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PREFACE

This book is intended to serve as a text for the course in analysis that is usually
taken by advanced undergraduates or by first-year students who study mathe-
matics.

The present edition covers essentially the same topics as the second one,
with some additions, a few minor omissions, and considerable rearrangement. I
hope that these changes will make the material more accessible amd more attrac-
tive to the students who take such a course.

Experience has convinced me that it is pedagogically unsound (though
logically correct) to start off with the construction of the real numbers from the
rational ones. At the beginning, most students simply fail to appreciate the need
for doing this. Accordingly, the real number system is introduced as an ordered
field with the least-upper-bound property, and a few interesting applications of
this property are quickly made. However, Dedekind’s construction is not omit-
ted. It is now in an Appendix to Chapter 1, where it may be studied and enjoyed
whenever the time seems ripe.

The material on functions of several variables is almost completely re-
written, with many details filled in, and with more examples and more motiva-
tion. The proof of the inverse function theorem—the key item in Chapter 9—is
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simplified by means of the fixed point theorem about contraction mappings.
Differential forms are discussed in much greater detail. Several applications of
Stokes’ theorem are included.

As regards other changes, the chapter on the Riemann-Stieltjes integral
has been trimmed a bit, a short do-it-yourself section on the gamma function
has been added to Chapter 8, and there is a large number of new exercises, most
of them with fairly detailed hints.

I have also included several references to articles appearing in the American
Mathematical Monthly and in Mathematics Magazine, in the hope that students
will develop the habit of looking into the journal literature. Most of these
references were kindly supplied by R. B. Burckel.

Over the years, many people, students as well as teachers, have sent me
corrections, criticisms, and other comments concerning the previous editions
of this book. I have appreciated these, and I take this opportunity to express
my sincere thanks to all who have written me.

WALTER RUDIN
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THE REAL AND COMPLEX NUMBER SYSTEMS

INTRODUCTION

A satisfactory discussion of the main concepts of analysis (such as convergence,
continuity, differentiation, and integration) must be based on an accurately
defined number concept. We shall not, however, enter into any discussion of
the axioms that govern the arithmetic of the integers, but assume familiarity
with the rational numbers (i.e., the numbers of the form m/n, where m and n
are integers and n aé 0).

The rational number system is inadequate for many purposes, both as a
field and as an ordered set. (These terms will be defined in Secs. 1.6 and 1.12.)
For instance, there is no rational p such that p2 = 2. (We shall prove this
presently.) This leads to the introduction of so-called “irrational numbers”
which are often written as infinite decimal expansions and are considered to be
“approximated” by the corresponding finite decimals. Thus the sequence

1,1.4,1.41,1.414,1.4142,...

“tends to \/2.” But unless the irrational number \/2 has been clearly defined,
the question must arise: Just what is it that this sequence “tends to”?
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This sort of question can be answered as soon as the so-called “real
number system” is constructed.

1.1 Example We now show that the equation

(1) P’ = 2
is not satisfied by any rational p. If there were such a p, we could write p = m/n
where m and n are integers that are not both even. Let us assume this is done.
Then (1) implies
(2) mz = 2n’,

This shows that m2 is even. Hence m is even (if m were odd, m2 would be odd),
and so mz is divisible by 4. It follows that the right side of (2) is divisible by 4,
so that n2 is even, which implies that n is even.

The assumption that (1) holds thus leads to the conclusion that both m
and n are even, contrary to our choice of m and n. Hence (1) is impossible for
rational p.

We now examine this situation a little more closely. Let A be the set of
all positive rationals p such that p2 < 2 and let B consist of all positive rationals
p such that p2 > 2. We shall show that A contains no largest number and B con-
tains no smallest.

More explicitly, for every p in A we can find a rational q in A such that
p < q, and for every p in B we can find a rational q in B such that q < p.

To do this, we associate with each rational p > 0 the number

p2--2 2p+23 = ——---- -— -() q P PH PM
Then

_2(1>’--2)(4) 92-2-?;,'I53'5"

If p is in A then p2 — 2 < 0, (3) shows that q > p, and (4) shows that
qz < 2. Thus q is in A.

Ifp is in B then p2 - 2 > 0, (3) shows that 0 < q < p, and (4) shows that
qz > 2. Thus q is in B.

1.2 Remark The purpose of the above discussion has been to show that the
rational number system has certain gaps, in spite of the fact that between any
two rationals there is another: If r < s then r < (r + s)/2 < s. The real number
system fills these gaps. This is the principal reason for the fundamental role
which it plays in analysis.
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In order to elucidate its structure, as well as that of the complex numbers,
we start with a brief discussion of the general concepts of ordered set andfield.

Here is some of the standard set-theoretic terminology that will be used
throughout this book.

1.3 Definitions If A is any set (whose elements may be numbers or any other
objects), we write x e A to indicate that x is a member (or an element) of A.

If x is not a member of A, we write: x ¢ A.
The set which contains no element will be called the empty set. If a set has

at least one element, it is called nonempty.
If A and B are sets, and if every element of A is an element of B, we say

that A is a subset of B, and write A c: B, or B :» A. If, in addition, there is an
element of B which is not in A, then A is said to be a proper subset of B. Note
that A c: A for every set A.

If A <: B and B <: A, we write A = B. Otherwise A aé B.
I

1.4 Definition Throughout Chap. 1, the set of all rational numbers will be
denoted by Q.

ORDERED SETS
1.5 Definition Let S be a set. An order on S is a relation, denoted by < , with
the following two properties:

(i) lf x e S and y e S then one and only one of the statements

x<% x=% y<x
is true.
(ii) Ifx, y, zeS, ifx<yandy<z, then.x<z.
The statement “x < y” may be read as “x is less than y” or “x is smaller

than y” or “x precedes y”.
It is often convenient to write y > x in place of x < y.
The notation x s y indicates that x < y or x = y, without specifying which

of these two is to hold. In other words, x 5 y is the negation of x > y.

1.6 Definition An ordered set is a set S in which an order is defined.
For example, Q is an ordered set if r < s is defined to mean that s — r is a

positive rational number.

1.7 Definition Suppose S is an ordered set, and E c S. If there exists a
B e S such that x 5 B for every x e E, we say that E is bounded above, and call
B an upper bound of E.

Lower bounds are defined in the same way (with z in place of 5).
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1.8 Definition Suppose S is an ordered set, E <: S, and E is bounded above.
Suppose there exists an oz e S with the following properties:

(i) a is an upper bound of E.
(ii) If y < at then 7 is not an upper bound of E.

Then oz is called the least upper bound ofE [that there is at most one such
oz is clear from (ii)] or the supremum ofE, and we write

oz = sup E.
The greatest lower bound, or infimum, of a set E which is bounded below

is defined in the same manner: The statement
oz=infE

means that oz is a lower bound of E and that no B with B > oz is a lower bound
of E.

1.9 Examples

(a) Consider the sets A and B of Example 1.1 as subsets of the ordered
set Q. The set A is bounded above. In fact, the upper bounds of A are
exactly the members of B. Since B contains no smallest member, A has
no least upper bound in Q.

Similarly, B is bounded below: The set of all lower bounds of B
consists of A and of all r e Q with r S 0. Since A has no lasgest member,
B has no greatest lower bound in Q.
(b) If oz = sup E exists, then oz may or may not be a member of E. For
instance, let E1 be the set of all r e Q with r < 0. Let E, be the set of all
r e Q with r 5. 0. Then

sup E, ---= sup E2 = 0,

and0¢E1,0eE,.
(c) Let E consist of all numbers 1/n, where n =1, 2, 3, . . . . Then
sup E = 1, which is in E, and inf E = 0, which is not in E.

1.10 Definition An ordered set S is said to have the least-upper-boundproperty
if the following is true:

If E <: S, E is not empty, and E is bounded above, then sup E exists in S.
Example 1.9(a) shows that Q does not have the least-upper-bound property.
We shall now show that there is a close relation between greatest lower

bounds and least upper bounds, and that every ordered set with the least-upper-
bound property also has the greatest-lower-bound property. 1
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1.11 Theorem Suppose S is an ordered set with the least-upper-boundproperty,
B c S, B is not empty, and B is bounded below. Let L be the set of all lower
bounds of B. Then

oz = sup L
exists in S, and oz = inf B.

In particular, inf B exists in S.

Proof Since B is bounded below, L is not empty. Since L consists of
exactly those y e S which satisfy the inequality y 5 x for every x e B, we
see that every x e B is an upper bound of L. Thus L is bounded above.
Our hypothesis about S implies therefore that L has a supremum in S;
call it oz.

If y < or then (see Definition 1.8) y is not an upper bound of L,
hence y ¢= B. It follows that oz 5 x for every x e B. Thus oz e L.

If oz < B then B ¢ L, since oz is an upper bound of L.
We have shown that oz eL but B ¢L if B > oz. In other words, oz

is a lower bound of B, but B is not if B > oz. This means that oz = infB.

FIELDS

1.12 Definition A field is a set F with two operations, called addition and
multiplication, which satisfy the following so-called “field axioms” (A), (M),
and (D):

(A) Axioms for addition

(A1) Ifx e F and y e F, then their sum x + y is in F.
(A2) Addition is commutative: x + y = y + x for all x, y e F.
(A3) Addition is associative: (x + y) + z = x + (y + 2) for all x, y, z e F.
(A4) F contains an element 0 such that 0 + x = x for every x e F.
(A5) To every x e F corresponds an element --x e F such that

x +(—x) =0.

(M) Axioms for multiplication
(Ml) If x e F and y e F, then their product xy is in F.
(M2) Multiplication is commutative: xy = yx for all x, y e F.
(M3) Multiplication is associative: (xy)z = x(yz) for all x, y, z e F.
(M4) F contains an element 1 ¢ 0 such that lx = x for every x e F.
(M 5) If x e F and x at O then there exists an element 1/x e F such that

x - (1/x) = 1.
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(D) The distributive law
x(y+z)=xy+xz

holds for all x, y, z e F.

1.13

1.14

Remarks

(a) One usually writes (in any field)

x--ya;-,x+y+z,xyz,x2,x3,2x,3x,...

inplaceof
1x+(--y),x-(;),(x+y)+z,(xy)z,xx,xxx,x+x,x+x+x,....

(b) The field axioms clearly hold in Q, the set of all rational numbers, if
addition and multiplication have their customary meaning. Thus Q is a
field.
(c) Although it is not our purpose to study fields (or any other algebraic
structures) in detail, it is worthwhile to prove that some familiar properties
of Q are consequences of the field axioms; once we do this, we will not
need to do it again for the real numbers and for the complex numbers.

Proposition The axioms for addition imply the following statements.

(a) I/'x+y=x+ztheny=z.
(b) Ifx+y=xtheny=0.
(c) Ifx+y=0theny=-x.
(4) -(--X)=x-
Statement (a) is a cancellation law. Note that (b) asserts the uniqueness

of the element whose existence is assumed in (A4), and that (c) does the same
for (A5).

Proof If x + y = x + z, the axioms (A) give

y=0+y=(--x+x)+y=—x+(x+y)
=—x+(x+z)=(--x+x)+z=0+z=z.

This proves (a). Take z = 0 in (a) to obtain (b). Take z = -x in (a) to
obtain (c).
Since --x + x = 0, (c) (with --x in place of x) gives (d).
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1.15 Proposition The axiomsfor multiplication imply the following statements.

(a) IfxaéOandxy=xztheny=z.
(b) Ifx;éOandxy=xtheny=l.
(c) Ifx;-éOandxy=ltheny=l/x.
(d) Ifx a-‘=0 then 1/(1/x) =x.

The proof is so similar to that of Proposition 1.14 that we omit it.

1.16 Proposition Thefield axioms imply the following statements, for any x, y,
z e F.

(a) Ox = O.
(b) Ifx;-éOandy;éO thenxy;éO.
(v) (—x)y = —-(xy) = x(--r)-
(4) (—X)(-J/) = Xy-
Proof Ox + Ox = (0 + O)x = Ox. Hence l.l4(b) implies that Ox = O, and
(a) holds.

Next, assume x qt O, y qt O, but xy = O. Then (a) gives
1 1 1 l1 -A <-> (iv = <»> <->0 - AJ’ X J’ X

a contradiction. Thus (b) holds.
The first equality in (c) comes from

(—x)y + xy =-— (—X + x)y = 0y = 0.
combined with 1.l4(c); the other half of (c) is proved in the same way.
Finally,

(—X)( y) [X( y)]- [ (xy)]"-=XJ'
by (c) and l.14(d).

1.17 Definition An orderedfield is a field F which is also an ordered set, such
that

(i) x+y<x+zifx,y,zeFandy<z,
(ii) xy>0ifxeF,yeF,x>0,andy>O.

If x > O, we call x positive; if x < O, x is negative.
For example, Q is an ordered field.
All the familiar rules for working with inequalities apply in every ordered

field: Multiplication by positive [negative] quantities preserves [reverses] in-
equalities, no square is negative, etc. The following proposition lists some of
these.
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1.18 Proposition The following statements are true in every orderedfield.

(a) If x > O then —x < O, and vice versa.
(b) Ifx>Oandy<z then xy <xz.
(c) Ifx<Oandy<zthenxy>xz.
(d) If x ¢ O then x2 > O. In particular, 1 > O.
(e) IfO<x<ythenO<1/y<l/x.

Proof
(a) Ifx>OthenO=--x+x> —x+O,sothat --x<O. Ifx<Othen
O = —x + x < —x + O, so that —x > O. This proves (a).
(b) Since z >y, we have z --y >y — y = O, hence x(z —y) > O, and
therefore

xz=x(z—y)+xy>O+xy=xy.

(c) By (a), (b), and Proposition 1.16(c),

— [x(z -- J’)1=(-x)(Z — J’) > 0.
so that x(z — y) < O, hence xz < xy.
(d) If x > 0, part (ii) of Definition 1.17 gives x2 > 0. lf x < 0, then
—x > O, hence (—x)2 > 0. But x2 = (—x)2, by Proposition l.16(d).
Since 1 = 12, 1 > O.
(e) Ify > O and v 5 O, thenyv 5 0. Buty-(1/y)=1> O. Hence l/y > O.
Likewise, 1/x > O. If we multiply both sides of the inequality x < y by
the positive quantity (1/x)(1/y), we obtain 1/y < 1/x.

THE REAL FIELD

We now state the existence theorem which is the core of this chapter.

1.19 Theorem There exists an orderedfield R which has the least-upper-bound
property.

Moreover, R contains Q as a subfield.

The second statement means that Q c: R and that the operations of
addition and multiplication in R, when applied to members of Q, coincide with
the usual operations on rational numbers; also, the positive rational numbers
are positive elements of R.

The members of R are called real numbers.
The proof of Theorem 1.19 is rather long and a bit tedious and is therefore

presented in an Appendix to Chap. 1. The proof actually constructs R from Q.
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The next theorem could be extracted from this construction with very
little extra effort. However, we prefer to derive it from Theorem 1.19 since this
provides a good illustration of what one can do with the least-upper-bound
property.

1.20 Theorem

(a) If x e R, y e R, and x > O, then there is a positive integer n such that

nx > y.

(b) Ifx e R, y e R, andx < y, then there exists a p e Q such that x < p < y.

Part (a) is usually referred to as the archimedean property of R. Part (b)
may be stated by saying that Q is dense in R: Between any two real numbers
there is a rational one.

Proof
(a) Let A be the set of all nx, where n runs through the positive integers.
lf (a) were false, then y would be an upper bound of A. But then A has a
least upper bound in R. Put a = sup A. Since x > O, oz -- x < a, and
a -- x is not an upper bound of A. Hence a - x < mx for some positive
integer m. But then oz < (m + l)x e A, which is impossible, since a is an
upper bound of A.
(b) Since x < y, we have y — x > 0, and (a) furnishes a positive integer
n such that

n(y — x) > 1.

Apply (a) again, to obtain positive integers ml and mz such that ml > nx,
m2 > —nx. Then

“"12 < fix < "11.

Hence there is an integer m (with —m2 5 m 5 ml) such that

m - 1 5 nx < m.

If we combine these inequalities, we obtain

nx<m5 1 +nx<ny.

Since n > O, it follows that

x<m<
n y'

This proves (b), with p = m/n.
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We shall now prove the existence of nth roots of positive reals. This
proof will show how the difficulty pointed out in the Introduction (irration-
ality of ,/5) can be handled in R.
1.21 Theorem For every real x > 0 and every integer n > O there is one
and only one positive real y such that y" = x.

This number y is written 3/; or x1/".
Proof That there is at most one such y is clear, since O < y, < y, implies
J"i < yi-

Let E be the set consisting of all positive real numbers t such that
t" < x.

Ift=x/(1 +x) then O5 t < 1. Hence t" 5t<x. Thus teE, and
E is not empty.

Ift>1+x then t"2t>x, so that t¢E. Thus 1 +x is an upper
bound of E.

Hence Theorem 1.19 implies the existence of
y = sup E.

To prove that y" = x we will show that each of the inequalities y" < x
and y" > x leads to a contradiction.

The identity b” -- a" = (b -- a)(b"_1 + b""2a + ' - ' + a""‘) yields
the inequality

b" -- a" < (b — a)nb""
when O < a < b.

Assume y" < x. Choose h so that 0 < h < 1 and
-r'h<._...f_.____:..

n(y+l)" ‘
Puta=y,b=y+h. Then

(y+h)"-y"<hn(y+h)""1 <hn(y+1)"" <x--y”.

Thus (y + h)" < x, and y + h e E. Since y + h > y, this contradicts the
fact that y is an upper bound of E.

Assume y" > x. Put

...>"-xk-"yr,

Then 0 < k < y. If tz y -- k, we conclude that
y"-t"5y"—(y—k)"<kny""=y"—x.

Thus t" > x, and t¢ E. It follows that y - k is an upper bound of E.
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But y — k < y, which contradicts the fact that y is the least upper bound
of E.

Hence y" = x, and the proof is complete.

Corollary If a and b are positive real numbers and n is a positive integer, then
(ab)!/n = al/nbl/n‘

Proof Put oz = a‘/", B = bl/". Then

ab = ante" = B15)”,

since multiplication is commutative. [Axiom (M2) in Definition 1.12.]
The uniqueness assertion of Theorem 1.21 shows therefore that

(ab)1/" = aB = a1/"b1/".

1.22 Decimals We conclude this section by pointing out the relation between
real numbers and decimals.

Let x > 0 be real. Let no be the largest integer such that no 5 x. (Note that
the existence of no depends on the archimedean property of R.) Having chosen
no , n1, . . . , n,,_,, let nk be the largest integer such that

n+n‘+-~-+n"5x° 10 10* '
Let E be the set of these numbers

I1 It(5) no+1%)+---+fi (k=0,l,2,...).
Then x = sup E. The decimal expansion of x is
(6) no-n,n2n3'-'.

Conversely, for any infinite decimal (6) the set E of numbers (5) is bounded
above, and (6) is the decimal expansion of sup E.

Since we shall never use decimals, we do not enter into a detailed
discussion.

THE EXTENDED REAL NUMBER SYSTEM

1.23 Definition The extended real number system consists of the real field R
and two symbols, + oo and —oo. We preserve the original order in R, and
define

—w<x<+w
for every x e R.
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It is then clear that + co is an upper bound of every subset of the extended
real number system, and that every nonempty subset has a least upper bound.
If, for example, E is a nonempty set of real numbers which is not bounded
above in R, then sup E = + oo in the extended real number system.

Exactly the same remarks apply to lower bounds.

The extended real number system does not form a field, but it is customary
to make the following conventions:

(a) If x is real then
x xx+oo=+oo, x--oo=-oo, - - .- O.

+00 --00

(b) Ifx>0thenx'(+oo)==+oo,x-(--oo)=—oo.
(c) Ifx<0thenx-(+oo)=--oo,x~(-oo)=+oo.

When it is desired to make the distinction between real numbers on the
one hand and the symbols + oo and - oo on the other quite explicit, the former
are calledfinite.

THE COMPLEX FIELD

1.24 Definition A complex number is an ordered pair (a, b) of real numbers.
“Ordered” means that (a, b) and (b, a) are regarded as distinct if a aé b.

Let x = (a, b), y = (c, d) be two complex numbers. We write x = y if and
only if a = c and b = d. (Note that this definition is not entirely superfluous;
think of equality of rational numbers, represented as quotients of integers.) We
define

x+y=(a+c,b+d),
xy = (ac — bd, ad + bc).

1.25 Theorem These definitions of addition and multiplication turn the set of
all complex numbers into a field, with (O, 0) and (1, 0) in the role ofO and l.

Proof We simply verify the field axioms, as listed in Definition 1.12.
(Of course, we use the field structure of R.)

Let x = (a. b). y = (c. d). Z = (@.f)-
(A1) is clear.
(A2) x+y=(a+c,b+d)=(c+a,d+b)=y+x.
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(A3) (x+y)+z=(a+c,b+d)+(e,f)
=(a+c+e,b+d+f)
=utm+%c+ad+J)=x+{y+n.

(A4) x+O=(a,b)+(0,0)=(a,b)=x.
(A5) Put --x=(-a, -b). Thenx+(—x)=(0,0)=O.
(Ml) is clear.
(M2) xy = (ac — bd, ad + bc) = (ca - db, da + cb) = yx.
(M3) (xy)z = (ac ~— bd, ad + bc)(e, f)

= (ace —- bde ~— adf~— bcf, acf ~— bdf+ ade + bce)
= (a, b)(ce - df, cf + de) = x(yz).

(M4) lx = (1, O)(a, b) = (a, b) = x.
(M5) If x aé 0 then (a, b) aé (O, O), which means that at least one of the
real numbers a, b is different from 0. Hence a2 + b2 > 0, by Proposition
l.l8(d), and we can define

I ( a —b)
x a2+b2’ a2+b2

Then

. (l -b
"'"=‘“”’> L?"-|-—zF)=("°)=1'

(D) x(y+z)=(a,b)(c+e,d+f)
=(ac+ae-bd-bfiad+af+bc+be)
=(ac~—bd,ad+bc)+(ae-bf, af+ be)
=xy+xz.

1.26 Theorem For any real numbers a and b we have

(<1, 0) + (b, 0) = (a + b. 0). (<1.0)(l>.0) = (415.0)-
The proof is trivial.

Theorem 1.26 shows that the complex numbers of the form (a, O) have the
same arithmetic properties as the corresponding real numbers a. We can there-
fore identify (a, O) with a. This identification gives us the real field as a subfield
of the complex field.

The reader may have noticed that we have defined the complex numbers
without any reference to the mysterious square root of -1. We now show that
the notation (a, b) is equivalent to the more customary a + bi.

1.27 Definition i = (O, 1).
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1.28 Theorem i2= --1.

Proof :1 =(0, 1)(0, 1) =(-1,0) = -1.

1.29 Theorem If a and b are real, then (a, b) = a + bi.

Proof
a + bi = (a, O) + (b, 0)(O, 1)

= (a, 0) + (O, b) = (a, b).

1.30 Definition If a, b are real and z = a + bi, then the complex number
E = a — bi is called the conjugate of z. The numbers a and b are the real part
and the imaginary part of z, respectively.

We shall occasionally write
a = Re(z), b = Im(z).

1.31 Theorem If z and w are complex, then

(a) Z + W - z + w,
(b) zT1 = E - W,
(c) z + E = 2 Re(z), z - 2 = 2i Im(z),
(d) 22 is real and positive (except when z = 0).

Proof (a), (b), and (c) are quite trivial. To prove (d), write z = a + bi,
and note that zi = a2 + b2.

1.32 Definition If z is a complex number, its absolute value |z| is the non-
negative square root of 22; that is, |z| = (zE)‘/2.

The existence (and uniqueness) of |z| follows from Theorem 1.21 and
part (d) of Theorem 1.31.

Note that when x is real, then x = x, hence |x| =\/x2. Thus |x| = x
ifxz0, |x| = ~—xifx<O.

1.33 Theorem Let z and w be complex numbers. Then

(a) |z| >Ounlessz=O, |O| =0,
(b) lil = Ill.
(¢) lzwl = IZIIWI,
(d) |Rez|5|z|,
(e) |z+w|5|z|-l-|w|.
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Proof (a) and (b) are trivial. Put z = a + bi, w = c + di, with a, b, c, d
real. Then

|zw|2 = (ac — bd)2 + (ad+ be): = (a2 + b2)(c2 + dz) = |z|2|w|2

or |zw| 2 = (|z| |w|)2. Now (c) follows from the uniqueness assertion of
Theorem 1.21.

To prove (d), note that a2 5 a2 + b2, hence

|a| =\/a25\/£72‘???

To prove (e), note that Ew is the conjugate of zw, so that zw + Zw =
2 Re (zw). Hence

|z+w|2=(z+w)(E+W)=zE+zW+Ew+ww'
= |z|2+2Re(zW)+ |w|2
5 |z|2+2|zw'| + |w|2
= |zl’+?-lzllwl + |wl*=(lz| + |w|)*-

Now (e) follows by taking square roots.

1.34 Notation If xl, ..., x,, are complex numbers, we write
II

x1 +X2+ "' +JC,,=zJC_,-.

J=1

We conclude this section with an important inequality, usually known as
the Schwarz inequality.

1.35 Theorem If al, ..., a,, and bl, ..., b,, are complex numbers, then
n 2 n n

‘ Z9151 52 101122 lbr|2-j 1 )=1 ;=1

Proof Put A = Z|al-| 2, B = Zlbjl 2, C = Ea, bl (in all sums in this proof,
j runs over the values 1, . . . , n). IfB = O, then bl = = b,, = O, and the
conclusion is trivial. Assume therefore that B > 0. By Theorem 1.31 we
have

Z |Ba, - cb,|* = Z (Ba, - cb,)(Ba, - 5,)
=B2Zl“1l2 -BCZ“.»'51"BCZ51b1 +|Cl2Z|b1l2
=B2A --BlC|2
=B(AB~— |c|=).



16 PRINCIPLES OF MATHEMATICAL ANALYSIS

Since each term in the first sum is nonnegative, we see that
B(AB - |C|2) 2 0.

Since B > O, it follows that AB - | C | 2 2 O. This is the desired inequality.

EUCLIDEAN SPACES

1.36 Definitions For each positive integer k, let R" be the set of all ordered
k-tuples

X-'=(x1, X2, ...,JEk),

where xl, ..., xl are real numbers, called the coordinates of x. The elements of
R“ are called points, or vectors, especially when k > l. We shall denote vectors
by boldfaced letters. If y = (yl, . . . , yo) and if at is a real number, put

x+y=(-xl +yl>'-'>xk+yk)>

ocx=(axl, ...,ax,,)

so that x + y e R" and axeR". This defines addition of vectors, as well as
multiplication of a vector by a real number (a scalar). These two operations
satisfy the commutative, associative, and distributive laws (the proof is trivial,
in view of the analogous laws for the real numbers) and make R" into a vector
space over the realfield. The zero element of R“ (sometimes called the origin or
the null vector) is the point 0, all of whose coordinates are O.

We also define the so-called “inner product” (or scalar product) of x and
v by k

X ' y =‘_;x.-yr
and the norm of x by

|x| = (x - x)‘/2 = xl2)1/2.

The structure now defined (the vector space R“ with the above inner
product and norm) is called euclidean k-space.

1.37 Theorem Suppose x, y, z e R“, and oz is real. Then

(0) XI 20;
(b) ‘xl =0ifandonlyifx=0;
(c) vxl = lvllxl;
(d) lX'v| 5 lxllyl;
(8) tX+yl $|Xl +ly|;
(f) 1X"-Z|$lX-y|+lY"Z|-
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Proof (a), (b), and (c) are obvious, and (d) is an immediate consequence
of the Schwarz inequality. By (d) we have

|X+vl’=(X+r)'(X+y)
=x-x+2x'y+y'y
5 lXl’+2lX|lv| + lyl’
=(lX| + lrl)’.

so that (e) is proved. Finally, (f) follows from (e) if we replace x by
x-yandybyy-z.

1.38 Remarks Theorem 1.37 (a), (b), and (f) will allow us (see Chap. 2) to
regard R" as a metric space.

R‘ (the set of all real numbers) is usually called the line, or the real line.
Likewise, R2 is called the plane, or the complex plane (compare Definitions 1.24
and 1.36). In these two cases the norm is just the absolute value of the corre-
sponding real or complex number.

APPENDIX

Theorem 1.19 will be proved in this appendix by constructing R from Q. We
shall divide the construction into several steps.

Step 1 The members of R will be certain subsets of Q, called cuts. A cut is,
by definition, any set or c Q with the following three properties.

(I) or is not empty, and at aé Q.
(II) Ifpea,qeQ,andq<p,thenqea.
(III) Ifp e oz, then p < r for some r e a.
The letters p, q, r, ... will always denote rational numbers, and a, B, y, . ..

will denote cuts.
Note that (III) simply says that a has no largest member; (II) implies two

facts which will be used freely:
Ifpeaandq¢athenp<q.
Ifr¢aandr<sthens¢a.

Step 2 Define “oz < B” to mean: at is a proper subset of B.
Let us check that this meets the requirements of Definition 1.5.
If a < B and B < y it is clear that a < y. (A proper subset of a proper sub-

set is a proper subset.) It is also clear that at most one of the three relations

a<B a=B B<a
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can hold for any pair oz, B. To show that at least one holds, assume that the
first two fail. Then at is not a subset of B. Hence there is a p e a with p gt B.
If q e B, it follows that q < p (since p gt B), hence q e a, by (II). Thus B c oz.
Since B =r‘= a, we conclude: B < cx.

Thus R is now an ordered set.

Step 3 The ordered set R has the least-upper-bound property.
To prove this, let A be a nonempty subset of R, and assume that B e R

is an upper bound of A. Define y to be the union of all oz e A. In other words,
p e y if and only if p e oz for some oz e A. We shall prove that y e R and that
y = sup A.

Since A is not empty, there exists an ao e A. This ao is not empty. Since
oco c: y, 'y is not empty. Next, y c: B (since oz c B for every oz e A), and therefore
y as Q. Thus y satisfies property (I). To prove (II) and (III), pick p e y. Then
p e al for some al e A. If q <p, then q e oil, hence q e y; this proves (II). If
r e al is so chosen that r > p, we see that r e y (since ozl c y), and therefore y
satisfies (III).

Thus y e R.
It is clear that oz 5 7 for every oz e A.
Suppose 6 < y. Then there is an s e y and that s ¢ 5. Since s e y, s e oz

for some oz e A. Hence 5 < oz, and 6 is not an upper bound of A.
This gives the desired result: y = sup A.

Step 4 If oz e R and B e R we define oz + B to be the set of all sums r + s, where
r e oz and s e B.

We define 0* to be the set of all negative rational numbers. It is clear that
0* is a cut. We verify that the axioms for addition (see Definition 1.12) hold in
R, with 0* playing the role ofO.

(A1) We have to show that or + B is a cut. It is clear that or + B is a
nonempty subset of Q. Take r’ ¢ oz, s’ ¢ B. Then r’ + s’ > r + s for all
choices of r e oz, s e B. Thus r’ + s’ ¢ oz + B. It follows that oz + B has
property (I).

Pick pea +B. Then p=r+s, with rea, seB. If q<p, then
q—s<r, so q-sea, and q=(q-s)+seoc +B. Thus (II) holds.
Choose tea so that t>r. Thenp <t+s and t+sea +B. Thus (III)
holds.
(A2) or + B is the set of all r + s, with r e oz, s e B. By the same definition,
B+a is the set ofall s+r. Since r+s=s+r for all re Q, se Q, we
mwu+B=B+m
(A3) As above, this follows from the associative law in Q.
(A4) Ifreocandse0*,thenr+s<r,hencer+sea. Thusa +0* cot.
To obtain the opposite inclusion, pick p e oz, and pick r e a, r > p. Then
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p - reO*, and p = r +(p - r)ea + 0*. Thus at c a + 0*. We conclude
that oz + 0* = a.
(A5) Fix oz e R. Let B be the set of all p with the following property:

There exists r > 0 such that -p -- r 99 oz.

In other words, some rational number smaller than -p fails to
be in a.

We show that B E R and that a + B = 0*.
Ifsgta andp= -s-1, then —p— 1 qla, hencepeB. So B is not

empty. If q e a, then -q ¢ B. So B at Q. Hence B satisfies (I).
Pick peB, and pick r >0, so that --p -- r¢oc. If q <p, then

-q - r > -p -- r, hence -q - r ¢ oz. Thus q eB, and (II) holds. Put
t =p +(r/2). Then t >p, and —t - (r/2) = -p - r¢ oc, so that teB.
Hence B satisfies (III).

We have proved that B e R.
If reaand se B, then --s¢cx, hence r< -s, r+s<O. Thus

:1 + B C 0*.
To prove the opposite inclusion, pick v e 0*, put w = —v/2. Then

w > 0, and there is an integer n such that nw e on but (n + l)w ¢ oz. (Note
that this depends on the fact that Q has the archimedean property!) Put
p = —(n + 2)w. Thenp e B, since --p - w ¢ oc, and

v = nw + p e oz + B.
Thus 0* c oz + B.

We conclude that oz + B = 0*.
This B will of course be denoted by -oz.

Step 5 Having proved that the addition defined in Step 4 satisfies Axioms (A)
of Definition 1.12, it follows that Proposition 1.14 is valid in R, and we can
prove one of the requirements of Definition 1.17:

Ifa,B,yeRandB<y,thencx+B<a+y.

Indeed, it is obvious from the definition of + in R that oz + B c oz + y; if
we had oz + B = oz + )2, the cancellation law (Proposition 1.14) would imply
B = v-

It also follows that oz > 0* if and only if -0: < 0*.

Step 6 Multiplication is a little more bothersome than addition in the present
context, since products of negative rationals are positive. For this reason we
confine ourselves first to R+, the set of all oc e R with oz > 0*.

Ifcx e R* and B e R"’, we define cxB to be the set of all p such that p 5 rs
for some choice ofr e oc, s e B, r > 0, s > 0.

We define 1* to be the set of all q < 1.
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Then the axioms (M) and (D) of Definition 1.12 hold, with RI in place ofF,
and with 1* in the role of 1.

The proofs are so similar to the ones given in detail in Step 4 that we omit
them.

Note, in particular, that the second requirement of Definition 1.17 holds:
Ifa >O* and B > 0* then aB > 0*.

Step 7 We complete the definition ofmultiplication by setting a0* = 0*a = 0*,
and by setting

(--ot)(-B) ifa < 0*, B < 0*,
aB = --[(-a)B] ifa < 0*, B > 0*,

—[ot - (-B)] ifu > 0*, B < 0*.
The products on the right were defined in Step 6.

Having proved (in Step 6) that the axioms (M) hold in R", it is now
perfectly simple to prove them in R, by repeated application of the identity
y = -(— y) which is part of Proposition 1.14. (See Step 5.)

The proof of the distributive law

<10? + v) = all + av
breaks into cases. For instance, suppose a > 0*, B < 0*, B + y > 0*. Then
y = (B + )1) + (—B), and (since we already know that the distributive law holds
in R+)

¢v=<1(li+v)+¢'(-li)-
But a ' (-B) = -(aB). Thus

all + at = <10? + 1')-
The other cases are handled in the same way.

We have now completed the proof that R is an orderedfield with the least-
upper-bound property.

Step 8 We associate with each r e Q the set r* which consists of all p e Q
such that p < r. It is clear that each r* is a cut; that is, r* e R. These cuts satisfy
the following relations:

(Q) r* + 8* = (P + s)*.
(b) r*s* = (rs)*,
(c) r* < s* ifand only ifr < s.

To prove (a), choose p er* + s*. Then p = u + v, where u < r, v < s.
Hence p < r + s, which says that p e (r + s)*.
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Conversely, suppose pe(r +s)*. Then p < r + s. Choose t so that
2t=r+s—p,put

r'=r~—t,s'=s-t.

Then r’ e r*, s’ es*, andp = r’ + s’, so thatp e r* + s*.
This proves (a). The proof of (b) is similar.
Ifr < s then r es*, but r ¢ r*; hence r* < s*.
If r* < s*, then there is a pes* such that p ¢r*. Hence r 5p < s, so

that r < s.
This proves (c).

Step 9 We saw in Step 8 that the replacement of the rational numbers r by the
corresponding “rational cuts” r* e R preserves sums, products, and order. This
fact may be expressed by saying that the ordered field Q is isomorphic to the
ordered field Q* whose elements are the rational cuts. Of course, r* is by no
means the same as r, but the properties we are concerned with (arithmetic and
order) are the same in the two fields.

It is this identification of Q with Q* which allows us to regard Q as a
subfield ofR.

The second part of Theorem 1.19 is to be understood in terms of this
identification. Note that the same phenomenon occurs when the real numbers
are regarded as a subfield of the complex field, and it also occurs at a much
more elementary level, when the integers are identified with a certain subset of Q.

I t is a fact, which we will not prove here, that any two orderedfields with
the least-upper-bound property are isomorphic. The first part of Theorem 1.19
therefore characterizes the real field R completely.

The books by Landau and Thurston cited in the Bibliography are entirely
devoted to number systems. Chapter 1 of Knopp’s book contains a more
leisurely description of how R can be obtained from Q. Another construction,
in which each real number is defined to be an equivalence class of Cauchy
sequences of rational numbers (see Chap. 3), is carried out in Sec. 5 of the book
by Hewitt and Stromberg.

The cuts in Q which we used here were invented by Dedekind. The
construction of R from Q by means of Cauchy sequences is due to Cantor.
Both Cantor and Dedekind published their constructions in 1872.

EXERCISES
Unless the contrary is explicitly stated, all numbers that are mentioned in these exer-
cises are understood to be real.

1. If r is rational (r ¢ 0) and x is irrational, prove that r + x and rx are irrational.
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Prove that there is no rational number whose square is 12.
Prove Proposition 1.15.
Let E be a nonempty subset of an ordered set; suppose at is a lower bound of E
and B is an upper bound of E. Prove that at 5 B.
Let A be a nonempty set of real numbers which is bounded below. Let —A be
the set of all numbers —x, where x e A. Prove that

inf A = —-sup(—A).
Fix b > 1.
(a) If m, n, p, q are integers, n > 0, q > 0, and r = m/n =p/q, prove that

(bm)1ln =_. (bp)1/q.

Hence it makes sense to define b’ = (b"')"".
(b) Prove that b"" = b'b' if r and s are rational.
(c) If x is real, define B(x) to be the set of all numbers b‘, where t is rational and
t 3 x. Prove that

b’ = sup B(r)
when r is rational. Hence it makes sense to define

b" = sup B(x)
for every real x.
(d) Prove that b"*’ = b"b’ for all real x and y.
Fix b > 1, y >0, and prove that there is a unique real x such that b“ = y, by
completing the following outline. (This x is called the logarithm ofy to the base b.)
(a) For any positive integer n, b" — 1 2 n(b — 1).
(b) Hence b - 1 2 n(b"" — 1).
(c) If t >1 and n > (b — 1)/(t— 1), then b"" < t.
(d) If w is such that b" < y, then b“'*“"" < y for sufiiciently large n; to see this,
apply part (c) with t = y - b"“’.
(e) If b” > y, then b“""""’ > y for sufiiciently large n.
(f) Let A be the set of all w such that b“’ < y, and show that x = sup A satisfies
b‘ = y.
(g) Prove that this x is unique.
Prove that no order can be defined in the complex field that turns it into an ordered
field. Hint: -1 is a square.
Suppose z=a—l—bi, w=c—l—di. Define z<w if a<c, and also if a=c but
b < d. Prove that this turns the set of all complex numbers into an ordered set.
(This type of order relation is called a dictionary order, or lexicographic order, for
obvious reasons.) Does this ordered set have the least-upper-bound property?
Suppose z = a -l— bi, w = u -l- iv, and

._ |W|+u ”’ _ lWl—" 1”a-(—-—?—-- 9 b— -—'-‘*2 '
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Prove that 2' = w if v 2 0 and that (2')' = w if v 5 0. Conclude that every complex
number (with one exception!) has two complex square roots.
If z is a complex number, prove that there exists an r 2 0 and a complex number
w with lwl = 1 such that z = rw. Are w and r always uniquely determined by 2?
If zl, ..., z.. are complex, prove that

|zI+z=+'"+z.| 5 |z.| + |z=| +---+ lz.l.
If x, y are complex, prove that

|Wh*UW5M—yL
If z is a complex number such that lzl = 1, that is, such that zi = 1, compute

|1+zl'+ [1 —z|’.

Under what conditions does equality hold in the Schwarz inequality?
Suppose k Z3, x, y e R", |x— y| = d>0, and r >0. Prove:
(a) If 2r > d, there are infinitely many z e R" such that

[z—x| = lz-yl =r.
(b) If 2r = d, there is exactly one such z.
(c) If 2r < d, there is no such z.
How must these statements be modified if k is 2 or 1?
Prove that

h+vP+h—vP=flXV+flH’
if xeR" and ye R". Interpret this geometrically, as a statement about parallel-
ograms.
If k 2 2 and x e R", prove that there exists y e R“ such that y ark 0 but x -y = 0.
Is this also true if k = 1?
Suppose a e R", b e R". Find c e R" and r > 0 such that

|x—a| =2lx—bl
ifand only if lx - cl = r.
(Solution: 3c = 4b — a, 3r = 2|b — al .)

With reference to the Appendix, suppose that property (III) were omitted from the
definition of a cut. Keep the same definitions of order and addition. Show that
the resulting ordered set has the least-upper-bound property, that addition satisfies
axioms (Al) to (A4) (with a slightly different zero-element 1) but that (A5) fails.



2
BASIC TOPOLOGY

FINITE, COUNTABLE, AND UNCOUNTABLE SETS

We begin this section with a definition of the function concept.

2.1 Definition Consider two sets A and B, whose elements may be any objects
whatsoever, and suppose that with each element x of A there is associated, in
some manner, an element of B, which we denote byf(x). Thenf is said to be a
function from A to B (or a mapping of A into B). The set A is called the domain
off (we also say f is defined on A), and the elements f(x) are called the values
off. The set of all values off is called the range off.

2.2 Definition Let A and B be two sets and let f be a mapping of A into B.
If E c A,f(E) is defined to be the set of all elements f(x), for x e E. We call
f(E) the image of E underf In this notation, f(A) is the range off It is clear
thatf(A) <: B. Iff(A) = B, we say thatfmaps A onto B. (Note that, according
to this usage, onto is more specific than into.)

If E c: B, f'1(E) denotes the set of all x e A such that f(x) e E. We call
f '1 (E) the inverse image of E under j". If y e B,f ‘1(y) is the set of all x e A
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such that f(x) = y. If, for each y e B,f '1(y) consists of at most one element
of A, then f is said to be a 1-1 (one-to-one) mapping of A into B. This may
also be expressed as follows: f is a 1-1 mapping of A into B provided that
f(xl) ab f(x2) whenever xl aé x, , xl e A, xl eA.

(The notation xl ab x, means that xl and x2 are distinct elements; other-
wise we write xl = x, .)

2.3 Definition If there exists a 1-1 mapping of A onto B, we say that A and B
can be put in 1-1 correspondence, or that A and B have the same cardinal number,
or, briefly, that A and B are equivalent, and we write A ~ B. This relation
clearly has the following properties:

It is reflexive: A ~ A.
It is symmetric: If A ~ B, then B ~ A.
It is transitive: If A ~ B and B ~ C, then A ~ C.

Any relation with these three properties is called an equivalence relation.

2.4 Definition For any positive integer n, let J,, be the set whose elements are
the integers 1, 2, . . . , n; let J be the set consisting of all positive integers. For any
set A, we say:

(a) A is finite if A ~ J,, for some n (the empty set is also considered to be
finite).

(b) A is infinite if A is not finite.
(c) A is countable if A ~ J.
(d) A is uncountable if A is neither finite nor countable.
(e) A is at most countable if A is finite or countable.

Countable sets are sometimes called enumerable, or denumerable.
For two finite sets A and B, we evidently have A ~ B if and only ifA and

B contain the same number of elements. For infinite sets, however, the idea of
“having the same number of elements” becomes quite vague, whereas the notion
of 1-1 correspondence retains its clarity.

2.5 Example Let A be the set of all integers. Then A is countable. For,
consider the following arrangement of the sets A and J:

,5A ..""P ix.)“II-I .9’ Sp“1-. 3"3° _O\:4wk)I1*’
- - -3,...
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We can, in this example, even give an explicit formula for a function f
from J to A which sets up a 1-1 correspondence:

n-5 (n even),

to) -J n_1
z-'-5'-' (H Odd).

2.6 Remark A finite set cannot be equivalent to one of its proper subsets.
That this is, however, possible for infinite sets, is shown by Example 2.5, in
which J is a proper subset of A.

In fact, we could replace Definition 2.4(b) by the statement: A is infinite if
A is equivalent to one of its proper subsets.

2.7 Definition By a sequence, we mean a functionfdefined on the set J of all
positive integers. Iff(n) = x,, , for n e J, it is customary to denote the sequence
f by the symbol {x,,}, or sometimes by xl, x2 , xl, , The values off, that is,
the elements x,, , are called the terms of the sequence. If A is a set and if x,, e A
for all n e J, then {x,,} is said to be a sequence in A, or a sequence ofelements ofA.

Note that the terms xl, xo , x, , ... of a sequence need not be distinct.
Since every countable set is the range of a 1-1 function defined on J, we

may regard every countable set as the range of a sequence of distinct terms.
Speaking more loosely, we may say that the elements of any countable set can
be “arranged in a sequence.”

Sometimes it is convenient to replace J in this definition by the set of all
nonnegative integers, i.e., to start with 0 rather than with 1.

2.8 Theorem Every infinite subset ofa countable set A is countable.

Proof Suppose E c: A, and E is infinite. Arrange the elements x of A in
a sequence {x,,} of distinct elements. Construct a sequence {nl,} as follows:

Let nl be the smallest positive integer such that x,,l e E. Having
chosen nl, ..., n,,_.l (k = 2, 3, 4, ...), let no be the smallest integer greater
than n,,_l such that xl,,‘ e E.

Puttingf(k) = x,,k (k = 1, 2, 3, ...), we obtain a 1-l correspondence
between E and J.

The theorem shows that, roughly speaking, countable sets represent
the “smallest” infinity: No uncountable set can be a subset of a countable
set.

2.9 Definition Let A and Q be sets, and suppose that with each element oi of
A there is associated a subset of Q which we denote by E,,.
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The set whose elements are the sets E, will be denoted by {Ea}. Instead
of speaking of sets of sets, we shall sometimes speak of a collection of sets, or
a family of sets.

The union of the sets E, is defined to be the set S such that x e S if and only
if x e E, for at least one oz e A. We use the notation

(1) s= U5.-
as.-1

If A consists of the integers 1, 2, ..., n, one usually writes

(2) S = U Em
mi 1

or
(3) S=EluE2u---uE,,.

If A is the set of all positive integers, the usual notation is
Q

(4) S= l_)1E,,,.

The symbol oo in (4) merely indicates that the union of a countable col-
lection of sets is taken, and should not be confused with the symbols + oo, - oo,
introduced in Definition 1.23.

The intersection of the sets E, is defined to be the set P such that x e P if
and only if x e E, for every at e A. We use the notation

@ P=fia,
aeA

OI’

(6) P=(n)E,,,=ElnE,n-"nE,,,
m=1

O1‘

(1) P =m('j1E...
as for unions. If A n B is not empty, we say that A and B intersect; otherwise
they are disjoint.

2.10 Examples

(a) Suppose El consists of l, 2, 3 and E, consists of 2, 3, 4. Then
El U E, consists of 1, 2, 3, 4, whereas El n E, consists of 2, 3.
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(b) Let A be the set of real numbers x such that 0 < x 5 1. For every
x e A, let E, be the set of real numbers y such that 0 < y < x. Then

(i) E,,<:E,ifandonlyif0<x5z51;
UAEx =

(iii) QAE, is empty;

(i) and (ii) are clear. To prove (iii), we note that for every y > O, y ¢ E,
ifx <y. Henceyefixell Ex.

2.11 Remarks Many properties of unions and intersections are quite similar
to those of sums and products; in fact, the words sum and product were some-
times used in this connection, and the symbols 2 and 1'1 were written in place
of U and

The commutative and associative laws are trivial:

(8) AuB=-BOA; AnB=BnA.

(9) (AuB)uC=Au(BuC); (AnB)r)C=An(BnC).

Thus the omission of parentheses in (3) and (6) is justified.
The distributive law also holds:

(10) An(BuC)=(AnB)u(AnC).
To prove this, let the left and right members of (10) be denoted by E and F,
respectively.

Suppose xeE. Then xeA and xeBu C, that is, xeB or xe C(pos-
sibly both). Hence x e A n B or x e A n C, so that x e F. Thus E c: F.

Next, suppose xeF. Then xeA n B or x eA r) C. That is, xe A, and
xeBu C. HencexeA n (Bu C), so thatF<:E.

It follows that E =- F.
We list a few more relations which are easily verified:

(ll) A c: A U B,
(12) A n B c: A.

If 0 denotes the empty set, then

(13) AuO=A, AnO=O.

If A c B, then

QQ AuB=R AnB=A
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2.12 Theorem Let {En}, n = 1, 2, 3, ..., be a sequence of countable sets, andput

(15) S = 6 En.
n 1

Then S is countable.

Proof Let every set E,, be arranged in a sequence {x,,,,}, k = 1, 2, 3, ...,
and consider the infinite array

 13 14 -
 E%t .

(16) 31 32 X33 X34 -
41 X42 X43 X44 -

in which the elements of E, form the nth row. The array contains all
elements of S. As indicated by the arrows, these elements can be
arranged in a sequence

(17) X11; X21» X12; X31» X22» X13; X41 , X32, X23, X14;

If any two of the sets E, have elements in common, these will appear more
than once in (17). Hence there is a subset T of the set of all positive
integers such that S~ T, which shows that S is at most countable
(Theorem 2.8). Since El c S, and El is infinite, S is infinite, and thus
countable.

Corollary Suppose A is at most countable, and, for every oz e A, B, is at most
countable. Put

r=Ua.
aeA

Then T is at most countable.
For T is equivalent to a subset of (15).

2.13 Theorem Let A be a countable set, and let B, be the set of all n-tuples
(al, . . . , do). Where ak e A (k = l, .. . , n), and the elements al, ..., a,, need not be
distinct. Then B, is countable.

Proof That Bl is countable is evident, since Bl = A. Suppose B,,_l is
countable (n = 2, 3, 4, ...). The elements of B, are of the form

(18) (b, a) (beB,,_l,aeA).

For every fixed b, the set of pairs (b, a) is equivalent to A, and hence
countable. Thus B, is the union of a countable set of countable sets. By
Theorem 2.12, B, is countable.

The theorem follows by induction.
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Corollary The set ofall rational numbers is countable.

Proof We apply Theorem 2.13, with n = 2, noting that every rational r
is of the form b/a, where a and b are integers. The set of pairs (a, b), and
therefore the set of fractions b/a, is countable.

In fact, even the set of all algebraic numbers is countable (see Exer-
cise 2).

That not all infinite sets are, however, countable, is shown by the next
theorem.

2.14 Theorem Let A be the set ofall sequences whose elements are the digits O
and 1. This set A is uncountable.

The elements of A are sequences like 1,0, 0, 1,0, 1, 1, 1, . . ..
Proof Let E be a countable subset of A, and let E consist of the se-
quences sl, so , so, . . . . We construct a sequence s as follows. If the nth
digit in s,, is 1, we let the nth digit of s be 0, and vice versa. Then the
sequence s difl"ers from every member of E in at least one place; hence
s it E. But clearly s e A, so that E is a proper subset of A.

We have shown that every countable subset of A is a proper subset
of A. It follows that A is uncountable (for otherwise A would be a proper
subset of A, which is absurd).

The idea of the above proof was first used by Cantor, and is called Cantor’s
diagonal process; for, if the sequences sl, so , so, are placed in an array like
(16), it is the elements on the diagonal which are involved in the construction of
the new sequence.

Readers who are familiar with the binary representation of the real
numbers (base 2 instead of 10) will notice that Theorem 2.14 implies that the
set of all real numbers is uncountable. We shall give a second proof of this
fact in Theorem 2.43.

METRIC SPACES
2.15 Definition A set X, whose elements we shall call points, is said to be a
metric space if with any two points p and q of X there is associated a real
number d(p, q), called the distance from p to q, such that

(a) d(p, q) > 0 ifp re q; d(p, P) = 0;
(b) 40>. q) = d(q. P);
(c) d(p, q) 5 d(p, r) + d(r, q), for any r e X.

Any function with these three properties is called a distance function, or
a metric.
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2.16 Examples The most important examples of metric spaces, from our
standpoint, are the euclidean spaces R", especially R‘ (the real line) and R2 (the
complex plane); the distance in R" is defined by

(19) d(X. v) = IX — vl (X. r E R")-
By Theorem 1.37, the conditions of Definition 2.15 are satisfied by (19).

It is important to observe that every subset Yof a metric space X is a metric
space in its own right, with the same distance function. For it is clear that if
conditions (a) to (c) of Definition 2.15 hold for p, q, r e X, they also hold if we
restrict p, q, r to lie in Y.

Th us every subset of a euclidean space is a metric space. Other examples
are the spaces ‘6(K) and .€f2(,u), which are discussed in Chaps. 7 and 11, respec-
tively.

2.17 Definition By the segment (a, b) we mean the set of all real numbers x
such that a < x < b.

By the interval [a, b] we mean the set of all real numbers x such that
a5x5b

Occasionally we shall also encounter “half-open intervals” [a, b) and (a, b];
the first consists of all x such that a 5 x < b, the second of all x such that
a<x5b

Ifa, < bl for i = 1, ..., k, the set of all points x == (xl, ..., x,,) in R" whose
coordinates satisfy the inequalities al 5 x,- 5 bl (1 5 i5 k) is called a k-cell.
Thus a l-cell is an interval, a 2-cell is a rectangle, etc.

If x e R" and r > O, the open (or closed) ball B with center at x and radius r
is defined to be the set of all y e R" such that ly - x| < r (or |y — x| 5 r).

We call a set E c R" convex if

).x+(1—).)yeE

whenever xeE, yeE, and 0 < A <1.
For example, balls are convex. For if |y -- x| < r, |z -- x| < r, and

0<).<l,wehave

l»1r+(1—»1)1—X| = l»1(r—X)+(1—»1)(l-X)|
5h|y-XI +(l —).)|z—x| <).r+(l--h)r
=r.

The same proof applies to closed balls. It is also easy to see that k-cells are
convex.
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2.18 Definition Let X be a metric space. All points and sets mentioned below
are understood to be elements and subsets of X.

A neighborhood of p is a set N (p) consisting of all q such that(4) .-
d(p, q) < r, for some r > 0. The number r is called the radius of N,.(p).

(5) A point p is a limit point of the set E if every neighborhood of p
contains a point q aé p such that q e E.

(c) If p e E and p is not a limit point of E, then p is called an isolated
point of E.

(d) E is closed if every limit point of E is a point of E.
(e) A point p is an interior point of E if there is a neighborhoodN ofp

such that N c: E.
(f) E is open if every point of E is an interior point of E.
(g) The complement of E (denoted by E‘) is the set of all points p e X

such that p ¢ E.
(h) E is perfect if E is closed and if every point of E is a limit point

of E.
(i) E is bounded if there is a real number M and a point q e X such that

d(p, q) < M for all p e E.
(j) E is dense in X if every point of X is a limit point of E, or a point of

E (or both).

Let us note that in R1 neighborhoods are segments, whereas in R2 neigh-
borhoods are interiors of circles.

2.19 Theorem Every neighborhood is an open set.

Proof Consider a neighborhood E =--= N,(p), and let q be any point of E.
Then there is a positive real number h such that

d(p, q) = r — h.

For all points s such that d(q, s) < h, we have then

d(p,s):§d(p,q)+d(q, s)<r—h +h =r,

so that s e E. Thus q is an interior point of E.

2.20 Theorem If p is a limit point of a set E, then every neighborhood of p
contains infinitely many points ofE.

Proof Suppose there is a neighborhood N of p which contains only a
finite number of points of E. Let ql, ...,q,, be those points of N r) E,
which are distinct from p, and put

r = min d(p, q,,,)
15m5n
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[we use this notation to denote the smallest of the numbers d(p, ql), ...,
d(p, q,,)]. The minimum of a finite set of positive numbers is clearly posi-
tive, so that r > 0.

The neighborhood N,(p) contains no point q of E such that q ab p,
so that p is not a limit point of E. This contradiction establishes the
theorem.

Corollary A finite point set has no limit points.

2.21 Examples Let us consider the following subsets of R2:

(a) The set of all complex 2 such that [2] < 1.
(b) The set of all complex 2 such that I2] 5 1.
(c) A nonempty finite set.
(d) The set of all integers.
(e) The set consisting of the numbers 1/n (n = 1, 2, 3, .. .). Let us note
that this set E has a limit point (namely, z = 0) but that no point of E is
a limit point of E; we wish to stress the difference between having a limit
point and containing one.
(f) The set of all complex numbers (that is, R2).
(g) The segment (a, b).
Let us note that (d), (e), (g) can be regarded also as subsets of R‘.
Some properties of these sets are tabulated below:

Closed Open Perfect Bounded
No No(<1)

(b) Yes
(c) Yes
(d) Yes
(e) No
(f) Yes
(a) N0

Yes Yes
No Yes Yes
No No Yes
No No No
No No Yes
Yes Yes No

No Yes
In (g), we left the second entry blank. The reason is that the segment

(a, b) is not open if we regard it as a subset of R2, but it is an open subset of R‘.

2.22 Theorem Let {E,} be a (finite or infinite) collection ofsets E, . Then

(20) (U 15.)‘ = Q (Es)-
Proof Let A and B be the left and right members of (20). If x e A, then
x ¢ U, E, , hence x ¢ E, for any oz, hence x e Effor every oz, so that x e (1 Ej.
Thus A c: B.
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2.23

Conversely, if x e B, then x e E: for every oz, hence x ¢ E, for any oz,
hence x ¢ L), Eo, so that x e (L), E,)°. Thus B c: A.

It follows that A = B.

Theorem A set E is open ifand only if its complement is closed.

Proof First, suppose E‘ is closed. Choose x e E. Then x ¢ E‘, and x is
not a limit point of E‘. Hence there exists a neighborhood N of x such
that E‘ r) N is empty, that is, N c: E. Thus x is an interior point of E,
and E is open.

Next, suppose E is open. Let x be a limit point of E‘. Then every
neighborhood ofx contains a point of E‘, so that x is not an interior point
of E. Since E is open, this means that x e E‘. It follows that E‘ is closed.

Corollary A set F is closed ifand only if its complement is open.

2.24

(21)

Theorem

(a) For any collection {Go} ofopen sets, L), G, is open.
(b) For any collection {Fo} ofclosed sets, fl, F, is closed.
(c) For anyfinite collection Gl, . . . , G, ofopen sets, Q}; l G, is open.
(d) For anyfinite collection Fl, ..., F, of closed sets, U1‘: l Fl is closed.

Proof Put G = U, Go. If x e G, then x e G, for some a. Since x is an
interior point of Gl,, x is also an interior point of G, and G is open. This
proves (a).

By Theorem 2.22,

<0 F->‘=I..1<Fi>»
and Ff is open, by Theorem 2.23. Hence (a) implies that (21) is open so
that Q, F, is closed.

Next, put H = (]l'=l Gl. For any x e H, there exist neighborhoods
N, of x, with radii rl, such that Nl c: Gl (i = 1, ..., n). Put

r =min (rl, ..., r,,),

and let N be the neighborhood of x of radius r. Then N <: G, for i = 1,
..., n, so that N c: H, and H is open.

By taking complements, (d) follows from (c):

(lpl F2) c =



BAsIc TOPOLOGY 35

2.25 Examples In parts (c) and (d) of the preceding theorem, the finiteness of
1 1

the collections is essential. For let G,, be the segment (— 5. 1;) (n = 1, 2, 3, ...).

Then G, is an open subset of R‘. Put G = (l,‘j°= l G,,. Then G consists of a single
point (namely, x = 0) and is therefore not an open subset of R‘.

Thus the intersection of an infinite collection of open sets need not be open.
Similarly, the union of an infinite collection of closed sets need not be closed.

2.26 Definition If X is a metric space, if E c X, and if E’ denotes the set of
all limit points of E in X, then the closure of E is the set E = E u E’.

2.27 Theorem IfX is a metric space and E c X, then

(a) E is closed,
(b) E = E ifand only ifE is closed,
(c) E c Ffor every closed set F c X such that E c: F.

By (a) and (c), E Is the smallest closed subset of X that contains E.
Proof
(a) Ifp e X and p ¢ E then p is neither a point of E nor a limit point of E.
Hence p has a neighborhood which does not intersect E. The complement
of E is therefore open. Hence E is closed.
(b) If E = E, (a) implies that E is closed. If E is closed, then E’ c: E
[by Definitions 2.l8(d) and 2.26], hence E = E.
(c) If F is closed and F 2 E, then F :5 F’, hence F 3 E’. Thus F 3 E.

2.28 Theorem Let E be a nonempty set of real numbers which is bounded above.
Let y = sup E. Then y e E. Hence y e E ifE is closed.

Compare this with the examples in Sec. 1.9.
Proof If y e E then y e E. Assume y ¢ E. For every h > 0 there exists
then a point x e E such that y - h < x < y, for otherwise y —- h would be
an upper bound of E. Thus y is a limit point of E. Hence y e E.

2.29 Remark Suppose E c: Y c: X, where X is a metric space. To say that E
is an open subset of X means that to each point p e E there is associated a
positive number r such that the conditions d(p, q) < r, q e X imply that q e E.
But we have already observed (Sec. 2.16) that Y is also a metric space, so that
our definitions may equally well be made within Y. To be quite explicit, let us
say that E is open relative to Y if to each p e E there is associated an r > 0 such
that q e E whenever d(p, q) < r and q e Y. Example 2.21(g) showed that a set
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may be open relative to Y without being an open subset of X. However, there
is a simple relation between these concepts, which we now state.

2.30 Theorem Suppose Y c X. A subset E of Y is open relative to Y if and
only ifE = Y n Gfor some open subset G of X.

Proof Suppose E is open relative to Y. To each p e E there is a positive
number rl, such that the conditions d(p, q) < rl,, q e Y imply that q e E.
Let Vl, be the set of all q e X such that d(p, q) < rl,, and define

G=U@.
peE

Then G is an open subset of X, by Theorems 2.19 and 2.24.
Since p e Vl, for all p e E, it is clear that E c G n Y.
By our choice of Vl,, we have Vl, n Y c E for every p e E, so that

G n Y c E. Thus E = G n Y, and one half of the theorem is proved.
Conversely, if G is open in X and E = G r) Y, every p e E has a

neighborhood Vl, c G. Then Vl, r) Y <: E, so that E is open relative to Y.

COMPACT SETS

2.31 Definition By an open cover of a set E in a metric space X we mean a
collection {Go} of open subsets of X such that E c U, Go.

2.32 Definition A subset K of a metric space X is said to be compact if every
open cover of K contains a finite subcover.

More explicitly, the requirement is that if {Go} is an open cover of K, then
there are finitely many indices al, ..., an such that

KcG,,l u":uG,,n.

The notion of compactness is of great importance in analysis, especially
in connection with continuity (Chap. 4).

It is clear that every finite set is compact. The existence of a large class of
infinite compact sets in R" will follow from Theorem 2.41.

We observed earlier (in Sec. 2.29) that if E c: Y c X, then E may be open
relative to Y without being open relative to X. The property of being open thus
depends on the space in which E is embedded. The same is true of the property
of being closed.

Compactness, however, behaves better, as we shall now see. To formu-
late the next theorem, let us say, temporarily, that K is compact relative to X if
the requirements of Definition 2.32 are met.
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2.33 Theorem Suppose K c: Y c X. Then K is compact relative to X if and
only ifK is compact relative to Y.

By virtue of this theorem we are able, in many situations, to regard com-
pact sets as metric spaces in their own right, without paying any attention to
any embedding space. In particular, although it makes little sense to talk of
open spaces, or of closed spaces (every metric space X is an open subset of itself,
and is a closed subset of itself), it does make sense to talk of compact metric
spaces.

Proof Suppose K is compact relative to X, and let {V,} be a collection
of sets, open relative to Y, such that K <: U, V,. By theorem 2.30, there
are sets G, , open relative to X, such that V, = Y n G,, for all oz; and since
K is compact relative to X, we have

(22) KcG,lu---uG,n

for some choice of finitely many indices al, ..., an. Since K c Y, (22)
implies

(23) KcV,lu-'-uV,”.

This proves that K is compact relative to Y.
Conversely, suppose K is compact relative to Y, let {G,,} be a col-

lection of open subsets of X which covers K, and put V, = Y n G,,. Then
(23) will hold for some choice of al, ...,a,,; and since V,<: G,, (23)
implies (22).

This completes the proof.

2.34 Theorem Compact subsets ofmetric spaces are closed.

Proof Let K be a compact subset of a metric space X. We shall prove
that the complement of K is an open subset of X.

Suppose p e X, p 92 K. If q e K, let V, and W, be neighborhoods ofp
and q, respectively, of radius less than -5-d(p,q) [see Definition 2.l8(a)].
Since K is compact, there are finitely many points ql, .. . , q,, in K such that

Kc Wllu---uW,ln=W.

If V = V,‘ n n Vqn, then V is a neighborhood of p which does not
intersect W. Hence Vc K‘, so that p is an interior point of K‘. The
theorem follows.

2.35 Theorem Closed subsets of compact sets are compact.

Proof Suppose F c: K c X, F is closed (relative to X), and K is compact.
Let {V,} be an open cover of F. If F‘ is adjoined to {V,}, we obtain an
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open cover Q of K. Since K is compact, there is a finite subcollection (D
of Q which covers K, and hence F. IfF‘ is a member of (D, we may remove
it from (D and still retain an open cover of F. We have thus shown that a
finite subcollection of {V,} covers F.

Corollary IfF is closed and K is compact, then Fn K is compact.

Proof Theorems 2.24(b) and 2.34 show that F n K is closed; since
F r) K c: K, Theorem 2.35 shows that F n K is compact.

2.36 Theorem If{K,} is a collection ofcompact subsets ofa metric space X such
that the intersection of every finite subcollection of {K,} is nonempty, then Q K,
is nonempty.

Proof Fix a member Kl of {K,} and put G, = Kj. Assume that no point
of Kl belongs to every-K,. Then the sets G, form an open cover of Kl;
and since Kl is compact, there are finitely many indices al, ..., oz, such
that Kl c G,l u U G,,. But this means that

Kl nK,l r) nK,n

is empty, in contradiction to our hypothesis.

Corollary If {K,} is a sequence of nonempty compact sets such that K, :> K,,+l
(n = 1, 2, 3, . . .), then Q? K, is not empty.

2.37 Theorem If E is an infinite subset of a compact set K, then E has a limit
point in K.

Proof If no point of K were a limit point of E, then each q e K would
have a neighborhood V, which contains at most one point of E (namely,
q, if q e E). It is clear that no finite subcollection of {Vll} can cover E;
and the same is true of K, since E c: K. This contradicts the compactness
of K.

2.38 Theorem If {In} is a sequence of intervals in R‘, such that In :> I,,+l
(n =1, 2, 3, .. .), then (T? I, is not empty.

Proof If I, = [a,,, b,,], let E be the set of all a,,. Then E is nonempty and
bounded above (by bl). Let x be the sup of E. If m and n are positive
integers, then

an S am+n s bm+n sbm!

so that x 5 b,,, for each m. Since it is obvious that a,,, 5 x, we see that
xeI,,, form =l,2,3,



2.39

BASIC TOPOLOGY 39

Theorem Let k be a positive integer. If {I,} is a sequence of k-cells such
that I, D I,+l(n = 1, 2, 3, ...), then fil° I, is not empty.

2.40

Proof Let I, consist of all points x = (xl, ..., xl,) such that
a,_l5xl5b,_l (l5j5k;n=1,2,3,...),

and put I,_l- = [a,_ll b,_l]. For each j, the sequence {I,,1.} satisfies the
hypotheses of Theorem 2.38. Hence there are real numbers xf(l 5 j 5 k)
such that

am-5x}'5b,_l (1 5j5k;n=l,2, 3,...).

Setting x"‘ = (xl, ..., xl,“), we see that x* e I, for n = l, 2, 3, The
theorem follows.

Theorem Every k-cell is compact.

Proof Let I be a k-cell, consisting of all points x = (xl, ..., xl,) such
that al 5xl- 5 bl (1 5j 5 k). Put

k 1/25 = (bl - a,)=} .
Then |x—y| 55, ifxeI,yeI.

Suppose, to get a contradiction, that there exists an open cover {G,,}
of I which contains no finite subcover of I. Put cl =(al- + bl)/2. The
intervals [al , cl] and [cl-, bl-] then determine 2" k-cells Q l whose union is I.
At least one of these sets Ql, call it Il, cannot be covered by any finite
subcollection of {G,,} (otherwise I could be so covered). We next subdivide
Il and continue the process. We obtain a sequence {I,} with the following
properties:

(Q) I3I13I23I33"';
(b) I, is not covered by any finite subcollection of {G,,};
(c) ifxeI,andyeI,,then |x—y| 52'"5.

By (a) and Theorem 2.39, there is a point x* which lies in every 1,.
For some a,x*eG,. Since G, is open, there exists r> 0 such that
|y - x*| < r implies that y e G,,. If n is so large that 2'"6 < r (there is
such an n, for otherwise 2" 5 6/r for all positive integers n, which is
absurd since R is archimedean), then (c) implies that I, c G,, which con-
tradicts (b).

This completes the proof.

The equivalence of (a) and (b) in the next theorem is known as the Heine-
Borel theorem.
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2.41 Theorem Ifa set E in R2 has one of the following three properties, then it
has the other two.’

(a) E is closed and bounded.
(b) E is compact.
(c) Every infinite subset ofE has a limit point in E.

Proof If (a) holds, then E c: I for some k-cell I, and (b) follows from
Theorems 2.40 and 2.35. Theorem 2.37 shows that (b) implies (c). It
remains to be shown that (c) implies (a).

If E is not bounded, then E contains points x, with

|x,|>n (n=1,2,3,...).

The set S consisting of these points x, is infinite and clearly has no limit
point in R2, hence has none in E. Thus (c) implies that E is bounded.

If E is not closed, then there is a point xo e R" which is a limit point
of E but not a point of E. For n = 1, 2, 3, ..., there are points x, e E
such that |x, — xo| < 1/n. Let S be the set of these points x,. Then S is
infinite (otherwise |x, — xo| would have a constant positive value, for
infinitely many n), S has xo as a limit point, and S has no other limit
point in R". For if yeR", y aé xo, then

lxn"'yl 2 lx0_yl '_ lxn_x0l

l l
Z lxo—)'l ";Z5lXo-Yl

for all but finitely many n; this shows that y is not a limit point of S
(Theorem 2.20).

Thus S has no limit point in E; hence E must be closed if (c) holds.

We should remark, at this point, that (b) and (c) are equivalent in any
metric space (Exercise 26) but that (a) does not, in general, imply (b) and (c).
Examples are furnished by Exercise 16 and by the space $2, which is dis-
cussed in Chap. ll.

2.42 Theorem (Weierstrass) Every bounded infinite subset of R2 has a limit
point in R2.

Proof Being bounded, the set E in question is a subset of a k-cell I c: R".
By Theorem 2.40, I is compact, and so E has a limit point in I, by
Theorem 2.37.
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PERFECT SETS

2.43 Theorem Let P be a nonempty perfect set in R". Then P is uncountable.

Proof Since P has limit points, P must be infinite. Suppose P is count-
able, and denote the points of P by xl, xl , xl, , .. . . We shall construct a
sequence {V,} of neighborhoods, as follows.

Let Vl be any neighborhood of xl. If Vl consists of all y e R" such
that |y — xll < r, the closure Z of Vl is the set of all y e R" such that
ly -X11 5 '-

Suppose V, has been constructed, so that V, r) P is not empty. Since
every point of P is a limit point of P, there is a neighborhood V,+l such
that (i) Zll c V,, (ii) x, qt T/',+l, (iii) V,+l r) P is not empty. By (iii),
V,+l satisfies our induction hypothesis, and the construction can proceed.

Put K, = I7, n P. Since I7, is closed and bounded, Z is compact.
Since x, ¢ K,+l, no point of P lies in fi‘l° K,. Since K, c: P, this implies
that (T? K, is empty. But each K, is nonempty, by (iii), and K, :> K,+l,
by (i); this contradicts the Corollary to Theorem 2.36.

Corollary Every interval [a, b] (a < b) is uncountable. In particular, the set of
all real numbers is uncountable.

2.44 The Cantor set The set which we are now going to construct shows
that there exist perfect sets in R‘ which contain no segment.

Let Eo be the interval [0, 1]. Remove the segment (ll, fr), and let El be
the union of the intervals

[0, 1] li. 1]-
Remove the middle thirds of these intervals, and let El be the union of the
intervals

I0: I3: I32]: 3]: I3: 1]-

Continuing in this way, we obtain a sequence of compact sets E, , such that
(a) El3E2DE33~-;
(b) E, is the union of 2” intervals, each of length 3'".

The set

P=("’)E,
j

is called the Cantor set. P is clearly compact, and Theorem 2.36 shows that P
is not empty.
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No segment of the form
3k+l 3k+2

(24) ("§§:"* "§;;"')»

where k and m are positive integers, has a point in common with P. Since every
segment (oz, B) contains a segment of the form (24), if

_, B—a3<6,

P contains no segment.
To show that P is perfect, it is enough to show that P contains no isolated

point. Let x e P, and let S be any segment containing x. Let I, be that interval
of E, which contains x. Choose n large enough, so that I, c: S. Let x, be an
endpoint of I, , such that x, ab x.

It follows from the construction of P that x, e P. Hence x is a limit point
of P, and P is perfect.

One of the most interesting properties of the Cantor set is that it provides
us with an example of an uncountable set of measure zero (the concept of
measure will be discussed in Chap. ll).

CONNECTED SETS

2.45 Definition Two subsets A and B of a metric space X are said to be
separated if both A n B and A n B are empty, i.e., if no point of A lies in the
closure of B and no point of B lies in the closure of A.

A set E c: X is said to be connected if E is not a union of two nonempty
separated sets.

2.46 Remark Separated sets are of course disjoint, but disjoint sets need not
be separated. For example, the interval [0, 1] and the segment (1, 2) are not
separated, since 1 is a limit point of (1, 2). However, the segments (0, 1) and
(1, 2) are separated.

The connected subsets of the line have a particularly simple structure:

2.47 Theorem A subset E of the real line R‘ is connected ifand only if it has the
following property: Ifx e E, y e E, and x < 2 < y, then 2‘ e E.

Proof If there exist x e E, y e E, and some 2 e (x, y) such that 2 ¢ E, then
E = A, u B, where

A,=En(—oo,2), B,=En(2,oo).
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Since x e A, and y e B, , A and B are nonempty. Since A, c (— oo, 2) and
B, <: (2, 00), they are separated. Hence E is not connected.

To prove the converse, suppose E is not connected. Then there are
nonempty separated sets A and B such that A u B = E. Pick x e A, y e B,
and assume (without loss of generality) that x < y. Define

2 = sup (A n [x, y]).
By Theorem 2.28, z e A; hence z ¢ B. In particular, x 5 z < y.
Ifz ¢A, it follows that x < 2 < y and z ¢E.
If z e A, then z ¢ B, hence there exists zl such that z < zl < y and

zl ¢B. Thenx<zl <yandzl¢E.

EXERCISES
1. Prove that the empty set is a subset of every set.
2. A complex number 2 is said to be algebraic if there are integers ao , ..., an , not all

zero, such that
aoz"-l-al2"" + + a,,_lz-l-a O.

Prove that the set of all algebraic numbers is countable. Hint: For every positive
integer N there are only finitely many equations with

"+1001 +la1| +'"+|a..| =N.
3. Prove that there exist real numbers which are not algebraic.
4. Is the set of all irrational real numbers countable?
5. Construct a bounded set of real numbers with exactly three limit points.
6. Let E’ be the set of all limit points of a set E. Prove that E’ is closed. Prove that

E and E have the same limit points. (Recall that E = Eu E'.) Do Eand E' always
have the same limit points?

7. Let A1, A; , A3 , . . . be subsets of a metric space.
(a) IfB,, = UL, Al, prove that B, = UL, Al, for n = 1, 2, 3,
(b) IfB = L)§’°,.l Al, prove that B D L)i’°..l Al.
Show, by an example, that this inclusion can be proper.

8. Is every point of every open set E C R2 a limit point of E? Answer the same
question for closed sets in R2.

9. Let E° denote the set of all interior points of a set E. [See Definition 2.18(e);
E° is called the interior of E.]
(a) Prove that E° is always open.
(b) Prove that E is open if and only if E° = E.
(c) If G ¢ E and G is open, prove that G C E°.
(d) Prove that the complement of E° is the closure of the complement of E.
(e) Do E and E always have the same interiors ?
(f) Do E and E° always have the same closures?
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10. Let X be an infinite set. For p e X and q e X, define

1 (ifp ¢ q)
d 9 = .(P q) l0 (Ifp == q).

Prove that this is a metric. Which subsets of the resulting metric space are open?
Which are closed? Which are compact?

11. For x e R‘ and y e R1, define

12

13.
14.

15

16

1-7O

18
19

20.

21

d.(-X. y) =(x—-y)’.
d.(x,y) = \/Ix-yl.
d3(x.y)=|x2-y2l.
d~(x.y)=l-X-Zrl.

lx—rld.(-X. y) = in-37'.

Determine. for each of these, whether it is a metric or not.
Let K ¢ R‘ consist of 0 and the numbers 1/n, for n = 1, 2, 3, . Prove that K is
compact directly from the definition (without using the Heine-Borel theorem).
Construct a compact set of real numbers whose limit points form a countable set.
Give an example of an open cover of the segment (0, 1) which has no finite sub-
cover.
Show that Theorem 2.36 and its Corollary become false (in R‘, for example) if the
word “compact” is replaced by “closed” or by “bounded.”
Regard Q, the set of all rational numbers, as a metric space, with d(p, q) -—- I p — ql.
Let E be the set of all p e Q such that 2 < p2 < 3. Show that E is closed and
bounded in Q, but that E is not compact. Is E open in Q?
Let E be the set of all x e [O. 1] whose decimal expansion contains only the digits
4 and 7. Is E countable? Is E dense in [0, 1]? Is E compact? Is E perfect?
Is there a nonempty perfect set in R‘ which contains no rational number?
(a) If A and B are disjoint closed sets in some metric space X, prove that they
are separated.
(b) Prove the same for disjoint open sets.
(c) Fix p e X, 8 > 0, define A to be the set of all q e X for which d(p, q) < 8, define
B similarly, with > in place of <. Prove that A and B are separated.
(d) Prove that every connected metric space with at least two points is uncount-
able. Hint: Use (c).
Are closures and interiors of connected sets always connected? (Look at subsets
of R2.)
Let A and B be separated subsets of some R“, suppose a e A, b e B, and define

p(t) = (1 - t)a + tb
forte R‘. Put A0 = p"(A), Bo = p“(B). [Thus t e Al, if and only if p(t) e A.]



22

25

26

27

3.

24.

28

29.
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(a) Prove that A0 and Bo are separated subsets of R‘.
(b) Prove that there exists to e (0, 1) such that p(to) ¢ A u B.
(c) Prove that every convex subset of R“ is connected.
A metric space is called separable if it contains a countable dense subset. Show
that R“ is separable. Hint: Consider the set of points which have only rational
coordinates.
A collection {V,} of open subsets of X is said to be a base for X if the following
is true: For every xe X and every open set G C X such that xe G, we have
x e V, C G for some oz. In other words, every open set in X is the union of a
subcollection of {V..}.

Prove that every separable metric space has a countable base. Hint: Take
all neighborhoods with rational radius and center in some countable dense subset
of X.
Let X be a metric space in which every infinite subset has a limit point. Prove that
X is separable. Hint: Fix 8 >0, and pick xl e X. Having chosen xl, , xl e X,
choose xl,, e X, if possible, so that d(x,, x,.,l)28 for i= 1, ...,j. Show that
this process must stop after a finite number of steps, and that X can therefore be
covered by finitely many neighborhoods of radius 8. Take 8 =- 1/n (n = 1, 2, 3, . . .),
and consider the centers of the corresponding neighborhoods.
Prove that every compact metric space K has a countable base, and that K is
therefore separable. Hint: For every positive integer n, there are finitely many
neighborhoods of radius 1/n whose union covers K.
Let X be a metric space in which every infinite subset has a limit point. Prove
that X is compact. Hint: By Exercises 23 and 24, X has a countable base. It
follows that every open cover of X has a countable subcover {G,,}, n = 1, 2, 3, . . . .
If no finite subcollection of {G,,} covers X, then the complement F. of Gl U - - - U G,,
is nonempty for each n, but Q F, is empty. If E is a set which contains a point
from each F, , consider a limit point of E, and obtain a contradiction.
Define a point p in a metric space X to be a condensation point of a set E C X if
every neighborhood of p contains uncountably many points of E.

Suppose E C R", E is uncountable, and let P be the set of all condensation
points of E. Prove that P is perfect and that at most countably many points of E
are not in P. In other words, show that P‘ r) E is at most countable. Hint: Let
{V,} be a countable base of R“, let W be the union of those V, for which E r) V,
is at most countable, and show that P = W‘.
Prove that every closed set in a separable metric space is the union of a (possibly
empty) perfect set and a set which is at most countable. (Corollary: Every count-
able closed set in R" has isolated points.) Hint: Use Exercise 27.
Prove that every open set in R‘ is the union of an at most countable collection of
disjoint segments. Hint: Use Exercise 22.
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30. Imitate the proof of Theorem 2.43 to obtain the following result:

If R“ = l_)i°F,,, where each F, is a closed subset of R“, then at least one F,
has a nonempty interior.

Equivalent statement: If G,, is a dense open subset of R“, for n = 1, 2, 3, .. . ,
then fl'l°G,, is not empty (in fact, it is dense in R").

(This is a special case of Baire’s theorem; see Exercise 22, Chap. 3, for the general
case.)



NUMERICAL SEQUENCES AND SERIES

As the title indicates, this chapter will deal primarily with sequences and series
of complex numbers. The basic facts about convergence, however, are just as
easily explained in a more general setting. The first three sections will therefore
be concerned with sequences in euclidean spaces, or even in metric spaces.

CONVERGENT SEQUENCES

3.1 Definition A sequence {p,} in a metric space X is said to converge if there
is a point p e X with the following property: For every s > 0 there is an integer
N such that n 2 N implies that d(p, , p) < s. (Here d denotes the distance in X.)

In this case we also say that {p,,} converges to p, or that p is the limit of
{p,} [see Theorem 3.2(b)], and we write p, —> p, or

lim p, = p.
ll-'00

If {p,} does not converge, it is said to diverge.
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It might be well to point out that our definition of “convergent sequence”
depends not only on {p,} but also on X; for instance, the sequence {I/n} con-
verges in R‘ (to 0), but fails to converge in the set of all positive real numbers
[with d(x, y) = |x — yl ]. In cases of possible ambiguity, we can be more
precise and specify “convergent in X” rather than “convergent.”

We recall that the set of all points p, (n = 1 , 2, 3, ...) is the range of {p,}.
The range of a sequence may be a finite set, or it may be infinite. The sequence
{p,,} is said to be bounded if its range is bounded.

As examples, consider the following sequences of complex numbers
(that is, X = R2):

(a) If s, = 1/n, then lim,_,,, s, = 0; the range is infinite, and the sequence
is bounded.

(b) lf s, =n2, the sequence {s,} is unbounded, is divergent, and has
infinite range.

(c) If s, = l + [(—- 1)”/n], the sequence {s,} converges to 1, is bounded,
and has infinite range.

(d) If s, = i", the sequence {s,} is divergent, is bounded, and has finite
range.

(e) If s, = 1 (n = 1, 2, 3, ...), then {sl,} converges to 1, is bounded, and
has finite range.

We now summarize some important properties of convergent sequences
in metric spaces.

3.2 Theorem Let {p,,} be a sequence in a metric space X.

(a) {p,} converges to p e X if and only if every neighborhood ofp contains
p, for all butfinitely many n.

(b) Ifp e X, p’ e X, and if{p,} converges to p and to p’, then p’ = p.
(c) If {p,} converges, then {p,} is bounded.
(d) IfE c X and ifp is a limit point of E, then there is a sequence {p,,} in E

such that p = lim p,.

Proof (a) Suppose p, —-> p and let V be a neighborhood of p. For
some s > 0, the conditions d(q, p) < s, q e X imply q e V. Correspond-
ing to this s, there exists N such that n 2. N implies d(p,, p) < 8. Thus
n .2 N implies p, e V.

Conversely, suppose every neighborhood of p contains all but
finitely many of the p,. Fix s > 0, and let V be the set of all q e X such
that d(p, q) < s. By assumption, there exists N (corresponding to this V)
such that p, e V if n ZN. Thus d(p,,p) < s if n ZN; hence p, ->p.



NUMERICAL SEQUENCES AND SERIES 49

(b) Let s > 0 be given. There exist integers N, N’ such that

n 2. N implies d(p,,,p) < 5-,

n z 1v' implies d(p, , p’) <
Hence if n 2 max (N, N’), we have

d(P. P’) $ d(P. P.) + d(P.. P’) < 8-
Since e was arbitrary, we conclude that d(p, p’) = 0.

(c) Suppose p, —> p. There is an integer N such that n > N
implies d(p,, , p) < 1. Put

r = max {ls d(p1>p)s ~ - - 9 d(pN>p)I°

Then d(p,,p)5rforn =- 1,2,3, .
(d) For each positive integer n, there is a point p, e E such that

d(p,,p)<1/n. Given s > 0, choose N so that Ne >1. If n > N, it
follows that d(p, , p) < s. Hence p, -—> p.

This completes the proof.

For sequences in R" we can study the relation between convergence, on
the one hand, and the algebraic operations on the other. We first consider
sequences of complex numbers.

3.3 Theorem Suppose {s,,}, {t,} are complex sequences, and lim,_,,, s,, = s,
lim,_,,, t, = t. Then

(a) lim (s, + t,,) = s + t;
lI"*(XJ

(b) lim cs, = cs, lim (c + s,) = c + s, for any number c;
ll'*® |l“'*G)

(c) lim s,,t, = st;
ll-PG)

1 l
(d) lim ;-=:_,provideds,aéO(n= 1,2, 3, ...), andsaéO.

Proof

(a) Given s > 0, there exist integers Nl, N2 such that

n2Nl implies |s,—s| <5,

, , s
nzN, implies |t,— t| <5-
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IfN = max (Nl, Nl), then n 2 N implies
|(s,+ t,)—(s+t)| 5 |s,—s| + |t,-1| <8.

This proves (a). The proof of (b) is trivial.

(c) We use the identity

(1) s,t, — st = (s, — s)(t, — t) + s(t, - t) + t(s, — s).

Given s > 0, there are integers Nl, N, such that
-.~

n 2 Nl implies ls, — s| < \/B,
n 2 N, implies It, - t| < \/B.

If we take N = max (Nl, Nl,), n Z N implies

l(-Y. — S)(t.. — t)| < 8.
so that

lim (s, -- s)(t, — t) = 0.

We now apply (a) and (b) to (1), and conclude that
lim (s,t, — st) = O.

I1-7(1)

(d) Choosing m such that ls, — s| < lls| if n .2 m, we see that

ls.| > ilsl (n 2 m)-
Given s > 0, there is an integer N > m such that n 2 N implies

ls. — -"l < H8128-
Hence, for n 2 N,

s,-s 2
— ~ — <——3\s,--s|<e.

s s s,s |sl

3.4 Theorem
k(a) Suppose x, e R (n =1, 2, 3, ...) and

x, = (al,, ..., al,).

Then {x,} converges to x = (al, ..., al,) if and only if

(2) lim all, = oil (1 5j 5 k).
lI"'PQ)
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(b) Suppose {xl,}, {y,} are sequences in R", {B,} is a sequence ofreal numbers,
and x, —> x, y, -> y, B, -> B. Then

lim (x, + y,) = x + y, lim x, - y, = x - y, lim B,x, = Bx.
n—>oo ll-PW II-PW

Proof

(a) If x, -> x, the inequalities

laj,n "" ayl S lxn _ xl,

which follow immediately from the definition of the norm in R", show that
(2) holds.

Conversely, if (2) holds, then to each s > 0 there corresponds an
integer N such that n 2 N implies

8 0

I011’,

Hence n 2 N implies
k 2 1/2

lxn_'xl =ljZ1|°‘1.i-“Jl l <3»

so that x, -—> x. This proves (a).
Part (b) follows from (a) and Theorem 3.3.

SUBSEQUENCES

3.5 Definition Given a sequence {p,}, consider a sequence {nl,} of positive
integers, such that nl <n, < no < Then the sequence {p,,} is called a
subsequence of {p,}. lf {p,l} converges, its limit is called a subsequential limit
Of {P..}-

It is clear that {p,} converges to p if and only if every subsequence of
{p,} converges to p. We leave the details of the proof to the reader.

3.6 Theorem

(a) If {p,} is a sequence in a compact metric space X, then some sub-
sequence of{p,} converges to a point of X.

(b) Every bounded sequence in R2 contains a convergent subsequence.
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Proof
(a) Let E be the range of {p,}. If E is finite then there is a p e E and a
sequence {nl} with nl < nl < no < ---, such that

pm =pn; = '2' =12:

The subsequence {pm} so obtained converges evidently to p.
If E is infinite, Theorem 2.37 shows that E has a limit point p e X.

Choose nl so that d(p, p,l) < 1. Having chosen nl, ..., nl._l, we see from
Theorem 2.20 that there is an integer nl > nl_.l such that d(p, p,,) < 1/i.
Then {p,,} converges to p.
(b) This follows from (a), since Theorem 2.41 implies that every bounded
subset of R“ lies in a compact subset of R".

3.7 Theorem The subsequential limits of a sequence {p,} in a metric space X
form a closed subset of X.

Proof Let E"' be the set of all subsequential limits of {p,} and let q be a
limit point of E"'. We have to show that q e E"'.

Choose nl so that p,l ¢ q. (If no such nl exists, then E"' has only
one point, and there is nothing to prove.) Put 6 = d(q, p,l). Suppose
nl, ..., nl_l are chosen. Since q is a limit point of E"', there is an x e E"‘
with d(x,q) < 2"'5. Since x e E"', there is an nl > nl..l such that
d(x, pm) < 2“5. Thus

d(q, p,,) 5 21 "'5
for i = 1, 2, 3, ... . This says that {pm} converges to q. Hence q e E"'.

CAUCHY SEQUENCES

3.8 Definition A sequence {p,} in a metric space X is said to be a Cauchy
sequence if for every e > 0 there is an integer N such that d(p, , p,,) < 1: if n 2 N
and m 2 N.

In our discussion of Cauchy sequences, as well as in other situations
which will arise later, the following geometric concept will be useful.

3.9 Definition Let E be a nonempty subset of a metric space X, and let S be
the set of all real numbers of the form ld(p, q), with .p e E and q e E. The sup
of S is called the diameter of E.
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If{p,} is a sequence in Xand ifEN consists ofthe points pl, , pm l,pN+, , . . . ,
it is clear from the two preceding definitions that {p,} is a Cauchy sequence
if and only if

3.10

3.11

lim diam EN = 0.
N-Poo

Theorem

(a) If E is the closure of a set E in a metric space X, then

diam E = diam E.

(b) If K, is a sequence of compact sets in X such that K, 3 K,+l
(n=l,2,3,...)andif

lim diam K, = 0,
fl-'P@

then fl‘{°K, consists of exactly one point.

Proof

(a) Since E c: E, it is clear that
diam E 5 diam E.

Fix s > 0, and choose p e E, q e E. By the definition of E, there are
points p’, q’, in E such that d(p, p’) < s, d(q, q’) < s. Hence

d(P. q) 5 d(p, P’) + d(P' q’) + d(q’. q)
< 2e + d(p', q’) 5 2s + diam E.

lt follows that _
diam E 5 2e + diam E,

and since s was arbitrary, (a) is proved.
(b) Put K = ()‘{°K,. By Theorem 2.36, K is not empty. If K contains
more than one point, then diam K > 0. But for each n, K, 3 K, so that
diam K, Z diam K. This contradicts the assumption that diam K, —>0.

Theorem

(a) In any metric space X, every convergent sequence is a Cauchy sequence.
(b) If X is a compact metric space and if {p,} is a Cauchy sequence in X,

then {p,} converges to some point of X.
(c) In R", every Cauchy sequence converges.

Note: The difference between the definition of convergence and
the definition of a Cauchy sequence is that the limit is explicitly involved
in the former, but not in the latter. Thus Theorem 3.1 l(b) may enable us
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to decide whether or not a given sequence converges without knowledge
of the limit to which it may converge.

The fact (contained in Theorem 3.11) that a sequence converges in
R" if and only if it is a Cauchy sequence is usually called the Cauchy
criterion for convergence.

Proof

(a) lf p, —> p and if s > 0, there is an integer N such that d(p, p,) < 8
for all n 2 N. Hence

d(P.. . P...) 5 d(P. . P) + d(P.P...) < 28
as soon as n 2 N and m 2 N. Thus {p,} is a Cauchy sequence.

(b) Let {p,} be a Cauchy sequence in the compact space X. For
N= 1, 2, 3, ..., let EN be the set consisting of pN, pN+l, pN,.,,
Then

(3) lim diam EN = 0,
N->00

by Definition 3.9 and Theorem 3.l0(a). Being a closed subset of the
compact space X, each EN is compact (Theorem 2.35). Also EN 3 EN+l,
so that E, 3 EN,l.

Theorem 3.10(b) shows now that there is a unique p e X which lies
in every EN.

Let s > 0 be given. By (3) there is an integer No such that
diam EN < s if N2 No. Since p e EN, it follows that d(p,q) < e for
every q e EN, hence for every q e EN. In other words, d(p, p,) < e if
n 2 No. This says precisely that p, -> p.

(c) Let {x,} be a Cauchy sequence in R". Define EN as in (b), with xl
in place of pl. For some N, diam EN < l. The range of {x,} is the union
of EN and the finite set {xl, ..., xN_l}. Hence {x,} is bounded. Since
every bounded subset of R“ has compact closure in R" (Theorem 2.41),
(c) follows from (b).

3.12 Definition A metric space in which every Cauchy sequence converges is
said to be complete.

Thus Theorem 3.11 says that all compact metric spaces and all Euclidean
spaces are complete. Theorem 3.11 implies also that every closed subset E ofa
complete metric space X is complete. (Every Cauchy sequence in E is a Cauchy
sequence in X, hence it converges to some p e X, and actually p e E since E is
closed.) An example of a metric space which is not complete is the space of all
rational numbers, with d(x, y) = Ix — yl.
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Theorem 3.2(c) and example (d) of Definition 3.1 show that convergent
sequences are bounded, but that bounded sequences in R" need not converge.
However, there is one important case in which convergence is equivalent to
boundedness; this happens for monotonic sequences in R‘.

3.13 Definition A sequence {s,,} of real numbers is said to be

r--\_:"‘ NP we
(a) monotonically increasing if s,, 5 s,,+1 (n = .);
(b) monotonically decreasing if s,, 2 s,,+1 (n = .).

The class of monotonic sequences consists of the increasing and the
decreasing sequences.

3.14 Theorem Suppose {s,,} is monotonic. Then {s,,} converges if and only if it
is bounded.

Proof Suppose s,, 5 s,,+1 (the proof is analogous in the other case).
Let E be the range of {s,,}. If {s,,} is bounded, let s be the least upper
bound of E. Then

s,,5s (n=1,2,3,...).
For every s > 0, there is an integer N such that

S — 3 < SN S S,

for otherwise s - s would be an upper bound of E. Since {s,,} increases,
n 2 N therefore implies

S'—8<S,,SS,

which shows that {s,,} converges (to s).
The converse follows from Theorem 3.2(c).

UPPER AND LOWER LIMITS

3.15 Definition Let {s,,} be a sequence of real numbers with the following
property: For every real M there is an integer N such that n 2 N implies
8,, 2 M. We then write

g»+m
Similarly, if for every real M there is an integer N such that n ZN implies
8,, 5 M, we write

s,,->-oo.
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It should be noted that we now use the symbol —> (introduced in Defini-
tion 3.1) for certain types of divergent sequences, as well as for convergent
sequences, but that the definitions of convergence and of limit, given in Defini-
tion 3.1, are in no way changed.

3.16 Definition Let {s,,} be a sequence of real numbers. Let E be the set of
numbers x (in the extended real number system) such that s,,k —->x for some
subsequence {snk}. This set E contains all subsequential limits as defined in
Definition 3.5, plus possibly the numbers + oo, — oo.

We now recall Definitions 1.8 and 1.23 and put

s"' = sup E,
s,,. = inf E.

The numbers s*, s,,, are called the upper and lower limits of {s,,}; we use the
notation

lim sup s,, = s*, lim inf s,, = s,,..

3.17 Theorem Let {s,,} be a sequence of real numbers. Let E and s* have the
same meaning as in Definition 3.16. Then s"' has the following two properties:

(a) s* e E.
(b) Ifx > s*, there is an integer N such that n 2 N implies s,, < x.

Moreover, s* is the only number with the properties (a) and (b).

Of course, an analogous result is true for s,,,.

Proof

(a) If s* = + 00, then E is not bounded above; hence {s,,} is not bounded
above, and there is a subsequence {snk} such that s,,k -—> + oo.

If s* is real, then E is bounded above, and at least one subsequential
limit exists, so that (a) follows from Theorems 3.7 and 2.28.

If s* = —oo, then E contains only one element, namely —oo, and
there is no subsequential limit. Hence, for any real M, s,, > M for at
most a finite number of values of n, so that s,, -> — oo.

This establishes (a) in all cases.
(b) Suppose there is a number x >s* such that s,, 2 x for infinitely
many values of n. In that case, there is a number y e E such that
y 2 x :> s*, contradicting the definition of s*.

Thus s* satisfies (a) and (b).
To show the uniqueness, suppose there are two numbers, p and q.

which satisfy (a) and (b), and suppose p < q. Choose x such that p < x < q.
Since p satisfies (b), we have s,, < x for n 2 N. But then q cannot satisfy (a).
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3.18 ' Examples
(a) Let {s,,} be a sequence containing all rationals. Then every real
number is a subsequential limit, and

lim sup s,, = +00, liminfs,, = —oo.
II-FGJ ll->1)

(b) Let s,, = (-1")/[1 + (1/n)]. Then

limsups,,=1, liminfs,,= -l.
n-mo |I"'>G)

(c) For a real-valued sequence {s,,}, lim s,, = s if and only if

lim sup s,, = lim inf s,, = s.
n->00 |I"'>G)

We close this section with a theorem which is useful, and whose proof is
quite trivial:

3.19 Theorem Ifs,, 5 t,, for n 2 N, where N is fixed, then

lim inf s,, 5 lim inf t,, ,
Il"'>€I> !l'*GJ

lim sup s,, 5 lim sup t,, .
ll-'>® n—>oo

SOME SPECIAL SEQUENCES

We shall now compute the limits of some sequences which occur frequently.
The proofs will all be based on the following remark: If 0 5 x,, 5 s,, for n 2 N,
where N is some fixed number, and if s,, ->0, then x,, ->0.

3.20 Theorem

1
(a) Ifp > 0, then lim --5 = 0.

7|-bwn

(b) Ifp > 0, then lim 3/}; = 1.

(c) lim 3/£= 1.

(d) Ifp > 0 and oz is real, then 61-3?)-5;, = 0.

(e) Iflxl < l,thenlimx"=0.
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Proof

(a) Take n > (1/s)‘/P. (Note that the archimedean property of the real
number system is used here.)
(b) 1r p> 1, put x,,={'/p— 1. Then x,,>0, and, by the binomial
theorem,

1+ "X. S (1 + X..)" =11.
so that

-1
0<x,,5-PL-Hn

Hence xn ->0. Ifp = l, (b) is trivial, and if 0 < p < 1, the result is obtained
by taking recipro_cals.
(c) Put x,, = {‘/n - 1. Then x,, 2 0, and, by the binomial theorem,

- l
n = (1 + x,,)" 2

Hence

05x,,5~/__2_ (n22).
n — 1

(d) Let k be an integer such that k > oz, k > 0. For n > 2k,

(1+p)">(;)p -5 >--
O O

k n(n-1)-"(n—k+l) k n"p"
/<1 P 2"k'

Hence
n“ 2"k! ¢_k

0 < (1 +11)" < —p7‘~~ n (n > 2k).

Since oc — k < 0, n°""‘ -—>0, by (a).
(e) Take Ol = 0 in (d).

SERIES

In the remainder of this chapter, all sequences and series under consideration
will be complex-valued, unless the contrary is explicitly stated. Extensions of
some of the theorems which follow, to series with terms in R“, are mentioned
in Exercise 15.
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3.21 Definition Given a sequence {an}! we use the notation

nip 0. (P s <1)
to denote the sum a,, + a,,+1 + + aq. With {an} we associate a sequence
{sn}, where

II

s,,= Zak.
k= 1

For {s,,} we also use the symbolic expression

or, more concisely,
(‘D

(4) Z 0..-
n=1

The symbol (4) we call an infinite series, or just a series. The numbers
s,, are called the partial sums of the series. If {s,,} converges to s, we say that
the series converges, and write

(D

Zia, = s.

The number s is called the sum of the series; but it should be clearly under-
stood that s is the limit of a sequence of sums, and is not obtained simply by
addition.

If {s,,} diverges, the series is said to diverge.
Sometimes, for convenience of notation, we shall consider series of the

form
oo<5) god..-

And frequently, when there is no possible ambiguity, or when the distinction
is immaterial, we shall simply write Ea, in place of (4) or (5).

It is clear that every theorem about sequences can be stated in terms of
series (putting a, = sl, and a,, = s,, - s,,..1 for n > 1), and vice versa. But it is
nevertheless useful to consider both concepts.

The Cauchy criterion (Theorem 3.11) can be restated in the following
form:

3.22 Theorem Ea, converges if and only iffor every s > 0 there is an integer
N such that

(6) Ea, 5s
k=n

#m2n2N.
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In particular, by taking m = n, (6) becomes

la..l s 8 (n 2 N)-
In other words:

3.23 Theorem IfEa, converges, then lim,,__,w an = O.

The condition a,, ->0 is not, however, sufiicient to ensure convergence
of Ea, . For instance, the series

°° 1
ngal;

diverges; for the proof we refer to Theorem 3.28.

Theorem 3.14, concerning monotonic sequences, also has an immediate
counterpart for series.

3.24 Theorem A series of nonnegative‘ terms converges if and only if its
partial sums form a bounded sequence.

We now turn to a convergence test of a different nature, the so-called
“comparison test.”

3.25 Theorem

(a) If |a,,[ 5 c,, for n 2 N0, where N0 is some fixed integer, and if Zc,,
converges, then Ea, converges.
(b) If a,, 2 d,, 2 0 for n 2 N0 , and if Ed, diverges, then Ea, diverges.

Note that (b) applies only to series of nonnegative terms a,,.

Proof Given s > 0, there exists N 2 No such that m 2 n 2 N implies

Z Ck S 3,
k=n

by the Cauchy criterion. Hence
M M I11

Ea. $2 lat! sietss.
k=n k=n k=n

and (a) follows.
Next, (b) follows from (a), for if Ea, converges, so must Ed, [note

that (b) also follows from Theorem 3.24].

1 The expression “ nonnegative ” always refers to real numbers.
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The comparison test is a very useful one; to use it efficiently, we have to
become familiar with a number of series of nonnegative terms whose conver-
gence or divergence is known.

SERIES OF NONNEGATIVE TERMS

The simplest of all is perhaps the geometric series.

3.26 Theorem If0 5 x < l, then
00 n 1

.3." " 1""?--- ii

If x 2 l, the series diverges.

Proof If x at 1,
,, 1 _ xn+1

S» = ,2, "" = "Tr? '
The result follows if we let n —> oo. For x = 1, we get

1 + 1 + 1 + ,

which evidently diverges.

In many cases which occur in applications, the terms of the series decrease
monotonically. The following theorem of Cauchy is therefore of particular
interest. The striking feature of the theorem is that a rather “thin” subsequence
of {an} determines the convergence or divergence of Ea".

3.27 Theorem Suppose a1 2 a2 2 a3 2 2 0. Then the series 2,311 an con-
verges if and only if the series

(7) Z 2"a2t.=a1+2a2+4a4+8a8+"'
lt=0

converges.

Proof By Theorem 3.24, it suffices to consider boundedness of the
partial sums. Let

s,,=a1+a2+---+a,,,
tk=a1+2a2+"'+2"a2t..
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Forn<2",

s,,5a1 +(a2 +a3)+ "'+(a2..+ +a2».+1_1)
5a1 +2a2 +"' +2"a;1.

=11“
so that

(8) s,, 5 t,,.
On the other hand, if n > 2",

s,,2 a1 +a2 +(a3 +a4) + + (azt.-1+1 + +a2».)
2 1}-a1 + a2 + 2a,, + +2""1a21.

= '2'tk>

so that
(9) 2s,, 2 t,,.

By (8) and (9), the sequences {s,,} and {tk} are either both bounded
or both unbounded. This completes the proof.

1
3.28 Theorem Z Z; converges ifp > 1 and diverges ifp 5 1.

Proof If p 5 0, divergence follows from Theorem 3.23. If p > O,
Theorem 3.27 is applicable, and we are led to the series

CO I oo
21¢ ._ = 2(1-r)k_

ego 2” ego

Now, 21"’ < 1 if and only if 1 - p < 0, and the result follows by com-
parison with the geometric series (take x = 21”’ in Theorem 3.26).

As a further application of Theorem 3.27, we prove:

3.29 Theorem Ifp > 1,

w 1<1“)
converges; ifP 5 1, the series diverges-

Remark “log n” denotes the logarithm of n to the base e (compare Exercise 7,
Chap. 1); the number e will be defined in a moment (see Definition 3.30). We
let the series start with n = 2, since log 1 = 0.
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Proof The monotonicity of the logarithmic function (which will be
discussed in more detail in Chap. 8) implies that {log n} increases. Hence
{1/n log n} decreases, and we can apply Theorem 3.27 to (10); this
leads us to the series

°° 1 °° 1 1 °° 111 2* - = 5- .2 W _,
( ) kg, 2"(log 2")" k; (k log 2)" (log 2)"k; k"

and Theorem 3.29 follows from Theorem 3.28.

This procedure may evidently be continued. For instance,
°° 1

( 2) .23 n log n log log n

diverges, whereas

~=> 1
( ) ,,;3n log n(log log n)2

converges.

We may now observe that the terms of the series (I2) differ very little
from those of (I3). Still, one diverges, the other converges. If we continue the
process which led us from Theorem 3.28 to Theorem 3.29, and then to (12) and
(13), we get pairs of convergent and divergent series whose terms differ even
less than those of (12) and (13). One might thus be led to the conjecture that
there is a limiting situation of some sort, a “boundary” with all convergent
series on one side, all divergent series on the other side--at least as far as series
with monotonic coefficients are concerned. This notion of “boundary” is of
course quite vague. The point we wish to make is this: No matter how we make
this notion precise, the conjecture is false. Exercises 11(b) and 12(b) may serve
as illustrations.

We do not wish to go any deeper into this aspect of convergence theory,
and refer the reader to Knopp’s “Theory and Application of Infinite Series,”
Chap. IX, particularly Sec. 41.

THE NUMBER e

3.30 Definition e =
n=0n-

Heren!=1-2'3---nifn21,and0!=l.
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Since

0I-Ii
tI—* [\)1--A U) .II-I

S,,=1~|-I-I-T"5"i'"""""-—-~|'°"~|"i--2-"-—-I-1"

1 I 1
<1+1+i'+5"5+"'+5;'-;_-1-<3,

the series converges, and the definition makes sense. In fact, the series converges
very rapidly and allows us to compute e with great accuracy.

It is of interest to note that e can also be defined by means of another
limit process; the proof provides a good illustration of operations with limits:

1 II

3.31 Theorem lim (1 + 7;) = e.

Proof Let
" 1 1 "s,,=k;0,a. t,,=(1+;) -

By the binomial theorem,

1 1 1 1 2=1 1 _ __ _ ___ __.,, . .,,(. n)..3!(. n)(. n).
1 _+_(1_1)(1_Z)...(1_"_1).

n! n n n
Hence t,, 5 s,, , so that

(14) lim sup t,, 5 e,
N-NI)

by Theorem 3.19. Next, if n 2 m,

1 1 1 1 ——1r,,z1+1+—(1--)+-'-+—(1--)~~~(1-L)
2! n m! n n

Let n —-> 00, keeping m fixed. We get
1 1liminftnzl +1 +— + +-——.

21 mln—§w I 0

so that
s,,, 5 lim inf t,,.

I‘!-POO

Letting m -> oo, we finally get

(15) e 5 lim inf tn.

The theorem follows from (l4) and (15).
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. . . . . 1 .The rapidity with which the series Z —? converges can be estimated as
n

follows: If s,, has the same meaning as above, we have
1 1 1

e S" w+Jfl+ln+Db+M+3fi+

(n+1)! n+1 (n+l)2 n!n
sothat

1(16) 0<e-s,,<;5-1-

Thus s10, for instance, approximates e with an error less than 10”’. The
inequality (16) is of theoretical interest as well, since it enables us to prove the
irrationality of e very easily.

3.32 Theorem e is irrational.

Proof Suppose e is rational. Then e = p/q, where p and q are positive
integers. By (16),

1
(17) 0 <q!(e—sq)<a-

By our assumption, q!e is an integer. Since

u='1+1+i+~+l
q. q 21 ql

is an integer, we see that q!(e — sq) is an integer.
Since q 2 1, (17) implies the existence of an integer between 0 and 1.

We have thus reached a contradiction.

Actually, e is not even an algebraic number. For a simple proof of this,
see page 25 of Niven’s book, or page 176 of Herstein’s, cited in the Bibliography.

THE ROOT AND RATIO TESTS

3.33 Theorem (Root Test) Given 2a,, , put oz = lim sup {Y |a,,|.
Then O0

(a) if oz < 1, Ea" converges;
(b) if oz > 1, Ea, diverges;
(c) if oz = 1, the test gives no information.
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3.34

Proof If at < 1, we can choose B so that or < B < 1, and an integer N
such that

\/" l@..| < B
for n 2 N [by Theorem 3.l7(b)]. That is, n 2 N implies

l¢..| <5”-
Since 0 < B < 1, EB“ converges. Convergence of Ea" follows now from
the comparison test.

If oz > 1, then, again by Theorem 3.17, there is a sequence {n,,} such
that

n{‘/iaflki -Ia‘

Hence |a,,| > 1 for infinitely many values of n, so that the condition
a,, —>0, necessary for convergence of Ea, , does not hold (Theorem 3.23).

To prove (c), we consider the series

2%. 2%-
For each of these series at = 1, but the first diverges, the second converges.

Theorem (Ratio Test) The series Ea,

. - a(a) converges if lim sup —"'-{-1 <1,
ll!l"®

(b) diverges if E-3'3 2 l for all n 2 no , where no is somefixed integer.
II

Proof If condition (a) holds, we can find fi < 1, and an integer N, such
that

an-I-1—— <
an B

for n 2 N. In particular,

la1v+1l <Blanl,
iaN+2i<fliaN+1i<B2iaNi#

iaN+pi <BpiaNi'
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That is,

iani < iaNiB_N ' B"
for n 2 N, and (a) follows from the comparison test, since 22,6" converges.

If |a,,+1| 2 |a,,| for n 2 no , it is easily seen that the condition an '-> 0
does not hold, and (b) follows.

Note: The knowledge that lim a,,,.,/a,, =1 implies nothing about the
convergence of Ea". The series Z21/n and Z1/nz demonstrate this.

3.35 Examples
(a) Consider the series

‘+1+i+_L+l+i+l+l+...
23223223332434’

forwhich

lim inf 9-'-'33 = lim -) =0,
""00 an Il""'®

§A

Mumkg’-“:
lim inf{'/Z, = lim : = -i_,

n-voo n->00

‘ir.sP#r?= .9211’;/%=71:’
, ,, . 1 3 "lim supgfi-= lim = +00.

The root test indicates convergence; the ratio test does not apply.
(b) The same is true for the series

l+1+l+l+l+l+ I +l+---2 8 4 32 16 128 64 ’
where

liminf£'-'1-1-=1.
,,_..,o an 8

an-I-1
sup T = 2,

but
lim 475,, = 1}.



68 PRINCIPLES OF MATHEMATICAL ANALYSIS

3.36 Remarks The ratio test is frequently easier to apply than the root test,
since it is usually easier to compute ratios than nth roots. However, the root
test has wider scope. More precisely: Whenever the ratio test shows conver-
gence, the root test does too; whenever the root test is inconclusive, the ratio
test is too. This is a consequence of Theorem 3.37, and is illustrated by the
above examples.

Neither of the two tests is subtle with regard to divergence. Both deduce
divergence from the fact that a,, does not tend to zero as n -—> oo.

3.37 Theorem For any sequence {c,,} ofpositive numbers,

cn+1lim inf —-— .4 lim inf;/2,,
"_’°° C" n—>oo

. "- . C +1lim sup \'/c,, 5 lim sup-3—-
II->00 n—>o0 C"

Proof We shall prove the second inequality; the proof of the first is
quite similar. Put

. coz = lim sup-115
n—>oo co

If oz = + oo, there is nothing to prove. If oz is finite, choose B > oz. There
is an integer N such that

cn-I-1--- 5
C" B

for n 2 N. In particular, for any p > O,

cN+k-I-1 5 ficN+k (k = 0,1,-~-»P -1)-

Multiplying these inequalities, we obtain

cN+p s flpclli s
OI‘

c,,5cNB"”-B" (nzN).

Hence

4'/Es 4/BIB‘?-B.
so that

(18) lim sup 5 B,
7I'9(l)
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by Theorem 3.20(b). Since (18) is true for every B > oc, we have

lim sup {‘/Z, 5 oz.
Il_'<I>

POWER SERIES

3.38 Definition Given a sequence {c,,} of complex numbers, the series
®

(19) "Zoe, 2"

is called a power series. The numbers c,, are called the coefiicients of the series;
z is a complex number.

In general, the series will converge or diverge, depending on the choice
of z. More specifically, with every power series there is associated a circle, the
circle of convergence, such that (19) converges if z is in the interior of the circle
and diverges if z is in the exterior (to cover all cases, we have to consider the
plane as the interior of a circle of infinite radius, and a point as a circle of radius
zero). The behavior on the circle of convergence is much more varied and can-
not be described so simply.

3.39 Theorem Given the power series Ecn z", put

._ 1
oc=limsup{'/|c,,|, R=&'

7l““’®

(Ifa = 0, R = +00; ifoc = +00, R = 0.) Then Zcnz" converges if |z| < R, and
diverges if |z| > R.

Proof Put a,, = c,, z", and apply the root test:

lim sup{/|a,,| = |z| lim sup{/|c,,| =|7il-

Note: R is called the radius of convergence of Ec,, z".

3.40 Examples

(a) The series En" z" has R = 0.

(b) The series has R = + 00. (In this case the ratio test is easier to

apply than the root test.)
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(c) The series Ez" has R = 1. If |z| = 1, the series diverges, since {z"}
does not tend to 0 as n —> 0o.

(d) The series has R = 1. It diverges if z = 1. It converges for all

other z with |z| = 1. (The last assertion will be proved in Theorem 3.44.)

(e) The series has R = 1. It converges for all 2 with |z| = 1, by

the comparison test, since |z"/n2 I = 1/nz.

SUMMATION BY PARTS

3.41 Theorem Given two sequences {an}, {b,,}, put

An = Zak
k=0

ifn20;putA__, =0. Then, if05p5q, wehave
q q-1
Z dub" = Z A.n(bn ‘— bn+1) + Aqbq "-' Ap_.1bp¢
= y|=.-Pll ‘Q

Proof
q q q 9-1
Z anbn = Z (An H An-1)bn = Z Anbn _ Z 1Anbn+1#

n=p n= =p n=p--‘Q 3

and the last expression on the right is clearly equal to the right side of
(20).

Formula (20), the so-called “partial summation formula,” is useful in the
investigation of series of the form Ea" b,,, particularly when {b,,} is monotonic.
We shall now give applications.

3.42 Theorem Suppose

(a) the partial sums A,, of Ea, form a bounded sequence;
(b) bo2b12b22"';
(c) lim b,, = 0.

11"’ CO

Then Ea,, b,, converges.
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Proof Choose M such that |A,| 5 M for all n. Given e > O, there is an
integer N such that by 5 (e/2M). For N 5 p 5 q, we have

Ilgp

q 4-1
0,1), = XAn(bn'—bn+1)+Aqbq _Ap_1bp!

"=P
-13 M ‘Z (b, - b,,+1) + b, + b,

"=1:
= 2Mb, 3 2MbN 5 8.

Convergence now follows from the Cauchy criterion. We note that the
first inequality in the above chain depends of course on the fact that
bu _ bn+1 2

3.43 Theorem Suppose

2 |c3i 2"’;

(b) c2,,_1 20, c2,,50 (m= 1,2, 3, ...);
((1) l¢'il Z lczl

(c) lim,_,,,, c, =

Then Ec, converges.

0.

Series for which (b) holds are called “alternating series”; the theorem was
known to Leibnitz.

Proof Apply Theorem 3.42, with a, = (- 1)"+1, b, = |c,|.

3.44 Theorem Suppose the radius of convergence of Ec, z" is 1, and suppose
co Z cl 2 c2 2 , lim,_,,, c, = 0. Then Ec, z" converges at every point on the
circle |z| = 1, except possibly at z = 1.

Proof Put a, = z", b, = c,. The hypotheses of Theorem 3.42 are then
satisfied, since

if|z|=1,z¢1.

|A..| = slvja °u
5

ABSOLUTE CONVERGENCE

_1-2"“ S 2
_ 1-z |1 2|’

The series Ea, is said to converge absolutely if the series E | a,| converges.

3.45 Theorem U‘ Ea, converges absolutely, then Ea, converges.
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Proof The assertion follows from the inequality
m m

Ear 5 Z iakit
k=n k=n

plus the Cauchy criterion.

3.46 Remarks For series of positive terms, absolute convergence is the same
as convergence.

If Ea, converges, but E|a,| diverges, we say that Ea, converges non-
absolutely. For instance, the series

2%!
converges nonabsolutely (Theorem 3.43).

The comparison test, as well as the root and ratio tests, is really a test for
absolute convergence, and therefore cannot give any information about non-
absolutely convergent series. Summation by parts can sometimes be used to
handle the latter. In particular, power series converge absolutely in the interior
of the circle of convergence.

We shall see that we may operate with absolutely convergent series very
much as with finite sums. We may multiply them term by term and we may
change the order in which the additions are carried out, without affecting the
sum of the series. But for nonabsolutely convergent series this is no longer true,
and more care has to be taken when dealing with them.

ADDITION AND MULTIPLICATION OF SERIES

3.47 Theorem If Ea, = A, and Eb, = B, then E(a, + b,) = A + B, and
Eca, = cA, for any fixed c.

Proof Let

/1,=Z0k, Bnzzbks
k=0 k=0

Then

An + Bn = Z (alt +k=0

Since lim,_,,, A, = A and lim,_.,, B, = B, we see that
lim (A, + B,) = A + B.
!I'*0O

The proof of the second assertion is even simpler.
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Thus two convergent series may be added term by term, and the result-
ing series converges to the sum of the two series. The situation becomes more
complicated when we consider multiplication of two series. To begin with, we
have to define the product. This can be done in several ways; we shall consider
the so-called “Cauchy product.”

3.48 Definition Given Ea, and Eb, , we put

c,= Z0a,b,_,, (n=0,1,2,...)
P?‘

and call Ec, the product of the two given series.
This definition may be motivated as follows. If we take two power

series Ea, 2" and Eb, 2", multiply them term by term, and collect terms contain-
ing the same power of z, we get

Z an-’-'n' Z bnzn =(ao +aiZ+a2Z2 + "')(b0 +51?-'+b2Z2 + "')
=0 n=O3

= ao bo +(aob1 + a1bo)z + (ao b2 + albl + a2 bo)z2 + "'
=co+c,z+c2z2+~".

Setting z = 1, we arrive at the above definition.

3.49 Example If
II fl II

-An==§:ak> E%==2:bk9 Cm==§:ck9
k=0 k=0 k=0

and A, ->A, B, ->B, then it is not at all clear that {C,} will converge to AB,
since we do not have C, = A, B,. The dependence of {C,} on {A,} and {.B,} is
quite a complicated one (see the proof of Theorem 3.50). We shall now show
that the product of two convergent series may actually diverge.

The series

°° (—l)" 1 1 1Z .1 2 -+ .. ~~..+~--~=<>\/n +1 (/2 ,/3 (/4
converges (Theorem 3.43). We form the product of this series with itself and
obtain

I<;.+.;.>+<y1.-.+,-/»;-on
o 1 1 1 1
l,/2*,/5,/5*,/5,/5*,/z)* ’
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so that

nn __i 1 iii

c"_(—l)k§\/(n—k+1)(k+1)
Since

2 2 2
(n-k+1)(k+1)=(g+1) —(g-—k) 5(g+1)-

wehave
|cn| 2 X: 2 2Q_15+1),

k=0l'l-1'2 n+2

so that the condition c, ->0, which is necessary for the convergence of Ec, , is
not satisfied.

In view of the next theorem, due to Mertens, we note that we have here
considered the product of two nonabsolutely convergent series.

3.50 Theorem Suppose

(a) Z a, converges absolutely,
n O

CD

(5) god» = A.

(C) = B.
(4) ¢,, = a,,b,_,, (n = 0,1,2,...).

k=0

Then

Z c, = AB.
n 0

That is, the product of two convergent series converges, and to the right
value, if at least one of the two series converges absolutely.

Proof Put

An=zak: Bn=zbk$ C»=Zck» fin=Bn_-B’
l¢=0 l¢=0 k=0

Then

C» = aobo +(a0b1 + a1b0) + + (aobn + albn-1 ‘|' + anb0)

= aOBn + a1Bn-1 + ' " + ""30

= a0(B + fin) + a1(B + fin-1) + ' ' ' + an(-B + fi0)

=An-B + a0fin + alfln-1 + ' . 0 + anfi0
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Put
‘Yo = 005» + "ill"-1 + "|' “"130-

We wish to show that C, ->AB. Since A,B—>AB, it suflices to
show that

(21) lim y, = 0.

Put
G)

<1=E le.|-
n=0

[It is here that we use (a).] Let s > 0 be given. By (c), B, ->0. Hence we
can choose N such that |B,] 5 e for n 2 N, in which case

lllnl 5 ifl0an "|' + BNan-Ni-I-iBN+1an-N-1 + ‘|' Bnaol

5 iBOan '1‘ +l31van—nl +5“-
Keeping N fixed, and letting n -> oo, we get

lim sup |y,| 5 ea,
!l"*®

since a,, -> 0 as k —> 0o. Since s is arbitrary, (21) follows.

Another question which may be asked is whether the series Ec,, if con-
vergent, must have the sum AB. Abel showed that the answer -is in the aflirma-
tive.

3.51 Theorem If the series Ea,, Eb,, Ec, converge to A, B, C, and
c, =aob, + + a,bo, then C=AB.

Here no assumption is made concerning absolute convergence. We shall
give a simple proof (which depends on the continuity of power series) after
Theorem 8.2.

REARRANGEMENTS

3.52 Definition Let {k,}, n = 1, 2, 3, ..., be a sequence in which every
positive integer appears once and only once (that is, {k,} is a 1-1 function from
J onto J, in the notation of Definition 2.2). Putting

a{,=a,, (n=l,2,3,...),
we say that Ea, is a rearrangement of Ea,.
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If {s,}, {s,§} are the sequences of partial sums of Ea,, Ea,§, it is easily seen
that, in general, these two sequences consist of entirely different numbers.
We are thus led to the problem of determining under what conditions all
rearrangements of a convergent series will converge and whether the sums are
necessarily the same.

3.53 Example Consider the convergent series

(22) 1—i+%—i+%-—i‘.~+'"
and one of its rearrangements

(23) 1+i—<l+t++—l+%.~+.‘—.-%+---
in which two positive terms are always followed by one negative. If s is the
sum of (22), then

s<1—%+%=%

Since
1 1 1>0

41¢-3+4/<-1 21¢
for k 2 1, we see that sg < so < so < , where s, is nth partial sum of (23).
Hence

lim sup s, > sf, = i-,
H""®

so that (23) certainly does not converge to s [we leave it to the reader to verify
that (23) does, however, converge].

This example illustrates the following theorem, due to Riemann.

3.54 Theorem Let Ea, be a series of real numbers which converges, but not
absolutely. Suppose

—w5a5B5w.

Then there exists a rearrangement Ea}, with partial sums s, such that

(24) lim inf s,’, = oz, lim sup s,', -—= B.
II-VG) II“*CD

Proof Let

iani +an iani _an=-—---, =--—-- =1,2,3,....P. 2 q. 2 (ii )
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Then P. -— q. = amp. + <1. = I@.|.p.. 2 0.q.. 2 0- The Series Zr... Ea.
must both diverge.

For if both were convergent, then

Z(t>.. + q.) = Z|<1.|
would converge, contrary to hypothesis. Since

N N N N

"X1 all 1,121 (pl! M qn) 2- ;1 pf] ‘"51 q!I9
1 —-M ...-

divergence of Ep, and convergence of Eq, (or vice versa) implies diver-
gence of Ea, , again contrary to hypothesis.

Now let P1, P2 , P3 , ... denote the nonnegative terms of Ea, , in the
order in which they occur, and let Q1, Q2 , Q3, . . . be the absolute values
of the negative terms of Ea, , also in their original order.

The series EP,, EQ, differ from Ep,, Eq, only by zero terms, and
are therefore divergent.

We shall construct sequences {m,}, {k,}, such that the series

P1+"'+Pm1—Q1_"'_Qk1+Pm,+1+"'

+Pm,_Qk,+1“""_Qt<2+"',

which clearly is a rearrangement of Ea, , satisfies (24).
Choose real-valued sequences {a,}, {B,} such that oz, —>a, B, ->B,

an < fin 1 51 >
Let ml, kl be the smallest integers such that

P1+"'+Pml>fi1,

P1 +'H+Pm1 "_Q1_'H_Qk1<O‘1;

let m2,k2 be the smallest integers such that

P1+...+Pm| _Q1_"._Qk1+Pn11+1+".+Pm1>B2a

P1+'..+Ptn1—Q1—'H—Qk1+Pm|+1+"'+Pm2—Qk1+1

‘F...-—Ql€1<a2;

and continue in this way. This is possible since EP, and EQ, diverge.
If x, , y, denote the partial sums of (25) whose last terms are Pm",

—Qkn, ‘then

ixn_fini SPm,,9 iyn_ani sQk,,'

Since P, —>0 and Q, —>0 as n —> oo, we see that x, -—>B, y, ->01.
Finally, it is clear that no number less than oz or greater than B can

be a subsequential limit of the partial sums of (25).
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3.55 Theorem IfEa, is a series ofcomplex numbers which converges absolutely,
then every rearrangement ofEa, converges, and they all converge to the same sum.

Proof Let Ea, be a rearrangement, with partial sums s,. Given e > 0,
there exists an integer N such that m 2 n 2 N implies

(26) Z |a,\ 5e.
In 3

Now choose p such that the integers 1, 2, ..., N are all contained in the
set kl, k2, ..., k, (we use the notation of Definition 3.52). Then if n > p,
the numbers al, ..., a,- will cancel in the difference s, — s, , so that
Is, — s,I 5 e, by (26). Hence {s,} converges to the same sum as {s,}.

EXERCISES
1. Prove that convergence of {s,,} implies convergence of { I s,,| }. Is the converse true?
2. Calculate lim (\/n’ + n —— n).

7|-ow

3. If S1 = ~/2, and
sn+1=’\/2—l—’\/Sn (n=1s2'a 39'"):

prove that {s,,} converges, and that s.. < 2 for n = 1, 2, 3, ... .
4. Find the upper and lower limits of the sequence {s,,} defined by

S3 -1 I
S1 S2"! s2m+1 =5 'l"s2m-

5. For any two real sequences {a,,}, {b,.}, prove that

lim sup (a,, + b,.) 5 lim sup an + lim sup b,. ,
9|-ow pi-H1) 1|-000

provided the sum on the right is not of the form 0o — 00.
6. Investigate the behavior (convergence or divergence) of Ea, if

(a) a, ....\/n+1—\/n;

<1») A-‘/”+"1“/”;
to a. -o"/2-1)";

1(d) a, := 1—_,_—;;, for complex values of z.

7. Prove that the convergence of Ea, implies the convergence of
\/a,ET’

if a, 20.



11

NUMERICAL SEQUENCES AND SERIES

8. If Ea, converges, and if {b,,} is monotonic and bounded, prove that Ea, b, con-
verges.

9. Find the radius of convergence of each of the following power series:

0) 2-1:2". <1») 233,2".

to 2 (d) 2%".
0. Suppose that the coefficients of the power series Ea, 2" are integers, infinitely many

of which are distinct from zero. Prove that the radius of convergence is at most 1.

(a) Prove that Z -1% diverges.

(b) Prove that

‘i*2_1+...+."_~2.21___.
$1v+1 Sn+k ~5'N+k

and deduce that Z 35 diverges.

(c) Prove that

an

and deduce that 25-; converges.

(d) What can be said about

-1

. Suppose a, > 0, s, = a1 + + a, , and Ea, diverges.

Sn

1 1es;--e

G doErna mdirnnf
2. Suppose a, > 0 and Ea, converges. Put

I‘, Z

(a) Prove that

w

G 6'! T_"'+...+l
Fm rn rm

if m < n, and deduce that 2 5-11' diverges.
7’:1
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(b) Prove that

1% <2(\/E— WI.)

anand deduce that Z V:converges.
rn

Prove that the Cauchy product of two absolutely convergent series converges
absolutely.
If {s,} is a complex sequence, define its arithmetic means 0', by

st» +91-+ S» _0,- ~ "+1 (n-O,1,2,...).

(a) If lim s, = s, prove that lim 0', = s.
(b) Construct a sequence {s,,} which does not converge, although lim 0,, == 0.
(c) Can it happen that s, > 0 for all n and that lim sup s, = 0o, although lim o, = 0 ?
(d) Put a, = s, — s,_1, for n 21. Show that

1 n
So — 0', = En kglkak .

Assume that lim (na,) =0 and that {o,,} converges. Prove that {s,} converges.
[This gives a converse of (a), but under the additional assumption that na,—> 0.]
(e) Derive the last conclusion from a weaker hypothesis: Assume M < 00,
]na,[ 5M for all n, and lim 0', = cr. Prove that lim s, = cr, by completing the
following outline:

If m < n, then

1 1 "s,,—-o',,_ni_——(o,—o',,)—l——-— 2 (s,-st).
n—m n——m1=,,+1

For these i,

-'M — ——1M

Fix e > 0 and associate with each n the integer m that satisfies

n — e< —-—-- 1.m_1+8<m+

Then (m + 1)/(n — m) 51/e and ls, — sil < Me. Hence

lim sup|s.. — 0| _5Me.
fl-PCD

Since e was arbitrary, lim s, = cr.
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Definition 3.21 can be extended to the case in which the a, lie in some fixed R“.
Absolute convergence is defined as convergence of E|a,|. Show that Theorems
3.22, 3.23, 3.25(a), 3.33, 3.34, 3.42, 3.45, 3.47, and 3.55 are true in this more
general setting. (Only slight modifications are required in any of the proofs.)
Fix a positive number oz. Choose x, > \/R, and define xo, xo, x4, , by the
recursion formula

1 oz
xn + I = ""' xn + —' -2 x,

(a) Prove that {x,} decreases monotonically and that lim x, = \/oz.
(b) Put e, = x, — ~/5., and show that

2, _ £5 <_f1._
+1“-“M —

n 2.76,;

so that, setting B = 2\/ix,

.<.~,,,.,<p(%) (n=1,2,3,...).

(c) This is a good algorithm for computing square roots. since the recursion
formula is simple and the convergence is extremely rapid. For example, if oz = 3
and x, = 2, show that e,/B < T15 and that therefore

8, <4 - 10-16, 8. <4-10-*1.
Fix oz > 1. Take x, > \/Q, and define

ot—l—x, ot—x:x,,,=-—-=x --—-—-.1+x.. "+1+x..
(a) Prove that x, >xo >x5 > .
(b) Prove that X1 <x4 <xo < .
(c) Prove that lim x, = \/at.
(d) Compare the rapidity of convergence of this process with the one described
in Exercise 16.
Replace the recursion formula of Exercise 16 by

-1
xn+1 ZLM-xn + Ext;-p+1

P P

where p is a fixed positive integer, and describe the behavior of the resulting
sequences {xn}.
Associate to each sequence a = {oo,}, in which oz, is 0 or 2, the real number

Prove that the set of all x(a) is precisely the Cantor set described in Sec. 2.44.
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Suppose {po} is a Cauchy sequence in a metric space X, and some subsequence
{pm} converges to a point p e X. Prove that the full sequence {p..} converges to p.
Prove the following analogue of Theorem 3.10(b): If {E,.} is a sequence of closed
nonempty and bounded sets in a complete metric space X, if E, D E,+,, and if

lim diam E, == 0,

then H i°E.. consists of exactly one point.
Suppose X is a nonempty complete metric space, and {G..} is a sequence of
dense open subsets of X. Prove Baire’s theorem, namely, that (I i°G,. is not
empty. (In fact, it is dense in X.) Hint: Find a shrinking sequence of neighbor-
hoods E.. such that E. ¢ G. , and apply Exercise 21.
Suppose {pn} and {qo} are Cauchy sequences in a metric space X. Show that the
sequence {d(p,,q,)} converges. Hint: For any m, n,

d(Pn 9 qn) § d(Pn 9 Pm) ‘I’ d(Pmqm) ‘I’ d(qm 2 q»);

it follows that
Id(Pn, qn) "" d(Pm 9 qm)I

is small if m and n are large.
Let X be a metric space.
(a) Call two Cauchy sequences {Pu}: {41.} in X equivalent if

lim d(p, , q,.) = 0.

Prove that this is an equivalence relation.
(b) Let X"' be the set of all equivalence classes so obtained. If Pe X"', Q e X"',
10.} e P. {q.} e Q. define

MP, Q) = d(r,. . 11.);
by Exercise 23, this limit exists. Show that the number A(P, Q) is unchanged if
{Pa} and {q..} are replaced by equivalent sequences, and hence that A is a distance
function in X"‘.
(c) Prove that the resulting metric space X"' is complete.
(d) For each p e X, there is a Cauchy sequence all of whose terms are p; let P,
be the element of X* which contains this sequence. Prove that

MP», P.) = d(P. q)
for all p, q e X. In other words, the mapping oz» defined by <p(p) = P, is an isometry
(i.e., a distance-preserving mapping) of X into X"'.
(e) Prove that ¢p(X) is dense in X"', and that <p(X) = X"‘ if X is complete. By (d).
we may identify X and <p(X) and thus regard X as embedded in the complete
metric space X"'. We call X"' the completion of X.
Let X be the metric space whose points are the rational numbers, with the metric
d(x, y) = Ix — y|. What is the completion of this space? (Compare Exercise 24.)



CONTINUITY

The function concept and some of the related terminology were introduced in
Definitions 2.1 and 2.2. Although we shall (in later chapters) be mainly interested
in real and complex functions (i.e., in functions whose values are real or complex
numbers) we shall also discuss vector-valued functions (i.e., functions with
values in R") and functions with values in an arbitrary metric space. The theo-
rems we shall discuss in this general setting would not become any easier if we
restricted ourselves to real functions, for instance, and it actually simplifies and
clarifies the picture to discard unnecessary hypotheses and to state and prove
theorems in an appropriately general context.

The domains of definition of our functions will also be metric spaces,
suitably specialized in various instances.

LIMITS OF FUNCTIONS

4.1 Definition Let X and Y be metric spaces; suppose E c X, fmaps E into
Y, and p is a limit point of E. We writef(x) —> q as x -—> p, or

(1) 1imf(X) =q
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if there is a point qe Y with the following property: For every a > 0 there
exists a 5 > 0 such that

(2) dr(f(x). q) < 8
for all points x e E for which

(3) 0 < d,(x, p) < 5.
The symbols d, and do refer to the distances in X and Y, respectively.
If X and/or Y are replaced by the real line, the complex plane, or by some

euclidean space R", the distances d, , d, are ofcourse replaced by absolute values,
or by norms of differences (see Sec. 2.16).

It should be noted that p e X, but that p need not be a point of E
in the above definition. Moreover, even if p e E, we may very well have
f(P) it lime», f(X)-

We can recast this definition in terms of limits of sequences:

4.2 Theorem Let X, Y, E, f, and p be as in Definition 4.1. Then

(4) limf(X) = q
x-rp

ifand only if

(5) lim f(Pu) = q
II-‘W

for every sequence {p,} in E such that

(6) P. #11. lim P. =1»-

Proof Suppose (4) holds. Choose {p,} in E satisfying (6). Let a > 0
be given. Then there exists 5 > 0 such that d,,(f(x), q) < e if x e E
and 0 < d,(x, p) < 5. Also, there exists N such that n > N implies
0 < dX(p, , p) < 5. Thus, for n > N, we have dy(f(p,), q) < e, which
shows that (5) holds.

Conversely, suppose (4) is false. Then there exists some a > 0 such
that for every 5 > 0 there exists a point x e E (depending on 5), for which
dy(f(x), q) 2 e but 0 < dX(x, p) < 5. Taking 5, =-- 1/n (n =1, 2, 3, ...), we
thus find a sequence in E satisfying (6) for which (5) is false.

Corollary Iffhas a limit at p, this limit is unique.

This follows from Theorems 3.2(b) and 4.2.
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4.3 Definition Suppose we have two complex functions,f and g, both defined
on E. By f+ g we mean the function which assigns to each point x of E the
number f(x) + g(x). Similarly we define the difference f— g, the product fg,
and the quotient f/g of the two functions, with the understanding that the quo-
tient is defined only at those points x of E at which g(x) -75 0. Iff assigns to each
point x of E the same number c, then f is said to be a constant function, or
simply a constant, and we write f = c. If f and g are real functions, and if
f(x) ,2 g(x) for every x e E, we shall sometimes write fZ g, for brevity.

Similarly, if f and g map E into R", we define f + g and f - g by
(T + g)(x) = f(x) + g(x). (f ' g)(x) = f(x) ' g(x);

and if /I is a real number, (/lf)(x) = /lf(x).

4.4 Theorem Suppose E c X, a metric space, p is a limit point of E, f and g
are complex functions on E, and

lim f(x) = A, lim g(x) = B.

Then (a) lim (f + g)(x) = A + B;
x—rp

(b) lim (f9)(X) =43;
_ A

(c) lim (£)(x) = —. ifB aé 0.
rep 9 B

Proof In view of Theorem 4.2, these assertions follow immediately from
the analogous properties of sequences (Theorem 3.3).

Remark If f and g map E into R", then (a) remains true, and (b) becomes
(b') lim (f - g)(x) = A - B.

x-vp

(Compare Theorem 3.4.)

CONTINUOUS FUNCTIONS

4.5 Definition Suppose X and Y are metric spaces, E c X, p e E, andfmaps
E into Y. Then f is said to be continuous at p if for every e > 0 there exists a
5 > 0 such that

dY(.f(x).f(11)) < B
for all points x e E for which dX(x, p) < 5.

Iff is continuous at every point of E, then f is said to be continuous on E.
It should be noted that f has to be defined at the point p in order to be

continuous at p. (Compare this with the remark following Definition 4.1.)
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If p is an isolated point of E, then our definition implies that every function
f which has E as its domain of definition is continuous at p. For, no matter
which e > 0 we choose, we can pick 5 > 0 so that the only point x e E for which
d,(x, p) < 5 is x =p; then

dr(f(X).f(11)) = 0 < 8-
4.6 Theorem In the situation given in Definition 4.5, assume also that p is a
limit point of E. Thenf is continuous at p if and only if lim,_,,f(x) =f(p).

Proof This is clear if we compare Definitions 4.1 and 4.5.

We now turn to compositions of functions. A brief statement of the
following theorem is that a continuous function of a continuous function is
confinuous

4.7 Theorem Suppose X, Y, Z are metric spaces, E c X, f maps E into Y, g
maps the range off, f(E), into Z, and h is the mapping of E into Z defined by

h(x) = a(f(x)) (X e E)-
Iff is continuous at a point p e E and ifg is continuous at the pointf(p), then h is
continuous at p.

This function h is called the composition or the composite off and g. The
notation

h=aef
is frequently used in this context.

Proof Let e > 0 be given. Since g is continuous at f(p), there exists
n > O such that

dz(e(y). e(f(P))) < e if di-(y.f(11)) < 11 end y ef(E)-
Sincef is continuous at p, there exists 5 > 0 such that

di(f(X).f(P)) < '1 ifdx(X.1>) < 5 and X E E-
It follows that

dz(h(x)= h(p)) = dz(e(f(X)). e(f(p))) < e
if dX(x, p) < 5 and x e E. Thus h is continuous at p.

4.8 Theorem A mapping f of a metric space X into a metric space Y is con-
tinuous on X if and only iff I 1(V) is open in Xfor every open set V in Y.

(Inverse images are defined in Definition 2.2.) This is a very useful charac-
terization of continuity.
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Proof Supposef is continuous on X and V is an open set in Y. We have
to show that every point off"(V) is an interior point off“(V). So,
suppose p e X andf(p) e V. Since V is open, there exists e > 0 such that
y e V if dl,(f(p), y) < a; and since f is continuous at p, there exists 5 > 0
such that dl,(f(x),f(p)) < e if dX(x, p) < 5. Thus x ef "1( V) as soon as
d,l(x, p) < 5.

Conversely, supposefI ‘(V) is open in X for every open set V in Y.
Fixp e X and e > 0, let V be the set of all y e Y such that dl(y,f(p)) < e.
Then V is open; hencef '1(V) is open; hence there exists 5 > 0 such that
xef"1(V)as soon as d,l(p, x) < 5. But if xef'1(V), then f(x) e V, so
that dr(f(X).f(11)) < e-

This completes the proof.

Corollary A mappingfofa metric space X into a metric space Y is continuous if
and only iff '1(C) is closed in Xfor every closed set C in Y.

This follows from the theorem, since a set is closed if and only if its com-
plement is open, and sincef '1(E°) = [f "(E)]° for every E c Y.

We now turn to complex-valued and vector-valued functions, and to
functions defined on subsets of R".

4.9 Theorem Letfand g be complex continuousfunctions on a metric space X.
Then f + g, fg, andf/g are continuous on X.

In the last case, we must of course assume that g(x) aé 0, for all x e X.

Proof At isolated points of X there is nothing to prove. At limit points,
the statement follows from Theorems 4.4 and 4.6.

4.10 Theorem

(a) Let fl, ..., _/I, be real functions on a metric space X, and let f be the
mapping of X into R“ defined by

(7) f(x) = (f1(X). ---»f1.(X)) (X E X);
then f is continuous ifand only ifeach ofthefunctionsfl, . . . , fi, is continuous.
(b) If f and g are continuous mappings of X into R", then f + g and f ' g
are continuous on X.

The functions fl, ..., fl, are called the components of f. Note that
1' + g is a mapping into R“, whereas f - g is a real function on X.
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Proof Part (a) follows from the inequalities

I130) -f.o>| s ma - ion |f.(x) -/.o>| *I*.
for j = 1, ..., k. Part (b) follows from (a) and Theorem 4.9.

4.11 Examples If xl, ..., xl, are the coordinates of the point x e R", the
functions qb, defined by

(8) ¢t(X) = xi (X 5 Rk)

are continuous on R", since the inequality

|¢.(X) — ¢.(y)| -5 IX — rl
shows that we may take 5 = a in Definition 4.5. The functions ¢, are sometimes
called the coordinate functions.

Repeated application of Theorem 4.9 then shows that every monomial

<9)
kwhere nl, ..., nl, are nonnegative integers, is continuous on R . The same is

true of constant multiples of (9), since constants are evidently continuous. It
follows that every polynomial P, given by
(10) P(x) = Ec,l...,, x'l‘ .. . x,'I" (x e RI),

is continuous on R". Here the coefiicients c,l...,, are complex numbers, nl, . . . , nl,
are nonnegative integers, and the sum in (10) has finitely many terms.

Furthermore, every rational function in xl, ..., x, , that is, every quotient
of two polynomials of the form (10), is continuous on R" wherever the denomi-
nator is different from zero.

From the triangle inequality one sees easily that

(11) ||Xl —|r||$lX-yl (X.yeR")-
Hence the mapping x —> |x| is a continuous real function on R".

If now 1' is a continuous mapping from a metric space X into R", and if qb
is defined on X by setting ¢(p) = If(p) I , it follows, by Theorem 4.7, that ¢ is a
continuous real function on X.

4.12 Remark We defined the notion of continuity for functions defined on a
subset E of a metric space X. However, the complement of E in X plays no
role whatever in this definition (note that the situation was somewhat different
for limits of functions). Accordingly, we lose nothing of interest by discarding
the complement of the domain off. This means that we may just as well talk
only about continuous mappings of one metric space into another, rather than
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of mappings of subsets. This simplifies statements and proofs of some theorems.
We have already made use of this principle in Theorems 4.8 to 4.10, and will
continue to do so in the following section on compactness.

CONTINUITY AND COMPACTNESS

4.13 Definition A mapping f of a set E into R" is said to be bounded if there is
a real number M such that |f(x)I 5 M for all x e E.

4.14 Theorem Suppose f is a continuous mapping of a compact metric space
X into a metric space Y. Then f(X) is compact.

Proof Let { V,} be an open cover off(X). Sincefis continuous, Theorem
4.8 shows that each of the sets f “1(V,) is open. Since X is compact,
there are finitely many indices, say ocl, ..., oz, , such that

(12) Xct-‘(I/.,> 0 0f"*<V.,,>-
Sincef(f “‘(E)) c E for every E c Y, (12) implies that

(13) f(X)cV,lu"'uV,n.

This completes the proof.

Note: We have used the relation f(f '1(E)) c E, valid for E c Y. If
E c X, thenf ‘1(f(E)) 2 E ; equality need not hold in either case.

We shall now deduce some consequences of Theorem 4.14.

4.15 Theorem If f is a continuous mapping of a compact metric space X into
R", then f(X) is closed and bounded. Thus, f is bounded.

This follows from Theorem 2.41. The result is particularly important
whenf is real:

4.16 Theorem Suppose f is a continuous real function on a compact metric
space X, and

(14) M = S11Pf(P). m = inff(P)-
peX peX

Then there exist points p, q e X such thatf(p) = M andf(q) = m.

The notation in (14) means that M is the least upper bound of the set of
all numbersj (p), where p ranges over X, and that m is the greatest lower bound
of this set of numbers.
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The conclusion may also be stated as follows: There exist points p and q
in X such that f(q) 5f(x) 5f(p) for all x e X; that is, f attains its maximum
(at p) and its minimum (at q).

Proof By Theorem 4.15, f(X) is a closed and bounded set of real num-
bers; hence f(X) contains

M=supf(X) and m=inff(X),

by Theorem 2.28.

4.17 Theorem Suppose f is a continuous 1-1 mapping of a compact metric
space X onto a metric space Y. Then the inverse mapping f "1 defined on Y by

f"(f(X)) = X (Xe X)
is a continuous mapping of Y onto X.

-1Proof Applying Theorem 4.8 to f in place off, we see that it suffices
to prove thatf( V) is an open set in Yfor every open set V in X. Fix such
a set V.

The complement V‘ of V is closed in X, hence compact (Theorem
2.35); hence f( V‘) is a compact subset of Y (Theorem 4.14) and so is
closed in Y(Theorem 2.34). Sincef is one-to-one and onto, f( V) is the
complement off(Vf). Hencef(V) is open.

4.18 Definition Letfbe a mapping of a metric space X into a metric space Y.
We say that f is uniformly continuous on X if for every e > 0 there exists 5 > 0
such that

(15) dr(f(e).f(41)) < e
for all p and q in X for which d,l(p, q) < 5.

Let us consider the differences between the concepts of continuity and of
uniform continuity. First, uniform continuity is a property of a function on a
set, whereas continuity can be defined at a single point. To ask whether a given
function is uniformly continuous at a certain point is meaningless. Second, if
f is continuous on X, then it is possible to find, for each s > 0 and for each
point p of X, a number 5 > 0 having the property specified in Definition 4.5. This
5 depends on e and on p. Iff is, however, uniformly continuous on X, then it is
possible, for each e > 0, to find one number 5 > 0 which will do for all points
p of X.

Evidently, every uniformly continuous function is continuous. That the
two concepts are equivalent on compact sets follows from the next theorem.
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4.19 Theorem Let f be a continuous mapping of a compact metric space X
into a metric space Y. Then f is uniformly continuous on X.

Proof Let e > 0 be given. Since f is continuous, we can associate to
each point p e X a positive number ¢(p) such that

<16) qe X. d.<p.q> < ¢<p> implies at/(pi. to» < §-
Let J(p) be the set of all q e X for which

(17) dx(P. q) < i¢(P)-
Since p eJ(p), the collection of all sets J(p) is an open cover of X; and
since X is compact, there is a finite set of points pl, ..., p, in X, such that

(18) X¢J(1>1)v'"vJ(p..)-
We put

(19) 5 = 5 min [¢(P1). ---. ¢(P..)]-
Then 5 > 0. (This is one point where the finiteness of the covering, in-
herent in the definition of compactness, is essential. The minimum of a
finite set of positive numbers is positive, whereas the inf of an infinite set
of positive numbers may very well be 0.)

Now let q and p be points of X, such that dX(p, q) < 5. By (18), there
is an integer m, 1 5 m 5 n, such that p e J(p,,); hence

(20) dX(p> P...) < i¢(P...).
and we also have

dX(q> pm) s dX(pa + dX(pvpm) < 5 + S ¢(pm)'

Finally, ( 16) shows that therefore

dt(f(P).f(11)) S d1(f(P).f(p..)) + dr(f(q).f(P..)) < e-
This completes the proof.

An alternative proof is sketched in Exercise 10.
We now proceed to show that compactness is essential in the hypotheses

of Theorems 4.14, 4.15, 4.16, and 4.19.

4.20 Theorem Let E be a noncompact set in R1. Then

(a) there exists a continuous function on E which is not bounded;
(b) there exists a continuous and bounded function on E which has no
maximum.

If, in addition, E is bounded, then
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(c) there exists a continuous function on E which is not uniformly
continuous.

Proof Suppose first that E is bounded, so that there exists a limit point
xo of E which is not a point of E. Consider

1f(x)-x_xo (xeE).

This is continuous on E (Theorem 4.9), but evidently unbounded. To see
that (21) is not uniformly continuous, let e > 0 and 6 > 0 be arbitrary, and
choose a point x e E such that |x —- xo| < 6. Taking t close enough to
xo , we can then make the difference |f(t) -f(x)| greater than s, although
|t — xl < 6. Since this is true for every 5 > 0, f is not uniformly continu-
ous on E.

The function g given by

.9(-7‘) i *1 + (x1_ x0); (x 5 E)

is continuous on E, and is bounded, since 0 < g(x) < 1. It is clear that

Sup g(x) =1.
x e E

whereas g(x) < 1 for all x e E. Thus g has no maximum on E.
Having proved the theorem for bounded sets E, let us now suppose

that E is unbounded. Then f(x) = x establishes (a), whereas
2

h(x) =1-If-;, (xe E)

establishes (b), since

sup h(x) == 1
xeE

and h(x) < 1 for all x e E.
Assertion (c) would be false if boundedness were omitted from the

hypotheses. For, let E be the set of all integers. Then every function
defined on E is uniformly continuous on E. To see this, we need merely
take 5 < 1 in Definition 4.18.

We conclude this section by showing that compactness is also essential in
Theorem 4.17.
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4.21 Example Let X be the half-open interval [0, 21:) on the real line, and
let f be the mapping of X onto the circle Yconsisting of all points whose distance
from the origin is 1, given by
(24) f(t) = (cos t, sin t) (0 5 t < 21:).
The continuity of the trigonometric functions cosine and sine, as well as their
periodicity properties, will be established in Chap. 8. These results show that
f is a continuous 1-1 mapping of X onto Y.

However, the inverse mapping (which exists, since f is one-to-one and
onto) fails to be continuous at the point (1, 0) = f(0). Of course, X is not com-
pact in this example. (It may be of interest to observe that F1 fails to be
continuous in spite of the fact that Y is compact!)

CONTINUITY AND CONNECTEDNESS

4.22 Theorem Iff is a continuous mapping of a metric space X into a metric
space Y, and ifE is a connected subset of X, thenf(E) is connected.

Proof Assume, on the contrary, that f(E) = A u B, where A and B are
nonempty separated subsets of Y. Put G = E n f“(A), H = E n f"(B).

Then E -= G u H, and neither G nor H is empty.
Since A c A (the closure of A), we have G c: f "1(A); the latter set is

closed, sincef is continuous; hence G cf ‘1(A). It follows thatf(G) c: A.
Since f(H) = B and A n B is empty, we conclude that G n H is empty.

The same argument shows that G n H is empty. Thus G and H are
separated. This is impossible if E is connected.

4.23 Theorem Let f be a continuous real function on the interval [a, b]. If
f(a) <f(b) and if c is a number such that f(a) < c <f(b), then there exists a
point x e (a, b) such thatf(x) = c.

A similar result holds, of course, if f(a) >f(b). Roughly speaking, the
theorem says that a continuous real function assumes all intermediate values on
an interval.

Proof By Theorem 2.47, [a, b] is connected; hence Theorem 4.22 shows
that f([a, b]) is a connected subset of R1, and the assertion follows if we
appeal once more to Theorem 2.47.

4.24 Remark At first glance, it might seem that Theorem 4.23 has a converse.
That is, one might think that if for any two points x1 < x2 and for any number c
between f(x1) and f(x2) there is a point x in (xl, x2) such that f(x) = c, thenf
must be continuous.

That this is not so may be concluded from Example 4.27(d).
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DISCONTINUITIES

If x is a point in the domain of definition of the function f at which f is not
continuous, we say thatf is discontinuous at x, or that f has a discontinuity at x.
Iff is defined on an interval or on a segment, it is customary to divide discon-
tinuities into two types. Before giving this classification, we have to define the
right-hand and the left-hand limits offat x, which we denote byf(x +) andf(x— ),
respectively.

4.25 Definition Let f be defined on (a, b). Consider any point x such that
a 5 x < b. We write

f(x+) =q
iff(t,,) —> q as n -> oo, for all sequences {tn} in (x, b) such that t,, -> x. To obtain
the definition off(x--), for a < x s b, we restrict ourselves to sequences {tn} in
(a, x).

It is clear that any point x of (a, b), limf(t) exists if and only if
I-PI

f(X+)=f(X—)=1ti_I:f(I)-

4.26 Definition Let f be defined on (a, b). Iff is discontinuous at a point x,
and iff(x+) and f(x--) exist, then f is said to have a discontinuity of the first
kind, or a simple discontinuity, at x. Otherwise the discontinuity is said to be of
the second kind.

There are two ways in which a function can have a simple discontinuity:
either f(x+) aé f(x—) [in which case the valuef(x) is immaterial], or f(x+) =
f(X-) #f(X)-

4.27 Examples
(a) Define

__ 1 (x rational),
f(x) A {O (x irrational).

Thenfhas a discontinuity of the second kind at every point x, since
neitherf(x+) norf(x—) exists.
(b) Define

__ x (x rational),
f(x) A {O (x irrational).
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Then f is continuous at x = 0 and has a discontinuity of the second
kind at every other point.
(c) Define

x+2 (-3<x<—2),
f(x)= -—x--2 (--2sx<0),

x+2 (0sx<l).

Then f has a simple discontinuity at x =0 and is continuous at
every other point of (-3, 1).
(d) Define

_ 1
f(x) = SlI1 J—r (x aé 0),

0 (x = 0).

Since neither f(0+) nor f(0-—) exists, f has a discontinuity of the
second kind at x = 0. We have not yet shown that sin x is a continuous
function. If we assume this result for the moment, Theorem 4.7 implies
that f is continuous at every point x aé 0.

MONOTONIC FUNCTIONS

We shall now study those functions which never decrease (or never increase) on
a given segment.

4.28 Definition Let f be real on (a, b). Then f is said to be monotonically
increasing on (a, b) if a < x < y < b implies f(x) 5f(y). If the last inequality
is reversed, we obtain the definition of a monotonically decreasing function. The
class of monotonic functions consists of both the increasing and the decreasing
functions.

4.29 Theorem Let f be monotonically increasing on (a, b). Then f(x+) and
f(x--) exist at every point of x of (a, b). More precisely,

(25) §<1112f(I) =f(X-")$f(X)5f(x+) = iI1£bf(¢)-

Furthermore, if a < x < y < b, then

(26) f(x+)$f(.v--)-
Analogous results evidently hold for monotonically decreasing functions.
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Proof By hypothesis, the set of numbersf(t), where a < t < x, is bounded
above by the number f(x), and therefore has a least upper bound which
we shall denote by A. Evidently A 5f(x). We have to show that
A = f(x-—).

Let e > 0 be given. It follows from the definition of A as a least
upper bound that there exists 5 > 0 such that a < x -- 5 < x and

(27) A-—e<f(x-5)5A.

Since f is monotonic, we have
(28) f(x—5)5f(t)5A (x—5<t<x).

Combining (27) and (28), we see that

|f(t)—-A|<s (x—5<t<x).
Hencef(x-—) = A. '

The second half of (25) is proved in precisely the same way.
Next, if a < x < y < b, we see from (25) that

(29) f(x+) = inf f(t) = inf f(t).
x<t<b x<t<y

The last equality is obtained by applying (25) to (a, y) in place of (a, b).
Similarly,

(30) f(x—) = s<1:13f(t)= 11:13 f(r)-
Comparison of (29) and (30) gives (26).

Corollary Monotonic functions have no discontinuities of the second kind.

This corollary implies that every monotonic function is discontinuous at
a countable set of points at most. Instead of appealing to the general theorem
whose proof is sketched in Exercise 17, we give here a simple proof which is
applicable to monotonic functions.

4.30 Theorem Let f be monotonic on (a, b). Then the set ofpoints of (a, b) at
which f is discontinuous is at most countable.

Proof Suppose, for the sake of definiteness, that f is increasing, and
let E be the set of points at which f is discontinuous.

With every point x of E we associate a rational number r(x) such
that

f(x—) < r(x) <f(x+).
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Since x1 < x2 implies f(x, +) 5f(x2 -), we see that r(x,) at r(x2) if
xl aé x2.

We have thus established a 1-1 correspondence between the set E and
a subset of the set of rational numbers. The latter, as we know, is count-
able.

4.31 Remark It should be noted that the discontinuities of a monotonic
function need not be isolated. In fact, given any countable subset E of (a, b),
which may even be dense, we can construct a function f, monotonic on (a, b),
discontinuous at every point of E, and at no other point of (a, b).

To show this, let the points of E be arranged in a sequence {x,,},
n ==1, 2, 3, . . .. Let {c,,} be a sequence of positive numbers such that Ec,,
converges. Define

(31) f(x) = Z c,, (a<x<b).
x,,<x

The summation is to be understood as follows: Sum over those indices n
for which x,, < x. If there are no points x,, to the left of x, the sum is empty;
following the usual convention, we define it to be zero. Since (31) converges
absolutely, the order in which the terms are arranged is immaterial.

We leave the verification of the following properties off to the reader:

(a) f is monotonically increasing on (a, b);
(b) f is discontinuous at every point of E ; in fact,

.f(xn+) _.f(xn"') = cu’

(c) f is continuous at every other point of (a, b).

Moreover, it is not hard to see thatf(x-—) =f(x) at all points of (a, b). If
a function satisfies this condition, we say that f is continuous from the left. If
the summation in (31) were taken over all indices n for which x,, 5 x, we would
havef(x+) =f(x) at every point of (a, b); that is, f would be continuous from
the right.

Functions of this sort can also be defined by another method; for an
example we refer to Theorem 6.16.

INFINITE LIMITS AND LIMITS AT INFINITY

To enable us to operate in the extended real number system, we shall now
enlarge the scope of Definition 4.1, by reformulating it in terms of neighborhoods.

For any real number x, we have already defined a neighborhood of x to
be any segment (x -— 5, x + 5).
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4.32 Definition For any real c, the set of real numbers x such that x > c is
called a neighborhood of + oo and is written (c, + oo). Similarly, the set ( -— oo, c)
is a neighborhood of — oo.

4.33 Definition Let f be a real function defined on E <1 R. We say that
f(t)->A as t-vx,

where A and x are in the extended real number system, if for every neighborhood
U of A there is a neighborhood V of x such that V n E is not empty, and such
thatf(t)e Ufor all te Vn E, tat x.

A moment’s consideration will show that this coincides with Definition
4.1 when A and x are real.

The analogue of Theorem 4.4 is still true, and the proof offers nothing
new. We state it, for the sake of completeness.

4.34 Theorem Letf and g be defined on E C R. Suppose
f(t)->A, g(t)—>B ast-->x.

Then

(a) f(t)-> A’ implies A’ =A.
(b) (f+ y)(l) —> A + B,
(¢') (fa)(I) —> AB,
(4) (f/a)(I) —> A/B.

provided the right members of (b), (c), and (d) are defined.
Note that oo - oo, 0 - oo, oo/oo, A/0 are not defined (see Definition 1.23).

EXERCISES

1. Supposef is a real function defined on R1 which satisfies

lim [f(x + h) -f(x — hi] =0
for every x e R‘. Does this imply that f is continuous?

2. Iff is a continuous mapping of a metric space X into a metric space Y, prove that

f(E) ¢f(E)
for every set E C X. (E denotes the closure of E.) Show, by an example, that
f(E) can be a proper subset off(E).

3. Letfbe a continuous real function on a metric space X. Let Z(f) (the zero set off)
be the set of all p e X at which f(p) == 0. Prove that Z(f) is closed.

4. Let f and g be continuous mappings of a metric space X into a metric space Y.
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and let E be a dense subset of X. Prove that f(E) is dense in f(X). If g(p) =f(p)
for all p e E, prove that g(p) =f(p) for all p e X. (In other words, a continuous
mapping is determined by its values on a dense subset of its domain.)
Iff is a real continuous function defined on a closed set E C R‘, prove that there
exist continuous real functions g on R‘ such that g(x) =f(x) for all x e E. (Such
functions g are called continuous extensions of f from E to R1.) Show that the
result becomes false if the word “closed” is omitted. Extend the result to vector-
valued functions. Hint: Let the graph of g be a straight line on each of the seg-
ments which constitute the complement of E (compare Exercise 29, Chap. 2).
The result remains true if R‘ is replaced by any metric space, but the proof is not
so simple.
Iff is defined on E, the graph offis the set of points (x, f(x)), for x e E. In partic-
ular, if E is a set of real numbers, and f is real-valued, the graph off is a subset of
the plane.

Suppose E is compact, and prove that f is continuous on E if and only if
its graph is compact.
If E C X and iff is a function defined on X, the restriction off to E is the function
g whose domain of definition is E, such that g(p) =f(p) for p e E. Definefand g
OH R’ byr f(0, 0) = a(0. 0) = 0, f(X, J’) = Ky’/(xz + J"), 90¢, .v) = xy’/(X' + y‘)
if (x, y) ¢ (0, 0). Prove that f is bounded on R’, that g is unbounded in every
neighborhood of (0,0), and that f is not continuous at (0,0); nevertheless, the
restrictions of both f and g to every straight line in R’ are continuous!
Let fbe a real uniformly continuous function on the bounded set E in R‘. Prove
that f is bounded on E.

Show that the conclusion is false if boundedness of E is omitted from the
hypothesis.
Show that the requirement in the definition of uniform continuity can be rephrased
as follows, in terms of diameters of sets: To every e > 0 there exists a 5 > 0 such
that diam f(E) < e for all E C X with diam E < 5.
Complete the details of the following alternative proof of Theorem 4.19: Iff is not
uniformly continuous, then for some e > 0 there are sequences {p,,}, {q,,} in X such
that dx(P» , q») -—> 0 but dr(f(P»),f(qn)) > e. Use Theorem 2.37 to obtain a contra-
diction.
Suppose f is a uniformly continuous mapping of a metric space X into a metric
space Y and prove that {f(x»)} is a Cauchy sequence in Y for every Cauchy se-
quence {x,,} in X. Use this result to give an alternative proof of the theorem stated
in Exercise 13.
A uniformly continuous function of a uniformly continuous function is uniformly
confinuous

State this more precisely and prove it.
Let E be a dense subset of a metric space X, and let f be a uniformly continuous
real function defined on E. Prove that fhas a continuous extension from E to X
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(see Exercise 5 for terminology). (Uniqueness follows from Exercise 4.) Hint: For
each p e X and each positive integer n, let V,.(p) be the set of all q e E with
d(p, q) < 1/n. Use Exercise 9 to show that the intersection of the closures of the
sets f( V1(p)), f( V,(p)), , consists of a single point, say g(p), of R‘. Prove that
the function g so defined on X is the desired extension off.

Could the range space R‘ be replaced by R“ ‘l By any compact metric space?
By any complete metric space? By any metric space?

14. Let I = [0, 1] be the closed unit interval. Suppose f is a continuous mapping of I
into I. Prove that f(x) = x for at least one x e I.

15. Call a mapping of X into Yopen iff( V) is an open set in Ywhenever V is an open
set in X.

Prove that every continuous open mapping of R‘ into R‘ is monotonic.
16. Let [x] denote the largest integer contained in x, that is, [x] is the integer such

that x —— 1 < [x] 5 x; and let (x) = x — [x] denote the fractional part of x. What
discontinuities do the functions [x] and (x) have?

17. Let f be a real function defined on (a, b). Prove that the set of points at which f
has a simple discontinuity is at most countable. Hint: Let E be the set on which
f(x-—) <f(x+). With each point x of E, associate a triple (p, q, r) of rational
numbers such that
(a) f(x—) <11 <f(x+).
(b) a <q < t < x impliesf(t) <p,
(c) x < t < r < b impliesf(t) >p.
The set of all such triples is countable. Show that each triple is associated with at
most one point of E. Deal similarly with the other possible types of simple dis-
continuities.

18. Every rational x can be written in the form x = m/n, where n > 0, and m and n are
integers without any common divisors. When x = 0, we take n = 1. Consider the
function f defined on R‘ by

0 (x irrational),
f(X)={1 ( m)— x-=- .

n n

Prove that f is continuous at every irrational point, and that fhas a simple discon-
tinuity at every rational point.

19. Suppose f is a real function with domain R‘ which has the intermediate value
property: Iff(a) < c <f(b), thenf(x) = c for some x between a and b.

Suppose also, for every rational r, that the set of all x withf(x) = r is closed.
Prove that f is continuous.
Hint: If x,, -> xo but f(x,,) > r >f(xo) for some r and all n, then f(t..) = r

for some t,, between xo and x,,; thus t,, -+ xo . Find a contradiction. (N. J. Fine,
Amer. Math. Monthly, vol. 73, 1966, p. 782.)
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If E is a nonempty subset of a metric space X, define the distance from x e X to E
by

p;(x) = inf d(x, 2).
nil‘

(a) Prove that pE(x) = 0 if and only if x e E.
(b) Prove that pg is a uniformly continuous function on X, by showing that

|pr(x) -— PE(J’)l é d(x, y)
for all xeX,yeX.

Hint: pE(x) 5 d(x, z) 5 d(x, J’) + d(y, z), so that
P1-r(x) £ d(x, J’) + PHD’)-

Suppose K and F are disjoint sets in a metric space X, K is compact, F is closed.
Prove that there exists 5 >0 such that d(p, q) > 5 if p e K, q e F. Hint: pp is a
continuous positive function on K.

Show that the conclusion may fail for two disjoint closed sets if neither is
compact.
Let A and B be disjoint nonempty closed sets in a metric space X, and define

g P4(P)f(p) -p4(p)+pB(p) (P6X)-

Show that f is a continuous function on X whose range lies in [0, 1], that f(p) = 0
precisely on A andf(p) = 1 precisely on B. This establishes a converse of Exercise
3: Every closed set A C X is Z(f) for some continuous real fon X. Setting

V=f-1([0s W:f_1((‘}>

show that V and W are open and disjoint, and that A C V, B C W. (Thus pairs of
disjoint closed sets in a metric space can be covered by pairs of disjoint open sets.
This property of metric spaces is called normality.)
A real-valued function fdefined in (a, b) is said to be convex if

f( Ax + (1 — My) 5 Af(x) + (1 — A)f(y)
whenever a < x < b, a < y < b, 0 < A <1. Prove that every convex function is
continuous. Prove that every increasing convex function of a convex function is
convex. (For example, iff is convex, so is e".)

Iff is convex in (a, b) and if a < s < t < u < b, show that

7 rm --to) mo —r<s> /to ~10)5 77 _< _
t—s g u—s _ u-t

Assume that f is a continuous real function defined in (a, b) such that

x+ y f(x) +f(y)/(T) g Z-2
for all x, y e (a, b). Prove that f is convex.
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If A C R“ and B C R“, define A + B to be the set of all sums x + y with xeA,
y 6 B.
(a) If K is compact and C is closed in R“, prove that K + C is closed.

Hint: Take z ¢ K+ C, put F= z — C, the set of all z — y with y e C. Then
K and F are disjoint. Choose 5 as in Exercise 21. Show that the open ball with
center z and radius 5 does not intersect K + C.
(b) Let at be an irrational real number. Let C1 be the set of all integers, let C; be
the set of all not with n e C1. Show that C1 and C2 are closed subsets of R‘ whose
sum C, + C2 is not closed, by showing that C1 + C, is a countable dense subset
of R‘.
Suppose X, Y, Z are metric spaces, and Y is compact. Let f map X into Y, let
g be a continuous one-to-one mapping of Y into Z, and put h(x) = g(f(x)) for
x 6 X.

Prove that f is uniformly continuous if h is uniformly continuous.
Hint: g“ has compact domain g( Y), and f(x) = g“(h(x)).
Prove also that f is continuous if h is continuous.
Show (by modifying Example 4.21, or by finding a different example) that

the compactness of Ycannot be omitted from the hypotheses, even when X and
Z are compact.



DIFFERENTIATION

In this chapter we shall (except in the final section) confine our attention to real
functions defined on intervals or segments. This is not just a matter of con-
venience, since genuine differences appear when we pass from real functions to
vector-valued ones. Differentiation of functions defined on R" will be discussed
in Chap. 9.

THE DERIVATIVE OF A REAL FUNCTION

5.1 Definition Letf be defined (and real-valued) on [a, b]. For any x e [a, b]
form the quotient

<1) ¢<r>=f-9’}:—’;9-‘3 <a<i<b.i¢x>.
and define

(2) f'(x) = lim ¢(¢).



104 PRINCIPLES OF MATHEMATICAL ANALYSIS

provided this limit exists in accordance with Definition 4.1.
We thus associate with the function f a function f’ whose domain

is the set of points x at which the limit (2) exists; f’ is called the derivative
off.

Iff’ is defined at a point x, we say that f is difi"erentiable at x. If f’ is
defined at every point of a set E c [a, b], we say that f is differentiable on E.

It is possible to consider right-hand and left-hand limits in (2); this leads
to the definition of right-hand and left-hand derivatives. In particular, at the
endpoints a and b, the derivative, if it exists, is a right-hand or left-hand deriva-
tive, respectively. We shall not, however, discuss one-sided derivatives in any
detail.

Iff is defined on a segment (a, b) and if a < x < b, then f’(x) is defined
by (1) and (2), as above. But f’(a) and f’(b) are not defined in this case.

5.2 Theorem Letfbe defined on [a, b]. Iff is diflerentiable at a point x e [a, b],
thenf is continuous at x.

Proof As t —>x, we have, by Theorem 4.4,

re) -r(x) = ’-3%”-9’? - c - x) »r'<x> ~ 0 = 0-
The converse of this theorem is not true. It is easy to construct continuous

functions which fail to be differentiable at isolated points. In Chap. 7 we shall
even become acquainted with a function which is continuous on the whole line
without being differentiable at any point!

5.3 Theorem Suppose f and g are defined on [a, b] and are diflerentiable at a
point x e [a, b]. Thenf+ g, fg, andf/g are diflerentiable at x, and

(0) (f + 9)'(x) =f'(x) + 9'(x);
(b) (f9)'(x) =f'(x)9(x) +f(x)9'(X);

f ' g o(x)f’(x) — e'(x)f(x)
(") (‘)7 re) '

In (c), we assume of course that g(x) aé O.

Proof (a) is clear, by Theorem 4.4. Let h = fg. Then

11(1) - h(x) =f(l)[y(l) — g(x)] + 9(X)[f(l) —f(x)]-
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If we divide this by t - x and note thatf(t) ->f(x) as t -> x (Theorem 5.2),
(b) follows. Next, let h =f/g. Then

h(f)_— h(x) 5 1 f(1) —f(X) _ 9(1) — g(x)
I — x A a(t)e(x) lg(x) 1 —- x f(x) I — x

Letting t—> x, and applying Theorems 4.4 and 5.2, we obtain (c).

5.4 Examples The derivative of any constant is clearly zero. Iff is defined
by f(x) = x, thenf’(x) = 1. Repeated application of (b) and (c) then shows that
x" is differentiable, and that its derivative is nx""1, for any integer n (if n < 0,
we have to restrict ourselves to x aé 0). Thus every polynomial is differentiable.
and so is every rational function, except at the points where the denominator is
zero.

The following theorem is known as the “chain rule” for differentiation.
It deals with differentiation of composite functions and is probably the most
important theorem about derivatives. We shall meet more general versions of it
in Chap. 9.

5.5 Theorem Suppose f is continuous on [a, b], f’(x) exists at some point
x e [a, b], g is defined on an interval I which contains the range off, and g is
dzflerentiable at the pointf(x). If

11(1) = 9(f(f)) (11 S IS b).
then h is dijferentiable at x, and

(3) /f(x) = 9'(f(X))f’(X)-
Proof Let y =f(x). By the definition of the derivative, we have

(4) f(I) -f(x) = (1 - X)[f’(X) + 11(1)].
(5) v(s) - g(x) = (S - r)[y’(r) + v(s)].

where t e [a, b], s el, and u(t) ——>0 as t—>x, v(s) —>0 ass—>y. Lets =f(t).
Using first (5) and then (4), we obtain

/1(1) — h(x) = 9(f(t)) - y(f(x))
= [f(1) -f(x)] ' [y'(y) + v(s)]
= (I - X) ' [f(x) + 11(1)] ' [9'(y) + v(s)].

or, if t ab x,

<6) ,l(13__;:c'(i)=la'(y)+ v(s)] - [r(x) +1401.
Letting t —> x, we see that s -> y, by the continuity of f, so that the right
side of (6) tends to g’(y)f’(x), which gives (3).
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5.6 Examples
(a) Letf be defined by

, 1(7) f(x) = x S111 -J-E (x aé 0),

O (x = 0).

Taking for granted that the derivative of sinx is cos x (we shall
discuss the trigonometric functions in Chap. 8), we can apply Theorems
5.3 and 5.5 whenever x aé 0, and obtain

(8) f’(x) = sin 56- - gcos 316- (x 9* 0).

(9) f(X) =

At x = 0, these theorems do not apply any longer, since 1/x is not defined
there, and we appeal directly to the definition: for t at 0,

f(¢)-f(0) . 1-—-—————=s1n--t-0 t

As t—> 0, this does not tend to any limit, so that f’(0) does not exist.
(b) Letf be defined by

_ 1x2 sin - (x ab 0),x
0 (x = 0),

As above, we obtain

(10) f’(x) = 2x sin-J1; - cos-3; (x aé 0).

At x = 0, we appeal to the definition, and obtain

l l= ism; 5|t| (t¢0);

letting t—> 0, we see that

(11) f'(0) = 0-

Thus f is differentiable at all points x, but f’ is not a continuous
function, since cos (1/x) in (10) does not tend to a limit as x -> 0.
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MEAN VALUE THEOREMS

5.7 Definition Let f be a real function defined on a metric space X. We say
thatfhas a local maximum at a point p e X if there exists 5 > 0 such thatf(q) 5
f(p) for all q e X with d(p, q) < 5.

Local minima are defined likewise.
Our next theorem is the basis of many applications of differentiation.

5.8 Theorem Let f be defined on [a, b]; iff has a local maximum at a point
x e (a, b), and iff’(x) exists, then f'(x) = 0.

The analogous statement for local minima is of course also true.
Proof Choose 5 in accordance with Definition 5.7, so that

a<x—5<x<x+5<b
Ifx—5<t<x, then

f(1) -f(x)
T20.

Letting t —> x, we see thatf'(x) 2 0.
Ifx<t<x+5, then

f(1) -f(x)_.___i_.... S 0,
I — X

which shows that f’(x) 5 0. Hencef’(x) = 0.

5.9 Theorem If f and g are continuous real functions on [a, b] which are
diflerentiable in (a, b), then there is a point x 6 (a, b) at which

if(11) -f(11)]9'(X) = l9(b) — 9(11)]f'(x)-
Note that differentiability is not required at the endpoints.
Proof Put

11(1) = [f(11) —f(11)]9(1) - l9(b) — 9(11)lf(1) (11 S 1 $ 11)-
Then h is continuous on [a, b], h is differentiable in (a, b), and

(12) 11(9) =f(b)9(11) —f(11)9(b) = 11(15)-
To prove the theorem, we have to show that h’(x) = 0 for some x e (a, b).

If h is constant, this holds for every xe (a, b). If h(t) > h(a) for
some te (a, b), let x be a point on [a, b] at which h attains its maximum
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(Theorem 4.16). By (12), x e (a, b), and Theorem 5.8 shows that h’(x) = 0.
If h(t) < h(a) for some t e (a, b), the same argument applies if we choose
for x a point on [a, b] where h attains its minimum.

This theorem is often called a generalized mean value theorem; the following
special case is usually referred to as “the” mean value theorem:

5.10 Theorem Iff is a real continuous function on [a, b] which is dijferentiable
in (a, b), then there is a point x e (a, b) at which

f(b) —f(11) = (11 — 11)f'(11)-
Proof Take g(x) = x in Theorem 5.9.

5.11 Theorem Supposef is difierentiable in (a, b).

(a) Iff’(x) 2 0 for all x e (a, b), then f is monotonically increasing.
(b) Iff'(x) = 0 for all x e (a, b), then f is constant.
(c) Iff’(x) 5 0 for all x e (a, b), then f is monotonically decreasing.

Proof All conclusions can be read off from the equation

f(x2) "'f(x1) = (x2 " x1)f'(x),

which is valid, for each pair of numbers x1, x2 in (a, b), for some x between
x1 and x2 .

THE CONTINUITY OF DERIVATIVES

We have already seen [Example 5.6(b)] that a function f may have a derivative
f’ which exists at every point, but is discontinuous at some point. However, not
every function is a derivative. In particular, derivatives which exist at every
point of an interval have one important property in common with functions
which are continuous on an interval: Intermediate values are assumed (compare
Theorem 4.23). The precise statement follows.

5.12 Theorem Supposef is a real dijferentiable function on [a, b] and suppose
f'(a) < A <f’(b). Then there is a point x e (a, b) such thatf’(x) = 1..

A similar result holds of course iff'(a) >f’(b).
Proof Put g(t) = f(t) — At. Then g’(a) < 0, so that g(t1) < g(a) for some
t1 e (a, b), and g’(b) > 0, so that g(t2) < g(b) for some t2 e (a, b). Hence
g attains its minimum on [a, b] (Theorem 4.16) at some point x such that
a < x < b. By Theorem 5.8, g'(x) = 0. Hencef’(x) = Z.
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Corollary Iff is difierentiable on [a, b], then f’ cannot have any simple dis-
continuities on [a, b].

Butf’ may very well have discontinuities of the second kind.

L’HOSPITAL’S RULE
The following theorem is frequently useful in the evaluation of limits.

5.13 Theorem Supposefand g are real and dijferentiable in (a, b), andg'(x) aé 0
for all x e (a, b), where - co 5 a < b 5 + oo. Suppose

I

(13) %—>Aasx—>a.

If
(14) f(x)—>0 and g(x)—>0 as x—>a,
or if
(15) g(x)-> +00 asx—>a,
then

(16) 4'2->Aasx->a.9(11)
The analogous statement is of course also true if x -> b, or if g(x) —> — oo

in (15). Let us note that we now use the limit concept in the extended sense of
Definition 4.33.

Proof We first consider the case in which —oo 5 A < +oo. Choose a
real number q such that A < q, and then choose r such that A < r < q.
By (13) there is a point c e (a, b) such that a < x < c implies

<11) /L) < .~.9 (11)
If a < x < y < c, then Theorem 5.9 shows that there is a point te (x, y)
such that

f(X) —f(1') f'(1)“8’ as -go) t"<1><’"
Suppose (14) holds. Letting x -> a in (18), we see that

(19) Z-8-%5r<q (a<y<c).
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Next, suppose (15) holds. Keeping y fixed in (18), we can choose
a point cl e (a, y) such that g(x) > g(y) and g(x) > 0 if a < x < cl. Multi-
plying (18) by [9(x) — 9(y)]/9(x). We obtain

g-€%<r—ri%§+g(L£ (a<x<c,).

If we let x —> a in (20), (15) shows that there is a point c2 e (a, cl)
such that

(20)

(21) 1% < q (a < x < C2).

Summing up, (19) and (21) show that for any q, subject only to the
condition A < q, there is a point C2 such that f(x)/g(x) < q if a < x < c2.

In the same manner, if —oo < A 5 + oo, and p is chosen so that
p < A, we can find a point c3 such that

(22) p < % (a < x < c3),

and (16) follows from these two statements.

DERIVATIVES OF HIGHER ORDER

5.14 Definition Iffhas a derivativef’ on an interval, and iff' is itself differen-
tiable, we denote the derivative off’ byf” and call f” the second derivative off.
Continuing in this manner, we obtain functions

.f;f’9f”9f(3)9 ' ' ' 3f(n)9

each of which is the derivative of the preceding one. f‘"1 is called the nth deriva-
tive, or the derivative of order n, off.

In order forf‘"1 (x) to exist at a point x,f‘"7 1) (t) must exist in a neighbor-
hood of x (or in a one-sided neighborhood, if x is an endpoint of the interval
on which f is defined), andf("'11 must be differentiable at x. Sincef("-11 must
exist in a neighborhood of x,f("" 2) must be differentiable in that neighborhood.

TAYLOR’S THEOREM

5.15 Theorem Suppose f is a real function on [a, b], n is a positive integer,
f("-1) is continuous on [a, b], f(")(t) exists for every te (a, b). Leta, B be distinct
points of [a, b], and define

(23) p(t) = (1 - oz)".



DIFFERENTIATION 111

Then there exists a point x between at and B such that

<24) f(t) = Pt/1) + <11 - 11>".
For n = 1, this is just the mean value theorem. In general, the theorem

shows that f can be approximated by a polynomial of degree n — 1, and that
(24) allows us to estimate the error, if we know bounds on |f(")(x)|.

Proof Let M be the number defined by

(25) f(B) = P(fi) + M(l1 — <1)”
and put

(26) g(t) =f(t)—P(t)— M(t— oz)" (a5 t5b).

We have to show that n!M =f(")(x) for some x between oz and B. By
(23) and (26),

(27) g(")(t) =f‘")(t) - n!M (a < t < b).
Hence the proof will be complete if we can show that g(”)(x) = 0 for some
x between a and B.

Since P"‘)(ot) =f"‘)(a) for k = 0, ..., n - 1, we have

(23) 9(9) = 9'(11) = "' = 9‘"””(11) = 0-
Our choice of M shows that g(B) = 0, so that g’(x1)= 0 for some x1
between at and B, by the mean value theorem. Since g’(a) = 0, we conclude
similarly that g"(x2) = 0 for some x2 between a and xl. After n steps we
arrive at the conclusion that g‘")(x,,) = 0 for some x,, between oz and x,,_,,
that is, between a and B.

DIFFERENTIATION OF VECTOR-VALUED FUNCTIONS

5.16 Remarks Definition 5.1 applies without any change to complex functions
f defined on [a, b], and Theorems 5.2 and 5.3, as well as their proofs, remain
valid. Iffl and f2 are the real and imaginary parts off, that is, if

f(1) =f1(1) + 1fz(1)
for a 5 t5 b, where f1(t) and f2(t) are real, then we clearly have

(29) f'(X) =f1’(X) + 1f£(x);
also, f is differentiable at x if and only if bothfl and f2 are differentiable at x.
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Passing to vector-valued functions in general, i.e., to functions f which
map [a, b] into some R", we may still apply Definition 5.1 to define f'(x). The
term ¢(t) in (1) is now, for each t, a point in R", and the limit in (2) is taken with
respect to the norm of R". In other words, f'(x) is that point of R" (if there is
one) for which

(30) lim 5% - f'(x) = 0,
and f ' is again a function with values in R".

If fl, ..., j}, are the components of f, as defined in Theorem 4.10, then
(31) f'=(f1’,...,fl,’),
and f is differentiable at a point x if and only if each of the functions fl, ..., f,‘
is differentiable at x.

Theorem 5.2 is true in this context as well, and so is Theorem 5.3(a) and
(b), iffg is replaced by the inner product f - g (see Definition 4.3).

When we turn to the mean value theorem, however, and to one of its
consequences, namely, L’Hospital’s rule, the situation changes. The next two
examples will show that each of these results fails to be true for complex-valued
functions.

5.17 Example Define, for real x,

(32) f(x) = ei” = cos x + i sin x.

(The last expression may be taken as the definition of the complex exponential
e1"; see Chap. 8 for a full discussion of these functions.) Then

(33) f(211)-f(0)=1-1=-=0.
but

(34) f'(x) = 1'6“.
so that |f’(x)| = 1 for all real x.

Thus Theorem 5.10 fails to hold in this case.

5.18 Example On the segment (0, 1), definef(x) = x and

(35) g(x) = x + x2e‘/*2.

Since |e“| = 1 for all real t, we see that

. f(x) _
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Next,
2' .(37) g'(x) = 1 + 12x - e‘/" (0 < x < 1),

so that
2 2(as) |g'(x)| 2 2x--5 -12--1.
X X

Hence
f'(x) Tia gx

(39) lurk) il9’(11)lS2-11
and so

(40)
I. r<x>__l‘f3?.?"(?>"°'

By (36) and (40), L’Hospital’s rule fails in this case. Note also that g'(x) 71 0
on (0, 1), by (38).

However, there is a consequence of the mean value theorem which. for
purposes of applications, is almost as useful as Theorem 5.10, and which re-
mains true for vector-valued functions: From Theorem 5.10 it follows that

(41) If(b)-f(11)l s (11 -~11) jggb If'(x)I-

5.19 Theorem Suppose f is a continuous mapping of [a, b] into R" and f is
dijferentiable in (a, b). Then there exists x e (a, b) such that

11(5)" f(a)l 5 (b -' a)|f'(x)l-
Proof1 Put z = f(b) -~ f(a), and define

111(1)’-'l’f(1) (115-135)-
Then cp is a real-valued continuous function on [a, b] which is differentia-
ble in (a, b). The mean value theorem shows therefore that

111(9) —- 1/1(9) = (11 - 11)<P'(x) == (11 -- 11)! ' f'(x)
for some x e (a, b). On the other hand,

q0(b) - <p(a) = z ' f(b) -z ' f(a) =z ' z = |z|2.

The Schwarz inequality now gives

Ill’ = (11 —- 11)|l 'f'(>1)l 5 (11 — 11)ll| lf'(x)l-
Hence |z| 5 (b -- a) |f’(x)| , which is the desired conclusion.

1 V. P. I-Iavin translated the second edition of this book into Russian and added this
proof to the original one.



114 PRINCIPLES or MATHEMATICAL ANALYSIS

EXERCISES
1. Let f be defined for all real x, and suppose that

lf(x) —f(y)l 5(x —y)’
for all real x and y. Prove that f is constant.

2. Supposef’(x) > 0 in (a, b). Prove that f is strictly increasing in (a, b), and let g be
its inverse function. Prove that g is differentiable, and that

1
9'(f(11)) = 7-,(-x) (11 < X < 17)-

3. Suppose g is a real function on R‘, with bounded derivative (say |g'| 5 M). Fix
e > 0, and definef(x) = x + eg(x). Prove that f is one-to-one if e is small enough.
(A set of admissible values of e can be determined which depends only on M.)

4O

C1 Cu-1 Cn __Co-l-T-F -i--';'1'—+;'_"_-i"—0,

where Co, ..., C. are real constants, prove that the equation

Co '1' C1-71' -1" ' ' ' -1" C»-1X"_1 "1" C»-X" =0

has at least one real root between 0 and 1.
5. Supposef is defined and differentiable for every x > 0, andf’(x) —> 0 as x -> + co.

Put g(x) =f(x + 1) —f(x). Prove that g(x) —> 0 as x —> + 00.
6. Suppose

(a) f is continuous for x 2 0,
(b) f’(x) exists for x > 0,
(1) f(0) = 0.
(d) f’ is monotonically increasing.
Put

un=§§ o>o
and prove that g is monotonically increasing.

7. Supposef’(x), g'(x) exist, g ’(x) ?‘= 0, andf(x) =-- g(x) -—- 0. Prove that

. f(1) f’(>1)
‘.‘$.T)=5’(7)'

(This holds also for complex functions.)
8. Suppose f’ is continuous on [a, b] and e > 0. Prove that there exists 5 > 0 such

that

]no—np"it";-)€i"f'(x) <8
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whenever 0 < It —- x| < 5, a 5 x 5 b, a 5 t 5 b. (This could be expressed by
saying that fis uniformly diflerentiable on [a, b] iff’ is continuous on [a, b].) Does
this hold for vector-valued functions too?
Let f be a continuous real function on R‘, of which it is known that f’(x) exists
for all x ah 0 and that f’(x) —-> 3 as x —-> 0. Does it follow that f'(0) exists?
Supposefand g are complex differentiable functio s on (0, 1), f(x) -—> 0, g(x) -1» 0,
f’(x) —> A, g'(x) ~—> B as x —> 0, where A and B are Ehmplex numbers, B 9* 0. Prove
that

. f(x) A!.'£‘.:.7<;.3=§'
Compare with Example 5.18. Hint:

f(>1) {f(11) A} 11 >1___,__ = ___ _ . __ + A . __ _
9(x) 11 9(x) 9(x)

Apply Theorem 5.13 to the real and imaginary parts off(x)/x and g(x)/x.
Suppose f is defined in a neighborhood of x, and suppose f”(x) exists. Show that

lim f(x + 11) +f(l><; -- 11) -- 2f(x) f..(x)_
II-0°

Show by an example that the limit may exist even iff”(x) does not.
Hint: Use Theorem 5.13.

Iff(x) = |x| 3, compute f'(x), f”(x) for all real x, and show that f""(0) does not
exist.
Suppose a and c are real numbers, c > 0, and f is defined on [—- 1, 1] by

_ x‘ sin (|x|“) (if x 950),
f(x) 7' (if x =0).1.

Prove the following statements:
(a) f is continuous if and only if a > 0.
(b) f’(0) exists if and only if a > 1.
(c) f' is bounded if and only if a 21 + c.
(d) f' is continuous if and only if a > 1 + c.
(e) f”(0) exists if and only if a > 2 + c.
(f) f” is bounded if and only if a 2 2 + 2c.
(g) f” is continuous if and only if a > 2 + 2c.
Let f be a differentiable real function defined in (a, b). Prove that f is convex if
and only if f’ is monotonically increasing. Assume next that f”(x) exists for
every x e (a, b), and prove that fis convex if and only iff”(x) 2 0 for all x e (a, b).
Suppose a e R1, fis a twice-differentiable real function on (a, 00), and Mo , M1, M1
are the least upper bounds of |f(x)|, If’(x)|, |f"(x)|, respectively, on (a, 00).
Prove that

Mf54MoM;.
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Hint: If h > 0, Taylor’s theorem shows that
1f'(>1) = 5;‘ if(11 + 211) - f(X)l — 11f"(§)

for some if e (x, x + 2h). Hence

M|f’(x)| 5hMz+—53-
To show that Mf = 4M0 M2 can actually happen, take a = -1, define

2x’—1 (-~1<x<()),

f(x) = x’ — 1
Fa (0 S X < O0),

and show that Mo = 1, M, =4, M, =4.
Does M2 5 4M0 M1 hold for vector-valued functions too?

16. Suppose f is twice-difierentiable on (0, oo), f” is bounded on (0, co), and f(x) *> 0
as x -> oo, Prove thatf’(x) —>0 as x -1- co.

Hint: Let a -> co in Exercise 15.
17. Suppose fis a real, three times differentiable function on [-1, 1], such that

Prove that f"’(x) 2 3 for some x e (- 1, 1).
Note that equality holds for l(x“ + x’).
Hint: Use Theorem 5.15, with at =1 0 and B = :1; 1, to show that there exist

s e (0, 1) and t e (- 1, 0) such that

f"’(1‘) +f"’(1) = 6-
18. Suppose f is a real function on [a, b], n is a positive integer, and f‘"“’ exists for

every t e [a, b]. Let oz, B, and P be as in Taylor’s theorem (5.15). Define

Q(1) = (L2-E-g@
for t e [a, b], t eh B, differentiate

f(1)'"f(13) =(1 ‘C 5)Q(1)
n — 1 times at t = oz, and derive the following version of Taylor’s theorem:

or-"1 > ,,r<t1>=P<B)+-(,;;°‘,-<11-11>.
19. Suppose f is defined in (——-1, 1) and f’(0) exists. Suppose —-1 < ot,, <B.. <1.

at, —> 0, and B. —-> 0 as n -> co. Define the difference quotients

Dn= ).
Bn—'an
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Prove the following statements:
(a) If ot,, < 0 < B, , then lim D, =f’(0).
(b) If 0 < oz, < B, and {B11/(Bu - oc,.)} is bounded, then lim D,, =f’(0).
(c) Iff’ is continuous in (-1, 1), then lim D" =f'(0).

Give an example in whichf is differentiable in (—- 1, 1) (but f’ is not contin-
uous at 0) and in which an , B, tend to 0 in such a way that lim D, exists but is differ-
ent fromf’(0).
Formulate and prove an inequality which follows from Taylor’s theorem and
which remains valid for vector-valued functions.
Let E be a closed subset of R‘. We saw in Exercise 22, Chap. 4, that there is a
real continuous functionfon R‘ whose zero set is E. Is it possible, for each closed
set E, to find such an f which is differentiable on R‘, or one which is n times
differentiable, or even one which has derivatives of all orders on R‘?
Suppose f is a real function on (— oo, 00). Call x a fixed point off iff(x) = x.
(a) Iff is differentiable andf’(t) at 1 for every real t, prove that f has at most one
fixed point.
(b) Show that the function fdefined by

fU)=¢+f1+e9“
has no fixed point, although 0 <f’(t) < 1 for all real t.
(c) However, if there is a constant A < 1 such that If’(t)| g A for all real t, prove
that a fixed point x off exists, and that x = lim x,, , where x1 is an arbitrary real
number and

xn + 1 :f(xn)

forn=l,2,3,
(d) Show that the process described in (c) can be visualized by the zig-zag path

(X1, X2) ""> (X2, X2) '"> (X2 , X3) '"> (X3, Xs) _* (X3, X4) -* ' ' ' -

The function f defined by

r(x) =
has three fixed points, say at, B, y, where

-—2<oc<--1, 0</8<1, 1<y<2.

For arbitrarily chosen xl, define {x,,} by setting x,,+1 =f(x,,).
(a) If x1 < oz, prove that x,. —> —-oo as n —> 00.
(b) Ifa <x1 <7, prove that x,, -->5 as n —>00.
(c) If-y <x1, prove that x,, -> +00 as n —-> oo.
Thus B can be located by this method, but at and y cannot.
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24. The process described in part (c) of Exercise 22 can of course also be applied to
functions that map (0, oo) to (0, oo).

Fix some oz > 1, and put

f(x) = Xx + g(x) =

Both fand g have \/oz as their only fixed point in (0, oo). Try to explain, on the
basis of properties offand g, why the convergence in Exercise 16, Chap. 3, is so
much more rapid than it is in Exercise 17. (Compare f’ and g ’, draw the zig-zags
suggested in Exercise 22.)

Do the same when 0 < at < 1.
25. Suppose f is twice differentiable on [a, b], f(a) < 0, f(b) > 0, f’(x) Z 8 > 0, and

0$f”(x) 3M for all x e [a, b]. Let 5 be the unique point in (a, b) at which
f(5) = 0-

Complete the details in the following outline of Newton’s method for com-
puting f.
(a) Choose x, e (5, b), and define {x,.} by

_.__l@xn + 1 “ xn I-,-(xn) '

Interpret this geometrically, in terms of a tangent to the graph off.
(b) Prove that x,,+, < x,, and that

lim x,. = 5.

(c) Use Taylor’s theorem to show that

_ f”(l‘») 2X,-+1 -5-—-m(X»"—" 5)

for some t,, e (5, x,.).
(d) If A = M/25, deduce that

ogx... —§s§tA<x1-§>1=".
(Compare with Exercises 16 and 18, Chap. 3.)

(e) Show that Newton’s method amounts to finding a fixed point of the function
g defined by

X_. _. L
g(x) _' x f/(x) °

How does g ’(x) behave for x near 5 ?
(f) Put f(x) = x1’ 3 on (-— oo, 00) and try Newton’s method. What happens?
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Suppose f is differentiable on [a, b], f(a) = 0, and there is a real number A such
that If’(x)| gA |f(x)| on [a, b]. Prove that f(x) = 0 for all x e [a, b]. Hint: Fix
xo 6 [a, b], let

Mo =suplf(x)l. M1 =su1:>|f’(x)|
for a 3 x 3 xo. For any such x,

|f(X)| 3 M1(X0 — 0) 3 A(X0 " a)M0-
Hence M0 = 0 if A(x° — a) < 1. That is, f= 0 on [a, xo]. Proceed.
Let qb be a real function defined on a rectangle R in the plane, given by a £ x £ b,
oz 3 y 3 A solution of the initial-value problem

y’ = ¢(x. y). x(a) = <1 (d S ¢ é B)
is, by definition, a differentiable functionfon [a, b] such thatf(a) = c, oz 3f(x) S B,
and

f’(x) = ¢>(X. f(x)) (a s x s b)-
Prove that such a problem has at most one solution if there is a constant A such
that

|¢>(x. y=) — ¢(x. J/1)| £A|y= —- Y1 I
whenever (x, yl) e R and (x, y,) e R.

Hint: Apply Exercise 26 to the difference of two solutions. Note that this
uniqueness theorem does not hold for the initial-value problem

y’ = 31"’. 31(0) = 0.
which has two solutions: f(x) = 0 and f(x) = x’/4. Find all other solutions.
Formulate and prove an analogous uniqueness theorem for systems of differential
equations of the form

1'5 =¢>.»(X.y1. ,1/-.). 71(0) =¢1 (J'= 1. . k)-
Note that this can be rewritten in the form

y’ = <l>(r. y). y(a) = ¢
where y =(y1, , yk) ranges over a k-cell, 4: is the mapping of a (k + 1)-cell
into the Euclidean k-space whose components are the functions gin, ... , ¢>,, , and c
is the vector (cl, .. . , ck). Use Exercise 26, for vector-valued functions.
Specialize Exercise 28 by considering the system

y;=y.l+1 (j='19"'9k_'1)9

It

3'1’: —'f(X) — Z g(X)J’1>— J
J=1

where f, g1, . . . , gt are continuous real functions on [a, b], and derive a uniqueness
theorem for solutions of the equation

y"" + y,.(x)y"‘ ' " + - - - + a¢(x)y’ + g1(x)y =f(x).
subject to initial conditions

x(a) = cl. y’(a) = ¢=. -. J/"“"(a) = ct.



THE RIEMANN-STIELTJES INTEGRAL

The present chapter is based on a definition of the Riemann integral which
depends very explicitly on the order structure of the real line. Accordingly,
we begin by discussing integration of real-valued functions on intervals. Ex-
tensions to complex- and vector-valued functions on intervals follow in later
sections. Integration over sets other than intervals is discussed in Chaps. 10
and 11.

DEFINITION AND EXISTENCE OF THE INTEGRAL

6.1 Definition Let [a, b] be a given interval. By a partition P of [a, b] we
mean a finite set of points xo, xl, ..., x,, , where

a =x0$.x,_€ sx,,..1sx,,=b.

We write

Ax,=x,-x,_1 (i=l,...,n).
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Now suppose f is a bounded real function defined on [a, b]. Corresponding to
each partition P of [a, b] we put

Mi = $uPf(X) (Xt—1 5 X 5 xi),
mi = inff(x) (x,_1 3 x s xi),

=ii1Mi Axb

L(P,f) = im, Ax,
t= 1 ,

and finally
""b(1) f fdx = inf U(P,f),

b<2) J /dx = sup L<P./>.
where the inf and the sup are taken over all partitions P of [a, b]. The left
members of (1) and (2) are called the upper and lower Riemann integrals off
over [a, b], respectively. _

If the upper and lower integrals are equal, we say that f is Riemann-
integrable on [a, b], we write fe Q (that‘is, .9? denotes the set of Riemann-
integrable functions), and we denote the common value of (1) and (2) by

(3) ff/dx.
or by

b<4) fa/<x>dx
This is the Riemann integral of f over [a, b]. Since f is bounded, there

exist two numbers, m and M, such that

m$_f(x)sM (asxsb).
Hence, for every P,

m(b — a) S. L(P,f) S_ U(P,f) s M(b - a),

so that the numbers L(P,f) and U(P,f) form a bounded set. This shows that
the upper and lower integrals are defined for every bounded function f. The
question of their equality, and hence the question of the integrability off, is a
more delicate one. Instead of investigating it separately for the Riemann integral,
we shall immediately consider a more general situation.
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6.2 Definition Let oz be a monotonically increasing function on [a, b] (since
oc(a) and m(b) are finite, it follows that oz is bounded on [a, b]). Corresponding to
each partition P of [a, b], we write

A“: = °‘(Xt) — °¢(Xt-1)-
It is clear that Act, 2 0. For any real function f which is bounded on [a, b]
we put

v(P./. <1) = ij1M.A<=<..
L(P,f, oz) = Z m, Aoc,,

i= 1

where M, , m, have the same meaning as in Definition 6.1, and we define
""b(5) fda = inf U(P,f, a),

b(6) I fdw = sup L(P.f. <==>.
the inf and sup again being taken over all partitions.

If the left members of (5) and (6) are equal, we denote their common
value by

b<1) fa/dd
or sometimes by

b(8) jaf<x>d<1<x>-
This is the Riemann-Stieltjes integral (or simply the Stieltjes integral) of

fwith respect to oz, over [a, b].
If (7) exists, i.e., if (5) and (6) are equal, we say that f is integrable with

respect to oz, in the Riemann sense, and writefe 9l(oc).
By taking oz(x) = x, the Riemann integral is seen to be a special case of

the Riemann-Stieltjes integral. Let us mention explicitly, however, that in the
general case on need not even be continuous.

A few words should be said about the notation. We prefer (7) to (8), since
the letter x which appears in (8) adds nothing to the content of (7). It is im-
material which letter we use to represent the so-called “variable of integration.”
For instance, (8) is the same as

fro») duty).
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The integral depends on j} oz, a and b, but not on the variable of integration,
which may as well be omitted.

The role played by the variable of integration is quite analogous to that
of the index of summation: The two symbols

it-,, it-,,
i=1 lt=1

mean the same thing, since each means cl + c, + ' " + c,,.
Of course, no harm is done by inserting the variable of integration, and

in many cases it is actually convenient to do so.
We shall now investigate the existence of the integral (7). Without saying

so every time,fwill be assumed real and bounded, and oz monotonically increas-
ing on [a, b]; and, when there can be no misunderstanding, we shall write I in

b
place of I .

6.3 Definition We say that the partition P"‘ is a refinement of P if P"' :P
(that is, if every point of P is a point of P"'). Given two partitions, P1 and P, ,
we say that P"' is their common refinement if P"' = P1 u P2.

6.4 Theorem IfP"' is a refinement ofP, then

(9) L(P.f. <1) $ L(P"'.fi <1)
and
(10) U(P"'.fi <1) S I/(P.f, <1)-

Proof To prove (9), suppose first that P"‘ contains just one point more
than P. Let this extra point be x"', and suppose x,_1 < x"' < x,, where
x,--1 and x, are two consecutive points of P. Put

wl = inff(x) (x,_1 5 x 5 x"'),
W2 = inff(x) (x"‘ 5 x 5 x,).

Clearly wl 2 m, and w, Z m,, where, as before,
mi = inff(x) (x,_1 5 x 5 xi).

Hence

L(P"‘.f. <1) — L(P.f. <1)
= W1I°‘(X*) — °‘(Xt—1)] + Wz[°!(xt) - °l(X*)] - mt[°l(Xt) - “(xi-1)]
= (W1 - mt)[°!(X*) - “(Xi-1)] + (W2 - mt)[°¢(-xi) - °‘(X*)] Z 0-
If P"' contains k points more than P, we repeat this reasoning k

times, and arrive at (9). The proof of (10) is analogous.
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b -1»
6.5 Theorem I fdoc 5 I fdot.

Proof Let P"‘ be the common refinement of two partitions P1 and P2.
By Theorem 6.4,

L(P1, f, oz) 5 L(P"',j1 oi) 5 U(P"', f, oc) 5 U(P2 , f, oz).

Hence

(11) L(P1,f. <1) S I/(P1 .f. <1)-
If P2 is fixed and the sup is taken over all P1, (11) gives

(12) ffda s U(P2 ,f, oz).

The theorem follows by taking the inf over all P2 in (12).

6.6 Theorem fe 9l(ot) on [a, b] if and only iffor every s > 0 there exists a
partition P such that

(13) U(P,f, oz) — L(P,f, oz) < e.

Proof For every P we have

L(P,f, oz) 5. ffaa 5 ffaa s U(P,f, oz).

Thus (13) implies

05]-‘fdot— _ffdoc<s.

Hence, if (13) can be satisfied for every s > 0, we have

Ifda = lfdoz,
that is, fe 9l(ot).

Conversely, suppose fe 9l(oz), and let s > 0 be given. Then there
exist partitions P1 and P2 such that

(14) U(P2 ,1; oz) -- [fan <

<15) I/dot -- L<P../. to <
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We choose P to be the common refinement of P1 and P2. Then Theorem
6.4, together with (14) and (15), shows that

U(P,f, ot)5 U(P,,f, a) < fda+5<L(P,,f, a) +s5L(P,j§ oz)+s,2
so that (13) holds for this partition P.

Theorem 6.6 furnishes a convenient criterion for integrability. Before we
apply it, we state some closely related facts.

6.7 Theorem
(a) If (13) holds for some P and some s, then (13) holds (with the same s)

for every refinement ofP.
(b) If (13) holds for P = {xo , ..., xii} and if si, ti are arbitrary points in

[Xi-1, Xi], the"

|t<s.> -/<t.>| A1. < @-
(c) Iffe 9l(a) and the hypotheses of (b) hold, then

Pl b_§ f(ti)Aoti-- I fdot <8.
Proof Theorem 6.4 implies (a). Under the assumptions made in (b),
bothf(si) andf(ti) lie in [mi, Mi], so that |f(si) -f(ti)| 5 Mi — mi. Thus

1/ts.)-f<i.>| ~15 v<P./. to - 10>./1 <1).
which proves (b). The obvious inequalities

L(P»f» <1) 5 Zf(lt) A“: 5- U(P,f’°‘)

L(P,j§ a) 5 jfda 5 U(P,f, oz)
and

prove (c).

6.8 Theorem Iff is continuous on [a, b] then fe 9l!(cx) on [a, b].

Proof Let s > 0 be given. Choose r1 > 0 so that

[ot(b) - ot(a)]n < s.

Since f is uniformly continuous on [a, b] (Theorem 4.19), there exists a
5 > 0 such that

(16) |f(1) -f(I)| < <1
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ifxe [a,b], te [a, b], and |x -- t| <5.
If P is any partition of [a, b] such that Axi < 5 for all i, then (16)

implies that
(17) Mi—mi5n (i-l,...,n)

and therefore

U(P,fl °‘) —L(P,f, °l) = Z (Mt "“ mt) A“:
i= 1

5 1] £3 Aoti = n[ot(b) — ot(a)] < 8.
t= 1

By Theorem 6.6, fe .%(ot).

6.9 Theorem Iff is monotonic on [a, b], and if oi is continuous on [a, b], then
f6 9?(ot). (We still assume, of course, that oz is monotonic.)

Proof Let s > 0 be given. For any positive integer n, choose a partition
such that

Aai= (i=1,...,n).
This is possible since oz is continuous (Theorem 4.23).

We suppose thatfis monotonically increasing (the proof is analogous
in the other case). Then

Mi =f(xi)s mi =f(xi—1) = ls * ' ' 9 n):
so that

v<P./1 co - L<P.r. to = °-5‘-'9-)-?i;—°‘(-‘Z? ill [f(1¢) ~f<x._.>1
= °-‘$5-’3-ii‘-’3 - [f(b) -/an < 8

if n is taken large enough. By Theorem 6.6, fe 9l(oz).

6.10 Theorem Suppose f is bounded on [a, b], f has only finitely many points
of discontinuity on [a, b], and oi is continuous at every point at which f is discon-
tinuous. Thenfe 9l(tx).

Proof Let s > 0 be given. Put M = sup If(x)| , let E be the set of points
at whichf is discontinuous. Since E is finite and oz is continuous at every
point of E, we can cover E by finitely many disjoint intervals [ui, vi] C
[a, b] such that the sum of the corresponding difierences oc(vi) - ot(ui) is
less than s. Furthermore, we can place these intervals in such a way that
every point of E n (a, b) lies in the interior of some [ui, vi].
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Remove the segments (ui, vi) from [a, b]. The remaining set K is
compact. Hence f is uniformly continuous on K, and there exists 5 > 0
such that |f(s) --f(t)| < s ifseK, teK, |s — t| < 5.

Now form a partition P = {xo , xi, . . . , x,,} of [a, b], as follows:
Each ui occurs in P. Each vi occurs in P. No point of any segment (ui , vi)
occurs in P. If xi_1 is not one of the uj, then Axi < 5.

Note that Mi - mi 5 2M for every i, and that Mi — mi 5 s unless
xi_1 is one of the ui. Hence, as in the proof of Theorem 6.8,

U(P,]; oi) - L(P, f, oi) 5 [ot(b) -- oc(a)]s + 2Ms.

Since s is arbitrary, Theorem 6.6 shows that fe 9l(oc).
Note: Iff and oi have a common point of discontinuity, thenf need not

be in 9l(cx). Exercise 3 shows this.

6.11 Theorem Suppose fe 9l(oi) on [a, b], m 5f5 M, ¢ is continuous on
[m, M], and h(x) = ¢(f(x)) on [a, b]. Then h e 9l(ot) on [a, b].

Proof Choose s > 0. Since gb is uniformly continuous on [m, M], there
exists 5>0 such that 5<s and l¢(s)-—-qb(t)| <s if |s—t| 55 and
s, t e [m, M].

Sincefe .%(u), there is a partition P = {xo , xi, ..., x,,} of [a, b] such
that

(18) U(P,f, oi) -- L(P,f, oz) < 52.

Let Mi, mi have the same meaning as in Definition 6.1, and let Mi , mi’
be the analogous numbers for h. Divide the numbers 1, ..., n into two
classes: ieA ifMi -mi <5, ieBifMi-miZ5.

For is A, our choice of 5 shows that Mi"' - mi" 5 s.
For ieB, Mi* —- mi?“ 5 2K, where K= sup|qb(t)|, m 5 t 5 M. By

(18), we have

(l9) 5ZAozi5 Z(Mi-mi) Aoti <52
ieB ieB

so that Zieii Aoti < 5. It follows that

U(P, h, ot)— L(P, h, oz) = Z (Mi?" - mi“) Aoti + Z (Mi? — mi“) Aozi
ieA ieB

5 t-:[ot(b) — ot(a)] + 2K5 < s[ot(b) — ot(a) + 2K].

Since s was arbitrary, Theorem 6.6 implies that h e 9l(ot).
Remark: This theorem suggests the question: Just what functions are

Riemann-integrable? The answer is given by Theorem 11.33(b).
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PROPERTIES OF THE INTEGRAL

6.12 Theorem
(a) Iffi e .%(ot) andf2 e .%(oI) on [a, b], then

f1 +f2 E g(a):

cfe 9l(ot) for every constant c, and

ft/1 +1.) ti» = fr. dot + f.da.

[c, b], and

I» I»
fcfdot =cJ fdot.

(b) IffI(1) 5f1(1) on la. bl. then
I» I»fflm5fpm.

(c) Iffe 9l(ot) on [a, b] and if a < c < b, then fe %(ot) on [a, c] and on

Lcfdot + fl’/an = Lbfdot.
(d) Iffe .%(oc) on [a, b] and if If(x)| 5 M on [a, b], then

iffdot 5 M[oc(b) — oI(a)].

(e) Iffe .%(oti) andfe 9l!(oz2), thenfe 9l!(ot1 + 0:2) and

fjfda. + <1.) = fa”/dot. + fa”/11..
iffe .%(ot) and c is a positive constant, thenfe 9l(coI) and

I» b
L fd(cot) = c L fdot.

Proof Iff=fl +f2 and P is any partition of [a, b], we have

(20) L(P.f1. <1) + L(P»f2 . <1) S L(P.f» <1)

If fi e 9l(oz) and f2 e 9l(oI), let s > 0 be given. There are partitions Pi
(j = 1, 2) such that

5 I/(P.f. <1) 5 I/(P.f.. <1) + U(P»f2 » <1)

U(Pi,j}, oi) —L(Pi,)Q, oi) < s.



(21)

6.13

6.14
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These inequalities persist if Pi and P2 are replaced by their common
refinement P. Then (20) implies

U(P,f, ot) — L(P,f, oz) < 2s,

which proves thatfe 9l(ot).
With this same P we have

U(P,j},ot)<]fidot+s (j=1,2);

hence (20) implies
_lfdot5 U(P,j§ot)<_]f1dot+ _]f;dot+2s.

Since s was arbitrary, we conclude that
_[fdoI5jf1doI+ Ifzdot.

If we replace fl and f2 in (21) by -fl and -f2, the inequality is
reversed, and the equality is proved.

The proofs of the other assertions of Theorem 6.12 are so similar
that we omit the details. In part (c) the point is that (by passing to refine-
ments) we may restrict ourselves to partitions which contain the point c,
in approximating Ifdot.

Theorem Iffe .%(ot) and g e .%(oc) on [a, b], then
(<1) fa E 9?(<1); b b
(b) |f|e9l(ot)and fdoz5 |f| dot.

Proof lfwe take ¢(t) = t2, Theorem 6.11 shows thatf2 e 9l(a) iffe 9?(oI).
The identity

4fa = (f+ 9)’ —- (f—- 9)’
completes the proof of (a).

If we take ¢(t) = |t|, Theorem 6.11 shows similarly that If I e %(oc).
Choose c = ;|-_ 1, so that

cjfdot 2 0.

Ijfdotl =c]fdoI=]cfdot5"] ]f| dot,
Then

since cf5 If].

Definition The unit step function I is defined by

Kx) = 0 (x 5 0),
1 (x > 0).
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6.15 Theorem If a < s < b, f is bounded on [a, b], f is continuous at s, and
oc(x) = I(x — s), then

ff/"dd =/ts).
Proof Consider partitions P = {xo , xi, x2 , X3}, where xo = a, and
xi =s<x2 <x;i =b. Then

U(Psfia)=M2> L(P>.f;a)=m2'

Since f is continuous at s, we see that M2 and m2 converge to f(s) as
xii -> s.

6.16 Theorem Suppose c,, 2 0 for 1, 2, 3, . . . , Ec,, converges, {s,,} is a sequence
of distinct points in (a, b), and

I

<22) do) = i d.I<x -- S.)-
n= 1

Letf be continuous on [a, b]. Then
b CO<23) la rdd = ;1d.t<s.>-

Proof The comparison test shows that the series (22) converges for
every x. Its sum a(x) is evidently monotonic, and oI(a) = 0, a(b) = Ec,,.
(This is the type of function that occurred in Remark 4.31.)

Let s > 0 be given, and choose N so that
oo

Ec,, <8.
N+1

Put
N oo

a1(x) = 2 cnI(x "" Sn): a2(x) = Z cnI(x _ Sn)‘
n= 1 N+ 1

By Theorems 6.12 and 6.15,
|, N<24) fa /dd. = i;1d..t<s.>-

Since ot2(b) -~ 012(0) < s,

fdaz 5 M3,



Thus
(31)
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where M = sup]f(x)l. Since oz = oci + Oi; , it follows from (24) and (25)
that

N
Ffdot —- 2 c,,f(s,,) 5 Ms.

4 i= 1

If we let N -> oo, we obtain (23).

6.17 Theorem Assume oz increases monotonically and oz’ e 9? on [a, b]. Let f
be a bounded real function on [a, b].

Thenfe 9?(oc) if and only tffx' e Q. In that case

(27) Ffdot = Ibf(x)a'(x) dx.

Proof Let s > 0 be given and apply Theorem 6.6 to oz’: There is a par-
tition P = {xii , .. . , xi} of [a, b] such that

(28) U(P, oz’) - L(P, oi’) < s.
The mean value theorem furnishes points tie [xi_ 1, xi] such that

Acxi = oz'(ti) Axi
for i = 1, ..., n. lfsi e [xi-_i, xi], then

<29) i§1|d'(.-.) - d'<t.)| Ax. < e.
by (28) and Theorem 6.7(b). Put M = sup|f(x)|. Since

/ts.) Ad. =21/<.-.>d'<-.> Ax.
it follows from (29) that

<30) ire-.) Ad. -_§1f<d.>d'(s.> Ax. 5 Me
In particular,

f f(s ) Aoti < U(P,fx') + Ms,i _t= 1
for all choices of si e [xi_i, xi], so that

U(P, f, oi) 5 U(P,foI') + Ms.
The same argument leads from (30) to

U(P,fx') 5 U(P, f, oz) + Ms.

lU(P.fi <1) - U(P.f1')l S M8-
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Now note that (28) remains true if P is replaced by any refinement.
Hence (31) also remains true. We conclude that

-b "b
L fdot —- L f(x)oc'(x) dx 5 Ms.

But s is arbitrary. Hence
"b “b<32) fa /dd = ii r<x>d'<x> dx.

for any bounded f. The equality of the lower integrals follows from (30)
in exactly the same way. The theorem follows.

6.18 Remark The two preceding theorems illustrate the generality and
flexibility which are inherent in the Stieltjes process of integration. If ac is a pure
step function [this is the name often given to functions of the form (22)], the
integral reduces to a finite or infinite series. If ac has an integrable derivative,
the integral reduces to an ordinary Riemann integral. This makes it possible
in many cases to study series and integrals simultaneously, rather than separately.

To illustrate this point, consider a physical example. The moment of
inertia of a straight wire of unit length, about an axis through an endpoint, at
right angles to the wire, is

1(33) IOX2 dm
where m(x) is the mass contained in the interval [0, x]. If the Wire is regarded
as having a continuous density p, that is, if m'(x) = p(x), then (33) turns into

(34) fix” p(x) dx.

On the other hand, if the wire is composed of masses mi concentrated at
points xi, (33) becomes
(35) 2 xi: mi.

Thus (33) contains (34) and (35) as special cases, but it contains much
more; for instance, the case in which m is continuous but not everywhere
differentiable.

6.19 Theorem (change of variable) Suppose tp is a strictly increasing continuous
function that maps an interval [A, B] onto [a, b]. Suppose ac is monotonically
increasing on [a, b] andfE 9?(oc) on [a, b]. Define ,6 and g on [A, B] by

(36) B0’) = °<(¢(J"))» g(y) =f(<<>(y))-
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Then g 6 .9209) and

(37) g as = Lbfdoi.
Proof To each partition P = {xii , . . . , xii} of [a, b] corresponds a partition
Q ={y0, ..., y,,} of [A, B], so that xi = qo(yi). All partitions of [A, B]
are obtained in this way. Since the values taken by f on [xi_i, xi] are
exactly the same as those taken by g on [yi..i, yi], we see that

(33) U(Q..<1. 3) = U(P.f. <1)» I-(Q. 9. I3) = L(P.f. <1)-
Sincefe 9l(oc), P can be chosen so that both U(P, f, oz) and L(P, f, oi)

are close to Ifdot. Hence (38), combined with Theorem 6.6, shows that
g e 9i(fl) and that (37) holds. This completes the proof.

Let us note the following special case:
Take oc(x) = x. Then /i = tp. Assume <p' e 9? on [A, B]. If Theorem

6.17 is applied to the left side of (37), we obtain
b B

(39) L f(1) d1 = L f(¢(y))<r’(y) dy-

INTEGRATION AND DIFFERENTIATION

We still confine ourselves to real functions in this section. We shall show that
integration and differentiation are, in a certain sense, inverse operations.

6.20 Theorem Letfe 9? on [a, b]. For a 5 x 5 b, put

F(x) = fxf(t) dt.

Then F is continuous on [a, b]; furthermore, iff is continuous at a point xii of
[a, b], then F is diflerentiable at xo , and

F'(-X0) =f(Xo)-
Proof Since fe 9?, f is bounded. Suppose |f(t)| 5 M for a5 t5 b.
Ifa5x<y5b, then

Ire) - F<x>| = fl’/to dI| 5 Mo — x).
by Theorem 6.l2(c) and (d). Given s > 0, we see that

IFOI) — F(1)| < 8.
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provided that | y - x| < s/M. This proves continuity (and, in fact,
uniform continuity) of F.

Now supposef is continuous at xo. Given s > 0, choose 5 > 0 such
that

|f(f)-f(1e)|<8
if|t-x0|<5, anda5t5b. Hence, if

xi,-5<s5x05t<x0+5 and a5s<t5b,
we have, by Theorem 6.l2(d),

I59-if-93-r<x.> = -3- ft/id)-/<x.>1dd <-
I-S I-"S s

It follows that F’(x0) = f(xo).

6.21 The fundamental theorem of calculus If f E 92 on [a, b] and if there is
a dtfierentiable function F on [a, b] such that F’ = f, then

fb f(x) dx = F(b) - F(a).
Proof Let s > 0 be given. Choose a partition P = {xo, ..., xii} of [a, b]
so that U(P,f) — L(P, f) < s. The mean value theorem furnishes points
ti E [.xi..1, xi] Such

F(Xt) " F(xt-1) =/Iii) AX:

fori= 1, ...,n. Thus

i to.) Ax. = Fa») — Fa).
i= 1

It now follows from Theorem 6.7(c) that

lF(b) — F(a) — Jqbflx) dx <s.

Since this holds for every s > 0, the proof is complete.

6.22 Theorem (integration by parts) Suppose F and G are diflerentiable func-
tions on [a, b], F’ =fe 9?, and G’ = g e 9?. Then

EF(x)g(x) dx = F(b)G(b) -- F(a)G(a) — Lbf(x)G(x) dx.

Proof Put H(x) == F(x)G(x) and apply Theorem 6.21 to H and its deriv-
ative. Note that H’ e 9?, by Theorem 6.13.
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INTEGRATION OF VECTOR-VALUED FUNCTIONS

6.23 Definition Letfi, ..., fii be real functions on [a, b], and let f = (fi, ..., fii)
be the corresponding mapping of [a, b] into R". If at increases monotonically
on [a, b], to say that f e 9?(oI) means thatfi e 9i’(a) forj = 1, ..., k. If this is the
case, we define

Lbfdoz = (iff, doc, jabf, dot).
In other words, If dot is the point in R" whose jth coordinate is Ifi dot.

It is clear that parts (a), (c), and (e) of Theorem 6.12 are valid for these
vector-valued integrals; we simply apply the earlier results to each coordinate.
The same is true of Theorems 6.17, 6.20, and 6.21. To illustrate, we state the
analogue of Theorem 6.21.

6.24 Theorem Iff and F map [a, b] into R", iff e 9? on [a, b], and ifF’ = f, then

fro) at = F(b) - F(a).
The analogue of Theorem 6.l3(b) offers some new features, however, at

least in its proof.

6.25 Theorem If f maps [a, b] into R" and if 1' e .9t’(ot) for some monotonically
increasing function oz on [a, b], then |f| e 9?(oc), and

(40) Lbfdot 5 fab |r| .1...
Proof Iffi, ..., fii are the components of f, then

<41) |f| = (ti + +/t>*<=.
By Theorem 6.11, each of the functions fiz belongs to 9l’(ot); hence so does
their sum. Since xz is a continuous function of x, Theorem 4.17 shows
that the square-root function is continuous on [0, M], for every real M.
If we apply Theorem 6.11 once more, (41) shows that |f| e 9?(oc).

To prove (40), put y = ( yi, ..., yii), where yi = doc. Then we have
y = ff doc, and

|Y|2=ZJ’i=ZJ’Ij1§d°‘=_i(ZJ’.fi)d°‘-
By the Schwarz inequality,

(42) Zr./}(t)5 |)’| lf(r)| tdstsb);
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hence Theorem 6.l2(b) implies

<42) I.-|=5 |y| fmdd.
If y = 0, (40) is trivial. If y ab 0, division of (43) by |y| gives (40).

RECTIFIABLE CURVES

We conclude this chapter with a topic of geometric interest which provides an
application of some of the preceding theory. The case k = 2 (i.e., the case of
plane curves) is of considerable importance in the study of analytic functions
of a complex variable.

6.26 Definition A continuous mapping y of an interval [a, b] into R" is called
a curve in R". To emphasize the parameter interval [a, b], we may also say that
y is a curve on [a, b].

If y is one-to-one, y is called an arc.
If y(a) = y(b), y is said to be a closed curve.
It should be noted that we define a curve to be a mapping, not a point set.

Of course, with each curve y in R" there is associated a subset of R", namely
the range of 7, but different curves may have the same range.

We associate to each partition P = {xo, ..., xii} of [a, b] and to each
curve 7 on [a, b] the number

A(P» 7’) =iz1|)’(-xi) "“ )’(Xt-1)|-

The ith term in this sum is the distance (in R") between the points y(xi_i) and
y(xi). Hence A(P, y) is the length of a polygonal path with vertices at 'y(x0),
y(xi), ..., y(x,,), in this order. As our partition becomes finer and finer, this
polygon approaches the range of 7 more and more closely. This makes it seem
reasonable to define the length of y as

/\(t) = SUP /\(P. Y).
where the supremum is taken over all partitions of [a, b].

If A(y) < oo, we say that y is rectifiable.
In certain cases, A('y) is given by a Riemann integral. We shall prove this

for continuously difilerentiable curves, i.e., for curves y whose derivative y’ is
continuous.
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6.27 Theorem If 7' is continuous on [a, b], then 7 is rectifiable, and
bAc) = f |r<d>| dd.

Proof Ifa 5 xi_i < xi 5 b, then

|)’(Xt) '" l’(-xi-1)‘ = in )"(t)dl| 5 in i)"(t)idt-

Hence
XI—1 I-1

bA<P. »»> 5 fa |v'(<)| dd
for every partition P of [a, b]. Consequently,

bAc) 5 I 1>»'<d>| dd-
To prove the opposite inequality, let s > 0 be given. Since 7' is

uniformly continuous on [a, b], there exists 5 > 0 such that

|7’(s)—7'(t)|<s if|s—t|<5.

Let P = {xo, ..., xii} be a partition of [a, b], with Axi < 5 for all i. If
xi_1 5 t 5 xi, it follows that

Hence
|r'(t)I 5 |v'(1.)| + 8-

|.»'<d>| dd 5 = r(x)! Add. + -= Add.

5

5

1[r'(<) + »»'<x.> - r<d>1dd| + d Add.
r'(t) dd] + [r'(1.)- rm] ddi + dd Ax.

)’(xt) " )’(-xi-1)| + 23 AXI-

If we add these inequalities, we obtain

Lbl r<d>| dd 5 Au". 1’) + 2-<1» - d)
Since s was arbitrary,

if
This completes the proof.

5 A(7) + 2.(I» - a).

Iv'(d)| dd‘ 5 Ac»)-
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EXERCISES

1 Suppose at increases on [a, b], a 5x0 5 b, oz is continuous at xe, f(xe) = 1, and
f(x) = 0 if x aé xe. Prove that fe Q(oc) and that Ifdot = 0.

Suppose f2 0, f is continuous on [a, b], and Lb f(x) dx 5. 0. Prove that f(x) = ()
for all x e [a, b]. (Compare this with Exercise 1.)
Define three functions B1, B, , B3 as follows: ,Bi(x) = 0 if x < 0, Bi(x) = 1 if x > 0
for j = 1, 2, 3; and 791(0) = 0, }9e(0) =1, Be(0) = 1. Let f be a bounded function on
[-1, 1].
(a) Prove that fe Q(}9i) if and only if_f(0+) =f(0) and that then

[rd/:1. =r<<>>.
(b) State and prove a similar result for B2.
(c) Prove that fe Q(;93) if and only iff is continuous at 0.
(d) Iff is continuous at 0 prove that

ffdd. 5 f/dd. = frdtd. =r<<>>.
Iff(x) = 0 for all irrational x,f(x) = 1 for all rational x, prove that f ¢ Q on [a, b]
for any a < b.
Suppose f is a bounded real function on [a, b], and f2 e Q on [a, b]. Does it
follow that fe Q? Does the answer change if we assume that f3 e Q '2
Let P be the Cantor set constructed in Sec. 2.44. Let fbe a bounded real function
on [0, 1] which is continuous at every point outside P. Prove that f e Q on [0, 1].
Hint: P can be covered by finitely many segments whose total length can be made
as small as desired. Proceed as in Theorem 6.10.
Suppose f is a real function on (0, 1] andf e Q on [c, 1] for every c > 0. Define

L1f(1) ddd = gig; f(x) dx
if this limit exists (and is finite).
(a) If f e Q on [0, 1], show that this definition of the integral agrees with the old
one.
(b) Construct a functionfsuch that the above limit exists, although it fails to exist
with | f| in place off.
Supposefe Q on [a, b] for every b > a where a is fixed. Define

00 bf r(x) dx = 359;] r(x) dx
if this limit exists (and is finite). In that case, we say that the integral on the left
converges. If it also converges after f has been replaced by I fl, it is said to con-
verge absolutely.
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Assume that f(x) Z0 and that f decreases monotonically on [1, oo). Prove
that

]wf(-1) dx
1

converges if and only if

rod)
converges. (This is the so-called “integral test” for convergence of series.)
Show that integration by parts can sometimes be applied to the “improper”
integrals defined in Exercises 7 and 8. (State appropriate hypotheses, formulate a
theorem, and prove it.) For instance show that

°°cosx °° sinx--d={'-—-d.i.1+x" .(1+x>="
Show that one of these integrals converges absolutely, but that the other does not.
Let p and q be positive real numbers such that

11-+-=t
P q

Prove the following statements.
(a) If u Z0 and v Z 0, then

P 4
uv5£+£.

P q
Equality holds if and only if u" = v".
(b) IffE 9?(<1). Q E 93(<1).f2 0. Q 2 0. and

b b

I f"doc=1=f gqdoz,

then
lligm5L

(c) Iff and g are complex functions in Q(a), then
Lifg do: S |f| ’ dd},-/P{J\ab lgit da}1/".

This is Ho'lder’s inequality. When p = q = 2 it is usually called the Schwarz
inequality. (Note that Theorem 1.35 is a very special case of this.)
(d) Show that H6lder’s inequality is also true for the “improper” integrals de-
scribed in Exercises 7 and 8.
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11. Let at be a fixed increasing function on [a, b]. For u e Q(a), define
5 1/2

||u||,= |u|'da} .

Suppose f, g, h e Q(a), and prove the triangle inequality

iif_hi|2 S ii./‘-9112 + i|g_h||2

as a consequence of the Schwarz inequality, as in the proof of Theorem 1.37.
12. With the notations of Exercise 11, suppose f e Q(a) and e > 0. Prove that

there exists a continuous function g on [a, b] such that ||f —-— Q“; < e.
Hint: Let P = {xe , . . . , x,.} be a suitable partition of [a, b], define

xi ""' t t * x1...g(t) = T-mf(x._1) + 5‘-x-1 fed.)
ifx._1 gt 5x..

13. Define
x+1f(x) = I sin (t=) at.

(a) Prove that If(x)| < 1/x if x > 0.
Hint: Put t” = u and integrate by parts, to show that f(x) is equal to

cos (Xi), cos[(x+l)'] J“"*”'cosudu
2x 2(x+l) I ,2 4u"’ '

Replace cos u by —- 1.
(b) Prove that

2xf(x) = cos (xz) — cos [(x + 1)’] + r(x)

where |r(x)] < c/x and c is a constant.
(c) Find the upper and lower limits of xf(x), as x —> 00.
(d) Does Lmsin (t 2) dt converge?

14. Deal similarly with

x+1f(x) = I sin (e‘) at.

Show that

¢"| f(1)| < 2
and that

e"f(x) = cos (ex) — e"1 cos (e" *1) + r(x),

where |r(x)| < Ce"", for some constant C.
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Suppose f is a real, continuously differentiable function on [a, b], f(a) =f(b) = 0,
and

b

I fie.) dx = 1.
Prove that

f:xf<x>r'<x> dx = - i
aha that

f:[f'(».)]= .1». - J:.x=f=(x) dx > 1.
For 1 <s < oo, define

: 1 3"I-A
t(s>= -

(This is Riemann’s zeta function, of great importance in the study of the distri-
bution of prime numbers.) Prove that

(a) §(s) = s Lao iéli dx

and that
s °° x — [x]<1») ct.->=;-i-sf! dx.

where [x] denotes the greatest integer 5 x.
Prove that the integral in (b) converges for all s > 0.
Hint: To prove (a), compute the difference between the integral over [1, N]

and the Nth partial sum of the series that defines §(s).
Suppose d increases monotonically on [a, b], g is continuous, and g(x) = G’(x)
for a 5 x 5 b. Prove that

ra(x)g(x) dx = G(b)oI(b) — G(a)<x(a) -— JJG doc.

Hint: Take g real, without loss of generality. Given P = {xh , xi, ..., x,.},
choose ti e (x.-1, x.) so that g(t.) Ax. = G(x.) — G(x._1). Show that

<1(1d)a(t.)Ax. = ct!->d<d> - G(d)<1(d) - Ga.-.) Ae...
Let 71, ‘)/2 , ye be curves in the complex plane, defined on [0, 211'] by

= eff, L. e2it’ = e21tlt Sln (lit).

Show that these three curves have the same range, that 7, and 7, are rectifiable,
that the length of 7, is 2-rr, that the length of 7, is 4-rr, and that ‘ya is not rectifiable.
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19. Let 71 be a curve in R“, defined on [a, b]; let 95 be a continuous 1-1 mapping of
[c, d] onto [a, b], such that gl>(c) = a; and define 7,(s) = 7i(gl>(s)). Prove that 7; is
an arc, a closed curve, or a rectifiable curve if and only if the same is true of 7,.
Prove that 7, and 71 have the same length.



SEQUENCES AND SERIES OF FUNCTIONS

In the present chapter we confine our attention to complex-valued functions
(including the real-valued ones, of course), although many of the theorems and
proofs which follow extend without difficulty to vector-valued functions, and
even to mappings into general metric spaces. We choose to stay within this
simple framework in order to focus attention on the most important aspects of
the problems that arise when limit processes are interchanged.

DISCUSSION OF MAIN PROBLEM

7.1 Definition Suppose {f,,}, n = 1, 2, 3, ..., is a sequence of functions
defined on a set E, and suppose that the sequence of numbers {fl,(x)} converges
for every x e E. We can then define a functionf by

(1) f(1) = limf..(1) (1 6 E)-
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Under these circumstances we say that {fii} converges on E and that f is
the limit, or the limitfimction, of{fii}. Sometimes we shall use a more descriptive
terminology and shall say that “{fi,} converges tofpointwise on E” if (1) holds.
Similarly, if 2Ifi,(x) converges for every x e E, and if we define

<2) r(x) = §11:.<x> (dd 5 E).
the functionf is called the sum of the series Zfii.

The main problem which arises is to determine whether important
properties of functions are preserved under the limit operations (1) and (2).
For instance, if the functions fli are continuous, or differentiable, or integrable,
is the same true of the limit function ? What are the relations between f,’, and f’,
say, or between the integrals offli and that off?

To say thatf is continuous at a limit point x means

1imf(t) =f(1)-
I

Hence, to ask whether the limit of a sequence of continuous functions is con-
tinuous is the same as to ask whether

(3) lim 1imfl,(t) = lim limf,,(t),
t->x n-'00 n-Poo t-Px

i.e., whether the order in which limit processes are carried out is immaterial.
On the left side of (3), we first let n -.» oo, then t-»x; on the right side, t—> x
first, then n -> oo.

We shall now show by means of several examples that limit processes
cannot in general be interchanged without affecting the result. Afterward, we
shall prove that under certain conditions the order in which limit operations
are carried out is immaterial.

Our first example, and the simplest one, concerns a “double sequence.”

7.2 Example Form=l,2,3,...,n= l,2,3,...,let

m
sm,n = “'-'_"

111+"

Then, for every fixed n,

lim s,,,i,, = 1,
7II“P®

so that

(4) lim lim s,,,_,, = 1.
!l"'<1) "I-N‘-D
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On the other hand, for every fixed m,
lim s,,,i,, = 0,
ll-NI)

so that

(5) lim lim s,,,,,, = 0.
m“*d) ll-7d)

7.3 Example Let
x2

fi(x)— (xreal,n--0,1,2, ...),

and consider
co co 2<6) /(dd) =n§0t.<x> =n§0

Sincef,,(0) = 0, we havef(0) = 0. For x 5 0, the last series in (6) is a convergent
geometric series with sum l + x2 (Theorem 3.26). Hence

_ 0 ( =0):<1) f(x)-{i H. (iii),
so that a convergent series of continuous functions may have a discontinuous
sum.

7.4 Example For m = 1, 2, 3, ..., put

f,,,(x) = lim (cos m lax)“.

When m lx is an integer, f,,,(x) = 1. For all other values of x, f,,,(x) = 0. Now let

f(-1) = lim f...(1)-

For irrational x, f,,,(x) = 0 for every m; hence f(x) = 0. For rational x, say
x = p/q, where p and q are integers, we see that mix is an integer if m 2 q, so
thatf(x) = 1. Hence

2 0 (x irrational),(8) lim lim (cos mlttx) " ={1 (x rational)

We have thus obtained an everywhere discontinuous limit function, which
is not Riemann-integrable (Exercise 4, Chap. 6).
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7.5 Example Let

(9) fj,(x) = ?%Ef (x real, n =-- l, 2, 3, . . .),
n

and
f(x) = 1hh;;,(».) 5 0.

Thenf'(x) = 0, and

f,j(x) = \/ha cos nx,

so that {f,j} does not converge tof’. For instance,

r.:(0)=,/Pd--+-<:>
as n -> oo, whereasf’(0) = 0.

7.6 Example Let

(10) fl,(x) = n2x(l — xz)" (0 5 x 5 1, n =1, 2, 3, ...).

For0 < x 51, we have
lim_fl,(x) = 0,
ll-Pd)

by Theorem 3.20(d). Since f,,(0) = 0, we see that
(ll) limfl,(x) = 0 (0 5 x 5 1).

n->00

A simple calculation shows that
‘ 1__ 2n =________Lx(l x)dx 2n+2

Thus, in spite of (ll),
1 "2

J\0f,i(X)dX=§71-I3-P +00

as n —+ oo.
If, in (10), we replace nz by n, (ll) still holds, but we now have

1 n 11' =1‘ ..__..._ = ..,.22, l.d~<<<>d’d< .21: .... .
whereas

1f ‘:limf,i(x)] dx = 0.
0 n-rec



SEQUENCES AND sERIEs or FUNCTIONS 147

Thus the limit of the integral need not be equal to the integral of the limit,
even if both are finite.

After these examples, which show what can go wrong if limit processes
are interchanged carelessly, we now define a new mode of convergence, stronger
than pointwise convergence as defined in Definition 7.1, which will enable us to
arrive at positive results.

UNIFORM CONVERGENCE

7.7 Definition We say that a sequence of functions {fii}, n =- 1, 2, 3, ...,
converges uniformly on E to a functionf if for every s > 0 there is an integer N
such that n 2. N implies
(12) lfi.(1)-f(1)| S 8
for all x 6 E.

It is clear that every uniformly convergent sequence is pointwise con-
vergent. Quite explicitly, the difference between the two concepts is this: If {fi}
converges pointwise on E, then there exists a function f such that, for every
s > 0, and for every x e E, there is an integer N, depending on s and on x, such
that (12) holds if n 2. N; if{fli} converges uniformly on E, it is possible, for each
8 > 0, to find one integer N which will do for all x e E.

We say that the series Zfi,(x) converges uniformly on E if the sequence
{s,,} of partial sums defined by

f.(1) = d.<x>
converges uniformly on E.

The Cauchy criterion for uniform convergence is as follows.

7.8 Theorem The sequence offunctions {fii}, defined on E, converges uniformly
on E if and only iffor every s > 0 there exists an integer N such that m 3 N,
It 2 N, x e E implies

ifiI(x) _./‘m(x)’ S 8°

Proof Suppose {f,,} converges uniformly on E, and let f be the limit
function. Then there is an integer N such that n 3 N, x e E implies

m(x) -ftnl 5
so that

lf..(1) -f...(1) I S lf..(1) --f(1) I + If(1) -f...(1) I 5 8
ifnzN,m2N,xeE.
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Conversely, suppose the Cauchy condition holds. By Theorem 3.11,
the sequence {j],(x)} converges, for every x, to a limit which we may call
f(x). Thus the sequence {fli} converges on E, to f. We have to prove that
the convergence is uniform.

Let e > 0 be given, and choose N such that (13) holds. Fix n, and
let m —> oo in (13). Since f,,,(x) —+f(x) as m —> oo, this gives

(14) |fi.(1) -"f(1) I S 8
for every n 2 N and every x e E, which completes the proof.

The following criterion is sometimes useful.

7.9 Theorem Suppose

lim/2(1) =f(1) (1 GE)-

Put
M. = Sup |f..(1) -~f(1) |-

xeE

Thenf,, ->funIformly on E ifand only IfM,, —> 0 as n —> oo.

Since this is an immediate consequence of Definition 7.7, we omit the
details of the proof.

For series, there is a very convenient test for uniform convergence, due to
Weierstrass.

7.10 Theorem Suppose {fli} is a sequence offunctions defined on E, and suppose

|fl,(x)[5M,, (xeE,n=],2,3,...).

Then Sf, converges uniformly on E ifEM, converges.

Note that the converse is not asserted (and is, in fact, not true).
Proof If EM, converges, then, for arbitrary e > 0,

iifi(x) 52114, 5 e (x e E),
provided m and n are large enough. Uniform convergence now follows
from Theorem 7.8.
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UNIFORM CONVERGENCE AND CONTINUITY

7.11 Theorem Suppose fii -+funiformly on a set E in a metric space. Let x be
a limit point of E, and suppose that
(15) limfl,(t) = A, (n = 1, 2, 3, ...).

Then {An} converges, and
(16) limf(t) = lim Aii.

I“'X ll-NI)

In other words, the conclusion is that
(17) lim limfl,(t) =-- lim limf,,(t).

I-PX II-*d> lI“*G) t—>x

Proof Let s > 0 be given. By the uniform convergence of {jji}, there
exists N such that n 2 N, m 2 N, t e E imply

(18) lfi.(l) —f...(i) I 5 8-
Letting t -» x in (18), we obtain

|An "" Am I S 8

for n 2 N, m 2 N, so that {An} is a Cauchy sequence and therefore
converges, say to A.

Next,

(19) |f(t) — -41$ lf(t)-f..(t)|+ |f..(t) —-4..| + I-4.. - A |-
We first choose n such that

<20) If(<) -f..<d>| 5§
for all t e E (this is possible by the uniform convergence), and such that

(21) |.4,,--.4|5§-
Then, for this n, we choose a neighborhood V of x such that

<22) |r.<d> - A. I 5%
if te Vn E, taéx.

Substituting the inequalities (20) to (22) into (19), we see that

If(I) -- A I 5 <1.
provided t e V n E, t;éx. This is equivalent to (16).



150 PRINCIPLES OF MATHEMATICAL ANALYSIS

7.12 Theorem If{f;,} is a sequence of continuous functions on E, and iffli -»f
uniformly on E, thenf is continuous on E.

This very important result is an immediate corollary of Theorem 7.11.
The converse is not true; that is, a sequence of continuous functions may

converge to a continuous function, although the convergence is not uniform.
Example 7.6 is of this kind (to see this, apply Theorem 7.9). But there is a case
in which we can assert the converse.

7.13 Theorem Suppose K is compact, and

(a) {f,,} is a sequence of continuous functions on K,
(b) {f,,} converges pointwise to a continuous functionf on K,
(c) fl,(x) 2f,,+1(x)for all x e K, n = 1, 2, 3,

Then f,, ->f uniformly on K.
Proof Put g,, =f,, - f. Then g,, is continuous, g,, —> 0 pointwise, and
g,, 2 g,,+i. We have to prove that gn ->0 uniformly on K.

Let s > 0 be given. Let K, be the set of all x eK with g,,(x) 2 e.
Since g,, is continuous, K, is closed (Theorem 4.8), hence compact (Theorem
2.35). Since g,, 2 g,,+ 1, we have Ki, :> K,,+i. Fix x e K. Since g,,(x) ->0,
we see that x ¢ Ki, if n is sufficiently large. Thus x ¢ Q K,,. In other words,
Q K, is empty. Hence KN is empty for some N (Theorem 2.36). It follows
that 0 5 g,,(x) < a for all x e K and for all n 2 N. This proves the theorem.

Let us note that compactness is really needed here. For instance, if
1

fl,(x)=;;—II (0<x<l;n=1,2,3,...)

thenfl,(x) -» 0 monotonically in (0, 1), but the convergence is not uniform.

7.14 Definition If X is a metric space, ‘6(X) will denote the set of all complex-
valued, continuous, bounded functions with domain X.

[Note that boundedness is redundant if X is compact (Theorem 4.15).
Thus ‘6(X) consists of all complex continuous functions on X if X is compact.]

We associate with eachfe ‘6(X) its supremum norm
Ilfll = 11:1; If(1) |-

Since f is assumed to be bounded, ||f 1| < oo. It is obvious that llf || = 0 only if
f(x) = 0 for every x e X, that is, only iff= 0. Ifh =f+ g, then

I/<(1)| S |f(1)| + |£l(X)| S Ilfll + llyll
for all x e X; hence

llf+ all S llfll + Hall-
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If we define the distance between fe ‘6(X) and g e %(X) to be ||f- gll,
it follows that Axioms 2.15 for a metric are satisfied.

We have thus made ‘6(X) into a metric space.
Theorem 7.9 can be rephrased as follows:
A sequence {fii} converges to f with respect to the metric of ‘6(X) if and
only tffi, -—>f uniformly on X.

Accordingly, closed subsets of ‘6(X) are sometimes called uniformly
closed, the closure of a set inf c: ‘6(X) is called its uniform closure, and so on.

7.15 Theorem The above metric makes ‘6(X) into a complete metric space.

Proof Let {f,,} be a Cauchy sequence in ‘6(X). This means that to each
s > 0 corresponds an N such that Hf, -f,,,|| < s if n 2N and m 2N.
It follows (by Theorem 7.8) that there is a function f with domain X to
which {f,,} converges uniformly. By Theorem 7.12, f is continuous.
Moreover, f is bounded, since there is an n such that If(x) --fl,(x)| < 1
for all x e X, andfii is bounded.

Thus fe ‘f(X), and since fli -->f uniformly on X, we have
llf-fl,I|—+0asn-+00. _

UNIFORM CONVERGENCE AND INTEGRATION

7.16 Theorem Let oi be monotonically increasing on [a, b]. Suppose fii e Q(ot)
on [a, b], for n = 1, 2, 3, .. . , and supposefli —>funiformly on [a, b]. Thenfe Q(oz)
on [a, b], and

I» I»(23) I fdot =1hh I f,, .1...
(The existence of the limit is part of the conclusion.)

Proof It suffices to prove this for real fli. Put
(14) 8.. = Sup |fi.(1) --f(1) I.

the supremum being taken over a 5 x 5 b. Then
Ii.-8». Sf$f».+3».,

so that the upper and lower integrals off (see Definition 6.2) satisfy
b -' b

(25) I (jji-e,,)dot 5Ifdoc 5Ifdot5I(fl,+e,,)dot.

Hence
0 5 I fdot 5 I fa.» 5 2s,,[ot(b) - Ot(a)].
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Since 2,, -> 0 as n -> oo (Theorem 7.9), the upper and lower integrals off
are equal.

Thusf e Q(oI). Another application of (25) now yields
b bI fdoI- I fine. 5s,,[ot(b)—ot(a)].

This implies (23).

Corollary Iffli e Q(oI) on [a, b] and if

f(x) = i r(x) (d < dd 5 A).n unn-

n= 1

the series converging uniformly on [a, b], then

Iabfdot =21 Iabf, .1...

In other words, the series may be integrated term by term.

UNIFORM CONVERGENCE AND DIFFERENTIATION

We have already seen, in Example 7.5, that uniform convergence of {f,,} implies
nothing about the sequence {fij}. Thus stronger hypotheses are required for the
assertion that f,,' ->f ' iffii ->f.

7.17 Theorem Suppose {fli} is a sequence offunctions, diflerentiable on [a, b]
and such that {f,,(xi,)} converges for some point xi, on [a, b]. If {f,,'} converges
uniformly on [a, b], then {f,,} converges uniformly on [a, b], to a function f, and

(27) f'(1) = 1iI:1of..’(1) (<1 S 1 S b)-

Proof Let e > 0 be given. Choose N such that n 2 N, m 2 N, implies

<28) |t..<>d.) —/.(x.>| <§
and

(29) |t.:<d> -r.:<d>| < _.,—(i—;‘°'—-—__a) (d 5 d 5 b)-
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If we apply the mean value theorem 5.19 to the function f,, — f,,, , (29)
shows that

(30) |f.(1) -f...(1) -f..(f) +f...(t) I S -|x—-ll-8 SE2(b - a) 2

for any x and t on [a, b], if n 2 N, m 2 N. The inequality

lfi.(1)-f..(1)| S |fi.(1) -f...(1) -f..(1e) +f...(1e)| + If (1 ) -f (1 )|n 0 m O

implies, by (28) and (30), that

lf..(1)-f...(1)| <8 (<1S1Sb.dd2N.m2N).
so that {fii} converges uniformly on [a, b]. Let

f(x) =lim_fl,(x) (a 5 x 5 b).

Let us now fix a point x on [a, b] and define

(31) ¢ (O _ f..(l) -f..(1) f(t) -f( )X

d "'-".'_'-".".'"" ‘(’(’)'—T-T7
fora5t5b,t¢x. Then

(32) ¢..(l) =f..'(1) ('1 = 1. 2. 3. ---)-

The first inequality in (30) shows that

|d.<d> - d..<d> I 5 55,;-‘§;-i-5 (dd 2 N. ddd S N).
so that {¢,,} converges uniformly, for t aé x. Since {f,,} converges to f, we
conclude from (31) that

(33) lim <l>..(l) = <l>(¢)

uniformly for a 5 t 5 b, t aé x.
If we now apply Theorem 7.11 to {di,}, (32) and (33) show that

lim ¢(t) = 1imf,,’(x);

and this is (27), by the definition of <;b(t).

Remark: If the continuity of the functions f,,’ is assumed in addition to
the above hypotheses, then a much shorter proof of (27) can be based on
Theorem 7.16 and the fundamental theorem of calculus.
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7.18 Theorem There exists a real continuous function on the real line which is
nowhere diflerentiable.

Proof Define

(34) <P(1)= l1| (-1 S1S 1)
and extend the definition of (p(x) to all real x by requiring that

(35) <P(1 + 2) = <P(1)-
Then, for all s and t,

(36) |<P(-Y) - <P(I)| S IS -1!-
In particular, (p is continuous on R‘. Define

ct) /(dd) -= §0<t>"e<4"dd>-
Since 0 5 tp 5 1, Theorem 7.10 shows that the series (37) converges
uniformly on R1. By Theorem 7.12, f is continuous on R1.

Now fix a real number x and a positive integer m. Put
(33) <5... = i 1' 4""

where the sign is so chosen that no integer lies between 4"‘x and 4"'(x + 5,,,).
This can be done, since 4"‘ |5,,,| = -I. Define

(39) in , r<4"(1 at 55-3) '-114"").
When n > m, then 4"5,,, is an even integer, so that 7,, = 0. When 0 5 n 5 m,
(36) implies that |7,,| 5 4".

Since I7", | = 4"‘, we conclude that

I/"<><+ <1-> '-f<1) _5... *1 _ _ V»...M=/"? -RL» *~*_/

2|

m—1

2 3m _n§03"

= 1(3'” + 1).
As m -> oo, 5m -> 0. It follows thatf is not differentiable at x.

EQUICONTINUOUS FAMILIES OF FUNCTIONS

In Theorem 3.6 we saw that every bounded sequence of complex numbers
contains a convergent subsequence, and the question arises whether something
similar is true for sequences of functions. To make the question more precise,
we shall define two kinds of boundedness.
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7.19 Definition Let {fli} be a sequence of functions defined on a set E.
We say that {f,,} is pointwise bounded on E if the sequence {fl,(x)} is bounded

for every x e E, that is, if there exists a finite-valued function ¢ defined on E
such that

<¢(x) (xeEsn=1s2s3s "')'

We say that {fii} is uniformly bounded on E if there exists a number M
such that

|fl,(x)|<M (xeE,n=1,2,3,...).

Now if {f,,} is pointwise bounded on E and E1 is a countable subset of E,
it is always possible to find a subsequence {fiik} such that {f,,k(x)} converges for
every x e E1. This can be done by the diagonal process which is used in the
proof of Theorem 7.23.

However, even if {f,,} is a uniformly bounded sequence of continuous
functions on a compact set E, there need not exist a subsequence which con-
verges pointwise on E. In the following example, this would be quite trouble-
some to prove with the equipment which we have at hand so far, but the proof
is quite simple if we appeal to a theorem from Chap. 11.

7.20 Example Let
f,,(x)=sinnx (05x52t:,n=l,2,3,...).

Suppose there exists a sequence {nii} such that {sin niix} converges, for every
x e [0, 21:]. In that case we must have

lim (sin niix - sin niiiix) = 0 (0 5 x 5 21:);
k—>oo

hence
(40) klim (sin niix - sin n,i+ix)2 = 0 (0 5 x 5 21:).

By Lebesgue’s theorem concerning integration of boundedly convergent
sequences (Theorem 11.32), (40) implies

(41) I02“(Sin hi». - Sin ».,,.,,x)’ .1». = 0.
But a simple calculation shows that

I02“ (sin niix — sin n,i+ix)2 dx = 21:,

which contradicts (41).
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Another question is whether every convergent sequence contains a
uniformly convergent subsequence. Our next example will show that this
need not be so, even if the sequence is uniformly bounded on a compact set.
(Example 7.6 shows that a sequence of bounded functions may converge
without being uniformly bounded; but it is trivial to see that uniform conver-
gence of a sequence of bounded functions implies uniform boundedness.)

7.21 Example Let
x2

f;,(X) _nx)2 (OSXS 1,I'l= 1,2,

Then Ifl,(x)| 3 1, so that {f,,} is uniformly bounded on [0, 1]. Also

limf,,(x) = O (0 5 x 3 1),
II-VG‘)

but

=1 (n =1,2,3,...),
so that no subsequence can converge uniformly on [0, 1].

The concept which is needed in this connection is that of equicontinuity;
it is given in the following definition.

7.22 Definition A family 9" of complex functions f defined on a set E in a
metric space X is said to be equicontinuous on E if for every s > 0 there exists a
6 > O such that

lf(x) —f(y)l <8
whenever d(x, y) < 6, x e E, y e E, andfe .9’. Here d denotes the metric of X.

It is clear that every member of an equicontinuous family is uniformly
confinuous

The sequence of Example 7.21 is not equicontinuous.
Theorems 7.24 and 7.25 will show that there is a very close relation

between equicontinuity, on the one hand, and uniform convergence of sequences
of continuous functions, on the other. But first we describe a selection process
which has nothing to do with continuity.

7.23 Theorem If{11,} is a pointwise bounded sequence of complex functions on
a countable set E, then {fl,} has a subsequence {flu} such that {fl,k(x)} convergesfor
every x e E.
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Proof Let {xi}, i = 1, 2, 3, ..., be the points of E, arranged in a sequence.
Since {f,,(x,)} is bounded, there exists a subsequence, which we shall
denote by {f,,,,}, such that {f1,,,(x1)} converges as k -> oo.

Let us now consider sequences S1, S2 , S3 , ..., which we represent
by the array

S13 f1,1 f1,2 f1,3 f1,4
S25 f2,1 f2,2 f2,3 f2,4
S33 f3,1 f3,2 fs,3 fa,-4

and which have the following properties:
(a) S, is a subsequence of S,,_,, for n = 2, 3, 4,
(b) {f,,,,,(x,,)} converges, as k -> oo (the boundedness of {f,,(x,,)}
makes it possible to choose S,, in this way);
(c) The order in which the functions appear is the same in each se-
quence; i.e., if one function precedes another in S1 , they are in the same
relation in every Sn , until one or the other is deleted. Hence, when
going from one row in the above array to the next below, functions
may move to the left but never to the right.
We now go down the diagonal of the array; i.e., we consider the

sequence
S3 f1,1 f2,2 f3,3 f4,4"'-

By (c), the sequence S (except possibly its first n — 1 terms) is a sub-
sequence of S,,, for n =1, 2, 3, Hence (b) implies that {fl,,,,(x,)}
converges, as n -> oo, for every xi e E.

7.24 Theorem IfK is a compact metric space, iff,, e <€(K) for n = 1, 2, 3, ...,
and if{f,,} converges uniformly on K, then {f,,} is equicontinuous on K.

Proof Let e > 0 be given. Since {f,,} converges uniformly, there is an
integer N such that

(42) llfi. ""'fN" < 6 ('1 > N)-
(See Definition 7.14.) Since continuous functions are uniformly con-
tinuous on compact sets, there is a 6 > 0 such that

(43) lfl(X) ""fi(y) I < 8
ifl $i5N and d(x,y)<6.

If n > N and d(x, y) < 6, it follows that

lf..(x) -f..(y)| 5 lfl.(x) —f~(X)| + lfv(x) —f~(y)| + |fv(y) —f..(y)l < 38-
In conjunction with (43), this proves the theorem.
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7.25 Theorem IfK is compact, iff, e‘6(K)for n = 1, 2, 3, ..., and if{fl,} is
pointwise bounded and equicontinuous on K, then

(44)

(45)

(46)

(a) {fi,} is uniformly bounded on K,
(b) {_fi,} contains a uniformly convergent subsequence.

Proof
(a) Let s > 0 be given and choose 5 > 0, in accordance with Definition
7.22, so that

m(x) -fi.(y) I < 8
for all n, provided that d(x, y) < 6.

Since K is compact, there are finitely many points pl, ..., p, in K
such that to every x eK corresponds at least one p, with d(x, p,) < 6.
Since (j§,} is pointwise bounded, there exist M, < oo such that If,,(p,) I < Mi
for all n. If M= max (M1, ..., M,), then |f,,(x)| < M+ s for every
x e K. This proves (a).
(b) Let E be a countable dense subset of K. (For the existence of such a
set E, see Exercise 25, Chap. 2.) Theorem 7.23 shows that {fl,} has a
subsequence {fm} such that {fl,,(x)} converges for every x e E.

Put fl" = g,, to simplify the notation. We shall prove that {g,}
converges uniformly on K.

Let e > 0, and pick 5 > 0 as in the beginning of this proof. Let
V(x, 5) be the set of all y e K with d(x, y) < 6. Since E is dense in K, and
K is compact, there are finitely many points xl, ..., x,,, in E such that

KC I/(xl, U U V(xma5)'

Since {g i(x)} converges for every x e E, there is an integer N such
that

|gi(xs) _ gj(-xs) I < 8

wheneveri2N,jzN, 1 ss sm.
If x e K, (45) shows that x e V(x, , 6) for some s, so that

|9z(x) " 9z(xs)| < 3

for every i. If i 2 N and j 2 N, it follows from (46) that

|gi(x) "T gj(x) I s _ gl(-xs) I + |gl(-xs) _ gj(-xs) I + 'gj(xs) '_ g)(x) i

< 3s.

This completes the proof.
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THE STONE-WEIERSTRASS THEOREM

7.26 Theorem If f is a continuous complex function on [a, b], there exists a
sequence ofpolynomials P, such that

lim P..(X) == f(X)

uniformly on [a, b]. Iff is real, the P, may be taken real.

This is the form in which the theorem was originally discovered by
Weierstrass.

Proof We may assume, without loss of generality, that [a, b] = [0, 1].
We may also assume that f(0) =f(1) = 0. For if the theorem is proved
for this case, consider

g(x) =f(X) -f(0) -" x[f(1) -f(0)] (0 $ X $1)-
Here g(0) = g(l) = 0, and if g can be obtained as the limit of a uniformly
convergent sequence of polynomials, it is clear that the same is true for f,
since f — g is a polynomial.

Furthermore, we define f(x) to be zero for x outside [0, 1]. Then f
is uniformly continuous on the whole line.

We put

Z __ 1 19 29 3! ' ' ')!

where c,, is chosen so that

(48) H1 Q,,(x)dx=1 (n = 1, 2, 3, ...).
We need some information about the order of magnitude of c,,. Since

I1 (1 — x2)" dx= 2J‘1(1-x2)"dx2 2r/\/;(1-— x2)" dx
-1 o o

22]“/"(1-nx2)dx
0

4_3\/I;

>-L,
\/n

it follows from (48) that
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The inequality (1 — x2)" 2 1 — nxz which we used above is easily
shown to be true by considering the function

(1 — x2)" -1 + nxz
which is zero at x = O and whose derivative is positive in (0, 1).

For any 6 > 0, (49) implies

<50) Q.<x> s ./E (1 — 6*)" <6 s |x| s 1).
so that Q,, -+0 uniformly in 5 s |x| 5 1.

Now set

(51) P,,(x)=f1 f(x + t)Q,,(t) dz (0 s x $1).

Our assumptions aboutf show, by a simple change of variable, that
1 -—x 1P.<x> = f_x to + 1)Q..(t)dt= [0 /(no.0 - x) di,

and the last integral is clearly a polynomial in x. Thus {Pu} is a sequence
of polynomials, which are real iff is real.

Given s > 0, we choose 6 > 0 such that Iy — x| < 6 implies

|f(y) -f(x) I <
Let M = sup If(x) I. Using (48), (50), and the fact that Q,,(x) 2 0, we
see that for 0 s x s 1,

|P.<x> -/(x) I = I fj1[f(x + 0-/(x)1Q.<r>d:l
s [11 |f(x + 0 —/(x) lQ..(l) dt
s 2Mf__:Q,,(t) dt + Q,,(t) dz + 2ML1 Q,,(t) dt

ss 4Mfi(1 - 52)" + 5
< s

for all large enough n, which proves the theorem.

It is instructive to sketch the graphs of Q, for a few values of n; also,
note that we needed uniform continuity of f to deduce uniform convergence
of {P,,}.
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In the proof of Theorem 7.32 we shall not need the full strength of
Theorem 7.26, but only the following special case, which we state as a corollary.

7.27 Corollary For every interval [- a, a] there is a sequence of real poly-
nomials P,, such that P,,(0) = O and such that

lim P,,(x) = |x|

uniformly on [- a, a].

Proof By Theorem 7.26, there exists a sequence {P,’,"} of real polynomials
which converges to |x| uniformly on [- a, a]. In particular, P,1"(0) -+0
as n -—> oo. The polynomials

P..(x) = P§‘(X) - Pi‘(0) (n =1.2.3.---)
have desired properties.

We shall now isolate those properties of the polynomials which make
the Weierstrass theorem possible.

7.28 Definition A family M of complex functions defined on a set E is said
to be an algebra if (i)f+ g e M, (ii)fg e M, and (iii) cfe M for allfe M, g e M
and for all complex constants c, that is, if M is closed under addition, multi-
plication, and scalar multiplication. We shall also have to consider algebras of
real functions; in this case, (iii) is of course only required to hold for all real c.

If M has the property that f e M whenever f,, e M (n = 1, 2, 3, . . .) and
f,, -—>f uniformly on E, then M is said to be uniformly closed.

Let Q be the set of all functions which are limits of uniformly convergent
sequences of members of M. Then Q is called the uniform closure of M. (See
Definition 7.14.)

For example, the set of all polynomials is an algebra, and the Weierstrass
theorem may be stated by saying that the set of continuous functions on [a, b]
is the uniform closure of the set of polynomials on [a, b].

7.29 Theorem Let Q be the uniform closure of an algebra M of bounded
functions. Then .% is a uniformly closed algebra.

Proof If f e Q and g e .@, there exist uniformly convergent sequences
{fl,}, {g,,} such that f,, —>f, g,, -> g and f,, e M, g,, e M. Since we are dealing
with bounded functions, it is easy to show that

f. + on -—>f+ 9. 13.9.. ->fq. cf. —~> cf.
where c is any constant, the convergence being uniform in each case.

Hence f+ g e .%,fg e .@, and cf e .@, so that .% is an algebra.
By Theorem 2.27, Q is (uniformly) closed.
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7.30 Definition Let M be a family of functions on a set E. Then M is said
to separate points on E if to every pair of distinct points x1, x, e E there corre-
sponds a functionfe M such thatf(x1) ¢f(x2).

If to each x e E there corresponds a function g e M such that g(x) aé 0,
we say that M vanishes at no point of E.

The algebra of all polynomials in one variable clearly has these properties
on R‘. An example of an algebra which does not separate points is the set of
all even polynomials, say on [- 1, 1], sincef(-x) =f(x) for every even function f.

The following theorem will illustrate these concepts further.

7.31 Theorem Suppose M is an algebra offunctions on a set E, M separates
points on E, and M vanishes at no point of E. Suppose xl, x2 are distinct points
of E, and cl, c2 are constants (real if M is a real algebra). Then M contains a
functionf such that

f(x1) = C1» f(-xz) = C2 -

Proof The assumptions show that M contains functions g, h, and k
such that

Q(-xi) 9* Q(x2)> h(x1) 7* 0» k(x2) 7* 0-

Put
H = vk - e(x1)k. v = eh — a(x¢)h-

Then u e M, v e M, u(x,) = v(x2) = 0, u(x2) 94 0, and v(x1) 9* 0. Therefore

c1 v c2 u
= ——---— + ---i

f "(xii ‘((352)

has the desired properties.

We now have all the material needed for Stone’s generalization of the
Weierstrass theorem.

7.32 Theorem Let M be an algebra of real continuous functions on a compact
set K. IfM separates points on K and if M vanishes at no point of K, then the
uniform closure Q ofM consists of all real continuous functions on K.

We shall divide the proof into four steps.

STEP] Iffc-EQ, then |f| EQ.

Proof Let

(52) 4 = Sup If(x)I (X E K)
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and let s > 0 be given. By Corollary 7.27 there exist real numbers
cl, ..., c,, such that

(53) ic,y‘- |y|l<e (--asysa).
1[=

Since Q is an algebra, the function

Q=i¢'t/‘it= 1
is a member of Q. By (52) and (53), we have

|a(x) - |f(x)| I < 8 (X GK)-
Since Q is uniformly closed, this shows that If | e Q.

STEP 2 IffeQ andg eQ, then max(f,g) eQ andmin(f,g) eQ.

By max (f, g) we mean the function h defined by

_ r(x) it/(x) 2 g(x).h(x) ' {g(x) ifrm < g(x).
and min (f, g) is defined likewise.

Proof Step 2 follows from step l and the identities

_f+a lf—el
2 + 2 ’max (f. 9)

min(/lg) f-5-Q__|L-2‘tl|_

By iteration, the result can of course be extended to any finite set
of functions: Iffl, ...,f,, eQ, then max (fl, . . . ,j},) eQ, and

min(f,,...,fl,)eQ.

STEP 3 Given a real function f, continuous on K, a point x e K, and s > 0, there
exists a function g,, e Q such that g,,(x) =f(x) and

(54) tI..(i) >f(1) - 8 (1 E K)-
Proof Since M C Q and M satisfies the hypotheses of Theorem 7.31 so
does Q. Hence, for every y e K, we can find a function h, e Q such that

<55) h.<x> =f(x). no) =f<y>.
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By the continuity of h, there exists an open set Jy, containing y,
such that

(56) h,(t) >f(t) - a (t e 1,).

Since K is compact, there is a finite set of points yl, .. . , y,, such that

(57) Kclnu---uJ,,_.

Put

g,, = max (hm , . . . , hyn).

By step 2, gx e Q, and the relations (55) to (57) show that g,, has the other
required properties.

STEP 4 Given a realfunctionf, continuous on K, and a > 0, there exists afunction
h e Q such that

(53) I/I(x) -f(x)| < 8 (X E K)-
Since Q is uniformly closed, this statement is equivalent to the conclusion

of the theorem.

Proof Let us consider the functions g,,, for each x e K, constructed in
step 3. By the continuity of g,,, there exist open sets V, containing x,
such that

(59) {h(t) <f(l) + 8 (F E VI)‘
Since K is compact, there exists a finite set of points xl, . .., x,,,

such that

(60) Kc: V,,,u-'~uV,,m.

Put

h = min (gm , ..., gxm).

By step 2, h e Q, and (54) implies

(61) h(t) > f(1) — 8 (I E K).
whereas (59) and (60) imply

(62) h(t) < f(t) + e (t e K).
Finally, (58) follows from (61) and (62).
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Theorem 7.32 does not hold for complex algebras. A counterexample is
given in Exercise 21. However, the conclusion of the theorem does hold, even
for complex algebras, if an extra condition is imposed on M, namely, that M
be self-adjoint. This means that for every f e M its complex conjugate f must
also belong to M; f is defined by f(x) =f(x).

7.33 Theorem Suppose M is a self-adjoint algebra of complex continuous
functions on a compact set K, M separates points on K, and M vanishes at no
point of K. Then the uniform closure Q of M consists of all complex continuous
functions on K. In other words, M is dense %(K).

Proof Let MR be the set of all real functions on K which belong to M.
Iff e M and f= u + iv, with u, v real, then 2u =f+ f, and since M

is self-adjoint, we see that u e MR. If x1 at x2 , there exists fe M such
that f(x1) = l, f(x2) = 0; hence O = u(x2) aé u(x,) = 1, which shows that
MR separates points on K. If x e K, then g(x) 54 0 for some g e M, and
there is a complex number /1 such that /ig(x) > 0; iff = lg,f= u + iv, it
follows that u(x) > 0; hence MR vanishes at no point of K.

Thus MR satisfies the hypotheses of Theorem 7.32. It follows that
every real continuous function on K lies in the uniform closure of MR,
hence lies in Q. Iff is a complex continuous function on K, f= u +iv,
then u e Q, v e Q, hence f e Q. This completes the proof.

EXERCISES

1. Prove that every uniformly convergent sequence of bounded functions is uni-
formly bounded.

2. If {f,,} and {g,.} converge uniformly on a set E, prove that { J1, + g,,} converges
uniformly on E. If, in addition, {1}} and {g,,} are sequences of bounded functions,
prove that {f..g,,} converges uniformly on E.

3. Construct sequences {)2}, {g,,} which converge uniformly on some set E, but such
that {f,.g..} does not converge uniformly on E (of course, {fi,g,,} must converge on
E).

4. Consider

°° 1
f(x) _ "Z211 + n2x'

For what values of x does the series converge absolutely? On what intervals does
it converge uniformly? On what intervals does it fail to converge uniformly? Is f
continuous wherever the series converges? Is f bounded?
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5. Let

( .<___1
0 n+1’

fl,(x)=lsin’; gxg

1° (%.<x)~
Show that {f,.} converges to a continuous function, but not uniformly. Use the
series E f,. to show that absolute convergence, even for all x, does not imply uni-
form convergence.

6. Prove that the series

°° nx'+ngit-1) n,
converges uniformly in every bounded interval, but does not converge absolutely
for any value of x.

7. For n= 1, 2, 3, ..., x real, put

fl=(x)=

Show that {fl.} converges uniformly to a function f, and that the equation

f'(x) = £ip1f.i(x)
is correct if x =,-é 0, but false if x = 0.

8. If

0 ( S0),K”) =i1 ti > 0),
if {x,,} is a sequence of distinct points of (a, b), and if Z I c..| converges, prove that
the series

f(x) = 21¢. I(x - x,,) (a g x g b)
converges uniformly, and that f is continuous for every x afi x,,.

9. Let {f,,} be a sequence of continuous functions which converges uniformly to 8
function f on a set E. Prove that

£11 fi-(xi) =f(X)

for every sequence of points x,. 6 E such that x,. -—>x, and x e E. Is the converse of
this true ?
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ll.

12.

13.
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Letting (x) denote the fractional part of the real number x (see Exercise 16, Chap. 4,
for the definition), consider the function

_ °° (nx)f(x) — "Z11 7; (x real).

Find all discontinuities of f, and show that they form a countable dense set.
Show that f is nevertheless Riemann-integrable on every bounded interval.
Suppose {fl.}, {g,.} are defined on E, and
(a) E f,, has uniformly bounded partial sums;
(b) g,, -+0 uniformly on E;
(v) m(x) 2o.(x) 2os(x) 2 - -- for every x E E-

Prove that E fly» converges uniformly on E. Hint: Compare with Theorem
3.42.
Suppose g andf..(n = 1, 2, 3, . . .) are defined on (0, oo), are Riemann-integrable on
[t, T] whenever 0 < t < T< oo, |f..| £9.11. —>f uniformly on every compact sub-
set of (0, oo), and

I g(x) dx < 00.
O

Prove that
G) Q

lip; L fl.(x)dx= L f(x)dx.
(See Exercises 7 and 8 of Chap. 6 for the relevant definitions.)

This is a rather weak form of Lebesgue’s dominated convergence theorem
(Theorem 11.32). Even in the context of the Riemann integral, uniform conver-
gence can be replaced by pointwise convergence if it is assumed that f e Q. (See
the articles by F. Cunningham in Math. Mag., vol. 40, 1967, pp. 179-186, and
by H. Kestelman in Amer. Math. Monthly, vol. 77, 1970, pp. 182-187.)
Assume that {fi.} is a sequence of monotonically increasing functions on R‘ with
0 $fl.(x) $1 for all x and all n.
(a) Prove that there is a functionfand a sequence {n,.} such that

f(X) = fl-r(x)

for every x e R‘. (The existence of such a pointwise convergent subsequence is
usually called Helly’s selection theorem.)
(b) If, moreover, f is continuous, prove that fi.,, —>f uniformly on compact sets.

Hint: (i) Some subsequence {flu} converges at all rational points r, say, to
f(r). (ii) Define f(x), for any x e R‘, to be sup f(r), the sup being taken over all
r gx. (iii) Show that f,,,(x) ->f(x) at every x at which f is continuous. (This is
where monotonicity is strongly used.) (iv) A subsequence of {f,,,} converges at
every point of discontinuity of f since there are at most countably many such
points. This proves (a). To prove (b), modify your proof of (iii) appropriately.
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l4 Let f be a continuous real function on R1 with the following properties:
0 gf(t)g1,f(t + 2):-f(t) for every t, and

_ 0 (0 g t g l)
f(t)_i1 (igrgl).

Put <D(t) = (x(t), y(t)), where

xv) = $12-"/or-1:). yo) = $12-"f<s="t>.
Prove that <1) is continuous and that (I) maps I -—== [0, 1] onto the unit square I2 C R’.
If fact, show that <1) maps the Cantor set onto I2.

Hint: Each (xo , yo) e I1 has the form
oo no

x0=212-"amt-1; y0=2!2_na2n
II= ll:

where each a, is 0 or 1. If

¢..=§ 3""‘(2a,)
l= 1

show that f(3"to) -= at , and hence that x(to) = X0 , J'(t,,) = yo.
(This simple example of a so-called “space-filling curve” is due to 1. J.

Schoenberg, Bull. A.M.S., vol. 44, 1938, pp. 519.)
Supposef is a real continuous function on R‘, fl,(t) =f(nt) for n = 1, 2, 3, ..., and
{f;,} is equicontinuous on [0, 1]. What conclusion can you draw about f?
Suppose {f,,} is an equicontinuous sequence of functions on a compact set K, and
{f,,} converges pointwise on K. Prove that {f.,} converges uniformly on K.
Define the notions of uniform convergence and equicontinuity for mappings into
any metric space. Show that Theorems 7.9 and 7.12 are valid for mappings into
any metric space, that Theorems 7.8 and 7.11 are valid for mappings into any
complete metric space, and that Theorems 7.10, 7.16, 7.17, 7.24, and 7.25 hold for
vector-valued functions, that is, for mappings into any R".
Let {f,.} be a uniformly bounded sequence of functions which are Riemann-inte-
grable on [a, b], and put

X

F,,(x) = I fi,(t) di (a g x 5 b).

Prove that there exists a subsequence {F,,,,} which converges uniformly on [a, b].
Let K be a compact metric space, let S be a subset of T(K). Prove that S is compact
(with respect to the metric defined in Section 7.14) if and only if S is uniformly
closed, pointwise bounded, and equicontinuous. (If S is not equicontinuous.
then S contains a sequence which has no equicontinuous subsequence, hence has
no subsequence that converges uniformly on K.)
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Iff is continuous on [0, 1] and if
1

.hf(x)x"dx=0 (n=0,l,2,...),O

prove that f(x) = 0 on [0, 1]. Hint: The integral of the product of f with any
1

polynomial is zero. Use the Weierstrass theorem to show that J0 f’(x) dx = 0.

Let K be the unit circle in the complex plane (i.e., the set of all z with [zl = 1), and
let M be the algebra of all functions of the form

f(e“’) = n£oc,,e"'° (6 real).

Then M separates points on K and M vanishes at no point of K, but nevertheless
there are continuous functions on K which are not in the uniform closure of M.
Hint: For every fe M

I an f(e“’)e“’ d6 = 0,

and this is also true for every f in the closure of M.
Assume f e Q(a) on [a, b], and prove that there are polynomials P, such that

b

limf |f—P,.|’da=0.
(Compare with Exercise 12, Chap. 6.)
Put Po = 0, and define, for n = 0,1, 2, ...,

Pn+1(x) = Pn(-x) + x'ii""'2 -

Prove that
lim P,,(x)= [xl,

uniformly on [-1, 1].
(This makes it possible to prove the Stone-Weierstrass theorem without first

proving Theorem 7.26.)
Hint: Use the identity

P.Ix! -P...<x>=l|x1-P.<x>1[1—
to prove that 0$P.,(x) gP..+1(x) $ [x| if |x| $1, and that

|x| —P,,(x)$[x|(l— <-Ln+1

if]x| $1.



170 PRINCIPLES or MATHEMATICAL ANALYSIS

24. Let X be a metric space, with metric d. Fix a point a e X. Assign to each p e X
the function f, defined by

fi(x) = d(x, P) — d(x, a) (x E X)-
Prove that I f,,(x)| 3 d(a, p) for all x e X, and that therefore f,, e ‘6(X).
Prove that

llfi —fiH = d(p, q)
for all p, q e X.

If <I>(p) = fi, it follows that <1) is an isometry (a distance-preserving mapping)
of X onto <I>(X) ¢ ‘€(X).

Let Y be the closure of <D(X) in %(X). Show that Y is complete.
Conclusion: X is isometric to a dense subset of a complete metric space Y.

(Exercise 24, Chap. 3 contains a different proof of this.)
25. Suppose 95 is a continuous bounded real function in the strip defined by

0 3 x g 1, - oo < y < oo. Prove that the initial-value problem

y’ = ¢(x. y). y(0) = v
has a solution. (Note that the hypotheses of this existence theorem are less stringent
than those of the corresponding uniqueness theorem; see Exercise 27, Chap. 5.)

Hint: Fix n. For i= 0, . . . , n, put xi = i/n. Let fii be a continuous function
on [0, 1] such that fi.(0) = c,

f.§(t) = ¢(xi ,f..(xi)) if xi < t < xiii,

and put

A..(t) =f;(t) — ¢(t.f..(t)).
except at the points xi, where A,,(t) = 0. Then

fi.(x) = c + f x[¢><t.r..<o> + A..(t)l dz.
Choose M < oo so that [96] 3 M. Verify the following assertions.
(a) |f.§| 3M, |A,,[ g2M, A, EQ, and |f..| 3 [cl + M= Mi, say, on [0, 1], for

all n.
(b) {fii} is equicontinuous on [0, 1], since [ f,'.| 3 M.
(c) Some {]’,,,,} converges to some f, uniformly on [0, 1].
(d) Since 96 is uniformly continuous on the rectangle 0 3 x 3 1, [y| 3 M1,

¢(r. fi.(t)) ~> ¢(t.f(t))
uniformly on [0, 1].

(e) A,,(t) —> 0 uniformly on [0, 1], since

An(t) = ¢(-xi 9 .fh(xl)) '— ¢(t9

III (xi, X144).
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(f) Hence

f(X) = 6 + fx¢(t,f(1)) df-

This f is a solution of the given problem.
Prove an analogous existence theorem for the initial-value problem

y’ = 4'(x. Y). y(0) = c.
where now c e R“, y e R", and 4> is a continuous bounded mapping of the part of
R"+1 defined by 0 3 x 3 1, y e R“ into R“. (Compare Exercise 28, Chap. 5.) Hint:
Use the vector-valued version of Theorem 7.25.



8
SOME SPECIAL FUNCTIONS

POWER SERIES

In this section we shall derive some properties of functions which are represented
by power series, i.e., functions of the form

<1) r(x) = fie.»-"
n=0

or, more generally,

(2) f(X) = Zo¢..(X - fl)"-
These are called analytic functions.
We shall restrict ourselves to real values of x. Instead of circles of con-

vergence (see Theorem 3.39) we shall therefore encounter intervals of conver-
gence.

If (1) converges for all x in (--R, R), for some R > 0 (R may be + 00).
we say thatf is expanded in a power series about the point x --= O. Similarly, if
(2) converges for Ix — a] < R, f is said to be expanded in a power series about
the point x = a. As a matter of convenience, we shall often take a == 0 without
any loss of generality.
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8.1 Theorem Suppose the series
oo

(3) Z cix"=o
converges for |x| < R, and define

<4) r(x) = §0c.x" (Ix! < R)-
Then (3) converges uniformly on [—R + e, R - e], no matter which e > 0

is chosen. The function f is continuous and dijferentiable in (— R, R), and

<5) f'(x) = §1nc.x"-1 (lxl < R).
Proof Let s > 0 be given. For |x| 3 R - .9, we have

Icnxni s |cn(R "'8)"i;

and since

Zc,,(R — s) "

converges absolutely (every power series converges absolutely in the
interior of its interval of convergence, by the root test), Theorem 7.10
shows the uniform convergence of (3) on [—R + e, R — e].

Since R’/n->1 as n -—>oo, we have

lim sup R’/n|c,,| = lim sup {‘/|c,,|,
B-*® 7l“*d3

so that the series (4) and (5) have the same interval of convergence.
Since (5) is a power series, it converges uniformly in [—R + s,

R —- e], for every e > 0, and we can apply Theorem 7.17 (for series in-
stead of sequences). It follows that (5) holds if |x| 3 R -- e.

But, given any x such that |x| < R, we can find an e > 0 such that
|x| < R — s. This shows that (5) holds for |x| < R.

Continuity off follows from the existence off’ (Theorem 5.2).

Corollary Under the hypotheses of Theorem 8.1, f has derivatives of all
orders in (-R, R), which are given by

(6) f(")(x) = ikn(n — 1) (n-— k + 1)c,, x"'”".

In particular,
(7) f(k)(0) = klci, (k = 0, l, 2, . .

(Heref(°) means f, andfU‘) is the kth derivative off, for k = 1, 2, 3, ...).
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Proof Equation (6) follows if we apply Theorem 8.1 successively to f,
f’, f", . Putting x = 0 in (6), we obtain (7).

Formula (7) is very interesting. It shows, on the one hand, that the
coeflicients of the power series development off are determined by the values
offand of its derivatives at a single point. On the other hand, if the coefficients
are given, the values of the derivatives off at the center of the interval of con-
vergence can be read ofl' immediately from the power series.

Note, however, that although a function f may have derivatives of all
orders, the series Ec,, x", where c,, is computed by (7), need not converge tof(x)
for any x ¢ 0. In this case, fcannot be expanded in a power series about x = 0.
For if we hadf(x) = Ea, x", we should have

"lei. =f‘"’(°);
hence a,, = c,,. An example of this situation is given in Exercise 1.

If the series (3) converges at an endpoint, say at x = R, thenfis continuous
not only in (-—R, R), but also at x = R. This follows from Abel’s theorem (for
simplicity of notation, we take R = 1):

8.2 Theorem Suppose Ec,, converges. Put

f(x) = §¢,,x" (-1 < X <1).
n=0

Then

(8) lin}f(x) = ice".

Proof Let s,,=c0+ +c,,,s..1 =0. Then

iqx" = i(s,, —- s,,_1)x" = (1 -— x)Z1s,,x" + s,,,x"'.
=0 "=0 n=0

For |x| < 1, we let m —> oo and obtain

(9) f(x) = (1 -- X) f s,,x".
n=O

Suppose s = lim s,,. Let 1-: > 0 be given. Choose N so that n > N
||-ow

implies

|s""sn| <%°
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Then, since

(l—x)ix"=-1 (|x|<l),
n 0

we obtain from (9)
w N 8

|f(X)-~*l='(1—X)X(S..—S)X" S (1 -X)Xol~*'i.—S| |x|"4-5 $8
n=0 n=

if x > 1 — 6, for some suitably chosen 6 > 0. This implies (8).

As an application, let us prove Theorem 3.51, which asserts: If 2a,, , 2b,, ,
Ec,,, converge to A, B, C, and ifc,, = ao b,, + + a,,bo , then C = AB. We let

r(x) =n§oa.x". g(x) = §ob.x". h(x) =§;0c.x".
for 0 3 x 3 1. For x < l, these series converge absolutely and hence may be
multiplied according to Definition 3.48; when the multiplication is carried out,
we see that

(10) f(X) ‘g(x) = h(x) (0 S X < 1)-
By Theorem 8.2,

(l 1) f(x) -> A, g(x) -> B, h(x) -> C

as x —> 1. Equations (10) and (ll) imply AB = C.
We now require a theorem concerning an inversion in the order of sum-

mation. (See Exercises 2 and 3.)

8.3 Theorem Given a double sequence {aij}, i= 1, 2, 3, ..., j= 1, 2, 3, ...,
suppose that

(12) Z |ai,-|=bi (i=1,2, 3,...)
j=1

and Eb, converges. Then

(13) ii fiat): inI48 5Q1»

F1 I-A 5-. I-A

Proof We could establish (13) by a direct procedure similar to (although
more involved than) the one used in Theorem 3.55. However, the following
method seems more interesting.
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Let E be a countable set, consisting of the points xi, , xl, xi , . . . , and
suppose x,, -> xo as n -> oo. Define

(14) fie.) = in.» <i= 1. 2. 3. ...).
j=1

(15) f,(x,,) = fag. (i,n = 1, 2, 3, ...),
j=1

no g(x) =21/.6) (x E E).
Now, (14) and (15), together with (12), show that each fi is con-

tinuous at x0. Since |fi(x)| 3 bi for x e E, (16) converges uniformly, so
that g is continuous at xi, (Theorem 7.11). It follows that

_ - X ',_P’lsM.
M8 isM. = fi(x0) = e(Xo) = 11111 e(x..)

-- - i= 1 n—*oo

M=8 M8 _Q-I
S1. ,_l\’18IMBM8 fig*:-M=

SS-.= lim Z fi(x,,) = lim
n—>ooi=1 n—>oo i=1j=1

= lim =
n—l@j=1i=1 = =

8.4 Theorem Suppose
oo

f(X) = ;o¢..X”.
3

the series converging in |x| < R. If —R < a < R, then f can be expanded in a
power series about the point x = a which converges in |x — a| < R — |a| , and

<11) f<x>—§0f(:f“)<x a)" (Ix-a|<R— |a|)-
This is an extension of Theorem 5.15 and is also known as Taylor’s

theorem.

Proof We have

flo—§em-o+u"
n=0

=__ an—m(x _ a)m

n=0 m=0
D48 =13

M8M=
/"-'\

§=S=

”\._-/
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This is the desired expansion about the point x = a. To prove its validity,
we have to justify the change which was made in the order of summation.
Theorem 8.3 shows that this is permissible if

(18) E i c,, a"""‘(x -— a)"'
3 o 5 o

converges. But (18) is the same as

<19) ;o|c.|~<1x-a|+|-11>".
and (19) converges if Ix —- a| + lal < R.

Finally, the form of the coefficients in (17) follows from (7).

It should be noted that (17) may actually converge in a larger interval than
the one given by |x — a| < R — |a[.

If two power series converge to the same function in (—R, R), (7) shows
that the two series must be identical, i.e., they must have the same coeflicients.
It is interesting that the same conclusion can be deduced from much weaker
hypotheses :

8.5 Theorem Suppose the series 2a,, x" and 2b,, x" converge in the segment
S = (—R, R). Let E be the set ofall x e S at which

(20) Zoanx" = Zeb, x".

IfE has a limit point in S, then a,, = b,, for n = 0, 1, 2, . . .. Hence (20) holds for
all x e S.

Proof Put c,, = a,, — b,, and

(21) f(x) = fiocnx" (x E s).

Then f(x) = 0 on E.
Let A be the set of all limit points of E in S, and let B consist of all

other points of S. It is clear from the definition of “limit point” that B
is open. Suppose we can prove that A is open. Then A and B are disjoint
open sets. Hence they are separated (Definition 2.45). Since S = A u B,
and S is connected, one of A and B must be empty. By hypothesis, A is
not empty. Hence B is empty, and A = S. Since f is continuous in S,
A c E. Thus E = S, and (7) shows that c,, = 0 for n = 0, 1, 2, ..., which
is the desired conclusion.
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Thus we have to prove that A is open. If xi, e A, Theorem 8.4 shows
that

<22) r(x) = §0d.(x - x0)" <|x - xo| < R - |x..|>.
We claim that d,, = 0 for all n. Otherwise, let k be the smallest non-

negative integer such that di, aé 0. Then

(23) f(x)=(x--xo)"e(x) (lx-xol<R- lxol).
where

<24) g(x) = io d.....<x - xi)"-
Since g is continuous at xi, and

g(xO) = dk ¢ 09

there exists a 6 > 0 such that g(x) aé 0 if Ix —- xi,I < 6. It follows from
(23) that f(x) qé 0 if 0 < Ix -— xi,I < 6. But this contradicts the fact that
xi, is a limit point of E.

Thus d,, = 0 for all n, so thatf(x) = 0 for all x for which (22) holds,
i.e., in a neighborhood of xi,. This shows that A is open, and completes
the proof.

THE EXPONENTIAL AND LOGARITHMIC FUNCTIONS

We define

<25) Be) =
The ratio test shows that this series converges for every complex z. Applying
Theorem 3.50 on multiplication of absolutely convergent series, we obtain

O0 Zn O0 Wm oi, ii zkwn—k

E(z)E(w) 1;, iii mg, Z7 " .20 igi, kl(l1 - /C)!
._Oo1n n kn-k__oo(z+W)n
— "Z0 1,20 Z W _ "go I1! ’

which gives us the important addition formula

(26) E(z + w) = E(z)E(w) (z, w complex).

One consequence is that

(27) E(z)E(-2) = E(z — z) = E(0) = l (z complex).
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This shows that E(z) at 0 for all z. By (25), E(x) > 0 if x > 0; hence (27) shows
that E(x) > 0 for all real x. By (25), E(x) —> + oo as x —> + oo; hence (27) shows
that E(x) —> O as x —> - oo along the real axis. By (25), 0 < x < y implies that
E(x) < E(y); by (27), it follows that E(—y) < E(—x); hence E is strictly in-
creasing on the whole real axis.

The addition formula also shows that

(28) lim H” h) "~ E(z) E(z) lim -_-E0’)' 1 = 13(2);
n o /I ti o /1

the last equality follows directly from (25).
Iteration of (26) gives

(29) E(z, + " ' + z,,) = E(zi) - - ' E(z,,).

Let us take zi = = 2,, = 1. Since E(l) = e, where e is the number defined
in Definition 3.30, we obtain

(30) E(n) = e" (n = 1, 2, 3, ...).

Ifp = n/m, where n, m are positive integers, then

(31) [E(p)l'" = E(mp) = E(n) = e".
so that

(32) E(p) = e" (p > O, p rational).

It follows from (27) that E( —p) = e"" if p is positive and rational. Thus (32)
holds for all rational p.

In Exercise 6, Chap. 1, we suggested the definition

(33) xy = sup xl’,

where the sup is taken over all rational p such that p < y, for any real y, and
x > 1. If we thus define, for any real x,

(34) e" = sup e" (p < x, p rational),
the continuity and monotonicity properties of E, together with (32), show that
(35) E(x) = ex
for all real x. Equation (35) explains why E is called the exponential function.

The notation exp (x) is often used in place of ex, expecially when x is a
complicated expression.

Actually one may very well use (35) instead of (34) as the definition of ex;
(35) is a much more convenient starting point for the investigation of the
Properties of ex. We shall see presently that (33) may also be replaced by a
more convenient definition [see (43)].
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We now revert to the customary notation, ex, in place of E(x), and sum-
marize what we have proved so far.

8.6 Theorem Let ex be defined on R1 by (35) and (25). Then
(a) ex is continuous and dijferentiable for all x;
(5) (@’°)' = 6”‘;
(c) ex is a strictly increasing function of x, and ex > 0;
(d) ex” = e’°e”;
(e) e"—>+ooasx—>+oo,e"—->0asx—>—oo;
(f) 1im,i_,+ i,i,x"e"" = 0, for every n.

Proof We have already proved (a) to (e); (25) shows that
xn+1

e:>m+1y
for x > 0, so that

1!
x"€"x<(-—---—n+)9

x

and (f) follows. Part (f) shows that e" tends to + oo “faster” than any
power of x, as x --> +00.

Since E is strictly increasing and differentiable on R1, it has an inverse
function L which is also strictly increasing and differentiable and whose domain
is E(R1), that is, the set of all positive numbers. L is defined by

(36) E(L(y)) = y (y > 0).
or, equivalently, by

(37) L(E(x)) = x (x real).

Differentiating (37), we get (compare Theorem 5.5)

L’(E(x)) - E(x) = 1.

Writing y = E(x), this gives us

1
(33) I/(J/) =; (y > 0)-

Taking x = O in (37), we see that L(l) = 0. Hence (38) implies

1’ dx<39) 1>o>= I1 ;-
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Quite frequently, (39) is taken as the starting point of the theory of the logarithm
and the exponential function. Writing u = E(x), v = E(y), (26) gives

L(uv) = I-(E(X) ' E(y)) = I-(E(X + y)) = X + y.
so that

(40) L(uv) = L(u) + L(v) (u > 0, v > 0).
This shows that L has the familiar property which makes logarithms useful

tools for computation. The customary notation for L(x) is of course log x.
As to the behavior of log x as x —> + oo and as x —>0, Theorem 8.6(e)

shows that
logx-->+oo asx—>+oo,
logx—>—oo asx—>0.

It is easily seen that

(41) x" = E(nL(x))

if x > 0 and n is an integer. Similarly, if m is a positive integer, we have

(42) x1/"' = E r(x)).
since each term of (42), when raised to the mth power, yields the corresponding
term of (36). Combining (41) and (42), we obtain

(43) x“ = E(otL(x)) = e°“°""

for any rational oz.
We now define x“, for any real oz and any x > 0, by (43). The continuity

and monotonicity of E and L show that this definition leads to the same result
as the previously suggested one. The facts stated in Exercise 6 of Chap. 1, are
trivial consequences of (43).

If we differentiate (43), we obtain, by Theorem 5.5,

(44) (x°‘)' = E(otL(x)) - -:5 = otx°"1.

Note that we have previously used (44) only for integral values of oz, in which
case (44) follows easily from Theorem 5.3(b). To prove (44) directly from the
definition of the derivative, if x°‘ is defined by (33) and oz is irrational, is quite
troublesome.

The well-known integration formula for x“ follows from (44) if oz aé -1,
and from (38) if at = -1. We wish to demonstrate one more property of log x,
namely,
(45) lim x'°‘ log x = 0

x*+w
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for every or > 0. That is, log x —> + oo “slower” than any positive power of x,
8.8 X —> -1- OO.

Forif0< s<oc, andx> 1, then
I X

- x‘°‘logx=x_°‘I t"dt<x'°‘I t“"dt
1 1

__a x“--l<x“_°‘
ix '————--— —----

s s ’

and (45) follows. We could also have used Theorem 8.6(f) to derive (45).

THE TRIGONOMETRIC FUNCTIONS

Let us define

(46) C(x) = é [E(ix) + E(--ix)], S(x) = [E(ix) — E(-ix)].

We shall show that C(x) and S(x) coincide with the functions cos x and sin x,
whose definition is usually based on geometric considerations. By (25), E(2) =
E(z). Hence (46) shows that C(x) and S(x) are real for real x. Also,

(47) E(ix) = C(x) + iS(x).

Thus C(x) and S(x) are the real and imaginary parts, respectively, of E(ix), if
x is real. By (27),

2 _'—‘ _IE(ix)I = E(ix)E(ix) = E(ix)E(— ix) - 1,

so that

(48) IE(ix)I = 1 (x real).

From (46) we can read off that C(0) = 1, S(0) = 0, and (28) shows that

(49) C’(x) = —S(x), S'(x) = C(x).

We assert that there exist positive numbers x such that C(x) = 0. For
suppose this is not so. Since C(0) = 1, it then follows that C(x) > 0 for all
x > 0, hence S'(x) > 0, by (49), hence S is strictly increasing; and since S(0) = 0,
we have S(x) > 0 if x > 0. Hence if 0 < x < y, we have

(so) S(x)(y - X) < Iysu) di = C(x) - C(y) 3 2.
The last inequality follows from (48) and (47). Since S(x) > 0, (50) cannot be
true for large y, and we have a contradiction.



some SPECIAL runcrrons 183

Let xi, be the smallest positive number such that C(xi,) = 0. This exists,
since the set of zeros of a continuous function is closed, and C(0) aé 0. We
define the number rt by
(51) ii = 2xi,.

Then C(1t/2) = 0, and (48) shows that S(n/2) = il. Since C(x) > 0 in
(0, 1:/2), S is increasing in (0, 1:/2); hence S(r:/2) = 1. Thus

niEli) = '*
and the addition formula gives
(52) E(ni) = -1, E(2ni) = 1;
hence
(53) E(z + 2ni) = E(z) (2 complex).

8.7 Theorem
(a) The function E is periodic, with period 2ni.
(b) The functions C and S are periodic, with period 21:.
(c) If 0 < t < 2n, then E(it) aé 1.
(d) If z is a complex number with IzI = 1, there is a unique t in [0, 21:)

such that E(it) = 2.

Proof By (53), (a) holds; and (b) follows from (a) and (46).
Suppose 0 < t < rt/2 and E(it) = x + iy, with x, y real. Our preceding

work shows that 0 < x < 1, 0 < y < 1. Note that
E(4it) = (x + iy)‘ = x‘ — 6x2y2 + y‘ + 4ixy(x2 — yz).

If E(4it) is real, it follows that x2 - yz = 0; since x2 + yz = 1, by (48),
we have x2 = yz = -}, hence E(4it) = -1. This proves (c).

If0 3 ti < t2 < 21:, then

E(iti)[E(it.)1“ = Etta — it.) # 1.
by (c). This establishes the uniqueness assertion in (d).

To prove the existence assertion in (d), fix 2 so that |zI = 1. Write
z = x + iy, with x and y real. Suppose first that x 2 0 and y 2 0. On
[0, 1:/2], C decreases from 1 to 0. Hence C(t) = x for some te [0, 1:/2].
Since C2 + S2 = 1 and S 2 0 on [0, rt/2], it follows that z = E(it ).

If x < 0 and y 2 0, the preceding conditions are satisfied by —iz.
Hence —iz = E(it) for some te [0, rt/2], and since i = E(ni/2), we obtain
z = E(i(t + 1:/2)). Finally, if y < 0, the preceding two cases show that
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--z = E(it) for some te (0, rt). Hence z = —E(it) = E(i(t + n)).
This proves (d), and hence the theorem.

It follows from (d) and (48) that the curve y defined by
(54) y(t) = E(it) (O 3 t 3 21:)
is a simple closed curve whose range is the unit circle in the plane. Since
y’(t) =iE(it), the length of y is

21:)0 lv'(t)l -it = 21:.
by Theorem 6.27. This is of course the expected result for the circumference of
a circle of radius 1. It shows that rt, defined by (51), has the usual geometric
significance.

In the same way we see that the point y(t) describes a circular arc of length
ti, as t increases from 0 to ti,. Consideration of the triangle whose vertices are

Z1 = 0, Z2 = 'l’(to)i Z3 = C(70)
shows that C(t) and S(t) are indeed identical with cos t and sin t, if the latter
are defined in the usual way as ratios of the sides of a right triangle.

It should be stressed that we derived the basic properties of the trigono-
metric functions from (46) and (25), without any appeal to the geometric notion
of angle. There are other nongeometric approaches to these functions. The
papers by W. F. Eberlein (Amer. Math. Monthly, vol. 74, 1967, pp. 1223-1225)
and by G. B. Robison (Math. Mag., vol. 41, 1968, pp. 66-70) deal with these
topics.

THE ALGEBRAIC COMPLETENESS OF THE COMPLEX FIELD

We are now in a position to give a simple proof of the fact that the complex
field is algebraically complete, that is to say, that every nonconstant polynomial
with complex coefiicients has a complex root.

8.8 Theorem Suppose ai, , . . . , a,, are complex numbers, nz 1, a,, ;é 0,

P(z) = Z ai, 2".
o

Then P(z) = 0 for some complex number z.
Proof Without loss of generality, assume a,, = 1. Put

(55) u = inf IP(z)I (z complex)
If IzI = R, then

(56) |P(z)|zR"[1— 1-.._.|R"1— - |a.|R""1-
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The right side of (56) tends to oo as R -> oo. Hence there exists Ri, such
that IP(z)I > iu if IzI > Ri,. Since IPI is continuous on the closed disc
with center at 0 and radius Ri, , Theorem 4.16 shows that IP(zi,)I = lu for
some zi,.

We claim that it = 0.
If not, put Q(z) = P(z + zi,)/P(zi,). Then Q is a nonconstant poly-

nomial, Q(0) = 1, and |Q(z)| 2 1 for all z. There is a smallest integer k,
1 3 k 3 n, such that

(57) Q(z)=l+b,,z"+ +b,,z", b,,=;é0.
By Theorem 8.7(d) there is a real 9 such that

(58) eikabk = — IbkI'
If r > 0 and r"Ib,,I < 1, (58) implies

I1+ b,,r"e”“’| = 1 — r"|b,iI,
so that

IQ("ew)I-$1“ rk{IbkI "' "Ibk+1I _ " "n_kIbnI)-

For sufficiently small r, the expression in braces is positive; hence
| Q(re“’)| < 1, a contradiction.

Thus ,u = 0, that is, P(zi,) = 0.

Exercise 27 contains a more general result.

FOURIER SERIES

8.9 Definition A trigonometric polynomial is a finite sum of the form

(59) f(x) = ai, + §=;1(a,, cos nx + b,, sin nx) (x real),

where ai, , ... , al,, , bl, . . . , bli are complex numbers. On account of the identities
(46), (59) can also be written in the form

zl.\’.IZ
Q3 re(60) f(x) = "L" (x real),

which is more convenient for most purposes. It is clear that every trigonometric
polynomial is periodic, with period 21:. -

If n is a nonzero integer, e""‘ is the derivative of e""‘/in, which also has
period 21:. Hence

1 n inx ___ 1(61) 5;-i‘I_,," d"‘I0 (1fI‘l=il, 12,...)
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Let us multiply (60) by e’""", where m is an integer; if we integrate the
product, (61) shows that

(62) ¢,,, = ii; If(x)e""”‘ dx
for ImI 3 N. If ImI > N, the integral in (62) is 0.

The following observation can be read off from (60) and (62): The
trigonometric polynomial f, given by (60), is real if and only if c_,, = E. for
n =-- 0, . . . , N.

In agreement with (60), we define a trigonometric series to be a series of
the form

CD

(63) Z c,,e""‘ (x real);

the Nth partial sum of (63) is defined to be the right side of (60).
Iff is an integrable function on [—n, tr], the numbers c,,, defined by (62)

for all integers m are called the Fourier coefiicients offl and the series (63) formed
with these coefficients is called the Fourier series off

The natural question which now arises is whether the Fourier series off
converges to f, or, more generally, whetherf is determined by its Fourier series.
That is to say, if we know the Fourier coefficients of a function, can we find
the function, and if so, how?

The study of such series, and, in particular, the problem of representing a
given function by a trigonometric series, originated in physical problems such
as the theory of oscillations and the theory of heat conduction (Fourier’s
“Théorie analytique de la chaleur” was published in 1822). The many difficult
and delicate problems which arose during this study caused a thorough revision
and reformulation of the whole theory of functions of a real variable. Among
many prominent names, those of Riemann, Cantor, and Lebesgue are intimately
connected with this field, which nowadays, with all its generalizations and rami-
fications, may well be said to occupy a central position in the whole of analysis.

We shall be content to derive some basic theorems which are easily
accessible by the methods developed in the preceding chapters. For more
thorough investigations, the Lebesgue integral is a natural and indispensable
tool.

We shall first study more general systems of functions which share a
property analogous to (61).

8.10 Definition Let {c,b,,} (n = 1, 2, 3, ...) be a sequence of complex functions
on [a, b], such that

<64) I'1/>..(x>?i$> -ix = 0 tn -é my
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Then {¢,,} is said to be an orthogonal system offunctions on [a, b]. If, in addition,

<65) l"|</>.<>->12 -Ix = 1
for all n, {ql),} is said to be orthonormal.

For example, the functions (21r)'*e""‘ form an orthonormal system on
[—n, rt]. So do the real functions

1 cosx sinx cos2x sin2x

~/5’ ./35’,/5’ ,/5 ’ ./5’
If {c/>,,} is orthonormal on [a, b] and if

(66) C" =Ibf(t)mdt (I1 = 1, 2, 3, ...),
we call c,, the nth Fourier coefiicient off relative to {ql),}. We write

<61) f(x) ~ c..</>.<x>
and call this series the Fourier series off (relative to {qb,,}).

Note that the symbol ~ used in (67) implies nothing about the conver-
gence of the series; it merely says that the coefficients are given by (66).

The following theorems show that the partial sums of the Fourier series
off have a certain minimum property. We shall assume here and in the rest of
this chapter that fe Q, although this hypothesis can be weakened.

8.11 Theorem Let {<l>,,} be orthonormal on [a, b]. Let

<68) s..(X) = _>_;1c.¢.<x>
be the nth partial sum of the Fourier series off, and suppose

(69) t..(X) = Z vi. <l>i.(X)-
m = 1

Then
b b<10) [If-s.|*-Ixsf |t—t.|*-ix.

and equality holds if and only if

(71) y,,,=c,,, (m=1,...,n).

That is to say, among all functions t,,, s,, gives the best possible mean
square approximation to f.
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Proof Let I denote the integral over [a, b], Z the sum from 1 to n. Then

pn5bZnm=Zan
by the definition of {cm},

Iltil’ =It..i.. =IZ 1»..¢.. Z Mi = Z lv...|’
since {c/>,,,} is orthonormal, and so

I|f—r.|’=I|f|’—Ift.-jft.+I|r.l’
ahw-Zen—Znn+Znn
=Im’ - Z 1-.11 + >3 |v...—¢...l’.

which is evidently minimized if and only if y,,, = c,,, .
Putting ym = cm in this calculation, we obtain

on _mum%u=imms[umPo.
since llf- t,|* 2 0.

s.12 Theorem If {¢,} is Orl‘/t0!t0rmdl on [a, b], and if

fm~§e¢mfl S
n = 1

then

on lo: 2 s I:lf(x)|’ -1»
In particular,

(74) lim c,, -= 0.

Proof Letting n—>oo in (72), we obtain (73), the so-called “Bessel
inequality.”

8.13 Trigonometric series From now on we shall deal only with the trigono-
metric system. We shall consider functions f that have period 21: and that are
Riemann-integrable on [—rc, rt] (and hence on every bounded interval). The
Fourier series off is then the series (63) whose coeflicients c,, are given by the
integrals (62), and

(75) S~(X) = S~(f; X) =
2M2

1'53 Q1:

3>4
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is the Nth partial sum of the Fourier series off. The inequality (72) now takes
the form

("lo §,;I;1s.<x>|2dx=il|c.1’s§,;j;|f<x>1*dx-
In order to obtain an expression for sl, that is more manageable than (75)

we introduce the Dirichlet kernel

(77) D (x) = i on Si“ (N +9".N ,i= ._N sin (x/2)

The first of these equalities is the definition of DR(x). The second follows if
both sides of the identity

(eix _ :__ el'(N+1)x _ e—iNx

are multiplied by e_i"'2.
By (62) and (75), we have

N 1 1: _ _sN(f; x) = ZN 5;; I_nt<oe-'"' dt e":
=1. I" ii.,§.------».i.

271: -1: —N ,

so that

on SN(f; x) = 51,; I /<l>1>..<x — 0 it = 5‘; f /or - o1>..<o do
The periodicity of all functions involved shows that it is immaterial over which
interval we integrate, as long as its length is 21:. This shows that the two integrals
in (78) are equal.

We shall prove just one theorem about the pointwise convergence of
Fourier series.

8.14 Theorem If, for some x, there are constants 6 > 0 and M < oo such that

(79) lf(X+ t)—f(X)l$Mlt|
for all t e (-5, 5), then
(80) lim S~(f ; X) =f(X)-

N-—>oo

Proof Define

(31) f(X—1‘)-f(X)
g(t) if sin (t/2)
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for 0 < |t| 3 1:, and put g(0) = 0. By the definition (77),
1 1:

5-TEJ‘ D,,(x) dx =1.

Hence (78) shows that

siv(f; x) —-f(x) = §I;‘Iing(t) sin (N + 3: dt

1 " t , 1 " , t= E Ln [g(t) cos 5] S111 Nt dt + 5-7; Ila [g(t) sin 5] cos Nt dt.

By (79) and (81), g(t) cos (t/2) and g(t) sin (t/2) are bounded. The last
two integrals thus tend to 0 as N -> oo, by (74). This proves (80).

Corollary If f(x) = 0 for all x in some segment J, then lim s,,(f ; x) = 0 for
every x e J.

Here is another formulation of this corollary:

Iff(t) = g(t) for all t in some neighborhood of x, then

S~(f; X) -s~(v; X) =->"~(f—e; X) —>0<1-Y N—><><>-
This is usually called the localization theorem. It shows that the behavior

of the sequence {sR(f ; x)}, as far as convergence is concerned, depends only on
the values of f in some (arbitrarily small) neighborhood of x. Two Fourier
series may thus have the same behavior in one interval, but may behave in
entirely different ways in some other interval. We have here a very striking
contrast between Fourier series and power series (Theorem 8.5).

We conclude with two other approximation theorems.

8.15 Theorem Iff is continuous (with period 21:) and if s > 0, then there is a
trigonometric polynomial P such that

lP(X)—f(X)| < 8
for all real x.

Proof If we identify x and x + 21:, we may regard the 2r:-periodic func-
tions on R‘ as functions on the unit circle T, by means of the mapping
x ->ei". The trigonometric polynomials, i.e., the functions of the form
(60), form a self-adjoint algebra M, which separates points on T, and
which vanishes at no point of T. Since T is compact, Theorem 7.33 tells
us that M is dense in ‘6(T). This is exactly what the theorem asserts.

A more precise form of this theorem appears in Exercise 15.
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8.16 Parseval’s theorem Suppose f and g are Riemann-integrable functions
with period 21:, and

<82) r(x) ~ c,,e*"*, g(x) ~ v,.e""‘-
Then

(83) 1359; 53,; I u(x) - s~<f;x>12 dx = 0,
<84) 551; f" f<x>gT55 dx = i cmIn

-1: -oo

1 n 2 _ do 2<85) 5-,;f_n|/<x>| dx-jay-,.| .
Proof Let us use the notation

1 1; 2 1/2<86) uhu, = {5-T; f |h<x>| dx] -
Let s > O be given. Since fE .9? and f(1t) =f(—1c), the construction

described in Exercise 12 of Chap. 6 yields a continuous 21:-periodic func-
tion h with

(87) ||f— /III; < 8-
By Theorem 8.15, there is a trigonometric polynomial P such that

|h(x) — P(x)[ < s for all x. Hence Ilh — PI], < a. If P has degree N0,
Theorem 8.11 shows that

(33) ll/1 — S~(/1)||z S ll/1 - P||2 < 8
for all N 2 N0 . By (72), with h -- f in place off,

(39) ll-Y~(/1) — ~Y~(f)l|2 = l|S~(/1 —f)l|z $ ll/1 —f||2 < 8-
Now the triangle inequality (Exercise ll, Chap. 6), combined with

(87), (88), and (89), shows that

(90) ||f- S~(f)l|2 < 38 (N 2 No)-
This proves (83). Next,

___, N
inx —<91) §,_-;f_:ts~<f>@7dx=_ - we a(x)dx=;v¢..v..,2M2

G3 toaD-5 %—>

Fl

and the Schwarz inequality shows that

<91) ffa— fs~</>a] s f 11- s~</>||g| s {f |f—s~|’ f |gl*}m»
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which tends to 0, as N —> oo, by (83). Comparison of (91) and (92) gives
(84). Finally, (85) is the special case g =fof (84).

A more general version of Theorem 8.16 appears in Chap. 11.

THE GAMMA FUNCTION

This function is closely related to factorials and crops up in many unexpected
places in analysis. Its origin, history, and development are very well described
in an interesting article by P. J. Davis (Amer. Math. Monthly, vol. 66, 1959,
pp. 849-869). Artin’s book (cited in the Bibliography) is another good elemen-
tary introduction.

Our presentation will be very condensed, with only a few comments after
each theorem. This section may thus be regarded as a large exercise, and as an
opportunity to apply some of the material that has been presented so far.

8.17 Definition For 0 < x < oo,

(93) rtx)==JL ¢**1e"*au.
The integral converges for these x. (When x < 1, both 0 and oo have to

be looked at.)

8.18 Theorem
(a) The functional equation

F(x+1)=xF(x)

holdsif0<x<oo.
(b) F(n+l)=n!forn=l,2,3,...
(c) log F is convex on (0, oo).

Proof An integration by parts proves (a). Since F(1) = 1, (a) implifis
(b), by induction. If 1 < p < oo and (l/p) + (1/q) = 1, apply H6lder’S
inequality (Exercise 10, Chap. 6) to (93), and obtain

r@+Q$r@Wnw@
P q

This is equivalent to (c).

It is a rather surprising fact, discovered by Bohr and Mollerup, that
these three properties characterize F completely.
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8.19 Theorem Iff is a positive function on (0, oo) such that
(4) f(x + 1) == Xf(X),
(b) f(1) = 1,
(c) logf is convex,

then f(x) = F(x).

Proof Since F satisfies (a), (b), and (c), it is enough to prove thatf(x) is
uniquely determined by (a), (b), (c), for all x > O. By (a), it is enough to
do this for x e (0, 1).

Put go = logf. Then

(94) <p(x + 1) = go(x) + log x (0 < x < oo),

<p(l) = 0, and rp is convex. Suppose O < x < 1, and n is a positive integer.
By (94), go(n + 1) = log(n!). Consider the difference quotients of (p on the
intervals [n, n + 1], [n + 1, n + 1 + x], [n + 1, n + 2]. Since (p is convex

1 -- 1logn$.(p(n+ +32 (p(n+ )slog(n+1).

Repeated application of (94) gives

<P(" +1+x)=<P(x)+10g[X(X+1)"'(x+")]-
Thus

Osgo(x)--log [x(x+1;1WJ_c(x+n):'| sxlog (l+%)-

The last expression tends to 0 as n -> oo. Hence qo(x) is determined, and
the proof is complete.

As a by-product we obtain the relation

_ n!n"
(95) r(x) = x(x + 1) - - -(x9+ n)

at least when 0 < x < 1; from this one can deduce that (95) holds for all x > 0,
since F(x + 1) = xF(x).

8.20 Theorem If x > 0 and y > 0, then

(96) t""‘(1-r)Y“dr =

This integral is the so-called beta function B(x, y).
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Proof Note that B(1, y) = l/y, that log B(x, y) is a convex function of
x, for each fixed y, by H6lder’s inequality, as in Theorem 8.18, and that

97 B 1, = -35- B , .( ) (x+ y) x+y (xy)
To prove (97), perform an integration by parts on

1 t I
B 1, = ——-- l-- "+”'1d.<x+ 1») [0 (1__t)( 0 r

These three properties of B(x, y) show, for each y, that Theorem 8.19
applies to the function fdefined by

/(>0 = 5‘-1’§(%’-1) Bo. 1»).
Hence f(x) = F(x).

8.21 Some consequences The substitution t = sin’ 6 turns (96) into

F(x)F(J’)1:/2 . x_ y_ _(9s) 2 fo (S111 0)= 1(cos0)2 Ide--RFF-Y)-.
The special case x = y = it gives

<99) re) = \/5
The substitution t = s2 turns (93) into

(100) F(x) = 2 [0 1"“ rs’ ds (0 < x < 00).
The special case x = -1; gives

(101) (O0 e-=’ ds = (/E.

By (99), the identity

2*“ 1(102) F(x) -= -r PG)1(1)\/,, 2 2
follows directly from Theorem 8.19.

8.22 Stirling’s formula This provides a simple approximate expression for
T‘(x + 1) when x is large (hence for n! when n is large). The formula is

(103) lim ~ Fix +l_)_ 1.
x-w (x/e)" \/21:x
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Here is a proof. Put t = x(l + u) in (93). This gives

(104) F(x + 1) = xx“ e_" J00 [(1 + u)e"“]" du.
-1

Determine h(u) so that h(0) = 1 and

- u’(105) (1 + u)e “ = exp [- 3- h(u)]

if--1 <u< oo, ua~’=0. Then

2
(106) h(u) = 2-I-5 [u — log (1 + u)].

It follows that h is continuous, and that h(u) decreases monotonically from oo
to 0 as u increases from -1 to oo.

The substitution u = s \/2/x turns (104) into

(107) I'(x+ 1) =x"e“"./2x f_ 1//,,(s)ds

where

___ exp[—s2h(s (-—, /x/2 < s < oo),
i//x(s) '_ (S s

Note the following facts about 1//,,(s):

(a) For every s, 1//x(s) —> e ‘Z as x —> oo.
(b) The convergence in (a) is uniform on [--A, A], for every A < oo.
(c) When s < 0, then 0 < 1//,,(s) < e"2.
(d) When s > 0 and x > 1, then 0 < 1//,,(s) < 1//1(s).
<0 is 1/1.0) ds < co.
The convergence theorem stated in Exercise 12 of Chap. 7 can therefore

be applied to the integral (107), and shows that this integral converges to (/1:
as x -> oo, by (101). This proves (103).

A more detailed version of this proof may be found in R. C. Buck’s
“Advanced Calculus,” pp. 2l6—2l8. For two other, entirely diflerent, proofs,
See W. Feller’s article in Amer. Math. Monthly, vol. 74, 1967, pp. 1223-1225
(with a correction in vol. 75, 1968, p. 518) and pp. 20-24 of Artin’s book.

Exercise 20 gives a simpler proof of a less precise result.
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EXERCISES
1. Define

Prove that f has derivatives of all orders at x = 0, and that f""(0) = 0 for
n=1,2,3,....

2. Let a.) be the number in the ith row and jth column of the array

so that

Prove that

3. Prove that

if ai, 2 0 for all i and j (the case + oo = + oo may occur)

= @"’“’ (#0).f(x) {0 (x=0).

M-‘IQ-'

"M“M .9\-. “IQ
5-.

NP

QQQII

__‘

up1-: H-"'-‘Q Ml»-*-‘QC 1-*OOQ
I U U O I I I I O0

0 _ (i <1’),
aU={—l

21"‘ (i >j).

1*?» M M .9

z;%=;¥m1
4. Prove the following limit relations:

b“—1(a) lim ----— = log b (b > 0).
x->0 X

(b) lim log (1 + x) =
x->0 X

(c) ling (1 + x)"“ = e.

(d) 1113 (1 + = e".

ll

II

CI

II

=0



10.

5. Find the following limits

_.. Ifx(a) lim _-----e(1 + x) .
x->0 X

' n 1r|___

(b) log n [n I 11'

. tan x — x
(C) .111-I3 x(1 — cos x)'

(d) limx—sinx.
x-v0ta.I]X-X

6. Suppose f(x)f(y) =f(x + y) for all real x and y.
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(a) Assuming that f is differentiable and not zero, prove that

f(X) = 8°“

where c is a constant.
(b) Prove the same thing, assuming only that f is continuous.

7. If0<x <;, prove that

2 sinx—<———<l.
7T X

8. For n = 0, 1, 2, ..., and x real, prove that

[sin nx| £n|sinx|

Note that this inequality may be false for other values of n. For instance,

|Sin §1'r| > ilsin 11"

9. (a) Put s~ = 1 + (5) + +(1/N). Prove that

lim (sN —— log N)

exists. (The limit, often denoted by y, is called Euler’s constant. Its numerical
value is 0.5772. . . . It is not known whether y is rational or not.)
(b) Roughly how large must m be so that N = 10"’ satisfies sN > 100?
Prove that Z 1/p diverges; the sum extends over all primes.

(This shows that the primes form a fairly substantial subset of the positive
integers.)
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Hint: Given N, let p1, .. ., pt be those primes that divide at least one in-
teger $N. Then

?_'.M= 31-1
I/\

31*ZIP

1 1_ (,+.._+_z+...)
P1 P1

-11 = <1--L)P1
" 2

Sexpz —.
J-1P1

The last inequality holds because

(1 — x)“ 3 e”‘

if 0 é x £ 1.
(There are many proofs of this result. See, for instance, the article by

I. Niven in Amer. Math. Monthly, vol. 78, 1971, pp. 272-273, and the one by
R. Bellman in Amer. Math. Monthly, vol. 50, 1943, pp. 318-319.)

ll. Supposefe 92 on [0, A] for all A < oo, andf(x) —>1 as x —> +00. Prove that

limtf e""f(x)dx=l (¢>0).
t->0 0

12. Suppose 0 <3 <1r,f(x) =1 if |x| g3,f(x) == 0 if8 < |x| £1-r, andf(x+ 21r)=
f(x) for all x.
(a) Compute the Fourier coefficients of f.
(b) Conclude that

§si“(’18) "T8 (0<3<1r).
null It 2

(c) Deduce from Parseval’s theorem that

°° sin’ (n3) 1'r — 8
1:21 if ‘nib . 2 '

(d) Let 8 —> 0 and prove that

°° sin x 2 11'
Jlo (——-—-x) dx —-

(e) Put 8 = 11-/2 in (c). What do you get?
13. Put f(x) = x if 0 g x < 2-n, and apply Parseval’s theorem to conclude that

EMS
S-1 =1N

F='6T'



14.

15.

16.
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Iff(x) = (rt —- |xI)’ on [—'rr, 11'], prove that

11" °° 4fm——+Z-— _" COS "X
3 null It N

and deduce that

3

s
F =N,_. as=1,, 3

s
Fl =¥,_.

=1§¥"=—’ Z"-x~
(A recent article by E. L. Stark contains many references to series of the form

Z n“', where s is a positive integer. See Math. Mag., vol. 47, 1974, pp. 197—202.)
With D, as defined in (77), put

KN(x) = 171;; 12.00
Prove that

1 1 — N + 1

and that
(a) KN 2 09

(b) 217-T K~(x)dx= 1,
1 2 .

(c) K~(x)gN+1'~1~~__c0s8 1f 0<8g |x| gm

If sN = s~(f ; x) is the Nth partial sum of the Fourier series of f, consider
the arithmetic means

5'0-l'5'1+""l'5'~
UN < ".

Prove that
1 1!

0.10"; >0 = -2; I f(x - onto dt.
and hence prove Fejér’s theorem:

Iff is continuous, with period 2-rr, then o N(f ; x) -—>f(x) uniformly on [—rr, or].
Hint: Use properties (a), (b), (c) to proceed as in Theorem 7.26.

Prove a pointwise version of Fejér’s theorem:
Iff E 91’ and f(x +), f(x —) exist for some x, then

lim v~(f' x) - 1[f(x +) +f(x--)]-, _..
N->00
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17

18.

19.

20C

Assume f is bounded and monotonic on [—'rr, 11'), with Fourier coefficients c.., as
given by (62).
(a) Use Exercise 17 of Chap. 6 to prove that {nc,,} is a bounded sequence.
(b) Combine (a) with Exercise 16 and with Exercise 14(e) of Chap. 3, to conclude
that

lim s~(f; X) = %[f(x+) +f(x—)]
N-rm

for every x.
(c) Assume only that f e .99 on [—1'r, rt] and that f is monotonic in some segment
(at, B)<= [—-'rr, 11']. Prove that the conclusion of (b) holds for every x e (at, ,8).

(This is an application of the localization theorem.)
Define

f(x) = xi —- sin‘ x tan x
g(x) = 2x’ — sin’ x — x tan x.

Find out, for each of these two functions, whether it is positive or negative for all
x e (0, 11'/2), or whether it changes sign. Prove your answer.
Suppose f is a continuous function on R‘, f(x + 211') = f(x), and at/1r is irrational.
Prove that

“lim f(x + no = §;f /to <1:
for every x. Hint: Do it first for f(x)= e""‘.
The following simple computation yields a good approximation to Stirling’s
formula.

For m= 1,2, 3, ...,define
f(x)=(m+1—x)logm+(x—m)log(m+1)

ifm$xgm+1, and define

g(x)=§1-—1+logm
if m — 1 g x < m + 5. Draw the graphs off and g. Note that f(x) 1; log x £9(x)
if x 2 1 and that

Jmf(x)dx=log(n!)— §logn> —§+Jmg(x)dx.
Integrate log x over [1, n]. Conclude that

% <log(n!)—-(n+ 1) logn+n <1

for n = 2, 3, 4, (Note: log 1/2'; ~ 0.91s... .) Thus
1

em < —'-3-1--= < e.
('1/@)"\/n
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22.

23.

24.
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Let
1 1!

L, _ 5-1-J_“|D,(t)|dt (n- 1, 2, 3, ...).

Prove that there exists a constant C > 0 such that
L,,>Clogn (n=l,2,3,...),

or, more precisely, that the sequence

‘L, —~ —iz log n}
7T

is bounded.
If at is real and -1 < x < 1, prove Newton’s binomial theorem

(1+ x)“ =1+ ii “(qt ~01). .l*(oi**— n*+1)x".
1- 3

Hint: Denote the right side by f(x). Prove that the series converges. Prove that

(1 + x)f’(x) = “f(x)
and solve this differential equation.

Show also that

if—1<x<1anda>0.
Let y be a continuously differentiable closed curve in the complex plane, with
parameter interval [a, b], and assume that y(t) vi 0 for every t e [a, b]. Define the
index of -y to be

_1 “L112Ind (‘)/)———'2T_”_J; YO) dt.

Prove that Ind (y) is always an integer.
Hint: There exists (P on [a, b] with cp’ = y’/y, <p(a) = 0. Hence y exp(—<p)

is constant. Since y(a) = y(b) it follows that exp <p(b) = exp <p(a) = 1. Note that
<p(b) = 2111' Ind (y).

Compute Ind (y) when 7/(t) = e"", a = 0, b = 2'rr.
Explain why Ind (y) is often called the winding number of y around 0.

Let y be as in Exercise 23, and assume in addition that the range of y does not
intersect the negative real axis. Prove that Ind ()1) = 0. Hint: For 0 gc< oo,
Ind (y+ c) is a continuous integer-valued function of c. Also, Ind (7/+ c)—>0
as C —> 00.
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25.

26.

27C

28.

Suppose y, and y, are curves as in Exercise 23, and
I)/1(¢)— 1/2(t)l < I)/.(r)| ta s 1 sh)-

Prove that Ind (yl) = Ind (Y2).
Hint: Put y = y;/7/1. Then | 1 — y] < 1, hence Ind (y) = 0, by Exercise 24.

Also,
L’ .3 1;’ ... L’
1/ 1/2 1/1'

Let 'y be a closed curve in the complex plane (not necessarily differentiable) with
parameter interval [0, 21r], such that y(t) ?’= 0 for every t e [0, 211'].

Choose 8 > O so that |y(t)| >8 for all t e [0, 21r]. If P1 and P, are trigo-
nometric polynomials such that lP,(t) — y(t)l < 8/4 for all t e [0, 211-] (their exis-
tence is assured by Theorem 8.15), prove that

Ind (P1) = Ind (P2)
by applying Exercise 25 .

Define this common value to be Ind (y).
Prove that the statements of Exercises 24 and 25 hold without any differenti-

ability assumption.
Let f be a continuous complex function defined in the complex plane. Suppose
there is a positive integer n and a complex number c vi 0 such that

z"{f(z)= c.

Prove that f(z) = 0 for at least one complex number z.
Note that this is a generalization of Theorem 8.8.
Hint: Assumef(2) vi 0 for all z, define

Y-(I) =f(re“)
for 0 g r < oo, 0 g t g 21:, and prove the following statements about the curves
'y,:
(a) Ind (yo) = 0.
(b) Ind (y,) = n for all sufliciently large r.
(c) Ind (y,) is a continuous function of r, on [0, oo).
[In (b) and (c), use the last part of Exercise 26.]

Show that (a), (b), and (c) are contradictory, since n > 0.
Let D be the closed unit disc in the complex plane. (Thus z e D if and only if
|z| $1.) Let g be a continuous mapping of D into the unit circle T. (Thus,
|g(z)| = 1 for every z e D.)

Prove that g(x) = -—z for at least one z e T.
Hint: For 0£r§1,0£t£2¢r, put

1/-(1) = a(re“).
and put 1/:(t) = e"'y1(t). If g(z) qé —~z for every z e T, then 1/:(t) 5*’-= -1 for every
t e [0, 21r]. Hence Ind (th) = 0, by Exercises 24 and 26. It follows that Ind (7/1) =1-
But Ind (yo) = 0. Derive a contradiction, as in Exercise 27.
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Prove that every continuous mapping fof D into D has a fixed point in D.
(This is the 2-dimensional case of Brouwer’s fixed-point theorem.)
Hint: Assume f(z) ¢ z for every z e D. Associate to each z e D the point

g(z) e T which lies on the ray that starts at f(z) and passes through z. Then g
maps D into T, g(z) = z if z e T, and g is continuous, because

9(1) = Z — ~\"(Z)[f(Z) -- Z].
where s(z) is the unique nonnegative root of a certain quadratic equation whose
coefiicients are continuous functions off and z. Apply Exercise 28.
Use Stirling’s formula to prove that

. I‘(x + c) _
x°I‘(x) _ 1

for every real constant c.
In the proof of Theorem 7.26 it was shown that

I1 (1-—x2)"dx 2%:
-1 3n

for n = 1, 2, 3, . Use Theorem 8.20 and Exercise 30 to show the more precise
result

lim \/E fl (1 -- xi)" dx = \/Z.



9
FUNCTIONS OF SEVERAL VARIABLES

LINEAR TRANSFORMATIONS

We begin this chapter with a discussion of sets of vectors in euclidean n-space R".
The algebraic facts presented here extend without change to finite-dimensional
vector spaces over any field of scalars. However, for our purposes it is quite
sufficient to stay within the familiar framework provided by the euclidean spaces.

9.1 Definitions

(a) A nonempty set X c R" is a vector space if X + y e X and cx e X
for all x e X, y e X, and for all scalars c.
(b) If xl, . . . , x,, e R“ and c1, . . ., ck are scalars, the vector

C1X1 + "' + Ckxk

is called a linear combination of xl, ..., xk. If S c R" and if E is the set
of all linear combinations of elements of S, we say that S spans E, or that
E is the span of S.

Observe that every span is a vector space.
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(c) A set consisting of vectors xl, ..., xk (we shall use the notation
{xl, . . . , x,,} for such a set) is said to be independent if the relation
clxl + + c,,x,, = 0implies that c, = ~ -- = ck = 0. Otherwise {xl, . . . , xk}
is said to be dependent.

Observe that no independent set contains the null vector.
(d) If a vector space X contains an independent set of r vectors but con-
tains no independent set of r + 1 vectors, we say that X has dimension r,
and write: dim X = r.

The set consisting of 0 alone is a vector space; its dimension is 0.
(e) An independent subset of a vector space X which spans X is called
a basis of X.

Observe that if B = {x,, ..., x,.} is a basis of X, then every x e X
has a unique representation of the form x = Ec,-x,. Such a representation
exists since B spans X, and it is unique since B is independent. The
numbers c1, ..., c,. are called the coordinates of x with respect to the
basis B.

The most familiar example of a basis is the set {e,, ..., en}, where
e, is the vector in R" whosejth coordinate is 1 and whose other coordinates
are all 0. If x e R", x = (xl, ..., x,,), then x = Ex,-e,. We shall call

{e 1, . . ., en}
the standard basis of R”.

9 2 Theorem Let r be a positive integer. If a vector space X is spanned by a
set of r vectors, then dim X 5 r.

Proof If this is false, there is a vector space X which contains an inde-
pendent set Q = (yl, ..., y,.+ 1} and which is spanned by a set S0 consisting
of r vectors.

Suppose 0 5 i < r, and suppose a set S, has been constructed which
spans X and which consists of all y1- with l 5 j 5 i plus a certain collection
of r —~ i members of SO , say xl, ..., x,_ ,. (In other words, S, is obtained
from S0 by replacing i of its elements by members of Q, without altering
the span.) Since S, spans X, y,+, is in the span of S,; hence there are
scalars al, ..., a,+,, bl, ..., b,._,, with a,+, = 1, such that

i+ 1 r-i
Zmh+Zqm=0
j=1 k=1

If all b,,’s were 0, the independence of Q would force all a,’s to be 0, a
contradiction. It follows that some x,, es S, is a linear combination of the
other members of T, = S, U {y,+ 1}. Remove this x,, from T, and call the
remaining set S,+ 1. Then S,+, spans the same set as T,, namely X, so
that SH, has the properties postulated for S, with i+ 1 in place of i.
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Starting with S0, we thus construct sets S,,...,S,. The last of
these consists of yl, . . . , y,, and our construction shows that it spans X.
But Q is independent; hence y,+, is not in the span of S,.. This contra-
diction establishes the theorem.

Corollary dim R" = n.

Proof Since {e,, ..., en} spans R", the theorem shows that dim R" 5 n.
Since {e,, ..., e,,} is independent, dim R" 2 n.

9.3 Theorem Suppose X is a vector space, and dim X = n.

(a) A set E of n vectors in X spans X if and only if E is independent.
(b) X has a basis, and every basis consists of n vectors.
(c) If 1 5 r 5 n and (yl, ..., y,} is an independent set in X, then X has a

basis containing (yl, ..., y,}.

Proof Suppose E = {xl, ..., x,,}. Since dim X = n, the set {xl, . . ., x,,, y}
is dependent, for every y e X. If E is independent, it follows that y is in
the span of E ; hence E spans X. Conversely, if E is dependent, one of its
members can be removed without changing the span of E. Hence E
cannot span X, by Theorem 9.2. This proves (a).

Since dim X = n, X contains an independent set of n vectors, and
(a) shows that every such set is a basis of X; (b) now follows from 9.l(d)
and 9.2.

To prove (c), let {xl, ..., x,,} be a basis of X. The set

S={y11"'ryr1x1v"'>Xn}

spans X and is dependent, since it contains more than n vectors. The
argument used in the proof of Theorem 9.2 shows that one of the x,’s is
a linear combination of the other members of S. If we remove this x, from
S, the remaining set still spans X. This process can be repeated r times
and leads to a basis of X which contains {y,, , y,}, by (a).

9.4 Definitions A mapping A of a vector space X into a vector space Y is said
to be a linear transformation if

A(x, + X2) = Ax, + Axz, A(cx) = cAx

for all x, x1, x2 e X and all scalars c. Note that one often writes Ax instead
of A(x) if A is linear.

Observe that A0 = 0 if A is linear. Observe also that a linear transforma-
tion A of X into Y is completely determined by its action on any basis: lf
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{xl, ..., x,,} is a basis of X, then every x e X has a unique representation of the
form

ll

x=::1c,x,,
F0

and the linearity of A allows us to compute Ax from the vectors Ax,, ..., Ax,
and the coordinates cl, ..., c,, by the formula

ll

AX=ZC,AX,.
i=1

Linear transformations of X into X are often called linear operators on X.
If A is a linear operator on X which (i) is one-to-one and (ii) maps X onto
X, we say that A is invertible. In this case we can define an operator A" on X
by requiring that A"1(Ax) = x for all x e X. It is trivial to verify that we then
also have A(A"x) = x, for all x e X, and that A-1 is linear.

An important fact about linear operators on finite-dimensional vector
spaces is that each of the above conditions (i) and (ii) implies the other:

9.5 Theorem A linear operator A on a finite-dimensional vector space X is
one-to-one ifand only if the range of A is all of X.

Proof Let {xl, ..., x,,} be a basis of X. The linearity of A shows that
its range 9t‘(A) is the span of the set Q = {Ax1, ..., Ax,,}. We therefore
infer from Theorem 9.3(a) that 9i(A) = X if and only if Q is independent.
We have to prove that this happens if and only if A is one-to-one.

Suppose A is one-to-one and )Ic,Ax, = 0. Then A(Ec,x,) = 0, hence
Zc,x, = 0, hence c, = - -- = c,, = 0, and we conclude that Q is independent.

Conversely, suppose Q is independent and A()Ic,x,) = 0. Then
Zc,Ax, =0, hence c, = - '- = c,, =0, and we conclude: Ax = 0 only if
x =0. IfnowAx =Ay,thenA(x- y) =Ax -Ay =0, sothatx -y =0,
and this says that A is one-to-one.

9.6 Definitions
(a) Let L(X, Y) be the set of all linear transformations of the vector space
X into the vector space Y. Instead of L(X, X), we shall simply write L(X).
If A1, A, eL(X, Y) and if cl, c2 are scalars, define c,A, + c2 A2 by

(c,A, + c2 A2)x = c,A1x + c2A2x (x e X).
It is then clear that c,A, + c2 A2 e L(X, Y).
(b) If X, Y, Z are vector spaces, and if A e L(X, Y) and B e L(Y, Z), we
define their product BA to be the composition of A and B:

(BA)x = B(Ax) (x e X).
Then BA e L(X, Z).
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Note that BA need not be the same as AB, even if X = Y = Z.
(c) For A eL(R", R'"), define the norm ]|A|| of A to be the sup of all
numbers |Ax|, where x ranges over all vectors in R" with |x| 5 l.

Observe that the inequality

|/1X|$|lA|l|X|
holds for all x e R". Also, if /1 is such that |Ax| 5 }.]x| for all x e R“,
then ||Al| 5 /1.

9.7 Theorem
(a) If A eL(R", Rm), then ]|A|| < 00 and A is a uniformly continuous

mapping of R" into R"'.
(b) IfA, B e L(R", Rm) and c is a scalar, then

IIA + Blléll/1||+|lB||, llc/Ill = |¢| ||A|l-
With the distance between A and B defined as |\A —- B ll, L(R", R"‘) is a
metric space.

(c) If A e L(R", 12'") and B e L(R'”, R"), then
IIB/1|l5l|B|| HAH-

Proof

(a) Let {e,, ..., en} be the standard basis in R" and suppose x = Zc,e,,
|x| 5 1, so that |c,] 5 1 fori= 1, ...,n. Then

lAX| =|Z,ctA°1|52 icii lA°i| 52 |Aet|
so that

||A|| 5 i [Ae,|< oo.
i=1

Since |Ax —- Ayl 5 llA|| |x — y] if x, y e R", we see that A is uniformly
continuous.
(b) The inequality in (b) follows from

|(A + B)><| = |Ax + BXI s IAXI + IBXI s (IIAII + ||B||) IX!-
The second part of (b) is proved in the same manner. If

A, B, C e L(R", R’”),

we have the triangle inequality

ll/1 — CH = ||(/1 -B) + (B — C)|l 5 ll/1 - Bll + IIB -- €'l|,
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and it is easily verified that HA -- Bl] has the other properties of a metric
(Definition 2.15).
(c) Finally, (c) follows from

|(BA)Xl = |B(AX)l S IIBII |AX| -€ IIBII IIAII lXl-
Since we now have metrics in the spaces L(R", Rm), the concepts of open

set, continuity, etc., make sense for these spaces. Our next theorem utilizes
these concepts.

9.8 Theorem Let Q be the set of all invertible linear operators on R“.

(a) IfA e Q, B e L(R"), and

||B- All ' ll/I'll! <1,
then B e Q.

(b) Q is an open subset of L(R“), and the mapping A —> A"1 is continuous
on Q.
(This mapping is also obviously a 1 -1 mapping of Q onto Q,

which is its own inverse.)

Proof
(a) Put l|A'1|\ =-=1/oz, put ||B —- All ==/3. Then /3 < oz. For every x e R",

0c|x| =oc|A_1Ax| 5 0tI|A_1|| ' |Ax]

= lAXl é |(/1 -B)X| + IBXI S/ilxl + IBXI,
so that

(1) (0<—l3)|X| 3 lBXl (XER")-
Since or - B > 0, (1) shows that Bx at 0 ifx aé 0. Hence Bis l -1.

By Theorem 9.5, Be Q. This holds for all B with ||B -- All < oz. Thus
we have (a) and the fact that Q is open.
(b) Next, replace x by B'1y in (1). The resulting inequality

(2) (O1-fi)|B"‘yl 5 lBB"‘yl = Iyl (y@R")
shows that |lB"1ll 5 (oz —- B)”. The identity

B"1— A"1 = B'1(A —- B)A"1,

combined with Theorem 9.7(c), implies therefore that

— -1 -1 -- B1B 1-A |1suB 111/1-B1 11A ‘11s;(;-,-3-,5»
This establishes the continuity assertion made in (b), since [3 -+ 0 as B -> A.
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9.9 Matrices Suppose {xl, ..., x,,} and {y,, ..., y,,,} are bases of vector spaces
X and Y, respectively. Then every A eL(X, Y) determines a set of numbers
a,, such that

AX, =iz Guy, 5 It).
= 1

It is convenient to visualize these numbers in a rectangular array of m rows
and n columns, called an m by n matrix:

an "12 a1»
a a one a

= 21 22 2n

am 1 am2 amn

Observe that the coordinates a,, of the vector Ax, (with respect to the basis
{y,, ..., y,,,}) appear in the jth column of [A]. The vectors Ax, are therefore
sometimes called the column vectors of [A]. With this terminology, the range
ofA is spanned by the column vectors of [A].

If x = Zc, x, , the linearity of A, combined with (3), shows that

(4) Ax =21 (glow c_,) y, .

Thus the coordinates of Ax are )I,a,,c,. Note that in (3) the summation
ranges over the first subscript of a,, , but that we sum over the second subscript
when computing coordinates.

Suppose next that an m by n matrix is given, with real entries a,,. If A is
then defined by (4), it is clear that A e L(X, Y) and that [A] is the given matrix.
Thus there is a natural 1-1 correspondence between L(X, Y) and the set of all
real m by n matrices. We emphasize, though, that [A] depends not only on A
but also on the choice of bases in X and Y. The same A may give rise to many
different matrices if we change bases, and vice versa. We shall not pursue this
observation any further, since we shall usually work with fixed bases. (Some
remarks on this may be found in Sec. 9.37.)

If Z is a third vector space, with basis {z,, ..., z,,}, if A is given by (3),
and if

BY1’-';bk1Z1~ (BA)x; ='-';,¢'1=jz1=,

then A eL(X, Y), B eL(Y, Z), BA eL(X, Z), and since

B(Ax)) = B; a1jY1= 2;, 9:131’:

= Z at; Z, bulk =; bkiatj) Zr t
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the independence of {z1, . . . , zp} implies that

Ckj=Zb;,;aij
1

This shows how to compute the p by n matrix [BA] from [B] and [A]. If we
define the product [B][A] to be [BA], then (5) describes the usual rule of matrix
multiplication.

Finally, suppose {xl, . . . , x,,} and {y1, ..., ym} are standard bases of R” and
R"‘, and A is given by (4). The Schwarz inequality shows that

|Ax!’ =2 (Zai,o)’ $2 (Z as~z@§)=zaa|X1=~
I J i J J hf

Thus

<6) ||A|| .<{Zai}"’-
ii

If we apply (6) to B -— A in place of A, where A, B eL(R", Rm), we see
that if the matrix elements ai, are continuous functions of a parameter, then the
same is true of A. More precisely:

If S is a metric space, if an, . . ., am, are real continuous functions on S,
and if, for each p E S, AP is the linear transformation of R" into R"’ whose matrix
has entries ai,-(p), then the mapping p —> AP is a continuous mapping of S into
L(R", R"').

DIFFERENTIATION

9.10 Preliminaries In order to arrive at a definition of the derivative of a
function whose domain is R“ (or an open subset of R"), let us take another look
at the familiar case n = 1, and let us see how to interpret the derivative in that
case in a way which will naturally extend to n > 1.

Iff is a real function with domain (a, b) c R1 and if x e (a, b), then f’(x)
is usually defined to be the real number

(7) lim f(x h) Tflx) ,
n->0 /1

provided, of course, that this limit exists. Thus

(3) f(X + /1) -f(x) =f'(x)/1 + r(h)
where the “remainder” r(h) is small, in the sense that

(9) lim lg’) = 0.
h->0 /1
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Note that (8) expresses the difference f(x + h) -f(x) as the sum of the
linear function that takes h to f'(x)h, plus a small remainder.

We can therefore regard the derivative off at x, not as a real number,
but as the linear operator on R1 that takes h tof’(x)h.

[Observe that every real number oz gives rise to a linear operator on R1;
the operator in question is simply multiplication by oz. Conversely, every linear
function that carries R1 to R1 is multiplication by some real number. It is this
natural 1-1 correspondence between R1 and L(R‘) which motivates the pre-
ceding statements.]

Let us next consider a function f that maps (a, b) c R1 into R"‘. In that
case, f ’(x) was defined to be that vector y e R"‘ (if there is one) for which

. f(x+h)-f(x) _

We can again rewrite this in the form
(ll) f(x+h)—f(x) =hy+r(h),

where r(h)/h -> 0 as h ->0. The main term on the right side of (ll) is again a
linear function of h. Every y e R"' induces a linear transformation of R‘ into
R"', by associating to each h e R‘ the vector hy e R"‘. This identification of R"'
with L(R‘, R"‘) allows us to regard f'(x) as a member of L(R‘, R"').

Thus, iff is a differentiable mapping of (a, b) c: R‘ into R"', and ifx e (a, b),
then f'(x) is the linear transformation of R1 into R"’ that satisfies

(12) lim f(x + h) " f(x) 75'(x)h 0,
h->0 h

or, equivalently,

(13) lim |f(X + /1) -- f(x) -f'(x)/ll 0.
h->0 I/1|

We are now ready for the case n > 1.

9.11 Definition Suppose E is an open set in R", f maps E into R"', and x e E.
If there exists a linear transformation A of R” into R"' such that

r 11 -r -(14) lim] ("FL ) (X), Ah‘ 0,
h->0 ||1|

then we say that f is dzflerentiable at x, and we write

(15) f ’(x) = A.

If f is diiferentiable at every x e E, we say that f is diflerentiable in E.
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It is of course understood in (14) that h e R". If |h| is small enough, then
x + h e E, since E is open. Thus f(x + h) is defined, f(x + h) e R"', and since
A e L(R", R"'), Ah e R"'. Thus

f(x +h)—f(x)--AheR"'.
The norm in the numerator of (14) is that of R"'. In the denominator we have
the R"-norm of h.

There is an obvious uniqueness problem which has to be settled before
we go any further.

9.12 Theorem Suppose E and f are as in Definition 9.11, x e E, and (14) holds
with A == A1 and with A = A1. Then A1 =A1.

Proof If B = A1 —- A1 , the inequality

|Bh| 5 |f(x + h) - f(x) - A1h| + [f(x + h) - f(x) -A1h[
shows that [Bh| / | h| -> 0 as h -> 0. For fixed h aé 0, it follows that

I301!)16 --- .( ) ith‘ ——>O as t——>0

The linearity of B shows that the left side of (16) is independent of t.
Thus Bh = 0 for every h e R". Hence B = 0.

9.13 Remarks
(a) The relation (14) can be rewritten in the form

(l7) f(x +h) -f(x) =f’(x)h+r(h)

where the remainder r(h) satisfies

(18) lim ii‘-‘ll = 0.
h—>0 lhl

We may interpret (17), as in Sec. 9.10, by saying that for fixed x and small
h, the left side of (17) is approximately equal to f ’(x)h, that is, to the value
of a linear transformation applied to h.
(b) Suppose f and E are as in Definition 9.11, and f is differentiable in E.
For every x e E, f ’(x) is then a function, namely, a linear transformation
of R” into R'". But f’ is also a function: f ' maps E into L(R", R“).
(c) A glance at (17) shows that f is continuous at any point at which f is
diiferentiable.
(cl) The derivative defined by (14) or (17) is often called the diflerential
of f at x, or the total derivative of f at x, to distinguish it from the partial
derivatives that will occur later.
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9.14 Example We have defined derivatives of functions carrying R” to R"‘ to
be linear transformations of R” into R"’. What is the derivative of such a linear
transformation? The answer is very simple.

IfA e L(R", R"‘) and if x e R”, then
(19) A’(x) = A.

Note that x appears on the left side of (19), but not on the right. Both
sides of (19) are members of L(R", R"‘), whereas Ax e R"‘.

_ The proof of (19) is a triviality, since
(20) A(x + h) — Ax = Ah,
by the linearity of A. With f(x) = Ax, the numerator in (14) is thus 0 for every
h e R". In (17), r(h) = 0.

We now extend the chain rule (Theorem 5.5) to the present situation.

9.15 Theorem Suppose E is an open set in R", fmaps E into R"', f is diflerentiable
at x1, e E, g maps an open set containing f (E) into R", and g is dtflerentiable at
f(xo). Then the mapping F ofE into R" defined by

F(X) = g(f(X))
is dtflerentiable at x1, , and

(21) F'(Xo) = fi'(f(Xo))f '(Xo)-
On the right side of (21), we have the product of two linear transforma-

tions, as defined in Sec. 9.6.

Proof Put yo = f(x1,), A = f '(x1,), B = g’(y1,), and define
u(h) = f (x1, + h) — f(x1,) — Ah,
v(k) = sow + k) — g(x)) — Bk.

for all h e R" and k e R“ for which f(x1, + h) and g(y0 + k) are defined.
Then

(22) l"(h)| =8(h)lh|. l"(l<)l ='l(k)lk|,
where s(h) --> 0 as h -> 0 and n(k) -> 0 as k -—> 0.

Given h, put k = f(xo + h) — f(x1,). Then

(23) lkl = l/111 + "(l1)|$ [ll/Ill + 8(h)] lhl.
d

an F(Xo + ll) - F(Xo) — B/lh = g(Yo + K) - g(¥o) - B/111
= B(k - Ah) + v(k)
= Bu(h) + v(k).
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Hence (22) and (23) imply. for h aé 0, that

|F(xoT+ h) -llflm) TB/ml 3 ||B||8(l1) + [l|Al| + 1-=(l1)]'l(l<)-
Let h -> 0. Then a(h) -+0. Also, k -> 0, by (23), so that n(k) —>0.

It follows that F’(x1,) = BA, which is what (21) asserts.

9.16 Partial derivatives We again consider a function f that maps an open
set E c R" into R"’. Let {e1, ..., e,,} and {u1, ..., um} be the standard bases of
R" and R"’. The components off are the real functions f1, ..., f,,, defined by

<24) f(x) /ix)“. (X E E).
or, equivalently, by f,(x) = f (x) - u1, 1 3 i 5 m.

For xeE, 1 sism, 1 sjsn, we define

fi(X + 1%) -f¢(X)(25) (0,f1)(x) = lim I e ~ e e
1-+0

provided the limit exists. Writing f1(x1, ..., x,,) in place of f,(x), we see that
D1f1 is the derivative off1 with respect to x1, keeping the other variables fixed.
The notation

<26) ifix,

is therefore often used in place of D1f1, and D1f1 is called a partial derivative.
In many cases where the existence of a derivative is sufiicient when dealing

with functions of one variable, continuity or at least boundedness of the partial
derivatives is needed for functions of several variables. For example, the
functionsfand g described in Exercise 7, Chap. 4, are not continuous, although
their partial derivatives exist at every point ofR2. Even for continuous functions.
the existence of all partial derivatives does not imply differentiability in the sense
of Definition 9.11; see Exercises 6 and 14, and Theorem 9.21.

However, if f is known to be differentiable at a point x, then its partial
derivatives exist at x, and they determine the linear transformation f ’(x)
completely:

9.17 Theorem Suppose f maps an open set E c R" into R"’, and f is differentiable
at a point x e E. Then the partial derivatives (D1f1)(x) exist, and

<21) woe, <1>./u(x)». (1 sis n).
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Here, as in Sec. 9.16, {e1, . . . , e,,} and {u1, ..., um} are the standard bases
of R" and R"'.

Proof Fix j. Since f is differentiable at x,

f(x + tej) — = f'(X)(tej) + I'(t€j)

where lr(te1)|/t -> 0 as t -> 0. The linearity of f ’(x) shows therefore that

(28) 1ingi-(X + mi) _ f(x) ~ f '(x)ej.

If we now represent f in terms of its components, as in (24), then (28)
becomes

_ "' (x+te-)— x) ,
(29) hm Z fl ; fl( u1—f (x)eJ-.

t—>O i=1

It follows that each quotient in this sum has a limit, as t -> 0 (see Theorem
4.10), so that each (D1-f1)(x) exists, and then (27) follows from (29).

Here are some consequences of Theorem 9.17:
Let [f'(x)] be the matrix that represents f ’(x) with respect to our standard

bases, as in Sec. 9.9.

Then f '(x)e1- is the jth column vector of [f ’(x)], and (27) shows therefore
that the number (Djf1)(x) occupies the spot in the ith row and jth column of
[f ’(x)]. Thus

(D1f1)(X) (D..f1)(X)
[f'(x)] = . . . . . . . . . . . . . . . . . . . . . . . . . . .

(D1.fm)(x) ' ' ' (Dnfm)(X)

If h = Eh1 e1- is any vector in R", then (27) implies that

(30) f ’(x)h =5 { i (D1f1)(x)h,-: u1.
z= 1 ;= 1

9.18 Example Let y be a differentiable mapping of the segment (a, b) c R1
into an open set E c R", in other words, y is a diiferentiable curve in E. Let f
be a real-valued differentiable function with domain E. Thusfis a diiferentiable
mapping of E into R1. Define

(31) g(t) =f('t(t)) (0 < I < b)-
The chain rule asserts then that

(32) 9'0) =f'(v(t))r'(t) (0 < 1‘ < b)-
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Since y’(t) e L(R1, R") and f'(y(t)) e L(R", R‘), (32) defines g'(t) as a linear
operator on R1. This agrees with the fact that g maps (a, b) into R‘. However,
g’(t) can also be regarded as a real number. (This was discussed in Sec. 9.10.)
This number can be computed in terms of the partial derivatives off and the
derivatives of the components of y, as we shall now see.

With respect to the standard basis {e1, ..., en} of R", [y’(t)] is the n by 1
matrix (a “column matrix”) which has )1} (t) in the ith row, where y1, ..., y,, are
the components of y. For every x e E, [f’(x)] is the 1 byn matrix (a “row matrix”)
which has (D1f)(x) in the jth column. Hence [g'(t)] is the 1 by 1 matrix whose
only entry is the real number

<33) av) =_g1(D.f)(v(¢))v£ <1).
This is a frequently encountered special case of the chain rule. It can be

rephrased in the following manner.
Associate with each x e E a vector, the so-called “gradient” of f at x,

defined by

<34) (m(x) =_>:1<1>.r><x)e..
Since

cs) 1/<o= in (I)e..
(33) can be written in the form

(36) a'(t) = (Vf)(v(t)) '1/(I).
the scalar product of the vectors (Vf)(y(t)) and y'(t).

Let us now fix an x e E, let u e R" be a unit vector (that is, |u[ = 1), and
specialize 7 so that
(37) y(t)=X+tu (—- oo <t< co).

Then y’(t) = u for every t. Hence (36) shows that

(33) a'(0) = (Vf)(X) '11-
On the other hand, (37) shows that

9(1) - 9(0) =f(X + l‘\1)-f(X)-
Hence (38) gives

(39) ling f(x 7“ “;) ‘f(x) (vf) (X) - u.
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The limit in (39) is usually called the directional derivative off at x, in the
direction of the unit vector u, and may be denoted by (D,f)(x).

Iff and x are fixed, but u varies, then (39) shows that (D1,f)(x) attains its
maximum when u is a positive scalar multiple of (Vf)(x). [The case (Vf)(x) = 0
should be excluded here.]

If u -= 2u1e1, then (39) shows that (D1,f)(x) can be expressed in terms of
the partial derivatives off at x by the formula

<40) <1>../xx) = i<1>.r><x>u..
i= 1

Some of these ideas will play a role in the following theorem.

9.19 Theorem Suppose f maps a convex open set E c R" into R"’, f is difi"eren-
tiable in E, and there is a real number M such that

IIf'(X)|| S M
for every x e E. Then

|f(b) - f(a)] 5 M|b - a|
for alIaeE, beE.

Proof Fix a e E, b e E. Define

v(¢) = (1 — r)=\ + lb
for all te R‘ such that y(t) e E. Since E is convex, y(t) e E if 0 5 t 5 1.
Put

g(t) = f(v(l))-
Then

g'(¢) = f '(*t(t))v'(t) = f '(v(l‘))(b — H).
so that

|g'(¢)l S |If'('r(I))|I lb - =1! $ Mlb - al
for all te [0, 1]. By Theorem 5.19,

12(1) - 2(0)! $ Mlb - al-
But g(0) = f(a) and g(1) = f (b). This completes the proof.

Corollary If, in addition, 1' ’(x) = 0 for all x e E, then f is constant.
Proof To prove this, note that the hypotheses of the theorem hold now
with M = 0.
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9.20 Definition A differentiable mapping f of an open set E c R” into R"' is
said to be continuously differentiable in E if f ' is a continuous mapping of E
into L(R", R“).

More explicitly, it is required that to every x e E and to every s > 0
corresponds a 6 > 0 such that

I|f'(Y) - f'(X)|| < 8
ifyeEand Ix -y|<6.

If this is so, we also say that f is a ‘d’-mapping, or that f e ‘6’(E).

9.21 Theorem Suppose f maps an open set E c R" into R"‘. Then f e ‘6'(E) if
and only ifthepartial derivatives D1f1 exist and are continuous on Efor 1 5 i 5 m,
l5j5m

Proof Assume first that f e ‘€'(E). By (27),

(D;f¢)(X) = (f'(X)91) ' "1

for all i, j, and for all x e E. Hence

(D,~fl)(y) - (D,-fi)(X) = {if ’(y) — f '(X)le;} ' "1
and since |u1| = |ej| = 1, it follows that

l(D;ft)(y) — (Djfi)(x)i S llf '(y) - f '(X)]@;|
S ||f'(y) - f'(X)l|-

Hence D,f1 is continuous.
For the converse, it suflices to consider the case m = 1. (Why?)

Fix x e E and e > 0. Since E is open, there is an open ball S c E, with
center at x and radius r, and the continuity of the functions D1f shows
that r can be chosen so that

<41) |(D,f)(y)—-(1>1f)(X)| <§ o e S. 1 sj s n).
S11pp0S6 h ='-2/116], < I‘, put V0 ==0,3.I1dV;1 =h181 + "' + /1161,

for 1 5k5n. Then

<42) f(x + I1) —f<x> =§1[f<x + v.) -f(x + v,_.>1.
Since |v,,| < r for 1 5 k 5 n and since S is convex, the segments with end
points x +v,_1 and x +v, lie in S. Since v, =v,_1 +h,ej, the mean
value theorem (5.10) shows that the jth summand in (42) is equal to

h1(D1f)(x + v,_1 + Ojhjej)
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for some 01 e (0, 1), and this differs from hj(D1f)(x) by less than |hj|a/n,
using (41). By (42), it follows that

its + h) -r(x) -jg/1,<1>,/><:<> s |/1,16 s Ihlfi
for all h such that |h| < r.

This says that f is differentiable at x and that f’(x) is the linear
function which assigns the number Zh1(DJ-f)(x) to the vector h = Eh1 e1.
The matrix [f'(x)] consists of the row (D1f)(x), ..., (D,,f)(x); and since
D1jfl ..., D,,f are continuous functions on E, the concluding remarks of
Sec. 9.9 show thatfe ‘d’(E).

THE CONTRACTION PRINCIPLE

We now interrupt our discussion of diiferentiation to insert a fixed point
theorem that is valid in arbitrary complete metric spaces. It will be used in the
proof of the inverse function theorem.

9.22 Definition Let X be a metric space, with metric d. If rp maps X into X
and if there is a number c < 1 such that

(43) d(</>(x). <P(y)) 5 c d(x, y)
for all x, y e X, then (p is said to be a contraction of X into X.

9.23 Theorem If X is a complete metric space, and if (p is a contraction of X
into X, then there exists one and only one x e X such that (p(x) = x.

In other words, rp has a unique fixed point. The uniqueness is a triviality,
for if (p(x) = x and (p(y) = y, then (43) gives d(x, y) 5 c d(x, y), which can only
happen when d(x, y) = 0.

The existence of a fixed point of rp is the essential part of the theorem.
The proof actually furnishes a constructive method for locating the fixed point.

Proof Pick x1, e X arbitrarily, and define {xn} recursively, by setting

(44) X..+ 1 = <t>(X..) (H = 0, 1, 2, ---)-
Choose c < 1 so that (43) holds. For n 2 1 we then have

d(X..+ 1, X.) = d(<P(x..), <P(X..- 1)) 5 C d(X.. 1 121- 1)-
Hence induction gives

(45) d(x,“. 1, x,,) 5 c" d(x1, xo) (n = 0, 1, 2, . . .).
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If n < m, it follows that

do... x...) s i d(x..xi-1)
i=n+1

5 (c" + c"+1 + + c"'_‘) d(x1, xo)

5 [(1 "' ¢')_1 d(x1, xo)]c”-
Thus {x,,} is a Cauchy sequence. Since X is complete, lim x,, = x for some
x e X.

Since (p is a contraction, (p is continuous (in fact, uniformly con-
tinuous) on X. Hence

(p(x) = lim <p(x,,) = lim x,,+1 = x.
n—>oo lI“*(I)

THE INVERSE FUNCTION THEOREM

The inverse function theorem states, roughly speaking, that a continuously
differentiable mapping f is invertible in a neighborhood of any point x at which
the linear transformation f ’(x) is invertible:

9.24 Theorem Suppose f is a <6’-mapping of an open set E c R" into R", f '(a)
is invertible for some a e E, and b = f (a). Then

(a) there exist open sets U and V in R" such that a e U, b e V, f is one-to-
one on U, and f(U) = V;

(b) if g is the inverse of f [which exists, by (a)], defined in V by

g(f(X)) = X (X E U).
then g e ‘6’(V).

Writing the equation y = f (x) in component form, we arrive at the follow-
ing interpretation of the conclusion of the theorem: The system of n equations

yi='.f|(-xiv“--sxn)

can be solved for x1, ..., x,, in terms of y1, ..., y,,, if we restrict x and y to small
enough neighborhoods of a and b; the solutions are unique and continuously
differentiable.

Proof
(a) Put f'(a) = A, and choose /l so that

(46) 2/l||A‘1|| = 1.
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(47)

(43)

(49)

(50)

(51

Since f ’ is continuous at a, there is an open ball U c E, with center at a,
such that

||f’(x) — A|| < /l (x 6 U).
We associate to each y e R" a function go, defined by

<P(X) = X + /l'1(y — f(X)) (X E E)-
Note that f(x) = y if and only if x is afixed point of (p.

Since <p'(x) = I — A'1f'(x) = A'1(A — f'(x)), (46) and (47) imply
that

ll<P'(X)|| < i (X 6 U)-
Hence

|¢(X1)'- ‘P(X2)| 5 ‘iixi _ X2| (X1, X2 5 U),
by Theorem 9.19. It follows that (,0 has at most one fixed point in U, so
that f (x) = y for at most one x e U.

Thusfisl -1 in U.

Next, put V =f(U), and pick yo e V. Then yo = f(x0) for some
x1, e U. Let B be an open ball with center at X0 and radius r > 0, so small
that its closure B lies in U. We will show that y e Vwhenever [y — y1,| < Zr.
This proves, of course, that V is open.

Fix y, |y—y1,|<hr. With (p as in (48),

|<p<x.) - xo| = |A"1o - yo)! < ||A*1||»1r -5--
If x e B, it therefore follows from (50) that

|(P(X) — xo| 5 |(P(X) _ <P(Xo)i "" |<P(Xo) _ xo|

_ _. __r;<1|x xl+r<2 ° 2
hence (p(x) e B. Note that (50) holds if x1 e B, x1 e B.

Thus cp is a contraction of B into B. Being a closed subset of R".
B is complete. Theorem 9.23 implies therefore that (p has a fixed point
x e B. For this x, f(x) = y. Thus y e f(B) c f(U) = V.

This proves part (a) of the theorem.
(b) Pick ye V, y+ke V. Then there exist xe U, x+he U, so that
y=f(x),y+k=f(x+h). Withqoas in (48),

<p(x+h)—qv(x)=h+A_1[f(x)—f(x+h)] =h—A‘1k.

By (50), lh -A'1k| 5%|h|. Hence |A'1kl 2%|h|, and

lh|$2||/1-1" lkl ='l_1|k|-
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By (46), (47), and Theorem 9.8, f ’(x) has an inverse, say T. Since

g(y + k) — g(y) — Tk = h -- Tk = -T[f(x + h) - f(x) — f'(x)h],

(51) implies

no + k) - go) - Tkl 3 urn _ If(X + h) - r(x) - f'<x>h|_
Ikl /1 lhl

As k -> 0, (51) shows that h -> 0. The right side of the last inequality
thus tends to 0. Hence the same is true of the left. We have thus proved
that g'(y) = T. But Twas chosen to be the inverse of f ’(x) = f '(g(y)). Thus

(52) 8'(Y) = {f'(g(Y))}_1 (Y E V)-
Finally, note that g is a continuous mapping of V onto U (since g

is differentiable), that f ' is a continuous mapping of U into the set Q of
all invertible elements ofL(R"), and that inversion is a continuous mapping
of Q onto Q, by Theorem 9.8. If we combine these facts with (52), we see
that g e ‘d'( V).

This completes the proof.

Remark. The full force of the assumption that f e %'(E) was only used
in the last paragraph of the preceding proof. Everything else, down to Eq. (52),
was derived from the existence of f ’(x) for x e E, the invertibility of f'(a), and
the continuity of f ’ at just the point a. In this connection, we refer to the article
by A. Nijenhuis in Amer. Math. Monthly, vol. 81, 1974, pp. 969-980.

The following is an immediate consequence of part (a) of the inverse
function theorem.

9.25 Theorem If f is a ‘B’-mapping of an open set E c: R" into R" and if f ’(x)
is invertible for every x e E, then f (W) is an open subset of R" for every open set
l/V c: E.

In other words, f is an open mapping of E into R".

The hypotheses made in this theorem ensure that each point x e E has a
neighborhood in which f is 1-1. This may be expressed by saying that f is
locally one-to-one in E. But f need not be 1-1 in E under these circumstances.
For an example, see Exercise 17.

THE IMPLICIT FUNCTION THEOREM

Iff is a continuously differentiable real function in the plane, then the equation
f(x, y) = 0 can be solved for y in terms of x in a neighborhood of any point



224 PRINCIPLES OF MATHEMATICAL ANALYSIS

(a, b) at whichf(a, b) = O and 6f/6y aé 0. Likewise, one can solve for x in terms
of y near (a, b) if 6f/6x =,é 0 at (a, b). For a simple example which illustrates
the need for assuming (if/6y =,é 0, considerf(x, y) = x2 + yz - 1.

The preceding very informal statement is the simplest case (the case
m = n = 1 of Theorem 9.28) of the so-called “implicit function theorem.” Its
proofmakes stronguse of the fact that continuously differentiable transformations
behave locally very much like their derivatives. Accordingly, we first prove
Theorem 9.27, the linear version of Theorem 9.28.

9.26 Notation Ifx -= (x1, ..., x,,) e R" and y = (y1, ..., y,,,) e R"‘, let us write
(x, y) for the point (or vector)

n+m(x1,...,x,,,y1,...,y,,,)eR .

In what follows, the first entry in (x, y) or in a similar symbol will always be a
vector in R", the second will be a vector in R"'.

Every A e L(R"+"‘, R") can be split into two linear transformations Ax and
A, , defined by

(53) A,,h = A(h, 0), Ayk = A(0, k)

for any h e R", k e R"‘. Then Ax e L(R"), A, e L(R"', R"), and

(54) A(h, k) = A,,h + A1, k.

The linear version of the implicit function theorem is now almost obvious.

9.27 Theorem IfA e L(R"+"‘, R") and ifAx is invertible, then there corresponds
to every k e R"' a unique h e R" such that A(h, k) = 0.

This h can be computedfrom k by the formula

(55) h = —(A,,)“Ayk.
Proof By (54), A(h, k) = 0 if and only if

A,,h + Ayk = 0,
which is the same as (55) when A,, is invertible.

The conclusion of Theorem 9.27 is, in other words, that the equation
A(h, k) = 0 can be solved (uniquely) for h if k is given, and that the solution h
is a linear function of k. Those who have some acquaintance with linear algebra
will recognize this as a very familiar statement about systems of linear equations.

9.28 Theorem Let f be a ‘B’-mapping of an open set E c R"+"‘ into R", such
that f (a, b) = 0 for some point (a, b) e E.

Put A = f '(a, b) and assume that A, is invertible.
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Then there exist open sets U c: R"+"‘ and Wc: Rm, with (a, b) e U and
b e W, having the following property:

To every y e W corresponds a unique x such that

(56) (x, y) e U and f(x, y) = 0.

If this x is defined to be g(y), then g is a ‘d’-mapping of W into R", g(b) = a,

(57) f(8(y), Y) = 0 (Y E W).
and

<58) r(h) = -<A.>"1A.-
The function g is “implicitly” defined by (57). Hence the name of the

theorem.
The equation f(x, y) = 0 can be written as a system of n equations in

n + m variables:

f1(x1,~-->xn>J’1>--->J’m) =0
. . - . - . - - - - . . . - - . - . - . ¢ ¢ . . - - - .-

./h(-xls "'> xn>y1> '°'#ym) =0’

The assumption that A,, is invertible means that the n by n matrix

[Dlfl U. Dnfl]

Dlfh Dnfh

evaluated at (a, b) defines an invertible linear operator in R"; in other words,
its column vectors should be independent, or, equivalently, its determinant
should be =|=0. (See Theorem 9.36.) If, furthermore, (59) holds when x = a and
y = b, then the conclusion of the theorem is that (59) can be solved for x1, . . . , x,,
in terms of y1, ..., y,,, , for every y near b, and that these solutions are continu-
ously differentiable functions of y.

Proof Define F by

(60) F(X. y) = (f(X. y). y) ((X. Y) E E)
Then F is a ‘E’-mapping of E into R"+"'. We claim that F'(a, b) is an
invertible element of L(R"+"'):

Since f (a, b) = 0, we have

f(a + h, b + k) =A(h,k) + r(h, k),
where r is the remainder that occurs in the definition of f '(a, b). Since

F(a+l1,b+k)--F(a,b)=(f(a+h,b+k),k)
= (A(h, k). k) + (r(h, k). 0)
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(61)

(62)

(63)

(64)

(65)

it follows that F'(a, b) is the linear operator on R"*"‘ that maps (h, k) to
(A(h, k), k). If this image vector is 0, then A(h, k) = 0 and k = 0, hence
A(h, 0) = 0, and Theorem 9.27 implies that h = 0. It follows that F'(a, b)
is 1-1; hence it is invertible (Theorem 9.5).

The inverse function theorem can therefore be applied to F. It shows
that there exist open sets U and Vin R"*"‘, with (a, b) e U, (0, b) e V, such
that F is a 1-1 mapping of U onto V.

We let W be the set of all y e R"‘ such that (0, y) e V. Note that
b e W.

It is clear that W is open since V is open.
Ify e W, then (0, y) = F(x, y) for some (x, y) e U. By (60), f(x, y) = 0

for this x.
Suppose, with the same y, that (x’, y) e U and f(x’, y) = 0. Then

F(x,’ = (f(X': Y): Y) = (f(x: Y)» y) = F(X>

Since F is 1-1 in U, it follows that x’ = x.
This proves the first part of the theorem.
For the second part, define g(y), for y e W, so that (g(y), y) e U and

(57) holds. Then

F(g(Y). Y) = (0. Y) (Y E W)-
If G is the mapping of V onto U that inverts F, then G e W, by the inverse
function theorem, and (61) gives

(g(Y). Y) = G(0, Y) (Y E W)-
Since G e ‘K’, (62) shows that g e W.

Finally, to compute g’(b), put (g(y), y) = <I>(y). Then

‘I>'(Y)k = (2'(Y)l<, R) (Y E W. k E R”)-
By (57), f (<D(y)) = 0 in W. The chain rule shows therefore that

f '(‘I>(Y))‘I>'(Y) = 0-
When y = b, then <I>(y) = (a, b), and f ’(<I>(y)) = A. Thus

A<I>’(b) = 0.

It now follows from (64), (63), and (54), that

A,,g'fli)k + A,k = A(g'(b)k, k) = A<I>'(b)k = 0

for every k e R"'. Thus

A,,g’(b) + A, = 0.
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This is equivalent to (58), and completes the proof.

Note. In terms of the components of f and g, (65) becomes

j§Z1<v,f.><a. b><1>..g,><b> = -<v....f.><a. 1»)

(Z11) (iii) (ifl)
wherel5i5n, 1 5k5m.

For each k, this is a system of n linear equations in which the derivatives
fig,-/dyk (1 5j 5 n) are the unknowns.

OI’

9.29 Example Take n = 2, m = 3, and consider the mapping f = (f1, f2) of
R5 into R2 given by

f1(x1, X2 > Y1, J’: , ya) = 29:“ + X2 Y1 " 4J’2 + 3

f2(x1» X2 » Y1» J’: > ya) = X2 C03 x1_ 6x1 + 23/1 _ ya -

Ifa = (0, 1) and b = (3, 2, 7), then f(a, b) = 0.
With respect to the standard bases, the matrix of the transformation

A =f’(a, b) is

2 3 1 -4 0
[A] T [-6 1 2 O -1]'

il» M11-[§'3-§’]~
We see that the column vectors of [A,] are independent. Hence A, is invertible
and the implicit function theorem asserts the existence of a W-mapping g, defined
in a neighborhood of (3, 2, 7), such that g(3, 2, 7) = (0, 1) and f (g(y), y) = 0.

We can use (58) to compute g'(3, 2, 7): Since

Hence

[<A.)"*1 = [A..l" =% *3]
(58) gives

as es 2:1-1.: i
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In terms of partial derivatives, the conclusion is that

D191 =1: , D291 =% D391 = —T%-
D192 = -5 D292 ='?T D392 =T1F

at the point (3, 2, 7).

THE RANK THEOREM

Although this theorem is not as important as the inverse function theorem or
the implicit function theorem, we include it as another interesting illustration
of the general principle that the local behavior of a continuously differentiable
mapping F near a point x is similar to that of the linear transformation F'(x).

Before stating it, we need a few more facts about linear transformations.

9.30 Definitions Suppose X and Y are vector spaces, and A e L(X, Y), as in
Definition 9.6. The null space of A, ./V(A), is the set of all x e X at which Ax = 0.
It is clear that ./V(A) is a vector space in X.

Likewise, the range of A, .9i(A), is a vector space in Y.
The rank of A is defined to be the dimension of .9i(A).
For example, the invertible elements of L(R") are precisely those whose

rank is n. This follows from Theorem 9.5.
IfA e L(X, Y) and A has rank 0, then Ax = 0for all xe A, hence./1/(A) = X.

In this connection, see Exercise 25.

9.31 Projections Let X be a vector space. An operator P e L(X) is said to be
a projection in X if P2 = P.

More explicitly, the requirement is that P(Px) = Px for every x e X. In
other words, P fixes every vector in its range .9?(P).

Here are some elementary properties of projections:
(a) IfP is a projection in X, then every x e X has a unique representation
of the form

X=X1+X2

where x1 e .%(P), x2 e ./V(P).
To obtain the representation, put x1 = Px, x1 = x — x1. Then

Px, = Px — Px1 = Px - Pzx = 0. As regards the uniqueness, apply P to
the equation x = x1 + x1. Since x1 e Q(P), Px1 = x1; since Px, = 0, it
follows that x1 = Px.
(b) If X is a finite-dimensional vector space and if X1 is a vector space in
X, then there is a projection P in X with .Q(P) = X1.
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If X1 contains only 0, this is trivial: put Px = 0 for all x e X.
Assume dim X1 = k > 0. By Theorem 9.3, X has then a basis

{u1, ..., u,,} such that {u1, ..., u,,} is a basis of X1. Define

P(c1u1 + ' " + c,,u,,) = c1u1 + + c1u1,
for arbitrary scalars c1, .. . , c,,.

Then Px = x for every x e X1, and X1 = .@(P).
Note that {u,,+ 1, . . . , u,,} is a basis of ./V(P). Note also that there are

infinitely many projections in X, with range X1, if 0 < dim X1 < dim X.

9.32 Theorem Suppose m, n, r are nonnegative integers, m Z r, n Z r, F is a
‘d’-mapping of an open set E c: R" into R"', and F'(x) has rank r for every x e E.

Fix a e E, put A = F’(a), let Y1 be the range ofA, and let P be a projection
in Rm whose range is Y1. Let Y2 be the null space of P.

Then there are open sets U and V in R", with a e U, U c E, and there is a
l-l ‘d’-mapping H of V onto U (whose inverse is also of class ‘6') such that

(66) F(H(x)) = Ax + q0(Ax) (x e V)

where qv is a ‘6’-mapping of the open set A(V) c: Y1 into Y2.

After the proof we shall give a more geometric description of the informa-
tion that (66) contains.

Proof If r = 0, Theorem 9.19 shows that F(x) is constant in a neighbor-
hood U of a, and (66) holds trivially, with V = U, H(x) = x, (p(0) = F(a).

From now on we assume r > 0. Since dim Y1 = r, Y1 has a basis
{y1, . . ., y,.}. Choose z,- e R" so that Az, = y, (1 5 i 5 r), and define a linear
mapping S of Y1 into R" by setting

S(c1y1 + . ' ' + cryr) = C121 + ' ' ' + crzr

for all scalars c1, c,..
Then ASy,- -= Az, = y, for 1 5 i 5 r. Thus

(68) ASY = Y (Y E Y1)-
Define a mapping G of E into R" by setting

(69) G(x) = x + SP[F(x) - Ax] (X E E).
Since F'(a) = A, differentiation of (69) shows that G’(a) = 1, the identity
operator on R". By the inverse function theorem, there are open sets U
and V in R", with a e U, such that G is a 1-1 mapping of U onto Vwhose
inverse H is also of class '6’. Moreover, by shrinking U and V, if necessary,
we can arrange it so that V is convex and H'(x) is invertible for every x e V.
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(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(73)
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Note that ASPA = A, since PA = A and (68) holds. Therefore (69)
gives

AG(x) = PF(x) (x e E).

In particular, (70) holds for x e U. If we replace x by H(x), we obtain

PF(H(x)) = Ax (x e V).
Define

(h(x) = F(H(x)) — Ax (x e V).

Since PA = A, (71) implies that P1l1(x) = 0 for all xe V. Thus :11 is a
‘d’-mapping of Vinto Y2.

Since V is open, it is clear that A(V) is an open subset of its range
Q(A) = Y1.

To complete the proof, i.e., to go from (72) to (66), we have to show
that there is a W-mapping (p of A(V) into Y1 which satisfies

</>(AX) = I//(X) (X E V)-
As a step toward (73), we will first prove that

ll/(X1) = 1//(X2)
ifX1 E V, X2 E V, AX1 =/IX2.

Put <D(x) = F(H(x)), for x e V. Since H'(x) has rank n for every
x e V, and F'(x) has rank r for every x e U, it follows that

rank <D'(x) = rank F'(H(x))H'(x) = r (x e V).

Fix x e V. Let M be the range of (I>'(x). Then M c: Rm, dim M = r.
BY (71).

P(I>'(x) = A.

Thus P maps M onto .Q(A) = Y1. Since M and Y1 have the same di-
mension, it follows that P (restricted to M) is 1-1.

Suppose now that Ah = 0. Then P<I>'(x)h = 0, by (76). But
<I>'(x)h e M, and P is 1-1 on M. Hence <i>'(x)h = 0. A look at (72) shows
now that we have proved the following:

Ifx e V and Ah = 0, then a//’(x)h = 0.
We can now prove (74). Suppose x1 e V, x1 e V, Ax1 = Ax1. Put

h = x1 — x1 and define

g(t) = 1//(x1 + th) (0 5 t 5 1).
The convexity of V shows that X1 + th e V for these t. Hence

g’(t) = a//'(x1 + th)h = 0 (0 5 t 5 1),
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so that g(l) = g(0). But g(l) = 1//(X2) and g(0) = :1/(x1). This proves (74).
By (74), 1//(x) depends only on Ax, for x e V. Hence (73) defines (p

unambiguously in A(V). It only remains to be proved that (p e W.
Fix yo e A(V), fix x1, e V so that Axo = yo. Since V is open, yo has

a neighborhood W in Y1 such that the vector

(79) X = X0 + $(Y — Yo)
lies in V for all y e W. By (68),

Ax=Ax0+y—y0=y.

Thus (73) and (79) give

(80) <P(Y) = =1/(X0 -- 8Y0 + SY) (Y E W)-
This formula shows that (p e W in W, hence in A(V), since yo was chosen
arbitrarily in A(V).

The proof is now complete.

Here is what the theorem tells us about the geometry of the mapping F.
If y e F(U) then y = F(H(x)) for some x e V, and (66) shows that Py = Ax.

Therefore

(81) Y = PY + ¢(PY) (Y E F(U))-
This shows that y is determined by its projection Py, and that P, restricted

to F(U), is a 1-1 mapping of F(U) onto A(V). Thus F(U) is an “r-dimensional
surface” with precisely one point “over” each point of A(V). We may also
regard F( U) as the graph of (p.

If <I>(x) = F(H(x)), as in the proof, then (66) shows that the level sets of (D
(these are the sets on which (D attains a given value) are precisely the level sets of
A in V. These are “flat” since they are intersections with V of translates of the
vector space /V(A). Note that dim /V(A) =- n -— r (Exercise 25).

The level sets of F in U are the images under H of the fiat level sets of (D
in V. They are thus “(n - r)-dimensional surfaces” in U.

DETERMINANTS

Determinants are numbers associated to square matrices, and hence to the
operators represented by such matrices. They are 0 if and only if the corre-
sponding operator fails to be invertible. They can therefore be used to decide
whether the hypotheses of some of the preceding theorems are satisfied. They
will play an even more important role in Chap. 10.
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9.33 Definition If (j1, ..., j,,) is an ordered n-tuple of integers, define

S(j1s ' ' ' ajn) = H sgn _jp)s
P<q

where sgnx-=1 if x>0, sgnx= —-1 if x<0, sgnx=0 if x=0. Then
s(j1, ...,j,,) = 1, --1, or 0, and it changes sign if any two of the j’s are inter-
changed.

Let [A] be the matrix of a linear operator A on R", relative to the standard
basis {e1, ..., e,,}, with entries a(i,j) in the ith row and jth column. The deter-
minant of [A] is defined to be the number

(33) det [A] = X s(j1, ----J'..)a(1-J'1)¢1(2.J'.;) ' ' ' “("1111)-
The sum in (83) extends over all ordered n-tuples of integers (j1, . . . , j,,) with
1 5 j,. 5 n.

The column vectors x,- of [A] are

(s4) X, = a(i,j)e1 (1 5 j 5 n).
i= 1

It will be convenient to think of det [A] as a function of the column vectors
of [A]. If we write

dfi (X1. X.)= dell/1].
det is now a real function on the set of all ordered n-tuples of vectors in R".

9.34 Theorem
(a) IfI is the identity operator on R", then

det [I] =det (e1, ..., e,,) =1.

(b) det is a linearfunction ofeach of the column vectors x,- , if the others are
heldfixed.
If [A]1 is obtained from [A] by interchanging two columns, then(6)
det [A]1 = -det [A].

(d) If [A] has two equal columns, then det [A] = 0.

Proof If A = I, then a(i, i) = 1 and a(i,j) = 0 for i aéj. Hence

det[I] =s(1,2,...,n)=1,

which proves (a). By (82), s(j1, ..., j,,) =-- 0 if any two of thej’s are equal.
Each of the remaining n! products in (83) contains exactly one factor
from each column. This proves (b). Part (c) is an immediate consequence
of the fact that s(j1, ..., j,,) changes sign if any two of the j’s are inter-
changed, and (d) is a corollary of (c).
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(35)

(36)

(37)

(33)

(39)

9.36

(90)
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Theorem If [A] and [B] are n by n matrices, then

det ([B][A]) = det [B] det [A].

Proof If x1, ..., x,, are the columns of [A], define

AB(x1> ---1 X1.) = ARIA] = det ([B][A])-
The columns of [B][A] are the vectors Bx1, . . . , Bx,,. Thus

A11(x1, . . . , x,,) =-- det (Bx1, ..., Bx").

By (86) and Theorem 9.34, A1, also has properties 9.34 (b) to (d). By (b)
and (84),

AB[A] = A11 a(i,1)e1,x2 , ..., X") = a(i, 1) A1,(e1, x2 , ...,x,,).

Repeating this process with x2, . . . , x,, , we obtain

Aai-4] = Z a(i1, 1)a(i2 1 2) "' “(in , '7) AB(ei1> - - -1 er"),

the sum being extended over all ordered n-tuples (i1, . . . , i,,) with
1 5 i, 5 n. By (c) and (d),

AB(e1,, ...,e1n) = t(i1, ..., i,,) A1,(e1, ...,e,,),
where t =-- 1, 0, or -1, and since [B][I] = [B], (85) shows that

A1,(e1, ..., e,,) = det [B].
Substituting (89) and (88) into (87), we obtain

det ([B][A]) = a(i1, 1) a(i,,n)t(i1, ..., i,,)} det [B],

for all n by n matrices [A] and [B]. Taking B = I, we see that the above
sum in braces is det [A]. This proves the theorem.

Theorem A linear operator A on R" is invertible ifand only ifdet [A] ab 0.

Proof If A is invertible, Theorem 9.35 shows that

det [A] det [A"1] =det [AA"1] = det [I] = 1,

so that det [A] aé 0.
If A is not invertible, the columns x1, ..., x,, of [A] are dependent

(Theorem 9.5); hence there is one, say, x1, such that
Xk + Z C, Xj =5 0

1-k
for certain scalars c1. By 9.34 (b) and (d), x,, can be replaced by x1 + c1 x,-
without altering the determinant, ifj ah k. Repeating, we see that x1, can
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be replaced by the left side of (90), i.e., by 0, without altering the deter-
minant. But a matrix which has 0 for one column has determinant 0.
Hence det [A] = 0.

9.37 Remark Suppose {e1,...,e,,} and {u1, ...,u,,} are bases in R".
Every linear operator A on R" determines matrices [A] and [A]U, with entries
ai, and 0:1,, given by

A0,-=Z6'l1j61, Allj=;Ot1jll1.
l

If u, = Be, = Eb,,e1, then Au, is equal to

Z °b¢jB9t¢ = Z °lkj bikei = Z bikakj) es,lt k 1 i k
and also to

= A Z bkjek = Z 0,-kbkj) 01.

K i k

TIILIS Zbik Ofikj =5 E6111, bk],

(91) [Bil/llv =-' [Al[Bl-
Since B is invertible, det [B] aé 0. Hence (91), combined with Theorem 9.35,
shows that
(92) det [A]1, == det [A].

The determinant of the matrix of a linear operator does therefore not
depend on the basis which is used to construct the matrix. It is thus meaningful
to speak of the determinant of a linear operator, without having any basis in mind.

9.38 Jacobians If f maps an open set E c R" into R", and if f is differen-
tiable at a point x e E, the determinant of the linear operator f ’(x) is called
the Jacobian of f at x. In symbols,

(93) J1(x) = det f ’(x).

We shall also use the notation
5(1) ----.34.)

(94) d(x1, ...,x,,)

for J1-(x), if (y1, .. . , y,,) = f(x1, ..., x,,).
In terms of Jacobians, the crucial hypothesis in the inverse function

theorem is that J1-(a) aé 0 (compare Theorem 9.36). If the implicit function
theorem is stated in terms of the functions (59), the assumption made there on
A amounts to

6(f1, ...,f,,)
d(x1, ...,x,,) 750'
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DERIVATIVES OF HIGHER ORDER

9.39 Definition Suppose f is a real function defined in an open set E <: R",
with partial derivatives D1fl ..., D,,f. If the functions D,f are themselves
differentiable, then the second-order partial derivatives off are defined by

Diff: DiDj.f (i,j=1----,n)-

If all these functions D1,f are continuous in E, we say thatf is of class W’ in E,
or thatfe W(E).

A mapping f of E into R'” is said to be of class W if each component of f
is of class W.

It can happen that D1,f aé D,1f at some point, although both derivatives
exist (see Exercise 27). However, we shall see below that D,1f = D,1fwhenever
these derivatives are continuous.

For simplicity (and without loss of generality) we state our next two
theorems for real functions of two variables. The first one is a mean value
theorem.

9.40 Theorem Suppose f is defined in an open set E <: R2, and D1f and D21f
exist at every point of E. Suppose Q c: E is a closed rectangle with sides parallel
to the coordinate axes, having (a, b) and (a +h, b + k) as opposite vertices
(h #0, k #0). Put

A(f, Q) ==-f(a+h,b+k) -f(a+h, b) -f(a,b+k)+f(a, b).
Then there is a point (x, y) in the interior of Q such that

(95) A(f> Q) = hk(Dz1f)(-X, Y)-
Note the analogy between (95) and Theorem 5.10; the area of Q is hk.
Proof Put u(t) =f(t, b + k) -f(t, b). Two applications of Theorem 5.10
show that there is an x between a and a + h, and that there is a y between
b and b + k, such that

A(_fl Q) = u(a + h) -~ u(a)
= hu'(x)

= l1[(D1fXX, b + /<) - (D1f)(X, 5)]
= /1k(D2 1f)(X- y)-

9.41 Theorem Suppose f is defined in an open set E c R2, suppose that D1fl
D211’, and D2f exist at every point of E, and D21f is continuous at some point
(a, b) e E.
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Then D12f exists at (a, b) and

(96) (D12f)(a> b) == (D21f)(a» 0)-

Corollary D21f == D1 2f iffe W’(E).

Proof Put A =(D21f)(a, b). Choose a >0. If Q is a rectangle as in
Theorem 9.40, and if h and k are sufficiently small, we have

iA "' (D21f)(x- )’)i < 5

for all (x, y) e Q. Thus

’ —A <2,

by (95). Fix h, and let k—> 0. Since D2f exists in E, the last inequality
implies that

on i<1>.r>(-1 + h. 1») - <1>.r>(-1. b) , A I < 8h __ .
Since a was arbitrary, and since (97) holds for all sufficiently small

h aé 0, it follows that (D11f)(a, b) = A. This gives (96).

DIFFERENTIATION OF INTEGRALS

Suppose go is a function of two variables which can be integrated with respect
to one and which can be differentiated with respect to the other. Under what
conditions will the result be the same if these two limit processes are carried out
in the opposite order? To state the question more precisely: Under what
conditions on rp can one prove that the equation

ba(p
(98) %Lb(p(x, t) dx = L -6-, (x, t) dx

is true? (A counter example is furnished by Exercise 28.)
It will be convenient to use the notation

(99) ¢‘(X) = <P(X. 1‘)-
Thus rp‘ is, for each t, a function of one variable.

9.42 Theorem Suppose

(a) rp(x, t) is definedfor a 5 x 5 b, c 5 t 5 d;
(b) oz is an increasing function on [a, b];
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(c) rp‘ e 9i’(o1) for every te [c, d];
(d) c < s < d, and to every s > 0 corresponds a 5 > 0 such that

i(D2 ‘P)(-xi t) "‘ (D2 (P)(-x1 3)] < 3

for all x e [a, b] andfor all te (s - 5, s + 5).

Define

(100) f(t) = Jbrp(x, t) doc(x) (c 5 t 5 d).

Then (D2 (p)"‘ e 9l(o1), f’(s) exists, and

(101) re) -= fbw. <1-><x. s)-11<x>-
Note that (c) simply asserts the existence of the integrals (100) for all

re [c, d]. Note also that (d) certainly holds whenever D1 (p is continuous on the
rectangle on which go is defined.

Proof Consider the difference quotients

¢(-x1 t) _ (p(-x1 S)
¢(-xa I S 7

for 0 < It — s] < 5. By Theorem 5.10 there corresponds to each (x, t) a
number u between s and t such that

¢(X- I) = (D2 ¢)(X- 1-1)-
Hence (d) implies that

(102) |1//(x,t)-(D1rp)(x,s)| <1-; (a5x5b, 0< |t—s| <5).

Note that

(103) 7-Tit)-_'-:-é-(“°-) = Lblb(X, 1) doz(x).
By (102), 1//‘-1-(D2 go)‘, uniformly on [a, b], as t->s. Since each

11‘ e 9i’(oz), the desired conclusion follows from (103) and Theorem 7.16.

9.43 Example One can of course prove analogues of Theorem 9.42 with
(—oo, oo) in place of [a, b]. Instead of doing this, let us simply look at an
example. Define

(104) f(t) =-- e""2 cos (xt) dx
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and
(105) g(t) = - j X€_x2 sin (xi) dx,
for ——oo < t < oo. Both integrals exist (they converge absolutely) since the
absolute values of the integrands are at most exp (--x2) and |x| exp (-—x2),
respectively.

Note that g is obtained fromfby differentiating the integrand with respect
to t. We claim thatf is differentiable and that

(106) f'(t) =g(t) (-00 < t < oo).

To prove this, let us first examine the difference quotients of the cosine:
if B > 0, then

... “+13(107) “)8 (H 2) ~ 5°-S °-5 + sin oz = 1% I (sin or - sin 1) dt.
Since lsin oz — sin t| 5 It —- 01], the right side of (107) is at most B/2 in absolute
value; the case B < 0 is handled similarly. Thus

(108) 9-°S (°‘ I Z) 71°-985 + sin oz 5 1/3|

for all ,6 (if the left side is interpreted to be 0 when B = 0).
Now fix t, and fix h aé 0. Apply (108) with O! = xt, B =-= xh; it follows from

(104) and (105) that

fa ,2 “f(t) g 5 |h| ‘[00 x2e_"2 dx.

When h —> 0, we thus obtain (106).
Let us go a step further: An integration by parts, applied to (104), shows

that

(109) f(t) = 2 If xiv‘ dx.
Thus tf(t) = —- 2g(t), and (106) implies now that f satisfies the differential
equation
(110) 2f'(1) + tf(t) = 0.
If we solve this differential equation and use the fact that f(0) = \/if (see Sec.
8.21), we find that

___ 2

(111) f(t)=\/nexp (——

The integral (104) is thus explicitly determined.

\
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EXERCISES

1

2

3
4

5

60

7

8

9

10

ll

12.

If S is a nonempty subset of a vector space X, prove (as asserted in Sec. 9.1) that
the span of S is a vector space.
Prove (as asserted in Sec. 9.6) that BA is linear ifA and B are linear transformations.

Prove also that A ‘ 1 is linear and invertible.
Assume A e L(X, Y) and Ax = 0 only when x = 0. Prove that A is then 1-1.
Prove (as asserted in Sec. 9.30) that null spaces and ranges of linear transforma-
tions are vector spaces.
Prove that to every A e L(R", R1) corresponds a unique y e R" such that Ax = x - y.
Prove also that ||A]| = [y].

Hint: Under certain conditions, equality holds in the Schwarz inequality.
Iff(0, 0) = 0 and

X)’ .f(X, J’) = 1f(-Y, J’) #5 (0, 0),

prove that (D1f)(x, y) and (D,f)(x, y) exist at every point of R2, although f is
not continuous at (0, 0).
Suppose that f is a real-valued function defined in an open set E C R", and that
the partial derivatives D1 f, ..., D.f are bounded in E. Prove that f is continuous
in E.

Hint: Proceed as in the proof of Theorem 9.21.
Suppose that f is a differentiable real function in an open set E <1 R", and that f
has a local maximum at a point x E E. Prove that f’(x) = 0.
lf f is a differentiable mapping of a connected open set E C R" into R'", and if
f’(x) = 0 for every x e E, prove that f is constant in E.
Iff is a real function defined in a convex open set E C R“, such that (D1f)(x) == 0
for every x e E, prove that f(x) depends only on x2 , . . . , x,,.

Show that the convexity of E can be replaced by a weaker condition, but
that some condition is required. For example, if n = 2 and E is shaped like a
horseshoe, the statement may be false.
lffand g are differentiable real functions in R", prove that

V(fe) =fVc + 9 Vf
and that V(l /f) = —f‘ 2Vf wherever f as 0.
Fix two real numbers a and b, 0 < a < b. Define a mapping f = (fnfz , fa) of R2
into R3 by

f1(s, t) = (b + a cos s) cost
f;(s, t) = (b + a cos s) sin t
f3(S, t) = a sin s.
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Describe the range K of f. (It is a certain compact subset of R3.)
(a) Show that there are exactly 4 points p e K such that

(Vf1)(f‘ ‘(P)) = 0-
Find these points.
(b) Determine the set of all q e K such that

(Vfs)(f' ‘(q)) == 0-
(c) Show that one of the points p found in part (a) corresponds to a local maxi-
mum of fl, one corresponds to a local minimum, and that the other two are
neither (they are so-called “saddle points”).

Which of the points q found in part (b) correspond to maxima or minima?
(d) Let A be an irrational real number, and define g(t) = f(t, At). Prove that g is a
1-1 mapping of R‘ onto a dense subset of K. Prove that

|g’(t)| 2 --= a2 + )l2(b + a cos t)’.

Suppose f is a differentiable mapping of R‘ into R3 such that ]f(t)| = 1 for every t.
Prove that f’(t) -f(t) = 0.

Interpret this result geometrically.

Definef(0, 0) = 0 and

f(x. 1») = 11 0-. 1») 7-101. 0).
(a) Prove that D1fand D2] are bounded functions in R2. (Hence f is continuous.)
(b) Let u be any unit vector in R’. Show that the directional derivative (D1,f)(0, 0)
exists, and that its absolute value is at most 1.
(c) Let y be a differentiable mapping of R‘ into R’ (in other words, -y is a differ-
entiable curve in R’), with 3/(0) = (0, 0) and ]y’(0)| > 0. Put g(t) =f(y(t)) and
prove that g is differentiable for every t e R‘.

If -y e W, prove that g e W.
(d) In spite of this, prove that f is not differentiable at (0, 0).

Hint: Formula (40) fails.

Definef(0, 0) = 0, and put
4x6y2

f(X,}')=X2+y2—-2X2y"(?,f,"r'*},7)';

if (X. J’) as (0. 0)-
(a) Prove, for all (x, y) e R’, that

4x4y2 g(x4 + y2)2_

Conclude that f is continuous.
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(b) For051952rr, -00 <t< oo, define

gn(t) =f(t cos 6, t sin (9).

Show that g,(0) = 0, g1$(0) = 0, g§’(0) =- 2. Each gg has therefore a strict local
minimum at t = 0.

In other words, the restriction of f to each line through (0, 0) has a strict
local minimum at (0, 0).
(c) Show that (0, 0) is nevertheless not a local minimum forf, sincef(x, x’) = — x‘.
Show that the continuity of f’ at the point a is needed in the inverse function
theorem, even in the case n = 1 : If

_ 1f(t) = t+ 2t’ sin

for t+/~0, and f(0)=0, then f’(0)= 1, f’ is bounded in (-1, 1), but fis not
one-to-one in any neighborhood of 0.
Let f = (f1, f2) be the mapping of R2 into R’ given by

f1(x. y) = 6* COS y. f=(X. y) = 6* Sin y-
(a) What is the range off ?
(b) Show that the Jacobian off is not zero at any point of R”. Thus every point
of R2 has a neighborhood in which f is one-to-one. Nevertheless, f is not one-to-
one on R’.
(c) Put a = (0, 1r/3), b= f(a), let g be the continuous inverse of f, defined in a
neighborhood of b, such that g(b) = a. Find an explicit formula for g, compute
f’(a) and g’(b), and verify the formula (52).
(d) What are the images under f of lines parallel to the coordinate axes?
Answer analogous questions for the mapping defined by

u=x*—y*, v=2xy.

Show that the system of equations

3x +y— z + u’ = 0
x —y + 22+ u = 0

2x+2y—3z-|—2u=0

can be solved for x, y, u in terms of z; for x, z, u in terms of y; for y, z, u in terms
of x; but not for x, y, z in terms of u.
Take n = m = 1 in the implicit function theorem, and interpret the theorem (as
well as its proof) graphically.
Define fin R2 by

f(X. y) = 2x’ -- 3x’ + 2y’ + 3y’-
(a) Find the four points in R1 at which the gradient off is zero. Show that f has
exactly one local maximum and one local minimum in R2.
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28. For :2 0, put

0

{x

(b) Let S be the set of all (x, y) e R’ at which f(x, y) = O. Find those points of
S that have no neighborhoods in which the equation f(x, y) = 0 can be solved for
y in terms of x (or for x in terms of y). Describe S as precisely as you can.
Give a similar discussion for

f(x, y) = 2x3 + 6xy’ — 3x’ + 3y’.

Define f in R3 by

f(x. y1, yz) = Xiyi + e” + yi-
Show that f(0, 1, -1) = 0, (D1f) (0, 1, -1) se 0, and that there exists therefore a
differentiable function g in some neighborhood of (1, -1) in R’, such that
g(1, -1) = O and

f(9011. Y2), Y1, rs) = 0-
Find (D1.q)(1. -1) and (D¢.q)(l. -1)-
For (x. r) re (0. 0). define f =(f1.f=) by

x’ — y’ xy
f1(X,J’)=xT'_,'|fi,,', fz(X,y)=;;':i_-;5-

Compute the rank of f’(x, y), and find the range of f.
Suppose A e L(R", R"), let r be the rank of A.
(a) Define S as in the proof of Theorem 9.32. Show that SA is a projection in R"
whose null space is ./V(A) and whose range is .%(S). Hint: By (68), SASA = SA.
(b) Use (a) to show that _

dim ./V‘(A) + dim 9i(A) = n.

Show that the existence (and even the continuity) of D12f does not imply the
existence of D1 f. For example, letf(x, y) = g(x), where g is nowhere differentiable.
Put f(O, O) = O, and

_ xy(x’ — Y’)f(x.y)— x, +),,

if (x, y) vi (0, O). Prove that
(a) f, D1 f, D2fare continuous in R’;
(b) D1,fand D21fexist at every point of R’, and are continuous except at (0, 0);
(6) (D1=f)(0. 0) = 1. and (Dnf)(0. 0) = -1-

_ (0 5 x 5\/T) _
<r(x.t)= -—x+2\/t (\/1511521/t)

(otherwise),

and put <p(x, t) = —<p(x, |t|) if t <0.
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Show that (p is continuous on R’, and

(D2 (p)(x9 = O

for all x. Define

/0) = fl no. 0 dx.
Show thatf(t) = t if It] <1. Hence

rm) -8f 1<o.<1>><x. 0) dx.
Let E be an open set in R". The classes W(E) and W’(E) are defined in the text.
By induction, W"’(E) can be defined as follows, for all positive integers k: To say
thatfe W"’(E) means that the partial derivatives D1f, . . . , D,fbelong to W“ ' "(E).

Assume fe W"’(E)_. and show (by repeated application of Theorem 9.41)
that the kth-order derivative

Dru; ... ;kf= DHDQ ... Dtkf

is unchanged if the subscripts i1, ..., i1 are permuted.
For instance, if n 2 3, then

D1213./‘= Dsnzf

for every f e W“.

Let fe W'"’(E), where E is an open subset of R". Fix a e E, and suppose x e R"
is so close to 0 that the points

p(t) = a -1- tx

lie in E whenever O 5 t 5 1. Define

h(t) =f(P(t))
for all t e R‘ for which p(t) e E.
(a) For 1 5 k 5 m, show (by repeated application of the chain rule) that

l1""(t) = Z (D11 n.f)(P(t)) X11 ---X0.-
The sum extends over all ordered k-tuples (i1, ..., i1.) in which each i1 is one of the
integers 1, ..., n.
(b) By Taylor’s theorem (5.15),

_ m-1 h(t1)(0) h(m)(t)he — ... +
for some t e (0, 1). Use this to prove Taylor’s theorem in n variables by showing
that the formula
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m-1

f(a + X) = kg £12 (D11 n.f)(3)X11 ' -' X11. + f'(x)

represents f(a + x) as the sum of its so-called “Taylor polynomial of degree
m — 1,” plus a remainder that satisfies

Hn1_l1§l_ ::O
x”o|x|m-1 '

Each of the inner sums extends over all ordered k-tuples (i1, ...,i1), as in
part (a); as usual, the zero-order derivative of f is simply f, so that the constant
term of the Taylor polynomial off at a is f(a).
(c) Exercise 29 shows that repetition occurs in the Taylor polynomial as written in
part (b). For instance, D113 occurs three times, as D113 , D131, D311. The sum of
the corresponding three terms can be written in the form

3(Di Dsf)(fl)Xi X3 -
Prove (by calculating how often each derivative occurs) that the Taylor polynomial
in (b) can be written in the form

<1>r1>:~r)<a) ., .,,2 . -s11i.,_s;! x1...xn_

Here the summation extends over all ordered n-tuples (s1, ..., s.,) such that each
s1 is a nonnegative integer, and s1 + - -- + s,, 5 m —— 1 .
Suppose fe W3’ in some neighborhood of a point a e R’, the gradient of f is 0
at a, but not all second-order derivatives off are 0 at a. Show how one can then
determine from the Taylor polynomial offat a (of degree 2) whether f has a local
maximum, or a local minimum, or neither, at the point a.

Extend this to R" in place of R’.



INTEGRATION OF DIFFERENTIAL FORMS

Integration can be studied on many levels. In Chap. 6, the theory was developed
for reasonably well-behaved functions on subintervals of the real line. ln
Chap. 11 we shall encounter a very highly developed theory of integration that
can be applied to much larger classes of functions, whose domains are more
or less arbitrary sets, not necessarily subsets of R”. The present chapter is
devoted to those aspects of integration theory that are closely related to the
geometry of euclidean spaces, such as the change of variables formula, line
integrals, and the machinery of differential forms that is used in the statement
and proof of the n-dimensional analogue of the fundamental theorem of calculus,
namely Stokes’ theorem.

INTEGRATION

10.1 Definition Suppose I" is a k—cell in R“, consisting of all
X=(X1,...,.X'k)

such that
(1) 4:595:55: (i=1,--wk),
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I-" is the j-cell in Rj defined by the first j inequalities (1), and f is a real con-
tinuous function on I".

Putf=f,,, and definefi,_1 on I"‘1 by

bk
fk—1(x1»---> xk-1) =J fk(x1» - - - » xx-1» xx) d-xk'

wk

The uniform continuity of j], on I" shows that f,,_1 is continuous on 1"".
Hence we can repeat this process and obtain functions , continuous on I1, such
that jj,-_1 is the integral offj, with respect to xj, over [aj-, bj]. After k steps we
arrive at a number fo , which we call the integral off over I"; we write it in the
form

<2) fl, f(x) dx or flkf.
A priori, this definition of the integral depends on the order in which the

k integrations are carried out. However, this dependence is only apparent. To
prove this, let us introduce the temporary notation L(f) for the integral (2)
and L’(f) for the result obtained by carrying out the k integrations in some
other order.

10.2 Theorem For everyfe WI"), L(f) = L'(f).

Proof If h(x) = h1(x1) - - - h,,(x,,), where hj e %([aJ- , bl-]), then

L(h) = fb‘/1,.(x,-) dx,- = L’(/1). _

lf .21 is the set of all finite sums of such functions /1, it follows that L(g) =
L’(g) for all g e 42¢. Also, Jar’ is an algebra of functions on I" to which the
Stone-Weierstrass theorem applies.

k
Put V= H (b,- —— a,-). lffe ‘6(I") and s > 0, there exists g e .2! such

1

that ||f— gll < s/ V, where ||f || is defined as max [f(x)] (xeI"). Then
|L(f—— y)l < 8. |L’(f— all < 8. and Sims

I-(f) —- L’(f) = L(f- 9) + L'(9 —-f).
we conclude that |L(f) -- L'(f)| < 2s.

In this connection, Exercise 2 is relevant.

10.3 Definition The support of a (real or complex) function f on R“ is the
closure of the set of all points x e R“ at which f(x) at 0. If f is a continuous
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function with compact support, let I" be any k-cell which contains the support
off, and define

-[Rkf=~]~Ikf:

The integral so defined is evidently independent of the choice of I", provided
only that I" contains the support off.

It is now tempting to extend the definition of the integral over R" to
functions which are limits (in some sense) of continuous functions with compact
support. We do not want to discuss the conditions under which this can be
done; the proper setting for this question is the Lebesgue integral. We shall
merely describe one very simple example which will be used in the proof of
Stokes’ theorem.

10.4 Example Let Q" be the k-simplex which consists of all points x =
(x1,...,x,,) in R" for which x, + +x,,gl and x,z0 for i= 1, k. If
k = 3, for example, Q" is a tetrahedron, with vertices at 0, e1, e2 , es . Iffe ‘6(Q"),
extend f to a function on I" by settingf(x) = 0 off Q", and define

<4) fg,,/‘= flkri
Here I" is the “unit cube” defined by

0sx,s1 (1 sisk).
Since f may be discontinuous on I", the existence of the integral on the

right of (4) needs proof. We also wish to show that this integral is independent
of the order in which the k single integrations are carried out.

To do this, suppose 0 < 5 < 1, put

A 1 (Isl-6)
(5) ¢(:)=-£1-5-Q (1-5<rs1)

0 (1 < t),
and define

(6) F(X) = <P(X1 + + Xk)f(X) (X 6 1")-
Then F e ‘€(I").

Put y=(x1, ..., x,,_1), x= (y, x,,). For each yeI"‘", the set of all x,,
such that F(y, xk) aéf(y; xk) is either empty or is a segment whose length does
not exceed 5. Since 0 5 <p 5 1, it follows that

(7) IF’.-1(y) —f,._1(y)| s éllfll (yeI""),
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where ||f || has the same meaning as in the proof of Theorem 10.2, and F,,_1,
f,,_1 are as in Definition 10.1.

As 5 —> 0, (7) exhibits fi,_1 as a uniform limit of a sequence of continuous
functions. Thusf,,_ 1 e ‘6(I"" 1), and the further integrations present no problem.

This proves the existence of the integral (4). Moreover, (7) shows that

f F<x)ax- I f(X)ak| s<§||f||.In In

Note that (8) is true, regardless of the order in which the k single integrations
are carried out. Since F e ‘6(I"), IF is unaffected by any change in this order.
Hence (8) shows that the same is true of If.

This completes the proof.
Our next goal is the change of variables formula stated in Theorem 10.9.

To facilitate its proof, we first discuss so-called primitive mappings, and parti-
tions of unity. Primitive mappings will enable us to get a clearer picture of the
local action of a W-mapping with invertible derivative, and partitions of unity
are a very useful device that makes it possible to use local information in a
global setting.

PRIMITIVE MAPPINGS

10.5 Definition If G maps an open set E c R" into R", and if there is an
integer m and a real function g with domain E such that

(9) G(x) =2: xi er + .9(X)em (X 5 E),

then we call G primitive. A primitive mapping is thus one that changes at most
one coordinate. Note that (9) can also be written in the form

(10) G(X) = X + [g(x) - 'xmIem'
If g is diiferentiable at some point a e E, so is G. The matrix [ai,-] of the

operator G'(a) has

(11) (D1y)(a), - - -, (Dm 9)(fl), - - -. (13.. 9)(a)
as its mth row. Forj aé m, we have ocjj = 1 and ecu = 0 if i ¢j. The Jacobian
of G at a is thus given by

(12) Jc(a) = d¢t[G'(a)] = (Dm 9)(a),

and we see (by Theorem 9.36) that G'(a) is invertible ifand only if (D,,, g)(a) 9* 0-
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10.6 Definition A linear operator B on R" that interchanges some pair of
members of the standard basis and leaves the others fixed will be called a flip.

For example, the flip B on R4 that interchanges e2 and e4 has the form

(13) B(x1 e1 + x2 e; + x3 e3 + x4e4) = x1 e1 + x2 e4 + x3 e3 + x4e,

or, equivalently,

(14) B(x1e1 + x2 e2 + x3 e3 + x4e4) = x1 e1+ x4e; + x3 e3 + x2 e4.

Hence B can also be thought of as interchanging two of the coordinates, rather
than two basis vectors.

In the proof that follows, we shall use the projections P0 , . . . , P, in R”,
defined by P0 x =- 0 and

(15) P,,,x=x1e1+ +x,,,e,,,

for 1 s m 5 n. Thus Pm is the projection whose range and null space are
spanned by {e1, .. ., em} and {e,,,+1, ..., en}. respectively.

10.7 Theorem Suppose F is a ‘K’-mapping ofan open set E C R" into R", 0 E E,
F(0) = 0, and F'(0) is invertible.

Then there is a neighborhood of 0 in R" in which a representation

<16) F(x) = B. ~--B._.G.. O O G1(x)
is valid.

In (l6), each G, is a primitive ‘K’-mapping in some neighborhood of 0;
Gi(0) = 0, G§(0) is invertible, and each Bi is either a flip or the identity operator.

Briefly, (16) represents F locally as a composition of primitive mappings
and flips.

Proof Put F =F1. Assume 1 5 m 3 n -1, and make the following
induction hypothesis (which evidently holds for m = 1):

V,,, is a neighborhood of 0, F,,, 6 ‘6'(V,,,) ,F,,,(0) -= 0, F§,,(0) is invertible,
and

Pm—1Fm(x) = Pm-1 X (X E

By (17), we have

Z Pm_.1X + Oi,-(X)Bi ,

where um , ..., ai,, are real W-functions in V,,,. Hence

<19) F;.<»>e.. = i<1>..<».><0)e..
i=m
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(20)

(21

(22)

Since Fj,,(0) is invertible, the left side of (19) is not 0, and therefore there
is a k such that m s k 5 n and (D,,, oz,,)(0) aé 0.

Let B,,, be the flip that interchanges m and this k (if k = m, B,,, is the
identity) and define

Gm(x) = X + [o"k(x) '_ -xmllem (X E

Then G,,, e‘6’(V,,,), G,,, is primitive, and G§,,(0) is invertible, since
(Dm <Xi.)(0) # 0-

The inverse function theorem shows therefore that there is an open
set Um, with 0 e U,,, c V,,,, such that G,,, is a 1-l mapping of Um onto a
neighborhood V,,,+1 of 0, in which G,;1 is continuously differentiable.
Define Fm“ by

Fm+1(y) = Bm Fm O E Vm+1)'

Then F,,,+1 e‘6'(V,,,,_1), F,,,+1(0) = 0, and Fj,,+1(0) is invertible (by
the chain rule). Also, for x e Um,

Pm Fm + 1(G,,,(x)) = Pm Bm F,,,(x)
= P,,,[P,,,_1x + oc,,(x)e,,, + '"]
=P,,,_.1x + oc,,(x)e,,,

= P,,, G,,,(x)

so that

Pm Fm+1(y) = Pmy E Vm+1)'

Our induction hypothesis holds therefore with m + 1 in place of m.
[In (22), we first used (21), then (18) and the definition of B,,,, then

the definition of Pm , and finally (20).]
Since B,,, B,,, = I, (21), with y = G,,,(x), is equivalent to

Fm(X) = Bm Fm + 1(Gm(x)) (X E

If we apply this with m =- 1, ..., n — 1, we successively obtain

F=F1=~_.B1F2°G1

=B1B2F3°G2°G1 = °°'

=B1 "'Bn—1Fn°Gn-1 °"' °G1

in some neighborhood of 0. By (17), F,, is primitive. This completes the
proof.
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PARTITIONS OF UNITY

10.8 Theorem Suppose K is a compact subset of R", and {V,} is an open cover
of K. Then there exist functions 1,01, ..., tbs e ‘6(R”) such that

(a) Os!//islforlfiifis;
(b) each 1,0, has its support in some Va, and
(c) 1//1(x) + + |,b,(x) = l for every x e K.

Because of (c), {(0,} is called a partition of unity, and (b) is sometimes
expressed by saying that {(0,} is subordinate to the cover {Va}.

Corollary Iffe ‘6(R") and the support off lies in K, then

<25) f=§1¢./-
Each 1//if has its support in some Va.

The point of (25) is that it furnishes a representation off as a sum of
continuous functions (11,f with “small” supports.

Proof Associate with each x e K an index u(x) so that x e V,,(,,). Then
there are open balls B(x) and W(x), centered at x, with

(26) B(x) c W(x) c W(x) c V,,(,,).

Since K is compact, there are points xl, ..., x, in K such that
(27) K c B(x1) u --- u B(x,).

By (26), there are functions cpl, ..., zpse ‘6(R”), such that <p,(x) = 1 on
B(x,-), cp,(x) = 0 outside W(x,-), and 0 $ <p,(x) 5 1 on R". Define I//1 = cpl
and

(28) l"t+1 = (1 — @471) ' ' ' (1 "' ‘Pt)‘Pt+1

fori= 1, ...,s—1.
Properties (a) and (b) are clear. The relation

(29) \//1+"'+\//i=1—(1—</>I)"'(1—-</>1)
is trivial for i = 1. If (29) holds for some i < s, addition of (28) and (29)
yields (29) with i + 1 in place of i. It follows that

<30) it/.<x> = 1 - 151111 - </u(x)] (Xe R")-
lf x e K, then x e B(x,) for some i, hence cp,(x) = 1, and the product in
(30) is 0. This proves (c).

Flo
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CHANGE OF VARIABLES
We can now describe the effect of a change of variables on a multiple integral.
For simplicity, we confine ourselves here to continuous functions with compact
support, although this is too restrictive for many applications. This is illustrated
by Exercises 9 to 13.

10.9 Theorem Suppose T is a 1-1 ‘K’-mapping of an open set E c R" into R"
such that JT(x) aé 0for all x e E. Iff is a continuousfunction on R" whose support
is compact and lies in T(E), then

on j no dy = J r<T(x»|1.<x>| dx.Ru Ru

We recall that JT is the Jacobian of T. The assumption .IT(x) ah 0 implies,
by the inverse function theorem, that T” is continuous on T(E), and this
ensures that the integrand on the right of (31) has compact support in E
(Theorem 4.14).

The appearance of the absolute value of .IT(x) in (31) may call for a com-
ment. Take the case k = 1, and suppose T is a 1-1 ‘B’-mapping of R" onto R‘.
Then JT(x) = T’(x); and if T is increasing, we have

<32) [R1 re») dy = IR, /<T<x>>T'<x> dx.
by Theorems 6.19 and 6.17, for all continuous fwith compact support. But if
T decreases, then T ’(x) < 0; and iff is positive in the interior of its support,
the left side of (32) is positive and the right side is negative. A correct equation
is obtained if T’ is replaced by IT '| in (32).

The point is that the integrals we are now considering are integrals of
functions over subsets of R", and we associate no direction or orientation with
these subsets. We shall adopt a different point of view when we come to inte-
gration of differential forms over surfaces.

Proof It follows from the remarks just made that (31) is true if T is a
primitive 9?’-mapping (see Definition 10.5), and Theorem 10.2 shows
that (31) is true if T is a linear mapping which merely interchanges two
coordinates.

If the theorem is true for transformations P, Q, and ifS(x) = P(Q(x)).
then

f/to dz = If<P(y» |1.»<y>| dy
= I f(P(Q(X)))|JP(Q(X))l |JQ(x)| dx
= Jrtstx» |1.<x>| dx.
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since

Jp(Q(X))JQ(X) = det P'(Q(X)) det Q'(X)
= (161 P'(Q(X))Q'(X) = d¢1S'(X) = Js(X).

by the multiplication theorem for determinants and the chain.rule. Thus
the theorem is also true for S.

Each point a e E has a neighborhood U c E in which

(33) T(X) = T(=1) + B1 Br-1G1.O Gk-1 ° ° G1(X-11).
where G, and B, are as in Theorem 10.7. Setting V= T(U), it follows
that (31) holds if the support off lies in V. Thus:

Each point y e T(E) lies in an open set V, c T(E) such that (31) holds
for all continuous functions whose support lies in Vy.

Now letfbe a continuous function with compact support K c T(E).
Since {V,} covers K, the Corollary to Theorem 10.8 shows that f= Z10,f,
where each 1,11, is continuous, and each 1/1, has its support in some V3,.
Thus (31) holds for each 10,f, and hence also for their sum f.

DIFFERENTIAL FORMS

We shall now develop some of the machinery that is needed for the n-dimen-
sional version of the fundamental theorem of calculus which is usually called
Stokes’ theorem. The original form of Stokes’ theorem arose in applications of
vector analysis to electromagnetism and was stated in terms of the curl of a
vector field. Green’s theorem and the divergence theorem are other special
cases. These topics are briefly discussed at the end of the chapter.

It is a curious feature of Stokes’ theorem that the only thing that is difficult
about it is the elaborate structure of definitions that are needed for its statement.
These definitions concern differential forms, their derivatives, boundaries, and
orientation. Once these concepts are understood, the statement of the theorem
is very brief and succinct, and its proof presents little diificulty.

Up to now we have considered derivatives of functions of several variables
only for functions defined in open sets. This was done to avoid difiiculties that
can occur at boundary points. It will now be convenient, however, to discuss
differentiable functions on compact sets. We therefore adopt the following
convention:

To say that f is a <6’-mapping (or a ‘W-mapping) of a compact set
D c R" into R“ means that there is a ‘K’-mapping (or a <6”-mapping) g of
an open set Wc R" into R" such that D c W and such that g(x) = f(x) for
all x e D.
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10.10 Definition Suppose E is an open set in R“. A k-surface in E is a ‘K’-
mapping (D from a compact set D c R" into E.

D is called the parameter domain of (D. Points of D will be denoted by
u =(u1, ..., u,,).

We shall confine ourselves to the simple situation in which D is either a
k-cell or the k-simplex Q" described in Example 10.4. The reason for this is
that we shall have to integrate over D, and we have not yet discussed integration
over more complicated subsets of R". It will be seen that this restriction on D
(which will be tacitly made from now on) entails no significant loss of generality
in the resulting theory of differential forms.

We stress that k-surfaces in E are defined to be mappings into E, not
subsets of E. This agrees with our earlier definition of curves (Definition 6.26).
In fact, 1-surfaces are precisely the same as continuously differentiable curves.

10.11 Definition Suppose E is an open set in R". A difierentialform oforder
k 2 1 in E (briefly, a k-form in E) is a function co, symbolically represented by
the sum
(34) co = Z ai, ik(x)dx,1 /\ /\ dxik

(the indices i1, ..., ik range independently from 1 to n), which assigns to each
k-surface G) in E a number w(<D) = jg co, according to the rule

d(x,-1, ...,x,-k)<35) L1» = [DZ at --~ .,.<<1><t->>;(—----Yd".
u1,no|,uk

where D is the parameter domain of (D.
The functions ai, ik are assumed to be real and continuous in E. lf

(bl, ..., 4),, are the components of (D, the Jacobian in (35) is the one determined
by the mapping

(A. .... 11.) —» (Mu). .... ¢...<u>>.
Note that the right side of (35) is an integral over D, as defined in Defini-

tion 10.1 (or Example 10.4) and that (35) is the definition of the symbol 1,, w.
A k-form w is said to be of class ‘K’ or ‘6" if the functions an ik in (34)

are all of class ‘E’ or ‘6”.
A 0-form in E is defined to be a continuous function in E.

10.12 Examples
(a) Let y be a 1-surface (a curve of class (6') in R3, with parameter
domain [0, 1].

Write (x, y, z) in place of (xl, x2, x3), and put

w=x@+yM.
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Then

fyw = j01[v1(I)r£(t) +r1(I)vi(t >1 at = v1(1)v2(1) — l’1(0)l’z(0)-
Note that in this example I, co depends only on the initial point y(0)

and on the end point y(1) of 31. In particular, I, co = 0 for every closed
curve )1. (As we shall see later, this is true for every 1-form co which is
exact.)

Integrals of 1-forms are often called line integrals.
(b) Fix a > 0, b > O, and define

y(t)=(acos t,bsint) (05t521c),

so that )1 is a closed curve in R". (Its range is an ellipse.) Then
211:

fxdj/=I abcos" tdt=1rab,
7 0

whereas
211:

fydx= —f absin" tdt= —1'1:ab.
y 0

Note that j, x dy is the area of the region bounded by y. This is a
special case of Green’s theorem.
(c) Let D be the 3-cell defined by

Osrfil, Ostiérc, 0$<p$2rc.

Define (D(r, 6, tp) = (x, y, 2), where

x=rsin6cos<p
y=rsin6sin<p
z=rcos6.

Then

6 , , IJ¢,(r, 6, tp) = -gill) = r" sin 6.
d(r, 6, (p)

Hence

411:
Ldx /\ dy /\ dz = L1,, =

Note that (D maps D onto the closed unit ball of R3, that the mapping
is 1-1 in the interior of D (but certain boundary points are identified by
(D), and that the integral (36) is equal to the volume of <D(D).
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10.13 Elementary properties Let co, co1,w2 be k-forms in E. We write col = co,
if and only if w1((D) = w2((D) for every k-surface (D in E. In particular, co = 0
means that w((D) = 0 for every k-surface (D in E. If c is a real number, then
cco is the k-form defined by

(37) L cw = c L oo,

and co = col + co; means that

(as) Leo = L co, + L 1»,
for every k-surface (D in E. As a special case of (37), note that -—w is defined so
that

(39) f°(-1») = - L dw.
Consider a k-form

(40) co = a(x) dxil A A dxik

and let 6 be the k-form obtained by interchanging some pair of subscripts in
(40). If (35) and (39) are combined with the fact that a determinant changes
sign if two of its rows are interchanged, we see that

41
in(41) co = —w.

As a special case of this, note that the anticommutative relation

(42) dx, A dxj = —dxJ- A dx,

holds for all i and j. In particular,

(43) dx,Adx,=0 (i=1,...,n).

More generally, let us return to (40), and assume that i, = is for some
r aé s. If these two subscripts are interchanged, then 6 = co, hence co = 0, by
(41).

In other words, if co is given by (40), then co = O unless the subscripts‘
i1, ..., i,, are all distinct.

If co is as in (34), the summands with repeated subscripts can therefore
be omitted without changing co.

It follows that 0 is the only k-form in any open subset of R", if k >11-
The anticommutativity expressed by (42) is the reason for the inordinate

amount of attention that has to be paid to minus signs when studying differential
forms.
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10.14 Basic k-forms If i1, ..., i,, are integers such that 1 5 i1 < i2 <
< ik 5 n, and if I is the ordered k-tuple {i1, ..., ik}, then we call I an increasing
k-index, and we use the brief notation

(44) dx, = dxil A A dxik.

These forms dx, are the so-called basic k-forms in R".
It is not hard to verify that there are precisely n!/k!(n — k)! basic k-forms

in R"; we shall make no use of this, however.
Much more important is the fact that every k-form can be represented in

terms of basic k-forms. To see this, note that every k-tuple {j1, .. . , jk} of distinct
integers can be converted to an increasing k-index J by a finite number of inter-
changes of pairs; each of these amounts to a multiplication by -1, as we saw
in Sec. 10.13; hence

(45) dxj, A A dxjk = s(j1, ...,j,,) dx,

where s(j1, ...,j,,) is 1 or ~—l, depending on the number of interchanges that
are needed. In fact, it is easy to see that

(46) 80.1, --'9./.k)=s(j1v “’9jk)

where s is as in Definition 9.33.
For example,

dxl A dxs A a'x3 A dxz = —dx1 A dxz A dx3 A dx5

and

a'x4 A dxz A dxs = dxz A dxs A dx4.

If every k-tuple in (34) is converted to an increasing k-index, then we
obtain the so-called standard presentation of co:

(47) co = Z: b,(x) dxj.

The summation in (47) extends over all increasing k-indices I. [Of course, every
increasing k-index arises from many (from kl, to be precise) k-tuples. Each
b, in (47) may thus be a sum of several of the coefficients that occur in (34).]

For example,

xi dxz A dxl — x2 dxs A dxz + x3 dxz A dxs + dxl A dxz

is a 2-form in R3 whose standard presentation is

(1 — x1)dx1 A dxz + (x2 + x3) dxz A dxs.

The following uniqueness theorem is one of the main reasons for the
introduction of the standard presentation of a k-form.
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10.15 Theorem Suppose

CU = Z bI(X) dxf
I

is the standard presentation of a k-form co in an open set E c R“. If 0) = 0 in E,
then b,(x) = 0 for every increasing k-index I andfor every x e E.

Note that the analogous statement would be false for sums such as (34),
since, for example,

dxl A dxz + dxz A dxl = 0.

Proof Assume, to reach a contradiction, that b,(v) > 0 for some veE
and for some increasing k-index J = {j1, ..., jk}. Since bJ is continuous,
there exists h > 0 such that b,(x) > 0 for all x e R" whose coordinates
satisfy Ix, — v,| 5 h. Let D be the k-cell in R" such that u e D if and
only if |u,| 5 h for r =1, ...,k. Define

(49) (D(u) = v + g1u,eJ-r (u e D).

Then (D is a k-surface in E, with parameter domain D, and b,((D(u)) > 0
for every u e D.

We claim that

(50) Lco = fDb,(<1>(u)) du.

Since the right side of (50) is positive, it follows that co((D) aé 0. Hence
(50) gives our contradiction.

To prove (50), apply (35) to the presentation (48). More specifically,
compute the Jacobians that occur in (35). By (49),

d(x,-1, xjk) 1
a(u1s - - -s uk)

For any other increasing k-index I aé J, the Jacobian is 0, since it is the
determinant of a matrix with at least one row of zeros.

10.16 Products of basic k-forms Suppose

(51) I={i1,...,ip}, J={j1,...,jq}

where 1 5i1 < <i,,5n and 15j1 < <jq5n. Theproduct ofthe cor-
responding basic forms dx, and dx, in R" is a (p + q)-form in R“, denoted by
the symbol dx, A dxj, and defined by

(52) dx,Adx,=dx,1 A Adxip Adx,-1 A A dx,-G.



INTECRATIDN oF DIFFERENHAL FORMS 259

If I and J have an element in common, then the discussion in Sec. 10.13
shows that dx, /\ dx, = 0.

If I and J have no element in common, let us write [I, J] for the increasing
(p + q)-index which is obtained by arranging the members of I u J in increasing
order. Then dx[,_ ,1 is a basic (p + q)-form. We claim that

dxf /\ dx_; = (— 1)“ dxtfnn

where oz is the number of differences j, — i, that are negative. (The number of
positive differences is thus pq - oz.)

To prove (53), perform the following operations on the numbers

i19"':ip;j19~"!jq‘

Move ip to the right, step by step, until its right neighbor is larger than i,,.
The number of steps is the number of subscripts t such that i,,< j,. (Note that
0 steps are a distinct possibility.) Then do the same for i,,_,, ..., i1. The total
number of steps taken is oz. The final arrangement reached is [I, J]. Each step,
when applied to the right side of (52), multiplies dx, A dx, by -1. Hence (53)
holds.

Note that the right side of (53) is the standard presentation of dx, A dx,.
Next, let K = (k1, ..., k,) be an increasing r-index in {1, ..., n}. We shall

use (53) to prove that
(55) (dx, A dx,) A dxx = dx, A (dx, A dxx).

If any two of the sets I, J, K have an element in common, then each side
of (55) is 0, hence they are equal.

So let us assume that I, J, K are pairwise disjoint. Let [I, J, K] denote
the increasing (p + q + r)-index obtained from their union. Associate [3 with
the ordered pair (J, K) and y with the ordered pair (I, K) in the way that oz was
associated with (I, J) in (53). The left side of (55) is then

(-1)“ d-x[I',J] Adxx = (-1)a( -1)“? dx[I,J,K]
by two applications of (53), and the right side of (55) is

(— 1)” dx.! /\ d-x[J,K] = (" l)fl("" 1)“? dxu, J, K] -

Hence (55) is correct.

10.17 Multiplication Suppose to and /1 are p- and q-forms, respectively, in
some open set E c R", with standard presentations

(56) co = Z b,(x) dxf, A = Z c,(x) dx,
I J

where I and J range over all increasing p-indices and over all increasing q-indices
taken from the set {1, .. . , n}.
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Their product, denoted by the symbol to A 1, is defined to be
(57) co A A =2, b,(x)c,(x) dx, A dx, .

In this sum, Iand J range independently over their possible values, and dx, A dx,
is as in Sec. 10.16. Thus 0) A it is a (p + q)-form in E.

It is quite easy to see (we leave the details as an exercise) that the distribu-
tive laws

((01-I-(D2)/\h.=((01/\/1)-I-((02/\/1)

and

wA(/11+/12)=(coA»11)+(wAl2)

hold, with respect to the addition defined in Sec. 10.13. If these distributive
laws are combined with (55), we obtain the associative law

(58) (oJA/'l)Ao=coA(hAa)

for arbitrary forms co, /1, a in E.
In this discussion it was tacitly assumed that p 2 1 and q 2 1. The product

of a 0-formfwith the p-form co given by (56) is simply defined to be the p-form

fa) = wf= ;f(X)bI(x) dxr

It is customary to write fw, rather thanf A co, when f is a 0-form.

10.18 Differentiation We shall now define a differentiation operator d which
associates a (k + 1)-form dw to each k-form co of class ‘6" in some open set
E c R".

A 0-form of class 9?’ in E is just a real function fe ‘6’(E), and we define

<59) dr=ii<1>.r><x>dx..
If co = Eb,(x) dx, is the standard presentation of a k-form co, and b I e ‘6'(E)
for each increasing k-index I, then we define
(60) dco = ;(db,) /\ ai,.

10.19 Example Suppose E is open in R", fe ‘6’(E), and y is a continuously
differentiable curve in E, with domain [0, 1]. By (59) and (35),

<61) fydf= fol <1>.f>o<t ))rE(t) dt-
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By the chain rule, the last integrand is (f Q y)'(t). Hence

<62) jydf=fo<1>> -/(110)).
and we see that j, df is the same for all y with the same initial point and the same
end point, as in (a) of Example 10.12.

Comparison with Example 10.12(b) shows therefore that the 1-form x dy
is not the derivative of any 0-form f. This could also be deduced from part (b)
of the following theorem, since

d(x dy) = dx A dy ¢ 0.

10.20 Theorem

(a) If at and /I are k- and m-forms, respectively, of class "6' in E, then

(63) d(w A /1)=(dw) A 1 + (-1)* co A ta.
(b) If co is of class ‘6” in E, then dzco = 0.

Here dzw means, of course, d(dco).

Proof Because of (57) and (60), (a) follows if (63) is proved for the
special case

(64) co=fdx_,, /l=gdx,

where f, g e ‘6’(E), dx, is a basic k-form, and dx, is a basic m-form. [If
k or m or both are 0, simply omit dx ,- or dx, in (64); the proof that follows
is unaffected by this.] Then

(0/\/I=fgdX;/\dX_;.

Let us assume that I and J have no element in common. [In the other
case each of the three terms in (63) is 0.] Then, using (53),

dfw /\ 4-) = d(f9 dxr A dxs) =("1)“ d(f9 d-x[I,J])'

By (59), d(fg) =fdg + g df. Hence (60) gives

d(w /\ /1) = (-1)“(fd9+9df) /\ dxrnn
= (gdf+fdg) A dx, A dx,.

Since dg is a 1-form and dx, is a k-form, we have

dg A dx, = (-1)" dx, A dg,
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by (42). Hence

d(w A /1) = (df A dxi) A (9 dxi) + (- l)"(fdxl) A (do A dxl)
= (dco) A h+(-—1)"co A di,

which proves (a).
Note that the associative law (58) was used freely.
Let us prove (b) first for a 0-formfe ‘6”:

d"f= d( (D,f)(x) ai,)
j= 1

=j;1d(Djf) A dxj

I,]=1

Since D,jf= Dfif (Theorem 9.41) and dx, A dxj = —dxJ A dxi, we see
that d’f= 0.

If to =fdxI, as in (64), then dw = (df) A dx, . By (60), d(dx,) = 0.
Hence (63) shows that

dzco = (dzf) A dx, = 0.

10.21 Change of variables Suppose E is an open set in R”, T is a ‘E’-mapping
of E into an open set V c: R"', and co is a k-form in V, whose standard presenta-
tion is
(65) 5° = 2: bI(Y) dyr -

(We use y for points of V, x for points of E.)
Let t1, ..., t,,, be the components of T: If

y=(y1. ---.y...)= T(X)
then y, = t,(x). As in (59),

(66) di, =j;(o,i,)(X) ax, (1 5 i5 m).
Thus each dt, is a 1-form in E.

The mapping T transforms an into a k-form cor in E, whose definition is
(67) oo, = ;b,(T(x)) dti, A A dt,k.

In each summand of (67), I = {i1, ..., ik} is an increasing k-index.
Our next theorem shows that addition, multiplication, and differentiation

of forms are defined in such a way that they commute with changes of variables.
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10.22 Theorem With E and T as in Sec. 10.21, let co and I be k- and m-forms
in V, respectively. Then

(£1)

(b) (09/\'")T=°°r/\4T;
(c) d(wT) = (duo), if at is of class ‘K’ and T is of class T”.

Proof Part (a) follows immediately from the definitions. Part (b) is
almost as obvious, once we realize that

(dyil A '°° A dyir)T '=dti1 A "' A dtir

regardless of whether {i1, ..., i,} is increasing or not; (68) holds because
the same number of minus signs are needed on each side of (68) to produce
increasing rearrangements.

We turn to the proof of (c). Iff is a 0-form of class <6’ in V, then

/xx) =r<T(x». d/= Z,;<1>./><y>dy..
By the chain rule, it follows that

<69) don) = Z; <1>,-m(x) dx.-
= ;(D./><T<x>><1>. m(x) dx.-
= ;<1>.r><T<x>> dt.
= (df)T-

If dy, = dy,-1 A A dyik, then (dy,)T = dt,-1 A A dtik, and Theorem
10.20 shows that

(70) d((d.V1)T) = 0-
(This is where the assumption T e T” is used.)

Assume now that co =fdyI. Then

wr =fT(X) (dyI)T

and the preceding calculations lead to

d(wr) = dffr) A (dJ’r)T = (df)1 A (dyr)r
= ((df) A dyr)r = (dw)r-

The first equality holds by (63) and (70), the second by (69), the third by
part (b), and the last by the definition of dco.

The general case of (c) follows from the special case just proved, if
we apply (a). This completes the proof.
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Our next objective is Theorem 10.25. This will follow directly from two
other important transformation properties of differential forms, which we state
first.

10.23 Theorem Suppose T is a T’-mapping ofan open set E c: R" into an open
set V c R'", S is a ‘6’-mapping of V into an open set W C RP, and co is a k-form
in W, so that cos is a k-form in V and both (coS)T and wsy are k-forms in E, where
ST is defined by (ST)(x) = S(T(x)). Then

(71) (¢°s)T = (°sT-

Proof If to and A are forms in W, Theorem 10.22 shows that

((01 A 4)s)T = (ms /\ '"S)T = (ws)r /\ (4~s)T
and

((9 /\ 4)sT = wsr /\ 4~sT-
Thus if (71) holds for at and for Z, it follows that (71) also holds for co A /I.
Since every form can be built up from 0-forms and 1-forms by addition
and multiplication, and since (71) is trivial for 0-forms, it is enough to
prove (71) in the case w = dzq, q = 1, ..., p. (We denote the points of
E, V, W by x, y, z, respectively.)

Let t1, ..., t,,, be the components of T, let sl, ..., sp be the compo-
nents of S, and let r1, ..., rp be the components of ST. If w = dzq, then

ws = d-Yq = (Djsq)(y)dy,-,

so that the chain rule implies
(ws)r = ;(D_;~*'q)(T(X)) df,-

= ; (D;Sq)(T(X)) (Di l,~)(X) dxt
= :1 (D,r,,)(x) dx, = di, = co“.

10.24 Theorem Suppose co is a k-form in an open set E c R", (D is a k-surface
in E, with parameter domain D c R", and A is the k-surface in R", with parameter
domain D, defined by A(u) = u(u e D). Then

l.°’=l..“’*'>"
Proof We need only consider the case

w=a(x)dx,1 A A dx,k.
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If ¢1, ..., ¢,, are the components of (D, then
oo,, =a((D(u)) d¢,, A A dzbik.

The theorem will follow if we can show that

(72) d¢,, A A dq5,k=J(u)du1 A A duk,

where

J(u) - ‘3.-(xip ' ' ' I xii.)
9

since (72) implies

Then

L w = I a((D(u))J(u) du

50119 ' ' ' s uh)

=[ a((D(u))J(u)du1 A A duk =[ 00¢.
A A

Let [A] be the k by k matrix with entries

<1(P,q) = (1)., <l>t,)(l1) (p.q=1.---.k)-

dt., = ;<1(1>. q) du.
so that

d(p,, A A dq5,k= Zot(l,q1)---ot(k,q,,)duq1 A A duqk.

In this last sum, ql, ..., qt range independently over 1, ..., k. The anti-
commutative relation (42) implies that

duq, A Aduqk=s(q1,...,q,,)du1 A Aduk,

where s is as in Definition 9.33; applying this definition, we see that
dqfiil A A dq'>,k=det[A]du1 A Aduk;

and since J(u) = det [A], (72) is proved.

The final result of this section combines the two preceding theorems.

10.25 Theorem Suppose T is a E’-mapping ofan open set E c R" into an open
set V c R"', (D is a k-surface in E, and co is a k-form in V.

Then

l..“’=l. (D1.
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Proof Let D be the parameter domain of (D (hence also of T(D) and
define A as in Theorem 10.24.

Then

Lww = [A wro = L (wT)d> = L wt‘ -

The first of these equalities is Theorem 10.24, applied to T(D in place of (D.
The second follows from Theorem 10.23. The third is Theorem 10.24,
with wT in place of w.

SIMPLEXES AND CHAINS

10.26 Affine simplexes A mapping f that carries a vector space X into a
vector space Yis said to be afline if f — f(0) is linear. In other words, the require-
ment is that

(73) f(x) = f(0) + Ax

for some A e L(X, Y).
An alfine mapping of R" into R” is thus determined if we know f(0) and

f(e,) for 1 5 i 5 k; as usual, {e1, ..., ek} is the standard basis of R".
We define the standard simplex Q" to be the set of all u e R" of the form

k

(74) u = otiei

suchthatot,20for i= 1, ..., kand Zot,51.
Assume now that po, pl, ..., pk are points of R”. The oriented ajjfine

k-simplex

(75) °'=[Po»PI,---,Ptt]
kis defined to be the k-surface in R" with parameter domain Q which is given

by the afline mapping
k

(76) “(@191 + + at ek) = P0 + Z1°‘i(Pt - Po)-

Note that o is characterized by

(77) 0(0) = po, a(e,) = pi (for 1 5 i 5 k),

and that

(73) <1(l1)= P0 + All (ll E Q")
where A e L(R", R") and Ae, = pi — po for 1 5 i 5 k.
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We call a oriented to emphasize that the ordering of the vertices po, . . ., p,,
is taken into account. If

a:[pl09pl19"‘9pi;J9

where {io , i1, ..., ik} is a permutation of the ordered set {0, 1, ..., k}, we adopt
the notation
(80) 5 = s(i0 , i1, ..., i,,)o,

where s is the function defined in Definition 9.33. Thus 6' = io, depending on
whether s = 1 or s = -1. Strictly speaking, having adopted (75) and (76) as
the definition of 0, we should not write if = a unless i0 = 0, ..., i,, = k, even
ifs(i0, ..., i,,) = l;what we have here is an equivalence relation, not an equality.
However, for our purposes the notation is justified by Theorem 10.27.

If 6 = so (using the above convention) and if e = 1, we say that 6 and o
have the same orientation; if e = -1, 6' and 0 are said to have opposite orienta-
tions. Note that we have not defined what we mean by the “orientation of a
simplex.” What we have defined is a relation between pairs of simplexes having
the same set of vertices, the relation being that of “having the same orientation.”

There is, however, one situation where the orientation of a simplex can
be defined in a natural way. This happens when n = k and when the vectors
pi — po (1 5 i5 k) are independent. In that case, the linear transformation A
that appears in (78) is invertible, and its determinant (which is the same as the
Jacobian of a) is not 0. Then tr is said to be positively (or negatively) oriented if
det A is positive (or negative). In particular, the simplex [0, e1, ..., ek] in R",
given by the identity mapping, has positive orientation.

So far we have assumed that k 2 1. An oriented 0-simplex is defined to
be a point with a sign attached. We write 0 = +p0 or a = — po. If a = spo
(s = i 1) and iff is a 0-form (i.e., a real function), we define

[f=aoa

10.27 Theorem If 0 is an oriented rectilinear k-simplex in an open set E c: R"
and if 6 = so then

(81) f_co=efco

for every k-form w in E.

Proof For k = 0, (81) follows from the preceding definition. So we
assume k 2 1 and assume that o is given by (75).
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Suppose 1 5 j 5 k, and suppose 6 is obtained from a by inter-
changing pi, and pi. Then e = -1, and

6(u) = pi + Bu (u e Q"),

where B is the linear mapping of R" into R" defined by Bei = pi, — pi,
Bei = pi — pi if i #1‘. If we write Aei = xi (1 5 i5 k), where A is given
by (78), the column vectors of B (that is, the vectors Bei) are

Xi—Xj,...,XJ-__i—Xj, —XJ-,XJ-+i—XJ-,...,Xk-—Xj.

If we subtract the jth column from each of the others, none of the deter-
minants in (35) are affected, and we obtain columns xi, ..., xi-_i, —xi,
xii i, ..., xii. These differ from those of A only in the sign of the jth
column. Hence (81) holds for this case.

Suppose next that 0 < i<j 5 k and that if is obtained from 0 by
interchanging pi and pi. Then 6(u) = pi, + Cu, where C has the same
columns as A, except that the ith and jth columns have been inter-
changed. This again implies that (81) holds, since e = -1.

The general case follows, since every permutation of {0, 1, ..., k} is
a composition of the special cases we have just dealt with.

10.28 Alfine chains An aflfne k-chain 1" in an open set E <:R" is a collection
of finitely many oriented affine k-simplexes ai, ..., 0,. in E. These need not be
distinct; a simplex may thus occur in F with a certain multiplicity.

If F is as above, and if 0) is a k-form in E, we define
I’

(82) L co = 21 J1” co.

We may view a k-surface (D in E as a function whose domain is the collec-
tion of all k-forms in E and which assigns the number Ii, co to co. Since real-
valued functions can be added (as in Definition 4.3), this suggests the use of the
notation

(83) F=oi+"'+o,
or, more compactly,

on F=Zw
i=1

to state the fact that (82) holds for every k-form to in E.
To avoid misunderstanding, we point out explicitly that the notations

introduced by (83) and (80) have to be handled with care. The point is that
every oriented afline k-simplex o- in R” is a function in two ways, with different
domains and different ranges, and that therefore two entirely different operations
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of addition are possible. Originally, o was defined as an R"-valued function
with domain Q"; accordingly, oi + oi could be interpreted to be the function
o that assigns the vector oi(u) + o2(u) to every u e Q"; note that o is then again
an oriented afline k-simplex in R"! This is not what is meant by (83).

For example, if oi = —oi as in (80) (that is to say, if oi and G2 have the
same set of vertices but are oppositely oriented) and if F = oi + U2, then
j'i- co = 0 for all co, and we may express this by writing F = 0 or oi + U2 = 0.
This does not mean that oi(u) + oi(u) is the null vector of R".

10.29 Boundaries For k 2 1, the boundary of the oriented affine k-simplex

0': [P0tP1- "'9 Pit]

is defined to be the affine (k — 1)-chain
k

(85) 50' =_Z0("1)J[P0, - - - 2 Pj—1s Pj-+1» ---s Pk]-i=

For example, if o = [p0, pi, p2], then

511 = [P1>P2I — Ire. P2] + [00,91] = 1110.111] + [P1,Pz] + [P2, pa].
which coincides with the usual notion of the oriented boundary of a triangle.

For 1 5j5 k, observe that the simplex oi = [p0, ..., pi-_i, pi-ii, ..., pi]
which occurs in (85) has Q"_1 as its parameter domain and that it is defined by

(86) oi(u) = pi, + Bu (u e Q"‘"),

where B is the linear mapping from R"'" to R" determined by

Bei=pi—p0 (if 15i5j—l),
Bei=pi+i—-pi, (if j5i5k—1).

The simplex

0'0 = [P1, P2, rt].
which also occurs in (85), is given by the mapping

oi,(u) = pi + Bu,

where Bei =pi+i —pi for 1 5 i5 k -1.

10.30 Dilferentiable simplexes and chains Let T be a <6”-mapping of an open
set E c R" into an open set V c: R"‘; T need not be one-to-one. If o is an oriented
afiine k-simplex in E, then the composite mapping (D = To o (which we shall
sometimes write in the simpler form To) is a k-surface in V, with parameter
domain Q". We call (D an oriented k-simplex of class ‘6”.
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A finite collection ‘P of oriented k-simplexes Qi, ..., Q, of class ‘€” in V
is called a k-chain of class ‘6" in V. If co is a k-form in V, we define

[Tm = Q [Qiw

and use the corresponding notation ‘P = ZQi.
If F = Eoi is an afline chain and if Qi = To oi, we also write ‘P = To F,

fin

OI‘

(ss) T(Z oi) = Z Toi.
The boundary 5Q of the oriented k-simplex Q = T 0 0' is defined to be the

(k — 1) chain
(89) ac = T(do).

In justification of (89), observe that if T is affine, then Q = To o is an
oriented afline k-simplex, in which case (89) is not a matter of definition, but is
seen to be a consequence of (85). Thus (89) generalizes this special case.

It is immediate that 6Q is of class <6” if this is true of Q.
Finally, we define the boundary 0‘? of the k-chain ‘P = ZQi to be the

(k — 1) chain
(90) or = Z a<I>i.
10.31 Positively oriented boundaries So far we have associated boundaries to
chains, not to subsets of R". This notion of boundary is exactly the one that is
most suitable for the statement and proof of Stokes’ theorem. However, in
applications, especially in R2 or R3, it is customary and convenient to talk
about “oriented boundaries” of certain sets as well. We shall now describe
this briefly.

Let Q" be the standard simplex in R", let oi, be the identity mapping with
domain Q”. As we saw in Sec. 10.26, oi, may be regarded as a positively oriented
n-simplex in R". Its boundary boo is an afline (n — 1)-chain. This chain is
called the positively oriented boundary of the set Q”.

For example, the positively oriented boundary of Q3 is

[eh e2: e3] — [09 e2 9 e3] + [Os els e3] _ [09 ela e2]°

Now let T be a 1-1 mapping of Q” into R", of class ‘6", whose Jacobian is
positive (at least in the interior of Q"). Let E = T(Q"). By the inverse function
theorem, E is the closure of an open subset of R". We define the positively
oriented boundary of the set E to be the (n — 1)-chain

0T: T(5O'0),

and we may denote this (n — 1)-chain by 6E.
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An obvious question occurs here: If E = Ti(Q") = T2(Q"), and if both
Ti and T, have positive Jacobians, is it true that 0Ti = 5T2? That is to say,
does the equality

JET; (D = JET; (D

hold for every (n — 1)-form co? The answer is yes, but we shall omit the proof.
(To see an example, compare the end of this section with Exercise 17.)

One can go further. Let

Q=Eiu---uE,,

where Ei = Ti( Q"), each Ti has the properties that T had above, and the interiors
of the sets Ei are pairwise disjoint. Then the (n — 1)-chain

5T1-1" '3'

is called the positively oriented boundary of Q.
For example, the unit square I2 in R2 is the union of oi(Q2) and o2(Q'3),

where

oi(u) = u, oi-i(u) = ei + e2 — u.

Both oi and (T2 have Jacobian 1 > 0. Since

°'1=[0,91,92], 0'2 = [91 +92»92,91]

we have

551 = [91, 921- [0, 92] + [0, 91],

552 = [92, 911- [91 + 92> 911+ [91 + 92, 92];

The sum of these two boundaries is

512 =10, 911+ [91, 91 + 921+ [91 + 92 t 921+ [92, 0],

the positively oriented boundary of I‘3 . Note that [ei, e2] canceled [e2 , ei].
If Q is a 2-surface in R"‘, with parameter domain I2, then Q (regarded as

a function on 2-forms) is the same as the 2-chain

Q ° 0'1 + Q 0 U2 -

Thus
5Q = d(Q o oi) + 6(Q Q (T2)

= Q(0oi) + Q(0o2) = Q(b‘I‘3).

In other words, if the parameter domain of Q is the square I2, we need
not refer back to the simplex Q2, but can obtain 6Q directly from 612.

Other examples may be found in Exercises 17 to 19.
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10.32 Example For 0 5 u 5 1:, 0 5 v 5 21:, define
E(it, v) = (sin u cos v, sin u sin v, cos u).

Then 22 is a 2-surface in R3, whose parameter domain is a rectangle D c R2,
and whose range is the unit sphere in R3. Its boundary is

5z=E((3D)=l’1+ll2+ll3‘|'l’4

where
yi(u) = E(it, 0) = (sin u, 0, cos u),

112(1)) = 7301. v) = (0, 0, -1).
y3(u) = E(it -- u, 21:) == (sin u, 0, —cos u),
y4(v) = Z(0, 21: — v) = (0, 0, 1),

with [0, 1:] and [0, 21:] as parameter intervals for u and v, respectively.
Since yz and 314 are constant, their derivatives are 0, hence the integral of

any 1-form over yz or yi is 0. [See Example 1.12(a).]
Since y3(u) = yi(t: -- u), direct application of (35) shows that

ia=_ia
73 Y1

for every 1-form co. Thus [ii co = 0, and we conclude that 62 = 0.
(In geographic terminology, 62 starts at the north pole N, runs to the

south pole S along a meridian, pauses at S, returns to N along the same meridian,
and finally pauses at N. The two passages along the meridian are in opposite
directions. The corresponding two line integrals therefore cancel each other.
In Exercise 32 there is also one curve which occurs twice in the boundary, but
without cancellation.)

STOKES’ THEOREM

10.33 Theorem U ‘P is a k-chain of class ‘6” in an open set V c R'" and if w
is a (k - 1)-form of class ‘E’ in V, then

(91) Ldco = Lye).
The case k = m = 1 is nothing but the fundamental theorem of calculus

(with an additional differentiability assumption). The case k = m = 2 is Green’s
theorem, and k = m = 3 gives the so-called “divergence theorem” of Gauss.
The case k = 2, m = 3 is the one originally discovered by Stokes. (Spivak’s
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book describes some of the historical background.) These special cases will be
discussed further at the end of the present chapter.

Proof It is enough to prove that

(92) L do) = La) to

for every oriented k-simplex Q of class ‘€” in V. For if (92) is proved and
if \P = ZQi , then (87) and (89) imply (91).

Fix such a Q and put
(93) o = [0, ei, ..., ei,].

kThus o is the oriented afline k-simplex with parameter domain Q which
is defined by the identity mapping. Since Q is also defined on Q" (see
Definition 10.30) and Q e ‘d”, there is an open set E c R" which contains
Q", and there is a ‘d”-mapping T of E into V such that Q = T o o. By
Theorems 10.25 and 10.22(c), the left side of (92) is equal to

[T dw= I (dw)i~= f d(wi~).
Another application of Theorem 10.25 shows, by (89), that the right side
of (92) is

f to = I (1) = J. (UT .
a(To) T(6o) do

Since toi- is a (k — 1)-form in E, we see that in order to prove (92)
we merely have to show that

94 d}. = It
( ) ‘"0 “"60

for the special simplex (93) andfor every (k — 1)-form )1 of class ‘E’ in E.

If k = 1, the definition of an oriented 0-simplex shows that (94)
merely asserts that

<95) I01 /to du -/<1) -fa»
for every continuously differentiable function f on [0, 1], which is true
by the fundamental theorem of calculus.

From now on we assume that k > 1, fix an integer r (1 5 r 5 k),
and choose fe ‘6’(E). It is then enough to prove (94) for the case

(96) )t=f(x) dxi AA dx,_i A dx,+i A A dxi,

since every (k — 1)-form is a sum of these special ones, for r = 1, ..., k.
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By (85), the boundary of the simplex (93) is
lt

do = [ei, ..., ei,] +_;i(-l)‘ti

where
1.'i= [0, ei, ..., ei_i, eiii, ..., eii]

fori= 1, ...,k. Put

T0= [e,,ei,...,e,_i,e,+i,...,e,,].

Note that to is obtained from [ei, ..., ei,] by r -- 1 successive interchanges
of e, and its left neighbors. Thus

(97) do= (-1)'"1t0 +_g(-1)*ti.
Each ti has Q"" as parameter domain.

u_i (l5j<r),
(98) xi: 1‘-(u1+"'+ut-1) (I=")>

Ifx = ri,(u) and u e Q"'"1, then

-_i (r <j5k).

lfl 5 i5 k, ue Q"“, and x = ti(u), then

ui (l 5j<i),

-_i (i<j5k).
(99) xi = {O = i),

uJ

For 0 5 i 5 k, let Ji be the Jacobian of the mapping

(ul, . . . , uk...1)“"7 (xl, . . . , X,._i, x'.+1, . . . , xk)

induced by t i. When i = 0 and when i = r, (98) and (99) show that (100)
is the identity mapping. Thus J0 = 1, J, = 1. For other i, the fact that
xi = 0 in (99) shows that Ji has a row of zeros, hence Ji = 0. Thus

(wn fi=0 a¢di¢n,

by (35) and (96). Consequently, (97) gives

(102) fa ,i=(-1)'""1f /1+(-1)'f /1

- 1-1r-1 j [f(To(")) -f(ti(11))]du-
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On the other hand,
d/1 --= (D,f)(x)dx, A dxi A A dx,_i A dx,+i A A dxi,

= (-1)"1(D.-f)(X)dXt A A dxi.
so that

(103) I it/1 = (-1)'-1fQk(1>,f)(x) dx.

We evaluate (103) by first integrating with respect to x, , over the interval

[0s1"_(x1 + H. +xr—1 +xr+1 + +xk)]>

put (xi, ..., x,_.i, x,+i, ..., xii) = (ui, . . . , u,i_i), and see with the aid of
(98) that the integral over Q" in (103) is equal to the integral over Q"'"
in (102). Thus (94) holds, and the proof is complete.

CLOSED FORMS AND EXACT FORMS

10.34 Definition Let as be a k-form in an open set E c: R”. If there is a (k — 1)-
form It in E such that to = d/1, then to is said to be exact in E.

If to is of class ‘6’ and dw = 0, then to is said to be closed.
Theorem l0.20(b) shows that every exact form of class <6’ is closed.
In certain sets E, for example in convex ones, the converse is true; this

is the content of Theorem 10.39 (usually known as Poincaré’s lemma) and
Theorem 10.40. However, Examples 10.36 and 10.37 will exhibit closed forms
that are not exact.

10.35 Remarks

(a) Whether a given k-form to is or is not closed can be verified by
simply differentiating the coefficients in the standard presentation of w.
For example, a 1-form

(104) to =_i1fi(x)dxi,
with fie‘€'(E) for some open set E c R", is closed if and only if the
equations

(105) (D,-ft)(X) = (Di.f)')(x)
hold for all i,j in {1, ..., n} and for all x e E.
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Note that (105) is a “pointwise” condition; it does not involve any
global properties that depend on the shape of E.

On the other hand, to show that to is exact in E, one has to prove
the existence of a form ), defined in E, such that d) = w. This amounts
to solving a system of partial differential equations, not just locally, but
in all of E. For example, to show that (104) is exact in a set E, one has
to find a function (or 0-form) g e %'(E) such that

(106) (Dig)(x) =fi(x) (x e E, 1 5 i 5 n).
Of course, (105) is a necessary condition for the solvability of (106).
(b) Let at be an exact k-form in E. Then there is a (k - 1)-form ) in E
with d) = oa, and Stokes’ theorem asserts that

(107) Lw=Ld)=J:W)
for every k-chain ‘P of class ‘€” in E.

If ‘Pi and ‘P, are such chains, and if they have the same boundaries,
it follows that

in ... = in ....
In particular, the integral of an exact k-form in E is 0 over every

k-chain in E whose boundary is 0.
As an important special case of this, note that integrals of exact

1-forms in E are 0 over closed (differentiable) curves in E.
(c) Let 00 be a closed k-form in E. Then dw = 0, and Stokes’ theorem
asserts that

(108) Lww = L dw = 0
for every (k + 1)-chain ‘P of class ‘6" in E.

In other words, integrals of closed k-forms in E are 0 over k-chains
that are boundaries of (k + 1)-chains in E.

(d) Let ‘P be a (k + 1)-chain in E and let ) be a (k - 1)-form in E, both
of class T”. Since dz). = 0, two applications of Stokes’ theorem show that

(109) La ,1 = fa‘? d) = Ldzi = 0.
‘P

We conclude that 6"‘P = 0. In other words, the boundary of t1
boundary is 0.

See Exercise 16 for a more direct proof of this.
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10.36 Example Let E = R3 -- {0}, the plane with the origin removed. The
1-form

x dy — y dx110 = ---_( ) :1 xi + y,
is closed in R3 - {0}. This is easily verified by differentiation. Fix r > 0, and
define
(lll) y(t)= (r cos t,rsin t) (05 t5 21:).

Then y is a curve (an “oriented l-simplex”) in R3 -- {0}. Since 11(0) = y(2t:),
we have
(112) 6y = 0.

Direct computation shows that

(113) fr1=2e¢0.
Y

The discussion in Remarks l0.35(b) and (c) shows that we can draw two
conclusions from (I13):

First, 11 is not exact in R3 - {0}, for otherwise (112) would force the integral
(113) to be 0.

Secondly, y is not the boundary of any 2-chain in R3 -- {0} (of class <6”),
for otherwise the fact that r) is closed would force the integral (113) to be 0.

10.37 Example Let E = R3 - {0}, 3-space with the origin removed. Define
xdyAdz+ydzAdx+zdxAdy(114) C (x2 + yz + z2)3/2"

where we have written (x, y, z) in place of (xi, xi , xi). Differentiation shows
that di,’ = 0, so that C is a closed 2-form in R3 -- {0}.

Let E be the 2-chain in R3 — {0} that was constructed in Example 10.32;
recall that Z is a parametrization of the unit sphere in R3. Using the rectangle
D of Example 10.32 as parameter domain, it is easy to compute that

(115) fC=fsinududv=41:;é0.
2. o

As in the preceding example, we can now conclude that C is not exact in
R3 - {0} (since 52 = 0, as was shown in Example 10.32) and that the sphere )3
is not the boundary of any 3-chain in R3 — {0} (of class Q5"), although 622 = 0.

The following result will be used in the proof of Theorem 10.39.
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10 38 Theorem Suppose E is a convex open set in R", fe ‘€'(E), p is an integer,
1 5 p 5 n, and
116 (DJ-f)(x)=0 (p <j$n,xeE).

Then there exists an F e ‘6'(E) such that
117 (DpF)(x) =f(x), (DjF)(x) = O (p <j$ n, X e E).

Proof Write x = (x’, xp, x”), where
X’ =(x1, ..., xp_1), x" = (xp+1, ..., x,,).

(When p = 1, x’ is absent; when p =n, x” is absent.) Let V be the
set of all (x’, x,,)eR" such that (x’, xp, x”)eE for some x". Being a
projection of E, V is a convex open set in R". Since E is convex and (116)
holds, f(x) does not depend on x”. Hence there is a function (p, with
domain V, such that

f(X) = ¢(X'» xp)
for all x e E.

If p = 1, V is a segment in R‘ (possibly unbounded). Pick ce V
and define

F(x) = In (p(t) dt (x e E).

If p > 1, let U be the set of all X’ e RP“ such that (x’, xp) e V for
some xp. Then U is a convex open set in RP”, and there is a function
oz e ‘6’(U) such that (x’, oc(x’)) e V for every x’ e U; in other words, the
graph of oz lies in V (Exercise 29). Define

F(x)=-- Ix’ qo(x’, 1) at (XEE).
a(x')

In either case, F satisfies (117).

(Note: Recall the usual convention that [Z means -- [Z if b < a.)

10 39 Theorem If E c R" is convex and open, if k Z l, if co is a k-form of
class <6’ in E, and ifdw = 0, then there is a (k -— 1)-form /1 in E such that co = d/1.

Briefly, closed forms are exact in convex sets.

Proof For p = 1, ..., n, let Yp denote the set of all k-forms w, of class
‘6' in E, whose standard presentation

118) w=Zf,(x)dx,

does not involve dxp+1,..., dx,,. In other words, I c: {l, ...,p} iff;(x) 9* 0
for some X E E.
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We shall proceed by induction on p.
Assume first that w e Y1. Then w =f(x)dx1. Since do) = 0,

(Djf)(x) = 0 for 1 <j s n, x e E. By Theorem 10.38 there is an F e €'(E)
such that DIF =fand DJF = 0 for 1 < j s n. Thus

dF = (D1F)(x)dx1 =-f(x) dxl = co.

Now we take p > 1 and make the following induction hypothesis:
Every closed k-form that belongs to Yp_1 is exact in E.

Choose w e Y, so that do) = 0. By (118),

(119) };_‘jg1(1>,f,)(x) ax, A dx, = dw = 0.
Consider a fixed j, with p <j 5 n. Each I that occurs in (118) lies in
{l, ..., p}. If I1, I2 are two of these k-indices, and if I1 aé I2, then the
(k + 1)-indices (I1,j), (I2 ,j) are distinct. Thus there is no cancellation,
and we conclude from (119) that every coeflicient in (118) satisfies

(120) (Dtf;)(X) = 0 (X 6 E, 11 <1‘ s ")-
We now gather those terms in (118) that contain dxp and rewrite to

in the form
(121) w=ot+ ;f,(x) dxfo A dxp,

where at e Y,,_,, each I0 is an increasing (k - 1)-index in {l, ..., p - 1},
and I = (I0, p). By (120), Theorem 10.38 furnishes functions F,e €'(E)
such that

(122) D,,F;=f1, DjF,=0 (p<j5n).
Put

(123) fl = ;F,(x) dxfo

and define y = w - (-1)""‘ dfl. Since B is a (k - 1)-form, it follows that
P

y = co - ;0:j;(Dj F,)(x) dx,o /\ dxj

p—1
="- a — dxfo /\ dxj,

which is clearly in Y,,_1. Since do) = 0 and dzfl = 0, we have dy = 0.
Our induction hypothesis shows therefore that y = dp for some
(k - 1)-form ,u in E. If 11 = it + (- 1)""1B, we conclude that to = dl.

By induction, this completes the proof.
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10.40 Theorem Fix k, 1 5 k 5 n. Let E c R" be an open set in which every
closed k-form is exact. Let T be a 1-1 4?”-mapping of E onto an open set U c R"
whose inverse S is also of class ‘6".

Then every closed k-form in U is exact in U.

Note that every convex open set E satisfies the present hypothesis, by
Theorem 10.39. The relation between E and U may be expressed by saying
that they are <5"-equivalent.

Thus every closedform is exact in any set which is ‘6"-equivalent to a convex
open set.

Proof Let w be a k-form in U, with dw = 0. By Theorem l0.22(c),
oar is a k-form in E for which d(wT) = 0. Hence wT = dl for some
(k — 1)-form /1 in E. By Theorem 10.23, and another application of
Theorem l0.22(c),

w = (@r)s == (d/Us = 401$)-
Since /ls is a (k - 1)-form in U, w is exact in U.

10.41 Remark In applications, cells (see Definition 2.17) are often more con-
venient parameter domains than simplexes. If our whole development had
been based on cells rather than simplexes, the computation that occurs in the
proof of Stokes’ theorem would be even simpler. (It is done that way in Spivak’s
book.) The reason for preferring simplexes is that the definition of the boundary
of an oriented simplex seems easier and more natural than is the case for a cell.
(See Exercise 19.) Also, the partitioning of sets into simplexes (called “triangu-
lation”) plays an important role in topology, and there are strong connections
between certain aspects of topology, on the one hand, and differential forms,
on the other. These are hinted at in Sec. 10.35. The book by Singer and Thorpe
contains a good introduction to this topic.

Since every cell can be triangulated, we may regard it as a chain. For
dimension 2, this was done in Example 10.32; for dimension 3, see Exercise 18.

Poincaré’s lemma (Theorem 10.39) can be proved in several ways. See,
for example, page 94 in Spivak’s book, or page 280 in Fleming’s. Two simple
proofs for certain special cases are indicated in Exercises 24 and 27.

VECTOR ANALYSIS

We conclude this chapter with a few applications of the preceding material to
theorems concerning vector analysis in R3. These are special cases of theorems
about differential forms, but are usually stated in different terminology. We
are thus faced with the job of translating from one language to another.
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10.42 Vector fields Let F = F1 e1 + F2 ez + F3 e3 be a continuous mapping of
an open set E <: R3 into R3. Since F associates a vector to each point of E, F
is sometimes called a vector field, especially in physics. With every such F is
associated a 1-form

/‘ii-=F16lX+F26ly+F3dZ

and a 2-form

(125) oJF=F1dy/\dz+F2dz/\dx+F;~,dx/\dy.

Here, and in the rest of this chapter, we use the customary notation (x, y, z)
in place of (xl, x2 , x3).

It is clear, conversely, that every 1-form ,1 in E is AF for some vector field
F in E, and that every 2-form w is 0),. for some F. In R3, the study of 1-forms
and 2-forms is thus coextensive with the study of vector fields.

If u e ‘6'(E) is a real function, then its gradient

Vu = (D1u)e1 + (D2 u)e; + (D3 u)e,
is an example of a vector field in E.

Suppose now that F is a vector field in E, of class ‘d’. Its curl V >< F is the
vector field defined in E by

V X F = (D2Fs "' D3F2)e1 + (D3F1 " D1F3)e2 +(D1F2 " DzF1)93

and its divergence is the real function V - F defined in E by
V'F=D1F1 +D2F2+D3F3.

These quantities have various physical interpretations. We refer to the
book by O. D. Kellogg for more details.

Here are some relations between gradients, curls, and divergences.

10.43 Theorem Suppose E is an open set in R3, u e ‘d"(E), and G is a vector
field in E, of class C".

(a) lfF==Vu,thenV><F=0.
(b) IfF= V><G,thenV'F=0.

Furthermore, if E is ‘d"-equivalent to a convex set, then (a) and (b) have
converses, in which we assume that F is a vectorfield in E, of class ‘6’:

(a') IfV >< F = 0, then F = Vufor some u e ‘d"(E).
(b') IfV - F = 0, then F = V >< Gfor some vectorfield G in E, ofclass Q?”

Proof If we compare the definitions of Vu, V x F, and V - F with the
differential forms AF and (DF given by (124) and (125), we obtain the
following four statements:
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F = Vu if and only if AF = du.
V><F=0 ifandonlyif di,. =0.

F=V><G ifandonlyif cor =d}.G.
V-F=0 ifand onlyif dcoF=0.

Now ifF = Vu, then 1, = du, hence di, = dzu = 0 (Theorem 10.20),
which means that V x F = 0. Thus (a) is proved.

As regards (a'), the hypothesis amounts to saying that d/1,. = 0 in E.
By Theorem 10.40, A, = du for some 0-form u. Hence F = Vu.

The proofs of (b) and (b') follow exactly the same pattern.

10.44 Volume elements The k-form

dxl A A dxk

is called the volume element in R". It is often denoted by dV (or by dV,, if it
seems desirable to indicate the dimension explicitly), and the notation

(126) Lf(x)dx1 /\ /\ ax, = f fdV
0

is used when ID is a positively oriented k-surface in R" and f is a continuous
function on the range of (D.

The reason for using this terminology is very simple: If D is a parameter
domain in R", and if (D is a 1-1 ‘K’-mapping of D into R", with positive Jacobian
J4, , then the left side of (126) is

[D/<<1><u>>1.<u> du = (mica) dx.
by (35) and Theorem 10.9.

In particular, whenf= 1, (126) defines the volume of <1). We already saw
a special case of this in (36).

The usual notation for dV2 is dA.

10.45 Green’s theorem Suppose E is an open set in R2, oz e %'(E), 5 e ‘€’(E),
and Q is a closed subset of E, with positively oriented boundary 6Q, as described
in Sec. 10.31. Then

as 60:(127) fand dx + p dy) = fa (5 - 5;) 4,1.
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Proof Put A --= at dx + B dy. Then

d). = (D2ot) dy A dx + (D1fi)dx A dy

= _ DZ“) dA>

and (127) is the same as

A = di,
‘LO JT2

which is true by Theorem 10.33.

With oc(x, y) = —y and B(x, y) = x, (127) becomes

(128) 1: f (x dy --ydx) =/1(0).
dfl

the area of £2.
With oz = 0, ,6 = x, a similar formula is obtained. Example 10.12(b) con-

tains a special case of this.

10.46 Area elements in R3 Let Q be a 2-surface in R3, of class ‘K’, with pa-
rameter domain D c R2. Associate with each point (u, v) e D the vector

(129) N(u,v)= e1 + e2+ 
The Jacobians in (129) correspond to the equation

(130) (x. y. Z) = <I>(u. v)-
If f is a continuous function on Q(D), the area integral off over Q is

defined to be

(131) I /4,4 = I f(Q(u, v))|N(u, v)| du dv.
Q D

In particular, whenf= 1 we obtain the area of Q, namely,

(132) A(Q) = fD|N(u, v)| at dv.
The following discussion will show that (131) and its special case (132)

are reasonable definitions. It will also describe the geometric features of the
vector N.

Write Q = rplel + (P292 + rp3e3, fix a point po --- (uo, vo) e D, put
N =N(p0): put

(133) °¢i==(D1<P1)(Po). Bt=(D2<P1)(Po) (i=1.2. 3)
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and let T e L(R3, R3) be the linear transformation given by

(134) To. 1») = §1<a.u + t.v>e..
Note that T = Q’(p0), in accordance with Definition 9.11.

Let us now assume that the rank of T is 2. (If it is 1 or 0, then N = 0, and
the tangent plane mentioned below degenerates to a line or to a point.) The
range of the aifine mapping

(14. v) -> ‘1>(Pe) + T(u. v)
is then a plane H, called the tangent plane to Q at po. [One would like to call
H the tangent plane at (D(p0), rather than at po ; if Q is not one-to-one, this runs
into difficulties.]

If we use (133) in (129), we obtain

(135) N = (<12 133 _ as B2)e1 + (as 131 "‘ °‘1l6a)°2 +(°l1l32 "‘ <12 fi1)e3 »

and (134) shows that
3 3

T81 ='-'iZ10t;8i, Te: = Z1-fife; .

A straightforward computation now leads to
N ' (T61) 3 0 = N ' (T82).

Hence N is perpendicular to l'I. It is therefore called the normal to Q at po.
A second property of N, also verified by a direct computation based on

(135) and (136), is that the determinant of the linear transformation of R3 that
takes {e1, e2 , es} to {Te,, Te, , N} is [N | 2 > 0 (Exercise 30). The 3-simplex

[09 Tel: Te2s l

is thus positively oriented.
The third property of N that we shall use is a consequence of the first two:

The above-mentioned determinant, whose value is IN | 3, is the volume of the
parallelepiped with edges [0, Te1], [0, Te2], [0, N]. By (137), [0, N] is perpen-
dicular to the other two edges. The area of the parallelogram with vertices

(139) 0, Tel, Te; , T(e1 + e2)

is therefore |N| .
This parallelogram is the image under T of the unit square in R3. If E

is any rectangle in R2, it follows (by the linearity of T) that the area of the
parallelogram T(E) is

(140) A(T(E))= |N|A(E)= f |N(u0, 11,)! at dv.
E
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We conclude that (132) is correct when Q is affine. To justify the definition
(132) in the general case, divide D into small rectangles, pick a point (uo , vo)
in each, and replace Q in each rectangle by the corresponding tangent plane.
The sum of the areas of the resulting parallelograms, obtained via (140), is then
an approximation to A(Q). Finally, one can justify (131) from (132) by approxi-
matingfby step functions.

10.47 Example Let 0 < a < b be fixed. Let K be the 3-cell determined by

05t5a, 05u521t, 0$v521t.

The equations

x=tcosu
(141) y=(b + tsin u) cosv

z=(b+tsinu)sinv

describe a mapping ‘P of R3 into R3 which is 1-1 in the interior of K, such that
‘I’(K) is a solid torus. Its Jacobian is

J.,.=?£c-J—’—i)=t(b+tsinu)
d(t, u, v)

which is positive on K, except on the face t = 0. If we integrate Jo over K, we
obtain

vol (‘P(K)) = 211:3a3b

as the volume of our solid torus.
Now consider the 2-chain Q = 5\P. (See Exercise 19.) ‘P maps the faces

u = 0 and u = 21: of K onto the same cylindrical strip, but with opposite orienta-
tions. ‘I’ maps the faces v = 0 and v = 21: onto the same circular disc, but with
opposite orientations. ‘P maps the face t = 0 onto a circle, which contributes 0
to the 2-chain 61’. (The relevant Jacobians are 0.) Thus Q is simply the 2-surface
obtained by setting t = a in (141), with parameter domain D the square defined
by05u521t,05v521r.

According to (129) and (141), the normal to Q at (u, v) e D is thus the
vector

N(u, v) = a(b + a sin u)n(u, v)

where

u(u, v) = (cos u)e] + (sin u cos v)e2 + (sin u sin v)e3.
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Since |n(u, v)| = 1, we have [N(u, v)| = a(b + a sin u), and if we integrate this
over D, (131) gives

A(Q) = 4n3ab
as the surface area of our torus.

If we think of N = N(u, v) as a directed line segment, pointing from
Q(u, v) to Q(u, v) + N(u, v), then N points outward, that is to say, away from
‘P(K). This is so because J.) > 0 when t = a.

For example, take u = v = 11:/2, t = a. This gives the largest value of z on
\I'(K), and N = a(b + a)e3 points “upward” for this choice of (u, v).

10.48 Integrals of 1-forms in R3 Let y be a ‘6"-curve in an open set E <: R3,
with parameter interval [0, 1], let F be a vector field in E, as in Sec. 10.42, and
define AF by (124). The integral of 1,. over y can be rewritten in a certain way
which we now describe.

For any u e[0,1],

)"(") == v{(u)e1 + )’2'(")¢2 + v$(11)ea
is called the tangent vector to )2 at u. We define t = t(u) to be the unit vector in
the direction of y'(u). Thus

t(u) = lv'(u)l t(u)-
[If y’(u) = 0 for some u, put t(u) = e1; any other choice would do just as well.]
BY (35).

3 1j1.= Z j F.()(~))1;(u)du
y i=1 0

(142) = j1F()(u)) ~ t(u) du
O

= fo1F()(u)) ~ 1(u)lv’(u)l du.
Theorem 6.27 makes it reasonable to call |y’(u)| du the element of arc

length along y. A customary notation for it is ds, and (142) is rewritten in the
form

(143) f 2,.= f (F-t)ds.
Y Y

Since t is a unit tangent vector to y, F - t is called the tangential component
of F along )1.
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The right side of (143) should be regarded as just an abbreviation for the
last integral in (142). The point is that F is defined on the range of y, but t is
defined on [0, 1]; thus F - t has to be properly interpreted. Of course, when y
is one-to-one, then t(u) can be replaced by t(y(u)), and this diificulty disappears.

10.49 Integrals of 2-forms in R3 Let Q be a 2-surface in an open set E c R3 ,
of class <6’, with parameter domain D c R3. Let F be a vector field in E, and
define wF by (125). As in the preceding section, we shall obtain a different
representation of the integral of (1); over Q.

By (35) and (129),

LwF = L(F1 dy A dz + F2 dz A dx + F3 dx A dy)

5(, ) @(, ) @( . )=fD{(F,o(1>)%+ (F2oQ)a(%'Z)+ (F3oQ)a();,J;)}dudv

= J. F(Q(u, v)) - N(u, v) du dv.
D

Now let n = n(u, v) be the unit vector in the direction of N(u, v). [If
N(u, v) = 0 for some (u, v) e D, take n(u, v) = e1.] Then N = [N In, and there-
fore the last integral becomes

I F(Q(u, v)) - n(u, v)| N(u, v)|du dv.
D

By (131), we can finally write this in the form

(144) j¢w,.= J3¢(F-n)dA.

With regard to the meaning of F ' n, the remark made at the end of Sec. 10.48
applies here as well.

We can now state the original form of Stokes’ theorem.

10.50 Stokes’ formula If F is a vector field of class ‘6" in an open set E c R3,
and if Q is a 2-surface of class Q?" in E, then

(145) f¢(v >< F) ~11 4.4 = fm(F-1)ds.

Proof Put H = V x F. Then, as in the proof of Theorem 10.43, we have

(146) co" = d2F.
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Hence

fQ(v >< F)-11 ax = [oar - 11) 4,4 = 100),,

=Ld2,= L¢2,=fm(F-1) ds.
Here we used the definition of H, then (144) with H in place of F,

then (146), then-——the main step—Theorem 10.33, and finally (143),
extended in the obvious way from curves to 1-chains.

10.51 The divergence theorem If F is a vectorfield of class ‘K’ in an open set
E c R3, and if Q is a closed subset of E with positively oriented boundary 5Q
(as described in Sec. 10.31) then

(147) I (v - F) at/= f (F '11) dA.
n an

Proof By (125),
dcoF=(V~F)dxAdyAdz=(V-F)dV.

Hence

f(v-F)dV=j dw,=f w,.=J" (F-n)dA,
Q Q an 69

by Theorem 10.33, applied to the 2-form (1),, , and (144).

EXERCISES
1. Let H be a compact convex set in R", with nonempty interior. Let f e ‘6(H), put
f(x) = 0 in the complement of H, and define jgf as in Definition 10.3.

Prove that In f is independent of the order in which the k integrations are
carried out.

Hint: Approximate f by functions that are continuous on R“ and whose
supports are in H, as was done in Example 10.4.

2. For i= 1, 2, 3, ..., let (p. e ‘6(R‘) have support in (2"‘, 21"), such that jtp, == 1.
Put

f(x» J’) =‘;1[§91(-X) "" 991+ 1(x)I<Pl(y)

Then fhas compact support in R3, f is continuous except at (0, 0), and

J‘dyJ3f(x,y)dx-= 0 but fdxff(x,y)dy= 1.
Observe that f is unbounded in every neighborhood of (0, 0).
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(a) If F is as in Theorem 10.7, put A = F’(0), F1(x) = A"‘F(x). Then Fi(0) = I.
Show that

F1(X)= G" ° Gn_1 0 "' ° G1(X)

in some neighborhood of 0, for certain primitive mappings G,, . .., G,,. This
gives another version of Theorem 10.7:

F(x) = F’(0)G,, <> G,,-1 Q "' 0 G1(x).

(b) Prove that the mapping (x, y) ->(y, x) of R3 onto R’ is not the composition
of any two primitive mappings, in any neighborhood of the origin. (This shows
that the flips B, cannot be omitted from the statement of Theorem 10.7.)
For (x, y) e R3, define

F(x, y) = (e" cos y -— 1, e" sin y).

Prove that F = G, <> G1, where

G1(x, y) = (@" (=08 y — 1. y)
G201, v) = (M. (1 + u) tan v)

are primitive in some neighborhood of (0, 0).
Compute the Jacobians of G1, G, , F at (0, 0). Define

H2(x, y) = (x. e“ sin y)
and find

I"I1(u. v) = (/1(u,v). v)
so that F = H1 <> H2 is some neighborhood of (0, 0).
Formulate and prove an analogue of Theorem 10.8, in which K is a compact
subset of an arbitrary metric space. (Replace the functions qo, that occur in the
proof of Theorem 10.8 by functions of the type constructed in Exercise 22 of
Chap. 4.)
Strengthen the conclusion of Theorem 10.8 by showing that the functions Ifi, can
be made differentiable, and even infinitely differentiable. (Use Exercise 1 of
Chap. 8 in the construction of the auxiliary functions (pt .)
(a) Show that the simplex Q“ is the smallest convex subset of R“ that contains
0, e1, ...,e,..
(b) Show that affine mappings take convex sets to convex sets.
Let H be the parallelogram in R2 whose vertices are (1, 1), (3, 2), (4, 5), (2, 4).
Find the afline map T which sends (0, 0) to (1, 1), (1, 0) to (3, 2), (0, 1) to (2, 4).
Show that JT = 5. Use T to convert the integral

at = I e""‘ dx dy
H

to an integral over I3 and thus compute at.
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9. Define (x, y) = T(r, 6) on the rectangle

10.

11

12.

0 5 r 5 a, 0 5 9 5 211'

by the equations
x=rcos6, y=rsin6.

Show that T maps this rectangle onto the closed disc D with center at (0, 0) and
radius a, that T is one-to-one in the interior of the rectangle, and that JT(r, 6) = r.
Iffe %(D), prove the formula for integration in polar coordinates:

L f(x, y) dx dy = 1' _[ 3“ f(T(r, 0))» dr av.
Hint: Let Do be the interior of D, minus the interval from (0, 0) to (0, a).

As it stands, Theorem 10.9 applies to continuous functions fwhose support lies in
Do . To remove this restriction, proceed as in Example 10.4.
Let a -> 00 in Exercise 9 and prove that

I f(x, y) dx dy = I 3 1“ f(T(r, 0))r at 40,

for continuous functions f that decrease sufiiciently rapidly as|x| + |y| ——> 00.
(Find a more precise formulation.) Apply this to

f(x. y) = eX1>(-—x’ — y’)
to derive formula (101) of Chap. 8.
Define (u, v) = T(s, t) on the strip

0 < S < 00, 0 < I < 1

by setting u = s — st, v =- st. Show that T is a 1-1 mapping of the strip onto the
positive quadrant Q in R’. Show that J1-(s, t) = s.

For x > 0, y > 0, integrate
ax-1e-uvy-1e-v

over Q, use Theorem 10.9 to convert the integral to one over the strip, and derive
formula (96) of Chap. 8 in this way.

(For this application, Theorem 10.9 has to be extended so as to cover certain
improper integrals. Provide this extension.)
Let I" be the set of all u= (al, ..., uh) e R" with 0 5u, 51 for all i; let Q" be the
set of all x =(x1, . .., x,,) e R" with x120, Ex, 51. (I" is the unit cube; Q“ is
the standard simplex in R".) Define x = T(u) by

X1 = U1

X3 = "- U1)”;

x),=(l '-'ll1) "'(I --Uk_1)ll|;.
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Show that
k k

x,=l——l]:I1(1-—u,).

Show that T maps I" onto Q", that T is 1-1 in the interior of I", and that its
inverse S is defined in the interior of Q“ by u, = x1 and

EM

-xi
ll;

l__x1__oo0,__xl—1

for i= 2, . . . , k. Show that

-/r(")=(1_ "1)k'l(1-' W2)“: " '(1"' "11-1),

and

Js(X)=[(1— x1)(1— X1 -- Xz)"'(1— -*1 "' '" Xu-1)l_1-

Let r1, . . . , r,, be nonnegative integers, and prove that

,, , r1! rt!
‘lqkxll 3 3 3 xkk dx 3; (k 1'1 "l'3'3‘T' + Tr)!

Hint: Use Exercise 12, Theorems 10.9 and 8.20.
Note that the special case r1 = -'-= rt = 0 shows that the volume of Q“

is 1/kl.
Prove formula (46).
If cu and A are k- and m-forms, respectively, prove that

to /\ A =(-—1)“'”t\ /\ w.

If k 2 2 and o: = [po , p1, . . . , pk] is an oriented affine k-simplex, prove that 810- = 0,
directly from the definition of the boundary operator 8. Deduce from this that
8“P' -—- 0 for every chain ‘P’.

Hint: For orientation, do it first for k = 2, k = 3. In general, if i < j, let 0-,,
be the (k — 2)-simplex obtained by deleting p, and pJ from 0'. Show that each 0-,)
occurs twice in 810, with opposite sign.
Put J3 = 1-, + 1-, , where

T1 = [09 els el + ell, 72 = '— [03 e2 3 e2 + e1]'

Explain why it is reasonable to call J3 the positively oriented unit square in R3.
Show that 3]’ is the sum of 4 oriented affine 1-simplexes. Find these. What is
8('r1 — 1'2)?

Consider the oriented afline 3-simplex

<n=[0,e1. e1+e1,e1+e1+e3]
in R3. Show that 0'1 (regarded as a linear transformation) has determinant 1.
Thus 0, is positively oriented.
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19

20.

21

Let 0, , ..., 0'5 be five other oriented 3-simplexes, obtained as follows:
There are five permutations (i1, i2 , is) of (1, 2, 3), distinct from (1, 2, 3). Associate
with each (i1, 1', , i3) the simplex

-90.1, 1.2, i3)[09 911: 911 "l" 912 9 911 + 912 + 913]

where s is the sign that occurs in the definition of the determinant. (This is how -1-,
was obtained from 7'1 in Exercise 17.)

Show that 0'2 9 ..., 0., are positively oriented.
Put J3 = 0'1 + + 0'5. Then J3 may be called the positively oriented unit

cube in R3.
Show that 8]’ is the sum of 12 oriented afiine 2-simplexes. (These 12 tri-

angles cover the surface of the unit cube I3.)
Show that x =(x1, x2, X3) is in the range of 0'1 if and only if 0 5 X3 5x;

g X1 g 1-
Show that the ranges of 0'1, ..., 0., have disjoint interiors, and that their

union covers I3. (Compare with Exercise 13; note that 3! = 6.)
Let J2 and J3 be as in Exercise 17 and 18. Define

-B01(us U) = (0: us U): -B11(us U) = (ls us U):

B02(us D) := (us Os U): B120’: D) == (us 1: U)!

B°3(us U) = (us vs 0): -B130‘! D) = (us vs 1)'

These are affine, and map R’ into R3.
Put B,,=B,,(J’), for r=0, 1, i= 1,2, 3. Each B.) is an afiine-oriented

2-chain. (See Sec. 10.30.) Verify that

3 "Mui
M8-I3 = -1)3(Bot "' B11),

in agreement with Exercise 18.
State conditions under which the formula

f raw = [Mia — foot) /\ A
is valid, and show that it generalizes the formula for integration by parts.

Hint.’ d(fw) -= (Of) /\ w +fdw.
As in Example 10.36, consider the 1-form

_ x dy — y dx
37 7- x2 +_ ya

in R’ -- {0}.

(a) Carry out the computation that leads to formula (113), and prove that d1; = 0.

(b) Let 'y(t) = (r cos t, r sin t), for some r > 0, and let I‘ be a ‘6”-curve in R’ -- {0},
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with parameter interval [0, 211'], with F(0) = I'(21r), such that the intervals ['y(t),
1"(t)] do not contain 0 for any t e [0, 211]. Prove that

L1] = 211'.

Hint: For 0 5 t 5 211, 0 5 u 51, define

<I>(t. 11) = (1 — M) P0) + W0)-
Then Q is a 2-surface in R3 — {0} whose parameter domain is the indicated rect-
angle. Because of cancellations (as in Example 10.32),

8(1) =- P — 'y.

Use Stokes’ theorem to deduce that

lfl,"
because dn = 0.

(c) Take F(t)= (a cos t, b sin t) where a >0, b >0 are fixed. Use part (b) to
show that

3“ ab at 2lo a’ cos’ t + b’ sin’ t T Tr‘

(d) Show that

_ Z1; -- d(arc tan x)

in any convex open set in which x ah 0, and that

= d — arc tanf)4 ( J,
in any convex open set in which y aé 0.

Explain why this justifies the notation 1; = d0, in spite of the fact that 1; is
not exact in R’ — {0}.

(e) Show that (b) can be derived from (d).

(f) If 1" is any closed ‘K’-curve in R’ -—- {0}, prove that

127 I 1; = Ind(P).
F

(See Exercise 23 of Chap. 8 for the definition of the index of a curve.)
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22 As in Example 10.37, define l in R3 -—- {0} by

___xdy /\dz+ydz /\dx+zdx /\ dy
:3 YT 9 r3 3 TC

where r = (x3 -1- y’ -1- 2*)“, let D be the rectangle given by 0 5 u 5 1r, 0 5 v 5 211',
and let E be the 2-surface in R3, with parameter domain D, given by

x=sinucos v, y=sinusin v, z=cos u.

(a) Prove that dl = 0 in R3 -—- {0}.

(b) Let S denote the restriction of E to a parameter domain E <'-' D. Prove that

L Z; = Lsin udu dv= A(S),

where A denotes area, as in Sec. 10.43. Note that this contains (115) as a special
case.

(c) Suppose g, hl, h, , ha, are Q?"-functions on [0, 1], g > 0. Let (x, y, z) = Q(s, t)
define a 2-surface Q, with parameter domain I3, by

x = a(t)h1(-1"). .v = a(t)h1(s). Z = 9(1)/u(t).
Prove that

Lt=m
directly from (35).

Note the shape of the range of Q: For fixed s, Q(s, t) runs over an interval
on a line through 0. The range of Q thus lies in a “cone” with vertex at the origin.

(d) Let E be a closed rectangle in D, with edges parallel to those of D. Suppose
f e ‘d”(D), f> 0. Let Q be the 2-surface with parameter domain E, defined by

Q01. v) =f(11. v) E (M. v)-
Define S as in (b) and prove that

Lt=Lt=Aw)
(Since S is the “radial projection” of Q into the unit sphere, this result makes it
reasonable to call jnlj the “solid angle” subtended by the range of Q at the origin.)

Hint: Consider the 3-surface ‘P’ given by

‘P‘(t. 11. v) = [1 — t+ tf(u. 11)] E (11. v).
where (u, v) e E, 0 5 t 5 1. For fixed v, the mapping (t, u) —->‘P‘(t, u, v) is a 2-sur-
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face Q to which (c) can be applied to show that Isl = 0. The same thing holds
when u is fixed. By (a) and Stokes’ theorem,

fWt=Ldt=0.

(e) Put A = -— (z/r)1;, where
x dy —-y dx

Tl— x2+y2 9

as in Exercise 21. Then A is a 1-form in the open set V C R3 in which xi + y’ > O.
Show that Q is exact in V by showing that

§=di1.

(f) Derive (d) from (e), without using (c).
Hint: To begin with, assume 0 < u < tr on E. By (e),

fnt=fm)( and fst=f0s>(.
Show that the two integrals of )1 are equal, by using part (d) of Exercise 21, and by
noting that z/r is the same at E(it, v) as at Q(u, v).

(g) Is Z,‘ exact in the complement of every line through the origin?
Fix n. Define r,, --= (xi + +xi)” for 15k 5n, let E, be the set of all X e R"
at which r,, > 0, and let wk be the (k — 1)-form defined in E, by

wk=(l’1<)_ki£\:1("'1)'_1X1dx1 /\ /\d-X1-1 /\dx1+1 /\ /\ dxlw

Note that Q); = 17, co; = 2;, in the terminology of Exercises 21 and 22. Note
also that

E, CE, <1 <:E,,=R"-—{0}.
(a) Prove that d(a,, = 0 in E,..
(b) For k = 2, . . . , n, prove that wk is exact in E,,_,, by showing that

wk = d(f¢<1J1¢-1) = /\ wk-ls

wheref1.(X) = (— 1)“ aim/rt) and

g,.(t)=f' (1-1-1)“-=>/1 ds (-1 <t<1).
-1

Hint: f,, satisfies the differential equations

X ' (Vfl)(X) = 0

(Dkfl<)(X) (_ ‘W -
and
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(c) Is o),, exact in En?
(d) Note that (b) is a generalization of part (e) of Exercise 22. Try to extend some
of the other assertions of Exercises 21 and 22 to o),, , for arbitrary n.

24. Let o) =2a,(x) dx, be a 1-form of class '6” in a convex open set E <3 R". Assume
do) = 0 and prove that o) is exact in E, by completing the following outline:

Fix p e E. Define

f(X) = [M] <1) (X e E).

Apply Stokes’ theorem to affine-oriented 2-simplexes [p, x, y] in E. Deduce that

to) -r(x) = ()4 - x.) fo1a.((1 - ox + o) dt
for x e E, y e E. Hence (D,f)(x) = a,(x).

25. Assume that o) is a 1-form in an open set E <3 R" such that

fo)=O
V

for every closed curve y in E, of class ‘F’. Prove that o) is exact in E, by imitating
part of the argument sketched in Exercise 24.

26. Assume o) is a 1-form in R3 —- {0}, of class ‘F’ and do) =0. Prove that o) is exact in
R3 — {0}.

Hint: Every closed continuously differentiable curve in R3 — {0} is the
boundary of a 2-surface in R3 -— {0}. Apply Stokes’ theorem and Exercise 25.

27. Let E be an open 3-cell in R3, with edges parallel to the coordinate axes. Suppose
(a, b, c) e E,f, e %"(E) for i=1, 2, 3,

(1)=_/31dy/\dZ-l-_fgdZ/\dX"l'f3dx/\dy,

and assume that do) = 0 in E. Define

F1 = at dx + at dy
where

a1(x. y. Z) = f I no. y. s) as — f ”t.(x. I. c) 4»
g.(x. y. Z) = - f f1(X,y. S) ds,

for (x, y, z) e E. Prove that dll = o) in E.
Evaluate these integrals when o) = Z; and thus find the form )1 that occurs in

part (e) of Exercise 22.
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Fix b > a > 0, define

Q(r, 0) = (r cos 0, r sin 0)

for a 5 r 5 b, 0 5 6 5 211'. (The range of Q is an annulus in R3.) Put o) = x3 dy,
and compute both

L do) and Loo)

to verify that they are equal.
Prove the existence of a function at with the properties needed in the proof of
Theorem 10.38, and prove that the resulting function F is of class W. (Both
assertions become trivial if E is an open cell or an open ball, since at can then be
taken to be a constant. Refer to Theorem 9.42.)
If N is the vector given by (135), prove that

051 B1 06253 -" 052482
det G2 B3 @381 "" @153 = INP-

Ola Ba OMB: '* 01251

Also, verify Eq. (137).
Let E <2 R3 be open, suppose g e ‘6”(E), h e ‘6”(E), and consider the vector field

F=gVh

(a) Prove that

V ' F=aV’/1+ (Va) - (V/1)
where Vzh = V - (Vh) = 2a=h/ext is the so-called “Laplacian” of h.
(b) If Q is a closed subset of E with positively oriented boundary 89 (as in
Theorem 10.51), prove that

8hf la V’h+(Va)'(V/1)]dV= f (@5414
where (as is customary) we have written oh/8n in place of (Vh) - II. (Thus 8h/8n
is the directional derivative of h in the direction of the outward normal to 8!), the
so-called normal derivative of h.) Interchange g and h, subtract the resulting
formula from the first one, to obtain

8h dg)V”h—hV’ at/= — —h—- dA.l,,(g 3) l,,, (3 an 8n
These two formulas are usually called Green’s identities.

(c) Assume that h is harmonic in E; this means that Vzh = 0. Take g = 1 and con-
clude that

] %dA = 0.
ma"
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Take g = h, and conclude that h = O in Q if h = 0 on 8!).
(d) Show that Green's identities are also valid in R’.

32. Fix8, O < 8 < 1. Let Dbethesetofall(6, t) e R’ suchthat0 g 0 $11, -8 gr§8.
Let <I> be the 2-surface in R’, with parameter domain D, given by

x=(1—tsin6)cos26
y=(l—tsin9)sin26
z==tcos6

where (x, y, z) = <I>(6, t). Note that <I>(-rr, t) = <I>(0, -—-r), and that <1) is one-to-one
on the rest of D.

The range M = <I>(D) of <1) is known as a Mdbius band. It is the simplest
example of a nonorientable surface.

Prove the various assertions made in the following description: Put
pl Z (0: —8)s P2 = (779 —8)s P3 = (779 8): P4: (Os 8): P5 = pl‘ Put Y1: [Pia Pt+1],

i=1,...,4,andputI‘,=<Do~y,. Then

a‘D=P1+F2+P3+P4-

Put a = (1, 0, -3), b = (1, 0, 8). Then

== =: as Z 2: bs

and 8<I> can be described as follows.
P1 spirals up from a to b; its projection into the (x, y)-plane has winding

number +1 around the origin. (See Exercise 23, Chap. 8.)
1‘, = [b, a].
P3 spirals up from a to b; its projection into the (x, y) plane has winding

number —l around the origin.
P4 = [bu a]'
Thus 8(1) = P1 + I‘; + 2I‘, .
If we go from a to b along 1‘, and continue along the “edge” of M until we

return to a, the curve traced out is

P Z P1 * P3 ,

which may also be represented on the parameter interval [0, 211-] by the equations

x=(1-1-8sin6)cos26
y=(l+8sin0)sin26
z= —-Scos 6.

It should be emphasized that F ¢ 8<I>: Let 1; be the 1-form discussed in
Exercises 21 and 22. Since d1] = 0, Stokes’ theorem shows that

I 1)=0.
00
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But although I‘ is the “geometric” boundary of M, we have

L17 = 41r.

In order to avoid this possible source of confusion, Stokes’ formula (Theorem
10.50) is frequently stated only for orientable surfaces (D.
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THE LEBESGUE THEORY

It is the purpose of this chapter to present the fundamental concepts of the
Lebesgue theory of measure and integration and to prove some of the crucial
theorems in a rather general setting, without obscuring the main lines of the
development by a mass of comparatively trivial detail. Therefore proofs are
only sketched in some cases, and some of the easier propositions are stated
without proof. However, the reader who has become familiar with the tech-
niques used in the preceding chapters will certainly find no difiiculty in supply-
ing the missing steps.

The theory of the Lebesgue integral can be developed in several distinct
ways. Only one of these methods will be discussed here. For alternative
procedures we refer to the more specialized treatises on integration listed in
the Bibliography.

SET FUNCTIONS

If A and B are any two sets, we write A — B for the set of all elements x such
that x e A, x ¢ B. The notation A - B does not imply that B c A. We denote
the empty set by 0, and say that A and B are disjoint if A n B = 0.
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11.1 Definition A family Q of sets is called a ring if A e Q and B e Q implies

(1) AuBeQ, A—BeQ.

SinceA nB=A —(A —B), we also haveA nBeQifQis a ring.
A ring Q is called a 0-ring if

(2) G A,, e Q
n= 1

whenever An e Q (n = 1, 2, 3, .. .). Since

' D1An = A1 _ U1(A1 _ An):

we also have

6 A,, e Q
n=1

if Q is a 0'-ring.

11.2 Definition We say that ¢ is a set function defined on Q if qb assigns to
every A e Q a number ¢(A) of the extended real number system. qb is additive
if A n B = 0 implies

(3) ¢(/4 K1 B) = ¢(/4) + ¢(B),
and (/2 is countably additive if A, n AJ = 0 (i aé j) implies

<4) ¢ =§1¢(A.>.
We shall always assume that the range of qb does not contain both + oo

and -oo; for if it did, the right side of (3) could become meaningless. Also,
we exclude set functions whose only value is + oo or - oo.

It is interesting to note that the left side of (4) is independent of the order
in which the A,,’s are arranged. Hence the rearrangement theorem shows that
the right side of (4) converges absolutely if it converges at all; if it does not
converge, the partial sums tend to + oo, or to - oo.

If (/2 is additive, the following properties are easily verified:

(5) ¢(0) = 0-
(6) ¢(A1vW1..)= <l>(/41) + + ¢(/4,.)
if A, Aj = O whenever i qéj.
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(7) ¢(A1 U A2) + ¢(A1 F‘ A2) = ¢(/11) + ¢(A2)-

If ¢(A) ,2 0 for all A, and A, c A2, then

(8) ¢(/11) 5 ¢(Az)-

Because of (8), nonnegative additive set functions are often called
monotonic.

(9) ¢(/1 — B) = ¢(/1) - ¢(B)
ifB c A, and |(¢B)| < + oo.

11.3 Theorem Suppose Q5 is countably additive on a ring Q. Suppose A,, E Q
(n= 1,2, 3,...),A1 CA2 cA3C '-',AeQ, and

A = Q .4,,.
n= 1

Then, as n —> oo,

¢(/1,.) -><i>(A)-

B":-'An'”An_1 (I1=2,3,...).

Then B, nBJ-=0fori;éj, A,,=B1 u u B,,, and A = L_JB,,. Hence

¢<A.) =_Z1¢(B.)
and

¢<A> ¢><B.>-

CONSTRUCTION OF THE LEBESGUE MEASURE

11.4 Definition Let R-" denote p-dimensional euclidean space. By an interval
in R” we mean the set of points x = (xl, ..., xp) such that

(10) a;.€X,-.€b,- (i=1,...,p),

or the set of points which is characterized by (10) with any or all of the s
signs replaced by <. The possibility that a, = b, for any value of i is not ruled
out; in particular, the empty set is included among the intervals.
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If A is the union of a finite number of intervals, A is said to be an elemen—
tary set.

If I is an interval, we define

m<1>= 1"! <1». - a.>.
i= 1

no matter whether equality is included or excluded in any of the inequalities (10).
If A = I1 u u In, and if these intervals are pairwise disjoint, we set

(1 1) m(A) = m(I1) + "' + m(I,,).

We let 6" denote the family of all elementary subsets of R1’.
At this point, the following properties should be verified:

(12) 6’ is a ring, but not a o-ring.
(13) If A e 6’, then A is the union of a finite number of disjoint intervals.
(14) If A E 6, m(A) is well defined by (l 1); that is, if two different decompo-

sitions of A into disjoint intervals are used, each gives rise to the same
value of m(A).

(15) m is additive on 6’.

Note that if p = 1, 2, 3, then m is length, area, and volume, respectively.

11.5 Definition A nonnegative additive set function d> defined on 6’ is said to
be regular if the following is true: To every A e <5’ and to every e > 0 there
exist sets F E 6, G e <5” such that F is closed, G is open, F c: A c G, and

(16) ¢(G) — 8 -é ¢(/1) S ¢(F) + 8-

11.6 Examples

(a) The set function m is regular.
If A is an interval, it is trivial that the requirements of Definition

11.5 are satisfied. The general case follows from (13).
(b) Take R-" = R1, and let oz be a monotonically increasing func-
tion, defined for all real x. Put

u([a, 11)) = <>=(b—) — u(a-),
/Ala. bl) = <>=(b+) — <==(a—),
u((a. bl) = <>¢(b+) - <X(a+).
u((a. b)) = <1(b—) — <1(a+)~

Here [a, b) is the set a sx< b, etc. Because of the possible discon-
tinuities of oz, these cases have to be distinguished. If u is defined for
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elementary sets as in (ll), it is regular on 6’. The proof is just like that
of (a).

Our next objective is to show that every regular set function on 6" can be
extended to a countably additive set function on a o-ring which contains <5”.

11.7 Definition Let u be additive, regular, nonnegative, and finite on <5”.
Consider countable coverings of any set E c RP by open elementary sets A,,:

Ec:n@1A,,.

Define

<11) »*<E> =inf itt<A.>.
the inf being taken over all countable coverings of E by open elementary sets.
u*(E) is called the outer measure of E, corresponding to u.

It is clear that u*(E) 2 0 for all E and that

(18) #*(E1) 5 #*(E2)
if E1 C E2 .

11.8 Theorem

(a) For every A e 6, u*(A) = u(A).

(b) If E = U then
f-I

=51\|

<19) u*(E) s i/»*<E.>.
n= 1

Note that (a) asserts that u* is an extension of pt from <8’ to the family of
all subsets of R-". The property (19) is called subadditivity.

Proof Choose A e <5’ and s > 0.

The regularity of u shows that A is contained in an open elementary
set G such that ,u(G) 5 u(A) + e. Since u*(A) 5 u(G) and since e was
arbitrary, we have

(20) #*(/1) é 11(4)-
The definition of u* shows that there is a sequence {An} of open

elementary sets whose union contains A, such that

i MA.) s ~*<A> + 8.
n=1
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The regularity of u shows that A contains a closed elementary set F such
that ,u(F) 2 u(A) — s; and since F is compact, we have

Fc A1 u w AN
for some N. Hence

u(A)__~;,u(F)+s_~;,u(A1u"-uAN)+s£§,,u(A,,)+s_€u*(A)+2e.
1

In conjunction with (20), this proves (a).
Next, suppose E = l_)E,,, and assume that u*(E,,) < + oo for all n.

Given s >0, there are coverings {A,,,,},k = 1, 2, 3, ..., of E, by open
elementary sets such that

<21) §1tt<A..> s u*(E..) + 2-"E
Then

oo oo oo
*~*<E>sn;1k§1~<A..>s "gilt <E..>+ 8.

and (19) follows. In the excluded case, i.e., if ;i*(E,,) = + oo for some n,
(19) is of course trivial.

11.9 Definition For any A c RP, B C RP, we define

(22) S(A, B) = (A — B) u (B — A),

(23) d(A, B) = u*($(A. 3))-
We write A,, -> A if

lim d(A, An) = 0.

If there is a sequence {An} of elementary sets such that A,, -+A, we say
that A is finitely ,u-measurable and write A e 9JlF(,u).

If A is the union of a countable collection of finitely ,u-measurable sets,
we say that A is ,u-measurable and write A e §JJl(u).

S(A, B) is the so-called “symmetric difference” of A and B. We shall see
that d(A, B) is essentially a distance function.

The following theorem will enable us to obtain the desired extension of u.

11.10 Theorem iUt(u) is a o"-ring, and u* is countably additive on ElJi(/4).

Before we turn to the proof of this theorem, we develop some of the
properties of S(A, B) and d(A, B). We have
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(24) S(A, B) = S(B, A), S(A, A) = 0.
(25) S(A, B) <1 S(A, c) o s(c, B).

S(A, u A2 , B1 u B2)
(26) S(A1 F) A2> B1 '0 B2) C S(/11,31) U S(A2 s B2)-

S(A1 '- A2 > B1 - B2)

(24) is clear, and (25) follows from

(A—B)<:(A-C)u(C—B), (B—A)c(C—A)u(B-—C).
The first formula of (26) is obtained from

(A1 v A2) — (B1 K1 B2) C (A1 - B1)v(/12 - B2)-
Next, writing E‘ for the complement of E, we have

S(A, rw A2, B2 n B2) = S(A§ u A2, Bf u B2)

and the last formula of (26) is obtained if we note that
A1 "_442=A1

By (23), (19), and (18), these properties of S(A, B) imply
(27) d(A, B) = d(B, A), d(A, A) = 0,
(28) d(A, B) s d(A, C) + d(C, B),

d(A1 u A2 , B2 u B2)
(29) d(A, n A2 , B1 n B2)} 5 d(A,, B1) + d(A2, B2).

d(/11 - A2, B1 — B2)
The relations (27) and (28) show that d(A, B) satisfies the requirements

of Definition 2.15, except that d(A, B) = 0 does not imply A = B. For instance,
if u = m, A is countable, and B is empty, we have

d(A, B) = m*(A) = 0;
to see this, cover the nth point of A by an interval 1,, such that

m(I,,) < 2""e.

But if we define two sets A and B to be equivalent, provided

d(A, B) = 0,
we divide the subsets of RP into equivalence classes, and d(A, B) makes the set
of these equivalence classes into a metric space. EDI,-(,u) is then obtained as the
closure of 6’. This interpretation is not essential for the proof, but it explains
the underlying idea.
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We need one more property of d(A, B), namely,

|u*(A) - u*(B)| é d(A, B).
if at least one of u*(A), u*(B) is finite. For suppose 0 5 u*(B) 5 u*(A).
Then (28) shows that

d(A,0)_€d(A, B)+ d(B, 0),
that is,

#*(/1) é d(A, B) + #*(B)-
Since ,u*(B) is finite, it follows that

(31)
(32)
(33)
(34)

(35)

(36)

#*(/1) - #*(B) S d(A, B)-
Proof of Theorem 11.10 Suppose A e 9Ji2.~(,u), B e EUtF(,u). Choose {An},
{Bu} such that An e 6’. B,, e" <3’, A,, —+A, B,, —> B. Then (29) and (30) show
that

A" u B,, -+A u B,
A,, n B,, --> A n B,
A,, — B,, —>A — B,

I1*(/1.) -> #*(A),
and ,u*(A) < + oo since d(A,,, A) -+0. By (31) and (33), iUiF(u) is a ring.
By (7).

u(A..) + /1(B,.) = /1(/1.. v B.) + #(A,. o B.)-
Letting n —+ oo, we obtain, by (34) and Theorem ll.8(a),

#*(/1) + /1*(B) = #*(A #1 B) + /1*(A o B)-
IfA n B=0, then u*(A r\B)=0.

It follows that u* is additive on EUi,.~(u).
Now let A e ElJl(,u). Then A can be represented as the union of a

countable collection of disjoint sets of iIJlF(,u). For if A = UA; with
A,', e iUlF(u), write A1 = A1’, and

A,,=(A{u---uAj,)-(A,ju---uA{,_1) (n=2,3,4,...).
Then

A = [)0 A,,
n= 1

is the required representation. By (19)

#*(A) s Z #*(A,.)-
n=1
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On the other hand, A :>A1 u u A,,; and by the additivity of
u* on Em,-(u) we obtain

(37) u*(A) 2 u*(A1 w "' v A.) = u*(/11) + '" + u*(A..)-
Equations (36) and (37) imply

<38) »*</1) = §1~*<A.>-
Suppose u*(A) is finite. Put B,, = A2 U U A,,. Then (38) shows

that

*= -X-

F“/"\ 1C8 3*\|/ 1l\’lsd(A, B.) = _ = _ ~*<A.> ->0
as n ->00. Hence B” ->A; and since B,, e9.ll2~(u), it is easily seen that
A E mF(”)'

We have thus shown that A e iUiF(,u) if A e ilJl(u) and u*(A) < + oo.
It is now clear that u* is countably additive on ilJI(u). For if

A=UA,,,
where {An} is a sequence of disjoint sets of 9Jl(u), we have shown that (38)
holds if u*(A,,) < + oo for every n, and in the other case (38) is trivial.

Finally, we have to show that 9Jl(u) is a 0-ring. If A,, e 9Jl(,u), n = 1,
2, 3, ..., it is clear that U A,, e 9Ji(,u) (Theorem 2.12). Suppose A e 9Ji(,u),
Be€lJt(u), and

A=OA,,, B=OB,,,
=1 n=1

where A,,, B,, e 9JiF(u). Then the identity

A,,r\B= O(A,,nB,)
i=1

shows that A,, n B e fUl(u); and since

u*(/1.. o B) s #*(A..) < + O0,
A,, n B e §lJlF(,u). Hence A,, -— B e ElJlF(u), and A — B e iIJl(,u) since
A —B= U311 (A. -B).
We now replace u*(A) by u(A) if A e §Di(u). Thus u, originally only de-

fined on é’, is extended to a countably additive set function on the o-ring
iIJl(u). This extended set function is called a measure. The special case u = m
is called the Lebesgue measure on R’.
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11 11 Remarks

(a) If A is open, then A e 9Jl(,u). For every open set in R” is the union
of a countable collection of open intervals. To see this, it is sufiicient to
construct a countable base whose members are open intervals.

By taking complements, it follows that every closed set is in iTJt(,u).
(b) If A e 9Jl(u) and s > O, there exist sets F and G such that

FCACG,

F is closed, G is open, and

u(G—A)<e, ,u(A-—F)<s.

The first inequality holds since ,u* was defined by means of coverings
by open elementary sets. The second inequality then follows by taking
complements.
(c) We say that E is a Borel set if E can be obtained by a countable
number of operations, starting from open sets, each operation consisting
in taking unions, intersections, or complements. The collection Q of all
Borel sets in R” is a a-ring; in fact, it is the smallest a-ring which contains
all open sets. By Remark (a), E e 9Jl(u) if E e Q.
(d) If A e 9Ji(_u), there exist Borel sets F and G such that F c A c G,
and

u(G—A)=#(/1 —F)=0-
This follows from (b) if we take e = l/n and let n —> oo.

Since A = F O (A — F), we see that every A e ETJt(u) is the union of a
Borel set and a set of measure zero.

The Borel sets are u-measurable for every ,u. But the sets of measure
zero [that is, the sets E for which u*(E) = 0] may be different for different
,u’s.
(e) For every ,u, the sets of measure zero form a a-ring.
(f) In case of the Lebesgue measure, every countable set has measure
zero. But there are uncountable (in fact, perfect) sets of measure zero.
The Cantor set may be taken as an example: Using the notation of Sec.
2.44, it is easily seen that

m(En) = G)” ('1 = 1, 2, 3, ---);

and since P = Q E,, , P c E,, for every n, so that m(P) = 0.
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MEASURE SPACES

11.12 Definition Suppose X is a set, not necessarily a subset of a euclidean
space, or indeed of any metric space. X is said to be a measure space if there
exists a o-ring 21)? of subsets of X (which are called measurable sets) and a non-
negative countably additive set function u (which is called a measure), defined
on 931.

If, in addition, X e EDI, then X is said to be a measurable space.
For instance, we can take X = R”, EU? the collection of all Lebesgue-

measurable subsets of R”, and u Lebesgue measure.
Or, let X be the set of all positive integers, 932 the collection of all subsets

of X, and u(E) the number of elements of E.
Another example is provided by probability theory, where events may be

considered as sets, and the probability of the occurrence of events is an additive
(or countably additive) set function.

In the following sections we shall always deal with measurable spaces.
It should be emphasized that the integration theory which we shall soon discuss
would not become simpler in any respect if we sacrificed the generality we have
now attained and restricted ourselves to Lebesgue measure, say, on an interval
of the real line. In fact, the essential features of the theory are brought out
with much greater clarity in the more general situation, where it is seen that
everything depends only on the countable additivity of u on a o-ring.

It will be convenient to introduce the notation

(41) {XIP}
for the set of all elements x which have the property P.

MEASURABLE FUNCTIONS

11.13 Definition Letf be a function defined on the measurable space ‘X, with
values in the extended real number system. The functionf is said to be measur-
able if the set

(42) {X|f(X) > 4}
is measurable for every real a.

11.14 Example If X = R-" and EDI = ElJi(,u) as defined in Definition 11.9,
every continuousf is measurable, since then (42) is an open set.
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11.15 Theorem Each of the following four conditions implies the other three:

(43)
(44)
(45)
(45)

{x If(x) > a} is measurable for every real a.
{x|f(x) 2 a} is measurable for every real a.
{x|f(x) < a} is measurable for every real a.
{xlf(x) 5 a} is measurable for every real a.

Proof The relations

{xf(x)za}=n®1{x|f(x)>a—%}.

{x.f(X) <0} = X- {X|f(X) 2"},
{xf(x)5a}=n®1{x|f(x)<a+%},

{XAf(X) > Q} = X- {X|f(x) é a}
show successively that (43) implies (44), (44) implies (45), (45) implies
(46), and (46) implies (43).

Hence any of these conditions may be used instead of (42) to define
measurability.

11.16 Theorem Iff is measurable, then |fI is measurable.

Proof

{XI |f(X)| < 4} = {X|f(x) < H} H {X|f(X) > - 4}-

11.17 Theorem Let {f,,} be a sequence of measurable functions. For x e X, put

g(x) = supf,,(x) (n = 1, 2, 3, ...),
h(x) = lim supfi,(x).

lI"®

Then g and h are measurable.

The same is of course true of the inf and lim inf.
Proof

{m(x) > at = {m(x) > at.
h(x) = i11fa...(x).

where g,,,(x) = supjj,(x) (n 2 m).
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Corollaries
(a) Iffandg are measurable, then max (f, g) and min (j; g) are measurable.
If

(47) f+ = ma?‘ (f»0). f’ = "' mi11(f» 0),
it follows, in particular, that f + andf " are measurable.
(b) The limit ofa convergent sequence ofmeasurablefunctions is measurable.

11.18 Theorem Let f and g be measurable real-valuedfunctions defined on X
let F be real and continuous on R2, andput

h(x) = F(f(X). g(x)) (X 6 X)-
Then h is measurable.

In particular, f+ g andfg are measurable.

Proof Let
G,, = {(u, v)]F(u, v) > a}.

Then G,, is an open subset of R2, and we can write
ooa=§;.

where {In} is a sequence of open intervals:
In = {(u, v)|a,, < u < b,,, c,, < v < dn}.

Since

{Xian <f(X) < bn} = {Xlf(x) > an} F) {Xlf(X) < bu}
is measurable, it follows that the set

{xl(f(X). g(x)) E 1.} = {Xian <f(x) < B.) F) {XI 0.. < g(x) < 4.}
is measurable. Hence the same is true of

{xi/r(x) > at ={x1</<x>.g<x>> e G.)
= ix I (f(x). y<x» E 1.}-

Summing up, we may say that all ordinary operations of analysis, includ-
ing limit operations, when applied to measurable functions, lead to measurable
functions; in other words, all functions that are ordinarily met with are measur-
able.

That this is, however, only a rough statement is shown by the following
example (based on Lebesgue measure, on the real line): If h(x) =f(g(x)), where

9
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f is measurable and g is continuous, then h is not necessarily measurable.
(For the details, we refer to McShane, page 241.)

The reader may have noticed that measure has not been mentioned in
our discussion of measurable functions. In fact, the class of measurable func-
tions on X depends only on the a-ring 931 (using the notation ofDefinition 1 1.12).
For instance, we may speak of Borel-measurable functions on R’, that is, of
functionf for which

{Xlf(x) > 4}
is always a Borel set, without reference to any particular measure.

SIMPLE FUNCTIONS

11.19 Definition Let s be a real-valued function defined on X. If the range
of s is finite, we say that s is a simple function.

Let E c X, and put
_ l (x e E),<48) KE(x) - {O (,2 2 E)_

KE is called the characteristic function of E.
Suppose the range of s consists of the distinct numbers cl, ..., c,,. Let

E,={x]s(x)=c,} (i=l,...,n).
Then

(49) s = i c,K2.; ,
n=1 1

that is, every simple function is a finite linear combination of characteristic
functions. It is clear that s is measurable if and only if the sets E1, ..., E,, are
measurable.

It is of interest that every function can be approximated by simple
functions:

11.20 Theorem Let f be a real function on X. There exists a sequence {s,,} of
simple functions such that s,,(x) ->f(x) as n —> oo, for every x e X. Iff is measur-
able, {s,,} may be chosen to be a sequence of measurable functions. Iff 2 0, {s,,}
may be chosen to be a monotonically increasing sequence.

Proof Iff2 0, define

E... = {x sax) < F. = {m(x) 2 ~>
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forn=l,2,3,...,i=l,2,...,n2". Put
"2”i—l

(50) Sn = Z -in-' KB”! + flKFn.
i= 1

In the general case, letf=f" —f‘, and apply the preceding construction
tof+ and tof".

It may be noted that the sequence {s,,} given by (50) converges
uniformly tof iff is bounded.

INTEGRATION

We shall define integration on a measurable space X, in which EUE is the o-ring
of measurable sets, and ,u is the measure. The reader who wishes to visualize
a more concrete situation may think of X as the real line, or an interval, and of
u as the Lebesgue measure m.

11.21 Definition Suppose

(51) s(x)= c,K_,;,(x) (xeX,c,>0)
t= 1

is measurable, and suppose E e 931. We define

<52) 1.<s>= i c u(E n E >.i ii=1
Iff is measurable and nonnegative, we define

<53) ffirdtl = sup 1..~<.->.
where the sup is taken over all measurable simple functions s such that 0 5 s 5f.

The left member of (53) is called the Lebesgue integral of f, with respect
to the measure u, over the set E. It should be noted that the integral may have
the value + oo.

It is easily verified that

on fsa=am
E

for every nonnegative simple measurable function s.

11.22 Definition Letf be measurable, and consider the two integrals

55 "' d , " d ,( ) Lf u Lf ll
wheref+ andf " are defined as in (47).
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If at least one of the integrals (55) is finite, we define

<56) f /at = If at - Lf“d#-
If both integrals in (55) are finite, then (56) is finite, and we say that f is

integrable (or summable) on E in the Lebesgue sense, with respect to u; we write
f e .‘Z’(,u) on E. If u = m, the usual notation is: f e 2 on E.

This terminology may be a little confusing: If (56) is + oo or -oo, then
the integral of f over E is defined, although f is not integrable in the above
sense of the word;f is integrable on E only if its integral over E is finite.

We shall be mainly interested in integrable functions, although in some
cases it is desirable to deal with the more general situation.

11.23 Remarks The following properties are evident:
(a) If f is ineasurable and bounded on E, and if u(E) < + oo, then

fe .2"(u) on E.
(b) If a 5f(x) 5 b for x e E, and /.t(E) < + oo, then

aw) s ffifdtt 5 bu(E)-
(c) Iff and g e 2’(_u) on E, and iff(x) 5 g(x) for x e E, then

ffmgfgm.
E E

(d) Iff e .‘Z’(u) on E, then of e .2"(u) on E, for every finite constant c, and

fcfdju=cf fdu.
E E

(e) If u(E) = 0, andf is measurable, then

I fdu = O.
E

(f) Iffe .2"(u) on E, A eflli, and A c E, thenfe .€’(p) on A.

11.24 Theorem

(a) Suppose f is measurable and nonnegative on X. For A e EUR, define

(51) ¢(A> =1/du-
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(53)

(59)

(60)

Then ¢ is countably additive on SIR.
(b) The same conclusion holds iff e .2"(,u) on X.

Proof It is clear that (b) follows from (a) if we write f=f+ —f'" and
apply (a) to f+ and to f '".

To prove (a), we have to show that

¢<A> = ¢<A.>
if A,,e9JI(n= 1,2, 3, ...), A,nAj=0 for iaéj, and A = U‘{°A,,.

Iff is a characteristic function, then the countable additivity of ¢ is
precisely the same as the countable additivity of u, since

I K2; du = ,u(A n E).
A

Iff is simple, then f is of the form (51), and the conclusion again
holds.

In the general case, we have, for every measurable simple function s
such that 0 5 s 5f,

jsd~=§[ Sdus §¢<A.>-
A n=1 An n=1

Therefore, by (53),

¢<A> s i ¢<A.>.
n=1

Now if ¢(A,,) = + 00 for some n, (58) is trivial, since ¢(A) 2 ¢(A,,).
Suppose ¢(A,,) < + oo for every n.

Given s > 0, we can choose a measurable function s such that
0 5 s 5 f, and such that

d d - , d d - .L18 uzfmf u 8 L28 uzfhf u 8

Hence

¢<A.~»A.>zf sd~=f sd~+f sd~.>_~¢<A..>+¢<A.>-2a
A1UA1 A1 Ag

so that

¢(A1 U A2) Z ¢(A1) + ¢(A2)-
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It follows that we have, for every n,

(61) ¢(/11 v v 14.92 ¢(/11) + + ¢(»4..)-
Since A :- A1 O O A,,, (61) implies

<62) ¢<A> 2 g1¢</1.).
and (58) follows from (59) and (62).

Corollary IfA e 2132, B e 931, B c A, and u(A - B) = 0, then .

f /at = j rd».
A B

Since A = B O (A — B), this follows from Remark ll.23(e).

11.25 Remarks The preceding corollary shows that sets of measure zero are
negligible in integration.

Let us writef~ g on E if the set

{x|f(X) 9* g(x)} -') E
has measure zero.

Then f~f;f~g implies g ~f; and f~ g, g~h implies f~ h. That is,
the relation ~ is an equivalence relation.

Iff~ g on E, we clearly have

Lfdu = L 9 du,
provided the integrals exist, for every measurable subset A of E.

If a property P holds for every x e E — A, and if ,u(A) = 0, it is customary
to say thatP holds for almost all x e E, or that P holds almost everywhere on
E. (This concept of “almost everywhere” depends of course on the particular
measure under consideration. In the literature, unless something is said to the
contrary, it usually refers to Lebesgue measure.)

Iff e .2"(,u) on E, it is clear thatf(x) must be finite almost everywhere on E.
In most cases we therefore do not lose any generality if we assume the given
functions to be finite-valued from the outset.

11.26 Theorem Iff e f(p) on E, then If I e .€’(u) on E, and

/aw] S f lfl atE E
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Proof Write E = A O B, where f(x) 2 0 on A and f(x) < 0 on B.
By Theorem 11.24,

[E |f| an = [A lfl d~+ [B lfl d~= ff at + ff at < +00.
so that |f| e.‘Z’(u). Sincef5 |f| and —-f5 |f|, we see that

[Era s [E lfl dt. - [Era s f lfl dt.
and (63) follows.

Since the integrability of f implies that of If I, the Lebesgue integral is
often called an absolutely convergent integral. It is of course possible to define
nonabsolutely convergent integrals, and in the treatment of some problems it is
essential to do so. But these integrals lack some of the most useful properties
of the Lebesgue integral and play a somewhat less important role in analysis.

11.27 Theorem Suppose f is measurable on E, If I 5 g, and g e .§£’(u) on E.
Thenf e .€f(u) on E.

Proof Wehavef+ 5gandf* 5g.

11.28 Lebesgue’s monotone convergence theorem Suppose E e 931. Let {f,,} be
a sequence of measurable functions such that

(64) 0 $f1(x) 5f2(x) é "' (X E E)-
Letf be defined by

(55) f..(X) ->f(X) (X E E)
as n —> oo. Then

<66) f )1. at -> f rd) tn -» w).E E
Proof By (64) it is clear that, as n —> oo,

<61) Ind») M
E

for some oz; and since Ifl, 5 If, we have

(es) oz 5 f fdfl.
E
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Choose c such that 0 < c < 1, and let s be a simple measurable
function such that 0 5 s 5f. Put

E,, = {x |f,,(x) 2 cs(x)} (n = 1, 2, 3, ...).
By (64), E1 c E2 c E2 c ; and by (65),

(69) E = (_)1E,,.

For every n,

(70) L f,, an 2 f,, an 2 c .1 an
We let n —> oo in (70). Since the integral is a countably additive set function
(Theorem 11.24), (69) shows that we may apply Theorem 11.3 to the last
integral in (70), and we obtain

(71) or 2, cLsdu.

Letting c —> 1, we see that

oz 2 L s du,

and (53) implies

(72) O! 2 [E fdu.
The theorem follows from (67), (68), and (72).

11.29 Theorem Suppose f= f1 + f2 , where f1 e .€’(,u) on E (i = 1, 2). Then
fe .2’(1u) on E, and

<13) IE rd) = IE/. at + [E /2 at
Proof First, suppose f1 2 0, f2 2 0. If f1 and f2 are simple, (73) follows
trivially from (52) and (54). Otherwise, choose monotonically increasing
sequences {s,j}, {sfi} of nonnegative measurable simple functions which
converge to f1, f2. Theorem 11.20 shows that this is possible. Put
s,, = s,§ + s§,'. Then

,, d = ,;d + ;;d ,[Es I1 [Es ll [Es ll
and (73) follows if we let n -> oo and appeal to Theorem 11.28.
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Next, suppose f1 2 0, f2 5 O. Put

A = {xlf(X) 2 0}. B = {xlf(X) < 0}-
Then f, f1, and —f2 are nonnegative on A. Hence

(14) IA Mu = [A rd) + [A (-1.) at = [A rd) - 11 /2 at
Similarly, -f, f1, and —f2 are nonnegative on B, so that

fa (-1.) dtl = [B ft an + fa (-/)d~.
OI‘

(15) fa/. at = [Bra - far. dt.
and (73) follows if we add (74) and (75).

In the general case, E can be decomposed into four sets E1 on each
of whichf1(x) andf2(x) are of constant sign. The two cases we have proved
so far imply

1fdu=ff1d#+1f=du (»-1.2.3.4).
E: E: Er

and (73) follows by adding these four equations.

We are now in a position to reformulate Theorem 11.28 for series.

11.30 Theorem Suppose E e ‘Ill. If{fl,} is a sequence ofnonnegative measurable
functions and

(16) f(x) f.(x)(x E E).
then

Proof The partial sums of (76) form a monotonically increasing sequence.

11.31 Fatou’s theorem Suppose E e 93?. If {11,} is a sequence of nonnegative
measurable functions and

f(x) = lim inff,,(x) (x e E),

then

(71) 1 fdu5lim inf 1 f,,d,..
E n—>oo E
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Strict inequality may hold in (77). An example is given in Exercise 5.

Proof Forn = 1, 2, 3, and xeE, put

m(x) = i11fft(X) (i 2 ")-
Then g,, is measurable on E, and

(73)
(79)
(30)

0 $9100 -$920‘) -é
m(x) sf..(><).
m(x) —>f(x) (n —> O0 )-

By (78), (80), and Theorem 11.28,

<81) Lg. at ~ [E/dt.
so that (77) follows from (79) and (81).

11.32 Lebesgue’s dominated convergence theorem Suppose E e 93¢. Let {fn} be
a sequence of measurable functions such that

(32) fn(X) —>f(X) (X 6 E)
as n —> oo. If there exists a function g e 2’(u) on E, such that

(33) |fn(X)l $90‘) (n=1,2,3..--,x6E),
then

(34) .312. In-d"=J.f"M
Because of (83), {f,,} is said to be dominated by g, and we talk about

dominated convergence. By Remark 11.25, the conclusion is the same if (82)
holds almost everywhere on E.

Proof First, (83) and Theorem 11.27 imply that f,, e $(,u) and fe .‘Z’(u)
on E.

or

(35)

Since f,, + g Z 0, Fatou’s theorem shows that

fE(f+ g) an g1imintfE(;;, + g) du,
n—>oo

Lfdu g1i§3;nrfE5 an.
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Since g —f,, 2 0, we see similarly that

(.9 —/> an s lim inrjEo -1.) dt.
!I"’(I)L

so that

- Lfdu s lim inf i-L1,, an],
' n-+00

which is the same as

(86) I fan .2 lim sup I fan.
E En—>oo

The existence of the limit in (84) and the equality asserted by (84)
now follow from (85) and (86).

Corollary If p(E) < + oo, {fi,} is uniformly bounded on E, andf,,(x) —>f(x) on E,
then (84) holds.

A uniformly bounded convergent sequence is often said to be boundedly
convergent.

COMPARISON WITH THE RIEMANN INTEGRAL

Our next theorem will show that every function which is Riemann-integrable
on an interval is also Lebesgue-integrable, and that Riemann-integrable func-
tions are subject to rather stringent continuity conditions. Quite apart from the
fact that the Lebesgue theory therefore enables us to integrate a much larger
class of functions, its greatest advantage lies perhaps in the ease with which
many limit operations can be handled; from this point of view, Lebesgue’s
convergence theorems may well be regarded as the core of the Lebesgue theory.

One of the difiiculties which is encountered in the Riemann theory is
that limits of Riemann-integrable functions (or even continuous functions)
may fail to be Riemann-integrable. This difliculty is now almost eliminated,
since limits of measurable functions are always measurable.

Let the measure space X be the interval [a, b] of the real line, with u = m
(the Lebesgue measure), and EDI the family of Lebesgue-measurable subsets
of [a, b]. Instead of

I fdm
x

it is customary to use the familiar notation
b

I fdx
0
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for the Lebesgue integral of f over [a, b]. To distinguish Riemann integrals
from Lebesgue integrals, we shall now denote the former by

a Iabfdx.

11.33 Theorem
(a) Iffe Q on [a, b], thenfe Z on [a, b], and

1» 1»
(st) I fdx = a I fdx.

(b) Supposef is bounded on [a, b]. Then f e .9? on [a, b] if and only iff is
continuous almost everywhere on [a, b].

Proof Suppose f is bounded. By Definition 6.1 and Theorem 6.4 there
is a sequence {Pk} of partitions of [a, b], such that PH, is a refinement
of Pk, such that the distance between adjacent points of Pk is less than
1/k, and such that

(as) lim L(P,, ,f) = a I fdx, ‘lim U(P,, ,f) = a Ifdx.
k—-Poo _ -Poo

(In this proof, all integrals are taken over [a, b].)
lf Pk = {xo , x1,..., x,,}, with xo = a, x,, = b, define

Uk(a) = Lr(¢1) =f(@);
put U,,(x) = M, and L,,(x) = mi for x,_1 < x 5 xi, 1 5 i 5 n, using the
notation introduced in Definition 6.1. Then

<89) L(P,“/> = IL. dx. vow) = IUk dx.
and

(90) L,(x) 5 L;(x) 5 5f(x) 5 5 U2(x) 5 U1(x)

for all x e [a, b], since PHI refines Pk. By (90), there exist

(91) L(x) = lim L,,(x), U(x) = lim Uk(x).
k-+00 k—>oo

Observe that L and U are bounded measurable functions on [a, b],
that

(92) L(X) $f(x) 5 U(x) (a 5 x 5 b),
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and that

(93) ILdx=aIfdx, IUdx=.9?Ifdx,

by (88), (90), and the monotone convergence theorem.
So far, nothing has been assumed aboutfexcept thatf is a bounded

real function on [a, b].
To complete the proof, note that f e Q if and only if its upper and

lower Riemann integrals are equal, hence if and only if

(94) ILdx=IUdx;

since L 5 U, (94) happens if and only if L(x) = U(x) for almost all
x e [a, b] (Exercise 1).

In that case, (92) implies that

(95) L(X) =f(x) = U(x)
almost everywhere on [a, b], so that f is measurable, and (87) follows
from (93) and (95).

Furthermore, if x belongs to no Pk , it is quite easy to see that U(x) =
L(x) ifand only iffis continuous at x. Since the union of the sets Pk is count-
able, its measure is 0, and we conclude thatf is continuous almost every-
where on [a, b] if and only if L(x) = U(x) almost everywhere, hence
(as we saw above) if and only iff e Q.

This completes the proof.

The familiar connection between integration and differentiation is to a
large degree carried over into the Lebesgue theory. Iff e .9’ on [a, b], and

(96) F(x) = Ix fat (a 5 x 5 b),

then F'(x) =f(x) almost everywhere on [a, b].
Conversely, if F is differentiable at every point of [a, b] (“almost every-

where” is not good enough here!) and if F’ e .2” on [a, b], then

F(x) - F(a) = IxF’(t) (.1 5 x 5 b).

For the proofs of these two theorems, we refer the reader to any of the
works on integration cited in the Bibliography.
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INTEGRATION OF COMPLEX FUNCTIONS

Suppose f is a complex-valued function defined on a measure space X, and
f= u + iv, where u and v are real. We say that f is measurable if and only if
both u and v are measurable.

It is easy to verify that sums and products of complex measurable functions
are again measurable. Since

= (uz + v2)1/2,

Theorem 11.18 shows that If I is measurable for every complex measurable f.
Suppose u is a measure on X, E is a measurable subset of X, and f is a

complex function on X. We say thatf e .9"(u) on E provided thatfis measurable
and

on Iypu<+w.
E

and wedefine

d = d ' dIEf u IE” u+1IEv u
if (97) holds. Since |u| 5 If], lvl 5 lfl, and |f| 5 |u| + |v|, it is clear that
(97) holds if and only if u e f(a) and v e .5? (u) on E.

Theorems ll.23(a), (d), (e), (f), l1.24(b), 11.26, 11.27, 11.29, and 11.32
can now be extended to Lebesgue integrals of complex functions. The proofs
are quite straightforward. That of Theorem 11.26 is the only one that offers
anything of interest:

Iff e .2”(u) on E, there is a complex number c, |c| = 1, such that

¢If¢zo
E

Putg=cf=u+iv,uandvreal. Then

d = d = d = d _ d.fuI ¢'IEfu IE9 H IE” /1<IElfI u
The third of the above equalities holds since the preceding ones show that
Ig du is real.

FUNCTIONS OF CLASS $2

As an application of the Lebesgue theory, we shall now extend the Parseval
theorem (which we proved only for Riemann-integrable functions in Chap. 8)
and prove the Riesz-Fischer theorem for orthonormal sets of functions.
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11.34 Definition Let X be a measurable space. We say that a complex
function f e .2’2(;t) on X iff is measurable and if

I |f|1d;.<+<><>.
X

If u is Lebesgue measure, we say f e $2. For f e .‘?2(,u) (we shall omit the
phrase “on X” from now on) we define

ntu = {IX lfl’ drI”
and call llf || the .€”2(u) norm off.

2

11.35 Theorem Supposefe .€”2(u) and g e .‘?2(u). Then fg e .S:"(u), and

<98) Ix |a| an 5 urn ugu.
This is the Schwarz inequality, which we have already encountered for

series and for Riemann integrals. It follows from the inequality

0 5 Ix(|f| + /1|g|>= at =||t||1 + 21 Ix |/9| du + i*||g|r.
which holds for every real 1..

11.36 Theorem Iff e .‘?2(u) and g e .2’2(p), thenf + g e 2"2(u), and

||f+ all 5 llfll + Holl-
Proof The Schwarz inequality shows that

||f+al|’ =I lfl’ +If?i+Ifa+Ilo|’
S llfllz + Zllfll Ilyll + ||9||2
= (llfll + Hall)“-

11.37 Remark If we define the distance between two functions f and g in
.?2(u) to be ||f — gll, we see that the conditions of Definition 2.15 are satisfied,
except for the fact that ||f — gll = 0 does not imply that f(x) = g(x) for all x,
but only for almost all x. Thus, if we identify functions which differ only on a
set of measure zero, .2”2(u) is a metric space.

We now consider .2” on an interval of the real line, with respect to
Lebesgue measure.

11.38 Theorem The continuous functions form a dense subset of $2 on [a, b].
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More explicitly, this means that for any fe $2 on [a, b], and any e > O,
there is a function g, continuous on [a, b], such that

n/- all = II: 11- 9|’ dx}”2 < @-
Proof We shall say that f is approximated in $2 by a sequence {gn} if
11f— 9.11->0 as '1 —> 00-

Let A be a closed subset of [a, b], and KA its characteristic function.
Put

f(x) =iI1f lx - yl (y E A)
and

1 .=--—-——- =1 3

Then g,, is continuous on [a, b], g,,(x) =1 on A, and g,,(x) —>0 on B,
where B = [a, b] — A. Hence

1/2ng. - K..n = {Ian dx} ->0
by Theorem 11.32. Thus characteristic functions of closed sets can be
approximated in 2": by continuous functions.

By (39) the same is true for the characteristic function of any
measurable set, and hence also for simple measurable functions.

Iff 2. 0 and f e $2, let {s,,} be a monotonically increasing sequence
of simple nonnegative measurable functions such that s,,(x) -->f(x).
Since |f— s,,| 2 5f2, Theorem 11.32 shows that ||f— s,,|| —>0.

The general case follows.

11.39 Definition We say that a sequence of complex functions {on} is an
orthonormal set of functions on a measurable space X if

f,¢~<l~d"= Ii E3153?
In particular, we must have ¢,, e $2(]u). Iff e $2(,u) and if

c,,=If<$,,d,u (n=l,2,3,...),
X

we write

f~ £1cn¢n 1

as in Definition 8.10.
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The definition of a trigonometric Fourier series is extended in the same
way to $2 (or even to Z) on [—1c, rt]. Theorems 8.11 and 8.12 (the Bessel
inequality) hold for any fe .St’2(;t). The proofs are the same, word for word.

We can now prove the Parseval theorem.

11.40 Theorem Suppose

<99) f(x) ~ §c.e‘"*.
wheref e $2 on [—1c, 1:]. Let s,, be the nth partial sum of (99). Then

(100) lim llf-" SI!" = 0,
!I"'*(I)

oo 1 1|:
2 —-.__(101) _;o|c.| -,nI_n lfl’dx-

Proof Let s > 0 be given. By Theorem 11.38, there is a continuous
function g such that

s
||f—e|| <5-

Moreover, it is easy to see that we can arrange it so that g(x) = g(—1c).
Then g can be extended to a periodic continuous function. By Theorem
8.16, there is a trigonometric polynomial T, of degree N, say, such that

8
__.T __Ila ll <2

Hence, by Theorem 8.11 (extended to $92), n 2 N implies

ll-Y. -fll S IIT-fll < 8.
and (100) follows. Equation (101) is deduced from (100) as in the proof of
Theorem 8.16.

Corollary Iffe .2” on [--1:, 1:], and if

I: f(x)e“""dx=0 (n=0, il,i2,...),

then ||f|| = 0.

Thus if two functions in .562 have the same Fourier series, they differ at
most on a set of measure zero.
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11.41 Definition Let f and f,, e .€”2(u) (n = 1, 2, 3, ...). We say that {f,,}
converges to f in .2”2(u) if Hf, -f|| —>0. We say that {fl,} is a Cauchy sequence
in .‘?2(;t) if for every s > 0 there is an integer N such that n 2 N, m Z N implies
llfi. —fmll 5 8-

11.42 Theorem If {fi,} is a Cauchy sequence in .?2(u), then there exists a
functionfe 1?2(a) such that {fi,} converges tof in .St"2(u).

This says, in other words, that .‘?2(p) is a complete metric space.
Proof Since {j§,} is a Cauchy sequence, we can find a sequence {n,,},
k=1,2, 3,...,such that

1
Hfllk —fl|k+1||< 5; =19 2: 39 ' ' ')'

Choose a function g e .5t°2(,u). By the Schwarz inequality,

1|I la(f..,, -f....>| at 5 1,}-X 2

Hence

(102) IX la/;... —f......)| do 5 Hall-
By Theorem 11.30, we may interchange the summation and integration in
(102). It follows that

(103) lg(x)I i |f...<x> -f.....<x>| < + <><>
lc = 1

almost everywhere on X. Therefore

(104) f |r....<x> —.fi..(x)l < + w
k=1

almost everywhere on X. For if the series in (104) were divergent on a
set E of positive measure, we could take g(x) to be nonzero on a subset of
E of positive measure, thus obtaining a contradiction to (103).

Since the kth partial sum of the series

i <f.....<x> —1¢..<x>).k= 1
which converges almost everywhere on X, is

J2... ,(X) —f...(x).
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we see that the equation

r(x) = lim /;..<x>
k —> oo

defines f(x) for almost all x e X, and it does not matter how we define
f(x) at the remaining points of X.

We shall now show that this function f has the desired properties.
Let s > 0 be given, and choose N as indicated in Definition 11.41. If
nk > N, Fatou’s theorem shows that

llf-f..,.ll 5 lint inf llf... -f..,.Il 5 8-

Thus f—f,,k e .2°2(u), and since f = (f — fin‘) +f,,k, we see that f e .i”2(u).
Also, since e is arbitrary,

lim ||f—/...|| = 0.
k-Poo

Finally, the inequality

(195) llf-f..|l 5 "f_fiu<" + llf»... -f..||
shows that {f,,} converges to f in .$?2(,u); for if we take n and n,, large
enough, each of the two terms on the right of (105) can be made arbi-
trarily small.

11.43 The Riesz-Fischer theorem Let {¢,,} be orthonormal on X. Suppose
E|c,,| 2 converges, and put s,, = c,¢1 + + c,,¢,,. Then there exists a function
f e .$,”2(u) such that {s,,} converges tof in 1?2(a), and such that

fa’ g1clI¢lI'

Proof For n > m,

||s.—s...||* =|v...1l’ + + |<=..l’.
so that {s,,} is a Cauchy sequence in .2”2(u). By Theorem 11.42, there is
a function fe .2”2(u) such that

lim llf — S..l| = 0-

Now,forn>k,

ff$kd”_Ck=_[ f$kd#_I -5'n$kdl¢,x x x
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so that

Ixfadt» — c. 5 ||f—s.|| - ||¢.|| + ||t— s..||.
Letting n -> oo, we see that

ck=_[f$kd# (k=li2#3v"')>
X

and the proof is complete.

11.44 Definition An orthonormal set {¢,,} is said to be complete if, for
fe .St"2(u), the equations

IX/<'5..d»=0 (n=1.2.3.-..)
imply that llf || = 0.

In the Corollary to Theorem 11.40 we deduced the completeness of the
trigonometric system from the Parseval equation (101). Conversely, the Parseval
equation holds for every complete orthonormal set:

11.45 Theorem Let {¢,,} be a complete orthonormal set. Iff e .i”2(u) and if

(105) f ~ Z ¢»¢n 7

n= 1

then

(101) IX lfl’ d/1 = 21¢-.1 1.
Proof By the Bessel inequality, E|c,, | 2 converges. Putting

Sn = C1¢1 + + cn¢n9

the Riesz-Fischer theorem shows that there is a function g e .‘?2(u) such
that

ow) g~§aa.
and such that ll g — s,,|l —->0. Hence ||s,,l| —> ||g||. Since

lls..|I’ =l¢1|’ + + |¢'..|’,
we have

(109) [X or at =n;1|c.r.
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Now (106), (108), and the completeness of {<;b,,} show that llf -- gll = 0,
so that (109) implies (107).

Combining Theorems 11.43 and 11.45, we arrive at the very interesting
conclusion that every complete orthonormal set induces a 1-1 correspondence
between the functions f e .2’2(,u) (identifying those which are equal almost
everywhere) on the one hand and the sequences {c,,} for which Z | c,,| 2 converges,
on the other. The representation

-/‘N E1 cn¢II!

together with the Parseval equation, shows that .$,”2(u) may be regarded as an
infinite-dimensional euclidean space (the so-called “Hilbert space”), in which
the point f has coordinates c,, , and the functions qb,, are the coordinate vectors.

EXERCISES
1. Iff2 0 and IE fdu = 0, prove thatf(x) = 0 almost everywhere on E. Hint: Let E,

be the subset ofE on whichf(x) > 1 /n. Write A = UE, . Then u(A) = 0 if and only
if u(E,.) = 0 for every n.

2. If I4 fdp. = 0 for every measurable subset A of a measurable set E, thenf(x) = 0
almost everywhere on E.

3. If {f,,} is a sequence of measurable functions, prove that the set of points x at
which {f,,(x)} converges is measurable.

4. Iff e f(p) on E and g is bounded and measurable on E, then fg e .Sf(u) on E.
5. Put

__ 0 (05x5it).
”(")"l1 (1<x5l).

f2k(-x) = .g(-x) (0 § X $1):

f2|¢+1(x)=.g(1"_-x) (0§.X$I)-

Show that

lim inf fi,(x) = 0 (0 5 x 51),
Il"'§®

but

I01 fi.(x) dx = i-

[Compare with (77).]
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Let

1
f-(X) = n

0 (|x| > n).

(IXI 5").

Then f,,(x) ->0 uniformly on R‘, but

I” f,,dx=2 (n=1,2,3,...).

(We write _I°_°f,,, in place of IR1.) Thus uniform convergence does not imply domi-
nated convergence in the sense of Theorem 11.32. However, on sets of finite
measure, uniformly convergent sequences of bounded functions do satisfy Theo-
rem 11.32.
Find a necessary and suflicient condition that f e 9?(a) on [a, b]. Hint: Consider
Example l1.6(b) and Theorem 11.33.
If f e 92 on [a, b] and if F(x) = Ii,‘ f(t) dt, prove that F’(x) =f(x) almost every-
where on [a, b].
Prove that the function F given by (96) is continuous on [a, b].
If u(X) < +00 andfe .Z”(u) on X, prove thatfe E(p) on X. If

this is false. For instance, if

I
f(x)= s

thenfe.S.”* on R‘, butfqé ...? on R‘.
Iff, g e .St’(u) on X, define the distance between f and g by

Ix |f—a| du-
Prove that f(p) is a complete metric space.
Suppose
(a) |f(x,y)I 51 if05x5l,05y51,
(b) for fixed x, f(x, y) is a continuous function of y,
(c) for fixed y, f(x, y) is a continuous function of x.
Put

g<x>=Io’/(x.y>dy <05x51>.
Is g continuous ?

Consider the functions

f..(x)=sinnx (n=1,2,3,...,—'n-gxgw)
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14

15

16

17

18

as points of .2“. Prove that the set of these points is closed and bounded, but
not compact.
Prove that a complex function f is measurable if and only if f"(V) is measurable
for every open set V in the plane.
Let 9? be the ring of all elementary subsets of (0, 1]. If 0 < a 5 b g 1, define

¢>([a. bl) = ¢>([a. b)) = ¢> ( (a. bl) = ¢((¢. b)) = b — a.
but define

¢((0. b)) = ¢>((0. bl) = 1 + b
if 0 < b 5 1. Show that this gives an additive set function 96 on 9?, which is not
regular and which cannot be extended to a countably additive set function on a
o-ring.
Suppose {nk} is an increasing sequence of positive integers and E is the set of all
x E(—1r, tr) at which {sin nix} converges. Prove that m(E) = 0. Hint: For every
A C E,

IA sin nix dx—+0,

and

2IA (sin n,,x)2 dx =IA(1- cos Znkx) dx—+m(A) as /C--> 00.
Suppose E C (——1r, 11-), m(E) > 0, 8 > 0. Use the Bessel inequality to prove that
there are at most finitely many integers n such that sin nx 2; 8 for all x e E.
Suppose f e .?’(u), g e .S€’(u). Prove that

IIfodt- 2=Ilf|’dt-Ila|’dt-

if and only if there is a constant c such that g(x) = cf(x) almost everywhere.
(Compare Theorem 11.35.)



BIBLIOGRAPHY

ARTIN, E.: “The Gamma Function,” Holt, Rinehart and Winston, Inc., New York,
1964.

BOAS, R. P.: “A Primer of Real Functions,” Carus Mathematical Monograph No. 13,
John Wiley & Sons, Inc., New York, 1960.

BUCK, R. C. (ed.): “Studies in Modern Analysis,” Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1962.

——-—: “Advanced Calculus,” 2d ed., McGraw-Hill Book Company, New York,
1965.

BURKILL, J. C.: “The Lebesgue Integral,” Cambridge University Press, New York, 1951.
DIEUDONNE, 1.: “Foundations of Modern Analysis,” Academic Press, Inc., New York,

1960.
FLEMING, w. H.: “Functions of Several Variables,” Addison-Wesley Publishing Com-

pany, Inc., Reading, Mass., 1965.
GRAVES, L. M.: “The Theory of Functions of Real Variables,” 2d ed., McGraw-Hill

Book Company, New York, 1956.
HALM0s, P. 11.: “Measure Theory,” D. Van Nostrand Company, Inc., Princeton, N.J.,

1950.



336 PRINCIPLES or MATHEMATICAL ANALYSIS

-—----: “Finite-dimensional Vector Spaces,” 2d ed., D. Van Nostrand Company, Inc.,
Princeton, N.J., 1958.

HARDY, G. H.: “Pure Mathematics,” 9th ed., Cambridge University Press, New York,
1947.

-—--- and ROGOSINSKI, w.: “Fourier Series,” 2d ed., Cambridge University Press,
New York, 1950.

I-IERSTEIN, I. N.Z “Topics in Algebra,” Blaisdell Publishing Company, New York, 1964.
HEWITT, E., and STROMBERG, K.I “Real and Abstract Analysis,” Springer Publishing

Co., Inc., New York, 1965.
KELLOGG, 0. 1).: “Foundations of Potential Theory,” Frederick Ungar Publishing Co.,

New York, 1940.
KNOPP, K.I “Theory and Application of Infinite Series,” Blackie & Son, Ltd.,

Glasgow, 1928.
LANDAU, E. G. H. : “Foundations of Analysis,” Chelsea Publishing Company, New York,

1951.
MCSHANE, E. 1.: “Integration,” Princeton University Press, Princeton, N.J., 1944.
NIVEN, 1. M.: “Irrational Numbers,” Carus Mathematical Monograph No. 11, John

Wiley & Sons, Inc., New York, 1956.
ROYDEN, H. L.: “Real Analysis,” The Macmillan Company, New York, 1963.
RUDIN, w.: “Real and Complex Analysis,” 2d ed., McGraw-Hill Book Company,

New York, 1974.
SIMMONS, G. I=.: “Topology and Modern Analysis,” McGraw-Hill Book Company,

New York, 1963.
SINGER, I. M., and T1-IORPE, J. A.: “Lecture Notes on Elementary Topology and Geom-

etry,” Scott, Foresman and Company, Glenview, Ill., 1967.
SMITH, K. T.: “Primer of Modern Analysis,” Bogden and Quigley, Tarrytown-on-

Hudson, N.Y., 1971.
SPIVAK, M.: “Calculus on Manifolds,” W. A. Benjamin, Inc., New York, 1965.
THURSTON, H. A.: “The Number System,” Blackie & Son, Ltd., London-Glasgow, 1956.



LIST OF SPECIAL SYMBOLS
The symbols listed below are followed by a brief statement of their meaning and by
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151. 329
ete orthonormal set, 331
etion. 82
ex field. 12, 184
ex number. 12
ex plane, 17

Component of a function, 87. 215
Composition. 86. 105. 127, 207
Condensation point, 45
Conjugate. 14
Connected set. 42
Constant function, 85
Continuity. 85

uniform. 90
Continuous functions, space of,

150
Contin
Contin

uous mapping. 85
uou sly differentiable cu rve,

136
Continuou sly differentiable map-

ping, 219
Contraction, 220
Convergence, 47

absolute. 71
bounded. 322
dominated. 321
of in tegral. 138
pointwise, 144
radius of. 69. 79
of sequences, 47
of series, 59
uniform. 147

Convex function, 101
Convex set. 3|
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Coordinate function, 88
Coordinates, I6, 205
Countable additivity, 301
Countable base, 45
Countable set, 25
Cover, 36
Cunningham, F., I67
Curl, 281
Curve, I36

closed, 136
continuously differentiable, I36
rectifiable, I36
space-filling, I68

Cut, I7

Davis, P,J., I92
Decimals, ll
Dedekind, R., 21
Dense subset, 9, 32
Dependent set, 205
Derivative, I04

directional, 218
of a form, 260
of higher order, I10
of an integral, 133, 236, 324
integration of, I34, 324
partial, 215
of power series, I73
total, 213
of a transformation, 214
of a vector-valued function, l I2

Determinant, 232
of an operator, 234
product of, 233

Diagonal process, 30, I57
Diameter, 52
Differentiable function, I04, 212
Differential, 213
Differential equation, 119, 170
Differential form (see Form)
Differentiation (see Derivative)
Dimension, 205
Directional derivative, 218
Dirichlet’s kemel. I89
Discontinuities, 94
Disjoint sets, 27
Distance, 30
Distributive law, 6, 20, 28
Divergence, 281
Divergence theorem, 253, 272,

288
Divergent sequence, 47
Divergent series, 59
Domain, 24
Dominated convergence theorem.

155, I67, 321
Double sequence, I44

e, 63
Eberlein, W. F.. I84
Elementary set, 303
Empty set, 3
Equicontinuity, 156

Equivalence relation, 25
Euclidean space, l6, 30
Euler’s constant, I97
Exact form, 275
Existence theorem, 170
Exponential function, I78
Extended real number system, ll
Extension, 99

Family, 27
Fatou’s theorem, 320
Fejér’s kernel, I99
Fejér’s theorem, I99
Field axioms, 5
Fine. N.J., 100
Finite set, 25
Fixed point, I17

theorems, I17, 203, 220
Fleming, W. I-I., 280
Flip, 249
Form, 254

basic, 257
of class €§’,€€", 254
closed, 275
derivative of, 260
exact, 275
product of, 258, 260
sum of. 256

Fourier, J. B., I86
Fourier coefficients, I86, 187
Fourier series, 186, I87, 328
Function, 24

absolute value, 88
analytic, I72
Borel-measurable, 313
bounded, 89
characteristic, 313
component of, 87
constant, 85
continuous, 85

from left, 97
from right, 97

continuously differentiable, 219
convex, 101
decreasing, 95
differentiable, I04, 212
exponential, I78
harmonic, 297
increasing, 95
inverse, 90
Lebesgue-integrable, 3 15
limit, 144
linear, 206
logarithmic, I80
measurable, 310
monotonic, 95
nowhere differentiable continu-

ous, I54
one-to-one, 25
orthogonal, 187
periodic, I83
product of. 85
rational. 88
Riemann-integrable, 121

Function:
simple, 313
sum of, 85
summable, 315
trigonometric, 182
uniformly continuous, 90
uniformly differentiable, 115
vector-valued, 85

Fundamental theorem ofcalculus
I34, 324

Gamma function, 192
Geometric series. 61
Gradient, 217, 281
Graph, 99
Greatest lower bound, 4
Green’s identities, 297
Green's theorem, 253, 255, 272.

282

Half-open interval, 3l
Harmonic function, 297
Havin, V. P., I13
Heine-Borel theorem, 39
I-lelly's selection theorem, 167
I-lerstein, I. N., 65
Hewitt, E.. 21
I-Iigher-order derivative, l l0
Hilbert space, 332
Holder's inequality, I39

i, 13
Identity operator, 232
Image, 24
Imaginary part, 14
Implicit function theorem, 224
Improper integral. I39
Increasing index, 257
Increasing sequence, 55
Independent set, 205
Index of a curve, 201
Infimum, 4
Infinite series, 59
Infinite set, 25
Infinity, ll
Initial-value problem, 119, I70
Inner product, I6
Integrable functions, spaces of.

315, 326
Integral:

countable additivity of, 316
differentiation of, I33, 236, 324
Lebesgue. 314
lower, I21, I22
Riemann, I21
Stieltjes, 122
upper, I21, 122

Integral test, 139
Integration:

of derivative, I34, 324
by parts, I34, 139. 141

Interior, 43



Interior point, 32
Intermediate value, 93, 100, 108
Intersection, 27
Interval. 31, 302
Into, 24
Inverse function, 90
Inverse function theorem, 221
Inverse image, 24
Inverse of linear operator, 207
Inverse mapping, 90
lnvertible transformation, 207
Irrational number, 1, 10, 65
Isolated point, 32
Isometry, 82, 170
lsomorphism, 21

Jacobian, 234

Kellogg, O. D., 281
Kestelman, H., 167
Kn0PP, K., 21, 63

Landau, E. G. H., 21
Laplacian, 297
Least upper bound, 4

property, 4, 18
Lebesgue, H.\L.. 186
Lebesgue-integrable function, 315
Lebesgue integral, 314
Lebesgue measure, 308
Lebesgue’s theorem, 155, 167,

318, 321
Left-hand limit, 94
Leibnitz, G. W., 71
Length, 136
L’Hospital’s rule, 109, 113
Limit, 47, 83, 144

left-hand, 94
lower, 56
pointwise, 144
right-hand, 94
subsequential, 51
upper, 56

Limit function, 144
Limit point, 32
Line, 17
Line integral, 255
Linear combination, 204
Linear function, 206
Linear mapping, 206
Linear operator, 207
Linear transformation, 206
Local maximum, 107
Localization theorem, 190
Locally one-to-one mapping, 223
Logarithm, 22, 180
Logarithmic function, 180
Lower bound, 3
Lower integral, 121, 122
Lower limit, 56

McShane, E. J.. 313

Mapping, 24
affine, 266
continuous, 85
continuously differentiable, 219
linear, 206
open, 100, 223
primitive, 248
uniformly continuous, 90
(See also Function)

Matrix, 210
product, 211

Maximum, 90
Mean square approximation, 187
Mean value theorem, 108, 235
Measurable function, 310
Measurable set, 305, 310
Measurable space, 310
Measure, 308

outer, 304
Measure space, 310
Measure zero, set of, 309, 317
Mertens, F., 74
Metric space, 30
Minimum, 90
Mobius band, 298
Monotone convergence theorem,

318
Monotonic function, 95, 302
Monotonic sequence, 55
Multiplication (see Product)

Negative number. 7
Negative orientation, 267
Neighborhood, 32
Newton's method, 118
Nijenhuis, A., 223
Niven, 1.. 65, 198
Nonnegative number, 60
Norm, 16, 140, 150, 326

of operator, 208
Normal derivative, 297
Normal space, 101
Normal vector, 284
Nowhere differentiable function,

154
Null space, 228
Null vector, 16
Number:

algebraic, 43
cardinal, 25
complex, 12
decimal, 11
finite, 12
irrational, 1, 10, 65
negative, 7
nonnegative, 60
positive, 7, 8
rational, 1
real, 8

One-to-one correspondence, 25
Onto. 24
Open cover, 36
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Open mapping, 100, 223
Open set, 32
Order, 3, 17

lexicographic, 22
Ordered field, 7, 20

k-tuple, 16
pair, 12
set, 3, 18, 22

Oriented simplex, 266
Origin, 16
Orthogonal set of functions, 187
Orthonormal set, 187, 327, 331
Outer measure, 304

Parameter domain, 254
Parameter interval, 136
Parseval’s theorem, 191, 198, 328,

331
Partial derivative, 215
Partial sum, 59, 186
Partition, 120

of unity, 251
Perfect set, 32
Periodic function, 183, 190
1r, 183
Plane, 17
Poincaré’s lemma, 275, 280
Pointwise bounded sequence, 155
Pointwise convergence, 144
Polynomial, 88

trigonometric, 185
Positive orientation, 267
Power series, 69, 172
Primes, 197
Primitive mapping, 248
Product, 5

Cauchy, 73
of complex numbers, 12
of determinants, 233
of field elements, 5
of forms, 258, 260
of functions, 85
inner, 16
of matrices, 21 1
of real numbers, 19, 20
scalar, 16
of series, 73
of transformations, 207

Projection, 228
Proper subset, 3

Radius, 31, 32
of convergence, 69, 79

Range, 24, 207
Rank, 228
Rank theorem, 229
Ratio test, 66
Rational function, 88
Rational number, 1
Real field, 8
Real line, 17
Real number, 8
Real part, I4
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Rearrangement, 75
Rectifiable curve, 136
Refinement, 123
Reflexive property, 25
Regular set function, 303
Relatively open set, 35
Remainder, 211, 244
Restriction, 99
Riemann, B., 76, 186
Riemann integral, 121
Riemann-Stieltjes integral, 122
Riesz-Fischer theorem, 330
Right-hand limit, 94
Ring, 301
Robison, G. B., 184
Root, 10
Root test, 65
Row matrix, 217

Saddle point, 240
Scalar product, 16
Schoenberg, I.J., 168
Schwarz inequality, 15, 139, 326
Segment, 31
Self-adjoint algebra, 165
Separable space, 45
Separated sets, 42
Separation of points, 162
Sequence, 26

bounded, 48
Cauchy. 52, 82, 329
convergent, 47
divergent, 47
double, 144
of functions, 143
increasing, 55
monotonic, 55
pointwise bounded, 155
pointwise convergent, 144
uniformly bounded, 155
uniformly convergent, 157

Series, 59
absolutely convergent, 71
alternating, 71
convergent, 59
divergent, 59
geometric, 61
nonabsolutely convergent, 72
power, 69, 172
product of, 73
trigonometric, 186
uniformly convergent, 157

Set, 3
at most countable, 25
Borel, 309
bounded,32
bounded above, 3
Cantor, 41, 81, 138, 168, 309
closed, 32
compact, 36
complete orthonormal, 331
connected, 42
convex,31
countable, 25

Set,
dense, 9, 32
elementary, 303
empty, 3
finite, 25
independent, 205
infinite, 25
measurable, 305, 310
nonempty, 3
open,32
ordered, 3
perfect, 32, 41
relatively open, 35
uncountable, 25, 30, 41

Set function, 301
0-ring, 301
Simple discontinuity, 94
Simple function, 313
Simplex, 247

affine, 266
differentiable, 269
oriented, 266

Singer, I. M., 280
Solid angle, 294
Space:

compact metric, 36
complete metric, 54
connected, 42
of continuous functions, 150
euclidean, 16
Hilbert, 332
of integrable functions, 315, 326
measurable, 310
measure, 310
metric, 30
normal, 101
separable, 45

Span,204
Sphere, 272, 277, 294
Spivak, M., 272, 280
Square root, 2, 81, 118
Standard basis, 205
Standard presentation, 257
Standard simplex, 266
Stark, E. L.. 199
Step function, 129
Stieltjes integral, 122
Stirling’s formula, 194, 200
Stokes’ theorem, 253, 272, 287
Stone-Weierstrass theorem, 162,

190, 246
Stromberg, K., 21
Subadditivity, 304
Subcover, 36
Subfield, 8, 13
Subsequence, 51
Subsequential limit, 51
Subset, 3

dense, 9, 32
proper, 3

Sum, 5
of complex numbers, 12
of field elements, 5
of forms, 256
offunctions, 85

Sum ,
of linear transformations, 207
of oriented simplexes, 268
of real numbers, 18
of series, 59
of vectors, 16

Summation by parts, 70
Support, 246
Supremum, 4
Supremum norm, 150
Surface, 254
Symmetric difference, 305

Tangent plane, 284
Tangent vector, 286
Tangential component, 286
Taylor polynomial, 244
Taylor’s theorem, 110, 116, 176,24
Thorpe, J. A., 280
Thurston, H. A., 21
Torus, 239-240, 285
Total derivative, 213
Transformation (see Function;

Mapping)
Transitivity, 25
Triangle inequality, 14, 16, 30, 140
Trigonometric functions, 182
Trigonometric polynomial, 185
Trigonometric series, 186

Uncountable set, 25, 30, 41
Uniform boundedness, 155
Uniform closure, 151
Uniform continuity, 90
Uniform convergence, 147
Uniformly closed algebra, 161
Uniformly continuous mapping, 90
Union, 27
Uniqueness theorem, 119, 258
Unit cube, 247
Unit vector, 217
Upper bound, 3
Upper integral, 121, 122
Upper limit, 56

Value, 24
Variable of integration, 122
Vector, 16
Vector field, 281
Vector space, 16, 204
Vector-valued function, 85

derivative of, 112
Volume, 255, 282

Weierstrass test, 148
Weierstrass theorem, 40, 159
Winding number, 201

Zero set, 98, 117
Zeta function. I41
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