounded variation or differentiability is
required. For practical applications, these refinements of Theorem 9 are not
too important, but they are of considerable theoretical interest.

When one considers “distributions’’ or “‘generalized functions,” such as
the Dirac delta function (Section 8.9), Fourier series still make sense when
suitably interpreted, and every distribution has a convergent Fourier
series (convergence in an appropriate sense, see p. 277). These convergence
facts are quite useful in practice, but space does not allow a treatment of them
here.*

ExampLE 1. Letusformally compute the Fourier series of the delta function,
& on [ —=,7]. Recall that this function has the defining property:

j‘j fSx) 6(x — a)dx = f(a) .
Now i .
j‘ S(x)e " dx =1,

so the Faurier series of 6 is
0 fnx

e

ne 210

Of course, this does not converge at x = 0, but we do not expect it to,
since 6(0) is undefined. . -
What is true is that

@ inx

8x) = Z e2n

h= -~

in the sense that it holds under the integral sign; that is, for any continuously
differentiable function, f,

n 0 n inx d
OB f 56Of () dx = ) f i sy

-

The validity of this is quite obvious; in fact, from Theorem 9,

10 =53] st ax) 52

-

for each y. (Since the sum is from — oo to + co, we can replace n by —n.)

* For a more complete discussion, see for example, Zemanian, Distribution Theory and Trans-
Jorm Analysis.
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The situation for a general distribution and the proof of convergence
of its Fourier series is analogous, that is, if T'is a distributjon, then as above,

o
izaeinx
3
-

where a, = T(e™ ™).

Exercises for Section 10.4

1. Prove that the trigonometric series Z“_“m e** is (C,1) summable to 0 for x not a
multiple of 27.

2. Compute the Fourier series of &', the derivative of the delta function.

10.5 Computation of Fourier Series

In this section we are mainly concerned with specific examples of Fourier
series and methods that can be used to compute them. Included in our
discussion is an interesting and important phenomenon which occurs in
the behavior of a Fourier series at a jump discontinuity; this is known
as the Gibbs’ phenomenon.

The trigonometric and exponential forms of Fourier series are entirely
equivalent as we have seen (Exercise 1, Section 10.3). For computations,
the trigonometric form is often the most convenient. The various forms of
Fourier series and their convergence properties are summarized in Tables
10-2 and 10-3. The functions can be real or complex, but we will work with
real functions for simplicity.

There are several comments to be made on these formulas. The first two
forms (Table 10-2) should be self-explanatory. The Fourier sine series arises
when f is odd, because then we have f(—x) = —f(x) and hence

1 T
a, = ;j‘ S(x)cos nx dx '

-

1 j‘_“f(—x)cos(—nx) d(—x)

T Jn

—;15 j‘_“f(x)cos nx d(—x) = —a,,

soa, = 0.
Similarly, for f even, the Fourier series reduces to the cosine series. See
Figure 10-13.
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TABLE 10-3 Convergence Properties

Properties of f Convergence of Fourier series
an ‘
J S dx < o0 Converges in mean to f
0
/f has a jump discontinuity at x, and f'(xq +), Converges pointwise at x, to
J'(xo—) exist. If x, is an endpoint, we regard /°
as extended so it becomes periodic (see below [ftxo 4) +fxo—)]
for the half-interval forms) 2
fcontinuous and f” sectionally continuous Converges uniformly to f

For the interval [ — L[], we replace orthonormal functions ¢, on [ —,x]
by ¥ {x) = \/;/—l @ (nx/l) which again are orthonormal on [—1[]. This is
just a change of scale and the same convergence properties also hold in
this case. The reader should write down the sine and cosine series (for f
odd or even) on a general interval [ —L[].

The half-interval formulas are obtained as follows: for the cosine series
extend f to [ —1,[] by defining

J(=x) = f(x).

Then f becomes even and so has a cosine series. See Figure 10-14. For
convergence at x, = 0 we must check this extended function, and not the
original one. If f(0+) exists, then the extended function evidently has no
jump at 0. Similarly, we do not get a jump at ! or —I. Thus the usual con-
vergence criterion applies without modification for the cosine series.

The half-interval sine series is similar. On [ =1,0[ define f by f(—x) =
—f(x), for 0 < x < I'so that f is odd and so has a sine series for its Fourier

y y
periodic
extension .
\of f M A
v x HN N fix) \&cl /1N
\\-1 A )( } \\.44] II \\'I ( .,/, } S
i ! h { l bn .——i i
» | x
—1} -x x 1:r ! -7 -X x 7
V‘\ yr\\ I[
-f(x) N
N

(a) fodd (b) feven
FIGURE 10-13 (a) fis odd. (b) fis even.
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\s,lﬂ_// i -~
1 1
-2 2
FIGURE 10-1

series. See Figure 10-15. In this case, at the point O the Fourier series is
always zero (sin 0 = 0). Thus at 0, we do get an extra jump discontinuity
introduced but the Fourier series is zero at these points. To ensure continuity
of the extended f, we would have to impose the conditions that f be con-
tinuous and f(0) = f(I). Thus the convergence criteria apply to the half-
interval sine series:without modification if we keep in mind that at 0, [
the convergence is to zero.

From the general theory (Theorems 6 and 8) we know that Parseval’s
relation holds for each f with [2*|f]|* dx < oo; that is,

J Pax= 3 el

where ¢, are the Fourier coefficients in exponential form. Care must be
taken in the above cases because c,, @,, b, of the table are not the Fourier

n’ n

coefficients in the previous sense, as we have gathered factors of /27, f
for traditional reasons. But if we remember this, Parseval’s relation is easy
to find. The results are tabulated in Table 10-4.

If we know the Fourier series of f(x), say, on [ —,n], then we can get an
expansion for the function g(x) = % f() dy using the following theorem.
Theorem 12.  Suppose [* .| f(x)|*> dx < oo and f has Fourier series
329 +n; (a,cos nx + b, sin nx) .

Then letting g(x) = [~ f(y) dy, we have
+ x
glx) = ao(xz ™ i Z ( J cosny dy + b,,f sin ny dy)
= - -n

a (x + 75) = bn "
L - ; {( )sm nx — (F)(cos(nx) — (=1 )}

and the convergence is uniform for —n < x < 7.

)

Note that this expansion is not the Fourier series of g, but does give the
Fourier expansion of g(x) — agx/2. Also, the expression is obtained simply
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’

vd
4—'—'—'“—'—'—'7

FIGURE 10-15

by integrating term by term the Fourier series of f. Similarly, any of the series
in Table 10-2 may be integrated term by term to give a uniformly convergent
series (the proof is the same in each case).

This is quite useful when the constants, a, and b,, have already been
computed for f. Then to get the actual Fourier series for g, we can just

TABLE 10-4 Parseval’s Relation

Type of series

Parseval’s relation

Exponential series

il

e dx = Y le?

n=—oa

(mf )

P

Trigonometric series

f S0 dx =

NION

Sine series

lf" ol dx = S 62
T J-n n=1

Cosine series

_l_f“ ()2 dx =E§ +ia2
{2 - 2 "=1"

Exponential series

on[—11]

—l—fl‘lf( N2 dx =
2, x| dx =

o

> e

n==—o

Trigonometric series

on[—1[]

1[ lf(xlzdx=

2+ b2

Half-interval
cosine series

2 K3 2
7 sz(xw dx = “7 +3a?

o

n=1i

Half-interval
sine series

(4 o
%flf(x)il dx =32
[¢] n=1
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substitute the series for x, and gather terms (the series for x is given below).
See also Example 3 at the end of the chapter.

Recall that if we have any convergent expansion for a function in terms
of cos nx and sin mx, then it must be the Fourier series of the function (see
Theorem 4). Differentiation of Fourier series requires more care and will be
treated in Section 10.6; see for example Section 5.3.

In Table 10-5 are assembled some of the common Fourier expansions.
In using this table, one should keep in mind that the Fourier series is linear.
That is, the Fourier series of af(x) + bg(x) is

a(Fourier series of /) + b(Fourier series of g) .

TABLE 10-5 Some Fourier and Related Series

Valid pointwise
Function Series on the interval
1. I, 0<x<m=n I + (2)isin(2n - bx 1-n,af,
o) = 2 \n/& w1
0, —m<x<0 1 1 i 1 1),.)Sinnx [Jatx =0,%, —n]

=3ttt -

la. fx) =1, 0<x<n 4 i sin(2n — Dx 10,mf
na 2n—1
(half-interval sine series) Oatx =0,x = =n)
1 [0,n]
(half-interval cosine series)

2. flx)=x & (-1t ]-nmf
2"; L Smax [atx = m,x = —n]

&, sin nx 10,2n{ :

”_2"; “ [ratx =0,x = 2]
n 4 Scos(2n — Dx [0,x]
2 anl @u-1)? )
(haif-interval cosine series)

2a. 0, —n<x<0

Jx) = n 2 &cos(2n — 1)x
x, O0<sxs<mn 4 n5 @ 1)
@
(_1)" . ]—ﬁ,ﬁ[

h_ll=l " sin(irx) [n/2atx = n,x = —n)
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TABLE 10-5 (continued)
Valid pointwise
Function Series on the interval
3 flx) = x? 2n? &, cos nx
2nx ~ — + 4 0,2n
T3 ,,Z‘, n* (02n]
4 & [cos nx sin nx\ | ]0,2n{
44 -
3" ;( n? " n ) [2n?% at 0,2x)
aQ II
—7;— Z cos nx [—n,%)
8 &sin2n ~ I)x
T it it 0
TR A e - P (0.r]
i (21:(— 1y+!
ne=il i
41 ~ (=1
- -g—--_(g—-—-):—))sm nx [0,n[
n "
. (half-interval sine series) ©Oatx = x)
4. f{x) = sin x 2 4 & cos2nx 0
;I_—ﬁn=x4” -1 [,71[
(half~interval cosine series)
da. sinx, 0<x<=n 1 ) ®  cos Inx
) = =+ 5sinx - Z Fr [~nm]
0, -t €x <0 n
4b, f{x) = [sin x| 2 4 & coslnx
;*;nﬂa—ﬂr“—*ﬂ p— all of R
5. f(x) ="cos x § & nsinnx
-7; a1 4"2 -1 ]O,ﬁ[
(half interval sine series) [0atx =0, x = =]
6. fix) = - 1-mn

sinh n & (-1
Mzmeﬂx

n Sl —in

[cosh m at n, — =]
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[P §
LS

el 7 + t 7
0 27 1,7 -7 T s
v I’

() (b)
FIGURE10-16 (a) f(x) = xon [0,2z]. (b) f(x) = x on [—n,z].

Also, Theorem 12 can be used effectively to build further series successively
by integrations, for example, x, x2, x3, . . . . Also, note that if /' is modified
at a finite number (or even a countable number) of points, the Fourier
series is unchanged (why?). Specific illustrations will be given shortly.

In these formulas, care should be taken with regard to the domain. For
example, f(x) = x on [0,2n] is quite different from f(x) = x on [—=n,x] as a
periodic function (Figure 10-16).

Of course, on ]0,n[ the functions and their series agree. A comparison
of these series leads to many interesting identities. For the function x above,
for example, we deduce that

2, sin nx e (— 1yt
x—n—Z"; - _2; -

sin nx

for 0 < x < n. However, off J0,x[ they will not agree. See Figure 10-17.
We have sketched roughly what the above series look like up to the nth term.

In Table 10-5, [ —n,x], [0,2%], and [0,%] are presented for convenience.
These can be changed to [—L[], [0,[] by introducing constants and new
variables as indicated in Table 10-2. Some further expansions are found in
the ‘exercises and examples.

We now turn to what is referred to as the Gibbs’ phenomenon.* The Gibbs’
phenomenon generally occurs when f has a jump discontinuity. The idea

@ (b)
FIGURE 10-17

* Named after J. W, Gibbs, a mathematical physicist and physical chemist who discovered it.
Gibbs is usually credited with inventing current vector notation around 1880.



374 FOURIER ANALYSIS

is illustrated in Figure 10-18. This shows that if s, is the nth partial sum of
the Fourier series, then the maxima and minima of s, near the jump always
differ by more than the jump of f, and this excess remainsasn — co.Roughly,
the Fourier series “overshoots” the jump and this overshoot persists in the
limit. Another way of saying this is that asn — 0, s,(x) tends to approximate
a vertical line longer than the jump.

The general case is a bit delicate so instead we consider just one special
case of a jump discontinuity and determine the overshoot exactly.

Theorem 13. Consider
fx) = {

a, x <0,

—n
b, 0
and supposea < b. Let s,(x)be thenth partial sumof the trigonometric

Fourier series., Then the maximum of s, occurs at n/2n and the
minimum at —(n/2n) and

— ® o]
limits,,1 = b—a\(2 —S—l-{l—fdt-i-l +b
n—+ o 2n 2 o t

~ (b — a).089) +b.

<
<x<mn,

Similarly,

.. n b—a 2 [Tsint
" l,}Tolat Sn("ﬂ) = (‘T)(-Ejn T'—dt + 1) +a
~ a — (b — a).089)

and the difference of these limits is

b — a\[/4 [Tsint

FIGURE 10-18
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—ARARRAT -
! + - 1.179

FIGURE 10-19

For a = —1 and b = 1, this is illustrated in Figure 10-19. Thus the
overshoot of the maxima and minima is each about 9 percent of the jump in f.

ExampLE 1. Let us show that formula 1 of Table 10-5 is obtained by
evaluating the Fourier coefficients by direct integration on [—mn,n] (see
Table 10-2). We obtain

1" 1, n=20,
an=—Jcosnxdx=
TJo 0, n=12,....

T b
b, = lf sin nx dx = 1 (_cos nx)
T Jo T n 0

11— (=1
‘;(T

2
—, nodd,
0, neven .

This establishes formula 1.

ExaMpLE 2. Use the table to find the series for

-1, -<x<0,
g(x) = 1, 0<x<m.

Solution: Let f be defined as in formula 1. Then
gx)=2(x) -1,
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so the expansion for g is

( Z sin[(2n — 1)x )

% Z sin[(2n — 1)x]

2n — 1 2n — 1

since the Fburler expansion of 1 on [ —=,n] is 1. Of course, one could also
obtain this directly.

Note that the half-interval sine expansion of 1 is not 1 itself but is the same
as that of g above (explain).

nl

ExampLE 3. Foreach 0 < x < =, prove that

2(_1 n+ 1
52T

n=1

g Z ———-(1 — (= 1)")cos nx = sin nx .

‘Solution: The left side is the cosine series for f (x) = x on [0,x], while

the right side is the sine series. For each 0 < x < n we have convergence to
the value x. At += the right side is zero.

ExaMpLE 4. Establish the first formula in Table 10-5 for f{x) = x and
state how one obtains those for x?.

Solution: Since f(x) = x is odd, we use the sine series. Then

»

2 T
b,,=—~jxsinnxdx.
T

0

Integrating by parts gives

2 L3
b, = ‘<_x cos nx)
7 n

0
—1yt1
_ 2= 2
n n n

2 [ " cosnx
+_j cosmx o
T, n

Hence the series is

( 1)n+1
n

sin nx .

Ma

Zb sin nx

The series for x* is obtained as fOllOWS. The first formula is the integral of
the series for x on [0,2n] (with a factor of 2, since f§ y dy = x2/2). The
term 2n%/3 comes from the cosine term at 0 using )\ 1/n* = n%/6
(Exercise 4, Section 10.2). Here Theorem 12 is used. The second formula
uses the first and the expansion for x on ]0,2#[ from formula 2 of Table 10.5.
These can also be done directly. The third formula is the fourier series
(= cosine series in this case) for x?, and the remaining formulas are the
integral of the cosine expansion of x on [0,7], and this along with the sine
expansion of x on ]0,n[ are substituted, respectively.

1

"
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ExampLE 5. Find the Fourier series on [ —x,7] for
f( {07 —nT <X < 0 3
x) =
) x2, 0<x<n

Solution: If we integrate function 2a of Table 10-5, we get 1/2 of the f
given here. Hence by Theorem 10,

23 [* (2n — 1) & [ (—1)F .
A’f(x)=‘1—c4“ %_E El J‘—“%%Tﬂdx— El J—nTsmnxdx
nx 7 sin[(2n — 1)x]
=T tT —Z Ten-1°

e 5 eo(5) - S o

Inserting the first series for x from formula 2 gives

T 0 (_1)n+1 .
Z(ZZIZ " sin nx

n?  2&sin[(2n— Dx] & (—1)cosnx &
I e )

n T n

1
-5 .

This is the desired series but in a slightly awkward form. Note that from
Exercise 4, Section 10.2

uol nz
iy

The resulting series is thus
7(— 1)..+1 1—(=1"}. (="
Sx) = 2(12 + Z {{ ™ p— sin nx + g -cosnx |.

Exercises for Section 10.5

¢ 1. Establish the following in Table 10-5.
(a) Formulas 2, 2a.
(b) Formulas 4, 4a, 4b.

2. Find the half-interval sine series for x*.

+ 3. Establish the following:
O _1 7 .
x cos x = —(hsinx +2 5, LTI

< x<7n.
= onr-1 7
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4. Compute the Fourier series on [ —=,7] for each of the following functions.

10, x>0,
(@) flx) = {—11, x < 0.
®) flx) = x* +x +3.
X, x >0,
© flx) = {—xz, x < 0.
5. Discuss the Gibbs’ phenomeﬁon for the function
8, x>0,
o= {2, 30
on the interval [ —=,x].
6. By considering
g, 0<sxgm,
Sx) =
_z —rL<x<0
4 3 = k4
and the point x = n/2, prove Leibnitz’ formula:
! 1 +1 1 to o
35 7 T4

10.6 S:ome Further Convergence Theorems.

In this section, we give some additional convergence theorems concerned
mainly with uniform convergence, differentiability, and integration of
Fourjer series. -

We have already stated in Section 10.4 that if f is continuous and of
bounded variation, then the Fourier series of f converges uniformly to f.
Let us now give a slightly weaker version which is easier to prove and is
almost as good in practice. The reader should be sure to fully understand
the notion of uniform convergence (see Chapter 5). For example, in Figure
10-18, why is s, not uniformly convergent to f?

Theorem 14. Suppose f is continuous on [—n,x], f(—n) = f(n),
and ' is sectionally continuous with jump discontinuities. Then the
(trigonometric or exponential) Fourier series of f converges to f
absolutely and uniformly. A similar statement holds for f on [0,2x].

In particular, this implies that the Fourier series converges in the mean
and pointwise, which we knew already (see Theorems 8 and 9).
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For example, consider f(x) = |x] on | —=,n]|. Here the conditions of
Theorem 14 are satisfied (but they are not satisfied on [0,2n] since this is
not the same function), so the Fourier series of f, namely,

cos[(2n — 1)x]
2 "Z (2n — 1)

converges uniformly. See Figure 10-20.
Thus, by the definition of uniform convergence there is, for every ¢ > 0,
an N such that n > N implies

N

forall x e [—m,x]. -
One might think that if

fx) = Z a, cos nx -+ b, sin nx)
then )
Six) = Z {(—na,)sin nx + nb, cos nx}

n=1

at each point where f'(x) exists. Unfortunately, this is not true. For example,
let

A { 1, O<x<mn,
xX) =
) -1, —n<x<0.
Then
4 & sin2n — 1)x
f(x)_;Z n—1 ~

n=1

So, for x > 0, we would expect

= ‘—12 cos(2n — 1)x.
T

<
\\///
N/

FIGURE 10-20
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But this series does not converge since cos(2n — 1)x does not — 0. (To make
sense out of this, distribution theory must be used. Then it is possible to
differentiate at will under all conditions when suitably interpreted.)

To get a differentiation theorem one naturally thinks of using Theorem 5,
Chapter 5. However, we can get a better theorem in this case by arguing
directly and the result is as follows.

Theorem 15. Let f be continuous on [ —nx], f(—n) = f(xn), and
let f' be sectionally continuous with jump discontinuities. Suppose
" exists at x € [ —n,1]. Then the Fourier series for

[»e]
fx) = Z a, cos nx -+ b, sin nx)
may be differentiated term by term at x,
o0
fix) = Z (—na, sin nx -+ nb, cos nx) .
n=1
Furthermore, this is the Fourier series of f'.
Thus, just as in Theorem 5, Chapter 5, one must be careful when differ-

entiating series; certain conditions must hold to justify the operations. The
result shodld be compared with Theorem 12 above.

ExampLE 1. Consider f(x) = x| x e [—n,n[, x # 0, which satisfies the
conditions of Theorem 15. It has the Fourier series

1 cos(2n — 1)x
2 Z (2n — 1)?
Hence
—T<x<0,

-1,
o= |
1, O<x<m,
has the Fourier series

4 Z sin(2n — 1)x
2n—1 "~

which agrees with what we know.

ExaMPLE 2. Give the version of Theorem 14 which is valid on [ —L[].

Solution: We want to show that if f is continuous on [ L[], f(—1) =
f() and if f'(x) is sectionally continuous with jump discontinuities, then



SOME FURTHER CONVERGENCE THEOREMS 381

=+ Z {a,, cos( x) +b, sm(n—nlf)}

converges uniformly and absolutely to f, where

a, = ljl f(x)cos(ﬂci) dx
1. I

- 1j' f(x)sin<ﬂ‘f) dx
1. I

(see Table 10-2). The proof could be accomplished following the method
of Theorem 14, but we can also deduce the result directly from this theorem
as follows. Let g(x): [ —#,%] — R be defined by g(x) = f{Ix/r). Then

= ljl f(x)cos(ﬂ[i) dx
I, l
= [l
= -TIEJ_ “f (;E)—))cos(ny) dy

(using x = ly/n). Thus a, is also the Fourier coefficient of g and, similarly,
for b,,.
Now g satisfies the conditions of Theorem 14, so

the Fourier series

220— +"=Zl (a, cos ny -+ b, sin ny)
converges uniformly and absolutely to g on [ —n,n]. Replacing y by nx/l,
we see that the same is true of f.

ExampLE 3. For each of the following functions, explain whether the
Fourier series converges in the mean, pointwise, or uniformly. Determine
if we can differentiate the Fourier series.

@ f:[0.2n] — R,

-— 1 .<x<}_
n’ (n+1) n’
fx) = n=12,...
1, -;:SxSZ,
®) fi[-7nx] = R,
fx) ==m — |x|.

(© f:[-nn] - R,
x? + 1, 1< x<0,
1) = {

x 4+ 1, 0<x<m.
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y y y
T
ke f _——— f ’—J\_J//:\\\-
-_— - A Y 7’
W S -7 1r’
111 1 2m _ ©
437 4 4
(a) ) ©
FIGURE 10-21

Solution: The three functions are sketched in Figure 10-21. In all three
cases, f is bounded and hence square integrable (thefunction in (a)is integrable
because its discontinuities form a countable set, see Theorem 3, Chapter 8.
Hence the Fourier series converges-in mean in all cases.

The Fourier series in (a) converges pointwise to the function, midway
between the jumps at a discontinuity and to 1/2 at the origin by Theorem 9.

In cases (a) and (c) the convergence is not uniform because f is not
continuous (for continuity at the end points, one must look at the periodic
extension; then (c) develops a discontinuity).

The function in (b) has a uniformly convergent Fourier series since it
satisfies the conditions of Theorem 14.

The Fourier series of (c) converges to f at each x such that — < x < =,
and at —x and = it converges to

;:[f(—n) +f{m)] =—;~[(n2 + 1) + @+ 1] = (nzz-i-n) +1.

Only the series of (b) may be differentiated to give the Fourier series of
1) { 1, —Tt<x<0,

"x) =
‘ -1, O<x<mn,

which converges to f' for x # 0 and to0 at x = 0.

Exercises for Section 10.6

For each of Exercises 1--3, determine what type of convergence the Fourier series will
have and if we can differentiate the series.

v 1. f(x) = x* on [~=,x].

3, -—n<x< —-%,
12,/ =140, —ifgx<i,
3, $1<€x<m
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3. f(x) =n ~ x* on [—n,x].

4. Use Theorem 12 to find the Fourier series of x* on [—=,7] using that of x? from
Table 10-5. '

5. (a) Suppose f:[—n,n] — R is differentiable on [—n,x], f(—=n) = f(n) and [,
J" are sectionally continuous, with jump discontinuities. Then show that

%f 70 de = 3 na? +82),
I n=1

where a,, b, are the Fourier coefficients of f.
(b) Use (a) and Schwarz’ inequality to deduce 3.® . (aj + b7)'? < co.

6. Consider the half-interval cosine series for sin x on [—mn,x]. Verify Theorem 15
directly in this case.

10.7 Applications

In this section, we briefly describe some applications of Fourier methods
to simple boundary value problems which occur in mathematical physics.
These examples are fairly easy, yet serve to illustrate some basic techniques.
This material is intended solely for illustration and as a link with other
courses in mathematics or physics which the student may be taking. It is by
no means a complete course in boundary value problems. For example, we
use only rectangular coordinates, when in fact polar and spherical coordinates
are also very useful.

The problems we consider are standard ones—the vibrating string, heat
conduction, and Laplace’s equation. Some further applications to boundary
value problems for ordinary differential equations are given in. Exercises
19 and 71 at the end of the chapter. We begin then by considering the
vibrating string. ‘

From standard physical arguments we find that a good approximating
mathematical model for a vibrating string with uniform density and (small)
vertical displacement y(x,t) at x at time ¢ is that y(x,t) should satisfy the,
wave equation, ,

ik d

—ét—f- = c¢? —a—;JZ)-, 0<x<.
Here c is a constant determined by the physics of the string and represents
the velocity of wave propagation along the string (as will be seen below).
See Figure 10-22.

In order to completely specify the problem it is necessary to give the
configuration of the string at ¢t = Q; that is, how it is initially “plucked.”
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y{x, 1)
c
0 x ::‘ 2
FIGURE 10-22

This data will be given by giving the initial condition y(x,0). Also note that
it is physically reasonable to assume that dy/dt is zero at t = 0 (that is, the
string is instantaneously motionless at the instant of plucking). It is also
necessary to specify what happens at the ends of the string. Typically they
are held fixed; for example, y(0,t) = 0, y(I,t) = 0 although other choices
are possible. Such a specification is called the boundary conditions.

: Once we have selected this model of the vibrating string, we have a purely
mathematical problem, and the physics does not re-enter until one wishes
to interpret the answer which the mathematics provides. There is a basic
method used in these problems called separation of variables which yields
special solutions, and from these one can build up general solutions.

Let us consider the case of a given initial displacement. To be more precise,
let us call the initial displacement problem the problem of finding y(x,t) for
0 < x < [, such that

. %y 0%y
(1) (equation of motlon)—éTz- = ¢? pws
’ yx,0) = f(x)  (for given f)
(2) (initial conditions at t = 0)<g
) a—};(x,O) =0 (no initial velocity)

(3) (boundary donditions) y0,0) =0, y1t) =0 (for all ¢)

Thus we seek the motion of the string for future (or past) time when
it is initially “plucked” in shape f(x). For (2) and (3) to be consistent, we
assume also that f{0) = 0 = f(I). Other types of initial conditions are
considered in Exercise 3. |

Separation of variables means that we first seek solutions to the equation
of motjon of the form

Y t) = h(x)gt) .

Thus substituting in the equation of motion, we obtain
h(x)g"(t) = c*h"(x)g(t) -
This will be satisfied if

K'(x) + Ah{x) =0 and g'(t) +Ac%glt) = 0

for a constant A (why?). A solution of these equations with h(0) = h(l) = 0
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and g'(0) = O is
h(x) = sin(n—nlz) and g(t) = cos(f%ﬁ)
where
n?n?
A= 7 n=1,2,3....

Thus, for each n, a solution of the equations of motion satisfying condltlons
(1) and (3) above is given by

D) = sin("—”lf)cos<ﬂ‘ff), n=1,2,....

The initial condition§ for this solution are
¥x,0) = sin(n—nl—x) and aa—J;(x,O) =0.

Thus we have the solution for a particular initial condition sin{nmx/l).
However, we know that any f can be expanded in a half-interval sine series,
and since all the conditions are linear, we should be able to add up the
solutions corresponding to the terms in this expansion. This is done more
precisely as follows.

Theorem 16. In the initial displacement problem, suppose that f
is twice differentiable. Then the solution to the initial displacement
problem is

yx,t) = —li[f(x —ct) + flx +ct)]

= S po()

where the b, are the half-interval sine coefficients,

J f (x)sm( ) dx

and f is to be extended so that it is odd periodic. (Twice differentiable
means we are assuming that the extended f is twice differentiable.)
See Figure 10-23.

It happens in this case that the Fourier series solution could be simplified
to a more easily handled and explicit form. Often, however, one must deal
directly with the Fourier series itself.

Before generalizing, let us note the simple physical interpretation of the
result. We see that the graph of f(x — ct) is just that of f moved over to
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FIGURE 10-23

the right by ct, so we can interpret the function g(x) = f(x — ct) as f
moving to the right with velocity c after time ¢. Similarly, A,(x) = f(x + ct)
is f moving to the left with velocity c. See Figure 10-24.

Thus, in Theorem 16, it can be seen that the initial shape of the string
merely propagates away to the left and right with velocity ¢, each with 1/2
the initial amplitude, and reflections with sign-change at the endpoints.

To use the half-interval sine series, recall that we made f odd periodic.
If we look only on the interval [0,[], we see that when f moves to [ it reflects
from the wall; see Figure 10-25. Since the solution is the sum, there will be
complicated cancelling (or “interference”).

To keep track of this, it is useful to visualize a simpler situation first.
Suppose f were concentrated near a point (possibly a ¢-function) and we

8 =ly=f
/\f =0
e T~ >
AY
I, 0 2 \
/
~
~ ht &, N
;
Cd Caad ~ =
g e ™ N
h g,
! fog=2
\ /
\
N 7
~ ~
N /"\ /
\\ /I \ l
\-.’, \\f/

FIGURE 10-24
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t=0

A.
'/ \\

t=1

- —_— - —
AN
A -
FIGURE 10-25

watch it move. These motions are called the characteristics of the problem.
They should be visualized as if one were watching a movie. See Figure 10-26.

If we want to use genuine delta functions or functions f which are con-
tinuous but not twice differentiable, then we must generalize the scope of
Theorem 1 and also generalize what we mean by a solution of d%y/ét? =
c*(@*y/8x?) for y which are not differentiable. This is done using the theory
of distributions. Admitting them, Theorem 1 still holds for f a distribution
(that is, the formal manipulations can be justified when properly interpreted).
We shall then regard (f(x — ct) + f(x + ct))/2 as the solution for any f,
differentiable or not.

| G S ¥
T T

S
T

FIGURE10-26 (a)t=0. (b)t=1.
(c)t=2. (d)t=3. (e)t=4.
(f) t = 5. (g) return to (a).
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In 2-dimensional problems (such as a vibrating drum) the wave equation

reads
%y L[y
=\ taxz)

In this case the general solution can be written in Fourier series but does
not have a simple explicit expression as in Theorem 14. The solution (for
the similar initial displacement problem) on the rectangle [0,]] x [0,l'], is
given by

o0 5 .
WXy %g,t) = Zlb,.,.. Sin<nxlln)sm<l—n-§7f)cos[nct G) + G’;)]

where
4 L rr
bnm =T f(xlixz)Sin ad U sin mx,zn dx dxz
TR I I

The reader is asked to go through the derivation of this in Exercise 68.

We now turn our attention to the problem of heat conduction. Consider
a bar whose temperature is T(x,t) at the point x at time ¢. Interpret —(07/dx)
as the rate of heat flow. Thus the condition of “insulation” at x = 0 is
aT/ox = 0 (evaluated at x = 0). The law of heat conduction asserts that

I e =k e,

where k is a constant determined by the conductivity of the material. This is
called the heat equation.* -

Notice that the above equation differs from the wave equation in that
we have 9T/dt instead of 8*T/dt*. This difference is very important, for
solutions to the heat conduction problem are very different in their behavior
from those of the wave equation. For example, in the heat equation one
obtains solutions only for t > 0. Intuitively, for the wave equation the
graph of the solution “bounces around” like water waves. For the heat
equation the solution diffuses out and becomes steady as ¢ — oo (as temper-
ature tends to become evened out).

Thus, to study this simple situation, let us make the following model for
heat conduction of a bar with insulated ends (for simplicity, take k = 1).
Hence, we wish to solve for T(x,t) satisfying

T 2T
(1) (heat equation)%—t~ (x1) = —aa—;z—(x,t), O<x<Ltz20

* For a derivation see Marsden-Tromba, Vector Calenlus, Chapter 7, W. H. Freeman (1975).
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(2) (initial conditions) T'(x,0) = f{x), O<x<l
and

aT
5;(0,0 =0,

A\
=]

(3) (boundary conditions) t
éT
™ (L) = 0,

First, let us find some special solutions for special f by separation of
variables. Let us try T(x,t) = g(x)h(t); then we must have

glx)h'(t) = g"(x)h(t) .
These equations are: true if, for a constant A,
gx) +g"(x) =0 and h(t) + AWty = 0.

Solutions of these equations satisfying the boundary conditions are clearly
given by
nnx
)

h(t) = e ™™ n=0,1,2,...,

where 1 = n*n?/I%. We use cosine and not sine so that the third boundary
condition will hold. The reader can also see that these boundary conditions
can’t be met if we try to solve forgand h with 1 < 0.
Thus a solution with f(x) = cos(nnx/l) is given by e
n=20,1,2,... .Since all expressions are linear and

)= S mmx) | o
fe) =3 cos( , ) +5

(half-interval cosine series), we expect that the general solution with initial
condition f is given by

and

—mi A cos(nmx/l),

-]

dy ~ 2212 nwx

— a.e cos| — | .

I ] '
The relevant theorem is Theorem 17.

Theorem 17. If fis square integrable, then foreacht > 0

a = nmx
T(x,t) = ~22 + Z a,e” cos(—l—)
n=1

converges uniformly, is differentiable, and satisfies the heat equation
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and boundary conditions. At t = 0, it equals f in the sense of con-
vergence in the mean, and pointwise if f is of class C'. As usual,

a, = Ejlf(x)cos<ﬂci) dx .
I, l

Thus this theorem gives the general solution to our problem. The expo-
nential term makes the convergence rapid for t > 0. For ¢t < 0, divergence
usually prevails.

Ast - oo all the terms in the series — 0, and also the sum — 0, leaving

. 1

l}_rpolat T(x,t) = 3 ay ,
so T becomes a uniform constant temperature in accordance with our
intuition. The proof of this is simple; see Exercise 69 at the end of the chapter.

What happens as ¢t — 0 is answered by the following more delicate result.

Theorem 18. In Theorem 17,
litmét T(xt) = f(x)

t>0

in the sense of convergence in mean, and converges uniformly (and
pointwise) if f is continuous, with f' sectionally continuous. More
generally, for any f, if the Fourier series of f converges at x to f(x),
then T(x,t) — f(x)ast — 0.

This is an important result, for it tells us in what sense we recover the
initial value f(x) from those for ¢t > 0. This is not derivable from differ-
entiability of T(x,t) for ¢t > 0.

Our final application will be the consideration of Laplace’s equation on
a square. Laplace’s equation in R" is
Vip =0
or, written out, i
n 62(p
W= 0%
Such a function ¢ is called harmonic. This equation arises in many problems
of electrostatics, fluid flow, and heat conduction.
The basic problem, called Dirichlet’s problem, is the following. Given
values of ¢ on some closed curve in the plane, find ¢ inside. This seemingly
simple problem is at the core of the vast and deep subject of potential theory.*

* The terminology arises from electrostatics, in which ¢ represents the electric potential;
again see Marsden-Tromba, Vector Calculus, Chapter 7 for details. This problem can also be
attacked by methods of complex variables; see, for example, J. Marsden, Basic Complex Analysis,
Chapter 5.
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FIGURE 10-27

Let us use Fourier series to solve this problem for a square in R?. Cubes
in R? are similar. The problem is summarized as follows.
In R?, on [0,a] x [0,b] find a function ¢ such that
(1) (Laplace’s equation) VZ¢ = 0.
(2) (boundary conditions) ¢(x,0) = g,(x)
o(x.b) = g,(x)
»0,y) = /1(y)
ola,y) = i)
where f; and g, are given functions. See Figure 10-27.
First, let us get special solutions by separation of variables. Try

@lx,y) = @ (x)@a(y) -
Then

P1(x)92(y) + 01(x)p3(y) =0,
if, for a constant 4, ¢, and ¢, satisfy the equations
Pi(x) +py(x) =0 and  @5(y) — dg,(y) =0.
Solutions to this are

@,(x) = Sin(n—zi), n=12,...

0t = snn] "=

where A = n?n?/a®>. We choose sinh(z) = (¢ — e™%)/2, z = nu(b — y)/a,
rather than * or ¢™ %, because it will vanish when y = b. Similarly, we choose
sine rather than cosine.

Thus
o(x,y) = sinh(n—n—(gg_—l)) sin ("_Zf)

satisfies the boundary conditions

. (nnb) ) (nnx)
gy = sinh{ — |sin{ — ] ,
a a
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Ji = f; = g, = 0. Similarly, we obtain other basic solutions. It can be
expected, therefore, that when f, = f; = g, = 0, the solution of the

problem is
: S, ., (nub — Y)\ sin(nnx/a)
= 1
o(x,) n; by smh( a /sinh(nzb/a) 1)
where g,(x) = , by sin(nnx/a) (half-interval sine series). Similar solutions

hold for the other 51des and the sum is the solution for all sides.
Theorem 19 summarizes the conclusions.

Theorem 19.

(i) Given g,, let ¢(x,y) be defined as above. Suppose g, is of class
C? and g,(0) = g,(a) = 0. Then @ converges uniformly, is the
solution to the Dirichlet problem above with f, = f, = g, = 0,
is continuous on the whole square, and V2@ = 0 on the interior.

(i) If each of f1, f2, 91, g2 is of class C* and vanishes at the corners
of the rectangle, then the solution ¢(x.y) is given as the sum of
Jour series like Eq. (1) above, V*@ = 0 on the interior, V is
continuous on the whole rectangle and assumes the given
boundary values. Futhermore, ¢ is C*® on the interior.

@iy If f1, /2, 91, 9, are only square integrable, the series for ¢ con-
verges on the interior, V2@ = 0 and ¢ is C*. Also, ¢ takes on
the boundary values in the sense of convergence in mean. This
means, for example, llmlt o(x,y) = o(x,0) = g,(x) with con-
vergence in mean.

The results (i) and (ii) are still t7ue if we only assume that f; and g, are
continuous, but they require a different method of proof. The present
procedure is good, however, because it gives the solution explicitly in terms
of Fourier series. The conditions (iii) are probably the most important in
practice. See Example 3 below and Figure 10-28.*

ExampLE 1. In the initial displacement problem define the total energy
of the string at time ¢ to be

B0 -3, (3 =53], (gi)d"

(kinetic plus potential energy).
Show that E(t) is constant in ¢.

* For further applications to problems in mathematical physics, we recommend Duff and Naylor,
Partial Differential Equations of Applied Mathematics, Churchill, Fourier Series and Boundary
Value Problems, and for a more exhaustive treatment, Courant and Hilbert, Methods of
Mathematical Physics.



APPLICATIONS 393
Solution: 1t suffices to show that dE/dt = 0. Now

dE o[y c? ' afayV
@ UJ‘ 6t<6t> dx +7L?ﬂ ) &

This is justified if y is twice continuously differentiable (see Example 2,

Chapter 9). Then
CZ 1 ay aZy
"J 6t<6x> =7 axaax®

Integrating the right-hand side by parts and using the fact that dy/ot = 0
at x =0, | gives

ey
o Ot 8x?

which equals, in view of the equation of motion,

1oy d%
~2 f a o
Thus dE/dt = 0, since the first term in dE/dt is
‘ dy 82y
J at o2 3
In case y is not twice differentiable more care is needed. (For example, if
y is a é-function, E is not even defined.)

For the heat equation, we do not have conservation of energy because,
roughly speaking, the energy diffuses away. (See exercise 6).

ExampLE 2. A bar with insulated ends has a temperature distribution given
by f(x) = x, 0 <x <l att=0. Find the temperature distribution for
t>0.

Solution: According to Theorem 17, we simply take the half-interval
cosine series for x and insert factors e ~™***9"*. Now the series for x is given by
.= I 4 cos[(2n — 1)mx/I]

2w, 4H @n-DE

so the required solution is

a4 & - cos[(2n — Dmx/!
Te) = 5= — 2 - (@n= 1 [EZn - 1§2 uy

In general, one cannot reduce this expression to a compact form but must
instead work with this series expansion.
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Gibbs’ phenomenon

FIGURE 10-28

l
ExampLE 3. Solve the Dirichlet problem on [0,x] x [0,n] with boundary
values g, =1, f;, =0, f, =0, g, = 0. How are the boundary values
assumed?

Solution: Here the sine series for 1 is

4 & sin(2n — 1)x
n& 2n—1

According to Theorem 19, ¢ is obtained by inserting factors

sinh[n(x — y)]

sinh(nz)
into this. Thus we obtain
4 i sinh[(2n — 1)z — y)] sin(2n — 1)x

/= sinh@n— ) = 2n-—1

as the solution. By Theorem 19, ¢ is C® and satisfies V2¢ = 0 on the interior

of the square. Here ¢(x,0) = 1 in the sense of convergence in mean, that is,

@(x,y) = 1 as y — 0 (in mean). The partial sum s, of ¢ is roughly sketched
in Figure 10-28.

o)) =

Exercises for Section 10.7

1. For the initial displacement problem of a string, consider the “plucked string” with

bl

[ ] Band

hx , 0<x<
Six) =

- hx, <x<

N~
~
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Show that f does not satisfy the hypotheses of Theorem 16. Find an expression for
the solution and sketch it after time ¢ = //c, 3//2c.

2. Suppose in the initial displacement problem, / has a maximum or a discontinuity
at xo. Show that, after time ¢, this feature is propagated like a characteristic.

3. (a) State clearly what the initial velocity problem for a string would be (no displace-
ment). If the initial velocity is g(x), then show that the solution is

1 x-+et x—ct
yx,1) =§;Uo g(z) dz —L g(z) dZ}-

Try to interpret physically.

(b) Combine (a) with the initial displacement problem to get a solution for the
problem with both initial displacement and velocity. (This is called d’Alembert’s
solution.)

4. In Theorem 17 prove that for any ¢t > 0,

2 1
—f T(x,t)dx = a, .
Lo

[Hint: What are the Fourier coefficients of T(x,) for ¢ fixed 7]

5. A bar with insulated ends has at ¢ = 0 the temperature distribution f(x,0) = x2.
Find the temperature at ¢ > 0 and the limit as 1 — oo.

6. Let T(x,r) be a solution of the heat equation (Theorem 17) and set L(z) =
{6 1T(x,0)|? dx. Show that L(r) is non-increasing.

10.8 Fourier Integrals

This section is a short informal discussion of Fourier integrals. We shall
just sketch the main results so that the reader can see a preview of some of
this material and its place in Fourier analysis.

As we have seen in the previous sections, Fourier series are a very useful
tool for analyzing functions on a finite interval. Since many functions are
given on the whole real line R, it would be nice to have an analogous theory
on R. Fourier integrals provide this theory.

Let us first argue heuristically. Consider f: [—1LI] — R. Then we can
write f in terms of its Fourier series, using the exponential form,

(x) z Cy emmc/l

where

1
Cy = i’j Sy ™ dy .
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Let & = nz/l and introduce

2

o) = f f@)e = dy |
Then

— < dox E
Jx) = _ch(oc)e 7
For [ large, « approximates a continuous variable, and this sum is roughly
a Riemann sum with Ae = =/l. This suggests that

-0

() = f " e do,

where

2n

In short, when we extend our intervals to infinite ones, the Fourier series
goes over into an integral.

Exactly the same steps as above can also be used in trigonometric form,
except that integrals are taken from O to oo as are’the corresponding sums.

The relevant theorem states that if f is sectionally continuous with jump
discontinuities and f(x,+) and f'(x,—) exist there, and |2 | f(x) dx < o
(fis integrable), then

”

1 -]
(o) = —j S ™ dy .

@

SLe) + fx)] = f olee™ da,

-0

where

=5 10

One proves this in a way similar to the Jordan theorem (Theorem 9).
The above formula is called the Fourier inversion formula. In trigonometric
form the formula is '

: }i[ Sx+) + f(x=)] =Lm[A(oc)cos ax + B(e)sin ox] dor ,
where
46 = 1| eost)
and

1 -]
B@) = = f SO)sin(e) dy

This form is especially convenient if f is even or odd.
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In view of the inversion theorem, the Fourier transform of f is defined as

n 1=
flo) = Ej S(x)e™ " dx .

Then if f is continuous, differentiable, and integrable on R,
Sy = f flaye™= d.
There is a similar formula on R*; that ié,
fx) =j J(@)e® da,
-
where
f@ j Sx)e™ " dx
) =G | T
x, o € R" and {x,a) is the usual inner product in R".
Suppose f: [0,00[ = R. Then we can extend f to all of R by making it

even or odd. Just as with the cosine and sine series, we can then introduce
the Fourier cosine transform by extending f to be even, and setting

i = 2| owosen v
The inversion theorem becomes
J(x) = J:n f;(oc)cos(ocx) do .
Similarly, extending f to be odd leads to the Fourier sine transform,
i = 2 [ ronsiten .
and the inversion formula becomes
f(x) = J : fi(@)sin(xa) dot . '

A standard fact one should know (using Example 1, Chapter 9) is that the

Fourier transform of ¢~ **/2 (Gaussian function) on R is e”**/2/. /2. Note
that this is consistent with the inversion theorem.
In general, an integral transform is an association of the function

g(x) =Lk(x,y)f () dy
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with the function f for some fixed function k called the kernel, and some
fixed range A of integration. Such operations are common in mathematical
physics. ‘

Thus the Fourier transform is an integral transform with kernel

ix.y

1
k(x,y) = o €

Here we come to an important, general problem. The transform maps f
to g; that is, given f we get g. Can we invert this? In other words, given g
can we invert the transformation to find f?

The Fourier inversion theorem solves this problem in the case of
k(x,y) = (1/2m)e™’. That is, knowing the Fourier transform we can recover
the function using the inversion formula.

Another common integral transform is the Laplace transform with kernel
k(x,y) = e¢™*, and range [0,0c0]. Thus the Laplace transform of f is

The inversion problem for Laplace transforms has a solution analogous to,
but quite distinct from the Fourier transform.*
For f: [—=n,%] = R we have seen that (see Table 10-4)

”

n 2]
i = f G dx =21 e,
-n -0
for the Fourier coefficients c, in exponential form. Since c, is analogous to
the Fourier transforms we might expect that something similar holds in
terms of f
In fact this is true. If |f|? and |f]| are integrable, then letting

112 = f " e ax,

we have,

IF1% = 2z 1112

More generally, (f,g> = 2n( f.3>. Here the Fourier transform can be any
of the types—exponential, trigonometric, sine, or cosine.

This result is variously known as Parseval’s relation and Plancherel’s
theorem. To deal effectively with the technicalities involved requires the
Lebesgue integral.

* See, for example, Marsden, Basic Complex Analysis, Chapter 7 for details,
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For f and g integrable on R (or R") we define the convolution of f and
g by

@

(f * g)x) =j S = »g(y) dy .

This operation enters naturally in many problems. One of its main properties
is that

— A A
frg=2nf-§

(see Example 4 at the end of this chapter).

Fourier transforms have important applications in both pure and applied
mathematics, but especially important in partial differential equations, such
as the wave equation on all of R". The reason is that in terms of Fourier
transforms the equations become much simpler, often algebraic, and when
these equations are solved the answer is obtained using the inversion
formula. Convolutions are then encountered when we invert.

Using Fourier transforms many problems solved above on finite intervals
can be translated easily to problems on the whole real line R. The following
exercises outline how to do this.

Exercises for Section 10.8

These problems can be done informally with little attention to rigor since this section
has been so presented.

1. Show that if f(oc) is the Fourier transform of f, then f’(oc) = iaf(oc) and that
2 (2 o | [P do = [ |f1* dx.

2. Let f(x,y) satisfy o&%/ox* + 8%Joy* = 0. Suppose that f(x,0) = g(x) and
limit f(x,y) = 0 for all x.
y-roo

(a) Let f(x,y) be the Fourier transform of f(x,y), with y regarded as a constant.
Show that f(a,y) = Gla)e™ ™,
(b) Show that e~ is the Fourier transform, with respect to x, of

2y
x2 4+ p?° ,

(c) Deduce that the solution of Laplace’s equation is

1 o
Slx,y) = po f_ ;2—42(_:,1’7)2 glx) dx'.

3. Suppose that f(x,!) is a function for which

92 8% i)
.61—{ = 5;]3 y  fx,0) =g(x), and 5{(x,0) = hix).
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Let f (o) be the Fourier transform of ! (x,?), with ¢ regarded as a constant,
(a) Show that f(e,t) == §ler) cos ez + hfe)(sin at/er).
(b) Deduce that the solution of the wave equation is

S, = l[g(x~—t )+ glx + 0] + = f[h(x~—r )+ h(x + 1)} dr.

N

4, Suppose that f(x,) is a function for which

of .0
5; = [ o 3
and f(x,0) = g(x). Let f («,2) be the Fourier transform of /.
(a) Show that f(x,) = gla)e™ =,
(b) Deduce that the solution of the heat equation is

—0 <X <00, t20

fle) =

o
f gl )™ = R14R g,

1
INCIRE

10.9 Quantum Mechanical Formalism

There is a close connection between the theory of Fourier series in an inner
product space (developed in Sections 10.1 and 10.2) and some aspects of the
formalism jn quantum mechanics. Our purpose is to explain some of the
aspects of this connection.

First, let us give a brief indication of the difference between classical and
quantum mechanics. In classical mechanics, a particle’s motion is described
by a definite path with its associated definite velocity. In quantum mechanics,
however, there is always some “‘uncertainty” about the position or velocity
(or both). For atomic phenomenon this uncertainty is necessary and these
effects are outside the domain of applicability of classical mechanics. For
example, if an atomic particle with a definite initial velocity is prepared and
projected at a screen, we do:not know precisely what its future path will be.
Instead, when we look for the particle we can only determine the probability
of finding it in a given region.

In Figure 10-29, we consider* projecting particles through a screen with
two slits onto a detection plate. Only the probability of location can be
determined, not the exact location. For repeated trials, light and dark
areas on the screen corresponding to high and low probability are obtained.
This is represented by the curve in Figure 10-29. Other physical phenomena,

* This is an imaginary ex periment which is used for illustrative purposes only, In real experiments,
the “screen™ might be, for instance, a crystal, and the slits. might correspond to interatomic
spacings.
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detection
screen plate
probability
distribution
particles all
prepared
identically

FIGURE 10-29 Double slit experiment.

like the discrete spectra for atoms, also require a quantum mechanical
description.* ‘

The above should not be taken to mean that classical mechanics is “false,”
while quantum mechanics is “true.” Both are mathematical models which
approximate nature well in their own limited circumstances. Quantum
mechanics is, however, a more ‘“‘refined theory” than classical mechanics.

The question then is how does one describe the behavior of a quantum
mechanical particle? A single quantum mechanical particle is described by a
complex-valued function, i(x), where x € R®. For more particles one must
change R® to another space (for N particles, R*" is used). If the system
depends on time, then we use ¥(t,x). The probability density for locating
the particle in space is given by Y{x)¥(x), so if the total probability is one,
we should have

lvi? =L,¢(x)%c‘)dx =1,

that is, i should be normalized. This last sentence provides one of the
links between studying the mathematical model (that is, studying the inner
product space of square integrable functions ¥y and operations on it discussed
below) and the physical interpretation of this model.

If one is measuring a definite quantity, such as the x coordinate, the
momentum, or angular momentum, then, as above, these cannot be measured
with certainty. The aspect of quantum mechanics we wish to explore is the
mathematical structure of the wave functions ¥ and the mathematical
objects corresponding.to physically measurable quantities. Of course, the
subject goes much deeper than this and our discussion has only just begun
to scratch the surface.

*Consult R. P, Feynmz\n, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics,
Volume I1I for additional background,
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Let us introduce some rigor into our discussion. First, suppose V = %2
is the space of functions, iy: R* — C, which are square integrable;

Il = <> =jl/l(ﬂﬁ>5dx < .

As we have seen before, this is an inner product space with inner product

) =L’f (x)g(x) dx .

Thus, all the discussion relating to an inner product space (see Sections
10.1 and 10.2) is relevant here.

A quantum mechanical state is (by definition) a function, ¥ € ¥ such that
¥l = 1; that is, ¥ is normalized. An observable is an operator A on V
which is symmetric (or self-adjoint, or Hermitian); this means that A: V — V
is a linear map satisfying

(Afg> = {f,Ag>

for all f, g € V. Actually, 4 may be defined only on some* elements of V.
For example, if 4 is the Laplacian

oy
Eroiir R

then A is defined on those f & VV whose second derivatives also lie in V.
One can check formally that V2 is symmetric using integration by parts
twice. On the other hand, d/dx is not symmetric, but i(d/dx) is (the reader
can prove this without difficulty).

An eigenfunction of an operator 4 is an f €V, f # 0, such that Af = Af
for some complex number A called the eigenvalue. Observe that if f is an
eigenfunction, then so is f/||f, so we can assume our eigenfunctions are
normalized.

There are two important remarks to be made concerning eigenfunctions
of symmetric operators. First, if 4 is symmetric and f is an eigenfunction
with eigenvalue A, then 1 is real. (Proof: CAf,f> = f.f> = A|f]|*. On
the other hand, <Af, /> = CLASD> = (LA> = X f11% 504 = A, thatis, A is
real.) Second, if /" and g are eigenfunctions with eigenvalues A and g, and
A # u, then f and g are orthogonal. (Proof: Consider {4f,g> — {(f,Ag) =
0 = C(Hig> — {fing> = (A — ) fig>. Since pu # 4,{f,g> = 0)

If f and g are independent eigenfunctions with the same eigenvalue 4,
then we can obtain two new orthogonal eigenfunctions by the Gram-Schmidt

Af = sz B

* Such operators are called unbounded and for them one has to distinguish between symmetric
and self-adjoint. For further information see Reed-Simon, Methods of Modern Mathematics
Physics, Vol. I, Functional Analysis, Academic Press (1972).
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process. A similar operation can be performed for any number of eigen-
functions. Thus follows an important result. The eigenfunctions of a sym-
metric operator 4 form an orthonormal set. Hence, we have the connection
with Fourier series; for, if @, @,, @,, . . . are the orthonormal eigenfunctions
of A and if they are complete, then we can write i = )™ o U000, for
any e V.

Unfortunately, the eigenfunctions are often not complete. For example,
the Laplacian operator on R" has no (square integrable) eigenfunctions. In
many important problems (‘“bound-state problems™), however, the eigen-
functions are complete, This is proved in advanced courses on functional
analysis by means of a theorem called the spectral theorem.

Let us return to the physical interpretation of observables. Again, let
V be as above and let 4 be a symmetric operator. The main physical assump-
tion is the following.

Physical Interpretation. If 4 is “measured” in a state y, only the
eigenvalues of 4 are observed. The value 4, is observed with
probability |(,¢,>|?, where Ag, = 1,0,

. This mterpretatlon is consistent because (see Exercise 22 at the end of
the chapter)

L= > =Y o )Xe.> =) Koo,

so the total probability is one. Furthermore, if the system is already in
state ¢, (which it need not be generally), then we observe 1, with probability
one (that is, with certainty).

Thus the Fourier expansion of i exhibits i/ as a “‘mixture™ of the eigenstates
¢,, and the squares of the absolute values of the Fourier coeﬁic1ents are the
probabilities of observing the particular eigenvalues.

As we have seen before, in a given state iy and given an observable 4,
one cannot generally predict with certainty the observed value of A, But
theaverage value observed, after many trials, is 2‘“ K@, 4, = AP
(see Exercise 3). This quantity {4y, is also cali)ed the expectation value
of A in the state /. What is this for an eigenstate?

Let us now give some simple examples of observables. Probably the most
important example is the energy operator, denoted H, also called the
Hamiltonian. For a single particle in a potential U, it is given by

hZ
= ——0 V2
HY = 2mV v+ Uy,
The justification of this choice depends on a more detailed analysis of the

foundations of the subject; again, refer to Feynman’s book for details.
Here U is just a given real-valued function representing the potential, m is



404 FOURIER ANALYSIS

the particle’s mass and # is a certain constant which depends on units of
measurement (2 = 1.05 x 10727 erg sec) and is called Planck’s constant *

For example, in the hydrogen atom we can observe only discrete energy
levels, which are eigenvalues of the operator

(- v
Hll/——i';Vlll—-;,

where r(x,y,2) = (x* + y* + z%)'2, and m is the mass of the electron.

A word of caution—any ¥ is an admissible state, not just the eigenstates.
But the eigenstates are particularly important states because their eigenvalues
give the values which are observable.

The reason the energy operator is so important is two-fold, First, its
eigenvalues give the possible energies we can observe. Second, this operator
governs the time dependence of Y by means of the celebrated Schrddinger
equation which reads as follows:

aw _

(the solution i of this equation using Fourier series is given in Exercise 23,
at the end of the chapter).

Other operators are

(1) The position operator (in the x direction),

" Qx(‘»l’) = xl,l/(x,y,z) .
(2) The momentum operator (in the x direction),
h 61//
P =75

(3) The angular momentum operator (about the z axis),

rh={r 5 - +%).

x ay
Similar definitions can be made for Q,, @, and so on.

The eigenfunctions of J, are complete and the eigenfunctions and eigen-
values are computed in any quantum mechanics book. The operators
Q.. P, do not have square integrable eigenfunctions.

Finally, before looking at a specific example, we examine the important
notion of the commutator. The commutator of two operators, A, B, is the

operator [4,B] defined by
[4,B] = AB — BA,

where AB means A4 o B; that is, (ABYf) = A(B(f)).

* Actually /i = 2nh is usually called Planck’s constant.
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Suppose f is an eigenfunction of both 4 and B, If Af = Af, and Bf = pf,
then
[4.B]f = (AB — BA)f = A@f) — B(X)
=plf —f =0.
Thus if 4 and B have the same eigenfunctions, then [4,B]f = 0 for such
eigenfunctions. If the eigenfunctions are complete, we expect [4,B] = 0
for all f, but this requires more assumptions than we can go into here.

Conversely, if [4,B] = 0, we can select the eigenfunctions to be simul-
taneous eigenfunctions of A and B. This is easy to see if there are no repeated
eigenvalues (the more general case requires a bit more argument), Toillustrate,
suppose Af = Af. Then A(Bf) — B(Af) = 0, so A(Bf) = A(Bf). Thus Bf is
an eigenfunction of 4, so Bf = uf for some u (since by assumption, 4 is a
simple eigenvalue). Thus f is an eigenfunction of both 4 and B,

In summary, [4,B] = 0 iff 4 and B have simultaneous eigenfunctions.
Physically this means that these eigenfunctions give exact observables for
both A4 and B at once, or as we say, A and B can be measured simultaneously.
Further justification of this statement is given by the famous uncertainty
principle (Exercise 5), which states that the product of the “errors™ in
measuring A and B for the same i (that is, measuring A, B simultaneously)
is at least 2 |<Cy,y)|, where C = [A,B]. The definition of “‘error™ is also
given in Exercise 5.

Finally, let us look at a simple example. Other important examples such
as the harmonic oscillator (H = —(h*/2m)V? + kr) and the hydrogen atom
(H = —(h?*/2m)V? — 1/r) are found in standard texts, and are a little more
laborious to perform fully.

The example to be studied is that of a particle in an “infinitely deep well.”
We want to find the eigenfunctions and see if they are a complete orthonormal
set, Here the problem is in one dimension for simplicity. We have

i o

V = 0 on [0,[], and V = o outside. Since this is not workable within the
space of square integrable functions, let us reformulate H by demanding

h? 0%y
= ——— !
Y= —snar o0 [0l,
Y and Hf = 0, outside [0,]] .
Thus H is really an 6perator on the functions ¥(x), 0 < x <[ with
WO) = w(l) = 0. -
It then follows that i is an eigenfunction iff there is a constant E, such that
hz azw

— ¥~ Ey.

T 2mox?t
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FIGURE 10-30

The general solution to this equation is easily seen to be
Y(x) = Asin Ax + Bcos ix,

where A2 = 2mE/h%. If y = 0at0, [, we must have B = Oand also, A = nn/l,
n=1,2,3,....
Thus, for the problem, the eigenfunctions are (normalized),

(see Figuge 10-30) where A, = nn/l, n = 1, 2, . . ., and the eigenvalues are
h2n?n?
" omi
Thus these E, are the only possible energy values we can observe.

Here these functions are complete, as has been proved in Section 10.3.
Thus if a particle is in a state i, the probability we will observe energy E,

is given by
4
j mmm(@) dx
]

2

Ko =7

Exercises for Section 10.9

1. Let A be an operator on V. Define its adjoint A* by {A*x,y) = {x,Ay) (assume such
an A* exists), Prove that (4B)* = B*4*,

2. Let VbeR"and 4: V - V linear, Prove that 4 is symmetric in our sense if its matrix
with respect to any orthonormal basis is symmetric in the usual sense of matrices,
that is, a,; = ay.

3. Let A be a symmetric operator with a complete set of eigenfunctions ¢g, ¢, 3. . . .
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and eigenvalues A, 4,, . . . . If ¥ ¥, argue that the expectation of 4 is given by

APy = 3 Ko )I* 4,
n=0
Interpret this quantum mechanically (that is, probabilistically).

4, Suppose {Af.g> = —{[f,Ag) for all {, g e V. Show that 4% is symmetric and that
it has only negative eigenvalues,

5. (Uncertainty principle.) Let A be a symmetric operator, The uncertainty (or variance)
in observing 4 in a state ¥/ is given by

BHA ) = KA = AP .

(a) Show that this equals AP ¥)> — (A )2 .
(b) Let 4, B be two symmetric operators and let C = [4,B]. Show that

T ANAN) AYBY) = 4KCYN .

Note the special case [4,B] = 0 and interpret it, [Hint: Show that for any two
symmetric operators A4 and B, 2 (imaginary part of (By,AY)) = (Cy ).
Apply the Schwarz inequality and replace 4 by 4 — {4y > and replace B
similarly.]

(c) For the case Ay = xy and By = (h/i) 0yf/dx (position and momentum), show

that
AYA ) AXBY) = 4

(for [yr]l = 1). This is called the Heisenberg uncertainty principle.
Theorem Proofs for Chapter 10

Theorem 1. The space V of continuous functions f: [a,b] — C forms an inner product
space if we define

N
S =ff (x)g(x) dx

Proof: The properties of the inner product follow from these computations:
(@) <af + bg,hi> =f[af(x> + bg(x)Jh(x) dx
= afbf(xﬁ{(?) dx + bfbg(xﬂ(?) dx
= a<af,h> + gy . "
(i) <fig> = f ) = f )

m___—
=f Sx)glx) dx
={g.f>.
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(ili) Note from (ii) that {f,f> = {[./>, so {f.f> is real; thus {f,f> = 0 makes
sense. Here
6 b
AL =ff(x)f(x) dx =f /()P dx 2 0,

since | f(x)) > 0.
Finally, suppose {f.f > = 0. Use the fact that if hiscontinuousand 4 > 0, then

b
f Mx)dx =0  impliesh =0

a

(see Section 8.4), so {f,f > = 0 implies % |f|> dx = O and hence f = 0. §

Theorem 2. (The Cauchy Schwarz Inequality) Let f, g belong to the inner product
space V; then

_ IKSgl < 1SN gl -
Furthermore, all the properties listed in Theorem 5 (11), (111), Chapter 1 hold (11 (iii) also
holds for o complex). .

Proof: We shall only prove that |[{f,gd] < IIf] llgll, the rest being routine as in
Theorem 5, Chapter 1.
First, let us prove the inequality when |g|| = 1. Now

0< IS = {fgdall? = {f = <fuada.f — {Sgdad
= > = STy ~ LaX Ty + {S:g)Sg>{g.9)
= > = STy
= I/1% = K2 .

Thus [</,1* < 1713
For the general case |(f,g2| < |f| llgll, we can suppose g # 0, so |gl| # 0. Let
h = g/llg| so ||| = 1. Then

KIS < 171 -
But
il =2y
lol

so we obtain theresult. §

This method is similar to that used to prove Theorem 1, Chapter 5, except now a bit
more care was needed to keep track of complex conjugates. The reader should derive
the other properties, taking special care with the triangle inequality ||/ + g| <

1A+ Nl

Theorem 3. Let V be the space of functions f [a,b] — C, such that |f|* is integrable
(that is, [8] f(x)|* dx < o0). Then the space V is an inner product space with

b
S =ff (x)g(x) dx
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b 1/2
Iz = (f |Gl d-X> .

The space of sectionally continuous functions is also an inner product space.

Proof: First,if | /|| = 0, we have [¢| f(x)|* dx = 0, so by Theorem 4(ii), Chapter 8,
[ is zero except possibly on a set of measure zero. Since we are identifying functions
which agree except on a set of measure zero, f = 0. Finally, { f,g) satisfies all the other
rules of an inner product space as in Theorem 1. We need only show that { f,g) is finite
(that is, fg is integrable).

If we work only with bounded functions, it is clear that fg is integrable and bounded,
as are both f and g (see Chapter 8). However, we also wish to allow improper integrals,
so f and g need not be bounded. If we split f and g into real and imaginary parts, and
into positive and negative parts, this easily reduces to the case of f and g real and
positive (the reader is asked to carry out the details as an exercise). Define, for each
M > 0, (fg)y as in Chapter 8. We want to show

and norin

b
limitf(fg)M < 0.
M-teo
However, for M > 1, one easily sees that

0 < (fu < fugm
S0

b
f(fg)m < (s> < Wl Mgl

by the Schwarz inequality. But || /] < || and |lgpl < llgll, s0

b
f(fg)m < Ifgl < oo

Hence we obtain the result (the limit exists as the integral increases with M; we only
needed to show it was bounded above).

Finally, for sectionally continuous functions, observe that they form a vector space
(Exercise 9 at the end of the chapter) and are bounded (Exercise 11). Hence both
functions, f and | f|?, are integrable, since the set of discontinuities is finite (Theorem 3,
Chapter 8). §

Theorem 4. Let V be an inner product space and suppose f = ZZ“: o G Jor an orthg-
normal family, @q, @y, ... in V (convergence in the mean) and fe V. Then ¢, =

o = oS,

Proof: Lets, = Z:=o ¢y, So that ||/ — s,]l — 0. Fix i and choose n = i. Form

S = s = {9 — 8P

This expression approaches zero as 1 — oo, since [{f — s,,9>] < ||f — s,]. But for
n 2 i, we have

n

(P = Z Lepupi? = Z kP = Z il = ¢ .
k=0 k=0

k=0
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Thus
Sy — =0

as 11 — o0. Since this expression is independent of n, we have {f,0,> = ¢;. i

Theorem 5. Let @q, 9,, . . . be an orthonormal system in an inner product space V. For
each fe V, 3= I fyp)|* converges and we have the inequality

‘ZOKMJ:)IZ <IfI2.

Proof: Lets, = ZLO {fw>@;. We first show that /" — s, and s, are orthogonal.
To see this, it is enough to show that f — s, and ¢;, I < i < n are orthogonal (why?).
Indeed,

<f_ Sm‘Pt) = <f’(pi> - <sm(pi>
<sm¢i> = <f,¢i> ’

and
since
{SunPi? =J_Zo<<fs‘l’1>‘l’1,‘l’:> =JZo<f,fP1> 531 = {fip>

(this is the same computation as in Theorem 4). Now if g and h are orthogonal,
lg + #l1% = lgl* + A3 (Pythagoras relation, Exercise 9, Section 10.1), so, by the
above,

IAIZ = 1S = 50 + sll2 = ls 2+ 1f = sal? 5
hence
, Isall2 < 1702
Now
" 2 n
Isu? = || 3. <foder | =D IKhed? lled?,
i=0 i=0

since the ¢, are orthogonal and therefore _

lIsal® = ZI(/«I’;)I2 <IfI1%.
Thus the series Z [<f,,>)? has partial sum ||s,,||2 which is an increasing sequence,

since the terms of the serles are = 0 and the series is bounded above by || /'||*; hence the
series converges with sum < || f)|%. §

Theorem 6. Let V be an inner product space and ¢, ¢y, . . . an orthonormal system.
Then ¢q, ¢4, . - - is complete iff for each f € V, we have

/12 = Zo|<f,<p">|2 .

Proof: Let
50 =2, Lo -
i=0
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In the proof of Theorem 5 it was shown that

1N =1 = s + lsall

Now suppose ¢, ¢;, . . . is complete. Then s, — f, and so | f — 5,2 — 0. Therefore,
since

mw=;wmw
=0

we have, letting n — oo,

(s =Z‘0I<f,fm>l2

Conversely, if this relation holds, then ||f|? — |Is,|* = 0 as n - oo. Hence
If.= sul* = 0, that is, 5, — f, which means that

Z oo .

Theorem 7. Let V be an inner product space and ¢4, ¢,, . .., @, a set of orthonormal
vectors in V. Then for each set of numbers to, t,, ..., 1,

= Ztk‘l’k

k=0

S - Z(fa‘l’k)‘l’k
k=0
with equality iff t, = {fp.>-
Proof: Let ¢, = {fipr), Su = Z’;=o cupy, and h, = Z"‘: ot~ Then it is required

to show that
I/ = sl < If = mli?

with equality iff ¢, = ¢,. For this, it shall be shown that
If = Bl = 1702 = X led® + 3 lew — l?
k=0 k=0
which evidently suffices to prove the theorem. Now to prove this equality, note that
Lf = )2 = LS = bof — b
= <faf> - <f’hu> - <hmf> + <hmhu> .

First,
gy = Z Lty
[¥]
=Y 18y = |1,
. =0
Second,

Sy = <f,ztk‘l’k> = chfk-
K=0 ¥=0
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Thus
1 I 1
IS = mall® = 1720 = D e — D 08 + 2 Il
k=0 k=0 k=0

n n
=112 = D led? + 2 le, — 1)
k=0 k=0

as required. [

Theorem 8. The exponential and trigonometric systems on [0,21:} (or [—n,7] are
complete in the space of functions f:[0,27] — C with [¥°| f(x)|* dx < oo (the integral
may be improper).

Proof*: By our remarks in the text and Exercise 1, Section 10.3, it suffices to
consider the exponential case. Two necessary facts are contained in the following
lemmas.

Lemma 1. (Stone-Weierstrass theorem in a special case)) Let f: [0,2n] — C be con-
tinuous and let f(0) = f(2n) (periodicity). Then for any ¢ > 0 there is an n and constants

c,i=—n,...,—1,0,1,...,n,such that if we form the function
X)) = co + c1€™ + @+ -+ g™
teo1e™ ey e o g7
then

|f(x) — palx)l <&
Jor all x e [0,2x].
The Stone-Weierstrass theorem was proved in Chapter 5. See also, Exercise 44(b),
Chapter 5. The proof of the next lemma is technical ; it may be omitted on a first reading
of the proof.

Lemma 2. Letf: [0,2n] — C be square integrable,and ¢™> 0. Then there is a continuous
Junction g: [0,27] — C with g(0) = g(2n) such that

2n
If - gl =f 1/(x) — g dx < ¢
0

Proof: First suppose that /' is = 0 and bounded by M. Given ¢ > 0 choose a par-
tition P of [0,27] such that, setting & = f2,

lfh - Zh(ci Wt 41 — x5)

and a similar estimate for f. We can, by drawing straight lines, construct a continuous g
such that g is constant = f(c}) on [y,z/], where [y,z;] < [x;,%;,,] and |y, — x| <

< [
2 ’

* A proof due to Luxemburg and not relying on the Stone-Weierstrass theorem is outlined in
Exercise 75. Another proof due to Lebesgue is given in Exercise 76. Both proofs, however,
rely on the converse of Example 2, Section 10.2 (see Exercise 14), which uses completeness of
%2 that is, the Lebesgue integral.
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&/8M?n, |x,,, — 2z < &/8Mn, and g is bounded by M. It is then easy to see that

& &
flf— g* =f(f2 + g% — 2fg) <3 +4M? x L=
by adding and subtracting the approximations for { /2 = { & and [ f and using the
definition of g. The details are left to the reader.

The general case may be dealt with by writing f as f = f* — f~ (see Chapter 8),
so we can assume f = 0. Then we can form f;,; as in Chapter 8 and choose M large
such that ||/ — ful* < ¢/4 which is possible by Corollary 4 of the monotone con-
vergence theorem (Chapter 8). By the above we can chooseg such that [ |g — fil* < &/4,
and thus [ |f — g]* < &, since

If = gl S NS = fudll + llg = fiel < i +—— =5 B
To prove the theorem from these lemmas requires two steps.

Step 1: Proof of the theorem for f continuous and periodic.

Let
ixk

= Zn Lo where @,(x) = \/2_1; .

Then for ¢ > 0 we must show there is an N such that n = N implies ||/ — s,/ < e.
‘Tt suffices to produce a single i, because by Theorem 7, || f — Sppill < IS — sall (we get
a better approximation by taking more terms—see also, Exercise 21, p. 436). Now

choose p, as in Lemma 1, so | f(x) — p,(x) < &/v/27 and form the corresponding s,,.
Now

! 2n
I/ = pal® =L /() = plx)|* dx

[ eee
< — dx = g,
0 27

Thus |/ ~ p.] < & However, by Theorem 7,
If = sall S If = pill <,
since the Fourier series gives the best mean approximation to f. This proves Step 1.

Step 2: General case.
In view of Lemma 2 and Step 1, it suffices to prove the following fact. Here V is the
space of square integrable functions, but the lemma is stated in general terms.

Lemma 3. Let V be an inner product space and let ¢, ¢4, . . . be an orthonormal family.
Suppose f € V and f, — f. If we have

= Z Lot
k=0

Jor each n, then

=Y S0P -
k=0



414 FOURIER ANALYSIS

Proof: Given ¢ > 0, choose N such that k > N implies || f, — f|| = &3. Choose
M such that n > M implies

<E
3

Z fm‘lﬁ)‘l’]

Then using the triangle inequality,

n

Z Sopo; —

+ A=l

+ l JZ()(fN#PJ)‘PJ =/

Z Sope; — Z Swppo;
i=0 j=0

By Bessel’s inequality, the first term is < ||/ ~— fyll (see the proof of Theorem 5).
Thus 11 > M implies

Z {ope; — fll + +§= ,
=0
which proves our assertion. [

Theorem 9. Let f: [02n] — R (or f: [ —n,n] — R) be sectionally continuous, have a
Jump discontinuity at xo, and assume that [*(xq+) and f'(xo—) both exist. Then the
Fourier series of f (either in exponential or trigonometric form) evaluated at x4 converges
10 [ f(xo+) + f(xo—)1/2. In particular, if [ is differentiable at x,, then the Fourier series
of f converges at xq to f(xg).

It is conventent to first prove the following special case:

Lemma 4. Let f: [—n,n] — C be square integrable and differentiable at x, (as usual,
extend f so it is periodic). Then the Fourier series of [ at xq converges to f(xo).

Proof: (The proof of Lemma 4 was pointed out by P. Chernoff.) By translating
and adding a constant we can assume x, = 0 and f(x,) = 0 (why?). Define a new
function g(x) by setting

()

;"_:—T, x;é(),
glx) = -
f—(—), x=0.

1
By tlie quotient rule of calculus it follows that g is continuous at 0. Since 1/(e* — 1) is
bounded in absolute value outside a neighborhood of 0, it follows that g is square
integrable (why 7).
Now f{(x) = (e™ — g(x). Let c,(f) be the nth Fourier coefficient of f and c,(g) that
for g. Then from the definition

cn(f) = cn—l(g) - cn(gl) .

So
N

Y elf) = con-lg) — cxlg),

n=-=N
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since we have a telescoping sum. Since x, = 0, 3.V N ¢,(f) is the Nth partial sum at
x =0 of the Fourier series of f. But cy(g) — 0 by Bessel’s inequality. Hence

Y elf) = 0 = f(x). B

Actually, we do not need the fact that f is differentiable at x,. If /' is Lipschitz at x,
(that is, there is a constant M such that {(f(x) — f(xo))/(x — xo)l < Mfor|x — xol < 6,
X # xo) wecould obtain the same result by asimilar proof (we only need g in the proof to
be square integrable-—or even just integrable). For example, if f is continuous and
J'(xg+) and f'(xy—) exist, then this condition is satisfied (why?).

It is now quite easy to prove Theorem 9 from Lemma 4 and the above remarks.
Now, consider

Sg=),  x<x;
h(x) = { fxo) X =Xp.
Sixo+), x>x.

Then £ is a step function and we can easily compute its Fourier series directly (see
Section 10.5). We know this series converges to [ f(xo—) + f(x¢+)]/2 at xo. Now
consider

k(x) = f(x) — h(x).

Then k(xg) = 0 = k(xg+) = k(xq~) and k'(xq+), k'(x,—) exist. Hence, by Lemma 4,
the Fourier scries of k converges to 0 at x,. Therefore, the Fourier series for f converges to
[f(xo+) + f(xg~)]/2 at x,. This proves the assertion. §

Now we turn to the longer classical proof of Theorem 9. Later it will be convenient
to have this longer proof at hand, despite the fact that it is more complex than the one
just given. First, let us explain the basic idea behind this proof. Let s,(x) be the nth
partial sum of the trigonometric Fourier series. We shall write

2n
(%) = | SEDofx — &) d¢
0

for some function D, specified later (Lemma 9); we say s, is the convolution of f and D,.
Then we show that D, has unit area and ‘“‘concentrates’ around 0; that is, behaves like a
Dirac delta function, As n - co, the convolution will then pick off the value of f at x.
See Figure 10-31. For this reason, D, is also called an approximate identity.

y

D, (x)

Noa x

A
VU Uv

FIGURE 10-31
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Before we can formalize these ideas, we need some preliminary results. The first
lemma is a generalization of Example 4, Section 102, and is called the Riemann-

Lebesgue lemmna.
Lenuna 5. Suppose f is bounded and (Riemann) integrable on [a,b]. Then
b
limitf S(x) sin(oex) dx = 0

(where the limit is taken through all real o > 0).
Proof: First, suppose f is a constant M. Then
b
f sin ox dx

a

= M|

rf(x) sin ox dx

|cos(oa) — cos(ab)|
o

= |M]|
2M
o

< -0 aso — 00 .

Thus the result is true for constant f.
Now, for the general case, given ¢ > 0 choose a partition P = {xq,%,,.. .,x,} of

[a,b] such that U(f,P) — L(f,P) < ¢/2. Then

U(fP) = iM‘("‘ — %)

I=
and
L(f,P) =‘Zlmf(x, = X 1),

where M, is the maximum of f on [x;_,,x;] and m, is the minimum. Let m be the step
function equal to »y on Jx;_,,x;]. Then choose N so that

Xt

my sin(oex) dx < %

rm(x)sin(ax) dx = i

n i=l Jxiey

ifa 2 N, which is possible because m, is constant and n is fixed and finite. Then, by the
triangle inequality, fora = N

fbm(x)sin ox dx l + _F[ f(x) — m(x)]sin ax dx

fbf(x)sin(ax) dx l <

b
< % +f IM(x) — m(x) dx ,

where M equals M; on Jx;.,x;]. (Here we have used the fact that [sin ax| < 1.) But
M(x) — m(x) = 0 and

fme — m(x)dx = UP) - LGP < 3,
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so, fora > N,

b
f JS(x)sin(ox) dx
by the above. § .

Lemma 6. Suppose g: [0,a] — R is sectionally continuous, and g'(0+) exists. Then

a sinkxdx =
imi B e 0 .
limit Lg(X) . 5 900+)

Proof: Since
fg(x) sin kx dx _ 9(04‘)] sin kx dx + [g(x) - g(0+):,sin o d |
0 X 0 X 0 X
it sufficés to show that .

“sin kx n
dx — = as k - o0, and . )

0o X 2
f[w]sinkxdxwo ask — oo . 2)

o x

To clarify Eq. 1,

f sin kx f smt

which converges to /2, as k - oo, since [ (sin £)/t dt = m/2; see Example 1, p. 271
and Exercise 29, p. 437.

To prove Eq. 2, observe that [g(x) — g(0+)]/x is bounded and integrable (since, as
x - 0, this approaches a limit g'(0+)). Therefore

r [____g(x) = g(o):,sin kx dx — 0
o X

ask — oo by Lemma5. §

Note that Lemma 5 is needed for « real and an arbitrary interval [a,b]. This case
does not follow at once from Example 4, Section 10.2, but requires the direct argument
we gave,

Lemma 7. Let g be sectionally continuous on Ja,b[ and have a jump discontinuity at
Xo- Suppose g'(xq+) and g'(xy—) exist. Then

rg(x)@f}ﬁ(i‘_:_"i)) e = lgeot) + glxo=)]
{(x — xo) 2

Proof: Write the above integral as a sum,

[-[-1

limit
koo |,
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and note that

0 sink(x — xq) f"""’ sin kt dt
X)——————dx = Xo — ¢
f g(x) o = x0) , glxo — 1) —
and
k b-xo ink
( sin k(x — )d - olxo + t)sm tdt.
(x ~ xo) 0 t

Now let k — oo and employ Lemma 6. We then get (ng(xy—))/2 and ng(xq +)/2 for the
limit of these two integrals, respectively, as k — co. (See also, Exercise 40, p. 440). §

Lemma 8. Let f: [0,2n] — R. Then the nth partial sum of the Fourier series of f may
be written as

s,(x) = f f(de + ! i 2"f(t)cos[k(t - x)]dr.
Tg=1Jo

Progf: This is clear if we remember that

cos[k(t — x)] = cos(kt)cos(kx) -+ sin(kt)sin(kx) . §

Lemma 9. Let s,(x) be the nth partial sum of the Fourier series of f. Then

s,(x) = zin :"f Dt — x)dr,
where
{sin[(n + 1/2u]}
[sin(u/2)]

Proof: This follows from Lemma 8 and the identity

k=—n Sin(u/z) i

. D,(u) =

(Exercise 6, Section 10.2). #

We are now ready to prove Theorem 9. We must show that

o +) + fxo~)]

sn(xo) had 2

as n — o0. We shall assume 0 < x, < 2n. The reader is asked to consider the cases
xo = 0, x, = 27 separately. By Lemma 9,

) = % f:ﬁg(t) {Siﬂ(’l + 1/2)(t — xo)} i@,

t — Xo

_ (t = x0)/2
R

where



THEOREM PROOFS FOR CHAPTER 10 419

By Lemma 7 (which is applicable by Exercise 41 at the end of the chapter), we have

[a(xo+) + glxo—)] i

Su(xo) had 2

Now it is a simple matter to see that

glro+) = fixo+) and  glxo—) = flxo—),

and so the theorem is obtained. §

Theorem 11 (Fejér)) Let f be piecewise continuous on [0,2n] and suppose f(xy+) and
S(xo—) exist. Then the Fourier series of f converges (C,1) at xq to [ f(xo+) + f(xo—)]/2.
If f is continuous, the Fourier series converges (C,1) uniformly to f.

Proof: For notational reasons it is slightly more convenient to use [ —n,n] rather
than [0,2%] for this proof. Of course, this does not effect the conclusions.
With our usual notation,
n
s(x) = Z ce™

k= —n

the nth partial sum of the Fourier series of f. To discuss (C,1) summability, we must

consider
1"

1
o) =g 2 i)
k

=0

Using Lemma 9 we obtain

1 SO S
e —_— —_ D
N = 2o Lf(x ODY(1) de
that is,

o(X) = -—-f fx — OF () dt,

where by definition the Fejér kernel is

We shall need the following lemmas.

1 sin?[(n + 1)¢/2]

Lemma 10. F,(f) = n+ 1 sinf[e2]

Progf: By the formula for D, (Lemma 9), we have

 &usin(k + 1/2)
(n + DF,(0) _k;,—_s_irﬁﬂt—

~ sin 1 /2t { Ze‘(lﬂ—llz)t} (Im = imaginary part)

k=0
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1 ei(n+l)t -1
= I it/2 |
sin 1/2t m{e et —1 }

1 ei(n+l)t -1
~ sin 1/2t Im{ iz _ ""2}

1 — cos(n + l)t sin? 1/2(;1 + 1)
T 2sin? 1/2t sin? 1/2t

Lemma 11. The Fejér kernel has the following properties:
(i) F (1) is 2n-periodic

1 .
() = [ZeFnd =1
@) F() =20
(iv) For each fixed 6 > 0, limit F(d =0.

Proof: (i), (ii) follow from the definition of F,; (iii) follows from Lemma 10. (iv) for
5 < || € n we have 1/(sin? /2) < 1/(sin? §/2). Hence

1 1
< F) € —— =, Slf<sn.
0 ) n + 1sin? §/2 dslism

Since this — 0 uniformly as n — oo, the integral [;<;qcr Fo(t) dr — 0. B
Let us now prove Theorem 11, By using the same technique that was used in the proof

of Theorem 9 (see the arguments following Lemma 4) it suffices to prove the last part of
the theorem. Thus assume f is continuous. We have

Oy x) = zin fj f(x - t)Fu(t) dt

Hence by (ii) of Lemma 11,
fx) = o,x) = f (J6) = Slx — YF(0) dt
Accordingly, by (iii) of Lernma 11 (positivity of F,)
[fx) — o) < f [fx) = flx — 0] F (1) dt

Given ¢ > 0 we can, by uniform continuity of / find § > 0so that | f(x) — f(y) < ¢
if [x — y] < 4. Then

) — ool < 5= | 1769 - fix = 01 0 de
T Jniss

[f(x) = flx = D Fy() at

2n sshlsn
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The first integral is

1
< — eF, (1) dt
27 Ji<s

1 T
< —f eF (1) dt =
27 j.n

< i 2M F, (1) dt

2n sshisn

= —A-{ F (i) dr

T Jsslsn

The second integral is

where M = sup | f(1)]. Now, by property (iv) of Lemma 11, we may choose N so that if
2 N this last integral is <e. Accordingly,ifn = N,|f(x) — o, (x| <e+e=2¢ [

For an integrable function one can prove that the Cesaro sums converge to the
function except possibly on a set of measure zero (see Hewitt and Stromberg, Real
and Abstract Analysis, p. 294). This result is not as deep as that of L. Carleson mentioned
on p. 353.

Theorem 12. Suppose [, | J(x) |2 dx < oo, and [ has Fourier series

24 a, cos nx + b, sin nx) .
) ";( )

Then, letting g(x) = [*, f(y) dy, we have

X X
(a,,f cosnydy + b,,f sin ny dy)
1 -n -7

{-- sin nx — é- (cos(nx) — (— 1)")}

Mis

glx) = gz—o-(x + ) +

n

o
= —(x + 7)) +
7 ¢

3 Ma

and the convergence is uniform.

Proof: It is enough to prove the following lemma, as we shall see below.

Lemma 12, Suppose f,: [a,b] — R is such that {*|f,(x)|* dx < oo and f, = f in mean.
Let

04(%) ==rﬁ.(J’) &y and  gx) =ff(y> dy

Then g, — g uniformly on [a,b].
Progf: We have

lgax) — g(x)? (f | fulx) = f(x)] dX>

< (rmm et d.x)(x — g
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by the Schwarz inequality. This is bounded by
I = S0 = a)

from which the result is obvious. §

For the theorem, let 5,(x) be the nth partial sum of the Fourier series and take f, = s,
in the lemma. We know f, — f in mean (Theorem 8), so g, — g uniformly. Here g, is
the partial sum of the integrated Fourier series, so we have the result. J

a, 4
ﬂ”=t, 0

Theorem 13. Consider

and suppose a < b. Let s,{(x) be the nth partial sum of the trigonometric Fourier series.
Then the maximum of s, occurs at 7/2n and the minimum at —=/2n and

nmm(f> (h“ﬁ< sll-“—5d+1>+17
n-+on n -

~ (b — a).089) +b.

. ( 75) (b—a)( f smt )
limit s\ —— -z +a
n— o 2n

~a — (b — ay.089)

Similarly,

and the difference of these limits is

c_ﬁ<fsmt>zw—muwy

Proof: Let us first prove this for the special case a = —1, b = 1. We have seen
that if
{—1 s -n<x<0,
X) =
gtx) 1, 0<x<mn,

the Fourier series of g is

, 4 i sin[(2n — 1)x]

p=1 -1 ’

Let [k — 1]
sin[(2k —
Sulee) = n k; 2k—1

By differentiating, we see that s, has its maximum at x, = 7/2n (some details here are
left to the reader). The value here is

( k2 ) _ 4 & sinf[(2k — Ln/2n]

\2n w2k -1

_ Z " sin[(2k — 1)n/2n] (1;)
Tre (@ — Drf2ny \n /)



THEOREM PROOFS FOR CHAPTER 10 423

This sum is a Riemann sum for the function sin y/y on [0,n] with partition
{0,m/n,2n/n,. . .,n}. Hence if we choose n even and let n — oo, this converges (by
Theorems 1 and 3, Chapter 8) to

2 {"si

2 f sin y @

Tjo Y

The case of the minimum of f for x < 0 holds as f and s, are both odd.

The numerical value of the integral is approximately 1.179 and is computed by
numerical methods such as the trapezoid rule (we omit the details).

The general case for f follows by observing that its Fourier series has nth partial sum,
b = a)s, +1) +a(why?). @

Theorem 14. Suppose f is continuous on [ —n,n], f(—n) = f(n), and f' is sectionally
continuous with jump discontinuities. Then the (trigonometric or exponential) Fourier
series of [ converges to f absolutely and uniformly.

Proof: We can write

a o
fx) = _29 + Y, (a,cos nx + b, sin nx)

n=1

by Theorem 9. Also, the Fourier coefficients of ' are

1{r 1"
%=;fﬂmmma, m=;ffmmma,

and we have
1 24 n
oy = ;—zf(x)cos nx| + ;—:J JS(x)sin nx dx
= ’lbu 3
since we can integrate by parts, and f(n) = f(—=). Similarly, 8, = —na,.

Some care is needed above in justifying integration by parts, since f' exists only in
sections. But if it is applied on each section using the fact that it has jump discontinuities
only, and noting the continuity of f; then we get the above results. The reader should
write out the details if they are not clear.

Now, a lemma is stated.

Lemma 13. Under the conditions of Theorem 14, we have
o o
. lal < o0, b < 0,
n=i u=1i
and na, - 0, nb, — 0.

Proof: We know that 3= 2 converges (by Bessel’s inequality for /). Now let
$p = 2" lay]. Then
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by the Schwarz inequality. Since this is bounded, so is s,, and therefore it converges (an
increasing sequence converges iff it is bounded). Thus oo |t converges. Since
B. — 0, we also have na, — 0. The case of the b,’s is similar.

To prove the theorem, we need only show that ay/2 + Z:“:l (a, cos nx + b, sin nx)
converges uniformly, since we know the limit must be f(x). Thus it suffices to show that
Z:“:l (a, cos nx + b, sin nx) is uniformly convergent.

This is simple using the lemma. Note that

la, cos nx + b, sinnx| < |a| + |b] = M,

and by the lemma, ). M, converges. Hence by the Weierstrass M-test (Theorem 3,
Chapter 5), the series converges uniformly and absolutely. [

Theorem 15. Let f be continuous on [—n,n], f(—n) = f(n), and let f' be sectionally
continuous with jump discontinuities. Suppose [ exists at x € [ —n,%]. Then the Fourier
series for f

fx) = 323 + Z (a, cos nx + b, sin nx)

n=1i

mnay be differentiated term by term at x:

o
f'x) = Z (—na, sin nx + nb, cos nx) .

n=j

Furthermore, this is the Fourier series of f'.

Proof: The proof of Theorem 14 showed that the Fourier coefficients of f' are
given by
. o, =nb,, f,= —na,.

This remark suffices to prove the theorem, since if /" exists, f*(x) will be the sum of
Fourier series (Theorem 9). §

Theorem 16. In the initial displacement problem, suppose that f is twice differentiable
Then the solution to the initial displacement problem is

o) = 5 L10x = ) + Jix + ]

; = , {nnx nnct
= Z by sm(—-)cos(———)
= / l

where b, are the half-interval sine coefficients of f.

Proof: First, note that the series for y(x,f) converges because ZT b, sin(nnx/l)
converges uniformly and absolutely to f (Theorem 14).
Let us now show

ib,, sin(#—)cos(ﬁ) = %[f(x —ct) + f(x + ct)].

For this, note

2 sin(#—)cos(ﬁffs = sin['m(x 1_ Ct):! + sin[nn(x 1+ Ct):!
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so that
Z b, sm( ) ('mlﬂ> = % Z b, sin ['m(x ] + Z b, si [mz(x [+ ct)]
[flx — ct) + flx + ct)].

—

T2
Now we verify that

y(x,t) ——[f(x —ct) + f(x + ct)]
satisfies all the conditions. First,
%y d?
= = V200 — o) + 7 + e = ¢
Second, at t = 0, y(x,0) = f(x), and
d
S (50) = Y2e[ /) + [1(] =
Third, ¥(0,t) = 1/2[ f(—ct) + f(ct)] = 0, because f is odd (when extended) and
Wty = Y2LIA — ety + [ + cty] = 0
because f(I — ct) = —f(et = I) = —f{ct+ 1), since f(x) = f(x + 2/) by periodicity. §

Theorem 17. If fis square integrable, then foreacht >0

n=1

XNl =

converges uniformly, is differentiable, and satisfies the heat equation and boundary
conditions. At t = 0 it equals f, in the sense of convergence in the mean, or pointwise if

fis of class C1. As usual,
i
a, = EJ f (x)cos(ﬂx-> dx
1o /

Proof: To show that T(x,?) satisfies the heat equation, what we must do is justify
term-by-term differentiation in both x and ¢. For this we use Theorem 5, Chapter 5.
What we must show is that the series of derivatives

e
n=1
(which represents both 8T/9t and 8*T/dx?) converges uniformly in ¢ and in x. For
this we use the Weierstrass M-test in each case. Since|a,] is bounded (g, — 0, in fact), we
can omit the terms a,z%/%. Now in x, let M, = n?e~""""/* By using the ratio test, we
see that )’ M, < o0, so the series will converge uniformly in x.

Umformly m ¢ means umformly for all ¢ = ¢, where ¢ > 0 is arbitrary but fixed.
In this case we let M, = n*e~"'"*" and note that Y M, converges. (We cannot allow

t = 0.) The rest of the theorem is obvious. §

Theorem 18. In Theorem 17
lfmgt T(x,t) = f(x)

>0
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in the sense of convergence in mean, and converges uniformly (and pointwise) if [ is
continuous, with [' sectionally continuous. (We do not require f(0) = f(l) here.) More
generally, for any f, if the Fourier series of f converges at x to f(x), then T(x,t) — f(x) as
t - 0.

Progof: For the first part, it will suffice to show the following.

Lemma 14. For each t > 0 suppose f, € V, an inner product space and ¢q, @,, . ..isa
complete orthonormal basis. Let

L=, f= Zocnm..-

u=0
iI7
P _ 2 -
lile(}t";)]c,,(t) cl>=0
then f, — f (in mean).

Proof: The result is clear, since by Parseval’s relation

1= fI2 = Z,'“"(’) —ofr. 4

In the case of Theorem 18, we must show that

o
limit D" [a,* (1 — e”>™F)2 = 0.
- =0 n=i
To do this, it is enough to show that the function

git) =D la, > (1 — emmmury
n=1i

is continuous in ¢, for.g(0) = 0, and hence we would have limgt g(t) = 0. To show that
tm

g(t) is continuous, we shall show that the series converges uniformly in ¢. To do this,
Abel’s test will be used. The form we needed is the following. .

Lemma 15. Let Z:“: ,Cnbea donvergent series and ,(t) a uniformly bounded, decreasing
(respectively, increasing) sequence; t 2 0. Then g(1) = Z:‘_ c,p,(2) converges uniformly
in t. In particular, g is continuous and g(0) = lim(}t g(?).

tos

See ThHeorem 13, Chapter 5 for the proof. One deduces the increasing case from the
decreasing case by considering —g(), instead of g(¢). In our case ¢, = |a,* and
o) = (1 — e™"*™*)2 Now ¢, < ¢, ifn < m, and |p,(r) < 1. Thus from the lemma
and the fact that ) ¢, converges, we have our result.

Now suppose f' is sectionally continuous. Then, from the proof of Theorem 12,

. la,| < oo. Thus for a given x,

1160 = Tosah < Sl 1 = ey,

n=i
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)
By an argument like the above, the series on the right converges uniformly, so we can let
t — 0 in each term to conclude that

T(x,f) = f(x)ast — 0.

Indeed, note that the convergence is uniform in x because we have the bound

Zla..| (1 — emiamy

=1

which — 0 as ¢ — 0, is independent of x.

Finally, suppose
cd (mzx)
Z a, cos\ ——
n=i 1

converges for some fixed x. Then we wish to show that (for this x fixed)
limit: (r) = limit i ae=TRI cog nmx Y
t—+0 g (=0 = W 1

Here we cannot make the same estimate as above because the factor cos(nnx/l) is
essential for ) a, cos(nmx/l) to converge. However, Lemma 15 can again be applied
with ¢, = a, cos(unx/l) and ¢,(t) = e"**** to yield the desired conclusion, since the
¢, are decreasing and are bounded by 1. J

'

Notice that from this we also conclude that

Imeit T(x,t) = T{(x,tg)
—+to
that is, T'is continuous in ¢, in each of the three cases of Theorem 18. Indeed, we already
know that for + > 0, T(x,?) is differentiable and hence continuous. However, T(x,?)
may not be differentiable at 1 = 0, but the above theorem does show that we have
continuity at ¢ = 0,

These same methods using Abel’s and Dirchlet’s test are important for establishing
convergence in other problems (such as Laplace’s equation) as we shall see below.

Theorem 19

(i) Given g,, let @(x,p) be defined as on p. 392. Suppose g, is of class C* and g,(0) =
g.(a) = 0. Then ¢ converges uniformly, is the solution to the Dirichlet problem
with f, = f; = g, = 0, is continuous on the whole square, and V¢ = 0 on the
interior.

(i) If each of f,, 12,94, 93 is of class C* and vanishes at the corners of the rectangle,
then the solution (x.y) is given as the sum of four series like those in (i), V*p = 0
on the interior, ¢ is continuous on the whole rectangle and assumes the given
boundary values. Furthermore, ¢ is C* on the interior.

@) If 115 f2, 91, g2 are only square integrable, the series for ¢ converges on the interior,
Vip = 0 and ¢ is C*. Also, ¢ takes on the boundary values in the sense of con-
vergence in mean. This means, for example, 11m1t o(x.y) = ¢(x,0) = g,(x) with
convergence in mean.

Proof: For simplicity, let us take the case a = b = =, the general case being just a
change of coordinates. To prove parts (i) and (i) of the theorem, we show that ¢(x,y)
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P

converges uniformly in x and y and that we can differentiate twice, term by term, on the
interior. In view of preveding remarks, this suffices to prove the theorem. Part (ii) is an
immediate consequence of (i) and linearity; the boundary values are assumed simply
because g, is represented by its Fourier series.

Now by Theorems 14 and 15,

o

gi(x) = Z b, sin nx , gi(x) = Z nb, cos nx
1 1

and these series converge uniformly and absolutely. Here we use the fact that
g:(0) = g,(m) = 0.

To show that ¢ converges uniformly, as in Theorem 18, we use Abel’s test (Theorem
13, Chapter 5) on the square [0,7] x [0,z]. Thus we must show, since the series for g,
converges uniformly, that ¢, = (sin n(n — y))/sin nn is decreasing with # and these
functions are uniformly bounded. If we can show that they are decreasing, then uniform
boundedness follows easily because 0 < ¢,(y) € ¢,(y) and ¢, is bounded, since it is
continuous. In fact, ¢, < 1, in this case.

To show that ¢,.,; < ¢, let us fix y and consider /(1) = (sinh #{n — y))/sinh %,
¢t > 0. It suffices to show that ¥'(z) < 0, for then i decreases as ¢ increases, and, in
particular, (n + 1) < yi(n). This is a special case of the following lemma.

Lemma 16. For constants o, B if > 0, f = «, and y(t) = sinh(xt)/sinh(ft), then
V') <0,fort 2 0.

Proaof:
. sinh?(B'(t) = « sinh(B2)cosh(wr) — f sinh(ar)cosh(fz)
__B*— o«*[sinh(@ + ) sinh(f — a)t
N 2 | a4+ p f—ua
using the identity sinh(u -+ v) = sinh u cosh v + sinh v cosh u. If the term in brackets
is 20 we are finished, since 2 — &% > 0. This is in fact true. To see it, let
(o) = sinh(e + B)t  sinh(f — o)t
P =7 B f—a

Now p(0) = 0 and p'(r) = sinh{(e + B)t) — sinh((f — «)t) = 0, since sinh is increasing.
Hence p(t) = Oforallr = 0.

This establishes the first part of the proof, which says that the series for ¢(x,y)
converges uniformly. §

For the differentiability part, Theorem 5, Chapter 5 is employed. Thus we must
show that
sin nx

o
Ax,y) = ) n?b, sinh n(n —
(x7) Z‘ ! (=) sinh(nr)
converges uniformly (this is the second formal y derivative; the second x derivative is its
negative),
Here it is important to realize that we can get uniform convergence only if we stay
away from the boundary; in fact, for any ¢ > 0 we shall establish uniform convergence
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on 0 < ¢ <y < n and x arbitrary. With this extra restriction the delicacy of Abel’s
test is no longer needed; the Weierstrass M-test will do. We have |5,| < M, Let
M, = n2ag S0 — 9]
sinh(nn)
Then M, bounds the terms in A. But 2 sinh[n(n — €)] < ¢ "% and 2 sinh(nn) =
e"(1 — ") from the definition of sinh. Thus

e*nc
M,, < Mlz 'El——_—'e—_'sz .
Since & > 0, Y M, converges, so we have uniform convergence.

Note that we could use »n* instead of n? for any & here and still have convergence;
in fact, we can differentiate any number of times, that is, ¢ is C* (a little thought shows
that ¢ is analytic—see-Example 2, p. 181).

The proof of part (iii) is now routine. To show V?¢ = 0 and ¢ is a C* function on
the interior, the proof is the same as that above (all that was used was that the 4, are
bounded). For convergence in mean we proceed exactly as with the proof of Theorem
18, using Lemma 15.

Worked Examples for Chapter 10

L Letf:[0,] — C bea continuous function. Prove that the following inequality holds.

2
SRR

T 2 T
f T(osin mx dx| < gf LI d .
[} [}

fﬁf(x)sin x dx
[¢]

Solution: This follows immediately from Bessel’s inequality applied to the follow-
ing (incomplete) orthonormal system on [0,7]:

2, 2,
—sinx,..., [—-sinnx.
n n

Notice that if we had used an infinite sum, we would have equality by Parseval’s
theorem (see Table 10-4).

2. Let ¥ be an inner product space. Show thatif f; — f(in mean) and g, — g (in mean),
then
{Sonud = LS

Solution: First, make an estimate using the Schwarz inequality and the triangle
inequality:

](./;ngu> - <./;g>] < ](./;ngu> - <./;ng>, + Kj;ng> - <j;g>,
= ](./;ngu - g)] + ](./;y - ./;g>]
< I4lHlg — gl + 14 = ST gl .
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The result follows from this. Given ¢ > 0 choose N so that n = N implies each
of the following estimates.

M- fII <z ||g||
@ -Sl< l,and
€
(3) lg, — gl < 2—("7‘"—:'5
(Why is this possible?)

Then || f, — f|| < limplies | f,l| < || fIl + 1 (why?),and forn = N

[<Soa> = <STOL < WS+ D llga — gl + 1, = S gl

¢ llgll

< OS1+ D 5000+ 07+ 558

=e.
This proves that {f,.g,> — {f.g>.

3. Let f:[0,2n] » R be square integrable and define g(x) = [§ f(y) dy. Find the
Fourier expansion of g and state where it is valid.

Solution: From Theorem 12,
() D% mE l[a sin nx — b,(cos nx — (—1)"]
i l — x — (— ,
g 2 N n " i

.
which converges uniformly (and hence, pointwise) and in mean. Now

=, sin nx
x=1z—22
n

(Table 10-5), which-converges in mean and pointwisé for x # 0, 2n. Thus

&, b(—1)" @ 1
glx) = 2-(2’2 + (Z —-'-'-(—TZ-> + Z'—l[(ao + a,)sin nx — b, cos nx] ,
1 1

which converges in mean and pointwise if x # 0, 2z, Since the Fourier coefficients
are unique (Theorem 4) this is the Fourier expansion of g(x).
Since g is bounded by [2" | f(x)| dx, which is finite, g is square integrable, so it

certainly has a Fourier series. Note also that g is continuous but need not be
differentiable (see Exercise 61).

4. Let f:[0,27] — R, g: [0,2n] — R and extend by periodicity. Define the convolution
of fand g by

2n

(f *g)x) = , Sglx — y)dy.

Compute the Fourier series of f # g in terms of that of f and g, using the exponential
form of Fourier series.
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Solution: The Fourier coefficients of /" # g are given by

= ! fZKf —inxdx
=32, U *ake

2n *2n
e — —inx
7)o Jo J()gle — y)e™™* dy dx
1 2n *2n

=3 ), ), Tl = peT T dy

since e 1% = ¢~ . e"""*‘"’. Changing variables (y — y and x — y +— 1) and using
periodicity (we may interchange the order of integration by Fubini’s theorem,
Section 9.2) leads to

1
7 o f(y) o dyf glt)e™"" dr .

Let f(x) = 3.°  a,e and g(x) = 3.®_ b,e"™ be the Fourier series of f and g, so

1 2n i
Gy == | Jodem = dx
2% Jo
and

1 2n ;
- e~ inx g ,
b= f glx)e™ ™ dx

Then the above computation shows that we have

c" = zna"bll 3
and thus

(f*g)x) = 2n i a,b,e™ .

A similar operation could be done with the trigonometric series, although the
computations and the results are much more awkward. Sufficient conditions on f
and g for the above to be valid are that f and g be sectionally continuous, or more
generally, square integrable. If we want the series to converge pointwise we must add
the hypotheses of Theorem 9.

5. Let us consider f(x) = cos Ax, —n < x < =, where A is real and non-integral.
Compute

c, = if cos Axe ™™= dx
2n
1

f (eux + e—Mx) ~inx dx

1 ei(;\—n)x e—i(}( +nx “w
== +
415[1'(/1 —-n) =il + n):L=_

_= 1 1
-2 —_

pe ’Sm’m(a_n +/1+n>

R )

=Ty I TR
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By Theorem 9 the fourier series converges to f(x) at all points. Hence, for [x| £ =

sin 74 22
‘ cos Ax = kgz—m( 1 ITI-CE e"‘" B
In particular, if we set x = = then
A 2/1
cos 7 l_smn Z( 1 12( n

ket — oo

_ sin ml{ 2 }

A & 22
ncosn _l___ z

FE

Hence
A # integer .

sin 74

Note that the series on the right converges uniformly for 0 € 1 < 4, < 1. Note
also that n(cos nd/sin #d) — (1/2) = 0 as 2 — 0, and so is Riemann integrable. By

integrating,
lo (”“”’1) Zlog<1--> W<t

By exponentiating,

or

N o0 /12
- ) ) =/1H<1—P>, ]/1]<1

Actually the product on the right defines a function of 1 of period 2 (see Exercise 75)
as does the left side, so the above formula holds for all real values of A. This product
formula for the sine was discovered (though not rigorously proved) by Euler.*
If we take 4 = 1/2 then -
n = 1 n 2 2k — D2k + 1)
1 == 1 - Sy A T
3 1 ( ) 2 I;I, 2k 2k

or
L 2k 2k

n o

7= H 2k — 12k + 1)

n @24 4)6- 6) -~ (2n- 2n)
2 TE e ) e Lo T D)

which is called Wallis® product formula for n/2.
6. An interesting application of the Parseval relation to the isoperimetric problem is
as follows: show that among all plane curves of a given perimeter, the largest area is

enclosed by the circle.

* For another method of proof, see J, Marsden, Basic Complex Analysis, Chapter 7,
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Solution:  Let (x(t),y(), 0 < 1 < 27, be a parametric representation of a simple
closed curve. We assume that x(1), (r) are C! functions of ¢, and that the parameter
! is arc length. Thus the total length is 27, and %(1)* + y()? = 1, (- = d/ds) so
3" ) + (D) dt = 2m.

The enclosed area is given by*

A= f 2"x(t)y(t) dr .

0

Weclaim that A < 7, and 4 = 7 only if the curve is a circle7 To prove this we will
express 4 in terms of the Fourier coefficients of x and y, Write

x(1) = %q + Z(a,t cos kt + b, sin ki)
k=1

) = %9 + Z(ock cos kt + B, sin ki) .
k=1

All coefficients are real, By a change of origin in the plane, we may assume
ay = oy = 0.
The Fourier series of the derivatives X(t), y(¢) are then
o
(1) = Z (kby cos kt — bay sin ki)
, k=1 "
and

J(t) = Z (kP cos kt — bay, sin ki) .
K=1

Accordingly, by Parseval’s relation,
2 o0
2 =f (X + p)dr = ny k¥a? + b7 + of + B3
] k=g
and the area is
2n o0
A =J Xy dt = nZk(akﬁk — buoy) .
] k=1
Hence -
=24 =) (k6 + b+ o + B = 2B, — b))
H

]

RS G+ 8 4 4 B+ S ke — B 4 (o + b)) .

Thusn ~ 4 2 0,and 7z — 4 = 0 <
(i)ak=bk=0€k=ﬁk=0 fork = 2
(ll) a, = ﬁl’ o = ““bx.
In this case,
x(f) = a, cost + b, sin ¢
W)= —b,cost +a,sint = —x(t 4+ n/2).

This is a standard calculus formula; see, for example, Marsden-Tromba, Vector Calculus,
hapter/l'7.

)
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Equivalently, for some R and &

x(t) = Rcos(t + 9)
() = Rsin(t 4 §) .

The condition X2 + y? = 1implies R = 1 and therefore we have a circle of radius 1.

Exercises for Chapter 10

e 1.

s 4,
v 5,
¢ 6.

¢ 7.

@ 8,
3 9.

Let V be an inner product space and M < V a vector subspace. Define the
orthogonal complement of M by

M* = {feV|{fg)=0forallgeM}.

Show that M is a vector subspace of V and is closed (that is, if f, € M, and f, —
(in mean), then f € M). [Hint: Make use of Example 2 above.]

. Prove that the Legendre polynomials (see Section 10.2) are complete in %2 of

[—1,1]. [Hint: First show that any polynomial can be expanded in Legendre
polynomials, and then employ the method of proof of Theorem 8.]

. (a) Use the Fourier series for e* on [ —n,n] in order to prove the following identity:

e 1
(mcothn — 1)/2 = ZP—+—1

(b) Use the halfl interval cosine series for cos ax where a is not an integer in order to
prove the following identity:

1 (-]
ncolna = - + .
a Z 2 2

Prove that if f, — f (in mean), then || f,| — |lf]. Is the converse true?
Prove that uniform convergence implies mean convergence (on finite intervals).

Consider the space I, of all sequences x = (x,,x;,...) of real numbers with
Z;":x x} < o0. Show that /, is an inner product space with {x,y> = Z:;, xy;- In
addition, show that this space is complete (Cauchy sequences converge).

Let

L, = {(xl,xz,. ) ix‘z < oo}

I=1

which, by Exercise 6, is a Hilbert space. Let ¢, l,, n = 1, 2, ... be defined as
¢, = (0,0,...,1,0,.. ) with the 1 in the nth spot. Show in two ways that ¢,,
@3, + . . 1s a complete orthonormal set: (a) directly, (b) using Theorem 6 (see also
Exercise 14(c)).

Find functions f, and f on [ —1,1] such that f, — f (pointwise) but not in mean,

Verify that the sectionally continuous functions f: [a,b] — C form a vector space.
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. Find a sequence f of sectionally continuous functions with f, — f pointwise
(respectively, in mean) such that f is not sectionally continuous.

# 11, Prove that if /: [a,b] — C is sectionally continuous, then so is | f]. Show also that

|1 is bounded.
2 12. Prove that if f and g are square integral:;le on[ab], | f — gl = 0iff f = g except

on a set of measure zero.
¢ 13. In the proof of Theorem 7 we showed that

n 2 n n
I =2 nod| =117 = Y K@+ Kfpd — 4l
k=0 K=0 k=0 .

Use this equality with , = (f,¢) to prove Bessel’s inequality.

014,

e 15.

@ 16.

#17.

Suppose V is a Hilbert space (that is, is a complete inner product space). Let g,
¢y, . . . be an orthonormal set in V. .
(a) For each f e V, show that

{Sopr>on

Sy =

D4=

k=0

1

converges to some element of V. [Hint: Show that

1

Isw = sull® = 20 KfodP?
i=n+1
and use Bessel’s inequality to show s, is a Cauchy sequence.]
(b) For each fe V show that, if s = o {fup>e: [ — s is orthogonal to each
¢; and f — s is orthogonal to s.
(c) Show that if whenever f is orthogonal to each ¢; we have [ = 0, then ¢,
¢,, - - - is complete. [Hint: By (b), / — s is orthogonal to each ¢;, so f = s5.]

Show that in ¥ of Theorem 1, we do not have the Bolzano-Weierstrass theorem;
that is, in a closed bounded set, a sequence need not have any convergent sub-
sequences. [Hint: Consider the elements ¢,(x) = (sin nx)/\/;z on [0,27] and show
that d(@,,0n) = /2, 1 # m.]

, , x +x?
Compute the Fourier series of f(x) = ,0 < x < 21,
(a) Let ¢o, ¢, . . . be orthonormal vectors in an inner product space, V. If
o
chfl’k =0
k=0

thenshowe, =0,k =0,1,2,....
(b) I g, ¢4, . . . is a complete set, and { f,¢;> = (g, for all i, then prove f = g.
(c) If V is a space of integrable functions, prove that (b) implies f(x) = g(x) except
possibly on a set of measure zero.

. This is an exercise on Fourier series in several variables.
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19.

20.

21,

(a) We have seen that ¢"*/./2nn = 0, 1, ... are orthonormal functions on
[0,2%]. Consider now the functions

eiux+ imy einx eimy

PuulXy) = T = Tz—nﬁ

Show that ¢, , are orthonormal on [0,27] x [0,27].
(b) Generalize (a) to construct ¢, ,, given general ¢, which are orthonormal on

[a,b], rather than just the case e/, /2n .
Remark: The e"/,/2n are complete and so are the ¢,,. This is proved in

Theorem 8 for "%/, /2n and the proof for ¢, , is similar.
(c) For f:[0,27] x [0,2n] — C, write the Fourier series for f (with respect to
@n,m above).

(Sturm-Liouville problems.) Consider the differential equation
d¥
=7+ [ax) + 2px)] /&) = 0

to be solved for f(x), with boundary conditions f(a) = f(b) = 0 and a < x < b.
The functions g, p are fixed and assume p(x) > 0. The A for which solutions f exist
are called eigenvalues.

(a) Show that if /" and g are solutions with eigenvalues 2 and y and 2 # y, then

b
fp(X)f (x)glx) dx = 0.
[Hin’t' : Use the differential equations to show that

d
(A = wp(x)/(xglx) = == [0 ) = [ Grlgx)]

and then integrate.]
(b) Interpret (a) as orthogonality of f/ and g with

b
S =f p)f(x)g(x) dx .

Show that this is an inner product.*

Show that {\/2/n sin nx | n'= 1,2,.. .} is an orthonormal family on [0,%]. What
is a Fourier series for this family? Is it complete?

Let ¢y, ¢, . . . be an orthonormal system in an inner product space V and f e V. Let
S = Qo {Ss@w>@1, the nth partial sum of the Fourier series. Show that for any

integer, p 2 0,
"f - su+p" < "f - S,," .

[Hint: Use Theorem 7, or a direct argument. Deduce that limuint | f — s, always
"
exists.]

* Many orthonormal systems arise this way. The trigonometric system arises withp = 1,¢q = 0.
There is an advanced theorem which asserts that such systems are complete. See, for example,
Coddington and Levinson, Theory of Ordinary Differential Equations.
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Let V be an inner product space and ¢, ¢,, . . . a complete orthonormal system.
For f, g € V, show that

gy =kzo<f,<pk><mk,g> .

Of course, part of this problem is to show that the sum converges. [Hint: Write f
and g as limits of Fourier series and apply Example 2 above.]

Exercises 23-28 refer to quantum mechanical systems (Section 10.9).

23.

24,

Show that the solution of ifdyr/8r) = H,if = g att = 0, is given by

o0
U= Wopye Bt
5=0

where @, e V are the eigenfunctions of H with eigenvalues E, (you may assume
the series can be differentiated term by term and that the eigenfunctions are
complete). What happens if y is already an eigenfunction?

Suppose if(Ay/dt) = Hp. Prove that Qf,H) is constant in time. This result is
called conservation of energy.

. Compute the commutators of the operators, @., @,, @,, P, Py, P, and J,, J,,

J, given in the text. What is the uncertainty principle for these operators (Exercise

-5, Section 10.9)?

26.
27.
. 28.

229,

If 4 and B are symmetric, is [4,B] symmetric? What about i[4,B]?
Solve for the eigenfunctions in a deep box if we replace [0,/] by [ 1/].

If 4 is symmetric, then show {AY ) is real for any € V. Interpret this result using
Exercise 3, Section 10.9.

In the second proof of Theorem 9 we used the fact that

@ gin x

_m
0o X T2
(recall that this integral is conditionally convergent; see p. 271). Prove this fact as

follows. Let
F() =f eI X g
0 X

Then show that
F@) = —f e ™sinxdx = —(* + 1)7!

0
(see Example 2 at the end of Chapter 9). Hence F(s) = —tan™! ¢ 4+ C. Show that
F(t) —» Oast — o0,s0 C = /2. Then look at F(0) for the result. (The main difficulty
here is the justification of these steps.)*

* This integral can also be evaluated using complex variables methods; see J. Marsden, Basic
Complex Analysis, Chapter 4.
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30.

31.

32.

33.

34.

Convolutions were defined in Example 4 on p. 430. Show that f* g = g * f. Use
Example 4 to write out Parseval’s relation for f * g.

The derivative of the delta function is defined by [2,, &'(x)f(x) dx = —f"(0) (see
Section 8.9). Compute the Fourier transform of §'; how is it related to that of §?

(The Riesz-Fischer theorem.) The Riesz-Fischer theorem represents one of the early
and most important successes of the Lebesgue integral. For this problem we do not
assume a knowledge of the Legesgue integral, but take for granted that the set of all
square integrable functions forms a Hilbert space. Assuming this, the Riesz-Fischer
theorem is quite easy. Sometimes, depending on how you read the history, the fact
we just took for granted is called the Riesz-Fischer theorem!

(a) Prove the following theorem.

Riesz-Fischer theorem. Let V be a Hilbert space and ¢g, ¢y, ... a complete
orthonormal set. Let cq, ¢y, . .. be complex numbers and suppose Z:“_ [ea? < 0.
Then there exists an f € V with

LS =c.
Thus every series
o
Z CnPu
n=0
with
o
Y lel? < 0
u=0

is the Fourier series of some f.

[Hint: Let f, = Z: c,p; and show that f, is a Cauchy sequence, by showing that

"./;n ./;a"z = = n b 1 |C‘| J
(b) Use (a) to prove that for every sequence, ¢, k = 0, +1, +2, ... with

Zlckl = 11m1t ZIC;J < 0,

-

there is a square integrable f on [0,27] (or [ —=,x]) such that

o
= ch‘Pk ,
- o0

where @, = ¢** and the convergence is convergence in the mean.

) Isy.® __ (1/n)e" the Fourier series of some function?Is 3’'* _ (l/ﬁ)e""‘?
n#Q n#0

i

If f: [a,b] — R has a discontinuity only at x, € Ja,6[ and f* is bounded on Jx,,b[
and on Ja,x,[, then prove f is a function of bounded variation. [Hint: Use the
mean-value theorem and arrange the partition P so x4 € P.] Show that one can
apply the Jordan-Dirichlet theorem.

Find a function which is continuous and periodic on [0,27], and whose Fourier
series converges at each point, but for which the hypotheses of both the Jordan and
the Jordan-Dirichlet theorems fail. [Hint: Consider the function x sin(l/x) for
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o ple
x > 0 and extend this function to be odd periodic. Make use of Exgcme!-’lfd),

Section 10-4<]
.

Investigate the nature of convergence of the Fourier series of each of the following
functions on ]—=,x].

(a) f(x) = x>, (b) fix) = (sin x)2.
x3, x>0, x2+1, x=20
(c) f(x) = 5 {d) fix) =
—Xx*, x<0 0, x < 0.
1, x<0,
(€) ) = x%sin TR > 0.

[Hint: Use Exercise 33.]

Suppose [ is real, sqﬁare integrable on [ —1,/], and

i

a, = %f f(x)cos(#—) dx , n=20,12,...
~i
1 i

b, =7J f(x)sin($>dx, n=12....
—i

* Show that

437,

0 38.

¢ 39.

a2 o0
Sty e +) b= f(x)
Form the function

¢(x) = asinx + bsin 2x 4 ¢ sin 3x

on [0,7]. For what values of g, b, ¢ is ¢ closest in mean to the constant function 1?
What about on the interval [ —n,n]?

Let g: Ja,b[ — R be continuous and suppose g(a+) and g(b—) exist. Then prove g
is bounded. [Hint: Define h:[a,b] » R by h(a) = g(a+), ib) = g(b—) and
h = g onJa,b[. Show that /1 is continuous.] What does this say about the definition
of a sectionally continuous function?

(a) Suppose f is differentiable for x > x, and 11m1t () exists. Then show that
Sf(xo+) exists as well.
(b) If 11m1t [f'(x) exists, show that it equals

x~+xq+

limit
10+ I

. {f(xo +1) - f(xo+)}
[Hint: BExtend f so it is continuous on an interval [x,x]. Then apply the
mean-value theorem to the above difference quotient.] )

(c) Consider the functions f(x) = xsin(l/x), fo(x) = x?sin(l/x), f3(x) =
x3 sin(1/x), for x > 0. Which of lixr(x’i}rf}(x) and f{0+)exist?
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< 40.

+ 41,

942,
243,

? 45,
46.

47.
48.

s 49.

Let x, be a jump discontinuity of f. Define A(x) = f(xq — x) and g(x) = f(xq + x).
Show that i(0+) = f(x,—) and g(0+) = f(xe+).

Let f:[a,b] = R have a jump discontinuity at x4 € Ja,b[ with f'(xq+), f'(x¢—)
existing. Let ¢: Ja,b[ — R be differentiable and suppose

gx) = fx)olx) . -pf blsw &<
Then prove g has a jump discontinuity at xof:Z}"(xo +) and g'(x, —) exist, and we have
g(xq+) = flxo+)e(x,)
glxg—) = fxo—pp(x0) -
(x = x0)/2
olx) = sin[(x — xo)/2] ’

1, X =Xxg,

Apply this when

X # Xg,

to complete the proof of Theorem 9.
If f, = [ in mean on [a,b], then prove f, — fin mean on any subinterval.

Suppose f, — [ and g, — ¢ in mean on [a,b]. Let A(x) = [ f(»)g(y) dy and let A,
be defined similarly by ,(x) = [ £,(»)g.(y) dy. Then prove that &, — / uniformly.
[Hint: Modify Lemma 12.]

. Establish the following formulas.

2 (— 1Y
(a)xsinx:l-—gs-{—Z (__%_ggin_x’ —t<x<n.
" O nt —1
o
(b) log[sin4x] = —log2 — Z coinx , on]02nf.

1
Establish formulas 5 and 6 in Table 10-5.

Apply Parseval’s relation to formulas 4a and 6 in Table 10-5 to obtain some
arithmetical identities. What justifies reading off a, and 4, as the coefficients of cos nx
and sin nx?

Discuss the Gibbs’ phenomenon for f(x) = 2,x = 0; f(x) = 0,x < 0.

Let f have a jump discontiﬁuity at x4 and let f'(xq+), f'(xo—) exist and f'(x) exist
and be continuous for x € Jx — &,x,[ and x € Jx4,%¢ + &]. Show that f “exhibits
a Gibbs’ phenomenon at x,” and the “overshoot” is &{f(x¢+) — flxg—)) - (1.179).

{Hint: Let
fxe—), X <X,
h(x) ={/ ° °
(x0+) [} x > xo 3

and consider k(x) = f(x) — h(x). Use Theorem 9 and the fact that near x,, the
Fourier series of  is uniformly small.]

Use the Fourier series of |sin x| in Table 10-5 to show that

ER 1 e (-1 1 =
== — d — I —
24112_1 2 = Z4n2—1 274
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Use the Fourler sine series on [0,7] to show that

o

8
COS TTX = ;"; 4Tzll:—lsin(21znx) , O<x<1.

. In Table 10-5, state the discontinuities of all functions (including endpoints of

intervals) and the values of the Fourier series at those points.

Derive formula 2a of Table 10-5 by noting that f(x) = (x + |x|)/2 and observing
that the series for |x| is just the half-interval cosine series for x.

Use the Jordan theorem at x = 0 in Example 3, Section 10.5 to prove that
7?8 = Y* 1/@2n — )2

m=1 *
(a) Let f be smooth (C*) on [—n,n], and suppose f(~n) = f(x), f¥(—n) =
f®(n), k = 1,2,....Then prove that the Fourier series of f may be differen-
tiated any number of times and will still converge uniformly.
(b) Show that for any integer p, n”a, — 0, n?b, — 0, where a,, b, are the Fourier
coefficients of f. .

(a) Let f:[0,n] — R be continuous and let /' be sectionally continuous with jump
discontinuities. Then show that the half-interval cosine series of /' converges
uniformly and absolutely to f.

(b} Justify the same conclusion for the half-interval sine series if we assume also
that f(0) = f(n) = 0. Explain. . -

(c) Show that without the condition f(—=) = f(n) in Theorem 14, the conclusion
is false.

Let
0, —-n<x<0,
Sx) =

1, 0<x<n.

Then show that if we differentiate the Fourier series of f, we get the Fourier series
of 8(x) — &(x + =)(J is the Dirac é function). Can you explain in what sense /' = &7

. Give the theorem that is obtained by combining Theorem 14 and Corollary 3

(p. 109) and show why Theorem 15 is better.

. Use Theorem 135 to derive a differentiation theorem for half-interval cosine series.

. If f is square integrable on [ — z,n] with Fourier coefficients, a,, ,, then prove that

Z"“‘:l a,/n and Z;“: , bu/n converge absolutely. [Hint: Use the method of Lemma
13.]

(a) Let f:[—=n,n] — R be square integrable, and g(x) = {%, f(y) dy. Find the
Fourier expansion of g and state where it is valid.
(b) Repeat part (a) for the half-interval cosine series of f: [0,z] — R.

In Example 3, p. 430 show that g is of bounded variation (hence the Jordan-
Dirichlet theorem applies).

Use Example 3 to find the Fourier series of x* on [0,27] using that of x? from
Table 10-5.
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63. For each of the following, determine what type of convergence the Fourier series
has and whether or not the series can be differentiated termwise.

(a) f(x) = x* on [—=,x].

3:’ —7I<x<-—§,

(b) Sl =4x, —-i<x<l,
1, l1€x<m

) f(x) =7 — |x]* on [—n,x].

( x¥*+8, —a<x<0,

d) f(x) =

@76 x?+ 8, 0<x<
0» —RSXSO,

) 1= Sin@, O<x<m

1 1
- — LXK -,
2n(x + x + 2n + 1, —— x "
) f/(x) = 0, —n<x<0,
1, otherwise on [ —n,7].

on ]—m,nf.

{g) log

of)

64. Suppose [ is square integrable on [0,27] with Fourier coefficients a,, b,. If f(0+),
f(0=), £(0+), and f'(0—) all exist, then prove Z:“: o n COnverges. What assump-
tions guarantee that Z:“:l b, converges?

Exercises 65-71 are based on Section 10.7.

65. If the temperature at the ends of a bar is kept constant at zero, show that the
temperature T after time ¢, if T is equal to f at ¢ = 0, is given by

= nmx

Tx,t) = . be™ @M sin<~—~> ,
n=1 {

where the b, are the half-interval sine series coefficients of f.

66. Show that the solution to the heat equation is always C* for ¢+ > 0(see Theorem 19).

67. (a) On [0,%] x [0,7] find a function ¢ such that V%p = 0 and

x—ny¥ n?
fl’(x»o) = ( ) ) - —4’ B fl’(o:y) =0, fl’("‘:y) =0, q)(x,n) =0.

Explain in what way the boundary values are assumed,
(b) Repeat the problem with ¢(x,0) = x.

68. Show that the solution in the text is correct for the 2-dimensional wave equation.
Derive the fundamental solutions by separation of variables. You may wish to
use Exercise 18.
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In Theorem 17, prove that

limit Z a e"(nzulfﬂz)( m[zx) -0

t—+oo

(uniformly in x). [Hint: Let |a,| < M. Then the sum is, in absolute value,
o 2 e—rrltllx
- /12 e
SM"ZIQ wm ) < M [1 - e._,(Jl/‘ZJ ']
In Theorem 19(iii), show that ¢ converges uniformly on any compact set in the
interior of the square. [Hint: The distance from a side is >0.]

(Boundary-value problems for ordinary differential -equations.) Suppose f on

[—n,n] has f(—=n) = f(n) and Fourier coefficients a,, b,. The fact that /' has

coeflicients &, = nb, and B, = —na, (see Theorem 14) is useful in solving certain

boundary-value problems.

(a) Solve the equation f"(x) + kf(x) = g(x) for given g on [—n 7] if we require
Sf(=n) = f'(n), and f(—~n)= f(x) by noting that —n%a, + ka, = d, and
—n?b, + kb, = b,,, where 4, and b are the coeflicients for g. Hence show that

i S ~

a, by .
flx) = 2/c uZ; P - COs nx + msm nx.

(b) Solve the equation corresponding to (a) for [—/,/].

Let § be a given real number, 0 < § < =. Define

10 {1, x| <&
X) =
0, d<ixl<=n

(a) Calculate the Fourier series of f.
(b) By evaluating at x = =, show that

]

sin kd
2 )

™8

_1k+i
(-

(c) What does the Parseval relation say in the case of f?

Evaluate

llmltf \/;sm kx dx .

Verify that the infinite product in Example 5

f(l)=lﬁ(1*§>

n=1
is periodic with period 2, f(A + 2) = f(4). First show f(A + 1) = —f(4).

(From notes of W. A. J. Luxemburg.) Let ¢, be a set of orthonormal functions in
%#? of the interval [a,6]. Show that (a) ¢, is complete ifx — a = - 1% @u(t) di?
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76.

for all x & [a,b] and (b) ¢, is complete iff

2

dx .

r(p,,(t) dt

[Hint: (a) For =, apply Parsevals relation to the characteristic function of [g,x].
For <=, assume {g,p,> = 0 for all n, |lg|| = 1. Apply Bessel’s inequality to the
characteristic function of [a,x] using the orthonormal system {¢,} U {g}. Conclude
that {¥ g(t)dr = 0 for all x € [a,b] and hence that g is zero (except on a set of
measure zero). Now use Exercise 14(c) to conclude that {¢,} are complete. (You
may assume that %2 is complete, that is, is a Hilbert space, for this problem). (b) For
=, integrate the result in (a) term by term (using the monotone convergence
theorem). For <=, show that [ {(x — @) — 1.2 |[5 ¢,(1) dl|*} dx = 0 and use
Bessel’s inequality to show that the integrand is = 0. Hence apply (a).

Now verify that (b) holds for the exponential system on [0,2x] and deduce its
completeness. ]

o0 b
6-arn=3

(Lebesgue’s proof of completeness of the trigonometric system from A. Zygmund,
Trigonometric Series.) Give another proof of Theorem 8 as follows. Let /: [ —n,n] —
R be continuous and be orthogonal to cos nx, sin mx. Prove f = 0 as follows:
assume f(x) > ¢ for x el = Jxq — §,xq + 0[. Let T(x) = [tx)]", tx) = 1 +
cos(x — xo) — cos § and show T(x) = 0, on I, T,(x) — oo uniformly on every
closed subinterval of I, and T, are uniformly bounded outside I. Use this to show
{f;T,» = 0 is impossible for n large. For general f, attempt to apply the results
just obtained to F(x) = [* . f(:) dt.

”
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Appendix A

Notes on the
Axioms of Set Theory

By Istvan Fary

A.1 Introduction

There is no rigorous mathematics today which does not use concepts of set theory. For
this reason we started with set theory in this text. The purpose of this appendix is to help
bridge the gap between the approach in this text and that in more formal set theory
courses using a book like Halmos [18].* Any introduction to set theory has to take into
account the following facts.

(a) The concept of set is so basic that it is impossible to define it in terms of more
basic notions.

(b) Because of (a), we specify the concept of set with axioms, but the axiomatic method
may not be familiar to the student.

(c) Axiomatic set theory involves logic, but some concepts of logic. may not be
familiar either.

In view of these circumstances, the most effective approach and the one used in this
text, is to start working with the intuitive concept of set (Introductory chapter) and come
back to foundations later on. When this method is used, the question arises whether to
take up logic first, or else to treat the axiomatic set theory without formal logic, like
any other chapter of axiomatized mathematics. We chose the second approach.

This plan corresponds to the historical development: set theory, based on intuitive
concepts came first, then criticism of this inspired the axiomatic foundations, and
finally an intensive discussion of this method heralded new developments in logic. It
may be useful, therefore, to say something about the history of our subject.

A.2 On the History of Set Theory

Set theory is possibly the most important chapter of mathematics. It includes facts
about finite sets, but the importance of the theory comes {rom the fact that it can deal

* See the references listed on p. 473.

447
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with infinite sets. The theory dates from the moment when characteristic properties of
infinite sets were recognized and the mathematical consequences pursued. In this sense
the founder of the theory was Georg Cantor (1845-1918). He published his important
papers just before the turn of the century. There was a heated debate of his work, and
famous mathematicians disagreed about fundamental questions. In the recent history
of mathematics this is rather unusual.

Cantor was led to discover facts about infinite sets in connection with his work on
so-called trigonometric series. Let us mention that a trigonometric series is of the form
(see Chapter 10) w
Z (a, cos kx + by sin kx) .
k=0

Convergence properties of these series are delicate questions, and distinguishing points
according to the behavior of the series leads to very general types of sets of numbers.
For this reason Cantor dealt with sets of real numbers first, but discovered soon that
he had to deal with infinite sets in general.

In one ofhis papers, he gave the following “definition” or “description’” of the concept
of set:

We understand by “set” any gathering M of well-defined, distinguishable
objects m (which will be called “elements™ of M) of our intuition or our ideas (1)
into a whole *

It is customary today to be “ashamed” of the original definition of Cantor, and to
say that it is not a definition. As a point of fact, there are many so-called “definitions”
in other fields which do not come close to the clarity and precision of (1). Nevertheless,
the concept of set being so important, we will not accept ultimately Cantor’s definition.
However, for the moment we will use (1) to clarify our ideas about sets.

The first point is that we “gather together™ objects, and we do not care in which
order they are taken. For example, if we talk about “the set of natural numbers” we
do not imply that the elements of this set are given in some “order,” even though there
is a “natural order” for integers. For practical purposes we may give the elements in
some order, but this has nothing to do with the set itself. Better yet, we define “order™
in terms of sets.

The words “well-defined, distinguishable objects” in (1) point out another aspect
of the concept of set. That is, the elements of the set “do not appear twice,” thus, for
example a set consisting of 2, 2, 2, 3 contains 2 and 3 and nothing else. Hence a “‘set”
“contains” some objects which “belong™ to the set; some other objects may not belong
to the set. For example, 1003 belongs to the set of natural numbers (positive integers),
3.14159 does not belong to it.

Finally the “whole” at the end of (1) refers to the fact that sets themselves are treated
as objects, in the sense that they may be elements of other sets. Thus we may consider
sets whose elements are sets. As a point of fact, these are the most important sets in set
theory.

* The original German text is (Collected Papers, p. 282): “Unter ciner “Menge’” verstehen wir
jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer
Anschauung oder unseres Denkens (welche die “Elemente” von M genannt werden) zu einem
Ganzen.”
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Let us now criticize Cantor’s definition—take the following definition. An integer p
is a prime number if p # 1, and 41, £ p are the only divisors of p. In this definition the
concept of “prime number” is defined in terms of other concepts (integers, divisor,
+1, —1, —p), and we suppose that the latter concepts are known or were defined
without the use of the concept of prime number. The definition thus reduces the concept
of prime number to these other concepts. This definition also tells us what to do in
order to test whether or not 1003 is a prime number (it is not; it is divisible by 17). Let
us see whether (1) can stand such criteria. We have in this sentence a number of other
concepts: “gathering,” “well-defined,” “distinguishable,” “whole” (not to mention our
“intuition,” our ‘“‘ideas™). It is only fair to ask which concept is simpler: “set” or
“gathering.” (As a point of fact the German word ““Zusammenfassung” sounds better,
but does not escape the criticism.) Similarly, we can question every one of the other
concepts, and wonder if it is simpler than the concept of set, and could be conceived
prior to it.

In a later paper Canfor came back to the question and discovered a germ of the
axiomatic description. Let us add that Cantor’s definition was also criticized on the
grounds that it does not exclude contradictory sets, as we will see.below, and his second
approach was motivated by this criticism.

A.3 Remarks on Logic

We want to handle logic in an uncritical and unsophisticated way; nevertheless, we
want to say a few words about conventions of mathematical language. It is probably
fair to say that the basis of our rational thinking is the following belief: if we start with
true premises, and make correct deductions from them, then we reach a true conclusion.
We could refuse to accept this but would not get far in mathematics. If we take this
belief seriously (as we do in mathematics), rather sophisticated results can be reached.
For example, suppose that 2, 3, 5,..., 17 were the only prime numbers > 2. Then
form the number n = 2-3+5:--17 4 1 (where the points indicate that we have to
write all the seven primes from 2 to 17). Then n is not divisible by a prime < 17, hence
it is a prime or it has a divisor which is a prime > 18. As the conclusion plainly contra-
dicts the premise, both cannot be true, and as our reasoning was correct, the premise
must be false—there is a prime number > 18. This is not surprising as 19 happens to
be a prime number, but we reached the conclusion by reasoning and not by experience.
This reasoning, sometimes called reductio ad absurdum, is used frequently.

There are English sentences in which we can erase a word, write x in its place, and still
get a meaningful sentence. For example, in the sentence “two is smaller than five”
erasing two and writing x gives the sentence “x is smaller than five.” Such a combination
of words is called a propositional function or condition and could be denoted Sfx). Now
writing “seven” in place of x we get a false sentence and writing “three’” in place of x
we get a true sentence. Then S(x) is meaningful if x is an integer, and is true for some
integers and false for other integers. Given now an arbitrary condition S(x), we may

take all objects whose name, substituted in
o . @
the place of x in S(x), gives a true sentence.
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It is understood that x may occur several times, and substitution must be done con-
sistently (thus x is just a sort of “place holder” in this case). On the basis of definition
(1) we thus obtain a set. There will be a standard notation for this set:

{x]S(x)}. @)

In spite of the fact that (2) is consistent with (1) and with the usual concept of set,
we run into contradictions if we use (2) indiscriminately. Take the following example.

The set that does not contain itself as an element. 4)

This sentence seems to be all right; after all, who ever saw a set which contained itself
as an element. Erase ‘“The set,” and write x:

S(x) = x does not contain itself as an element. (5)

Then take the corresponding set (2), and call it M as Cantor does (M for ‘“Menge”).
Let us ask the question: does M contain M ? If it does not, then it should, by the sentence
which defines it, If it does, then it should not, by virtue of the same sentence.

This property of construction (2), first noticed by Bertrand Russell, is shocking, and
discouraging. When we were inspecting Cantor’s definition, we suggested that it was
not really bad and actually helped clarify ideas. Now we find that, at the same time, it
allows forming the impossible set M.

The example of the set M may suggest that there is something inherently wrong with
the concept of set, or at least with the concept of “big” sets. In fact M is as big as they
come—it cgntains every single “‘decent” set. However, the kind of contradiction we
have in connection with (5) is well known in classical logic. Let us mention first an
example, which can be formulated in terms of “small’”” sets. Let N be the set of men
living in a small village. Suppose that the barber of the village declares: I will shave
x € N if x does not.shave himself. It seems then that this sentence defines a subset
P < N. However, the question whether the barber belongs to P leads to the following
dilemma: “I will shave myself, if I do not shave myself.”

The dilemma above was extensively discussed by Greek logicians who did not use
the concept of set. Hence, the contradiction may be independent of this concept. This
seems to be confirmed by the following paradox.

Suppose that during one of thy lectures a student in the class says,

The last sentence on the blackboard is false. ©6)

This can happen, unfortunately. If it does, I normally do the following: I again read the
sentence. If I find that the student is right, I apologize, erase the sentence, and write
down the sentence corrected. If I find that the student was mistaken, I say so aloud,
and leave the sentence on the blackboard. To make this concrete, suppose now that I
lecture on set theory, and reach the point up to and including sentence (6); sentences (1)
through (6) are on the blackboard (in order), and nothing else. If a student says now
“The last sentence on the blackboard is false”, I am at a loss what to do. If he is right,
then (6) is false, which means that it is true, hence the student was wrong, but in this
case the sentence is right, which means that it is false.
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It would be interesting to pursue further these questions of logic, but our aim was
simply to indicate why it is advisable to restrict the form of sentences when defining
subsets of a set in our axiomatic set theory.

A.4 Language of our Axioms

In acomplete, advanced presentation of the axioms of set theory, formalized logic must
be used. Thus at least part of the language of the theory is formalized. We turn now to
describe this part of the language, without effectively carrying out a formalization. In
this description, we follow [18]. ' )

There will be two basic types of sentences, namely assertions of belonging

: xeAd (N
and assertions of equality
A=B; (7)

all other sentences are to be obtained from such atomic sentences by repeated applica-
tions of the usual logical operators, subjected to the rules of grammar and unambiguity.

To make the definition explicit, it is necessary to append to it a list of the “usual logical
operators™, and the rules of syntax. Our list of “logical operators™ will be

not

and

or (in the non-exclusive sense)
if—then—(meaning implies)
if and only if (abbreviated iff)
Jor some (there exists)

Jor all

®)

Notice that “not’ operates on a single sentence, the next four operators act on two
sentences (S and 7, ..., S iff T) and the last two act on conditions (for some x, S(x)
holds, and so forth.)

This list is redundant: it is proved in logic that the first five can be replaced by a
single operator, hence everything really comes to the concept of implication, or some
very closely connected concept. [Example: instead of the sentence “S and T,” where
S and T are sentences, we can say “‘not (not S or not T).” This is clumsy in colloquial
English but very simple with appropriate logical symbolism. As we do not want to use
formalized logic, we use the longer list (8).] In our list (8) the first five operators are
called logical connectives, and the last two are called quantifiers. In the usual formalism
“for some x”’ is sometimes written 3x and “for all x” is denoted ¥Yx. The connection
between these two quantifiers is as follows: the negation of “for some x, S(x) holds” is
“for all x, not S(x) holds.” The negation of “for all x, S(x) holds™ is “there is an x, such
that not S(x) holds.” This is very important; in fact, possibly the main idea to be learned
here. Very often the connection between the two quantifiers appears in the following
form. We want to prove a statement:

Jor every e > 0 -+ - holds true . ©)
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The negation of this is:
there exists eg > 0, such that - - - does not hold true . (10)

If we can now deduce a contradiction from (10), we have a proof of (9).

As for the rules of sentence construction, we make the following agreements:

(i) Put “not” before a sentence and enclose the result between parentheses. (The
reason for parentheses, here and below, is to guarantee unambiguity. Note, incidentally,
that they make all other punctuation marks unnecessary. The complete parenthetical
equipment that the definition of sentences calls for is rarely needed. We shall always
omit as many parentheses as it seems safe to omit without leading to confusion. In
normal mathematical practice, to be followed here, several different sizes and shapes
of parentheses are used, but that is for visual convenience only.)

(ii) Put “and” or “or” or “if and only if"” between two sentences and enclose the
result between parentheses.

“(iii) Replace the dashes in “if—then—" by sentences and enclose the result in
parentheses.

(iv) Replace the dash in “for some—" or in “for all—" by a letter, follow the result
by a sentence, and enclose the whole in parentheses. (If the letter used does not occur
in the sentence, no harm is done. According to the usual and natural convention “‘for
some Y(x € A)” just means “x e 4. It {s equally harmless if the letter used has already
been used with “for some—"" or “for all—"". Recall that ‘“‘for some x(x € A)” means
the same as “for some y(ye A)”; it follows that a judicious change of notation will
always avert alphabetic collisions.)

This is about all we need to know on logic. The axiomatics of set theory depend
heavily on the logical apparatus used, but we believe that the axioms and their immediate
corollaries c¢hin be understood on this modest basis, and the rest of the text is but an
exercise on the use of quantifiers, mostly in the form of (9) and (10) above.

A.5 The Axioms

Instead of giving a definition of the concept of “‘set A and that of ‘‘belonging to a set,”
denoted a € 4, we will give properties of these concepts. Enumerating properties is the
main feature of the axiomatic method.

We will state now the axioms in the wording of [ 18], accompanying them with a few
remarks.-

1. Axiom of Extension. Two sets are equal if and only if they have the same elements.
([18],p.2)

This axiom means, in particular, if we want to prove 4 = B we have to prove that
x € 4 implies x € B and that x € B implies x € A. This fact is so important, that it is
worthwhile to have a notation for the case when only half of it, say the first half is
satisfied. We then write 4 = B. This will be a relation between sets; it is not an unde-
fined concept but it was defined in terms of “‘set™ and “belonging.” See Example 1,
p. 6 for a concrete application of the axiom of extension.
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2. Axiom of Specification. To every set A and to every condition S(x) there corre-
sponds a set B whose elements are exactly those elements x of A for which S(x) holds.

([18],p.6)
We introduce here the important notation
{xeAd]|Sx) (1n

to denote the set B. Notice that (11) is the same as our set (3) except that we do not
form now the set of all objects satisfying a certain condition, but only those which are
already elements of some set (set A in (11)). This allows us, for example, to form sets of
real numbers quite arbitrarily, like

I={xeR|lag<x<b} ' (12)

where our sentence S(x) isa < x < b, provided we know that R is a set. (This is not yet
implied by Axioms 1 and'2.) The 51mplest set (11) can be formed with the atomic sentence
(7) then we get A = {xe 4| x e 4}, hence 4 is a subset of 4. If our sentence S(x) is
not satisfied by any element of 4, (11) describes the empty set &f. We can always write
an impossible condition, for example x ¢ A. Then & = {xe 4 ] x ¢ A}. Conclusion:
ifthere is any set, there is an empty set containing no elements (our axioms do not say yet
that there are sets at all; we have to postulate this later).

On the basis of Axiom 2, we introduce the important set theoretical operation of
intersection. Given sets A and B, we write {x € 4 | x € B}; this set is denoted 4 ~ B
as you know. B n 4 would be {xe B|x e A}; this is clearly the same set. The most
general operation is the intersection of a collection of sets C (instead of a set of sets we
sometimes say collection of sets, but, for us, “collection” shall be synonymous with
“set”): suppose C is a set, and, if A € C, then 4 is also a set, We define:

N{A|AeC} = {xedy|AdgeCand xe Aforall 4eC}. (13)

Hence x is an element of the intersection if it belongs to all sets that belongtoC. A n B
corresponds to the case when C contains {wo elements, one being 4 the other being B.
If all elemerits of C are indexed with integers so that C = {A4,}, we write

ﬂ A, = {xe A, |x e A,forall n}. (14)
Clearly (14) is the set (13) in this special case (in some cases the elements of C cannot
be indexed this way).

3. Axiom of Pairing. For any two sets there exists a set that they both belong to.

((18],p. 9.

4. Axiom of Unions. For every collection of sets there exists a set that contains all
the elements that belong to at least one of the sets of the given collection. ([18], p. 12.)

5. Axiom of Powers. For each set there exists a collection of sets that contains among
its elements all the subsets of the given set. ([18], p. 19. )
If C is as in (13), we write
J{d]4eC} (15)
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to denote the set postulated in Axiom 4. The notations 4 U B and | J 4, are used in
special cases similar to (14). If we want to prove that x e | | 4, we must prove x € 4,
for at least one n; 1f we want to prove x € [} A,, we must prove x € A, for all n. The
logical quantifiers 3x, Vx are thus closely connected to the set theoretical operations
U, N. '

We must carefully distinguish the pairing and the union: the set {4,B}, postulated
in Axiom 3, has two elements 4, B if 4 # B and a single element 4 if B = A (this is
not excluded). For example, given the set ¢, we can form the set {,@} = {&}
which is a non-empty set; it has one element. Axiom 4 postulates the existence of
A U B, This set does not contain, in general, 4 or B as elements; its elements are
either elements of A or elements of B. For example, F U & = & has no element,
hence it is different from {F}.

Axioms 3 and 4 also imply the existence of the set {4,B,C} with three elements.
Proof: Form {4,B} and {C,C} = {C}. Then form the pair {{4,B},{C}} = D. Take
the union of the elements of D, Similarly, given n sets 4,, ..., 4,, we ¢an form the
set {4,,. . .,4,} containing these elements, '

The Axiom of Powers is a very important tool of set theory, We know already what
countable sets are. We have proved in Example 4 of the introductory chapter that if 4
is countable, the power set 2(4) is not countable, and more generally, we have shown
that there is no bijection from A to #(A). This was discovered by Cantor; set theory,
as we understand today, was launched by this discovery. If 4 is countable, then there
is a bijection from 2(4) to R, that is, the set of real numbers. Hence, if we accepted the
existence of the integers as a set, Axioms 1-5 would imply the existence of the set R
(or something akin to it, which can be used in place of R). But these axioms do not
postulate the existence of any set, yet alone the existence of infinite sets.

Before formulating the last group of axioms, we want to examine the question of
existence of sets more closely. If we understand sets in the sense of Cantor’s definition
(1), all our axioms are clearly satisfied. From the axioms we can deduce, however, that
some sets which can be formed in virtue of Cantor’s definition are not sets in the sense
of the axioms. Specifically, given a set 4 we can form B = {x € 4| x ¢ x}. Suppose
now that Be B. Then B ¢ B, hence this is not possiblé. In conclusion, B ¢ B, and in
particular B ¢ A. Summing up, to any set 4, a set B can be constructed which is not
an element of A. Hence the axioms exclude the existence of a set which would contain
all sets. On the other hand Cantor’s definition would admit such a set. Similarly, the
contradiction concerning the set M of (5) shows presently that M is not a set. The
axiomatic system thus accomplished our purpose: on the basis of the axioms we can
introduce a part of Cantor’s set theory, which is indispensable in mathematics, and at the
same time we exclude the known contradictions of Cantor’s theory.

If we replace the word *‘set” in Axioms 1 through 5 by the words “finite set,” we have
consistent statements. As we want to introduce the concept of “set”” with these axioms,
we must accept any interpretation consistent with them. Hence, there is a need for an
axiom of infinity. :

Definition. Ifx is aset, we define x* = x U {x}, and call it the successor of x.

6. Axiom of Infinity. There exists a set containing J and containing the successor
of each of its elements. ([18], p. 44.)
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This is the sort of axiom needed to introduce the integers. The next axiom, which
has been a point of controversy in the history of set theory, asserts that from any
collection of sets, we can “pick” out one representative from each set in the collection.
This is stated more precisely in the next axiom.

7. Axiom of Choice. If A1is a collection of non-empty sets, then there exists a choice
set C, such that x ~ C contains a single element for uny x in A. ([18], p. 59))

We will use the concept of “ordered pair (a,b) of elements a, b”; an ordered pair
contains a first element (coordinate) ¢ and a second element (coordinate) b; in case
a = b these coordinates are equal. The concept of ordered pair could be reduced to
the concept of set by defining (a,b) = {{a},{a,b}} (see [18], pp. 22-25); we will not
give details of this here. .

If A and B are given sets we can form the set of all ordered pairs (a,b); this set is
denoted A x B. By definition amap f: 4 — Bis asubset of 4 x B such that: (1) given
ae A there is a b € B such that (a,b) e f; (2) if (a,b,) € f and (a,b,) € f then b, = b,.
Note: Instead of (a,b) e f we write b = f(a). You may then proceed to define the
following terms, notations, and concepts in connection with functions: injection,
surjection, bijection, restriction, extension, f(X)if X < 4, f/~Y(¥)if ¥ = B, composi-
tion of maps. If B < R, f is usually called a real-valued function.

8. Axiom of Substitution. If S(a,b) is a sentence such that for each a in a set A the
set {b ] S(a,b)} can be formed, then there exists a function F with domain A such that
F(a) = {b | S(a,b)} for each ain A.([18], p. 75.)

Remark. By definition, a function F has a range, hence the axiom requires the
existence of a set B such that F <« 4 x B.

We can easily remember these axioms, if we summarize them in suggestive form as
follows. Tlie axiom of extension gives a criterion for the equality of two sets. The axioms
of specification, pairing, unions, and powers allow us to specify subsets, form pairs,
and finite sets in general, intersections and unions, and the collection of all subsets of
a given set (called the power set of the given set). We postulate the existence of infinite
sets. The axiom of choice insures that we can choose a single element from each (non-
empty) set of a collection of sets and form a set with the chosen elements. The axiom
of substitution shows that we can substitute for each element of a given set some set
depending on this element.

If we give completely detailed proofs in mathematics, we have to go back to these
axioms, and first principles of logic. In actual practice we mainly use the set theoretical
operations of union, intersection, complement, difference, power set, and choice set
(the latter usually implicitly).
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Appendix B

Miscellaneous
Problems

. Find aset 4 = R?, such that

int(cl(A)) # int(4) .

. For two sets 4, B = R", define the distance between them by

d(A,B) = inf{d(x,y) | x€ A, y e B}.

(a) Find two closed sets such that A ~ B = ¢ and yet d(4,B) = 0.

(b) For A compact and x ¢ 4, show that d(4,x) = d(y,x) > 0 for some ye 4.
[Hint: Use Theorem 5, Chapter 5.]

(c) For any set A = R" show that cl(4) = {x e R"| d(x,4) = 0}.

. Let A = R*.Show that 4 is compact iff every continuous map /: A — Ris bounded

above and assumes its maximum ut some point of 4.

. Let x, be a sequence in R", such that there is a constant M with ix,l < M for all

n. Then prove x, has a convergent subsequence.

. Show that f: R — R has a continuous derivative iff the double limit

it 160 = 10)
(x,y)=t(xpx0) X — Y

exists for every xo € R.

. For continuous functions f, g: [a,b] — R, define

b
S =f S{x)g(x) dx

Show that {, ) has all the properties of an inner product (Theorem 5(I), Chapter 1).
Hence deduce the inequality

b 2 b b
(f () dx) < (f oo dx>(f o00? dx) .
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. Show that 3= (x + 1)*/n* converges uniformly on [0,1]. Also show that

o

- (x + 1)*/n! converges uniformly on the same interval.

. Given that Z:; o X' = 1/(1 — x) for |x] < 1, differentiate both sides to obtain

o 1 2
Z ax"1 =<——-—> , forixl < 1.
1 —x

n=1

Can you justify this?

. Let f(x) = 1)1 + x)*,s0 f> 0. Now d(~1/1 + x)/dx = f(x), so

f f(x)dx = limit f fx)dx = limit[—:l— 4 ! ] =0.

1+a 1~a

What is wrong with this argument?

. Lét"f: R? - R and. ce R. What conditions on f will guarantee that Six,p) = ¢

defines a smooth curve in the plane? (Say y = g(x) or x = b(y)). Interpret
geometrically.

. Answer true or false.

(a) The rationals are an ordered field.

(b) A continuous function f: R — R is uniformly continuous.
(c) A closed bounded subset of a metric space is compact.
(d) The real numbers are connected.

(e) An open set is bounded.

(f) A compact set is closed.

(g) A differentiable function is continuous,

(h) [0,00[ is closed.

(i) J0,1[ is compact.

i) {1
n

Give an example of a continuous function f: R — R such that f(R) is not closed.
If A = R is a closed bounded interval, must f{4) be closed?

ne N} is bounded.

At first, one thinks the intervals ]0,1[ and [0,1] are very similar. State at least
five significant differences between them in terms of topology and continuous
functions.

(a) Find.an example of a closed set A = R" such that 4 = bd(4).

(b) If 4 = bd(A), then show that 4 is closed.

(c) Prove: Ifint(4) = ¢, then A = bd(4)iff 4 is closed.

(d) Prove: If 4 is closed and 4 = bd(A4), then A = bd(4) and int(4) = .
(e) Find a set 4 such that A = bd(4), but 4 # bd(A4).

e)

(a) Let f be integrable and suppose that for every partition P, b < U(f,P). Then
showb < [, 1.

(b) Suppose U(f,P) < U(g,P) for every P. Then prove that [, / < [, g.

(c) Is it true that [, f< [, /*? Distinguish the cases | /] > 1 and |f] < 1.
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16.

17.

18,

19,

20.
21.

22.

23.

Are the following statements true or false? (All sets have volume and all functions

are bounded and integrable.)

(a) If4 > B, and A\B has measure zero, then [, / = [5 f.

{b) If {x | f(x) # g(x)} has measure zero, then [, f = [, g.

(© ff=20,9g>0,and [,f = (g, then f = g on A4 except possibly on a set
of measure zero.

(d) The same question as (c) except f = g.

Let f: [a,b] — R beintegrable. (a) Prove F(x) = [ f(t) dtis uniformly continuous.
(b) Show that F has a derivative at x, if f is continuous at x,. (c) Show F is differ-
entiable except possibly on a set of measure zero.

(a) Let T: R" — R" be a linear mapping. Prove that T is norm preserving (that is
| Txll = ||x||) iff T preserves the inner product {Tx,Ty) = {x,y>. [Hint: See
Exercise 12, Chapter 1.]

(b) If T preserves the norm (or inner product), then T'is an isomorphism,

Prove Cavalieri’s Principle: If 4, B = R® have volume, and every plane parallel
to the xy-plane intersects A and B in equal area, then 4 and B have the same
volume. [Hint: Make use of Fubini’s theorem.]

Remark: In connection with this problem, see Gelbaum and Olmsted,
Counterexamples in Analysis, Example 6, Chapter 11. For applications see
McAloon-Tromba Calculus, Chapter 6.

Let 1 A =« R" — R. If f is continuous at x, show that |f] is as well.

Show that a set 4 = R" has volume iff for any & > 0 there exists a set ¥, = 4
and a set W, o A such that ¥, and W, have volume and v(W\V,) = (W) —
u(V,) & & Show that if the latter condition holds, the volume of 4 is

inf{v(W,) | & > 0} = sup{u(V;) | & > 0} .

Let /:4 = R" — R be integrable and f > 0. Let S = {(x,))eR" x R|xe 4
and 0 < y < f(x)}.Show thatS = R"*! has volume [, /. Interpret geometrically.

Show that the volume of the figure obtained by rotating the area under the graph
of a non-negative function f: [a,b] — R is given by {% #f(x)* dx. See Figure A-1. )

z

FIGURE A-1 Volume of rotation.
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Use this formula to compute the volume of
{Gey,2)eR? |1 < x < 2,* + 22 < x*} .
Evaluate the following integrals.
(a) [4 (1 — x* ~ y}) dxdy; A is the unit disc.
() faydxdy; A= {(xy)]0 < x <y, y<n2sinx}.
©) Ja/x* + yrdxdy; A = {(x,y) | (x — D? + y* < 1}.
(d) falzldxdydz; A = {(x,p,2) ]| x* + y* + 22 < 4x* + y* > 1},
(e) Jaldxdydz; A = {{xy2)|x*+y* + 22> lz < x* + y* < 1}.
O [40* + y)dxdy; A = {0y} | x* + > <1 —x}.
(8) J4 xyzdxdydz; A = [ab] x [ed] x [e.f]
() f4(x* — y?sin*(x + p)dxdy; A = {(x,y)|n <x+y<2nand -7 < x —
y < =}. [Hint: Use the substitution u = x — y,v = x 4+ y.]

Let f:[a,b] — R be continuous and suppose f(a)f(b) < 0. Then show there is an
x & Ja,b[ such that f(x) = 0.

Let f1 A = R" — R be continuous. Suppose B = 4 is such that B is bounded and
cl(B) = A. Then show there are points x;, y, € cl(B), such that

" flxo) = inf{f(x)| xe B} and f(y,) = sup{f(x)|xe B} .
Let f: R" — R" be of class C' and suppose Jf(x) # 0 for all x. Let x, € R" and
B = {xeR"| f(x) = xo}. Show that B has no accumulation points.

If f+4 < R"— B < R" (where 4 and B are open sets) is a one-to-one function
ofclass C* with Jf(x) # 0foreach x e A4, then prove f~!: B — Aisalso ofclass C!.

Give an example of a function f of class C! which has derivative equal to zero at
a point x but is one-to-one in a neighborhood of x. Show that f~! cannot be
differentiable at f(x).

Let the sets 4 and B have volume. Then show 4 U B has volume. If 4 n B and

. A\B have volume as well, then prove

31

32.

33.

34.

(a) (A v B) = v(4) + v(B) — v(4 n B);
(b) (A\B) = () — v(B)if A > B.

Suppose f: 4 = R" — R is integrable and f = g except on a set of content zero.
Then show that g is integrable. Show that this is false if we replace “content zero”
by ““measure zero.”

Show that the bounded integrable functions f: 4 — R on a bounded set 4 form
a vector space. Also show that if f and g are bounded and integrable, so is fg. If /'
and g are integrable but unbounded, need fg be integrable?

Let f(x,y) = x — y2, Is there a real valued function g(x) defined near x = 0 such
that f(x,g(x)) = 07 Show that g is not unique. How does this tie up with the
implicit function theorem?

Let /© 4 = R" — R™ be a function such that for any open set V < 4, f(V)is open.
For aset B = R" such that cl(B) = f(4), show that

fnt(f~}(B))) < int(B) and bd(B) = f(bd(f~\(B)).
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35.

36.

37.

38.

39.

40.

41.

42,

43,

45.

46,

47.
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Let f: A = R" — R™ be a map. Show that f is continuous iff for every compact
set K < A, the restriction f ] K: K — R™is continuous.

(a) Show thatifU;isa family of disjoint open setsin R", then the family is countable.
[Hint: Pick a point with rational coordinates in each set and use the fact
that the set of such points is countable.]

(b) If A = R"is open, show that the components of 4 are open and are countable.

(c) Prove that any open set in R is the countable union of intervals.

Let 4 = R" be closed. Show that 4 is compact iff for every ¢ > 0 there is a finite
covering of 4 by sets with diameter <e.

Let f:[a,b] — [«,8] be strictly increasing and onto. Then show that f and f~!
are continuous.

Prove the Lebesque Covering lemma: Let A = R" be a compact subset of R",
and let {V,} be an open cover of 4. Then there exists an & > 0, such that if § is
any rectangle contained in 4 having sides less than &, then S is contained in some
open set of the cover.,

Let f: A = R" — R be a mapping. Let M < 4 be the set of (strict) local maxima
of f. Then show f(M) is finite or countable. Give examples.

Find and classify the critical points of the following functions.

(@) f(x.y) = y* + 2x%,

(b) flx,p,2) = xy + xz + 2y,

() f(x,y) = (sin x)sin y).

Let S bt an open connected set in R". Let 4 be a component of R™\S. Then show
R™A is connected.

Find a non-constant continuous function f: [0,1] — R which has its maximum
at xq € J0,1[ but f"(xo) does not exist.

. Aset B < A is said to be dense in A il cl(B) > A. Show that this is equivalent to

the condition that for every open set U with A n U # J,wehave BN U # J.
Is A dense in cl(4)? Show that R" has a countable dense subset.

(a) Let A = R" have volume. Then show int(4) and cl(A) have volume, and
v(A) = v{int(4)) = v(cl(A).
(b) Prove that if 4 is a set and cl(4) has volume, then we cannot conclude that 4

‘has volume.
(c) Prove that if int 4 = &, we cannot conclude that 4 has content or is of
measure zero,

Let g: A = R"— B = R" be C! on the open set 4 and B = g(A). We say g is
volume preserving if for every set D = A with g(D) and D having volume, v(g(D)) =
v(D). Suppose g is one-to-one and Jg(x) # 0 at each x e 4. Then prove that g is
volume preserving iff |[Jg(x)] = 1 forall x & 4.

Show that if 4 has content zero, then cl(4) has content zero. Is this true for measure
zero?
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Let f: A = R" — R™be of class C! with 4 an openset. Let 4, = 4 and cl(4y) = 4
and suppose A, is compact. If 4, has content or measure zero, then prove that
S(Ay) does as well. [Hint: Consider the case where Jf(x) = 0 separately and use
Sard’s theorem (Exercise 5, Chapter 9).]

Let A < R" and let B denote the set of accumulation points of 4. Show that B is
a closed set. Find an example where B consists of a single point.

A set of A = R" is called homeomorphic to B = R™ if there is a continuous map

©: A — B with a continuous inverse ¢~ !. We call ¢ a homeomorphism.

(a) Find an example of a bijection ¢: A — B which is continuous but is not a
homeomorphism. )

{(b) Let f: A4 = R"— R™ be continuous, with I the graph of f (' = {(x,f(x)) €
R" x R"| x e A}). Show that 4 and I' are homeomorphic,

Let f, g: R" — R" be continuous and B = {x e 4 | f(x) = g(x)}. Show that Bisa
closed set.

Let /1 A = R" — R be bounded and integrable and A have volume. Let B = 4
have volume. Then show that the restriction of f to B is integrable.

Find a function f: R* — R? which has a Jacobian equal to 1 everywhere, but is
not onto. '

Let f be a monotone function; f: [a,b] — R, say f is non-decreasing: f(x) < f(y)
ifx < y.

(a) For any x € [a,b], show that the left and right limits

Se) = limit £ + h)

‘ Slx—)= }‘I_I}’(l)lif(x — h)
exist.

(b) Show that f has at most a countable set of discontinuities. [Hint: Let P, be
the set of points where the jump of f exceeds 1/1. Show P, is finitc and consider
the union of all the P,, n = 1,2,3, ....]

(c) It is a famous theorem of Lebesgue that for such f, the derivative of f exists
except possibly for points in a set of measure zero. Consider some examples
to verify the validity of the results. Look up a proof in, for example, Hewitt
and Stromberg, Real and Abstract Analysis, and write a brief essay on the
essential features of the proof.

Prove that the transformation
¥y = U

I

X3 Uy + u,

X3 = Uy + Uy + U;

leaves volumes unchanged.
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56. Let g: [0,1] — R be integrable. Prove that

fl [ flg(t) dt} dx =fltg(t) de .
4] x 0

57. Reverse the order of integration in

1 (48— Bx2)M3 P16~ 16x2 = 2y%)1/4
f f f Jx,y.z)d=dydx.
0J0 [¢]

58. Let K be a compact set. If {£,} is a uniformly convergent sequence of continuous
real valued functions on K, prove {/,} is equicontinuous. The converse is not true.
Give a counter example,

59. Let B be the open region bounded by the curves x = —p?, x = 2y — y* and
=2 — y* — 2y. Introducing the change of variables x = u — (u + v)*/4,

y = (u + v)/2 evaluate ([ x dx dy.
B

60. Let S < R" have volume and ¢ > 0. Let R be the set of points
{(Ex g5 atX) [ (x50 . X)) €S}
Show v(R) = t"v(S). What if t < 07

61. Explain how the Gibbs’ phenomenon is possible and yet the Fourier series still
converges in the mean and pointwise,

62. (a) Let f(x) on [ —n,7] have Fourier series

»

o
923 + Y, [a, cos nx + b, sin nx] .
n=1

Define the reflection of f by g(x) = f(—x). Show that the Fourier series of g is
Qg

o
5t " [a, cos mx — b, sinnx] .

n=1

(b) Recall that the Fourier series of

0, —RSXSO,
f(X)={
X, 0<x<m=n,
is_
no& (=11 (=1
Z+"Zl<——-1m—2—cosnx— - sinnx}.

Use (a) to show that the Fourier series of |x] on [ —=,x] is
& (-1 -1 n & cos[(2n — 1)x]
,,Z‘, A 4,,,_1 n2n — 1)?

(c) Use (b) to show that

1z+2
2

1 1 1
e e

nz
=1 all
R PR A E



63.

64,

65.

66.

67.

68.

69.

VISCELLANEOUS PROBLEMS 463

(d) Use (b) to obtain the Fourier cosine series of x on [0,7] and conversely.

Using Table 10-5, find the Fourier series of each of the following functions:
(a) f(x) = a + bx, on [—mn,n],

(b) f(x) = a — bx, sine series on [0,7],

{c) f(x) = x* + sin x, on [0,2x].

To what values do the series converge at each point?

(a) Let V be an inner product space and ¢q, ¢,, ... a complete orthonormal
basis. Suppose W is a subspace of V and fe W if and only if {fipe> = 0.
Then prove ¢,, ¢, . . . is a complete orthonormal system for W, Generalize,

(b) Apply (a) to the trigonometric system and

() W= {f:[-nn] - R]| [~ fix)dx = 0},
(ify W = {f: [-n,n] = R, which are even},
(i) W= {f: [—n,n] — R, which are odd}.

Let -1, -l<x<0,
flx) = 1, O<x<l,
0, x=0,x=1,

and extend so f is periodic. Then for all x, show that

oo 1 —
f(x) = 4 > T lsin((zn ; 1)1:x>‘

Ty=1

If f: [a,b]— R is square integrable, then prove that f is integrable, that is,
falf1? dx < oo implies [% |f] dx < oo. [Hint: Use the Schwarz inequality.]

Let f: [—n,n] - Rbe

0, -n<x<0,
f(X)={
1, 0<xs .

The Fourier series of f in exponential form is

elnx

D18

H 2nin

What kind of convergence do we have?

(a) Suppose that f: [—n,n] — R is sectionally continuous with jump disconti-
nuities. Then show that the sum of the Fourier series of " at x depends only
on the values of fin any neighborhood of x. This property is called Riemann’s
localization property. [Hint: Apply Theorem 9, Chapter 10.]

(b) The Fourier coefficients of f depend on f throughout [—=,z]. How do you
reconcile this with (a)? [Hint: Study the proof of Theorem 9, Chapter 10.]

Suppose we have f: [—n,n] x [~=n,n] — R; consider its Fourier series

o

inx ,im

Z Come €™
Hant= = o

(see Exercise 18, Chapter 10).
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70.

71.

72.

73.

(a) Write out the Fourier series of f in trigonometric form.

(b) For y fixed, let g(x) = f(x,y). Show that the exponential Fourier coefficients
of g are

o
Cy = Z cm"eimy .
m=-o

(c) If f is square integrable, we know that its Fourier series converges to f in mean
(see Theorem 8, Chapter 10). The purpose here is to give a pointwise conver-
gence theorem. Hence, show that if f is of class C! and f(x,z) = f(x,—7n),
f(=,y) = f(—mn,y), then prove the Fourier series of f converges to f pointwise.
[Hint: Use (b) and Theorem 9, Chapter 10.]

What types of convergence hold for the Fourier series of the following functions?

-3, 0<x<=n,
(a)f(x)={
: 2, -n<x<0,
x*+ 1, -n<x<0,
(b) fix) =
—-nx + 1, 0<x<m=n,
() flx)=x*+ 3, —n<x< 7,

(d) f(x) =sinx on [0,],
(& fx)=1 on [0,7] (both sine and cosine series).
Discuss the Gibbs’ phenomenon for the function
» —3, 0 S X S ,
Sy =
2, —n<x<0.

For what values of p is Z:; , {sin nx)/n? the Fourier series of a square integrable
function (see Exertise 32, Chapter 10).

(a) Show that

<

Zcoskx i x#0.
k=0

[Hint: See Exercise 6, Section 10.2.]
(b) Consider the Fourier series for the step function

70 = {Zcos nx '

=1 N

sin(x/2)

Show that for any § > 0, this converges uniformly on [6,7]. [Hint: Use (a)
and the Dirichlet test.]
(c) Generalize (b) to any Fourier series

flx) = ib,, cos nx

n=1

with b, decreasing. Conclude that f must be continuous on J0,z].
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75.

76.

77.

78.

7.

80.

81.

82.
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(d) Deduce from (c) that if f has a discontinuity at x, and 0 < x, < =, then the
Fourier coefficients of f are not decreasing.

A string on [0,/] is initially displaced at t = 0 by f(x) = (x ~ [/2)* — /4. Find

a formula for the displacement after time ¢.

(a) Ifa bar with insulated ends has temperature T = constant at t = 0, then show
that T = constant for all ¢ > 0.

(b) If a bar on [0,7] has temperature at ¢ = 0 given by sin x, find the temperature
fort > 0.

{c) Same as (b) except T = cos x at t = 0.

(a) Find a function ¢ on [0,n] x [0,z] such that Vz(p = 0 and ¢(x,0) = cos x,
o(x,m) = 0 = @(0,y) = ¢(m,y).

(b) In (a) replace ¢(0,y) = 0 by ¢(0,y) = 1 and find the function,

(c)-In what sense are the boundary values in (a) and (b) assumed?

Let V be an inner product space. Usually, [[f,[l = I/l does not imply f, — f
(Exercise 16, Chapter 3). However, show that | £, — | /] does imply f, — fin
mean if f, is the nth partial sum of the Fourier series with respéct to an orthonormal
family.

Let f:'R — R be twice differentiable, then show that

(a) il F(x,y) = f(xy), then x dF/0x = y dF/dy,

(b) if F(x,y) = flax + by), then b F/dx = a 0F/dy,

(c) if F(x,y) = f(x* + y?), then y 8F/0x = x 8F/dy, and

(d) if F(x,y) = f(x + cy) + f(x — cy), then ¢? 8°F/dx* = 8*F/dy?.

Let /2 J0,1[ — R be continuous and bounded. Prove that
T = {(xf(x) e R*| xe J0,1[}

is not closed.

Prove Kronecker’s lemma: if Z:":lx,,/n converges, then (x; ++ -+ x,) /n = 0 as
n— oo (that is, x, — 0 in the Cesaro sense).

Let
sin(l>, x#0,
S = X

0, x=0.
Prove f has an antiderivative F: R — R.
(a) Let I = R be an open interval and let f: I — R" be continuous. Assume there
are two maps g, g;: I = R — R" such that
1 h?
=\ S+ 1) = J(x) = hgi(x) — 5 ga(x) | -
n 2
uniformly on every compact K < I as i1 — 0. Set A,f(x) = f(x + &) — f(x)
and A, A, f(x) = A,f(x + h) + A,f(x). Then prove that

A A
—'il;z"—f*-»gz(x) ash—0
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83.

84.
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uniformly on every compact K < I. Deduce g, is continuous and

é1‘#»»5]1&) ash-0.

Is f of class C2?

(b) Examine (a) for
x? sin -, x#0,
Sx) =
0, x=0.

Let M be a compact metric space and let ¢p: M — M satisfy d(g(x), p(y)) < d{(x,y)
for x, ye M, x # y. Prove ¢ has a unique fixed point. Give a counterexample if
M =R
Let f: [a,b] - R be abounded integrable function, f(x) = m > 0for all x € [a,b].
Show that

(P

- f) =0 - a?.
a f a

Suppose f:[0,1] = R is integrable, [} f(x)dx > 7, 0 < f(x) <10 for all

8s5.

86.

87.

x € [0,1]. Define the set E = {xe [0,1]] f(x) > 1}, and assume E has volume.
Show that v(E) > 1/2.

Suppose f: [0,2z] — R is continuous and f(0) = f(2n). Letsy = 2)¥__ {f\pr>s
be the Nth partial sum of the Fourier series for f, and define

»

pd
() =Lf(X) b E0) -—-ﬁsw(x) dx

State whether each of the following “Must Be True” (MBT) or “Could Be False”
(CBF).

(a) [2% sy(x)e™ dx — & f(x)e™ dx as N = oo.

(b) [2" x%sp(x) dx — [3% x*f(x) dx.

(©) lsy — Sl —0.

(d) 55(2) = S

(e) Zyis the Nth partlal sum of the Fourier series for ®.

O IZy — @ — 0.

(8) Zy(2) » 0(2).

(h) £y — @ uniformly on [0,27].

The Poisson kernel and harmonic functions, Let f{0) be continuous and periodic,
—7 < 0 < = (We can think of f(0) as a function defined on the circumference of
the unit circle in the plane.) By Fejér’s theorem, we know that the Fourier
series of f converges to f in the (C,1) sense. Deduce that

limit Z crMe™ = 1(0).

L Rl gy
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(Note the exponent |k| for the negative indices). Define

o
wr,0) = Z critlei

k=~

for 0 < r < 1. We regard u as a function in the interior of the unit disk in the
plane. In rectangular coordinates x, y we have

Wx,y) = co +,§l(ck(x i+ el = ).

Prove that this series converges uniformly in any disk of radius < 1.
Show that (by the general theory of power series) we can differentiate u term by
term any number of times. In this way prove that .

*u + 3*u

: x| dy?

that is, u is a solution of Laplace’s equation—a so-called harmonic function. We
have already seen that 4(r,0) — f(0) as r — 1—, so we have solved the “Dirichlet
problem™”: to find a harmonic function in the unit disk which has a given function

for its boundary values.
For 0 < r < 1 prove that

u(r,0) = 51; f_ fOPO — 1) dt

where -
PO — ) = ) rllgho-0,
-

The function P(y) = 3.°_ re™ is called the Poisson kernel. Sum this series
explicitly to prove that

1-r

P()) = ——
) 14+ 71— 2rcosy

Show that this kernel has the same crucial properties that the Féjér kernel has
(see p. 420), namely
(a) 2z — periodicity,

1 "
(b) o _nP,(t) dt =1,
© PO >0,
(d) For each fixed 6 > 0, limit fs<igen PO dt = 0.
Deduce that u(r,0) discussed above converges to f(f) uniformly asr — 1 —,
Let f: R" — R" be a diffeomorphism of R" with positive Jacobian and with
S(0) = 0. Prove that there is a curve f;, 0 < ¢t < 1 joining f continuously to the
identity where each f; is a diffeomorphism. (One says that f is isotopic to the
identity.) [Hint: Consider the map g,(x) = f(xt)/t. Show that this joins f to
Df(0). Now show that a non-singular matrix with positive determinant can be
joined to the identity through matrices of this class. You may consult outside texts
fox this last part.]
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Exercises 89-96 are “‘examination style” based on Chapters 1-6, and 8.

89.

90.

91.

92.

93.

94.

(a) Define the least upper bound of a set §.

(b) Find sup{x e R | x* + x < 3}.

(c) What is meant by saying that R is complete?

(d) Let x, be a convergent sequence in R, Prove that x, is a Cauchy sequence.

(e) Define xo = @, and inductively x, = (x,_, + 1)/2 where 0 < &« < 1. Prove
x, converges to 1 as n — 0.

(a,

(b

Nt

Define the phrase “4 < R" is open.”

Define the phrase “4 < R" is compact.”

(c) State the Heine-Borel theorem.

(d) Find the closure of {(x,y) € R* | x* < y}. Prove your assertion.

{e) Give an example of aset B = R? such that (i) int B = & but (ii) int(cl(B)) # &.

() Let B = R" be a set satisfying (i), (ii) of part (e). Prove that bd(B) = cl(B).

(a) Define the term “‘connected set.”

(b) Define the term “path-connected set.”

(c) State and prove a general version of the intermediate value theorem.

(d) Prove that {(x,y))e R* |x =0, y > 0} U {(x,)) e R*| x = y, x > 0} is con-
nected.

(e) If A and B are connected sets in R" and 4 n B # ¢, prove that A U B is
connected.

(a) Define what is meant by “F: 4 = R" — R is continuous on 4.”

(b) Give an equivalent reformulation of your definition in (a).

(c) Explain the difference between continuity and uniform continuity; give
illustrative examples.

(d) Prove that the continuous image of a compact set is compact.

(e) Let 4 be compact, A = R" and f: 4 — R continuous. Prove [ achieves its
maximum at some point of 4.

(a) Define what it means for a sequence of functions f,: 4 = R" — R to converge

uniformly.

(b) Prove that Z
it kP
Z (sm kx

k=1

(sin kx)?

converges uniformly for xeR .

(© Is f(x)

a continuous function of x? Justify your answer.

1
(d) Let ﬁ(x) = + 1fork =1,2,3,...,xe]0,1[. Prove f, — 0 pointwise.
(e) Does f, in part (d) converge uniformly?

(a) Let f;: [0,6] — R be continuous functions, differentiable on Ja,b[, with f(x)
continuous. Suppose f, converges uniformly to f, f;| converges uniformly to g.
State a theorem concerning differentiability of f.

(b) Prove your theorem in (a); clearly state any results used.

() Let fy(x) = sin kx/k*. Does your theorem work?

(d) State a result which would guarantee that the following operation would be

valid: b o
S gk(x dx = | Y gdx)dx

k=1 Ja a k=1
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(e) Define ¢ = Z X Use (d) to prove [fe*dy = ¢* — 1.

Shn!

95. (a) Let /1 A = R" — R" where 4 is open. Give a definition of the derivative of .

(b) For f: A < R" — R, define the gradient of f and discuss the geometrical
meaning of {grad f(x),e>.

(c) If S is a surface /' = constant, argue that grad f(x) is perpendicular to S if
xeS.

(d) Find the equation of the plane tangent to the surface x* + y® + z* = 3 at
(1,11,

(e) Argue that the two surfaces x? + y? + z2 =3 and x* + y* + 2° = 3 are
tangent at the point (1,1,1).

96. Define the phrase “f: [a,b] — R is Riemann integrable’ by
(a) defining upper and lower sums, and defining upper and lower integrals.
(b) Is f(x) = sin x/(%* + 3x + 1) Riemann integrable on [0,3]?
(c) State the fundamental theorem of calculus.
(d) Let f: [a,b] » R be Riemann integrable. Define F(x) = [7 f(t)de. If f is
continuous at x4, prove F'(x,) = f(x). Does F' exist if f is not continuous
at Xo?

Exercises 97-101 are “‘examination style” based on Chapters 6-10.

97, (a) Let f: R" — R™. Define what it means for f to be differentiable at x € R".

(b) Isit true that existence of the partial derivatives implies that f is differentiable?
Discuss.

(c) Let f: R* — R?, f(x,p) = (xp,e’,cos x). Compute Df(1,0).

(d) Write down a formula for ah/dx if h(x,p) = f(g(x,y).k(y),p(x)). Justify this in
terms of the chain rule.

{e) Let /: R — R be differentiable. Assume f and f’ have no common zeros.
Prove that f has only finitely many zeros in [0,1].

98. (a) What does the inverse function theorem state for functions f: R — R?
(b) Consider the equations

{x3+y“° =2,
xz4+yt+y=3.

Show that they are solvable for y(x), z(x) near x = 1,y = 1,z = 1. Compute
dyfdx atx = 1,

(c) Let : [0,1] — [0,1] be continuous, Prove that ¢ has a fixed point.

(d) Let F:R" — R" be C! and have non-zero Jacobian at every point. Prove
F(R") is open.

(e) Let f: R* = R be continuous. Show f is not one-to-one. [Hint: If /" was
one-to-one then the images of the x and y axes would both be intervals in R.]

99. (a) Define the term “4 < R has measure zero.”
(b) Give an example of a set in R which has measure zero but does not have
volume.
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FIGURE A-2

(c) State general conditions under which a function f:[0,1] — R which is
bounded, is Riemann integrable.

(d) State one criterion for Riemann integrability and use it to prove that a con-
tinuous function f:[0,1] - R is Riemann integrable. (You may use any
relevant theorems about continuous functions, if they are clearly stated.)

(e) Briefly outline the steps that are used to prove that a continuous function
f: D = R is Riemann integrable, when D = {(x,y)e R* | x* + y* < 1}. (No
proofs are required here, just a brief essay describing the relevant facts.)

100. (a) Evaluate [, e™* " dx dy where 4 = {(x,y) e R* | x* + »* < 1}.
(b) Evaluate [; x dx dy where B is the region in the plane bounded by x = 0,
y=0andx+y=1
(c) State one version of Fubini’s theorem.
(d) Use (c) to write a formula for [, f(x,y) dx dy where 4 is as shown in Figure
A7
(e) Let ¢: R* —» R? be C*! and bijective with Jg # 0. Assume

f dx dy =f dx dy
A o(4) B

for all open discs 4. Prove Jo = 1.

101. (a) Let V be an inner product space and ¢g, ¢y, ¢z, . .. On orthqnormal setin V.
Write the Fourier series of fe V relative to ¢,. What if the ¢, are complete?
(b) Explain how (a) is related to the formula

ao o o .
== +Za,,cosnx +Zb,,smnx
2 n=1 nel

where

1 "
ak:%f f(x)cos kx dx k=0,1,2,...

bk:%f Slsinkxdx  k=1,2,...

(c) Compute the Fourier series of f(x) = x, —n < x < =,
(d) What is the pointwise limit of the series in (c)? Does the series converge in
the mean? Discuss.
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{e) Assuming the completeness theorems in the text, prove that {sin nx|n =
1,2,.. .} is complete in #*([0,7],C) (square integrable functions on [0,7]).

Exercises 102-109 are “examination style” based on Chapters 1-7.

102,

103.

104,

105.

106.

107.

Let B(1) be the open unit ball in R" centered around 0, and let f: By(1) — R be
continuous. Assume there exists a continuous map g: By(l) —» L(R",R) (linear
maps from R" to R), such that for each pair of points x, y € By(1),

1
Sy = fx) f{(g(ty+(l—t) Ny — x)}de.

Show that f is C', and that Df = g.

Let D* = {x e R*|||x| < 1} (that is, D? is the closed unit ball, centered at 0, in
R*. For each integer ne N, let f,: D* - R be continuous, and assume that
fiD*-Risa continuous function such that the sequence {f,},.y converges
uniformly to f. Is the set of functions { /. }nen equicontinuous and/or bounded?
Justify your answer.

Let f,g: R — R be C? functions, and let i: R* — R be a C? function. Define
o: R? = Rbya(x,y) = h(x,f(x) — g(y)). Compute the following partial derivatives
of & (in terms of the partial derivatives of h, f, and g):

dox dn %
(a) i and 3 (d) &yox’
P a
(b) Ft (e 5
P*a
© dxdy’

Let M(n,R) be the vector space of n x 1 matrices with real-valued entries. Define
amap ¢: M(n,R) = Mn,R) by p(d) = A* for each 4 € M(n,R). Show that ¢ is a
C=* map. For each 4, Be M(n,R), calculate (Dg(4))(B) (that is, calculate the
derivative of ¢ at the “point” A4 and in the direction determined by B).

For each pair of functions f,g: I — R, define f v g: I =R by (f v g)}x) =

max{ f(x),g(x)}.

(a) If f and g are continuous, show that /' v g is continuous.

(b) Defineamapy: €(I) x €(I) — €I)byy(f,g) = f v gloreachpairf, g € €(I).
Show that  is continuous. (¥(I) denotes the space of all continuous real
valued functions on I = [0,1]).

Define f: R* =+ R by f(x,y) = " cos(xy) — 1. Does there exist a sufficiently
small positive number ¢ such that, for |x|, [yl < ¢, the equation f(x,y) = 0 can
be solved for y uniquely and differentiably in terms of x? Or, rephrased: does
there exist & > 0 and g: ]—e,e[ — R such that

(a) gis CY,

(b) g(0) = 0,

(¢) flxglx) =

(d) for each xe]—eg[, the point (x,g(x)) is the only point in R? whose frst
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coordinate is x, such that the absolute value of both coordinates is less than
g, which solves the equation f(x,y) = 0. Justify your answer.

108. Define a map a: €(I) — €(I) as follows: for each fe ¥(I), define a(f) € €(I) by
@) = Fis £ de.
(a) Show that a: €(I) — ¥(I) is a continuous linear map.
(b) Is « a compact linear map ? Justify your answer. (A linear map is called compact
if the closure of the image of the unit ball is compact).

109. Define f:R* — R* by f(x,y) = (¢ sin(y),e” cos(x)). Does there exist an open
neighborhood U of 0 e R?* such that f(U) is open in R%, f| U (f restricted to
U) is injective, and such that (f ] U)~!is C*? Justify your answer.



Appendix C\»

Suggestions for
Furtherv Study

The number of books on advanced calculus and introductory analysis {s overwhelming.
Despite the large number of recent texts, some of the older books remain the best. Some

favorites are:

[1] Carslaw, H. S., 1930. Theory of Fourier’s Series and Integrals. 3rd. ed. New York:
Dover.

[2] Hardy, G. H., 1947, Pure Mathematics. 9th ed. New York: Cambridge Univ.
Press.

[3] Hobson, E. W., 1921, The Theory of Functions of a Real Variable and the Thevory
of Fourier’s Series, Cambridge, Eng: Cambridge Univ. Press.

[4] Titchmarsh, E. C., 1937. Theory of Fourier Integrals. London: Oxford Univ.
Press.

[5] Whittaker, E. T. and Watson, G, N., 1926. A Course of Modern Analysis. Cam-
bridge, Eng: Cambridge Univ. Press.

Of the more recent texts on roughly the same level as this one, the following have
been popular. Of these, [6, 7, 8, 9, 12, 13, 15, 16] are fairly classical, while [10, 11, 14]
tend to be a bit more abstract.

[6] Apostol, T. M., 1957. Mathematical Analysis. Reading, Mass: Addison-Wesley.
[7] Bartle, R. G., 1964, The Elements of Real Analysis. New York: Wiley.
[8] Buck, R. C., 1965. Advanced Calculus. 2nd ed. New York: McGraw-Hill.
[9] Graves, L. M., 1956. Theory of Functions of Real Variables. 2nd ed. New York:
McGraw-Hill,
[10] Lang, S., 1968. Analysis I. Reading, Mass: Addison-Wesley.
[11] Loomis, L. H. and Sternberg, S., 1968. Advanced Calculus. Reading, Mass:
Addison-Wesley.
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[12] Olmsted, J. M. A., 1961. Advanced Calculus. New York: Appleton-Century-
Crofts.

[13] ——, 1956. Real Variables. New York: Appleton-Century-Crofts.

[14] Rosenlicht, M., 1968. Introduction to Analysis. Glenview, Ill; Scott, Foresman
and Co. '

[15] Rudin, W., 1964. Principles of Mathematical Analysis. 2nd. ed. New York:
McGraw-Hill.

[16] Widder, D. V., 1965. Advanced Calculus. 2nd. ed. Englewood, Cliffs, New Jersey:
Prentice-Hall.

For more information on the foundations of set theory, consult [17].

[17] Dieudonné, Jean, 1966. Foundations of Modern Analysis. New Jersey: Prentice-
Hall.

In [17] there is not much material on logic and the axioms of set theory, but you
will find concisely all the facts on set theory which are of practical importance in the
course. In addition, [17] develops thoroughly the abstract differential calculus (see our
Chapters 6, 7) in the context of Banach spaces.

The axioms in Appendix A of this text are taken verbatim from [18].
[18] Halmos, Paul R, 1960. Naive Set Theory. New York: D. Van Nostrand Co.

The following are some general references for more advanced work in real analysis
including Lebesgue integration and abstract analysis in general Banach and Hilbert
spaces.

[19] Burkhill, J. C., 1951, The Lebesgue Integral. Cambridge, Eng: Cambridge Univ.
Press.

[20] Halmos, P. R., 1950. Measure Theory. New York: D. Van Nostrand.

[21] Hewitt, E. and Stromberg, K., 1969. Real and Abstract Analysis. New York:
Springer Verlag. ;

[22] Gleason, A. M., 1966. Fundamentals of Abstract Analysis. Reading, Mass:
Addison-Wesley.

[23] Lang, S., 1969. Analysis II. Reading, Mass: Addison-Wesley.

[24] Royden, H. L., 1963. Real Analysis. New York: Macmillan.

[25] Rudin, W., 1966. Real and Complex Analysis. New York: McGraw-Hill.

[26] —, 1973. Functional Analysis. New York: McGraw-Hill.

[27] Simmons, G., 1963. Introduction to Topology and Modern Analysis. New York:
McGraw-Hill.

A handy book to use for finding counterexamples to theorems with missing hypotheses
is [28].

[28] Gelbaum, B. R. and Olmsted, J. M. H., 1964. Counterexamples in Analysis. San
Francisco: Holden Day.

Our text studied quite a bit about series, The classical references are [29, 30].
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[29] Hardy, G. H., 1949, Divergent Series, London: Oxford Univ. Press.
[30] Knopp, K., 1951. Theory and Application of Infinite Series. New York: Hafner.

Those wishing to pursue distribution theory can consult the following, in addition
to [26].
[31] Gelfand, I. M. and Shilov, G. E., 1964. Generalized Functions. New York:
Academic Press.
[32] Schwartz, L., 1966. Théorie des distributions, Paris: Hermann.

[33] Zemanian, A., 1965. Distribution Theory and Transform Analysis. New York:
McGraw-Hill.

The following texts develop the theory of ordinary differential equations and integral
equations. Of these [34] and [35] are comprehensive treatises.

[34] Coddington, E. "A. and Levinson, N., 1955. Theory of Ordinary Differential
Egquations, New York: McGraw-Hill.

[35] Hartman, P., 1964. Ordinary Differential Equations. New York: Wiley.

[36] Hurewicz, W., 1958. Lectures on Ordinary Differential Equations. Cambridge,
Mass: MLIT. Press.

[37] Roxin, E. O., 1972, Ordinary Differential Equations. Belmont, Cal: Wadsworth.

[38] Widom, H., 1969. Lectures on Integral Equations. New York: Van Nostrand
Mathematical Studies #17.

Advanced calculus can be elegantly applied to study problems in geometry and
vector analysis. Besides [10, 11, 237, consult

[39] Flemming, W., 1965. Functions of Several Variables. Reading, Mass; Addison-
Wesley.

[40] Spivak, M., 1965. Calculus on Manifolds. New York: Benjamin.

We have already cited several texts which deal with Fourier series [1, 3, 4, 21 23,25,
32, 33]. Others, somewhat more advanced, are:

[41] Stein, M. and Weiss, G., 1971. Introduction to Fourier Analysis on Euclidean
Spaces. Princeton, New Jersey: Princeton Univ. Press.

[42] Widom, H., 1969. Lectures on Measures and Integration. New York: Van Nostrand
Mathematical Studies # 20.

[43] Zygmund, Z., 1959. Trigonometric Series. 2nd. ed. Cambridge, Eng: Cambridge
Univ. Press.

Our chapter on Fourier series gave an introduction to partial differential equations.
Further information can be found in the following texts. The last two texts use distribu-
tion theory with [47] being advanced.

[44] Churchill, R. V., 1963. Fourier Series and Boundary Value Problems. 2nd ed.
New York: McGraw-Hill.

[45] Courant, R, and Hilbert, D., 1962. Methods of Mathematical Physics. (2 volumes),
New York: Wiley-Interscience.
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[46] Duff, G. F. D. and Naylor, D., 1966. Differential Equations of Applied Mathe-
matics, New York: Wiley.

[47] Sobolev, S. L., 1963. Applications of Functional Analysis in Mathematical Physics.
Providence, Rhode Island: American Mathematical Society Translations, Vol. 7.

A few references on quantum mechanics follow. [50] is a standard elementary text
while [48, 497 are more advanced and more mathematically oriented.

[48] Jauch, J. M., 1968. Foundations of Quantum Mechanics. Reading, Mass: Addison-
Wesley.

[49] Mackey, G. W., 1963. The Mathematical Foundations of Quantum Mechanics.
New York: Benjamin.

[50] Merzbacher, E., 1970. Quantuin Mechanics. 2nd. ed, New York: Wiley.

There are a number of important topics in classical analysis which we did not cover.
For example, we could have studied the gamma function following [16] or [51].

[51] Artin, E., 1964, The Ganuna Function, New York: Holt, Rinehart and Winston.

(This topic is often covered in courses in complex variables as well).
There are a large number of excellent texts which are not in English. For example:

[52] Bourbaki, N., 1961. Elements de Mathématique; Fonctions d’une variable réelle.
Paris: Hermann.

[53] Dieudonné, J., 1971. Calcul Infinitésimal. Paris: Hermann,

A rigorous treatment of elementary analysis did not evolve rapidly or smoothly.
The creators of this area of mathematics traveled over cobblestones and encountered
numerous blind alleys before experiencing their brilliant insights. An appreciation of
this history is important to the student’s education in mathematics. A recommended
text is

[54] Kline, M., 1972. Mathematical Thought from Ancient to Modern Tines. New
York: Oxford Univ. Press.



Appendix LJ

Answers to
Selected Exercises

Introduction
Prerequisites: Sets and Functions

1. (a) f(do) = {1}, /™ (Bg) = A.
(b) f{Ao) = Ao, f_l(Bo) = B,.
(©) f(do) = {1,0,=1}, /! (Bo) = {x|x < 0}.
2. (a) and (c) are neither one-to-one nor onto, (b) one-to-one and onto.
3. (a) xef~YC, U Cy) < f(x)e C, U Cy,
= flx)eC;  orflx)eCy,
«xef7C)) orxe f~HCy),
<xef"NC) U fTHCy),
hence /~1C; U C3) = f7HCy) U f7HCy).
(d) yef(D, n D,) implies that there exists x € D, n D, such that y = f(x). Since
xe D, and xe D,, then y e f(D,) and y € f(D,), hence y € f(D,) n f(D,).
4. (a) To verify Exercises 3(a) and (d) for the function in Exercise 1(c),

JTHC Gy = {10,—1} = {1} U {0,—-1} = f~HC) U f7H(Cy)
verifying 3(a), and
fDy A Dy) = f({1}) = {1} = {L,=1} n {1} = f(D,) " [(D;)

verifying

SDyn Dg) = f(Dy) ~ f(Dg) .

6. Define f: ]0,1[ — R by
I H 1
f(x)={(x Hx, Tf0<x<2,
x - -x, ift<x<li.
Verify that this is a bijection.
477
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8. Define g: {...,—2,—1,0,1,23,.. .} - {1,23,.. } by
2n, ifn>0,
on) = 1, ifn=20,
-2n+1, ifn<O.
Verify that this is a bijection.
9. Let 4; = {a;; 82, . .}, and define /2 | J 4, = N, a7 + (k ~ 1)(k — 2)/2 where
k =i+ j. Then f maps U A, one-to-one and onto IN.
10. To show | J & = {J 4, note that x e | ] & implies there exists 4 € & = & with
xe A4, hence xe | J 4.
1L fo(goh)x) = flg o hix) = flglhx)) = (f o g)((x)) = (f o g} o h(x).
12, (i) Assume f: A — B is a bijection. Define g: B — A4 as follows: for y e B, let
g(y) = x where f(x) = y (x exists by onto-ness and x is unique by one-to-oneness).
(ii) Assume there exists g: B — A4 such that fo g = identity and g« f = identity.
To show fis onto, let y € B and let x = g(y). Then f(x) = y. To show [ is one-to-
one, if f(x,) = f(x;) then x; = g(f(x))) = g(f(xz)) = x,. (Verily thatg = f~! and
is unique.)
13. (f"tog Nolgof) =f"to(g log)of = f~'eof = identity, and similarly
(gof)o(f~'e g~1) = identity. Thus by Exercise 12, f"tog™ = (go f)~!
g o [ is a bijection.

Chapter 1
The Real Line and Euclidean n-Space

1.1 The Real Line R”

1. Sup(S) = 1; S is not bounded below.
¥ 3-3.--3 9 EE 27 -
. — ST = ick N > —.
Y TT T R S T m RN >y
5. x, = (/n? + <,n2+1+"> - 0asn - o0.
n

\/nz 1+n

6.No;1etx,,=1+%+§+ + —

7. Sup(Q) is an upper bound of P, hence sup(Q) = sup(P).

1.2 Euclidean n-Space R"

b e( )

Ix+24+22=0 ) ,
3. We have and so {(—2,0,3)} spans the solution space of this

y =0
system of equations.
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Exercises for Chapter 1 (at end of chapter)

1.

12.

14.

(a) sup(S) = 4/5; inf(S) = —/5.

(b) Neither sup(S) nor inf{S) exist.

(c) sup(S) = 1; inf(S) = 0.

(d) sup(S) = 0; inf{(S) = —1.

(c) sup(S) = 1/3; inf(S) =

() sup(S) = b; inf(S) = a for each case.

. Let k be square free, that is, such that for no prime p does p* | k, (p* divides k);

suppose = afb for some integers a, b, and that a and b have no common
factors. Then k = a*/b* implies b*k = a* implying k | a* (k divides a®). But k
square free implies k* | a®. (This is a consequence of the fact that any integer has a
unique prime factorization.) Then b%k = a'*k* implies b* = a'*k implying k | b,
contradicting the assumption that a and b have no common factors.

. (a) Suppose x > 0. Let ¢ = x/2. Then x < x/2 implies 0 < x/2 < 0, a contra-~

diction. Hence x = 0.
(b) Let x = min{e/2,1/2}.

. By the completeness axiom, sup(S) € R exists. By Theorem 2, there exists a point

X, € S such that sup(S) — x,, < &. x, increasing implies sup(S) > x, > x,, for all
n > ng, hence for all n > ny, 0 < sup(S) — x, < ¢&. Thus limit x, = sup(S).
n-sot

. Leta = sup(A),b = sup(B),andz =x + ye A + B Thenz=x+y<a+y <

a + b, hence a + b is an upper bound for 4 + B. If ¢ > 0, there exists a x € 4,
yeB such that a < x + ¢/2, and b < y + ¢/2 implying (@ + b) < (x + y) +
€/2 + ¢/2 = (x + y) + & Thus by Theorem 2, a + b = sup(4 + B).

@ lx + I = G+ px + > = Cexd + x> + (yxd +
= [xI* + 2{x,p> + Iyl
and similarly
llx = plI? = [IxI* = 2%, + lyl2
Adding gives the result.

This proves that the sum of the squares of the diagonals of a parallelogram is
twice the sum of the squares of the sides.

() IIx + ylI? Ix = pI* = [Ixl? + 2<x,p> + (177 - [lxl?
= 2(5y) + Iy1]
= ([xI* + Ip1%? = 49> < (Ix1* + IylH*
(c) Similar to (a).
(a) Use induction on n. The Schwarz inequality follows because

Z (x:YJ - xjyi) =0

1si<
and thus

(Zw;)z = (Z )(Zm’) - > uy - xyf < (ZX?XZJ'?)-
i=1 i= i=1 l<€i<jsn i=1 i=1



480 ANSWERS TO SELECTED EXERCISES

(b) (x + »)* = x(x + y) + ylx + y) and by (a), } xx; + y)) + 2 % + y) <
O xHPQ (xy + v)H + C vV (x5 + y)»)'?. Combining terms and
dividing by (3 (x; + y;})"/* gives the result, .
15. Let d(x,,x;) = r. Then by induction d(x,,x,..) < r/2""!, and so by the triangle
inequality
d(xmx"-f-k) S d(xn’xn+ 1) + d(xn+ 11x11+2) + ot d(xn+k~lyxrr+k)
r roo r

<§;:T+‘27+“‘+§;m

rokalg
= rz e
n-H-—-l -1 i
2 Tl L)
r r

2:1-1 2= -2 N

r

<___..
2"

ng
IR

Thus, if we pick N large enough so that r/2¥~# < g, thenn > N implies d(x,,x, ) <

&, Therefore, x, is Cauchy,

17. Let L = {xe R|x is a lower bound for S}. Then inf(S) 2 y for all y € L, hence
inf(S) = sup(L). Also inf(S) € L implies sup(L) > inf(S), giving the equality.

18. (a) |x, — x| = [x — x,| hence x, — x iff for all ¢ > 0 there exists a N such that

n = N implies |x, — x| = |x — x| < giff —x, = —x,

(b) Assume every increasing sequence which is bounded above converges (that is,
assume the completeness axiom). Let x, be a decreasing sequence which is
bounded below; we must show that x, converges. {—x,} is an increasing
sequence which is bounded above, so —x, converges, say to a. Thus by (a), x
converges to — a. The other direction proceeds the same way,

(c) Use Exercise 5(a) and the fact that sup{ —x,— L} = —inf{x;,xs,. . ).

19y, =y =y =1 ‘

22, (a) Given & > 0, let N be such that n > N implies |[x, — x| < ¢/la]. Thenn > N

implies |ax,, — ax| = [d]* [x, — x| < |a] * &/la] = ¢, s0 ax, — ax.

23. x > O for all xe P so 0 is a lower bound for P; also, given ¢ > 0 there is xe P
with x < 0 4+ ¢, namely an x, € P such that kx, < 1 where k > 1/g. Thus by
Exercise 4, 0 = inf(P),

24, No;let P = ]0,1[ and @ =,[0,1], then sup(P) = sup(Q) = 1 and inf(P) = inf(Q) =
ObutP # Q.-

27, Pick each b, such that b, = [b,] < &/2" (this is possible because a, — 0), Then

ne= 1 n=1 el
Xy 4+ 0+ X, X, X, 3
32, x4y = —i——z——-"——l + 5 =% + —i—" Ex,,,sofor anyn,x, = (3/2y'" ! (prove

this by induction). Let M > 0. Now (3/2)" = (1 + 1/2)' = 1 + n/2, and by the
Archimedean principle there exists a N such that N > 2M — 1,s0xy = G/ >
1 4+ (N — 1)/2 > M proving that x, — c0.
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1/x o1
= limit—/— = limit~ = 0,
X X~ x~+oa X

log x

33, (a) By I'Hopital’s rule, limit

(b) Use (a) and continuity of e* to show that x!/* (= ¢!!/®8=) — 1 for all real x.

Chapter 2
Topology of R”

2.1 Open Sets

1. Let x e R3\{(0,0)}. Since x # (0,0), d(x,(0,0)) = r > 0; then D(x,r) = RA{(0,0)}, for
(0,0) € D(x,r) implies d(x,(0,0)) < r = d(x,(0,0)), which is impossible. Hence R*\{(0,0)}
is open.

3. Let {xq,¥0) € B. Then x, € A. Hence thereexistsad > Osuchthat]x, — 6,5 + o[ <
A. Claim, D{(x0,y0),6) < B. For (x,3) € D((xo,90),8) implies d(xxe) < d((x,y),
{X0,¥0)) < 9, hence x € 4.

4, Let 4 = U D(y,1). Then x € A <> there exists a y € B such that x e D(y,1) (that is,

;Y
d(x,y) < yle) for some y € B<>y € C. C is open, being the union of open sets,

5. No; let A be any open subset of R and B = {0}. Then 4+ B = {0} which is not
open, Note: If Bis also open then 4 - B is open, .

2.2 Interior of a Set

L int(S) = {(x,y) e R*| xy > 1},

3. Yes, x € int(4) implies there exists an open set U with ae U < 4 = B, hence
x e int(B).

4. Yes. If x eint(4) n int(B), then there exist open sets U, V with xe U < 4 and
xeVc B. NowxeUnNnVcAnBand Un V is open, so xeint(4d n B). If
x € int(4 n B), then there exists an open set U with xe U <« A n B = 4 and B; so
x € int(4) n int(B).

2.3 Closed Sets

1. Yes.
2. No; (0,1) € R®\S and any neighborhood about (0,1) will contain points of S.

5. No.Ifx € R\S = {x & R | x is rational} there is no neighborhood of x not containing
irrational points, hence R\S is not open, and S is not closed.

2.4 Accumulation Points

L {ty)eR*|y=0and 0 < x < 1}.

2. Yes; since any open set N containing x contains points of A other than x, which
are also points of B.

3. (a) No accumulation points (a ball of radius 1/2 around any (m,n) contains only

(m,n)).
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(b) All of R* (for any point in R* there is a point arbitrarily close with rational
coordinates).
(©) {(x,0)e R*|x e R} = the x-axis.
(d) {(1/n,0)] n an integer, n # 0} (see (c) and (d) by graphing the sets.) A
4. No(but yes il x ¢ A by Theorem 2, Chapter 1); for instance if 4 = {1} then sup(4) = 1
but 1 is not an accumulation point of 4 (4 has no accumulation points),

2.6 Closure of a Set

L dS) = {(x,y) e R? | x = y*},

2. {0}u {l/n]n=123,..}

3. R%,

4. (a) cl(A\A = (4 U {accumulation points of A}\d = (4\A4) U {accumulation points
of A\4 = {accumulation points of AN\A = {accumulation points of 4},

(b) Not necessarily, let 4 = 70,1[. Then every point of A is an accumulation
point of 4 so cl(4A\4 = {0,1} misses all the accumulation points which are
points of 4,

5. If x € A then x € cl(4), If x ¢ 4 use Theorem 2, Chapter 1, to show x is an accumula-

tion point of 4.

2.6 Boundary of a Set

1. bd(4) = {0} U 4.

2. (a) Supposecl(A\4 # J, otherwise the statement is vacuously true, Let x € cl(A\4,
and N be a neighborhood of x. xe R\4 implies N n R\4 # &, and x an
accumulation point of 4 implies that there exists a y € 4 such that y € N, Hence
N n A # &, and by Theorem 6, x € bd(4),

(b) The converse is not true; let A = the rationals in [0,1]. Then bd(4) = [0,1] so
1/2 e bd(4), but 1/2 € 4 so 1/2 ¢ cl(A\A.
3. bd(4) = {(x,) e R* | x = y}.
4. No, for if 4 = {x| x €[0,1] and x is rational} then int 4 = &, bd(int 4) = & but,
bd(4) = [0,1].
5, Yes,

2.7 Sequences i

1, (0,0).
2. It'contains limits of all its sequences (since a subsequence of a convergent sequence
converges to the same limit as the whole sequence) so use Theorem 9(i),

3. Use Theorem 9(ii). .
5.cS) = {xeR|x* <2} = [-/2./2].

2.8 Seriesin Rand R”
1. For all k,
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sin &1
Hence Zx,, converges iff Z( ny and Z e converge. By Theorem 13(iii),

ne= 1 n=1
(sm n)" [sm nft
2

1 .
~; converges, and since
in

s

5 s —, by the comparison test
. n n n

]

o
(sin n)*/n? converges, Thus Z X, converges.
1 n=1
3

JﬁwﬂMmmnwmn®2w+wm—m
n=0

converges, Alternatively the ratio test may be used, (limit la e 1/ay = 2/3)

s

i

n

2’!
4. 10n > 4, then +"<<
3" —n

5. 11m1t [, /) = 11m1t(n + 1)/3 = oo, hence Z a, does not converge,

n=0

Exercises for Chai)ter 2 (at end of chapter)

1. (@ Let xe]1,2[ and 6 = min{2 ~ x,x ~ 1}, then Jx — 8,x + §[ = D(x,6) =
11,2[, so ]1,2[ is open.
{(b) Show R\[2,3] is open,

© N[-1in[ =[~1,0]is closed,

n=1
" (d) R"is open in R",
(e) Closed.
(f) Neither open nor closed, See Exercise 5 of Section 2.3.
(g) Neither open nor closed.
) Let {x,}be a convergent sequence in § = {x e [R”[ lIxll = 1}, say x, — x,Now

for any x, y e R, Hlx” — Hy”[ < Ix - yl, hence x, — x implies [[x,]| — [x][.
But for all n,||x,] = 1,hence ||x[| = l,s0xe §, proving by Theorem 9(j) that
S is closed.

2. (a) int(4) = 4, cl(4) = [1,2], bd(4) = {1,2}.

(b) int(4) = J2,3[, cl(4) = 4, bd(4) = {2,3}.

(c) int(4) = J~1,0[, cl{4) = 4, bd(4) = {-1,0}.

(d) int(4) = 4, cl(4) = 4, bd(4) = Q.

(e) int(4d) = &, cl(4) = 4, bd(4) =

O int(4d) = &, cl(4) = [0,1], bd(A = [0 1],

(@) int(4) = {(x,»)e R*|0 < x < 1}, cl(4) = {(x,)) e R*| 0 € x < 1}, bd(4) =
{xy)eR?*|x =0orx = 1},
(h) int(4) = &, cl(4) = 4, bd(4) =

5. Let x € int(4); then there exists an open set U with x e U = A4, and U open implies
there exists an ¢ > 0 such that D(x,e) € U < 4. Conversely, if there exists an
e > 0 with D(x,e) = A, then since D(x,¢) is open, there exists an open set U = D(x,e)
such that x e U = 4, hence x e int(4).

6, (a) x, = (~1)" has no limit.
(b) (1,0).
{c) (0,0).
d) 0,0)(1/n" < 1/n - 0),
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7.

10.

12.

16.

17.

18.
21.

24.

26.

It is required to show thatl U = c(UNcI(U) n cl(R™\U)). Since U is open, R\U is
closed, so c(R\U) = R™\U. Thus
AUNEU(U) A d®AU)) = cl(U) A [RAC(U) r cl®@\U)]
= cl(U) n [RAI(U)] v {c(U) n [RYR\U)]}
= g U {cl(U) n U}
=U
This is not true for every set in R*; for example let U = [0,1]. Then cl(UN\bd(U) =
[0,1\{0,1} = J0,1[ # U.

. 8 = R bounded above implies S has a supremum in R. Then sup(S) e cl(S) by

Exercise 5, Section 2.5 and S closed implies § = cl(S).

(a) False (let A = rationals; then int(4) = &, cl(4) = R, int(cl(4)) = R).

(b) True (since 4 < cl(4)).

(c) False (let A = J0,1[; then cl(int 4) = cl(4) = [0,1] # A4).

(d) False(let A = rationalsin [0,1]; then bd(4) = [0,1],cl(4) = [0,1], bd(cl(4)) =
{0,1}).

(e) True (4 open implies bd(4) = cl(4) N (R™\A4) = R™\A).

(a) Clearly int(int A) < int(4). Conversely, let x € int(4), then there is an open
set U with xe U < 4. Let V = U n int(4) # &, then V is an open set such
that x € V < int(4), so x € int(int 4).

(b) Let x & int(4) U int(B) so either x € int(4) or x e int(B). If x € int(4) then there
exists an open set U withxe U =« 4 « 4 U Bso xe int{4 U B). I x € int(B),
by the same argument, x € int(4 U B).

(c) See solution to Exercise 4, Section 2.2.

{a,} is an increasipg sequence (x < (ﬁ)" < (Inx)/x < In ﬁ, which is true for all

x > 0) and is bounded above by 2, for if a, < 2, then a,,, = (ﬁ)"" < (\/5)2 = 2.

limit @, = 2, computed as in Exercise 43.

For all m, |x,, sin m| < |x,} so since ). |x,| converges, Y. Ix,, sin m| converges by

the comparison test. Therefore )" x,, sin m converges absolutely and thus converges
by Theorem 12.

Let e = d(x,y), U = D(x,6/2), V = D(y,&/2).

If x, is Caughy and U is a neighborhood of 0, find ¢ > 0 such that D(0,5) = U.
Then find N such that k,{ > N implies x, — x,jj < . Then k, [ > N implies
x, — x,€ U. For the converse, given ¢ > 0 choose U = D(0,5).

Let A = R" x R™ be open and let (x,y) € A. Pick ¢ > 0 such that D((x,y),e) = A4.

Leté = a/ﬁ; then D(x,g") x D(y,£') = A. For the converse, let (x,y) € 4 and let
U < R"and ¥V < R"™ be open sets with (x,y)e U x V < A4. Pick ¢ > 0 such that
D(x,e) = U and D(y,8) = V;then D((x,y),6) = U x V < 4, so A4 is open.
2 2
@ —2 = (Z.L“.n:) -2 =—~—-—2————a~"_—1-—f—=k,,(2 — )
1+an—1 1+zan—1+an—1
where k, = 1/(1 + 2a,~, + a’_) is a positive number less than 1. It follows
that @ — 2 is alternately positive and negative, and hence that g, is alternately
above and below ﬁ Further, since k, < 1, the even terms a,, are increasing



27.
28.

29.
30.

32.
33.

34
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and the odd terms a,,,, are decreasing. The sequence is bounded above and
below by 2 and 1 respectively so the odd sequence and the even sequence (being
decreasing and increasing respectively) have limits. By writing

1 .
ay=1+-——, ., =1 +—-——-————-1——-—,andsettmgoc =1 +-————-———1——-,
y A — 2+
1+ Ay q 14a
we find o = ﬁ Thus the limit of both of the ‘“‘every other” sequences is ﬁ
and an easy argument shows therefore that limit a, = ﬁ

n—+oo

inf(B) = /2.
(a) The integers.
(b) Any open interval.

111 1 .. 1.11 1 1.1 1 1 1
(C) {E,E,Z,. . .,'—1-,, . .,li,lg,lz,. . .,1;,. . .,25,25,. . .,2;;,. i+ E,. e '—1-,. . }
(d) A point in R, the unit circle in R?, a line segment (including endpoints) in R2.
Yes.
Let U = R be open and bounded. If U = &, then U = ]J1,1[. Now suppose
U # @&,and x € U. U open implies thereexists a y, z € Rsuch that [x,y[, Jz,x] = U,
hence H = {y|[x,y[ = U} and L = {z| ]z,x] = U} # ¢ and are both bounded so
sup(H) = h,inf(L) = leR. Let I, = JLh[, and | = {I, |xe U}. Then U = I
and I, NI, = ZifI, # I, Since xe U implies xe I, = | J 1, U = {J I. Now let
yel, =TJapb[, so il x < y < b, there exists a z such that y e [x,z2[ = U, hence
yeU, I,c U and {JI < U.Now let I, = Jab[, I, = Je,d[ = U such that
I.nl, # . c¢ U otherwise there exists an ¢ > 0 such that Je —ey] = U
contradlctmg the definition of ¢. Thus ¢ ¢ Ja,b[, hence ¢ < a. Similarly a < ¢
implies a = ¢, and b = d, hence I, = I,. This is not true in R"; for example consider
the set {(x,y) | x* + y* < 1}.
Immediate from Theorems 9 and 10.
Subtract (s, + s,~,) from both sides of 5, + 5,.; > 2s,togets,,., —s, = s, —
Sy~15 let o, = 5,4, — S, SO , is increasing. Furthermore &, is bounded, since
o = 18,01 — 8ol S ISppt] + 1=8. = I8,41] + I8, € 2M where M is a bound for
s,. Thusa, converges, o, — . Suppose« # 0,say« > 0.Sincethea,’s areincreasing
to «, there exists a N such that n > N implies «, > «/2. We thus have

n
5o =50+ (5 = So) + (5 — St) = S0+ ),
i=1

n N o
Z oc‘<s0+Zoc‘+(n—N)§~>oo

i N+1 =1

!
! Mz

as n — o, a contradiction’ since s, is bounded. We get a similar contradiction
assuming « < 0, Thusa = 0,

d(er—p: n) d(x"+p:xn+p~ l) + 0+ d(x,,H,x,,)

Pl e ) d(xg,%,)

Now r < 1 implies ). " converges, hence for any & > 0 there exists a M such that

<
<
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n > M implies P71 4 -+ 4 1" < g/d(x,,x,) implying d(%,+ %) < &, and so
{x,} is a Cauchy sequence.

38. Given & > 0 choose n large enough so that k > n implies 1/k < /2. Then k,{ > n
implies |lx, = x| < (1/k) + (1/1) < (8/2) + (¢/2) = ¢, so x, is Cauchy and thus
converges.

39. For all x, ye§, sup(S) > x, —inf(S) > —y implies x — y < sup(S) — inf(S),
hence sup(S) — inf(S) is an upper bound for the set. If ¢ > 0, there existsa v, we S
such that v + ¢/2 > sup(4), and ¢/2 — w > —inf{4) which implies (v — w) +
& > sup(4) — inf(4), and hence sup(4) — inf(4) is the sup of the set.

41. Let U be a neighborhood of x; we must show U contains some point of 4, other
than x. Since ﬂ:“: , An = &, there exists a n such that x ¢ 4,. Then by Theorem 5,
since x € cl{4,), x is an accumulation point of 4,, so U contains a point y of 4,
y# x.Butd,cAd,_,c--cA;soyed,.

42, No; let 4 = ]0,1] and x = 0. Then d(x,4) = 0 but there is no point ze 4 with
d(z,0) = 0, for 0 ¢ A. As another example let A be the open unit disc in R* and
x = (1,0). Then d(x,d) = 0 but there is no ze 4 with d(x,z) = 0. If 4 is closed,
however, the assertion is always true (see Exercise 17 at the end of Chapter 3).

43, x, is clearly increasing and we prove by induction that x, is bounded above by
3:x, = /3 < 3. Now assume x,_; < 3. Then x, = /3 + x,_; < \/3.+ 3 =
\/5 < 3. Thus x, has a limit; call it x. x satisfies x = /3 + x (by taking llmlts on
both sides of x, = /3 + x,_;) and so x = (1 £ \/_/2 Since all the x,’s are
positive the limit must be > 0,s0x = (1 + \/_/2

"

Chapter 3
Compact and Connected Sets

3.1 Compacf Sets: the Heine-Borel and:
Bolzano-Weierstrass Theorems

1. (a) Not compact because it is not closed.
(b) Not compact because it is not bounded.
(c) Not compact because it is not closed.

2. [0,1] is compact so any sequence in it has a convergent subsequence by Theorem 1.

4. If A.is bounded, then cl(4) is bounded. Suppose there exists a M such that for all
xe 4, x|l < M. Then 4 < cl(D(0,M)) implies cl(4) = cl(D(0,M)). Since cl(4) is
also closed, cl(4) is compact.

5. No;let 4 = {0,1/2,2/3,3/4,4/5,. . .,1,2,3,4,5,6,. . .}. Then 4 has the single accumula-
tion point 1 and 4 is infinite, but 4 is not compact since it is not bounded.

3.2 Nested Set Property

2. No; let F, = 10,1/k[.
3. IfF, = {x,|1 = k}, then [} F,, = &. None of the sets F,, are compact.
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3.3 Path-Connected Sets

1.

(a) Not pdth-connected, since any path between two rationals must contain an
irrational.

(b) Path-connected,

(c) Path-connected.

(d) Not path-connected. If the point (1,0) were added, it would be.

. No. For instance, let ¢: [0,4] = R? be the curve which wraps around the unit

circle in the x-y plane twice in such a way that [0,1] gets sent to the first half of the
circle, [1,2] to the second half, [2,3] to the first half again, and [3,4] to the second
half again. Let ¢ = ¢([2,3]). Then ¢~ (¢} = [0,1] U [2,3] is not connected. (If ¢
is one-to-one, then ¢~ Yc) = [c,d] is connected.)

3.4 Connected Sets
L No..J—l/Z,l 1/2[ and 2,31/2[ are two open sets which are disjoint and whose

union contains A.

2. Yes, it is path-connected.
4. (a) The components are [0,1] and [2,3].

(b) The components are .. .. {—2}, {—1}, {0}, {1}, {2}, .. ..
(c) Each rational is a component.

Exercises for Chapter 3 (at end of chapter)

1. (a

Rl

Connected, not compact.

Connected and compact.

(c) Connected and compact.

(d) Neither connected nor compact.

(e) Compact, not connected if it contains more than 1 point.

(f) n = 1, compact and not connected; n > 2, compact and connected.
(g) Connected and compact.

(h) Compact, not necessarily connected.

(i) Neither compact nor connected.

() Compact, not necessarily connected.

®

~ T

3. (a) If aset has an accumulation point x, then we can find a sequence of points in the

set which converges to x. Hence if every infinite subset has an accumulation
point in A, one sees that 4 satisfies the Bolzano-Weierstrass property (Theorem
1(iii)) and is thus compact (distinguish the cases of a repeating sequence and a
sequence with infinitely many distinct points). For the converse, suppose 4 is
compact. Given an infinite subset of 4 we may pick a sequence of distinct
points of 4. Since 4 is compact this sequence has a subsequence converging to
a point in 4, which must be an accumulation point of the subset. .

(b) Let B be the bounded infinite set. Then B = D(0,M) for some M and hence
B < cl(D(0,M)). Since cl(D(0,M)) is compact, every infinite subset of it has an
accumulation point by (a). Hence B has an accumulation point.

5.(a) F = {xeR?*| x| < Ktk + D)}, k=1.2....

O Fy =Tk = 3k +13[,  k=--3,-2-1,0,1,2,....
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6. By Theorem 2 there existsa x € ﬂ F,. Now suppose thereexistsay e ﬂ F,y # x.
Then d(x,y) # 0.By hypothesis there exists a N such thatn > N implies diam(F,) <
d(x,y). Then, since x, y € Fy, d(x,y) < diam(F,) < d(x,y), a contradiction.

7. Forallk,cl{4,) = {xi, %41, . .} U {x},hencex e cl(4,)for all k implies x & ") cl(4,).
Now suppose y € [}cl(4,), y # x. There exists a N such that n > N implies
%, — x|| < dix,y). But ye4,, so y = x;, j > N and thus ||y ~ x| < d(x,y),
a contradiction.

9. (a) False; [0,1] is compact but R\[0,1] is not connected. For R", 4 = {xe R"| 1 <

x| < 2} is compact but R™\A is not connected.
(b) False; same examples as in (a).
(c) False; Ja,b] is connected but neither open nor closed.
(d) False for n = 1, true for n > 2. (R"\A is path connected for n > 2.)

11. (a) Suppose Bc UuVwhere BNU # &, BnV# F,BnUnNV =g, and
U,Vopen.Then Ac UuVand AnUnV = ¢, and it remains to show
UnA# JandV n A # ¢ (for then we will have shown 4 is not connected,
acontradiction). B n U # F,soletx € B n U.Ifx € 4 the exercise is complete;
if x ¢ A, then since x € B = cl(4) we have x is an accumulation point of 4. Thus
every neighborhood of x contains points of A, so in particular U contains
pointsof 4,50 U n 4 # . Similatly Vn 4 # . .

13. Let x, be a sequence of points with x, € F,. Then x, is clearly a Cauchy sequence
(since diam(F,) - 0 and F,,; < F,) and thus converges, say to x, since M is
complete. For all n, x is a limit of a sequence of elements of F,, so since all F,’s
are closed, x € F, for all n, that is, x e ﬂ F,. To see that x is the only element in
ﬂ F, use an argument similar to that of Exercise 6.

16. Jlx]] —»llx|l|] < lx, — x||. Hence given & > 0 there is an N such that k > N
implies ||x, — x|| < ¢ implies ||x,]| — lx||] < & so |Ix]| = ||x]. The converse is
false. Let x, = (- 1)*. Let {x,} be a sequence in D = {xeR"} |x]| < 1} with
x, — x. We must show that [x]| < I, that is, that any convergent sequence in D
converges to a point in D. By the above, |x,] - |x]. Now {|x,|} is a sequence
in [0,1], which is closed, hence | x| € [0,1], and [lx] < 1.

17. There is a sequence z, € 4 such that d(x,z,) - d(x,A) (for the proof, imitate Example
2 at the end of Chapter 1). There exists a N such that n > N implies d(x,z,) —
d(x,A) < 1, that is, d(x,z,) < 1 + d{(x,4). Thus the sequence z, with the first N
terms chopped off lies in the closed ball of radius 1 + d(x,4) about x; this ball is
compact so it follows that z, has a convergent subsequence, say z,, z,— z.
Since d(x,z,) is a subsequence of d(x,z,) and d(x,z,) — d(x,4) it follows that
d(x,z,) — d(x,A). We will prove d(x,z,) - d(x,z) and thus by uniqueness of limits
d(x,4) = d(x,z). By the triangle inequality we have |d(z,,,x) — d(z,x)| < d(z,2,) = 0
as n, — oo. It remains to show that z e 4; this is true because z e cl(4) and 4 is
closed.

18. The sets F, satisfy the hypotheses of Theorem 2, hence [} F, # . Furthermore,
diam(F,) — 0 so by Exercise 6, [} F, has exactly one point x. x> < 2 and 2 < x?,
hence x? = 2,

21. (a) First note that ¢ and 4 are open and closed relative to A4,since @ = F n 4
and ( is open and closed in R¥, and A = R" n 4 and R" is open and closed in



23.

26.

28.

29.
30.

33.

3.
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R". Now assume 4 is not connected, that is A = U u V where U and V are
open, ANUnV=Z, AnU+# J,and An V# . Then U~ A is open
and closed relative to A, since U 4 = U n A where U is open in R", and
Un A =(R"\V)n Awhere R\Visclosedin R"(U n 4 = (R"\V) n A because
Un Vi A =) For the other direction, assume there is subset W of 4 such
that W# F, Ws# A, and W=V A =Un A with V open, U closed in
R".LetR'= Vand$§ = [R”\@‘ﬁlenA < RuS,RandSareopen,AnRn §=
T, ANR# J,and A~ S # F; thus A is not connected. i
(b) R" is path-connected and therefore connected so the result follows by (a).

Qc J—oo,\/f[ U ]ﬁ,oo[; both intervals are open, disjoint, and so forth.
R\Q = J—o0,1/2[ U ]1/2,00[ (where, for example, Jr-oo,\/i[ is defined to be
(xeR|x < /2)).

. The sequence sin(n), n = 1,2, ..., is contained in the compact set [ —1,1] and

hence has a convergent subsequence sin(n,).

Assume the nested set property. Let x, be a Cauchy sequence. To show it converges,
let A, = {x;,Xx+1> ..} and take F, = cl(4,) in the nested set property. (For the
special definition of completeness of R, that is, that every increasing sequence
which is bourngd above converges, do the same thing.)

Let x € 4 and assume x is not an accumulation point of 4; let U be a neighborhood
of x such that U n 4 = x. Let ¢ be such that D(x,2¢) = U. Let W = D(x.,¢) and
V = R\cl(W). Then Vand Wareopen, A c VUWANVNW=Z, AnV#
& (since A contains points other than x), and A n W # (F (it contains x). Thus
A is not connected, a contradiction.

A is both compact and connected.

(a) True; use Theorem 2, Chapter 2.

(b) False; let U, = ]~1/k,1/k[ in R. Then (2 U, = {0}.

"x"+p - xn” < "xn+p - xrr+p~1” +o+ len+1 - x"”
< 1 oL
S+ p-1P+m+p-1 n +n
<——-—1-—-+"'+i<i l~>0asn~>oo
Tt p- 1) w S

because Z;‘; (Y /%) converges; thus x,, is Cauchy so it converges. Note: the problem

also works if we are given just ||x,4, ~ x,|l < a, where Z"; , 4y is any convergent

series.

(a) If a = 0,1 then a, = 1 for all n so {a,} is constant. Now suppose a # 0, 1.
Then a, —a,-; =1 —ay,.; + a2, —a,-; = —a,_)* > 0, hence a, is
monotone increasing.

(b) Let 0 < a < 1, then for all n, a, < 1. Suppose a,.; < 1,then 0 < a,.; —
a.y<land 1>1—(a,; —a’,)=a,>0. Hence if 0 < a < 1, then
{a,} is bounded. Now suppose a = 1 + I, & > 0. It can be shown then that
a, = 1 + (n — i* = o0 as n — oo, hence a, is unbounded. Finally, ifa < 0,
then |a)) > 1 + (n — 1)a® = o0 as n — co. Therefore {a,} is bounded only
when0 < a < 1.
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{c) From (a) and (b), if 0 < a < 1, then {a,} is bounded and non-decreasing,
hence converges, and if a = 0, 1, then a, — 0.

36. Divide R" into n-dimensional cubes of side 1; thus we get a countable number of
cubes. There must be some cubes with an uncountable, hence infinite number of
points of 4 in it, otherwise 4 would have only a countable numiber of points. So
take an infinite sequence of distinct points a, in 4 A S. Since cl(S) is compact, a,
has a convergent subsequence, a,, — a, and a is an accumulation point of 4.

38. (a) C = [0,1] and so is bounded. Also, each F, is closed, being the union of a
finite number of closed sets; hence the Cantor set is closed, being the intersection
of the collection of closed sets {F,}. Thus C is compact.

(b) The endpoints of each interval of F,, are elements of every F, and hence elements
of [} F,. There are 2" intervals in F,, and there are an infinite number of F,’s.

(c) Suppose Ja,b[ = Ca, # b, then C contains an interval of length (b — a). But
the intervals in F, have length 1/3" and there exists a N such that 1/3" < & — a,
so Ja,b[ & Fy; hence Ja,b] <& [ F,. (Provided by Nancy Hildreth.)

40. Suppose [} F, is not connected, then by Exercise 39 there exist open sets U, ¥ such
that NF,c UV, UnV=g, NFkaU=#g, (FinV# . We claim
U U V contains some F,, which will be a contradiction since all the F,’s are con-
nected. Suppose U U V contains no F,; then for all k there exists a x, € F, such
that x, ¢ U U V. Since x, € F, for all k and F, is compact there exists a convergent
subsequence x,, > x, and wehave x ¢ U U Vsince U U Visopenand x, ¢ U U V
for all i, But since x is the limit of a sequence in each closed set F,, x € F, for all k
implies x € () F, a contradiction since (VF. = U U V. Thus U U V must contain
some F,, the desired contradiction. An example showing compactness is necessary;
let F, &= {(x,y)eR*||y| = 1} U {(x,y) € R? | |x| = n}. Then {F,}<., is a nest of
closed connected sets but (}*_ F, = {(x,y) € R* ||y > 1} is not connected.

el

Chapter 4
Continuous Mappings

41 Continuity.

1. (a) Let & = min{l,—l—+—;~l;;~l}, then |x — xo| < 6 implies |x* — x3| =

X — xgl Ix 4 xol < 5("f' + Ixol) < 8(8 + 2 Ixgl) since |x] — Ixqol < Ix — xo] <
8,50 |x| < 8 + |xo). Finally |x* — x2| < 8(1 + 2 xl) < &.
(b) Let (x,,y,) = (xq,¥0); then (as proved in Chapter 1) x, — x,, so by Theorem 1(ii)
/-is continuous.
2. Let /1 R*— R, (x,y) — x. Then 4 = f‘l(U) and since f is continuous by Exercise
1(b), and U is open, A4 is open.
3. A = f~4[0,1]), and f is continuous so [0, 1] closed implies 4 is closed.
4. (a) f(x) = 1, U = any open set;

0 ifx<0
O fx)=4x ifx>0x<1,U=7]-1,2
1 ifx>1.

S(U) = [0,1], closed.
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4.2 Images of Compact and Connected Sets

1. (a) Closed, not necessarily compact or connected.
(b) Open, not necessarily compact or connected.
(c) Connected, not necessarily compact, open or closed.
(d) Compact and connected; not necessarily open or closed.

3.IfG) =x/(1 +x)if x>0, x/(1 -~ x)ifx<0,B=Rthen f(B)=]-L1[.IIB
is also bounded then B is compact, so f(B) is compact and f(B) is closed.

4. A= f(A x B) where f: R* = R, f(x,y) = x. Thus 4 is connected if A x B is,
since f is continuous (see Exercise 1(b) of Section 4.1).

5. Yes. Let x € 4, and y € B. Then there exists a § > 0 such that D((x,y),6) =« 4 x B.
Then {(z,) | z€ Jx — 8,x + [} < D((x,y),0) implies ]x — &,x + 8[ = 4, hence 4
is open. .

4.3 Operations on Continuous Functions

1. (a) Everywhere.

(b) f is continuous on R\{1,~1}.
(c) Everywhere.

2. Let p: R* > R, (x,5) = x, pp: R? = R, (x,5)—y, f1 R— R, x— x. By earlier
exercises, p, and p, are continuous, so by Theorem 3, /= p,, /¢ p, are continuous.
Let it R? = R, (x,y) — (f o p)x,y) (/ e p1)(x,), then by Theorem 4, /1 is continuous.

. Then if g, — a, b, — b, (a,,b,) = (a.,b) and h(a,by) = (o p1)awby) - (f © pa)awby) =
a, b, — hlab) = a-b.
3. Use the fact that {.56} is closed, and sin x is continuous. 4 is not compact.
4. It is sufficient to show g(x) = Ix|, and h(x) = \/J—C are continuous, for f = goh.

5. f = g o h, where g(x) = \/;, h(x) = x* + 1, and g, I are continuous.

4.4 The Boundedness of Continuous Functions on
Compact Sets

1. Let f(x) = x/(1 + |x]), then f is bounded, sup f(R) = 1, inf f(R) = —1, but f does
not attain either value on R.

3. Mjsbounded since M < K and K is bounded. M isclosedsince M = f~ l{supf(K}
J 1s contifjuous and {sup f(K)} is closed. Hence M is compact.

4. f o c is continuous and [0,1] is compact. Less briefly, ¢ is continuous and [0,1] is
compact, so ¢([0,1]) is compact. Since f is continuous, f attains its maximum and
minimum on ¢([0,17]).

5. Let A4 = ]0,00[, then sup f(4) = 1, which f does not attain on ]0,c0[. (For all
x € ]0,c0[,x > Isin x|, and li‘T(i,t sin x/x = 1).

4.5 The Intermediate Value Theorem
1. Quadratic polynomials need not be negative anywhere so the method fails; the
method works for quintic polynomials, and in general, for all odd degree polynomials.

2. Let {x,,/(x,)} be any convergent sequence in I, (x,,/(x,))— (x,y). If y = f(x),
then (x,y) € I', and we have shown I closed. f is continuous, hence x, — x implies
SGen) = f(x), 50 (x,, fx,)) = (x,f(x)). Thus y = f(x).

5. f1[0,1]) would have to be closed (since [0,1] is compact), and ]0,1[ is not closed.
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Uniform Continuity
1 x — yl <|xz

Ty xy a?

1 11
-—=l<
x oy

.Let & = a%, then |x — y| < § implies

= £.

2. See solution to Exercise 1 or use the fact that f’(x) is bounded.

4. No; let f(x) = g(x) = x. Il f and g are bounded, yes; let M be such that | f(x)] < M
and |g(x)] < M for all x, and let ¢ > 0 be given. Pick é such that |x — y| < § implies
1f(x) — fO) < ¢/2M and |g(x) — g(y)l < ¢/2M. Then |x — y| < & implies

[/G)glx) — fWg) < 176 lglx) — gy} + gl 1f(x) — fO¥) < M(e/2M) +
M(e/2M) = ¢.

Exercises for Chapter 4 (at end of chapter)

1. (a) It is sufficient to show that f is continuous on Ja,co[, for every a > 0. Let

xo € Ja,0[, suppose xg = a + n. Let § = inf{1,n,a%/l + 2xg)}. Then
1 x% — x3 x* —- x3]

== -— | since xq, x > q,
x3 a

1
x — Xo| < 6 implies | — —
I OI p xz xzx%

and iz _Lz < x + on'Jx — Xl < x = xol(lj‘l + |x0|)< ¥ +42I>¢ol)<
x x5 a a a

8(1 + 2 |x,l)

& T

(b) Given ¢ > 0, let 6 = anything > 0.
(c) Yes; it is a composition of continuous functions.

2. (a
3. (a

J continuous at every point of 4 implies f continuous at every point of B.

)
) No, let f(x) = sin x, k = {1}.

(b) fis continuous on all of R, so f is continuous on cl(B) which is compact. f(cl(B))

is compact and thus bounded; so since f(B) = f(cl(B)), f(B) is also bounded.

6. (a) If ¢, converges then every subsequence convefges to the same limit, so one

direction is clear. For the other direction, suppose x, + ¢; we will find a sub-
sequence of x, which has no subsequence converging to c. Since x, - ¢, there
exists a ¢ > 0 such that for all N there exists an > N with |x, — ¢| > &. So let
n, be such that n, > 7 apd |x,, — ¢} > e. Then {x,} is a subsequence which has
no subsequence converging to c.

(b) If f is continuous, then the graph of f is closed (see solution to Exercise 2,

Section 4.5). For the other direction, suppose the graph of f is closed and f is
bounded. Let x, - x; we want to show f(x,) — f(x). By (a) it suffices to show
that every subsequence of f(x,) has a further subsequence which converges
to f(x). Let f(x,) be a subsequence of f(x,); since the set of values of f is
bounded, f(x,,) has a convergent subsequence f{x,, ) — y. Thus (S 060 ) =
{x,y); but then since the graph of f is closed, (x,y) must be in the graph, that
is y = f(x). Thus every subsequence of f(x,) has a further subsequence which
converges to f(x), so f(x,) — f(x), and therefore f is continuous. If f is
unbounded the theorem fails; for example let f(x) = 1/x ifx # 0,0ifx = 0.
Then the graph of f is closed but f is not continuous.
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We will show that (f~*)~Y(C) is closed for every closed subset C of B. Let C be a
closed subset of B. Then C is bounded so C is compact. Hence f(C) is compact so
JS(C) is closed. An example where the conclusion fails with B not compact: let
B = ]0,27], f: B — R?, f(6) = (cos 0, sin 6). Then f~! is not continuous since
when 6 is small (cos d,sin 8) is close to (cos 2z,sin 27) but § is not close to 2z (this
needs to be rthade precise). '

. Let A =[ab], B =[b,c]. Let V be closed in R™; we show (V) is closed.

Wy =" M nAuB) =G V) nAHuB ' (VYAB) = f~{(V)ug (V),a
union of two closed sets and therefore closed. A generalization to 4, B = R": Let
f:A - R" and g: B - R" be continuous, and suppose [ =g on 4 n B. Let

{ fx)ifxe A

h: A B— R"be defined by h(x) =

is exactly the same.) gix)ifxe B

(a) Givene > 0,let§ < ¢/L.Then [|x — y| < dimplies || f(x) — f(W)i < Liix — yll <
Lé < Le/L =¢.

(b) Let f(x) = sin x2.

(c) The sum of two Lipschitz, functions f, g is Lipschitz, for if L,, L, are their
Lipschitz constants respectively, then || f(x) + g(x) — f(») — g < 1| f(x) —
JON + ligx) = gyl < Lyllx — plIl + Lalix = il = (Ly 4 L) Ix — yii. The
product of two Lipschitz functions is not necessarily Lipschitz, for example, if
Sf{x) = x, then f(x) * f(x) = x* is not even uniformly continuous.

(d) The sum of two uniformly continuous functions is uniformly continuous, but
the product is not necessarily uniformly continuous.

; then i1is continuous. (The proof

0 ify>x
(a) Let f(x,y) = {

1 ifx>y '
Then lim lim f{(x,y) = 1 and lim lim f(x,y) = 0.
x-+0 y—~0 y+0 x~0
We must show

sup{fi(x) + -+ + fy(x)| x€ 4} < sup{fi(x) | x € A} + * - + sup{fy(x)| xe 4} .

First note that the right side equals sup{fi(x,) + - -+ + fy0y) | X1, . Xy € 4} (see
Exercise 7, Chapter 1). Then since { fi(x) + - + fy(x) | x € 4} = {filx)) + - +
Su(xx) | X1, .« Xy € A}, the result follows. And as an example where equality fails,
let A = [0.1], f;: [0,1] = R be defined by
169 {0 ifx <12 .
X) = s ’
' 1 x> 12
and f3: [0,1]— R be defined by
{ 1 ifx<1/2
x) = .
PO= s 12
Thenm = 1,my +my=1+1=2.
Use the estimate | /(x,y) — f(xo.Yo)l < I/(x,9) = S0 + 1/ (X0:9) — f(Xa: Do)l
Use the intermediate value theorem (Theorem 6).
Let A = R? be the graph of tan x, —n/2 < x < 7/2. Then A is closed since tan x
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21.

is continuous (see Exercise 6 or Exercise 2, Section 4.5). If f(x,y) = x, then f(4) =
J—n/2,7/2[, which is not closed.

(a) Yes, f'(x) is bounded.

(b) Yes, f(x):is bounded.

(c) Yes, f'(x) is bounded.

(d) No;wemust find¢ > Osuchthatforall § > Othereexistsax, ywith|x — y| < 6
and |x sin x — ysin y| > e.Lete = 1 and takeanyd > 0.Pickn > 1/znsin(6/2).
Let x = nn + 8/2, y = nn. Then |x — y| = §/2 < , but

Rar B\ LANL P o

[(nn 4+ 6/2)sin(nn + 6/2) — n=m sin(nz)| = |(nn + 6/2)sin(nr + 6/2)|
= |(nm + 6/2)sin(6/2)|
> |nz sin(5/2)) .

25. (a) Directly: We show Li_r{},i'tkf(x) exists. We have |f'(x)) < M for all x e ]0,1[.

26.

27.

28.
29.

Hence by the mean value theorem | f(x) — f()/lx — ¥l < Mfor all x, ye J0,1[,
50 |f(x) ~ S(») < M |x — y| for all x,ye]0,1[. Suppose x, — 0+, that is,
Xy 09 X, € 1011[ Then since If(xn) - f(xm)l <M Ixn - xmls f(xn) is CaUChy
as given g, pick N such that n, m > N implies |x, — x,| < ¢/M;thenn,m > N
implies | f(x,) — f(x.)| < & Thus f(x,) converges, say to a. It remains to show
that for any other sequence y, — 0+ we also have f(y,) = a. We know f(y,)
converges (as f(x,) did), say to b. Let ¢ > 0 be given. Pick N, such thatn > N,
implies |x,| < ¢/6M, N, such that n > N, implies |y,| < &/6M, N; such that
n 2 Njimplies|b — f(y,)] < €/3,and N suchthatn > N, implies|f(x,) — a| <
¢/3.Let N = max{N,N,,N;,N,}. Then n > N implies

4 b —al <b = fy) + ) — SG) + 1/ (x) — al
<3+ Mix, -yl + &3
< e/3 + M(x,| + |y) + &/3
< &3 + M(e/6M + ¢/6M) + ¢ef3 =¢.

Thus since ¢ was arbitrary, we have b = a.

(b) Indirectly: We have |f'(x)] < M for all x, so by Example 2, Section 4.6, [ is
uniformly continuous. Thus by Exercise 24(c), / has a unique continuous
extension f* to [0,1], so by definition of lirr(l,ii f(x) and definition of continuity

of f/*at O,Emif J(x) exists and is equal to f*(0).
If f! is continuous, then f'([a,b]) is compact, since [a,b] is compact. Thus /' is
bounded on [a,b], so f is uniformly continuous on [a,b].
81
w
Yes.
We have |f(x) — f())/lx — yl < Ix — y for all x,yeR. We will show for all
X0 €R, fl(xg) = l‘i_x:rliot(f(x) — [(xo))/(x — x,) exists and is equal to 0. Let & > 0 be

given and 6 = ¢. Then |x — xo| < & implies |(f(x) — f(xa))/(x — %o) — 0] €
Ix — x| < &; thus f'(x,) exists and equals 0, so by elementarysgalculus /'is constant.
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30. (a) Lete > Obegivenand§ = &% To show that |x — y| < & implies (f - \/;) <e
" for all x,y >0, or in other words |x* — y?¥ < & implies |x — y| <e¢
for all x,y > 0. Now, |x* — y? < &* implies |x — y||x + y| < &* implies

|x — y| |x ~ y] < &%, (since for x, y > 0 we have |[x — y| < [x + y|) implies

Ix — y] < e. Thus \/J_C is uniformly continuous on [0,00[.
X

- X . . . .
(b) We know xlog is continuous on J0,1[; it remains to show continuity of f at
x
x — xk x — xk
0 and 1; that is, that limit =0 and limit = 1. This is easily
x+0 logx x=1 logx

accomplished by use of I’Hopital’s rule. f is uniformly continuous, being
continuous on a compact set,

33. First assume that 4 is relatively compact, that is, cl(A).is compact. By the Bolzano-
Weierstrass theorem every sequence in A < cl(4) has a subsequence which
converges to a point in cl(4) = R". For the converse, assume every sequence in A
has a subsequence which converges to a point in R". To show cl(4) is compact,
we take a sequence y, in cl(4) and show it has a convergent subsequence. Let
x, € A be such that d(x,,y,) < 1/n. x, has a convergent subsequence, x,, — x € R".
Claim y, — x. For the proof, given ¢ > 0 pick N, such that n, > N, implies
d(x,,x) < &/2, and pick N, > 2/e. Let N = max{N,,N,}. Then n, > N implies
d(Yp) < dpn) + d06,%) < 1n; + /2 < /2 + &/2 = &. Since {y,} is a se-
quence in the closed set cl(B), x e cl(B). Thus {y,} has a convergent subsequence,
and cl(B) is compact.

Chapter 5
Uniform Convergence

5.1 Pointwise and Uniform Convergence
1. Yes, for if ¢ > 0 and N > 3/g, then n > N implies that for all x e [0,1],

2x
x? - — 4 5 - x?
n

Vlx) = fx) =

since [x| < 1, independently of x.

2. No, since the limit function f(x) = is not continuous but each

I, is.

4. Yes, {f,} converges uniformly to /' =0 on [0,.999] for |/(x) — f(x)| = |x"| <
|.999% — 0 as n — oo, independently of x,
13 xn/Z

5. flx) = Z s converges uniformly to f(x), since | fi(x) — f{x)| = ; . n?n')z
0 : nEk ’

x  ifxe[0,1]
0 ifx=1
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o

1 1 . &1
— < Z — — 0 independently of x since Z — Is a convergent series.
Wy P (1) L n=ol

Thus since the f,’s are continuous, f is.

5.2 The Weierstrass M-Test

1. (a) Converges pointwise, not uniformly.
(b) fi{x) = e”*n — f(x) = 0 uniformly. To show uniformity, |/(x) — f(x)| =
1) = 1/ne*" < 1/n — 0, independently of x.
2. Ix"n* < 1/n* = M,, and since Z;‘;l M,, converges, fi(x) = Z:": | X'/n* converges
uniformly, by the M-test.
4. The series converges uniformly everywhere on R by the Weierstrass M-test, since
1 1
e =
<+t a2
5. Use the Weierstrass M-test with M, = |a,].

ne

5.3 Integration and Differentiation of Series
1/x fx>0

1. The limit function is f(x} = { 0 " 0 which is not continuous, hence the
ifx =

convergence is not uniform and Theorem 4 cannot be applied.

o
2. For x=0, 1, f{x) =0 0. For x < 1, Z n?x" converges by the ratio test, so

[¢]
ndx" =0 and f(x) = n®x"(1 — x) » 0. Thus f, ~ f =0 pointwise on [0,1].
However, the convergence is not uniform, since

f‘)d-3<1“1>_ T
oj;'(x x=n n+l n42) (4 Dn+2) OO

flf(x) dx =f10 dx =0.

but

3. f, = 0 uniformly since by locating the maximum of f, at (_—%T)’ LX) < \/;:—
n

n 1 \/;1 . . _—
. - < = 0. Thus Theorem 4 is valid. The derivatives converge
n41 n+1 n+1

to zero pointwise but not uniformly, so the hypotheses of Theorem 5 fail. Is the
conclusion valid?

5.4 The Space of Continuous Functions

1, x<1
1. No.Let f(x) =

1/x, x> 1

1, x<1
Then fe B.Lete > 0, and g(x) = .
1/x — ¢/2, x>1
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Then g ¢ B, since if x > 2/5 gx) =1/x —¢/2<¢/2 —¢/2=0.But |f —g| <,
hence D(f¢) ¢ B, so B is not open. Also, int(B) = {/€"6,(R,R) | there exists a
& > 0 such that f > §}.

2. d(B) = {fe €, (R.R) [ Sf(x) = 0for all x e R}.

1 1
4. =t — - 1 1 . i-
Julx) P T S -+ 0 as n - co independently of x. Hence f, — 0 uni

formly, that is, f, = 0 in €([0,1],R).
5. Pick N'such that n > N 1mp11es IIfy = fl < 1. Then

is a bound for {jif,I}. It is not closed unless f is an element of it, that is, unless
J. = [ for some n.

5.5 The Arzela-Ascoli Theorém

1. £{0) = 0 implies f, bounded, for let M be such that | f;(x)] < M for all n and for all
x €]0,1[, then by the mean value theorem |f,(x) — £,O) = |f,x) < M|x — 0] =
M x| € M. '

2. No, let f,(x) = 1 ifnis even, 2 if n is odd.

4. B is compact by the remark after Theorem 9, and I is continuous (see Example 3).
Hence [ is a continuous function on a compact set, so it assumes its maximum at a
point f; € B,

5.6 Fixed Points and Integral Equations
Lojel < 1,

2. f(X)=

lr<d
5.f(x) =1+ [53xf(»)dy. Let T(f}x) =1+ [53x/(y)dy and calculate T(0)x),
T20)(x).

Ms

i

0

5.7 The Stone-Weierstrass Theorem

1. By Example 2, the polynomials on [0,27] are dense, so since sin x is continuous on
[0,27], there is a polynomlal p with |p(x) — sinx] < ¢ for all xe[0,2n]. Let
e = 1/100.

3, The answer to the second part is yes.

4, Use Theorem 12.

5. Yes, by Theorem 12.

5.8 The Dirichlet and Abel Tests

]

& . , 1 @ 1
1, Z E—e“"" converges uniformly by the M-test with M, = — where Z —=e< 0.
~ n! nl weo n!
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converges uniformly, by Dirichlet’s test. The partial sums of ). f;(x) =

n=t x"
Z are bounded by 1, and g,(x) = - are non-negative, decreasing with n

and — 0 uniforxﬁly since |g,(x)| = "

1 .
< - -+ ) independently of x.

2, sin nx &, &, si
4. Z X g converges uniformly by Abel’s test, since Z T =Zsm i

n=1 n n=1 n=1 1
converges uniformly by Example 1, and ¢,(x) = ¢™"* are decreasing with n and
bounded by 1.

5.9 Power Series and Cesaro and Abel Summability
I.LR=1,R=0.

using Corollary 4.

1
2. Differentiate ) x* = =%
3.5, =1101,1,0,...s500, = 2/3.
2
x3 or else use Theorem 17.

{1 -—

4, Usel = x2 4+ x* - x* ++ - =

Exercises for Chapter 5 (at end of chapter)

1. (a) Let ¢ > 0 be given. Pick K such that k > K implies m, < ¢. Then k > K
implies || fi{x) — f(x)ll < e for all x € 4, that is, f, - f uniformly on 4.
(b) Let ¢ > 0 be given. Since m, — m, {im,} is Cauchy. So pick K such thatk,! > K
impltes |m, — m) < ¢. Then k, ! > K implies || fi(x) — fix)| < eforall xe 4,
so by Theorem 2 (the Cauchy Criterion) f, converges uniformly on 4.

X 1 . .
Su; x < % -+ 0 independently of x, thus ___su,i X, f = Ouniformly. Clearly the
4 k.

limit function f = 0 is continuous. B}

2. (a)

-+ 0 which is continuous. The convergence is not uniform since f;(1/k) =

(b)

kx +
1/2 for all k.

-+ 0 which is continuous. The convergence is uniform since
kx + 1 ex + 1

1
k+ 1/x
1 - kx2
(d) file)= T+ ooy

is 1/2\/l_c, thus given ¢ > 0 pick K > 1/4¢*. Then k > K implies | f;(x)] < & for
all x so f;, — 0 uniformly.

{©
1 .

< % - (0 independently of x.
k

so the maximum of fj occurs at x = 1/\/l_c where its value

0S X 1
cos x K ’ K
of x, so (1,——;—;) - (1,0) uniformly. It remains to be verified that the com-
e

——+ Oindependently

(e) 1— luniformly an

ponent functions converging uniformly implies that the function converges
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uniformly. This can be done in a way similar to the proof for plain convergence
of components.

3. (a) Does not converge anywhere, since Z gu(x) = Z( —1)* where K is the smallest
K=1 K=K

integer bigger than x, which does not converge.
(b) Converges uniformly on R by the M-test with M, = 1/k?. Thus the function

o
g(x) = Z gi(x) is continuous.
k=1

cos(nx)
N

cos(nx) 1 .
£ —= -0 independently of x. Thus

VRN

o
the limit function g(x) = Z g,(x) is continuous.
k=1

(c) Converges uniformly by Dirichlet’s test with f,(x) = (— 1), and g,(x) =

where g, — 0 uniformly since

(d) Converges to the continuous function g(x) = x/(1 — x) (see the geometric
series test, Chapter 2). However, the convergence is not uniform, since if it were,
n x - xu+ 1 xn+ 1
we would have X) = —————— uniformly, that is -0
;g"() 1-x 1—-x y 11— x
+1

is uniformly bounded, a contradiction

uniformly. But that would imply T

since near x == 1 the denominator goes to 0 and the numerator is bounded
below by 1/2, hence the quantity increases without bound.

7. Let Sy = {|/(x)|*1g(x)| | x € A} and S, = {If(x)| - lg(¥)| | x,y € A}. Then S, = S,
sosup(Sy) < sup(S,). Clearly || fgll = sup(S,)and || /]l - ligll = sup(S,). Anexample
where equality holds is 4 = [0,1], f(x) = g(x) = x and an example where strict
inequality holds is A = [0,1], f(x) = x + 1, g(x) = 1/(x + 1). Then | = 2,
lgh = L AN - lgll = 2, but {| fgll = 1since f-g = 1.

8. No.

11. (a) No, completeness is necessary. For example let f(x) = x* on the non-
complete metric space ]0,1/3] (not complete since the Cauchy sequence
{1/3,1/4,.. ,1/n,. ..} does not converge). f is a contraction since |x* — y?| =
[x ~ ylix + y] < 2/3|x — y|. Yet there is no fixed point, since f(x) = x
implies x? = x implies x = 0 or 1, and 0, 1 are not in the metric space.

(b) No. Let X = [2,00[, f(x) = x + 1/x. If X is compact this cannot happen.
Consider g: X — R, g(x) = d(f(x),x). g is continuous as f is continuous and’
the distance function is continuous. So since X is compact, g assumes its
minimum on X, say at x, € X. We claim x, is a fixed point of /. Assume x, is
not a fixed point; then d{(f(x).xo) > 0 so d(f(x¢),X0) > d{(f(f(xo)),f(x0)), 2
contradiction since g assumes its minimum at x,.

13. We know f, — f pointwise. Pick x, € Ja,b[ and pick N, such that k > N, imnplies
| filxo) — flxo)l < &/2. fi — f' uniformly, so there exists a N, such that k > N,
implies |f(x) — f'(x)| < &/2(b — a) for all x € Ja,b[. Applying the mean value
theorem to the function (f, — f), [(filx) — S(x)) — (Jilxo) — S(xo))l € M |x — xol.
Thus | fi(x) ~ f(x)| < (8/2(b — a)) Ix = Xol + |/ilxe) — f(%o)l < &/2 + &/2 = &
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14.

15.

18.

22,

23.

26.

27.
28.

29.

Let § = [}, /™X). S # & because x, € S where X, is the fixed point of /. To
show x, is the only point in S, suppose x € S. Then for all # there exists a x, such
that x = f"(x,). Since X is compact, x, has a convergent subsequence x,, - y. We
have d(f™(y),x) = d(/™(D).S"0xy)) < A" d(y,x,) = 0 (4 < 1). Thus f™(y)— x.
But /™(y) — x4 (see the proof of the contraction mapping theorem). Thus x = x,
since limits are unique.
Use Theorem 11, Chapter 2. For a counterexample if ). g, is just convergent, let
g, = (—1)"/n. 3 g, converges by Dirichlet’s test with f(x) = (=1}, g,(x) = /k.
But the subseries of even terms Y. 1/2n = (1/2) 3 1/n doesn’t converge.

Wk, ifx <k,
Let f,: [0,1] — [0,1] be fi(x) = {

0, ifx>1/k.

Then f; - 0 uniformly, since for ¢ > 0 and K > /g, k > K implies
> 1k

0,
14%) = O] = 140l = { R e
1/k, 0<x<1/k

Let ¢ > 0 be given. For x € 4 let §, be as in the problem. Consider the open cover
{D(x,8,/2) | x € A} and let {D(x,,6,/2)|n = 1,...,N} be a finite subcover. Let
x € A; then there exists a n such that d(x,x,) < §,/2. Let § = min{8,/2,. . .,04/2}.
Then d(x,y) < § implies d(y,x,) < d(y,x) + d(x,x,) < 8,/2 + 8,/2 = 3, implies
d(f(x).J(») < eforall feB.

0, ifx< -1,

No.Letf(x)={ Then fof = 1.
1, ifx> —1.

. Use thesntermediate value theorem. (If f(0) < f(1) show [ is increasing; if /(0) >

f(1) show f is decreasing.) Use the intermediate value theorem to show that if
x < y < zand f(x) < f(z) < f(y), then f is not one-to-one.

Let T: €[0,1] — ¢[0,1] be the function T(/)(x) = A(x) + [ k(x,9)/(y) dy. We
will show T is a contraction, and thus that T has a fixed point since €[0,1] is a

complete metric space. Let M = |k(x,))|; we have M < 1. Then
(x.y)t[o x]x[o 1]

A(x) +J k(x,y)f(y) dy — Afx) “L k(x,y)g(y) dy
0

1T — Tig)l =, Sup.

i
= §SuU
xs[OPl 1

L kML) — g»)] dyl

< su
= x€[0, 91

i : i
J M(f(y) — g(»)) dyl <M s[gp]J I/ (g(y)l dy
) xe[0.1] Jq

= M| f — g|. Thus Tis a contraction with A = M

Use the method of Exercise 25, Chapter 4 (or use the exercise itself, parts (b) or (c)).
Yes on [0,396], since f,(x) = x/n < 396/n — 0 independently of x. But f, is not
uniformly convergent on R. Let ¢ = 1, then for all n there exists a x such that
fi(x) > 1, namely any x > n,

(a) f is uniformly continuous on [—1,1], so if ¢ > 0, there exists a 6 such that for
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allx,ye]-11[ =« [-L1],1f(x) — f(y)| < & hence f is uniformly continuous
on ]—-1,1[.

(b) Yes; it is uniformly continuous on the compact set [0,1], and its derivative is
bounded on [1,c0[ so it is uniformly continuous there. Thus it is uniformly
continuous on [0,00[.

(c) Yes, for the derivative of f is bounded.

(d) Yes. f is continuous on [0,1] so it is uniformly continuous on [0,1], and so it
is uniformly continuous on ]0,1].

(e) No.As x— —1, In(l + x®) decreases to — oo. Thus sin(In(l + x*)).oscillates
between +1 and — 1 infinitely many times in any neighborhood of x = — 1, so
l&mg f(x) does not exist, and f is not continuous on [ —1,1].

30. See proof of Theorem 7, Chapter 4. The proof given applies to any f: K — B where

K is a compact metric space, and B is a metric space.

31. Let ¢ > 0 be given. Pick N such that n > N 1mp11es la, — al < g/2. Pick M such

1+az+ 4 ay — Na
n

thatn > M xmplles < E Then n > M implies

b, — df = a +-+a,—na @ —a)+ -+, —a
n n
a, — a ay — @ Gy — G a, — a
_|a-a, @-0 @n-a,  (@=-a
n n n n
a, — ay — a Gyey — G a, — a
s(l )++(N ) (N+l )+”.+(n )
n n n n
_ a,+ " +ay— Na (aN+x—a)+'”+(an—a)
n n n

< /2 + (nef2)n = ¢/2 = g/2 + ¢.

33. (a) Yes. Given ¢ > 0, choose N such that n > N implies | /,(0)] < ¢ and | f,(1)] < .
Then n > N implies for all x € [0,1], —¢ < f,(0) < fi{x) < f,(1) < &, since
each f, is increasing implies | /()| < & for all x, so f, - 0 uniformly.

. 0, ifx<l,
(b) No. Let f,(x) = x". The limit f(x) = is not continuous so the
i 1, fx=1,
convergence is not uniform, but all the f,’s are increasing.

36. (a) 11m1t<11m ) = 11m1t(0 = 0.
x—+0 y—*Ox

(b) limit (11m

y=0 x—oox

) = 11m1t(0 = 0.

() lim ( ) does not exist.
(x. y)»(o o\x* +y
Let (x,p) - (0,0) 0 along the path (x,cx?) for some constant ¢, Then f(x,cx?) =

ex*
xt+ext 1+ c2 ’
which is a different value for each ¢. Thus the limit does not exist.

and the limit as (x,y) — (0,0) along this path is 1 : R
c
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1 o

1 1
Bol+-F+- - = o converges by the geometric series test, 1 — 3 +
1

39.

40.

41.

2 4 8 n=
1

1 ayT
R D)

on

—
~

converges by Dirichlet’s test with f,(x) = (—1)",g.(x) =

[SSEE

S on
11 1 =1 .
I/n,and 1 + 3 + 3 + i + o= Z —';does not converge, by the p-series test, (See
n=0
Chapter 2.)

Let ¢ > 0; then since f is continuous on a compact set there exists a 6 > 0 such
that for all x, y e [0,1] | x — y| < & implies | f{x) — f(y)| < e. Let N be such that
1/N < 8, and divide [0,1] into intervals [j/n,(j + 1)/n], j =0, ...,n. Define
glx) = f(/n), if x € [j/in(j + 1)/n[, and g(1) = f(1). Then for any x & [0,1[, there
exists aj such that x € [j/n,(j + 1)/n[ implies x — j/n < & implies|f(x) — f(i/n)| =
|f(x) — g(x)l < e and if x =1, f(x) — g(x) = 0. Thus ||/~ gl <, and g is
simple.
Let ¢ > 0 and fy € ¥([0,1],R); since f, is continuous fo([0,1]) must be a closed
interval, say [a,b]. Since g is continuous on R, g is uniformly continuous on
[@'b'] =[a— Lb + 1], so there exists a § > 0 such that § < 1 and for all
x,y€[ab], Ix — yl < & implies |g(x) — g(¥)] < &2. Let f e %([0,1],R) be such
that ||f — foll < 6. Then for all xe[0,1], |g(f(x)) — g(folx) < &2 since
|f(x) — folx)] < 8. Hence ||ge f — g o fyll < &and F is continuous.

Now suppose g is uniformly continuous, and ¢ > 0. Then there exists
a ¢ such that |x — y| < & implies |g(x) — g(y)| < &/2, for all x,ye R. Let
Ji: [€€([0,11R), | /i — foll < 8, then for all x,ye [0,1], |fi(x) — fo(x)| < &
implies |g o f1(x) — g o f2(x)] < &/2 implies ||ge f; — geo f5]l < ¢, hence F is uni-
formly continuous.
By Example 2, Section 5.7, the polynomials are dense in ([ — 1000,1000],R). Since
S(x) = |x|* e €([—1000,1000],R) then there exists a polynomial p such that
|p(x) — |xI°| < 1/10 for all x & [—1000,1000].

46. (a) We first show that the limit function f is uniformly continuous. Let &¢ > 0 be

given. Pick & > 0 such that [[x — y|| < & implies || f,(x) — f,(»)| < &3 for all
n.Let |x — y| < 6; pick N such that || f{x) — fy(x)]| and [ f(y) — f(M)]| < &/3.
Wehave || f(x) — f(DI < 1170) — KON + 1| flx) = Sl + 14(0) — S <
/3 + &3 + ¢/3 = ¢. Thus ||x — y|| < & implies || f(x) — f(M)| < & so f is uni-
formly continuous. We how show the convergence is uniform. Let & > 0 be given.
Pick 6, > 0 such that |x — y| < &, implies || f,(x) — f(W < &3 for all n;
and 5, > 0 such that |x — y|| < &, implies [ f(x) — fW)I < &/3. Let 6 =
min{8,,8,}. For x € 4 pick N, such thatn > N, implies || f,(x) — f(x)| < &3.
Consider the open cover {D(x,5) { x € A} of A and let {D(x,,5) { n=12,..,M}
be a finite subcover. Let N = max{N,,,. ..,N,,,}. Nowlet xe 4; let | x — x,|| <
6. Thenn > N implies [| f,(x) —~ S < | /%) — fulxdll + 146e) — Sl +
I f¢x) — f(x)Il. The first term is <g/3 because |x — x;| < §< J,; the second
term is <egf3 because n > N > N,; and the third term is <e/3 because
x — x;]l <& < 8,. Thus we have n > N implies || f,(x) — f(x)| < & for all
x € A, so the convergence is uniform.

(b) f, — 0 pointwise (this is clear). But f, + 0 uniformly, since f(1/n) =
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1/n? , . ,
e == | £ 0 (that is, > 1, tter how b: is there is always
) + 0 + 0 (that is, for ¢ no matter ig n is there y!
an x, namely x = 1/n, such that |f,(x)| > ¢). We conclude from (a) that the

J,’s are not equicontinuous.
12, ifx<1/2,
X, ifx> 12,

Then (f + g)(x) = x + 1/2and(f — g}x) = |x — 1/2|. Weget2 | ||* + 2 |glI* =
2:12 4212 =4dbut|f +gl* + IS — gl* = (3/2)* + (1/2)* = 10/4 # 4.

X, ifx < 1/2,

d =
o o) {1/2, ifx > 1/2.

48. Let  f(x) ={

Chapter 6
Differentiable Mappings
6.1 Definition of the Derivative

1. Df(x) = sin x + x cos x

IL/Gx) + gx)] — [S1xo) + glxo)] — [Pf(xo) + Dglxo)J(x — xo)l

2. limit
x~+xg "x - xO"
= limi ™) — S (o) = Df(xofx — xo)l|
= limit
il e = ol
+ 1 1000 = 050) + Dtgox — 5l _

xxg Ix = %ol
Thus by the definition of the derivative D(f + g) = Df + Dg.
4, First f(0) = 0, since | f(0)] '€ M - 0? = 0. Now let ¢ > 0 be given and § = &/M.

170 = 70) — 0 1/
- <M M g/M =g,
=0 S Ml < Moo = e

hence limit W = 0.
#0 Ix =0l

5. No. Let f(x) = x, then Df(x) = 1 for all x.

6. For f(x) = \/J—C on [0,1], yes but for g(x) = /x| on [—1,1]; no, since g is not
differentiable at 0.

Then |x|| < & implies

6.2 Matrix Representation

4yxd  x* 0)
L Df(x.y:2) =< ) e

e 0 xe
2. Df(x,p,2) = grad f(x,p,2) = (2xe™+¥* 5" 2pe +yHHE goext tyiest),
3. By Exercise 2, Section 6.1, D(L + g)0) = DL(0) + Dg(0), and by Exercise 4,
Section 6.1 Dg(0) = 0, hence Df(0) = DL(0) + 0 = L, by Example 2.
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6.3 Continuity of Differentiable Mappings;
Differentiable Paths

0
1. Weshow /’(0)= 0.Lete > Obegiven,and|x — 0| = |x| < ¢, then f(x) f()( )l
LJ(;) = |x| < &. [ is continuous at 0 since it is differentiable there.
2. No, for f(x) = |x|, where M = 1 for all x, is not differentiable at x = 0.
3. No; let f(x) = —|x|. Maximum of f occurs at x = 0 but f is not differentiable there.
4. f is continuous but not differentiable at x = 0.
5. (1) = (6,¢,3).

6.4 Conditions for Differentiability

. Show that 9 f/0x and df/dy are continuous at (0,0).

. By computing limits of difference quotients we find 8f(0,0/0x = 97(0,0)/0y = 0.
Thus if f were differentiable, Df(0,0) would have to be the constant function 0 (by
Theorem 2). But

it 00 — S0.0) - it L&A ol
== 0,00  |[(x,y) — (0,0)II = (0,0 [1Ge, M T en=0,0.x2 + y?

[

does not exist, since if we go along the path y = Mx we get

x| L. Mx? M M
5 = limit

limit —_———s = limit —— = ———
2 20 x2 + M2x?  x-0 1 4+ M2 1+ M?*’

, Gnmo xt 4y

which is different for every M. This gives an example of a function all of whose
directional derivatives exist at every point, but which itself is not differentiable.

3.z=0.
4. flx,y) = x* + y* and Df(x,y) = (3x*.4y°), so Df(1,3) = (3,108). Thus the tangent

planeis z = 82 + (3,108)( ) = —245 + 3x + 108y.

y—3
6.5 The Chain Rule or Composite Mapping Theorem
oh 6f6u : of dv

6x dudx v ox

ok’ 6f du 6f dv LI of ow

6y Bu 6y 8o 6y ow 6y

oh _ of du I of ow

9z oudz owdz

o o af

and =~ are evaluated at g(x,y,7) and denote the partials of f with
ou’ v’ ow

1o —

where —

du du
respect to the 1st, 2nd, and 3rd variables of f respectively, and i and so forth
are evaluated at (x,»,z). y
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oF oF
3. — = 29f"(x* + y? — = "(x2 2
% f(x %) s0 x % 2xyf'(x* + y?) and
oF oF
— =2"(x* + ¥y  so y—=2xy'(x*+ y?).
ox Ox
4. Il h(r,0,0) = f(r cos 0 sin ¢, sin 8 sin ¢,r cos ¢) where f: R® — R then
oh of , of . .. o
ar = Bx cos 0 sin ¢ + aysm 0sin o + 3,05 ®
i) ] ]
6_Z= —%rsin()sinq; + %rcos()sin«p
oh of of | ) af .
%“a_x' cos O cos ¢ +E’ SlnGCOS(p-—EI sin ¢
of of af . . .
-where o’ 3y’ and 5. are evaluated at (r cos @ sin ¢,r sin 0 sin ¢,r cos ¢).
OF
5. Since F(x,f(x)) = 0 = constant, we have-———(-;—x@ = 0. Thus
OF(x, oF ) oF
oMb _(0F) (] gy
0x 0% |ie.peey 0% 0y lie,roen
oF oF ,
= o+ (a— 'f(x)>
X lz.rean Y lex, rexn

and the result follows.

6.6 Product Rule and Gradients

1. Let g(t) = xo + th. Then Dg(t) = h and ‘—;izf(xo + th)

Df(g(0)) - Dg(0) = Df(xq) - h-

2. Let F(x,y,2) = x* — y? + xyz — 1, then grad F(x,p,2) = (2x + yz,—2p + xz,xy)
and grad F(1,0,1)/|lgrad F(1,0,1)] = (2,1,0)/\/5.

3. The equation is

{grad F(1,0,1),(x,y,2)> = {2,1,0){x = 1y,z = 1)p =2x + y—2=0.

4. In the direction of grad f(x,y) = (2xye* e*).

6. The surface z = f(x,,...x,) in R"*! may be written as the set of those points
(Xy,- . »xy,2) satisfying F(x,,. . .,x,,z) = 0 where F(x,,.. .,x,2) = f(x;,...,x,) — 2.
The tangent plane at (xg,20) is {(x — Xg,2 — Zo),grad F(x4,25)> = 0 which becomes
z = 7z, + Df(xg) (x — x,). The unit sphere x> + 2 + z2 = 1in R? is a surface of
the form F(x,y,z) = ¢ which is not the graph of a function so the analysis of p. 165
does not apply.

d
TG

t=0

t=

6.7 Mean-Value Theorem

1. Let x,yeR,x < y. Then there exists a cex,y[ such that f(»)— f(x) =
Sely — x),andsince '(c) > 0,f(y) — f(x) = [(cly — x) > O;hence f(y) > f{x).
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2. . (0 = fxo)

[l e x— % f(x)—O)_ )
.g(x)—g(xo>“1131‘f<g(x>—o =EN

mit ————

x-+xg X — Xg

. COs Xx

. . sinx
. (a) limit —— = limit
x~+0 X x~0

=cos0 = 1.

e
(b) limit = limit — = €% = 1.
x~+0 pd x~+0
. This is an immediate consequence of Theorem 7(i). If 4 is not convex this is not
necessarily true. Let 4 = {(xeR|x <0 or x > 1} and define f:1 4~ R by

1, x>1
flx) = {0 o Then f is differentiable on 4 with f'(x) = 0 for all x € 4, so
s x <

forallx e 4,1 f'(x)] < 1/10,butifx = —y = 2,|f(x) — f())) = 1 > (1/10)|x — y| =
4/10.

6.8 Taylor's Theorem and Higher Derivatives

2. Verify the conditions of Example 2,

. fis not C! but is only differentiable. However Taylor’s theorem for » = 1 in the form
JO + k) = f(0) + f'(0)* h + R,(0,h) where R,(0,i)/h — O ash— Qis valid

. The Taylor series representation is —x — (1/2)x? — (1/3)x® — (l/k)
Now fork > 1, 1/™0) = (—1)k - Dl =k — 1 < 2% so by Example 2, log(l -

Z“‘ —(1/k)x* for x € J—1,1[. Finally, let § be such that 0 < § < 1. Then

for any x,e[ —8,6], la,l = I(—1)x"/n| < &", and since Z“‘ 5* converges, by the
Weierstrass M-test, 3. | (—1)x*/k converges uniformly on [ 8,81

CfULk) =1 + h + B2 — k*2 + Ry((h,k),0), where R,((i1,k),0)/l(hk)|* = 0 as

(k) = (0,0).

6.9 Maxima and Minima .

2.

[S]

-2 -2
Df(xy) = (2x + 2p2x + 2y) =0 iff x = —y. Now —D¥(x,y) = ( >
-2 =2

andso A, = —2and A, = 0. Thus the test fails. However, f(x,5) = (x + y)* + 6,
50 (0,0) is a minimum. .

. Local minimum.

. Assume 4 is positive definite, and suppose Ax = Ax. Then {(x,Ax) = {(x,Ax) =
A{x,x} is positive and since {x,x) is positive, 4 is positive. Note: The converse, that
is, eigenvalues of A positive implies A4 positive definite, is also true and is not hard
to prove using the fact that a symmetric matrix can be diagonalized by an orthogonal
matrix.

Exercises for Chapter 6 (at end of chapter)

2. f; differentiable implies there exists a §; > 0 such that if |[x — x| then

&,
78 = $20) = T e — x| < S = v
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Let 6 = min{6;|{ = 1,...,m}, then [x — xo| < & implies

160 = fxe) — (df‘ Gighe + T (xo>)(x ~ %)

f.,

d
- Lﬁw — Fitxa) —;’;f(x"xx =0 ol 20— ) — )

d
< 50 — ek = L e — x| + ]f,.(x ) = ) — )

& &
g(—+---+—>lx-xol=ﬁlx“xol-
m m

Hence f is differentiable at x,.
3.I0f = 0the exercise is complete, so suppose there exists a xq € [0,00[ such that
J{xo) # Osay f(xg)> 0.(The argument if f(x,) < 0 is similar.) By the intermediate
value theorem there exists a x; & ]0,xo[ such that f{(x,) = f(x,)/2. Since f(x) — 0,
there exists a y > x, such that f(») < f(xe)/2, so again by the intermediate value
theorem there exists a x, & Jxq,y[ such that f(x,;) = f(xo)/2. Then if g{x) =
Jx) = f(x)2, g(x;) = g(x;) = 0, and therefore by Rolle’s theorem there exists
a x3 € ]x,,x,[ such that g'(x;) = f'(x;) = 0.
5. (a) (2xcos(x? + y%) 3y cos(x* + p?).
(b) sz cos x 0 sin x
( 0 ZCos y siny>‘
© v x.
d) 2x 2y).
(e) (ycos(xy)  xcos(xy)
—ysin(xy) —xsin(xy)].
2y*x 2x%y
O @+ 221 (nxp?™® (Inx)x**7),
@ vz xz xy).
b) / (ylnzz"  (xIlnz)z? (oey)z® !

2x 0 0
yzjcos¥(xyz) xzlcos*(xyz) xy/cos*(xyz)

7. (a) (3,6) is a local minimum and (1,2) is a saddle.
(b) (&nm + n/2,1) for n even are saddle points; (£nn + 7/2,1) for n odd are local
minima,
(d) The critical points are the plane z = —x, — y They are all local minima since
S(x,y,2) = 0 there and by inspection f(x,y,z) is always > 0. (The theorems on
the Hessian fail since the Hessian has A; = 0.)
8. (a), (b), and (c) are immediate consequences of Theorem 12, the definition of H,(/),
and the conditions for positive and negative definiteness of a matrix given on page
185.
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12. Leth R —» R" t—tx,forxeR,and g = fo h,t R = R,s0g(t) = f(tx) = f(x).
Then differentiating,

Do) = D0 Dif) = D) = 3 () = =173

s0, setting ¢t = 1, Df(x)(x) = mf(x). Now let L: R" + +++ + R™ — R™ be multi-
linear. Then L{tx) = L{tx,,. « otx) = tL(x, X5, « otx) = ** = °L0x;,0 « X)),
and therefore L is homogeneous of degree ¢.
13. (a) Let T: R® — R3, (x,9,2) — (h(x),9(x,),2), then F = fo T and DF(x,y,2) =
Df(T(x,y,2)) e DT(x,),2)

dh
— 0
ox 0
_(6/ af 6/) o
“\oh 89 0z) g, YD
(T(x,y,2)) % 3y 0
0 0 1(:.)'.:)

af‘ 1+6f og 6] 696[)
oh 0x dg ox’ 6g 8Y°02/ 5y .5

is the general formula for DF(x,,2).

a 3 a 3y
0 222y o | s 222 g T2,
0G(xp.2) _ dh dglxy) . - 5f(xw,2)]
oy = o, TGep2) - gyl [f(x,y,) TN
a 1)
9002 _ & (1,2 ot ) L2,
4 4

are the general formulas, For the specific f, g, and # in the problem we have

oG
— = cos((x* + yz) - (¥® + xy)* (2xy* + 3x%y + y¥2),

ox

G ;
e cos((x? +'y2)(y® + xy)) - (Bx?y? + x° + 4y°z + 2xy7) ,
= = cos(( + 2 + ) (0 + y).

15. § = f~Y({0}) is closed since f is continuous and § < [0,1] so it is bounded, hence
S is compact. If § is infinite, by the Bolzano-Weierstrass theorem, S has an ac-
cumulation point xg € S, so f(xg) = 0. Choose {x,} = B such that x, — x, and

Joo) = flxo) . . 0 -

or all n, x . Then f'(xy) = limit ————=—— = limit
f r all n, " ;é xO f( 0) PR X., _ xo ‘n—*m x" _ xo

= (), contra-

dicting the hypothesis that there is no x € R such that f(x) = 0 = f'(x). Thus S is
finite.



16.

17.
18.

19.

20.

21,
22,

23.
25.

26.

28.
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Let g{x) = f(x) — Df(0)x). Then since Df(0) = Df(x),
lglxo + 1) — glxo)ll = Il f(xo + A) — DfONxo + ) — flxo) + Df(O) o)l
= | f(xo + h) — flxq) — DAOYR)| < e Al

for | il < &(e), hence Dg(x,) = 0, and since x, was arbitrary, for all x € R, Dg(x) =

0 implies g is a constant function and thus ' = Df(0) + ¢, ce R™.

Imitate the proof of Theorem 12.

By the intermediate value theorem f(x) = x* + bx + c has at least one root since

f - owasx— oo0and f— —o0 as x — —oo. Now suppose x; < x; and f(x;) =

S{x3) = 0, then there exists a x5 € ]x;,x,[ such that f(x;) = 3x} + b = 0, that s,

3x? = —b; but b > 0, a contradiction.

(@) fix,y) = x* + 2xy + y* + 0.

(B) fGe,y) = 1 + x + y + 4(x* + 2xy + p?) + Ry(x,)).

(a) Clearly 0] =-0. Conversely, assume | L] = 0 Then for all ¢ > 0 there exists
aM < ¢ with |Lx| < M |x] for all xeR". Let x& R" and ¢ > 0, so there
exists a M < ¢/||x| such that ||Lx|| < M ||x| < e. Since x and ¢ were arbitrary,
L(x) = 0,and L = 0.

(b) Let aeR. |laL| = inf{M | la(Lx)| < M |x|| for all x} = inf{M ||al |Lx| <
M |ix| for all x} = |a| inf{M | |Lx|| < M |jx||} = |alIL].

(c) Clearly |L| = O for all L.

(d) Ly + Lyl = inf{M | (L, + Lyx| < M |x| for all x}. We have 4 =
(M| IL; + Ly)x| < M x| for all x} = {M[IL,I + ILoG)] < M |x]
forallx} = (ML + |L,] < M} =B.

This is a direct consequence of Theorem 12 and the discussion on page 185.

10, = R, f(x) = x. For f: R — R, no (see Exercises 2 of Section 4.5 and

Exercise 6 at the end of Chapter 4). In fact, any bounded continuous function

1 10,1[ — R will have a graph which is not closed. If 4 is closed then the graph of

J must be closed. If {{x,,/(x,))} is a convergent sequence in the graph G of f, then

lzx_'fluint x, = x € 4, since 4 is closed. By the continuity of f, f(x,) — f(x), hence

(2 (%)) = (x,/(x)) € G. (Provided by Dave Nishball.)
0+ 0 —1/2x* + 0 — 2/41x*,
Work through the proof of Theorem 4 and notice that continuity of 9f/dx" is not
necessary.
+ h) - + ) -
@) (@) = limit flat+h)—Jla _ it L (a + h) ~ fla)
h-0 h B0+ h

x, € Ja,h[, by the mean value theorem, so f'(a) = }in’(l’ili Se) = 1.

(b) No, since lixr(l,i} fx) = 1% f(0).

= limit f"(x,), for some,
h—0+

Lemma. Let [:[a,b] — R be differentiable on [a,b] and suppose f'(b) > 0 and
S(a) < 0. Then there exists a xq € Ja,b[ such that f'(xy) = 0.

Proof: Since f'(a) < 0, f has a local maximum at a. Similarly f'(6) > 0 implies f
has a local maximum at 5. By the compactness of [a,b], inf f([a,b]) = f(x,) for
some X, € [a,b]. Now by the above, x # a and x4 # b, hence x, € ]Ja,b[, so f{(x,)
is a local minimum of /" on some open interval and hence f'(x,) = 0. Now suppose
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29.

30.

32.

34,

35.

J'(b) > ¢ > f'(a). To show there exists a xo & Ja,b[ with f'(x,) = c. Let g(x) =
J(x) — ex. Then g'(x) = f'(x) ~ ¢ and f'(b) > ¢ > f'(a) implies f'(b) — ¢ =
g'(b) > 0 > f'(a) — ¢ = g'(a). Hence by the lemma there exists a x, & Ja,b[ such
that g'(xg) = 0. = f"(xy) — c, that is, f'(x,) = c.(Provided by Cindy Fleming.)

xe* ifx>0
(a) Geometric series test. f(x) =< e* — 1 ifx=0.

0

(b) No; use I’'Hopital’s rule.

{c) No on [0,00[, yes on [d,00 for all § > 0.

(d) No on [0,00[, yes on J0,00[ (apply the M-test on each interval [§,00[, § > 0).
J differentiable does imply f continuous. f may not assume its maximum, hence
T may be empty. f'(x) = 0 does not imply f has a maximum or minimum. f(x) a
maximum does not imply f(x) > 0 there (for example, f(x) = —3). T# Sn
{x} f(x) = O} ({x]| f(x) = 0} is closed and S is closed since f and f are con-
tinuous.) T really is closed, since T = f~"a) (a = sup(f)), {a} is closed and f is
continuous.

of . J(h,0) — f(0,0) 0-0

5;(0’0) = 1'1.Tét_._h—__~ = liTétT =0andif(x,y) # 0,
af xty + dx?y? — 8
oY) = s
. dx x* 4 2x2yt 4y
SO
d d
T om0~ ZLoo
of (0,0) = limit & mi = = 1
Gyax 0 ko k T ko ke kF
Similarly,
of of x5 — 4x®y? — xy*
5 00 = 0 i e g o
and
af af
o —(h,0) — 5(0,0) s o
2 (0,0) = limit Z—— = limit - = .
e gy 0 = limd 7 e o 3y ox

X, = 1/2 + x,.; limit x, = ﬁ — 1. (See solution to Exercise 26, ChaptefZ for
n-+ o

similar methods.)

Suppose x,, x;, x;€ Ja,b[ are such that x, < x; < x; and f(x,) = f(x;) =
S(x3) = 0. Then there exists a x4 & ]x, ,x,[ and x, & Jx, x5 with f(x4) = f'(xs) =
0, by Rolle’s Theorem. Now apply Rolle’s Theorem to f' so that there exists a
¢ € x4 xs[ with f"(c) = 0.
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Chapter 7

The Inverse and Implicit Function Theorems

and Related Topics

7.1 Inverse Function Theorem

1. |ou du
ox dy 2x —2y , ) '
@ @ = 2 2 =4x* + 4y* =0 iff (x,y) = (0,0).
ox dy

3. This does not contradict Theorem 1 since f is not C! at x = 0.

5. | Qu~.0u . du
ax 8y oz ;
x ooz 1+yz xz xy 1 00
dv dv dv
- —_ = = 1+ =10 10
ox dy 0z y x 0
g 2 0 1+6 2 01
ow Ow dw oo
ox 0y 0z,

so the system is invertible in a neighborhood of (0,0,0).

7.2 Implicit Function Theorem

oF

2. — =2+ 1=0 iff y=—1/2.
2 y iy /

4. |0F, 0OF, 0F,
du dv ow 100
oF, 9F, OF, =101 1]=1=20
ou dv Ow
0 01
0F, 0F, OF,
du v W [(0,0,0,0,0,-2

1:
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S0 u, v, w can be expressed in terms of x, y, z, for (x,y,2) in some neighborhood of

(0,0,0).

7.3 Straightening-Out Theorem
I.x#0 and y #0.

3. The theorem does not apply near (0,0) since Df{0,0) = (3x%,2y),0,0, = (0,0), but f can

be straightened out near (0,1) as Df'(0,1) = (0,2) # 0.
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7.4 Further Consequences of the
Implicit Function Theorem

1. Yes, near (0,1).

7.5 An Existence Theorem for
Ordinary Differential Equations

3. Clearly x = 0 is a solution; and since

%(;) =2 = \/t_z/—4fort = 0,x(t)={

is a solution, By Theorem 6, then, f(x,t) = \/;c cannot be Lipschitz on a neighbor-
hood of x = 0.
5. (a) The series ¢4 = 3= (¢"/n!)A" is absolutely convergent it can be differentiated

0, t<0
t%/4, t>0

term by term; and (d/dt)(e”‘x(O AT () Ax(0) = Ae*“x(0).
(b) Yes, it can be extended to oo by shifting the origin of time, &' = %~ el The
various times are b, 2b, ..., nb, . ...

7.6 The Morse Lemma

1. Index = 1

3. x* — 2xy + y* = (x — )%, (0,0) is a degenerate critical point.

5. {(a) Use Theorem 7 and the fact that critical points are *“‘preserved” by a change of
coordinates. You could also use Taylor’s theorem to prove this.

7.7 Constrained Extrema and Lagrange Muitipliers

1. (/2/3,~+/2/3/2/3) is a maximum and (—+/2/3,./2/3,./ —2/3) is a minimum,
2. No extrema. :
3. (+./3,0). .
4. (9/./70,4/./70) (max) and (—9./70,—4./70) (min).
Exercises for Chapter 7 (at end of chapter)

1. af 6g ag oh

ox ou  dvox’
4. LetL: B - R, x = (g,(x,), . .,gs(x)), then & = fo L and in matrices

(oL, oLy

>, ox, 7i(x,) 0
() = DfL(x)) o DL(x) = Df(L(x)| - © | = DAL(x)

oL, = oL, 0 Gula)

ax, ax, )
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10.

11.

16.
18.
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From linear algebra since Jf(x) # 0 we have

Dyg(yo) = (Df(xo)™" Jf( )a dj(Df (xo))
and
0(f2sfs) _ 0/iof) S
Oxz,xs)  O(xz,x3)  B(xz,X5)
. _ | dfafs)  fs) _ A f1.12)
2AOTEa) = | ik B T Bereo)
A f2fs)  0f)  0(fiSa)
9(x, »xz) Oxysx)  Dxy,%3) Jixgy
Hence
d
Dyg,(yo) = ! ' (arfa)

Jf(xe) O(xy,x3) ’

and so on, and since

D, fa(xq) D3 f3(x0)
Ds falxo) D f3lx0)

) _

5(x2,x3)

and so on, combining we get

1,1 D, fyx0) D, fs(x0)
J(xo)D194¥o) = |62 Dyfylxe) Difalx0) |-
33 D f3(x0) D3 fslx0)

WM&)%%—%%_%%_%<%>

ax 8y dy dx dxadx dy\ ay

=@§+@§ﬂiﬁ%=%=om%=%=o

Ox dy ox dy dy Ox
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So the implicit function theorem says that if f satisfies the Cauchy Riemann

equations and Df(x,y) # 0 then f is locally invertible.

(a) Use Exercise 3.
(b) Use Theorem 4.

No.
oF, 0oF,
ou Ov Ju?  x - -
= = 9u?v? — xy,s0if 9udvd # x4y,
6_F_2 oF, R y ol oYo

du v
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u and v can be expressed as functions of x and y near (x,, o). And

ou ou oF, oF,)"'(9F, oF,

ox dy du Ov ox 0Oy

oo av| |oF, oF,| |oF, oF,

dx 6_y du  Bv x  dy
o artioulas 2 _ (PF2OF, O OF;) [(OF, 0F, _ 0F, 0F,
S0 In partic ara_x_ v 0x  Ov ox Bu v dv ou

23. (a) In R? an example of such a C is when C consists of rays from the origin, and
areas between them.
{b) LetI = {x|xeCand x| = 1}. Cisdlosed, hence I is compact and since f is
continuous on I, there exists a xo €I such that f(xo) = sup{|| /(x| | x & I}.
Then for any xe€C, x # 0, x/|lxll €I and |f(x)| = |Ix| I/G/IxDI <
Il 1A el N/ x M = 1)l Ixll, so let M = || fixo)ll. I x = 0, | Sl =
N/O- M =01/l =0=M=0,foranyyeR"
25. Show that f maps cl(D(0,r)) (a compact set) into itself, and satisfies the hypotheses
of the contraction mapping principle.
29. Consult Section 5.8 and 5.9.
t
31, x00=0, x,=0 x0=0 +J(1 +0)ds = ¢,
0
t t3
X)) ={ (L + sH)ds=t—=,...,
0 3
1 1 1
NI e A iy R S —— L
()=t +3 5 3.5 @2k—3) .
so
t) = N 2%-3
X( ,;2 (2k - 3)
The radius of convergence is given by B
= timit 2 !
T e ay P (2k N2k -2)
implies R = o0,
32. The index is 0. '
Chapter 8
Integration
8.1 Review of Integration in R and R?

1. Forf=1,and P =

uls,p)

¢
A = XgsXgs o

N—1i
=2, Wtwer = %)
n=0

,b = xy} any partition of [a,b],
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=0 = xy-y) + Geyor —xy-g) o b g - xy) + (x, —a)
=b —a=L{,P),
so sup{U(f,P)} = inf{L(f,P)} = b — a.
Let
= {Xg = a,X;, . Xy = b}

be 4 partition of [a,b]. For any
n=1...,N, sup f(x)

XE[Xrs  y,X0e]

is an upper bound for {g(x)} x € [a,b]}, for S > f(x) = g(x) for all x € [a,b]. Thus
foralln,S, > sup g(x)=1,s0 .

XE[Xsy o poXp]

U(fp Z S (xn - Xy U(g P) Z n(x Xy—1 )

n=0

Thus [2 g = inf{U(g,P)} is a lower bound for {U(/,P)}.s0 [* [ = mf{U(f,P)} = [* g.

8.2 lntegrable Functions

. Let m; = inf{f(x)}x € [x;,x;.,]} and M; = sup{f(x Ix elxpx41]}. We have

R =7 fle)x: — x) where ¢;€ [x;,%,,,], and since m; < fle;) < M, we have
Yoy, ~— X)) < 3 fledxi, — x) <Y Mfx;,, — x,), the desired result.

. We use Riemann’s condition. Let ¢ > 0 be given and let P, be the partition of

[0,1] P, = {0,1/2 — &/4,1/2 + ¢/4,1}. Then clearly L(f,P,) = 0 and U(f,P)) = ¢/2,
so U(f,P,) ~ L{(/,P) = ¢/2 < & Thus f is integrable. We know [} f(x)dx =
sup L(f,P) and L(f,P) = 0 for all partitions P, so [} f(x) dx =

3

8.3 Volume and Sets of Measure Zero

1.

We show that given ¢ > 0 the upper half of the unit circle can be covered with
rectangles whose total volume is < ¢/2. We use Riemann’s condition on the function

y = /1 — x*. This function f is integrable on [0,1] (since it is continuous) so there
is a partition P such that U(f,P) — L(f,P) < ¢/2. However, U(f,P) — L(/f,P) is just
the sum Y (M; — m)[x;,., — x where M; = sup{f(x)|x € [x,,;,%]} and m, =
inf{ f(x) | x & [x;4,,%]}. So let v; be the rectangle [x,x;,,] x [m,M]. Then the
v;'s cover the upper half of the unit circle and their total volume is <¢/2. Similarly
we can cover the lower half with a finite number of rectangles whose total volume is
< /2. Thus the whole unit circle can be covered with a finite number of rectangles
whose total volume is <e.

. The answer to both parts is no. It does have measure zero.
. No. The boundary of the rationals in [0,1] is the whole interval [0,1] which does not

have measure zero.

8.4 Lebesgue’s Theorem
1. fis bounded by 1 on A = [—1,1], A4 is bounded and has volume by Corollary 1,

3.

and f has no discontinuities, so by Corollary 2 f is integrable on A.

.[Af=1-
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. Since f is continuous, 4 is open, and f(x,) > 0, there is a neighborhood D(x,,¢) of
xo on which /' is >0. By Theorem 4(ii), if [, / = 0 then {x e 4] f(x) # 0} has
measure zero. But D(xo.e) = {xe A} f(x) # 0}, so il {xeAd| f(x) # 0} had
measure zero then so would D(xy,s) (see remarks after Example 1). But D(xg,e)
clearly does not have measure zero, so {x € 4 | J{x) # 0} does not have measure
zero, and therefore {4 f # 0.But {, / > Osince f = 0,50, f> 0.

8.5 Properties of the Integral

1.

4.

Not necessarily. Let 7y, 73, ..., Ty, . . . be an enumeration of the rationals in [0,1]
and let 4, = {r}, 4, = {r},.... Each 4 has volume but 4 = |J2 4, =
rationals in [0,1] does not have volume.

A B has zero volume implies 4 n B has measure zero implies (4,51 = [, 1 +
{5 1 (by Theorem 5(vil)) implies (A U B) = v(4) + v(B).

8.6 Fundamental Theorem of Calculus

3. 4™ — 1).
5. (a) [0,1] has volume and f is bounded and the set of discontinuities is countable

and so has measure zero.
(b) L(/,P) = O for all P since in every open set there is an irrational so {§ f(x) dx =

sup{L(f,P)} = 0.

8.7 Improper Integrals

2. Letne N besuch thatn > p + 2,thensincee® = 1 + x + x%2! + x¥/31 + -+ >

x4+ i x = 1 then (n + Dlfx > e™*x" > e *x?*2 and (n + 1)l/x = 0
implies e~ *x?/x* — 0. In particular there exists a N such that x > N implies
e"*x"*? < 1, thatis,e”*x? < 1/x? Then by the comparison test, [¥ ¢”*x* < co.

. e7*x? < x'" 50 use the comparison test and Example 2(b).

R . . * .
. J diverges for o« 2 0 by the comparison tesf since 1 j_ = 12ifx > 1.
X

-3

1+ x®

x* 1 1
=— —>-—ifx>1,and
T+ Trxe” oeix2lan

@ i @ o
J —x*dx diverges by Example 2(a). Finallyf
: 2 . L+ x®

It diverges also for —1 < « < 0 because

dx converges for o < —1

because <

= x* andJ x* dx converges by Example 2(a).

1+ x7* N

x~¢

Use Dini’s theorem.
1.

8.8 Some Convergence Theorems
1.
3.

Exercises for Chapter 8 (at end of chapter)

1. (a) Let B = {xe A|g(x) # f(x)}, then B has measure zero, so, assuming that the
function f — g is integrable on B and A\B, [4(f — ¢) = [4u(/ — 9) +
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[5(f—g)=0+0=0,since f — g = 0 on A\B, and by Theorem 4(i), since
B has measure zero, [ (f — g) = 0. Thus [, (f — g) = 0, thatis, [, f = [, g.

(b) |/ ~ gl = 0 so apply Theorem 4(ii) to obtain that {x| f(x) — g(x) # 0} has
measure zero.

. We show that the xy plane has measure zero in R? and hence any subset of the xy

plane has measure zero. Let ¢ > 0 and

4 4
= [—ﬂ,nJ X [—n,nJ X [—'—l—i—zm,;x—i-zmil .

2 2n2n- 2 &,
Then xy plane < US‘ andz u(S;) Z”‘TZIWE =y 2..E+x = .;. <

i=1 =1 N

fag—Jaf=J4slg—f)=0sinceg— f>0on A4 But [,(g — f) # 0, since

otherwise v(A) = 0 by Theorem 4(ii). Thus [, g — [,/ = [4(g — /) > 0.

. Since f is continuous’and f(b) = — 1, there exists an ¢ > 0 such that f is negative

on [b—gb]. Now b f(x)dx = B=¢f(x)dx + [b_, fx)dx = [57¢ flx)dx + |

where | < 0. Thus {8~f(x) dx > 0, so there exists a x, e Ja,b — ¢[ such that

Sx;) > 0 (otherwise {272 f(x) dx < 0). So by the intermediate value theorem there

exists a'x, € Jx,,b[ such that f(x,) = 0, and hence by Rolle’s theorem there exists

ac € Ja,x,[ such that f'(c) = 0.

(b) If 4 has zero content, then 4 has measure zero. Conversely suppose 4 is
compact and has measure zero. A compact implies 4 closed implies bd(4) = 4,
hence bd(A) has measure zero. By the lemma on page 280, there exist open
rectangles P,, Py, .. Q,, Qs ...such that 4 = R ¥ bd(4) < U;“ 9

,UP) < &2 andz‘ . v(Q; < ¢/2.Then 4 U bd(4) = cl(4) = (=, P) v
(U 2, Q)and % 0(Q) + 3% o(P) < e A compact implies there exists a
finite set {P,,.. P, Q. . Q,,,} < {Py,Py,. . ,04,Q;,. - .} which covers A.
Now

n

fZ oe(P) + 5 ueli) = S otp) + i‘ %Q)
=1 ) =1 i=

< Z v(P) Z v(Q) <
i=1 1=
(see Exercise 11). Let B be a closed rectangle containing A with a partition T
containing the rectangles cl(P;) and cl(Q;). By Theorem 3, since bd(4) has
measure zero, 4 has volume, that is [, 14 exists. Then

0 <) Zs..pl,,(x v(s) < Z' v(cl(Py) +J=.Z':'v(cl(Q1)) <s

SeT ™

Since ¢ was arbltrary, {41, = 0. For the second part, bd(B) is compact (being
closed and bounded) so B has volume iff bd(B) has measure zero iff bd(B) has
content zero.

1 1 ¥ LY
14. Case (a), p< —1. lim(i)tJ xPdx = ——;—lli‘mit 1 -a"*)= —oc0, soJ xP dx
a- a p

a—+0 0
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a

does not exist. Case (b), p = —1. limitJ x"!dx = limitlog @ = + o0 hence
a-+on

1 a-+ o
« . .o )
J x? dx does not exist. Case (c), p > —1. llmltJ xPdx = —— limit (@?*! — 1) =
0 T a-o Jy pt+1law
o

xP dx does not exist. Thus fornope R doesf x? dx exist.

o
+ 00, and againJ
0

0

16. (a) Letg denote f extended, then {discontinuities of g,} = bd(4) U {discontinuities

of £}, and {discontinuities of g} = bd(4) U {discontinuities of f'}.Itis sufficient
to show that {discontinuities of f} < , {discontinuities of £}, to imply
that {discontinuities of g} = U {discontinuities of g,}. If x4 e {disconti-
nuities of f}, then since f; - f uniformly, for all N > 0, there existsa M > N
such that f), is discontinuous at x,, hence x, € U““ {discontinuities of f,}.

(b) Let { f,} be a sequence of bounded integrable functlons on 4, such that f, —» f
uniformly on 4. Let N be such thatn > N implies for all x € 4, |/,(x) ~ f(x)] <
1, then for all x € 4, n > N implies | f(x)] < 1 + |fi{(x)] < 1 + M,, where M,,
bounds f,, thus f is bounded. To show / Riemann integrable it is sufficient to
show that {discontinuities of f} = D has measure zero. Now for all k, f,
Riemann integrable implies {discontinuities of f,} = D, has measure zero, and
U:":x D,, by Theorem 2 has measure zero. Since by (a) D < U,‘f‘: , Di» D has
measure zero, and hence f is Riemann integrable.

18. For all x e B, 1,(x) < 14(x) and f(x) = 0 implies f(x)14(x) < f(x) 1p(x) which
implies [ fOOL40x) = [4 f(x) dx < [ f0)10x) dx = [ f{x)dx. In general if
there exists a x such that f{(x) < 0 this is not true, for example, let /: [0,1] - R,
x+— —1and 4 = [0,1/2]. Then [3/* f(x) dx = —1/2 & [§ flx)dx = —1.

20. f = 0, continuous, and increasing monotonically as x — 0, and [* f(x) dx con-
vergent implies that for any x e Ja,b], {% f(x)dx exists for 1i:ni(t [oe flx)dx =

limit [3ee J(x) ) dx + b f(x)dx and limit fb4s J(x) dx . convergent implies
11m1t [3ee f1x) dx convergent Now for all y € Ja,x], f(y) = f(x), since f is mo-

notonically increasing; hence [4**f(t)dt = [7** f(x)dt = f(x)x. Then for all
£ > 0 there ex1sts a 6 such that 0 < x < § implies 0 < f{x)x < (3> f(e) dt =
o 7@)de — [b.. f(t) dt < & hence x— 0 implies xf{x) — 0.

22,11 0<p, then —1 < p—1<aand on [0,1], x*~! > e™*x?~', hence since
{4 xp~! dx converges, [§ e"*xP~! dx converges. Claim that for all o there exists a
M such that x > 0 implies e~*x* < x~2, that is, e"*x**? < 1. It sufficies to show
that'e™*x" — 0 as x— oo for any neN. Now & =1 + x + x¥/21 + - >
x"*(n + 1)! implies (n + 1)/x > e¢~*x" = 0. Then since [¥ x~? dx converges, so
does [ e"*x?~! dx and so the I" function [§ ¢™*x*~! dx converges for p > 0.

0, xe[0I\Q,

24, Let A = [0,1], f(x) ={ then if ¢ > 0, taking any J, and
L 1, xe[01]nQ,

if|P| < 8, then there exists a x; € S; n Q for all i, so ‘Z:=1 JxS) -1 =0<s,
but f is not integrable. .

27. Suppose there exists a x € 4 such that f(x) # 0. Then there exists a 6 > 0 such
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that f > 0 on D(x,d), since 4 is open and f is continuous. Now by Theorem 5(vi),
there exists a y € D(x,8) such that f(y)o(D) = [, f. By f(y) > O implies [, /5 0,2
contradiction. Hence f = 0 on A.

29. For each £, the total length of the intervals in F, = ﬂ" F,is (2/3). So fore > 0,
let k be such that (2/3)* < &, then the union of the 2* mtervals of F, cover the Cantor
set C and have volume (2/3)* < & Thus C has zero volume and hence measure zero.

33. Let g(x) = x?, h(x) = [§ f(¥) dy, then F = hog and so F'(x) = h'(g(x)) o g'(x) =
2xf(x2).

35. 1. A, is just an upper sum for f(x) = x on [1,2], as
n
n n n n n et n/\n

where the partition is _
= {1,1 * l,‘ R 1,2}.
n n

2
fxdx—Z
1

(k)
J logxdx = —1 = 11m1tZlog-—n-—

n—omk

Since

1 3
, limit - A4, = =,
2

n-o N

NI»—
NIL»

36.

2
= limit 1(logl + log + 4+ log 1)

n-* oo
1 n! .
= limit - log — implies
n~oo M
1imit(1/n) log(nijn®y .. 1
el = gr= = limit ~ (1 })*/" .

n-o0 M

2de 1 j -
39. By definition, log 2 =f T Let P, = {1,1 + i .1+ jE" . .,2} be a partition
1

1 .
of [1,2]. Since f(t) = 7 is decreasing,

j k
i
:5[1+1~i{ 2+J/k] ( k) k +Jj)
Then
1 LI 1 1 1
- = P o —
L(z””‘) ,;k” kK k+1 2k
and

li 'tLlP = |imit ! + 1 +---+1 —zdt log 2.
it e T AT T Tk 2 %) "), T T8



520 ANSWERS TO SELECTED EXERCISES

40. (a) d(f,g9) = [b1/(x) — g(x)ldx = 0, by Theorem 5(iv).
(b) d(fg) = [al/(x) — glx)| dx = [2 lg(x) — f(x) dx = d(g.f).
() d(f,g) = [51/(x) ~ g(x)|dx = 0 implies by Theorem 4
and since | f(x) — g(x)| = 0 that | f(x) — g(x)| = 0, that is, f(x) = g(x), except
possibly on a set of measure zero.

(d) d(f,g) = [41S(x) — gbe)l dx < [al(x) — hGe) dx + [alh(x) = glx)l dx = d(fh) +
d(h,g). Thus d does not satisfy the criterion d(f,g) = 0 iff f = g. But as all the
other properties are satisfied d is called a semi-distance.

Chapter 9
Fubini's Theorem and the Change of
Variables Formula

9.1 Introduction

3. 5/6.
4, —zfe~! - 1).
5. 1/2.

9.2 Fubini's Theorem

2. ¢4 — 1/4.
[

9.3 Change of Variables Theorem
2. 2.

1/2 ff1=v ) 1
3.J J (2u2+202)~2dudv=3.
0 v

9.4 Polar Coordinates
1. n(e — 1). .
2. Zzz—[a2 loga — b%log b — 1/2(a* — b*)].

9.5 Spherical Coordinates
2r x 1 47
1. J TV e dy da =-J J J e’r sin g dr do df = — (e — 1).
D [¢] 0 vo 3
2 PNt 3302
2-575((1 )" + (1 + &)

9.6 Cylindrical Coordinates

1. 112n/3.
2. n/4.
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Exercises for Chapter 9 (at end of chapter)
1. #/3.
3. (b) #(l — cos 1).
(c)
d 2
(e) 1
I!o*"

4. (b) v(A) = J J J "o rdrdz d0

o
- erh—"z(ho 2hyz + 2%) dz dO

“O 0 (¢]
f2n .2 2
. e h0 = p2hy
= S — d —d
Jo 2/:5(-"’ ot ) e
_ mrghe
T3

. YJZ [1-x? 112
(c) v(4) =J J dy dx ==J (1 - 2x%)dx

2
3/2
d) v(4) J J J ‘rdrdzd()

1 2z *172
EJ J (1 —2¥)dzdo
=—J —d —g—n
2Jo 8 8
6. [t (/T
J J xy sin(x? — y?)dx dy
0 Jy

11
= ——J ylcos 1 — 1) dy
[¢]

1
—(1 ~ cos 1)

b d
9. I Jx»)d(x,y) dx dy =J (J Sx)a(y) dy) dx
[a,b] % [¢,d] a ¢
N b d -
=J S (X)< J g(y) dy) dx
b d
= ( J S dXXf g(y) dy) .

(You must show /3§ is integrable.)

S

521
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11

12.

13.

16.

17.

19.

20.

35.

For any x & [0,1], [§ 1.(x,y) dy = 0 for if x is irrational, then 1,(x,y) = 0, and if x
is rational, 1,(x,y) # 0 only for a finite number of y & [0,1]. But f(o,1;x[0,1; s does
not exist. For, if P is any partition of [0,1] x [0,1], then L(1,,P) = O since there
is an irrational in every open subset of R?.

A=A U (4\4,) U (d:5\4,) .., and the (4;,,\4)’s are pairwise disjoint,
hence by Exercise 7b, v(4) = v(A Z v(A‘\A;_l). Now for all j, v(4)) =
{A4y) + 3 tea v(A\A;~), which is a consequence of Theorem 5, Chapter 8, hence
o(4) = limit u(a)).

uC,) = ,[11 lcx(Y) dy, and u(C) = ,[Axn I¢ = ,[A (LJ 1c.(y) dy)dx = 0 implies
{51 (»)dy = 0 except possibly on a set- of measure zero, since [, 1o (y) dy > 0.
If C = {(1/2,y)| y € [0,1]}, then v(C) = 0, but v(C,,;) = 1 # 0.

frpo (X + y* + 22 dxdydz = [perPdxdydz = [§ [ [5r7 r*sinpdedfdr =
4z [& rP+? dr, Now by Exercise 14, Chapter 8, [§ r”*? dr does not exist for any p,
hence [gs ¥ dx dy dz does not exist for any p.

S, Sl < M, xe[0,1]
Let )= Vo, Jw> M

exists. But for all M, {§ fix = 0, since fy # 0 for only a finite number of points,
that is, 1, 1/2, . . ., 1/n, where n is the greatest natural number such that n? < M,
Thus ki‘leit 6 fu = 0,and [} f(x)dx = klﬂg 8 faulx) dx = 0.

Fx,y) = f(x) + g(y) implies [ 4 F(x,y)dx dy = [4xp f(x)dxdy + [41xp9(y) dx dy.
Using Fubini’s theorem: [,z f(x)dxdy = [4(f5 f(x)dy)dx and f(x) being
constant with respect to y gives fp f(x) dy = v(B) - f(x) implies [ 4. f(x) dx dy =
[ (B)f(x) dx = v(B) [ 4 f(x) dx.Similarly [ 4 g(¥) dx dv = v(A4) [ g(y) dy. Hence
summing we get [, F(x,y) dx dy = v(B) {4 f + v(4) {5 g, which shows that F is
integrable.

folp= [} dydx = [Yax =

. Then f is integrable iff ‘{i‘mit [

1
Consider‘i logxatx = 1.
dx

Chapter 10

Fourier Analysis

10.1 inner Product Spaces

1. (a) Letz, = x; + iy, 2z, = x5 + iy,

Then
¢t~ & = [e"(cos(yy) + isin(y;))][e™(cos(y;) + isin(y,))]
= e®t*=[cos(y )cos(y,) — sin(y,)sin(y,)]
+ isin(y,)cos(y,) + cos(y,)sin(y,)]
x ¥t cos(y; + y,) + isin(y; + y,)) = €1t
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(b) - e7* = €% = 1,50 ¢° = 0 is impossible.
(c) |€°)* = cos?0 + sin%0 = 1.

5. —i(d — 1)
9. (a) {fig> = 0 implies {g,/> = {figd> =0and so | [+ gl* =S+ gS+g> =

10.

11.

AP + g + g > + Lag)> = IS )1? + lgll>.
®) WS+ gl? =S =gl = U112+ Nal® + {figd> + <aS>
=S+ Mgl* — {fi=g> — {~g./D)
=g + 490 — fim9> — {—a.f>
= 2{f@> + 2g.f>
(1S + 1gl* = |/ = igl®) = i[2{fig) + 2ig.f>]
= 2{f,9> — g
--.and adding, we get (b).
© W +gl>+ U7 =gl = 207017 + 20g)* + {fig> + <a.>
+{fimg> +<{~g.S>
=211 + 2)lg)*.
@ WS+l =gl =[NP+ gl

+ (fig> + gL + lgl?)
—(fg> + £g.)]

=US12 + 1gh*? - Kfg> + <g./O)
< SN2+ gl
By Schwartz’s inequality

2 b
= KLOP < P12 =0 - a)f /17 dx .

b
ff(x) dx

. -1z, 0
The converse is not true. Let f(x) = {x 0 ; ?—é 0

[0,1] but /2 is not.
{f = g9 = {Sig> — Lg. 9>

-(r3; <o)~ (3 hwrw. 3 o)

= L Jooitod = 3 Y oo o <ouep-

then f is integrable on

Now since (@) = 8y 2 2., S0 > Si024P103

i=1 j=1
= Y f9:>{fe:>, and hence {f ~ g.g> = 0.
iz

Geometrically, we have resolved f = g 4+ (f — g) into two components; g and
J — g:gliesin the plane P generated by ¢,, . . ., ¢,and w = f — g is orthogonal
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to P; g is the projection of f onto P along w. The term {f,,> is the component of
J in the direction of ¢,.

10.2 Orthogbnal Families of Functions

1. Any n-orthonormal vectors are linearly independent for if ¢,0; + **+ + c,p, = 0
then {c,0y + ** + ¢,@,0,> = ¢, =0foralli=1,...,n and hence g, ..., 0,
form a basis for R".

2. Sincegg, gy, - . . arelinearly independent 4, = g, # 0. Suppose we have constructed

Pos + o Ppy from Gos -« «» Gu—, and that the {¢,}i=5 are orthonormal. Then
=g, uso {gn P>y is non-zero for 0 = g, — 2n s {Gmu>py implies g, =
Z" ! <9, >, implies g, is a linear combination of gg, - . . , g, , a contradiction.

Forj < nwe have
n=1
<’1,,,(P1> = <gn - Z <gn’(pk>(pk7(p]>
k=0
n-1
= (Gn?> = D, KGw PO Pas? )
k=0
= <gm(p1> _‘<gm(pj> =0.

Thus ¢, = h,/|h,) is orthogonal to each ¢, i = 1,...,n — 1, and since ||g,|| =
we have by induction that {, | i = 0,1,...} is an orthonormal family.

s 0 o = [ E o2
=%’fL%<2—“—f>«m:,<2—¢>

2 2n (% —
Letu = hidad then Y, ,,> = —RJ OuU)pnu) —du = 5,,.
/ IJo 2n

2nux
b) "\}T,\/%sin(z-nl—ﬁ), %cos(-zjzl—ﬁ>;f/l-'_e( ' )
1

(©) f0) = <f(X),\iﬂ> 7

[<f(x)’8in<'2‘nllj>> sin(?_f:"_") + <f (x),cos<-2—nln——x>>cos<.2.nln.—x>]

2
+TZ

) =<f(x>,%,> \L/, 71§<f(x> (zm)>.

6. Y Xk =x(1+x+ " +xl)=
k=1

x(l—x)(l+x+"“+x""’)_x(1'— x")
1—-x T ol-—x
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implies
n “’(1 ey QO] — ¢)(] — 10
Z I (- (1-em
(@912 — gitn 11200y gi0/2) _ ¢ i)
= 2-( + e
~ (01 — i+ L0i0(0/2)
2 — 2cos0
i(ei(0/2) — e‘(n+l/2)0)sin(0/2) i(ei(O/Z) — el(""" 1/2)0) )
= 2 sin%(0/2) =T Zsn0)
So Z cos(k) = real( Ze"“’) = %é?g - 1/2.

,‘“

10.3 Completeness and Convergence Theorems

N eln:.c einx
L (a Sy = "=Z_N<f (x)’ﬁ>ﬁ
= oM = + 5 Z<f(x S 1 fx) e e

But
{f(x),e™e™ = { f(x),cos(nx)dcos(nx) + {f(x),sin(nx)psin(nx)
+ #({f(x),cos(nx)sin(nx) — {f(x),sin(nx)ycos(nx))
and
{Sle)e™ ™ de™m* = ( f(x),cos(nx)cos(nx) + {f(x),sin{nx))sin(nx)
+ i({ f(x),sin(nx)>cos(nx) — { f(x),cos(nx)ysin(nx)

implies

sy = {f(x), 1) — + - Z {{f{x),cos(nx))cos(nx) + ¢ f(x),sin(nx))sin(nx)}.

n=1

e/ inx
®) /() = _Z<f( ) Jz?>}z? :

_ 1 _1_ cos(nx)\ cos(nx) sin(nx) sm(nx)}
f(x>—<f(x>,ﬁ>ﬁ Z{<f() v > 7 <f() ﬁ>ﬁ :
© <Ssin(mo) =f‘ Fx)singm) dox

==Jo f(x)sin(nx) dx + J“f (x)sin(nx) dx
o o
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= — Jof (—x)sin( —nx) dx + J“f (x)sin(nx) dx
n 0

Y

=1| f(x)sin(nx) dx +J“f (x)sin(nx) dx = 0 .
n 0

ro

(d) {(f(x),cos(nx)y =} [flx)cos(nx) +J“ f{x)cos(nx)
- [}

r

= of (x)cos(nx) +J“f (x)cos(nx) = 0 .
n 0

o

4. (a) Casel:n > 0 even. Then the Fourier series converges uniformly to f(x), since f

is continuous and f” is sectionally continuous.
Case 2: n > 0 odd. Then the Fourier series converges uniformly to f(x) for all
x € (—mn,n) and to zero for x = —n or 7.
Case 3: n < —1 odd. Then f(x) = x" is not square integrable and a Fourier
series does not exist.

(b) Fourier series converges pointwise to f(x) except at x = 7.

(c) f(x)is not square integrable so the Fourier series is not defined.

10.4 Functions of Bounded Variation and Fejér Theory

w
2.6 = Z ;L;e'"".

10.5 C(;mputation of Fourier Series

1. (a) fi(x) = x, —n < x < mis an odd function, so a, = 0.

. e . 1 cosnx sinnx|"
b,=~1 xsin(nx)=-| —x + —
2 7 n n o

2 2
== cos tn = —~— (1)
nn n

@ 9 _1n+l
iy =S AU

n=l

Lt
sin nx.

x 0<x<2m
Salx) = 227 + %)
Jfa(x) = filx — =) + = implies

(_ 1)n+l
n

) f20) = {

sin n(x — n)

fox) =7 + Zi

n=1

sin nx

m(__l)n+l )
=7+ ZHZl——-—n-—-—’(—l)"sinnx-:n—-ZZ "

n=1
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—_n<XxX<7n

¢) f5x) {
falx) = fo(x + 27)

a, 1 (" J 1x* =
— I xXax = —— = —
2 n)e w2, 2
2 (" 2] sinnx cosnx|”
a,=-—1 xcosnxdx =—|x +—
7)o n n n 0
0 1neven
Z[COS nn
= — 3 —_ = 4
non — n odd
nn

n 4 &cos(2n ~ 1)
1 = ) "
lmp ies f3(x) R A 17

o 21I(— 1)n+l 4 (1 _ (_ 1)")
2 ngl{ T

sin(rnx).
1" n n® } ()

4. (a) —= 4 22y Snln = Ux
@ 3t 2o

2 o
®) 3 + (% + 42( 121 cos(nx) + 22
p=g 1

n= |

1 42i sin(2n — 1)x

(_ n+l

sin(nx).

10.6 Some Further Convergence Theorems

1. The Fourier series for f converges absolutely and uniformly and may be differentiated
term by term to get the absolutely and uniformly convergent Fourier series for f'.

2. The Fourier series converges in mean to f, and by Theorem 9 for x # =+, the
Fourier series converges to f(x). The series may not be differentiated term by term.

4. Z( ( 1)" i(—l;l—)">sin(nx).

= nd’

o o 1
5. (b 2 4+ b?) 12 2 4 b2) 1/2
”.,Z,(“ = nla} + b2y~

u=q

“(fone - (]

© VI w12
< [Z n*a? + b,f):, [Z —5:, .

n=1

Both of these series converge.

10.7 Applications

1. fis continuous but not differentiable at x = J/2. Let g(x) be the half-interval cosine
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scries expansion for x. Then f(x) = h[g(? + ;) - %].So from Table 10-5 wehave
_ 4 & cos[(2n ~ )mx/l + n/2)]
76 = "[' Py @~ 17
& dh sin[(2n — l(nx/l)]
ISP G

_ l &, 4k sin[(2n — 1)7x/l)]
At time t = —,y(x, ) "; n(2n —_

,2‘1 2 (_ 411 sm[(Zn - 1)( 7 )] and

3l 1 3l 3l
CORFLCE 55) wo(x-3)]
= —1().
2. Attimet, y(x,t)is the sum of two functions 1/2f(x + ct), 1/2f(x — ct) which have max,
min or discontinuities at x = x, — ¢t + Im and x = x5 + ¢t + In respectively
where m, n are integers chosen such that0 < xo — ¢t + Im < land 0 < x4 + ct +

Cos nnt

In<g L.
4, For fixed 1, let T,(x) = T(x,z). Then
T(x) = 529 + [a,,e“"’“""’}cos(%l) .
n=1

2t 2 (!
Soag = TJ Tx) dx = TJ T(x,7) dx

Boare - 2
5. f(x1) = = + ar 5 = 3)' - niudefi cos(m;x) and 11m1tf(x 1) = 3

10.8 Fourier Integrals

1. Differentiate under the integral sign.
4. (a) From Exercise 1, 8f/0t = —k2«?f(a,t); so integrating, using f(e,0) = g() we get
Jlot) = glaje =
(b) Use the theorem stated in the text on convolutions to find the inverse Fourier
transform of f(a,t), together with the fact about the Fourier transform of the
Gaussian stated on p. 397,

10.9 Quantum Mechanical Formalism

1. {ABY*x,y> = (x,ABy) = {A*x,By) = {(B*A*x,y) implies
{((ABY* — B*A*)x,y> = 0 for all x, y implies (AB)* = B*4*,
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2. Itis enough to show {Av,v;> = {v,4v;> where {v;,. . ..U} is an orthonormal basis.
But (Av,vp> = (37| vt = 2o GOt = ag = ay = Y0 b day =
(v.,Z;( 1ak_;vk> = (v, Avp.

3. (A = <A( > <w,mn>q»,.), > <w,mk>q»k>

n=1

= Zk W0 TP AP0 = Zk P> 1 AP

= Z,t(l/l)(pn)(l//t(pk)An((Pm(pk) = Z‘(Vlawn)‘z A’n N

The above would certainly be true in a finite dimensional space. In fact this is true in
general. The expectation of 4 is just the sum of the observables {1,} of 4 weighted
by the probability with which they can be observed when A4 operates on the state i

Exer'(?ises for Chapter 10 (at end of chapter)

1. If f}, f, € M* then for all g e M {af, + bfy,9> = al/1.9> + b{f2,9> = 0 implies
afy + bf, e M*. So M* is a subspace. Suppose f, — f in mean, {/,} e M*. Let
geM, then [{figd| = Kf = fo.0> + S| = K/ — S < IS = Sl gl = 0
as - 00 50 {f,g> = 0 implies f € M*.

e+ e sinh(n) & (—=1) (e‘"" + gminx
3. (a) cosh x = 3 = Tm 4T =am\ 2
h o0 —_— i
_ sin (1: Z; 1( _1)’ cos(ix) .
h o
Thus 7 coth(n) = ::)rfh((:) Zm p” cos(mz
N o ( 1)" )
=1 +n§l [1 in ( 1)
= 2
and so n coth(n) — 1 = Z T+
2 ("
(b) a, = — | cos(ax)cos(nx) dx
T Jo
2 2 sin(ax) [* 2 sin(an)
ag = — | cos(ax) dx = — =
7 Jo T a |p © a
a, = % cos(a + n)x + cos(a — n)x dx
Jo
_ 1fsin(a + n)n | sin(a — n)m
“r| a+n a-—n

¥

2 sinan) (—1)"

2a(— 1)"sin(a1z)] ~

a* — n? n

2

a* — n?
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13.

15.

16.

20.

N i 1 & (=1
implies cos ax = flr-lgl—ﬂ[w +2 Z a’(l — )nz cos(nx)]

a n=1

1 2
implies 7 cot(an) = — .
mplies o(a) a+,§‘1a2—n

AN = WA = 1L = 204000+ A

S NP = {fed = {Juf > + | 7))* (Schwartz inequality)
==L =1hL-1I

implies lj_x:nit A= 17 < liTit Ifs = flI = 0. The converse is false.
0, —1<€<x< =1+ 1272
. Let fi(x) = {2"", -1+ 122 xg ~1+ 12",
0 —1+1/2"“<x<1.
“f Z (ffl'k)% =fI*~ ‘Z, [{fs@i>* + 0 implies
k=0

2

1 = 3 <m0t + | = 3 croow| > 3 cinor imples
=0 = =
1717 > timit 3 [P = 3 <SP
@ k=0 =0

sin(nx)  sin(mx) ||*

NN
3 <sin(nx) sin(mx)>
NN

sin(mx) ||

/

AP rp) =

sin(nx)||*

Jn
<sm(mx) sm(nx)>
5

=1-0-0+1 n#m

implies d((,,0,,) = ﬁ, n # mand d(g,.@,) = 0.S0if S = {p,|n = 0,1,...) then
S is bounded by \/_ and if {¢, }f%o = S and limit d((p,,,‘,rp,u) = 0. Then there

existsa K, J such thatforallk > K, forallj > J, d((p,,, WPn,) < limpliesk = j = K,
soforalk > K, ¢, = ¢, Thus lzmltq;,,, = @, implies S is closed. Let {9, } =

{(p,,};',‘;(; subsequence. Then if i < j, d{@,,0,,) = ﬁ implies }i{nit d(@,,.0n) # 0-

So no subsequence can converge.

2n? & (nx) 2n + 1) .
§+%+zz<i$~>_< @ )sm(nx).

2 (" . n
—J sin(nx)sin(mx) =
T Jo




ANSWERS TO SELECTED EXERCISES 531

20", 2[x  cos(Zux) "
Case I: n = m; —f sin?(nx) = —[— + (21 ):, =1
7 Jo n| 2 dn |,

2 n
Case2:n # m;—J cos(n — m)x — cos(n + m)x dx
T Jo

0

2 sin{n — m)x  sin{n + m)x
T o n-—m n+m

o . 2 "

flx) = Z b, sin(nx) where b, = ;J S(x)sin(nx) .
n=1 0

= {\/2msin{nx) | n = 1,2,...} is complete for if f:[0,x] » R is square

mtegrable then we can extend ftoa square integrable odd function on [ —,7],

say. f Then f has a half-interval sine-series expansion namely flx) = Z;f‘: L b, sin(nx)

where
= —f Fx)sin(nx) d f fx)sin(nx) d

and

lf oo dx = 52

T Jn i=1
implies

3] SO dx = 752

, T Jo i=1

implies

flf(xlzdx—Z(\/' ) Z < —sm(nx>2
n=1 nw=l
Thus S is complete.

21. Let 4 = f — 5., B = 5,4, — 5, Then {s,,B) = 0 implies

ABy = Y Tonifod = IBI?

i=n+1
(B,A> = i l(ﬁ(/):)(fﬂ:J) = i ll(f,qn)lz = {B,B> = | B|*
. =pek i=n+

S0 LS = SusppS = Spupy =<4 — B, A~ B)
= (A4,4> — (4,B) — (B,4> + |B|?
= |41 — IB]* < |4]*
Thus |/~ 8,4, < IS — 5.]- We therefore have {|| f — s,/[}% a monotonically

decreasing sequence bounded from below by zero and from above by | /]| < + 0.
Solimit [/ — sl = glb{lS = sl |[n = 0,12, } < +o0.

23. if %f = zﬁ[ Y. hosp,re ™ — (’f)m,]

n=0
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©
= Poppe M Ep,

n=0

= Z <l/’osfl’n> e’ ‘E"‘MH((pn)
n=0

=H ( i <l/fo,<p,,>e"f"""¢n>

n=0
= H().
Also l/f(O xp.2) = 2% (l//m%)%(x,y, ) = o I H(Y(t,x,,2)) = Eb(t,x,p,2)

h th J J = dt implies In (¢ E, t + c(x,y,2), that
. = dt implies In W(t.x,p,2) = — NE
o Pt x,p,2) P Y ih Y

is, |//(t x,y,2) = e~ B "" “”') which implies e™ & H{g>#) = H(J(t,x,,2))
E, e Entlhgtx 2 and so H(e*¥™) = E, &™), that is, €, is an eigenfunction of
H implies e*¥* = ke, (x,y,z) where k is a constant. So

Pt y,z) = ke Eilig (x,y,2)  and o = Y0,x,0.2) = kex,y,2) .

24. Since H is symmetric,

d
=7 <UD

g _ (% oy
—<-67,H(l/f)> <H(l// >

= ZLCHU)HW + 1 CHODH) =

26. (a) No; ([4,8]W),0> = {AB(),0> — (BA().0>
= {Y,BA(0)y — {,AB(o))
= <II/,[B,AJ(U)>

So if [A,B] = [A,B] then [A,B] = [B,A] = ~[4,B] implies [4,8] =0
implies AB = BA. As an example let 4 = J, B = P,. Then J,P, # P,J, s0
[J,,P,] = hPz/i is not symmetric.

(b) Yes; <i[A.B]W).0> = K[A4.BIW)o>

= iKy,[B,A)o))
= <I/I,I[A,BJ(G')>
2r x—2r
30. feglx) =1 f(yglx ~ y)dy = Slx — wgwl—dw)

0 x



ANSWERS TO SELECTED EXERCISES 533

x+2n

=r Six — wyg(w) dw =f gw) S — w)dw

x—2n x

2n x+2n

glw)f(x ~ w) dw +f giw)f(x — w) dw

2n

=fog(w)f(x - w)dw +f

x 0

2 x

gw)f(x — w)dw +f gw) f(x — w)dw

0

=fog(w)f(x — w)dw +f

x 0

=f“mwvu—-de,

0

x . plux
and f % g(x) = Y (2ma,b, * /27) ——

relation. —o ﬁ
33. Choose M so that |f/(x)] < M on Jx,,b[ and on Ja,xo[. Then
sup D 1feie) = (e = sup D 1f(ris) = S
P

xpeP P

implies || / * g} = 8=® Z a?b? is Parseval’s

=sup( ) Sl = S@l+ 3, 1S - f(ﬁ)l)

xo& P \Pn[a,xo} Pnlxo,b]
=sup| D, ISEN Gy — )+ ), 10 Gy — T;))
xo0eP \Pnfa.x,] Prlxo.b]

where 7,0y < &<t T, <M <7

<SUP< Z Mty — 1) + Z Mty — Tt)) = M(b — a).

xoeP \ Pnla,xo0] Pn[xyb]

So fis of bounded variation on [a,b]. By the Dirichlet-Jordan theorem the Fourier
Sxo+) + flxo—)

series converges to f on [a,bJ\{x,} and to T atx

35. (a) Pointwise to f(x) for x # n, —7 and to zero for x = =, —x, and in mean.
(b) By Theorem 12, uniformly, pointwise, and in mean.
SJx+) + fix-)

3 and in mean.

(c) Pointwise to

(d) Pointwise to Joet) + flx=) ;_ Je) and in mean.
0, x<0

(e) f'(x) ={ ) implies [f'(x)) € 2z + 1 and [ is
2x sin(1/x) — cos(1/x), x>0

sectionally continuous. By Exercise 33 the Jordan-Dirichlet theorem applies.
Thus convergence is pointwise to -————~—-————f(x+) ;_ Jbx=) .
36. Use Parseval’s relation.
37. By Theorem 7, a = Yz [§sinxdx = 4/n, b = 2/n {§sin(2x)dx =0 and ¢ =
2/n {§sin(3x)dx = +4/3n. On [~—=nn], f(x) =1 an even function implies
a=b=c¢c=0.
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43, |h(x) — h,(x)|

- f[f(y)g(y) 9] dyl

rb

< || 170y — f(y)aay) dy
b

< | {F3e) — 7Wg) + 1S 0g.y) = S(0gp)} dy
b b

< | SO 1g(y) — gay) dy +J ) — L) g.) dy

Afblg = ga> + U = Slilgald
< I/Mlg = gl + 0 — Sl Hlgal
<IN lg = gall + 1S = Gllgs — gll + lgl) = 0 asn— oo,

44, (a) x sin x is an even function. So b, = 0 and

"

2 1
a, = nJ x sin(x) cos(nx) dx = ;J x[sin(n + 1)x — sin(n — 1)x] dx
[¢]

0

(cos(n — Ix cos(n + Dx\]* _ cos(n — In _ cos(n + 1)
n—1 n+1 o_ n—1 n+1
= n # 1
1 cos(Zx)\|™ 1
"(_ 1)11+12
mo— n#l
1
—E . n=1
o L . 2 cos(x) - &, (—1)"cos(nx)
implies aq = 2, implies x sin x = 773~ ZZ prasarnt

2 n
®)a, = ;J log(sin 1/2 x)cos(nx) dx
[¢]

L

4 /2
= —J log(sin x)cos(2nx) dx
TJo
! 4 n/2
Ifn=20,ay = ~—J log(sin x) dx .
. 7 Jo

n /2
NOWJ log(sin x) dx = ZJ log(sin 2x) dx
0 0
/2
= ZJ {log(2) + log(sin x) + log(cos x)} dx
0

/2

2
= n log(2) + ZJ log(sin x) + ZJ log(cos x) dx .
[¢] [¢]
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/2 n n
Butf log(cos x) dx =f log<cos<x - E)) =f log(sin x) dx
0 nj2 2 n/2

0

=fo log(sin(m — x))(—dx) = —f log(sin x) dx

n/2 nj2
nl2
=f log(sin x) dx .
0
Thus
w2 nl2
2] log(sin x) dx = = log(2) + 4] log(sin x) dx
0 0
implies ’
/2 7
i J log(sin x) dx = —Elog(Z)
T 0

implies ag = —2 log(2) .

Ifn#0,
o = 4 {log(sin x)sin(2nx)
" n 2n

0 2n Jo sin(x)

w21 "2 cos(x)sin(2nx) } '
—_————dX}.

The first term is zero because

limit log(sin x)sin(2nx) limit log(sin x) lim cos x/sin x
imit ~————e. = limit ————— = limi
x-+0 2n x~0 2nfsin(2nx)  =~o [2n/sin*(2nx)] - 2n cos(2nx)
.. sin?(2nx) . . 2nsin(2Znx)cos(2nx)
= limit——— = limit —————— =
x-0 4n’sinx  x-0 4n*cos x
So
1 f ™2 sin(2n + Dx + sin(@n — 1)x
a, = — T dx .
nn o sin x
However we can use Exercise 6, p. 353 to deduce a, = —1/xn, so

log(sin x/2) = ~logz — Z ~C0s X .

49 _ 4 & cos(2nx)
) Isin x| = nqdn? — 1’
. 2 4§ cos(O 4 & 1
=il =2 - 25 o = L
So
1_g 1
2 44
CLfm\] 2 4e (-
1= fsin 2) T n;4n —-1
x x| © (1)t (1: 2 & cos(2n — I)x
52. = — —_— — — — B .
f®) =3+ (; s+ g n; @n =12
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57.

59.

62.

65.

We obtain the following theorem.
Theorem. Let f be continuous on [ —n,n], f(—n) = f(x) and let f* he continyous,
" sectionally continuous. Then the Fourier series for f

o
flx) = % + Z (a, cos(nx) + b, sin(nx))
n=1
may be differentiated term by term and we obtain

S(x) = i (—~na, sin(nx) + nb, cos(nx)) .

n=1
Furthermore this is the Fourier series of f'.

Proof: Theorem 14 shows that the Fourier series for both f and f’ converge
absolutely and uniformly. Hence by Corollary 3, we may differentiate the series for

. [ to get the series for /. The advantage of Theorem 13 is that we need only to know

that f” exists at a particular point x € [ —n,%}. f* need not be continuous.
Let
a
Sk Z‘ n‘
=11
Then by Schwarz’s inequality

k 1/2/ k 11/2
=lea,.l~~ (Zla,,P) (Z —2) <+,

because

ilanl2 <o
n=0

”

by Bessel’s inequality.

! = 12 8z
)t Z {-—-——— cos(nx) + (—3 - l)sin(nx)} .
o] n n

We want a function T{x,t) such that

oT T .
(a) E(x’t) 7 (x,t) 0<x<l t=0 (heat equation)
®) T(x0) = f(x) 0<x<l (initial condition)
(© TO.H) =T =0 ‘tz20 (boundary condition)

As usual we try T(x,t) = g(x)h(t). Then we must have g(x)i'(t) = g"(x)h(t). These
equations are true if, for a constant A, g(x) + Ag”(x) = 0, and A(t) + A¥(t) = 0.
Solutions of these equations satisfying the boundary conditions are g,(x) =
sin(nmx/l) and h,(t) = e~ n = 0, 1,2,. . .and where A, = n?z?*/[*. We use sine
and not cosine in order that T,(0,t) = T,(I,t) = g,(0),(t) = 0. Thus a solution with
fx) = sin(nnx/l) is given by T(x,t) = sin(nmx/l)e~""*". Since the equations are
linear and f(x) = Z“‘ b, sin{nnx/l) (half-mterval sine series) we expect that the
general solution with 1n1t1al condition f is given by

T(x,t) = Zb sm( ) B

n=1
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69. From Theorem 17, there exists a M such that |a,| < M. Using the identity
o1 X' = x(1 — x)for |x| < 1 we see for large ¢,

Z a,e” "R cog (n x)

ne=g

M Z {e-nzmz

e—n’lli’

—M'l—___—e—_;;,m**Oast—-»oo.







Index

Abel, Niels, 122
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Abel’s partial summation formula, 135
Abel’s test, 122
Absolute convergence, 271
Absolute maximum, 88
Absolute minimum, 88
Absolutely convergent series, 47
Accumulation point, 39
Addition axioms, 11
Adjoint, 406
Affine hyperplane, 21
Affine mapping, 155
Algebra, 120
Alternating series, 122, 141
Analysis, Fourier, 345
Analytic, 180
Anpgular momentum, 404
Antiderivative, 265
Apostol, T. M., 129, 473
Approximate identity, 415
Approximation
best affine, 155
best mean, 349
polygonal, 146
polynomial, 119
uniform, 119
Archimedian property, 13, 31
Area, 251, 258
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Arzela-Ascoli thcorem, 114, 152
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Asymptotic, 56
Atom, hydrogen, 405
Atomic sentences, 451
Autonomous system, 220
Average, 263, 358
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of choice, 455
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of infinity, 454
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order, 11

of pairing, 453

of power, 453

of specification, 453
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of unions, 453

Banach space, 112
Baire category theorem, 76
Barber, 450
Bartle, R, G,, 473
Basis, standard, 19
Bernstein polynomials, 119, 146
Bessel’s inequality, 348, 435
Best affine approximation, 155
Best mean approximation, 349
Between, 174
Bijection, 5
Bilinear map, 177
Binomial coefficient, 119
Bolzano-Weierstrass thcorem, 62
Boundary, 43

conditions, 384
Bounded, functions, 87, 111
Bounded sequence, 12
Bounded set, 62
Bounded variation, 363
Boundedness theorem, 86
Bourbaki, N., 476
Buck, R. C., 473
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CBS Inequality, 27
(C,r) summability, 125
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Cantor set, 77, 295, 296
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Cardinality, 6
Carslaw, H. S,, 473
Cartesian product, 2
Cauchy-Bunyakowski-Schwarz inequality,
21 '
Cauchy condensation test, 53
Cauchy criterion, 106, 273
Cauchy-Riemann Equations, 246
Cauchy-Schwarz inequality, 20, 337
Cauchy sequence, 14, 45, 112, 339
Cavalieri’s principle, 458 )
Cesaro, E., 363
Cesaro l-summable, 125
Chain rule, 168
Change
of coordinates, 223
of variables formula, 301, 306, 326
Changing variables, 168, 306
Characteristic function, 258
Characteristics, 387
Chernoff, P, 414
Choice, axiom of, 455
Churchill, R, V., 392, 475
Circle of convergence, 124
Class C7, 179
Classical Fourier series, 334, 346
Classical mechanics, 400
Closed interval, 13
Closed set, 37"
Closure, 41
Cluster point, 39
Coddington, E. A,, 436, 475
Coefficient '
binomial, 119
Fourier, 346
Collection, 453
Commutator, 404
Compact metric space, 100
Compact sets, 62 :
Comparison test, 47, 269, 271
Complement, 2
orthogdnal, 22, 434
Complete family, 446
Complete inner product space, 339
Complete metric space, 46
Complete normal space, 112
Complete order field, 12
Completeness, 112
axiom, 12
of exponential and trigonometric
systems, 355
of the trigonometric system, 444

Complex conjugate, 341
Complex numbers, 340, 341
Component, 69
Composite mapping theorem, 168
Composition, 5, 84

associative of; 8
Computation of Fourier series, 365
Condition

boundary, 384

initial, 384

Riemann’s, 255, 278
Conditional convergence, 271
Conjugate, complex, 341
Connected, 68, 90
Connectedness, 200
Connectives, logical, 451
Conservation of energy, 437
Constant, Planck’s, 404
Constant function, 175
Constrained extrema, 224
Content zero, 258
Continued fraction, 202
Continuity

of a function, 79, 80

joint, 85

piecewise, 261

sectional, 340

separate, 85, 99

uniform, 91, 100
Continuous linear map, 96
Continuous multilinear map, 97
Continuous path, 66
Contraction, 132

lemma, 230

mapping principle, 116

on a metric space, 143
Contrapositive, 23
Converge, 47
Convergence, 12

absolute, 271

circle of, 124

conditional, 271

of a distribution, 277

to a limit, 44

mean, 338

pointwise, 102, 103, 338, 358, 464

radius of, 124

of a sequence, 338

of a series, 338

simple, 102

uniform, 104, 338, 378
Converse, 23



Convex function, 331
Convex set, 175
Convolution, 399, 415
Coordinate change, 213
Coordinates
cylindrical, 312
polar, 169, 300, 309, 341
spherical, 169, 310
Correspondence, one-to-one, 5
Countable, 6
second, 144
Courant, 392
Courant, R,, 475
Courant-Hilbert, 146
Cover, 62, 259
open,. 62
Criterion, Cauchy, 106,273
Critical point, 183
non-degenerate, 223
index of, 223
Curve, 161
Cuts, Dedekind, 28
Cylindrical coordinates, 312

§-function, 275
d’Alembert’s solution, 395
Darboux’s theorem, 255, 277
Dedekind cuts, 28
Defined implicitly, 209
Definite

negative, 184

positive, 184

semi, 184
deMorgan’s laws, 8
Dense, 60, 76, 120, 332, 460

nowhere, 76
Denumerable, 6
Dependence, functional, 243
Derivative, 154

directional, 164

total, 158
Determinant, Jacobian, 204
Diagonal process, 131
Dieudonné, Jean, 231, 474, 476

Differentiability, conditions for, 163

Differentiable maps, 154
continuity of, 160
Differential, 158
equation, 116, 218
Differentiation
implicit, 211
of series, 108

INDEX

theorem, 380

under the integral sign, 324
Dini’s theorem, 140
Dirac, P. A. M, 275
Dirac delta function, 415
Dirac §-function, 145
Directional derivative, 164
Dirichlet, P. G., 122
Diriclilet-Jordan theorem, 363
Dirichlet problem, 390, 467
Dirichlet series, 298
Dirichlet test, 122, 295
Discontinuity, jump, 357
Discrete, 75
Distance, 11, 20, 337, 456

function, 32
Distributions, 276, 277, 364

convergence of, 277

theory of, 276 .
Distributive law, 6, 11
Domain, 4

Dominated convergence theorem, 298

Double series, 147
Drasin, D., 356
Duff, G. F. D,, 392, 476

e, 27
e-disc, 33
Economics, 183, 224
Eigenfunction, 402
Eigenvalue, 402, 436
Electrostatics, 390
Elementary matrices, 317
Elements, 448
Empty set, 1, 453
Energy, 392
conservation of, 437
operator, 403
Equations
Cauchy-Riemann, 246
differential, 116
heat, 388, 400
integral, 116
Laplace’s, 390, 399
of motion, 384
partial differential, 276
Schrodinger, 404
wave, 333, 383, 400
Equicontinuous, 114
Euclidean n-space, 18
Euler, L., 125, 432
Even, 368
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Existence theorem, 218
Expectation, 407
value, 403

Exponential and trigonometric systems, 355

Exponential Fourier series, 366
Extension, 5, 100, 356

axiom of, 452
Extrema, constrained, 224
Extreme point, 183

Family, orthonormal, 345
Fejér, L., 364
Fejér kernel, 419, 467
Feynman, R. P., 333, 401
Field, 11
complete ordered, 12
ordered, 11
Finite intersection property, 63
Finite set, 5
Finite subcover, 62
Fixed point, 116, 143, 230, 466
Flemming, W, 475
Formulas
change of variables, 301, 306, 326
Fourier inversion, 396
Liebnitz’, 378
Wallis’ product, 432
Fourier analysis, 345
Fourier coefficints, 346
Fourier integrals, 334, 395
Fourier inversion formula, 396
Fourier series
classical, 334, 346
computation of, 365
cosine, 367
exponential, 366
series on [~/ /], 367
trigonometric, 366

Fourier transform, 397 :

Fubini’s theorem, 302
Functjon, 3
bounded; 111
characteristic, 258
convex, 331
8, 275
Dirac §, 145, 415
distance, 32
of a function rule, 168
gamma, 294, 476
Gaussian, 322, 397
harmonic, 466, 467
Hermite, 335, 347

inverse, 4

Laguerre, 348

nowhere differentiable, 144

propositional, 449

simple, 145

space of continuous, 111

step, 358

uniformly continuous, 91
Functional dependence, 243
Fundamental solutions, 334

Fundamental theorem of calculus, 265, 286

Gamma function, 294, 476
Gaussian function, 322, 397
Gelbaum, B, R,, 144, 458, 474
Gelfand, I. M,, 475
General linear group, 231
Geometric series, 47
Geometry of gradients, 172
Gibbs’ phenomenon, 365, 373, 440
GL(n,R), 231
Gleason, A, M., 474
Glueing lemma, 98
Gradient, 159, 171

geometry of, 172
Greatest lower bound, 14
Gram-Schmidt process, 347
Graph, 4
Graves, L. M,, 473
Guiliver, R,, 150, 288

Half-interval cosine series, 367

Half-interval sine series, 367

Halmos, P., 447, 474

Hamiltonian, 403

Hardy, G. H., 27, 126, 473, 475

Harmonic, 203, 334, 390
functions, 466, 467
oscillator, 405

Hartman, P., 475

Heat equation, 388, 400

Heine’s theorem, 152

Heine-Borel theorem, 62

Heisenberg uncertainty principle, 407

Hermite, C,, 27

Hermite functions, 335, 347

Hermitian, 402

Hessian, 184

Hewitt, E., 461, 474

Hilbert, D, 392, 475

Hilbert space, 339, 435

Hobson, C. W, 473



Hoffman, M., 145
Hulder inequality, 148
Homeomorphic, 461
Homogeneous, 200
Hydrogen atom, 405
Hypergeometric series, 60
Hyperplane, affine, 21
Hurewicz, W., 475

Identity
approximate, 415
Lagrange’s, 30
mapping, 5
polarization, 29
Image
of coripact sets, 82
of connected sets, 82
inverse, 4
pre, 4
Imaginary part, 341
Implicit function theorem, 209, 233
Implicitly defined, 209
Improper integrals, 267
Increasing, 12
Independent, linearly, 343
Index of a critical point, 223
Inequality
Bessel’s, 348, 435
Cauchy-Schwarz, 20, 337
CBS, 20, 27
Hélder, 148
mean-value, 199
Minkowski, 148, 338
triangle, 11, 20, 21
Inferior limit, 29
Infimum, 14
Infinite set, 5
Infinitely deep well, 405
Infinity, axiom of, 454
Injtial condition, 384
Initial displacement problem, 384
Injection, 4
Inner product, 20, 336, 337
space, 21
Instability, 185
Instantaneous velocity, 161
Integers, positive, 2
Integrable, 252, 268, 269, 270
Riemann, 252, 255
Integral equations, 116
Integral test, 48
Integral transform, 397
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Integrals
Fourier, 334, 395
improper, 267
Lebesgue, 313
lower, 255
mean-value theorem for, 263
properties of the, 263
upper, 255
Integration
iterated, 299
of series, 108
by substitution, 301
Interchanging the order of integration and
summation, 109 '
Interior point, 36
Intermediate value theorem, 89
Intersection, 2, 453
Interval
closed, 13
open, 8, 13
Inverse function, 4
theorem, 205, 230
Inverse image, 4
Invertibility, local, 205
Irrational, 27
Isolated, 75
Isoperimetric problem, 432
Isotopic, 467
Iterated integration, 299
Iteration, 116

Jacobian determinant, 204
Jacobian matrix, 158
Jaunch, J. M, 476
Joint continuity, 85
Jordan measurable, 258
Jordan-Dirichlet theorem, 438
Jump, 89

discontinuity, 357

Kernel, 398
Fejér, 419, 467
Poisson, 466, 467
Kline, M, 313, 476
Knopp, K., 475
Kronecker’s lemma, 465

L7 340

Lagrange, J. L., 195

Lagrange identity, 30

Lagrange interpolation formula, 121
Lagrange interpolation polynomials, 146
Lagrange multiplier, 225
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Laguerre functions, 348
‘Laplace equation, 390, 399
Laplace transform, 398
Lang, S., 473, 474
Laws
de Morgan’s, §
distributive, 6, 11
parallelogram, 29
Least upper bound, 13
Lebesgue, H., 259, 412, 444, 461
Lebesgue covering lemma, 460
Lebesgue dominated convergence theorem,
109
Lebesgue integral, 313
Lebesgue theorem, 261
Leibnitz formula, 378
Leibnitz rule, 171
Legendre polynomials, 347, 434
Leighton, R, B,, 333, 401
Lemmas
contraction, 230
glueing, 98
Kronecker’s, 465
Lebesgue covering, 460
Morse, 222
. Riemann-Lebesgue, 416
Length, 19
Level contouss, 173
Levinson, N., 436, 475
I’'Hopital’s rule, 176
Limit, 12, 78
from the right, 80
inferior, 29, 76
one-sided, 80
point, 58
superior, 29, 76
unique; 56
Lindemann, 27
Line segment, 174 -
Linear system, 222
Linearly independent, 343
Lipschitz condition, 219
Lipschitz map, 98
Lipschitz property, 161
Local invertibility, 205
Local maximum, 183
Local minimum, 183
Locally path-connected, 75
Logic, 449
Logical connectives, 451
Loomis, L. H., 473
Lower bound, 14

Lower integral, 255

Lower semicontinuous function, 143
Lower sums, 251

Luxemburg, W. A. I,, 273, 412, 443

McAloon, K., 171, 180, 195, 458
Mackey, G, W, 476
Magnitude, 11
Map, 455

contintious linear, 96

continuous multilinear, 97

multilinear, 97

Lipschitz, 98
Matrices, elementary, 317
Maximum, 156

absolute, 88

local, 183
Mean convergence, 338
Mean-value

inequality, 199

theorem, 92, 156, 174

theorem for integrals, 263
Measurable, Jordan, 258
Measure

simultaneous, 405

theory, 314

zero, 259
Mechanics, 185, 400

classical, 400

quantum, 400
Members of a set, 1
Merzbacher, E,, 476
Method of successive approximations, 116
Metric space, 21

compact, 62, 100, 152

totally bounded, 152
Milnor, J,, 241, 327
Minimum, 156

absolute, 88

local, 183
Minkowski inequality, 148, 338
Momentum operator, 404
Monotone convergence theorem, 273, 288
Monotone sequence, 10
Morse lemma, 222
Motion, equation of, 384
Multilinear map, 97
Multiplication axioms, 11
Multiplier, Lagrange, 225

n-space, Euclidean, 18
n-tuples, 18
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Naylor, D,, 392, 476 Parseval’s theorem, 348
Negative Part
definite, 184 imaginary, 341
semidefinite, 184 real, 341
Nested sct property, 64 Partial derivative, 158
Non-decreasing, 12 Partial differential equations, 276
Non-degenerate critical point, 223 Partition, 251, 254
Norm, 19, 111, 337, 34] Path, 161
Normalized, 345 connected, 66
Normed space, 21, 112 connected, locally, 75
Nowhere dense, 76 connectedness, 200
Nowhere differentiable function, 144 continuous, 66
Number, complex, 340, 341 differentiable, 160
Number system, real, 12 Peixoto, M., 183

Perfect, 77

Periodic, 356

Permutation, 141

Phenomenon, Gibbs’, 365, 373, 440
, 27 .

Piecewise continuous, 262
Plancherel’s theorem, 398

Planck’s constant, 404

Plane, tangent, 165, 172

Plucked string, 394

Observable, 402

0Odd, 368

Olmstead, J. M., 144, 458, 474
O'Nan, M,, 153, 159, 215, 239, 317
One-sided limits, 80

One-to-o‘ne, 4

One-to-one correspondence, 5
Onto, 4

Open cover, 62

¢ Point

Open interval, 8, 13 accumulation, 39

Open set, 33 cluster, 39

Ogirator, 335 critical, 183, 223

ergglr,lm “04 extreme, 183

momentum, fixed, 116, 143, 230, 466
position, 404 interior, 36
unbounded, 402 limit Sé

Optimization, 173
Order axioms, 11 separate, 120

Ordered field, 11 e o :

Ordered pairs, 2, 455 Pomt;xé;se convergence, 102, 103, 338, 358,
Ordinary differential equations, 218 Poisson kernel, 466, 467

°”h°g°1“‘“l'e :115 32327 " Polar coordinates, 169, 300, 309, 341 -
compiements, 22, Polarization identity, 29

vectors, 345 L0
! : Polygonal approximation, 119, 146
Orthonormal family, 345 Polynomials ,

Orthonormal vectors, 343 Bernstein, 119, 146

gscﬂiatlon,h%l ic. 405 Lagrange interpolation, 146
scillator, harmonic, Legendre, 347, 434

Overshoot, 375 Porter, G. J., 53

Position operator, 404

saddle, 183

p-series test, 47 " Positive

Pair, ordered, 2, 455 definite, 184
Pairing, axiom of, 453 integers, 2
Paradox, 450 semidefinite, 184
Parallelogram law, 29 Power, axiom of, 453

Parseval’s relation, 370, 398 Power series, 124
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Pre-image, 4
Principle
Cavalieri’s, 458
Heisenberg uncertainty, 407
uncertainty, 405, 407
Probability, 400
Problems
Dirichlet, 390, 467
initial displacement, 384
isoperimetric, 432
Sturm-Liouville, 436
Process
diagonal, 131
Gram-Schmidt, 347
Product
Cartesian, 2
inner, 20, 336, 337
rule, 171
Projection, 215, 343, 345, 346
Propagation, wave, 383
Property
Archimedian, 13, 31
finite intersection, 63
nested set, 64
of the integral, 263
Propositional function, 449
Pythagoras theorem, 344

"
Quantifiers, 451
Quantum mechanics, 400

R, 12

Raabe’s test, 60

Radius of convergence, 124

Range, 4

Rank, 215

Ratio test, 47, 60

Real analytic, 180

Real number system, 12

Real part, 341

Rearrangement, 141, 143
theorems, 141

Rectangles, 254

Reductio ad absurdum, 449

Reed, Simon B,, 402

Refinement, 254

Reflection, 462

Reflexivity, 11

Repgular, 126

Repularity, 125

Relation, Parseval’s, 370, 398

Relative, 76
Relatively closed, 75
Relatively compact, 100
Remainder, Lagrange’s form, 195
Restriction, 5
Riemann, B,, 141, 313
Riemann condition, 255, 278
Riemann integrable, 252, 255
Riemann-Lebesgue lemma, 416
Riemann localization property, 463
Riemann sum, 255
Riesz-Fischer theorem, 438
Rolle’s theorem, 156, 197
Root test, 48, 60
Rosenlicht, M,, 474
Roxin, E, O,, 475
Royden, H. L., 261, 313, 474
Rudin, W, 333, 474
Rules

chain, 169

Leibnitz, 171

I'Hopital’s, 176

product, 171

Saddle point, 183, 224

Sands, M., 333, 401

Sard’s theorem, 327

Schrédinger equation, 404

Schwartz, 1., 316

Schwartz, L., 276, 277, 475

Second countable, 144

Second derivative, 178
symmetry of, 179

Second mean value theorem, 195

Sectionally continuous, 340

Segment, 174

Self-adjoint, 402

Semicontinuous functions, 143

Sentences, atomic, 451

" Separable, 144

continuity, 85
points, 120
Separately continuous, 99
Separation of variables, 384, 391
Sequence, 6, 44
Cauchy, 14, 45, 339
convergence of a, 338
monotone, 10
Series
absolutely convergent, 47
alternating, 122, 141
classical Fourier, 334, 346



computation of Fourier, 365
convergence of a, 338
differentiation of, 108
Dirichlet, 298
double, 147
exponential Fourier, 366
Fourier, 334, 346
Fourier cosine, 367
Fourier sine, 366
geometric, 47
half-interval cosine, 367
half-interval sine, 367
hypergeometric, 60
integration of, 108
power, 124
Tayler’s, 180
trigonometric, 448
trigonometric Fourier, 366
Set, 448
Cantor, 77, 295, 296
closed, 37
empty, 1, 453
finite, 5
images of compact, 82
*images of connected, 82
infinite, 5
members of, 1
open, 33
theory, 447
Shilov, G. E,, 475
Side conditions, 224
Simmons, G., 146, 474
Simple convergence, 102
Simple function, 145
Simultaneously measured, 405
Smale, S, 183
Smooth, 179
Soboley, S, L., 276, 476
Solutions
d’Alembert’s, 395
fundamental, 334
Space
Banach, 112
compact metric, 100
complete metric, 46
complete normed, 112
of continuous functions, 111
contraction on a metric, 143
Hilbert, 339, 435
inner product, 21
- metric, 21
normed, 21, 112

INDEX

Schwartz, 277

topological, 35
Specification, axiom of, 453
Spectral theorem, 403

Spherical coordinates, 169, 310

Spivak, M, 27, 475
Stability, 185
Standard basis, 19
Standing waves, 334
State, 402

Stein, E. M, 475

Step function, 358
Sternberg, S., 327, 473
Stone, M, H,, 120
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Stone-Weierstrass theorem, 119, 146, 152,

412

Straighten out, 213

domain, 214

range, 215
String

plucked, 394

vibrating, 333, 383
Stromberg, K., 461, 474
Sturm-Liouville problem, 436
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Superior, limit, 29, 76
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trigonometric, 355
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vector, 161
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Taylor’s formula, 177
Taylor’s set, 180
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axiom of, 453 -
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Uniqueness theorem, 219
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Lagrange multiplier, 224
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set, 447 orthonormal, 343
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