
;? --

-· ~ -
QA 
300 
.T325 
2006 
v.l 

u U::!..J u 

Analysis I 

Terence Tao 

~HINDUSTAN 
U l!!.J U BOOK AGENCY 



TEXTS AND R~~WG~ 
IN MATHEMAfrCS 

Analysis I 



Texts and Readings in Mathematics 

Advisory Editor 
C. S. Seshadri, Chennai Mathematical lnst., Chennai. 

Managing Editor 
Rajendra Bhatia, Indian Statistical lnst., New Delhi. 

Editors 
V. S. Borkar, Tata lnst. of Fundamental Research, Mumbai. 
Probal Chaudhuri, Indian Statistical lnst., Kolkata. 
R. L. Karandikar, Indian Statistical lnst., New Delhi. 
M. Ram Murty, Queen's University, Kingston. 
V. S. Sunder, lnst. of Mathematical Sciences, Chennai. 
M. Vanninathan, TIFR Centre, Bangalore. 
T. N. Venkataramana, Tata lnst. of Fundamental Res~arch, Mumbai. 



Analysis I 

Terence Tao 
University of California 

Los Angeles 

ll:JQ1@ HINDUS TAN 
Ul!!.rU BOOK AGENCY 





Published by 

Hindustan Book Agency (India) 
P 19 Green Park Extension 
New Delhi 110 016 
India 

email: hba@vsnl.com 
http://www.hindbook.com 

Copyright © 2006 by Hindustan Book Agency (India) 

No part of the material protected by this copyright notice may be 
reproduced or utilized in any form or by any means, electronic or 
mechanical, including photocopying, recording or by any information 
storage and retrieval system, without written permission from the 
copyright owner, who has also the sole right to grant licences for 
translation into other languages and publication thereof. 

All export rights for this edition vest exclusively with Hindustan Book 
Agency (India). Unauthorized export is a violation of Copyright Law 
and is subject to legal action. 

Produced from camera ready copy supplied by the Author. 

ISBN 81-85931-62-3 



To my parents, for everything 



Contents 

Volume 1 

Preface 

1 Introduction 
1.1 What is analysis? . 
1.2 Why do analysis? . 

2 The natural numbers 
2.1 The Peano axioms 
2.2 Addition . . . . 
2.3 Multiplication . 

3 Set theory 
3.1 Fundamentals ........ . 
3.2 Russell's paradox (Optional) 
3.3 Functions· ......... . 
3.4 Images and inverse images . 
3.5 Cartesian products 
3.6 Cardinality of sets 

4 Integers and rationals 
4.1 The integers . . . . . 
4.2 The rationals . . . . 
4.3 Absolute value and exponentiation 

xiii 

1 
1 
3 

14 
16 
27 
33 

37 
37 
52 
55 
64 
70 
76 

84 
84 
92 
98 



viii 

4.4 Gaps in the rational numbers 

5 The real numbers 
5.1 Cauchy sequences ........... . 
5.2 Equivalent Cauchy sequences . . . . . 
5.3 The construction of the real numbers . 
5.4 Ordering the reals ....... . 
5.5 The least upper bound property 
5.6 Real exponentiation, part I 

6 Limits of sequences 
6.1 Convergence and limit laws 
6.2 The extended real number system 
6.3 Suprema and infima of sequences 
6.4 Limsup, liminf, and limit points . 
6.5 Some standard limits .... 
6.6 Subsequences . . . . . . . . 
6. 7 Real exponentiation, part II 

7 Series 
7.1 Finite series .......... . 
7.2 Infinite series ......... . 
7.3 Sums of non-negative numbers 
7.4 Rearrangement of series 
7.5 The root and ratio tests 

8 Infinite sets 
8.1 Countability. 
8.2 Summation on infinite sets. 
8.3 Uncountable sets .. 
8.4 The axiom of choice 
8.5 Ordered sets ..... 

9 Continuous functions on R 
9.1 Subsets of the real line .. 
9.2 The algebra of real-valued functions 
9.3 Limiting values of functions . . . . . 

CONTENTS 

103 

107 
109 
114 
117 
127 
133 
139 

145 
145 
153 
157 
160 
170 
17l 
175 

179 
179 
189 
195 
200 
204 

208 
208 
216 
224 
227 
232 

242 
243 
250 
253 



CONTENTS 

9.4 Continuous functions . . 
9.5 Left and right limits . . 
9.~ The maximum principle 
9. 7 The intermediate value theorem . 
9.8 Monotonic functions 
9.9 Uniform continuity 

ix 

261 
266 
269 
273 
276 
279 

9.10 Limits at infinity . . 286 

10 Differentiation of functions 288 
10.1 Basic definitions . . . . . . . . . . . . . . . . 288 
10.2 Local maxima, local minima, and derivatives 295 
10.3 Monotone functions and derivatives. 298 
10.4 Inverse functions and derivatives 300 
10.5 L'Hopital's rule . . . . . . . . . . 303 

11 The Riemann integral 
11.1 Partitions . . . . . . 

306 
307 

11.2 Piecewise constant functions. . . . . 312 
11.3 Upper and lower Riemann integrals. 317 
11.4 Basic properties of the Riemann integral . 321 
11.5 Riemann integrability of continuous functions 326 
11.6 Riemann integrability of monotone functions 330 
11.7 A non-Riemann integrable function . . . . . 332 
11.8 The Riemann-Stieltjes integral . . . . . . . 334 
11.9 The two fundamental theorems of calculus . 338 
11.10Consequences of the fundamental theorems 343 

A Appendix: the basics of mathematical logic 349 
A.1 Mathematical statements 350 
A.2 Implication . . . . . . . . 357 
A.3 The structure of proofs . . 364 
A.4 Variables and quantifiers . 367 
A.5 Nested quantifiers . . . . 372 
A.6 Some examples of proofs and quantifiers 375 
A. 7 Equality . . . . . . . . . . . . . . . . . . 377 



X CONTENTS 

B Appendix: the decimal system 380 
B.1 The decimal representation of natural numbers 381 
B.2 The decimal representation of real numbers . . 385 

Index I 

Volume 2 

Preface 

12 Metric spaces 
12.1 Definitions and examples ......... . 
12.2 Some point-set topology of metric spaces . 
12.3 Relative topology ............. . 
12.4 Cauchy sequences and complete metric spaces . 
12.5 Compact metric spaces ......... . 

13 Continuous functions on metric spaces 
13.1 Continuous functions . . . . . . 
13.2 Continuity and product spaces 
13.3 Continuity and compactness . 
13.4 Continuity and connectedness 
13.5 Topological spaces (Optional) 

14 Uniform convergence 
14.1 Limiting values of functions 
14.2 Pointwise and uniform convergence . 
14.3 Uniform.convergence and continuity 
14.4 The metric of uniform convergence . 
14.5 Series of functions; the Weierstrass M-test . 
14.6 Uniform convergence and integration .. 
14.7 Uniform convergence and derivatives .. 
14.8 Uniform approximation by polynomials 

xiii 

389 
389 
400. 
405 
408 
412 

420 
420 
423 
427 
429 
433 

440 
441 
444 
449 
452 
455 
458 
461 
464 



CONTENTS 

15 Power series 
15.1 Formal power series 
15.2 Real analytic functions . 
15.3 Abel's theorem . . . . . 
15.4 Multiplication of power series 
15.5 The exponential and logarithm functions. 
15.6 A digression on complex numbers . 
15.7 Trigonometric functions ..... . 

16 Fourier series 
16.1 Periodic functions 
16.2 Inner products on periodic functions 
16.3 Trigonometric polynomials ..... . 
16.4 Periodic convolutions ........ . 
16.5 The Fourier and Plancherel theorems . 

xi 

474 
474 
477 
483 
487 
490 
494 
503 

510 
511 
514 
518 
521 
526 

17 Several variable differential calculus 533 
17.1 Linear transformations . . . . . . . . 533 
17.2 Derivatives in several variable calculus 540 
17.3 Partial and directional derivatives. . . 544 
17.4 The several variable calculus chain rule . 552 
17.5 Double derivatives and Clairaut's theorem . 555 
17.6 The contraction mapping theorem 558 
17.7 The inverse function theorem . 561 
17.8 The implicit function theorem . 567 

18 Lebesgue measure 573 
18.1 The goal: Lebesgue measure. 575 
18.2 First attempt: Outer measure . 577 
18.3 Outer measure is not additive 587 
18.4 Measurable sets . . . . 590 
18.5 Measurable functions . 597 

19 Lebesgue integration 602 
19.1 Simple functions . . . . . . . . . . . . . . . . . . 602 
19.2 Integration of non-negative measurable functions 608 
19.3 Integration of absolutely integrable functions . . 617 



xii CONTENTS 

19.4 Comparison with the Riemann integral. 622 
19.5 Fubini's theorem . . . . . . . . . . . . . 624 

Index I 



Preface 

This text originated from the lecture notes I gave teaching the ho­
nours undergraduate-level real analysis sequence at the University 
of California, Los Angeles, in 2003. Among the undergraduates 
here, real analysis was viewed as being one of the most difficult 
courses to learn, not only because of the abstract concepts being 
introduced for the first time (e.g., topology, limits, measurability, 
etc.), but also because of the level of rigour and proof demanded 
of the course. Because of this perception of difficulty, one was 
often faced with the difficult choice of either reducing the level 
of rigour in the course in order to make it easier, or to maintain 
strict standards and face the prospect of many undergraduates, 
even many of the bright and enthusiastic ones, struggling with 
the course material. 

Faced with this dilemma, I tried a somewhat unusual approach 
to the subject. Typically, an introductory sequence in real analy­
sis assumes that the students are already familiar with the real 
numbers, with mathematical induction, with elementary calculus, 
and with the basics of set theory, and then quickly launches into 
the heart of the subject, for instance the concept of a limit. Nor­
mally, students entering this sequence do indeed have a fair bit 
of exposure to these prerequisite topics, though in most cases the 
material is not covered in a thorough manner. For instance, very 
few students were able to actually define a real number, or even 
an integer, properly, even though they could visualize these num­
bers intuitively and manipulate them algebraically. This seemed 
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to me to be a missed opportunity. Real analysis is one of the first 
subjects (together with linear algebra and abstract algebra) that 
a student encounters, in which one truly has to grapple with the 
subtleties of a truly rigorous mathematical proof. As such, the 
course offered an excellent chance to go back to the foundations 
of mathematics, and in particular the opportunity to do a proper 
and thorough construction of the real numbers. 

Thus the course was structured as follows. In the first week, 
I described some well-known "paradoxes" in analysis, in which 
standard laws of the subject (e.g., interchange of limits and sums, 
or sums and integrals) were applied in a non-rigorous way to give 
nonsensical results such as 0 = 1. This motivated the need to go 
back to the very beginning of the subject, even to the very defin­
ition of the natural numbers, and check all the foundations from 
scratch. For instance, one of the first homework assignments was 
to check (using only the Peano axioms) that addition was asso­
ciative for natural numbers (i.e., that (a+ b)+ c =a+ (b +c) for 
all natural numbers a, b, c: see Exercise 2.2.1). Thus even in the 
first week, the students had to write rigorous proofs using math­
ematical induction. After we had derived all the basic properties 
of the natural numbers, we then moved on to the integers (ini­
tially defined as formal differences of natural numbers); once the 
students had verified all the basic properties of the integers, we 
moved on to the rationals (initially defined as formal quotients of 
integers); and then from there we moved on (via formal limits of 
Cauchy sequences) to the reals. Around the same time, we covered 
the basics of set theory, for instance demonstrating the uncount­
ability of the reals. Only then (after about ten lectures) did we 
begin what one normally considers the heart of undergraduate real 
analysis - limits, continuity, differentiability, and so forth. 

The response to this format was quite interesting. In the first 
few weeks, the students found the material very easy on a con­
ceptual level, as we were dealing only with the basic properties 
of the standard number systems. But on an intellectual level it 
was very challenging, as one was analyzing these number systems 
from a foundational viewpoint, in order to rigorously derive the 
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more advanced facts about these number systems from the more 
primitive ones. One student told me how difficult it was to ex­
plain to his friends in the non-honours real analysis sequence (a) 
why he was still learning how to show why all rational numbers 
are either positive, negative, or zero (Exercise 4.2.4), while the 
non-honours sequence was already distinguishing absolutely con­
vergent and conditionally convergent series, and (b) why, despite 
this, he thought his homework was significantly harder than that 
of his friends. Another student commented to me, quite wryly, 
that while she could obviously see why one could always divide 
a natural number n into a positive integer q to give a quotient 
a and a remainder r less than q (Exercise 2.3.5), she still had, 
to her frustration, much difficulty in writing down a proof of this 
fact. (I told her that later in the course she would have to prove 
statements for which it would not be as obvious to see that the 
statements were true; she did not seem to be particularly consoled 
by this.) Nevertheless, these students greatly enjoyed the home­
work, as when they did persevere and obtain a rigorous proof of 
an intuitive fact, it solidifed the link in their minds between the 
abstract manipulations of formal mathematics and their informal 
intuition of mathematics (and of the real world), often in a very 
satisfying way. By the time they were assigned the task of giv­
ing the infamous "epsilon and delta" proofs in real analysis, they 
had already had so much experience with formalizing intuition, 
and in discerning the subtleties of mathematical logic (such as the 
distinction between the "for all" quantifier and the "there exists" 
quantifier), that the transition to these proofs was fairly smooth, 
and we were able to cover material both thoroughly and rapidly. 
By the tenth week, we had caught up with the non-honours class, 
and the students were verifying the change of variables formula for 
Riemann-Stieltjes integrals, and showing that piecewise continu­
ous functions were Riemann integrable. By the conclusion of the 
sequence in the twentieth week, we had covered (both in lecture 
and in homework) the convergence theory of Taylor and Fourier 
series, the inverse and implicit function theorem for continuously 
differentiable functions of several variables, and established the 
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dominated convergence theorem for the Lebesgue integral. 

In order to cover this much material, many of the key foun­
dational results were left to the student to prove as homework; 
indeed, this was an essential aspect of the course, as it ensured 
the students truly appreciated the concepts as they were being in­
troduced. This format has been retained in this text; the majority 
of the exercises consist of proving lemmas, propositions and theo­
rems in the main text. Indeed, I would strongly recommend that 
one do as many of these exercises as possible- and this includes 
those exercises proving "obvious" statements- if one wishes to use 
this text to learn real analysis; this is not a subject whose sub­
tleties are easily appreciated just from passive reading. Most of 
the chapter sections have a number of exercises, which are listed 
at the end of the section. 

To the expert mathematician, the pace of this book may seem 
somewhat slow, especially in early chapters, as there is a heavy 
emphasis on rigour (except for those discussions explicitly marked 
"Informal"), and justifying many steps that would ordinarily be 
quickly passed over as being self-evident. The first few chapters 
develop (in painful detail) many of the "obvious" properties of the 
standard number systems, for instance that the sum of two posi­
tive real numbers is again positive (Exercise 5.4.1), or that given 
any two distinct real numbers, one can find rational number be­
tween them (Exercise 5.4.5). In these foundational chapters, there 
is also an emphasis on non-circularity - not using later, more ad­
vanced results to prove earlier, more primitive ones. In particular, 
the usual laws of algebra are not used until they are derived (and 
they have to be derived separately for the natural numbers, inte­
gers, rationals, and reals). The reason for this is that it allows the 
students to learn the art of abstract reasoning, deducing true facts 
from a limited set of assumptions, in the friendly and intuitive set­
ting of number systems; the payoff for this practice comes later, 
when one has to utilize the same type of reasoning techniques to 
grapple with more advanced concepts (e.g., the Lebesgue integral). 

The text here evolved from my lecture notes on the subject, 
and thus is very much oriented towards a pedagogical perspec-
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tive; much of the key material is contained inside exercises, and 
in many cases I have chosen to give a lengthy and tedious, but in­
structive, proof instead of a slick abstract proof. In more advanced 
textbooks, the student will see shorter and more conceptually co­
herent treatments of this material, and with more emphasis on 
intuition than on rigour; however, I feel it is important to know 
how to do analysis rigorously and "by hand" first, in order to truly 
appreciate the more modern, intuitive and abstract approach to 
analysis that one uses at the graduate level and beyond. 

The exposition in this book heavily emphasizes rigour and 
formalism; however this does not necessarily mean that lectures 
based on this book have to proceed the same way. Indeed, in my 
own teaching I have used the lecture time to present the intuition 
behind the concepts (drawing many informal pictures and giving 
examples), thus providing a complementary viewpoint to the for­
mal presentation in the text. The exercises assigned as homework 
provide an essential bridge between the two, requiring the student 
to combine both intuition and formal understanding together in 
order to locate correct proofs for a problem. This I found to be 
the most difficult task for the students, as it requires the subject 
to be genuinely learnt, rather than merely memorized or vaguely 
absorbed. Nevertheless, the feedback I received from the students 
was that the homework, while very demanding for this reason, 
was also very rewarding, as it allowed them to connect the rather 
abstract manipulations of formal mathematics with their innate 
intuition on such basic concepts as numbers, sets, and functions. 
Of course, the aid of a good teaching assistant is invaluable in 
achieving this connection. 

With regard to examinations for a course based on this text, 
I would recommend either an open-book, open-notes examination 
with problems similar to the exercises given in the text (but per­
haps shorter, with no unusual trickery involved), or else a take­
home examination that involves problems comparable to the more 
intricate exercises in the text. The subject matter is too vast to 
force the students to memorize the definitions and theorems, so 
I would not recommend a closed-book examination, or an exami-
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nation based on regurgitating extracts from the book. (Indeed, in 
my own examinations I gave a supplemental sheet listing the key 
definitions and theorems which were relevant to the examination 
problems.) Making the examinations similar to the homework as­
signed in the course will also help motivate the students to work 
through and understand their homework problems as thoroughly 
as possible (as opposed to, say, using flash cards or other such de­
vices to memorize material), which is good preparation not only 
for examinations but for doing mathematics in general. 

Some of the material in this textbook is somewhat periph­
eral to the main theme and may be omitted for reasons of time 
constraints. For instance, as set theory is not as fundamental 
to analysis as are the number systems, the chapters on set theory 
(Chapters 3, 8) can be covered more quickly and with substantially 
less rigour, or be given as reading assignments. The appendices 
on logic and the decimal system are intended as optional or sup­
plemental reading and would probably not be covered in the main 
course lectures; the appendix on logic is particularly suitable for 
reading concurrently with the first few chapters. Also, Chapter 
16 (on Fourier series) is not needed elsewhere in the text and can 
be omitted. 

For reasons of length, this textbook has been split into two 
volumes. The first volume is slightly longer, but can be covered 
in about thirty lectures if the peripheral material is omitted or 
abridged. The second volume refers at times to the first, but can 
also be taught to students who have had a first course in analysis 
from other sources. It also takes about thirty lectures to cover. 

I am deeply indebted to my students, who over the progression 
of the real analysis course corrected several errors in the lectures 
notes from which this text is derived, and gave other valuable 
feedback. I am also very grateful to the many anonymous refer­
ees who made several corrections and suggested many important 
improvements to the text. 

Terence Tao 



Chapter 1 

Introduction 

1.1 What is analysis? 

This text is an honours-level undergraduate introduction to real 
analysis: the analysis of the real numbers, sequences and series of 
real numbers, and real-valued functions. This is related to, but 
is distinct from, complex analysis, which concerns the analysis of 
the complex numbers and complex functions, harmonic analysis, 
which concerns the analysis of harmonics (waves) such as sine 
waves, and how they synthesize other functions via the Fourier 
transform, functional analysis, which focuses much more heavily 
on functions (and how they form things like vector spaces), and ~o 
forth. Analysis is the rigourous study of such objects, with a fo­
cus on trying to pin down precisely and accurately the qualitative 
and quantitative behavior of these objects. Real analysis is the 
theoretical foundation which underlies calculus, which is the col­
lection of computational algorithms which one uses to manipulate 
functions. 

In this text we will be studying many objects which will be fa­
miliar to you from freshman calculus: numbers, sequences, series, 
limits, functions, definite integrals, derivatives, and so forth. You 
already have a great deal of experience of computing with these 
objects; however here we will be focused more on the underlying 
theory for these objects. We will be concerned with questions such 
as the following: 
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1. What is a real number? Is there a largest real number? 
After o; what is the "next" real number (i.e., what is the 
smallest positive real number)? Can you cut a real number 
into pieces infinitely many times? Why does a number such 
as 2 have a square root, while a number such as -2 does 
not? If there are infinitely many reals and infinitely many 
rationals, how come there are "more" real numbers than 
rational numbers? 

2. How do you take the limit of a sequence of real numbers? 
Which sequences have limits and which ones don't? If you 
can stop a sequence from escaping to infinity, does this mean 
that it must eventually settle down and converge? Can you 
add infinitely many real numbers together and still get a 
finite real number? Can you add infinitely many rational 
numbers together and end up with a non-rational number? 
If you rearrange the elements of an infinite sum, is the sum 
still the same? 

3. What is a function? What does it mean for a function to be 
continuous? differentiable? integrable? bounded? can you 
add infinitely many functions together? What about taking 
limits of sequences of functions? Can you differentiate an 
infinite series of functions? What about integrating? If a 
function f(x) takes the value 3 when x = 0 and 5 when 
x = 1 (i.e., f(O) = 3 and f(1) = 5), does it have to take every 
intermediate value between 3 and 5 when x goes between 0 
and 1? Why? 

You may already know how to answer some of these questions 
from your calculus classes, but most likely these sorts of issues 
were only of secondary importance to those courses; the emphasis 
was on getting you to perform computations, such as computing 
the integral of xsin(x2) from x = 0 to x = 1. But now that you 
are comfortable with these objects and already know how to do all 
the computations, we will go back to the theory and try to really 
understand what is going on. 
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1.2 Why do analysis? 

It is a fair question to ask, "why bother?", when it comes to 
analysis. There is a certain philosophical satisfaction in know­
ing why things work, but a pragmatic person may argue that one 
only needs to know how things work to do real-life problems. The 
calculus training you receive in introductory classes is certainly 
adequate for you to begin solving many problems in physics, chem­
istry, biology, economics, computer science, finance, engineering, 
or whatever else you end up doing - and you can certainly use 
things like the chain rule, L'Hopital's rule, or integration by parts 
without knowing why these rules work, or whether there are any 
exceptions to these rules. However, one can get into trouble if one 
applies rules without knowing where they came from and what 
the limits of their applicability are. Let me give some examples 
in which several of these familiar rules, if applied blindly without 
knowledge of the underlying analysis, can lead to disaster. 

Example 1.2.1 (Division by zero). This is a very familiar one 
to you: the cancellation law ac = be ===} a = b does not work 
when c = 0. For instance, the identity 1 x 0 = 2 x 0 is true, but 
if one blindly cancels the 0 then one obtains 1 = 2, which is false. 
In this case it was obvious that one was dividing by zero; but in 
other cases it can be more hidden. 

Example 1.2.2 (Divergent series). You have probably seen geo­
metric series such as the infinite sum 

1 1 1 1 
s = 1 + 2 + 4 + 8 + 16 + .... 

You have probably seen the following trick to sum this series: if 
we call the above sumS, then if we multiply both sides by 2, we 
obtain 

1 1 1 
28 = 2 + 1 + 2 + 4 + 8 + ... = 2 + s 

and hence S = 2, so the series sums to 2. However, if you apply 
the same trick to the series 

s = 1 + 2 + 4 + 8 + 16 + ... 
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one gets nonsensical results: 

28=2+4+8+16+ ... =8-1 ===} 8=-l. 

So the same reasoning that shows that 1 + ! + :! + . . . = 2 also 
gives that 1 + 2 + 4 + 8 + ... = -1. Why is it that we trust the 
first equation but not the second? A similar example arises with 
the series 

8=1-1+1-1+1-1+ ... ; 

we can write 

8 = 1- (1-1 + 1- 1 + ... ) = 1-8 

and hence that 8 = 1/2; or instead we can write 

8 = (1- 1) + (1- 1) + (1- 1) + ... = 0 + 0 + ... 

and hence that 8 = 0; or instead we can write 

8 = 1 + ( -1 + 1) + ( -1 + 1) + ... = 1 + 0 + 0 + ... 

and hence that 8 = 1. Which one is correct? (See Exercise 7.2.1 
for an answer.) 

Example 1.2.3 (Divergent sequences). Here is a slight v!U"iation 
of the previous example. Let x be a real number, and let L be the 
limit 

L = lim xn. 
n-+oo 

Changing variables n = m + 1, we have 

L = lim xm+l = lim x X xm = x lim xm. 
m+l-+oo m+l-+oo m+l-+oo 

But if m + 1 ~ oo, then m ~ oo, thus 

lim xm = lim xm = lim xn = L, 
m+l-+oo m-+oo n-+oo 

and thus 
xL=L. 
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At this point we could cancel the L's and conclude that x = 1 
for an arbitrary real number x, which is absurd. But since we are 
already aware of the division by zero problem, we could be a little 
smarter and conclude instead that either x = 1, or L = 0. In 
particular we seem to have shown that 

lim xn = 0 for all x =/= 1. 
n-+oo 

But this conclusion is absurd if we apply it to certain values of 
x, for instance by specializing to the case x = 2 we could con­
clude that the sequence 1, 2, 4, 8, ... converges to zero, and by 
specializing to the case x = -1 we conclude that the sequence 
1, -1, 1, -1, ... also converges to zero. These conclusions appear 
to be absurd; what is the problem with the above argument? (See 
Exercise 6.3.4 for an answer.) 

Example 1.2.4 (Limiting values of functions). Start with the 
expression limx-+oo sin( x), make the change of variable x = y + 1r 
and recall that sin(y + 1r) = - sin(y) to obtain 

lim sin(x) = lim sin(y + 1r) = lim (- sin(y)) =- lim sin(y). 
x-+oo y+7r-+oo y-+oo y-+oo 

Since limx-+oo sin(x) = limy-+oo sin(y) we thus have 

lim sin(x) = - lim sin(x) 
X--+90 X--+00 

and hence 
lim sin(x) = 0. 

x-+oo 

If we then make the change of variables x = 1r /2 - z and recall 
that sin(7r/2- 2) = cos(z) we conclude that 

lim cos(x) = 0. 
x-+oo 

Squaring both of these limits and adding we see that 

lim (sin2 (x) + cos2 (x)) = 02 + 02 = 0. 
X--+00 

On the other hand, we have sin2 (x) + cos2 (x) = 1 for all x. Thus 
we have shown that 1 = 0! What is the difficulty here? 
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Example 1.2.5 (Interchanging sums). Consider the following 
fact of arithmetic. Consider any matrix of numbers, e.g. 

and compute the sums of all the rows and the sums of all the 
columns, and then total all the row sums and total all the column 
sums. In both cases you will get the same number - the total sum 
of all the entries in the matrix: 

o:n 
12 15 18 

6 
15 
24 

45 

To put it another way, if you want to add all the entries in an 
m x n matrix together, it doesn't matter whether you sum the rows 
first or sum the columns first, you end up with the same answer. 
(Before the invention of computers, accountants and book-keepers 
would use this fact to guard against making errors when balancing 
their books.) In series notation, this fact would be expressed as 

m n n m 

:L::L:aij = :L::L:aij, 
i=l j=l j=li=l 

if aij denoted the entry in the ith row and lh column of the matrix. 
Now one might think that this rule should extend easily to 

infinite series: 
00 00 00 00 

:L::L:aij = :L::L:aij· 
i=l j=l j=li=l 

Indeed, if you use infinite series a lot in your work, you will find 
yourself having to switch summations like this fairly often. An­
other way of saying this fact is that in an infinite matrix, the 
sum of the row-totals should equal the sum of the column-totals. 
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However, despite the reasonableness of this statement, it is actu­
ally false! Here is a counterexample: 

1 0 0 0 
-1 1 0 0 

0 -1 1 0 
0 0 -1 1 
0 0 0 -1 

If you sum up all the rows, and then add up all the row totals, 
you get 1; but if you sum up all the columns, and add up all the 
column totals, you get 0! So, does this mean that summations 
for infinite series should not be swapped, and that any argument 
using such a swapping should be distrusted? (See Theorem 8.2.2 
for an answer.) 

Example 1.2.6 (Interchanging integrals). The interchanging of 
integrals is a trick which occurs in mathematics just as commonly 
as the interchanging of sums. Suppose one wants to compute the 
volume under a surface z = f(x, y) (let us ignore the limits of 
integration for the moment). One can do it by slicing parallel 
to the x-axis: for each fixed value of y, we can compute an area 
J f(x, y) dx, and then we integrate the area in they variable to 
obtain the volume 

V = j j f(x,y)dxdy. 

Or we could slice parallel to the y-axis for each fixed x and com­
pute an area J f(x, y) dy, and then integrate in the x-axis to 
obtain 

V = j j f(x,y)dydx. 

This seems to suggest that one should always be able to swap 
integral signs: 

j j f(x, y) dxdy = j j f(x, y) dydx. 



8 1. Introduction 

And indeed, people swap integral signs all the time, because some­
times one variable is easier to integrate in first than the other. 
However, just as infinite sums sometimes cannot be swapped, in­
tegrals are also sometimes dangerous to swap. An example is with 
the integrand e-xy- xye-xy. Suppose we believe that we can swap 
the integrals: 

fooo fol (e-xy- xye-xy) dy dx = fol fooo (e-xy- xye-xY) dx dy. 

Since 

fol (e-xy- xye-XY) dy = ye-xy~~~6 =e-x, 

the left-hand side is J0
00 e-x dx = -e-xlo = 1. But since 

fooo (e-xy- xye-xY) dx = xe-xy~~~o = 0, 

the right-hand side is J~ 0 dx = 0. Clearly 1 =!= 0, so there is an 
error somewhere; but you won't find one anywhere except in the 
step where we interchanged the integrals. So how do we know 
when to trust the interchange of integrals? (See Theorem 19.5.1 
for a partial answer.) 

Example 1.2. 7 (Interchanging limits). Suppose we start with 
the plausible looking statement 

But we have 

. . x2 . . x2 
hmhm =hmhm . 
x-+0 y-+0 x2 + y2 y-+0 x-+0 x2 + y2 

2 
l . X 
liD ----;:------;:­

y-+0 x2 + y2 

(1.1) 

so the left-hand side of (1.1) is 1; on the other hand, we have 

2 02 
lim x · = 0 
x-+O x2 + y2 02 + y2 = ' 

so the right-hand side of (1.1) is 0. Since 1 is clearly not equal 
to zero, this suggests that interchange of limits is untrustworthy. 
But are there any other circumstances in which the interchange 
of limits is legitimate? (See Exercise 13.2.9 for a partial answer.) 
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Example 1.2.8 (Interchanging limits, again). Consider the plau­
sible looking statement 

lim lim xn = lim lim xn 
n-+oo :z:-+1-

where the notation x ---+ 1- means that x is approaching 1 from 
the left. When xis to the left of 1, then liiDn-+oo xn = 0, and hence 
the left-hand side is zero. But we also have limx-+1- xn = 1 for 
all n, and so the right-hand side limit is 1. Does this demonstrate 
that this type of limit interchange is always untrustworthy? (See 
Proposition 14.3.3 for an answer.) 

Example 1.2.9 (Interchanging limits and integrals). For any real 
number y, we have 

100 1 7r 7r 
( )2 dx = arctan(x- y)l~-oo =-- ( --) = 1r. 

_ 00 1 + X- y 2 2 

Taking limits as y ---+ oo, we should obtain 

lim dx = lim dx = 1r. 100 1 100 1 
_ 00 y-+oo 1 + (x- y)2 y-+oo _00 1 + (x- y)2 

But for every x, we have limy-+oo 1+(;-y)2 = 0. So we seem to 
have concluded that 0 = 1r. What was the problem with the 
above argument? Should one abandon the (very useful) technique 
of interchanging limits and integrals? (See Theorem 14.6.1 for a 
partial answer.) 

Example 1.2.10 (Interchanging limits and derivatives). Observe 
that if c > 0, then 

and in particular that 
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Taking limits as c ~ 0, one might then expect that 

d ( x3 ) 
dx 0 + x2 lx=O = 0. 

But the right-hand side is :fxx = 1. Does this mean that it is 
always illegitimate to interchange limits and derivatives? (See 
Theorem 14.7.1 for an answer.) 

Example 1.2.11 (Interchanging derivatives). Let1 f(x, y) be the 
3 

function f(x, y) := x;!Y2. A common maneuvre in analysis is to 
interchange two partial derivatives, thus one expects 

But from the quotient rule we have 

of 3xy2 2xy4 
oy (x, y) = x2 + y2 - (x2 + y2)2 

and in particular 

of o o 
-0 (x, 0) = 2 - 4 = 0. 

y X X 

Thus 
o2f 

oxoy (0, 0) = 0. 

On the other hand, from the quotient rule again we have 

and hence 
of y3 o 
ox (0, y) = y2 - y4 = y. 

10ne might object that this function is not defined at (x, y) = (0, 0), but 
if we set f(O, 0) := (0, 0) then this function becomes continuous and differ­
entiable for all (x,y), and in fact both partial derivatives ¥x, U are also 
continuous and differentiable for all (x, y)! 
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Thus 
{)2 f 

oxoy (O, O) = 1. 

Since 1 =f. 0, we thus seem to have shown that interchange of deriv­
atives is untrustworthy. But are there any other circumstances in 
which the interchange of derivatives is legitimate? (See Theorem 
17.5.4 and Exercise 17.5.1 for some answers.) 

Example 1.2.12 (L'Hopital's rule). We are all familiar with the 
beautifully simple L'Hopital's rule 

lim f(x) = lim f'(x) 
x-+xo g(x) x-+xo g'(x)' 

but one can still get led to incorrect conclusions if one applies it 
incorrectly. For instance, applying it to f(x) := x, g(x) := 1 + x, 
and xo := 0 we would obtain 

1. X l" 1 1 
liD -1-- = liD -1 = , 

X-+0 +X X-+0 

but this is the incorrect answer, since limx-+0 l~x - So = 0. 
Of course, all that is going on here is that L'Hopital's rule is 
only applicable when both f(x) and g(x) go to zero as x ---t xo, 
a condition which was violated in the above example. But even 
when f(x) and g(x) do go to zero as x ---+ xo there is still a 
possibility for an incorrect conclusion. For instance, consider the 
limit 

. x2 sin(x-4) 
hm . 
x-+0 X 

Both numerator and denominator go to zero as x ---+ 0, so it seems 
pretty safe to apply L'Hopital's rule, to obtain 

1. x2 sin(x-4) 1. 2xsin(x-4)-4x-3 cos(x-4 ) liD = liD __ ....;__:......._ ___ ___;__....;... 

X-+0 X X-+0 1 
= lim 2xsin(x-4)- lim 4x-3 cos(x-4). 

x-+0 x-+0 

The first limit converges to zero by the squeeze test (since the func­
tion 2xsin(x-4) is bounded above by 2lxl and below by -2lxl, 
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both of which go to zero at 0). But the second limit is di­
vergent (because x-3 goes to infinity as x ---... 0, and cos(x-4) 

) . . . 2xsin(x-4 )-4x-2 cos(x-4 ) 
does not go to zero . So the hm1t hmx--+0 1 

diverges. One might then conclude using L'Hopital's rule that 
2 . ( -4) 

limx--+0 _x smx x also diverges; however we can clearly rewrite this 
limit as limx--+0 xsin(x-4), which goes to zero when x---... 0 by the 
squeeze test again. This does not show that L'Hopital 's rule is un­
trustworthy (indeed, it is quite rigourous; see Section 10.5), but 
it still requires some care when applied. 

Example 1.2.13 (Limits and lengths). When you learn about 
integration and how it relates to the area under a curve, you were 
probably presented with some picture in which the area under the 
curve was approximated by a bunch of rectangles, whose area was 
given by a Riemann sum, and then one somehow "took limits" to 
replace that Riemann sum with an integral, which then presum­
ably matched the actual area under the curve. Perhaps a little 
later, you learnt how to compute the length of a curve by a simi­
lar method - approximate the curve by a bunch of line segments, 
compute the length of all the line segments, then take limits again 
to see what you get. 

However, it should come as no surprise by now that this ap­
proach also can lead to nonsense if used incorrectly. Consider 
the right-angled triangle with vertices (0, 0), (1, 0), and (0, 1), and 
suppose we wanted to compute the length of the hypotenuse of 
this triangle. Pythagoras' theorem tells us that this hypotenuse 
has length J2, but suppose for some reason that we did not know 
about Pythagoras' theorem, and wanted to compute the length 
using calculus methods. Well, one way to do so is to approximate 
the hypotenuse by horizontal and vertical edges. Pick a large 
number N, and approximate the hypotenuse by a "staircase" con­
sisting of N horizontal edges of equal length, alternating with N 
vertical edges of equal length. Clearly these edges all have length 
1/N, so the total length of the staircase is 2N/N = 2. If one takes 
limits as N goes to infinity, the staircase clearly approaches the 
hypotenuse, and so in the limit we should get the length of the 
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hypotenuse. However, as N ~ oo, the limit of 2N/N is 2, not .J2, 
so we have an incorrect value for the length of the hypotenuse. 
How did this happen? 

The analysis you learn in this text will help you resolve these 
questions, and will let you know when these rules (and others) 
are justified, and when they are illegal, thus separating the use­
ful applications of these rules from the nonsense. Thus they can 
prevent you from making mistakes, and can help you place these 
rules in a wider context. Moreover, as you learn analysis you 
will develop an "analytical way of thinking", which will help you 
whenever you come into contact with any new rules of mathemat­
ics, or when dealing with situations which are not quite covered 
by the standard rules, For instance, what if your functions are 
complex-valued instead of real-valued? What if you are working 
on the sphere instead of the plane? What if your functions are 
not continuous, but are instead things like square waves and delta 
functions? What if your functions, or limits of integration, or lim­
its of summation, are occasionally infinite? You will develop a 
sense of why a rule in mathematics (e.g., the chain rule) works, 
how to adapt it to new situations, and what its limitations (if any) 
are; this will allow you to apply the mathematics you have already 
learnt more confidently and correctly. 



Chapter 2 

Starting at the beginning: the natural 
numbers 

In this text, we will review the material you have learnt in high 
school and in elementary calculus classes, but as rigourously as 
possible. To do so we will have to begin at the very basics -
indeed, we will go back to the concept of numbers and what their 
properties are. Of course, you have dealt with numbers for over 
ten years and you know how to manipulate the rules of algebra 
to simplify any expression involving numbers, but we will now 
turn to a more fundamental issue, which is: why do the rules of 
algebra work at all? For instance, why is it true that a(b +c) 
is equal to ab + ac for any three numbers a, b, c? This is not an 
arbitrary choice of rule; it can be proven from more primitive, 
and more fundamental, properties of the number system. This 
will teach you a new skill- how to prove complicated properties 
from simpler ones. You will find that even though a statement 
may be "obvious", it may not be easy to prove; the material here 
will give you plenty of practice in doing so, and in the process 
will lead you to think about why an obvious statement really is 
obvious. One skill in particular that you will pick up here is the 
use of mathematical induction, which is a basic tool in proving 
things in many areas of mathematics. 

So in the first few chapters we will re-acquaint you with various 
number systems that are used in real analysis. In increasing order 
of sophistication, they are the natuml numbers N; the integers Z; 
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the rationals Q, and the real numbers R. (There are other number 
systems such as the complex numbers C, but we will not study 
them until Section 15.6.) The natural numbers {0, 1, 2, ... } are 
the most primitive of the number systems, but they are used to 
build the integers, which in turn are used to build the rationals. 
Furthermore, the rationals are used to build the real numbers, 
which are in turn used to build the complex numbers. Thus to 
begin at the very beginning, we must look at the natural numbers. 
We will consider the following question: how does one actually 
define the natural numbers? (This is a very different question 
from how to use the natural numbers, which is something you of 
course know how to do very well. It's like the difference between 
knowing how to use, say, a computer, versus knowing how to build 
that computer.) 

This question is more difficult to answer than it looks. The ba­
sic problem is that you have used the natural numbers for so long 
that they are embedded deeply into your mathematical thinking, 
and you can make various implicit assumptions about these num­
bers (e.g., that a+ b is always equal to b +a) without even aware 
that you are doing so; it is difficult to let go and try to inspect 
this number system as if it is the first time you have seen it. So 
in what follows I will have to ask you to perform a rather difficult 
task: try to set aside, for the moment, everything you know about 
the natural numbers; forget that you know how to count, to add, 
to multiply, to manipulate the rules of algebra, etc. We will try to 
introduce these concepts one at a time and identify explicitly what 
our assumptions are as we go along- and not allow ourselves to use 
more "advanced" tricks such as the rules of algebra until we have 
actually proven them. This may seem like an irritating constraint, 
especially as we will spend a lot of time proving statements which 
are "obvious", but it is necessary to do this suspension of known 
facts to avoid circularity (e.g., using an advanced fact to prove a 
more elementary fact, and then later using the elementary fact to 
prove the advanced fact). Also, this exercise will be an excellent 
way to affirm the foundations of your mathematical knowledge. 
Furthermore, practicing your proofs and abstract thinking here 
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will be invaluable when we move on to more advanced concepts, 
such as real numbers, functions, sequences and series, differen­
tials and integrals, and so forth. In short, the results here may 
seem trivial, but the journey is much more important than the 
destination, for now. (Once the number systems are constructed 
properly, we can resume using the laws of algebra etc. without 
having to rederive them each time.) 

We will also forget that we know the decimal system, which 
of course is an extremely convenient way to manipulate numbers, 
but it is not something which is fundamental to what numbers are. 
(For instance, one could use an octal or binary system instead of 
the decimal system, or even the Roman numeral system, and still 
get exactly the same set of numbers.) Besides, if one tries to fully 
explain what the decimal number system is, it isn't as natural 
as you might think. Why is 00423 the same number as 423, but 
32400 isn't the same number as 324? Why is 123.4444 ... a real 
number, while ... 444.321 is not? And why do we have to carry 
of digits when adding or multiplying? Why is 0.999 ... the same 
number as 1? What is the smallest positive real number? Isn't it 
just 0.00 ... 001? So to set aside these problems, we will not try 
to assume any knowledge of the decimal system, though we will 
of course still refer to numbers by their familiar names such as 
1,2,3, etc. instead of using other notation such as I,II,III or 0++, 
(0++)++, ((0++)++)++ (see below) so as not to be needlessly 
artificial. For completeness, we review the decimal system in an 
Appendix (§B). 

2.1 The Peano axioms 

We now present one standard way to define the natural num­
bers, in terms of the Peano axioms, which were first laid out by 
Guiseppe Peano (1858-1932). This is not the only way to define 
the natural numbers. For instance, another approach is to talk 
about the cardinality of finite sets, for instance one could take a 
se~ of five elements and define 5 to be the number of elements in 
that set. We shall discuss this alternate approach in Section 3.6. 
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However, we shall stick with the Peano axiomatic approach for 
now. 

How are we to define what the natural numbers are? Infor-
mally, we could say 

Definition 2.1.1. (Informal) A natural number is any element of 
the set 

N := {0,1,2,3,4, ... }, 

which is the set of all the numbers created by starting with 0 and 
then counting forward indefinitely. We call N the set of natural 
numbers. 

Remark 2.1.2. In some texts the natural numbers start at 1 in­
stead of 0,. but this is a matter of notational convention more than 
anything else. In this text we shall refer to the set {1, 2, 3, ... } as 
the positive integers z+ rather than the natural numbers. Natural 
numbers are sometimes also known as whole numbers. 

In a sense, this definition solves the problem of what the nat­
ural numbers are: a natural number is any element of the set1 

N. However, it is not really that satisfactory, because it begs the 
question of what N is. This definition of "start at 0 and count 
indefinitely" seems like an intuitive enough definition of N, but it 
is not entirely acceptable, because it leaves many questions unan­
swered. For instance: how do we know we can keep counting 
indefinitely, without cycling back to 0? Also, how do you perform 
operations such as addition, multiplication, or exponentiation? 

We can answer the latter question first: we can define compli­
cated operations in terms of simpler operations. Exponentiation 
is nothing more than repeated multiplication: 53 is nothing more 
than three fives multiplied together. Multiplication is nothing 
more than repeated addition; 5 x 3 is nothing more than three 
fives added together. (Subtraction and division will not be cov­
ered here, because they are not operations which are well-suited 

1Strictly speaking, there is another problem with this informal definition: 
we have not yet defined what a "set" is, or what "element of" is. Thus for the 
rest of this chapter we shall avoid mention of sets and their elements as much 
as possible, except in informal discussion. 
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to the natural numbers; they will have to wait for the integers 
and rationals, respectively.) And addition? It is nothing more 
than the repeated operation of counting forward, or increment­
ing. If you add three to five, what you are doing is incrementing 
five three times. On the other hand, incrementing seems to be 
a fundamental operation, not reducible to any simpler operation; 
indeed, it is the first operation one learns on numbers, even before 
learning to add. 

Thus, to define the natural numbers, we will use two funda­
mental concepts: the zero number 0, and the increment operation. 
In deference to modern computer languages, we will use n++ to 
denote the increment or successor of n, thus for instance 3++ = 4, 
(3++ )++ = 5, etc. This is a slightly different usage from that in 
computer languages such as C, where n++ actually redefines the 
value of n to be its successor; however in mathematics we try not 
to define a variable more than once in any given setting, as it can 
often lead to confusion; many of the statements which were true 
for the old value of the variable can now become false, and vice 
versa. 

So, it seems like we want to say that N consists of 0 and 
everything which can be obtained from 0 by incrementing: N 
should consist of the objects 

O,O++,(O++)++,((O++)++)++,etc. 

If we start writing down what this means about the natural num­
bers, we thus see that we should have the following axioms con­
cerning 0 and the increment operation ++: 

Axiom 2.1. 0 is a natural number. 

Axiom 2.2. If n is a natural number, then n++ is also a natural 
number. 

Thus for instance, from Axiom 2.1 and two applications of 
Axiom 2.2, we see that (0++ )++ is a natural number. Of course, 
this notation will begin to get unwieldy, so we adopt a convention 
to write these numbers in more familiar notation: 
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Definition 2.1.3. We define 1 to be the number 0++, 2 to be 
the number (0++ )++, 3 to be the number ((0++ )++)++,etc. (In 
other words, 1 := 0++, 2 := 1 ++, 3 := 2++, etc. In this text I 
use "x := y" to denote the statement that xis defined to equal y.) 

Thus for instance, we have 

Proposition 2.1.4. 3 is a natural number. 

Proof. By Axiom 2.1, 0 is a natural number. By Axiom 2.2, 
O++ = 1 is a natural number. By A~om 2.2 again, 1++ = 2 
is a natural number. By Axiom 2.2 again, 2++ = 3 is a natural 
number. D 

It may· seem that this is enough to describe the natural num­
bers. However, we have not pinned down completely the behavior 
ofN: 

Example 2.1.5. Consider a number system which consists of the 
numbers 0, 1, 2, 3, in which the increment operation wraps back 
from 3 to 0. More precisely 0++ is equal to 1, 1++ is equal to 2, 
2++ is equal to 3, but 3++ is equal to 0 (and also equal to 4, by 
definition of 4). This type of thing actually happens in real life, 
when one uses a computer to try to store a natural number: if one 
starts at 0 and performs the increment operation repeatedly, even­
tually the computer will overflow its memory and the number will 
wrap around back to 0 (though this may take quite a large number 
of incrementation operations, for instance a two-byte representa­
tion of an integer will wrap around only after 65,536 increments). 
Note that this type of number system obeys Axiom 2.1 and Ax­
iom 2.2, even though it clearly does not correspond to what we 
intuitively believe the natural numbers to be like. 

1b prevent this sort of "wrap-around issue" we will impose 
another axiom: 

Axiom 2.3. 0 is not the successor of any natural number; i.e., 
we have n++ # 0 for every natural number n. 
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Now we can show that certain types of wrap-around do not 
occur: for instance we can now rule out the type of behavior in 
Example 2.1.5 using 

Proposition 2.1.6. 4 is not equal to 0. 

Don't laugh! Because of the way we have defined 4 - it is 
the increment of the increment of the increment of the increment 
of 0 - it is not necessarily true a priori that this number is not 
the same as zero, even if it is "obvious". ("a priori" is Latin for 
"beforehand" - it refers to what one already knows or assumes 
to be true before one begins a proof or argument. The opposite 
is "a posteriori" - what one knows to be true after the proof or 
argument is concluded.) Note for instance that in Example 2.1.5, 
4 was indeed equal to 0, and that in a standard two-byte computer 
representation of a natural number, for instance, 65536 is equal to 
0 (using our definition of 65536 as equal to 0 incremented sixty-five 
thousand, five hundred and thirty-six times). 

Proof. By definition, 4 = 3++. By Axioms 2.1 and 2.2, 3 is a 
natural number. Thus by Axiom 2.3, 3++ =/: 0, i.e., 4 =/: 0. D 

However, even with our new axiom, it is still possible that our 
number system behaves in other pathological ways: 

Example 2.1. 7. Consider a number system consisting of five 
numbers 0,1,2,3,4, in which the increment operation hits a "ceil­
ing" at 4. More precisely, suppose that 0++ = 1, 1++ = 2, 
2++ = 3, 3++ = 4, but 4++ = 4 (or in other words that 5 = 4, 
and hence 6 = 4, 7 = 4, etc.). This does not contradict Ax­
ioms 2.1,2.2,2.3. Another number system with a similar problem 
is one in which incrementation wraps around, but not to zero, e.g. 
suppose that 4++ = 1 (so that 5 = 1, then 6 = 2, etc.). 

There are many ways to prohibit the above types of behavior 
from happening, but one of the simplest is to assume the following 
axiom: 
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Axiom 2.4. Different natural numbers must have different suc­
cessors; i.e., ifn, m are natural numbers and n f=. m, then n++ f=. 
m+t-. Equivalentl'!l, if n++ = m-t~t, then we must haven= m. 

Thus, for instance, we have 

Proposition 2.1.8. 6 is not equal to 2. 

Proof. Suppose for sake of contradiction that 6 = 2. Then 5++ = 
1++, so by Axiom 2.4 we have 5 = 1, so that 4++ = 0++. By Ax­
iom 2.4 again we then have 4 = 0, which contradicts our previous 
proposition. D 

As one can see from this proposition, it now looks like we can 
keep all of the natural numbers distinct from each other. There 
is however still one more problem: while the axioms (particularly 
Axioms 2.1 and 2.2) allow us to confirm that 0, 1, 2, 3, ... are dis­
tinct elements of N, there is the problem that there may be other 
"rogue" elements in our number system which are not of this form: 

Example 2.1.9. (Informal) Suppose that our number system N 
consisted of the following collection of integers and half-integers: 

N := {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, ... }. 

(This example is marked "informal" since we are using real num­
bers, which we're not supposed to use yet.) One can check that 
Axioms 2.1-2.4 are still satisfied for this set. 

What we want is some axiom which says that the only numbers 
inN are those which can be obtained from 0 and the increment 
operation - in order to exclude elements such as 0.5. But it is 
difficult to quantify what we mean by "can be obtained from" 
without already using the natural numbers, which we are trying 
to define. Fortunately, there is an ingenious solution to try to 
capture this fact: 

2This is an example of reformulating an implication using its contrapositive; 
see Section A.2 for more details. 
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Axiom 2.5 (Principle of mathematical induction). Let P(n) be 
any property pertaining to a natural number n. Suppose that P(O) 
is true, and suppose that whenever P(n) is true, P(n++) is also 
true. Then P( n) is true for every natural number n. 

Remark 2.1.10. We are a little vague on what "property" means 
at this point, but some possible examples of P(n) might be "n 
is even"; "n is equal to 3"; "n solves the equation (n + 1)2 = 

n2 + 2n + 1"; and so forth. Of course we haven't defined many of 
these concepts yet, but when we do, Axiom 2.5 will apply to these 
properties: (A logical remark: Because this axiom refers not just 
to variables, but ·also properties, it is of a different nature than 
the other four axioms; indeed, Axiom 2.5 should technically be 
called an axiom schema rather than an axiom - it is a template 
for producing an (infinite) number of axioms, rather than being a 
single axiom in its own right. To discuss this distinction further 
is far beyond the scope of this text, though, and falls in the realm 
of logic.) 

The informal intuition behind this axiom is the following. Sup­
pose P(n) is such that P(O) is true, and such that whenever 
P(n) is true, then P(n++) is true. Then since P(O) is true, 
P(O++) = P(1) is true. Since P(1) is true, P(1 ++) = P(2) is 
true. Repeating this indefinitely, we see that P(O), P(1), P(2), 
P(3), etc. are all true- however this line of reasoning will never 
let us conclude that P(0.5), for instance, is true. Thus Axiom 
2.5 should not hold for number systems which contain "unneces­
sary'' elements such as 0.5. (Indeed, one can give a "proof" of this 
fact. Apply Axiom 2.5 to the property P(n) = n "is not a half­
integer", i.e., an integer plus 0.5. Then P(O) is true, and if P(n) 
is true, then P( n++) is true. Thus Axiom 2.5 asserts that P( n) 
is true for all natural numbers n, i.e., no natural number can be a 
half-integer. In particular, 0.5 cannot be a natural number. This 
"proof" is not quite genuine, because we have not defined such 
notions as "integer", "half-integer", and "0.5" yet, but it should 
give you some idea as to how the principle of induction is supposed 
to prohibit any numbers other than the "true" natural numbers 
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from appearing in N.) 
The principle of induction gives us a way to prove that a prop­

erty P( n) is true for every natural number n. Thus in the rest of 
this text we will see many proofs which have a form like this: 

Proposition 2.1.11. A certain property P(n) is true for every 
natural number n. 

Proof. We use induction. We first verify the base case n = 0, 
i.e., we prove P(O). (Insert proof of P(O) here). Now suppose 
inductively that n is a natural number, and P(n) has already 
been proven. We now prove P(n++). (Insert proof of P(n++), 
assuming that P(n) is true, here). This closes the induction, and 
thus P(n). is true for all numbers n. D 

Of course we will not necessarily use the exact template, word­
ing, or order in the above type of proof, but the proofs using induc­
tion will generally be something like the above form. There are 
also some other variants of induction which we shall encounter 
later, such as backwards induction (Exercise 2.2.6), strong in­
duction (Proposition 2.2.14), and transfinite induction (Lemma 
8.5.15). 

Axioms 2.1-2.5 are known as the Peano axioms for the natural 
numbers. They are all very plausible, and so we shall make 

Assumption 2.6. (Informal) There exists a number system N, 
whose elements we will call natural numbers, for which Axioms 
2.1-2.5 are true. 

We will make this assumption a bit more precise once we have 
laid down our notation for sets and functions in the next chapter. 

Remark 2.1.12. We will refer to this number system N as the 
natural number system. One could of course consider the possi­
bility that there is more than one natural number system, e.g., we 
could have the Hindu-Arabic number system {0, 1, 2, 3, ... } and 
the Roman number system {O,I,II,III,IV,V,VI, ... }, and if 
we really wanted to be annoying we could view these number sys­
tems as different. But these number systems are clearly equivalent 
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(the technical term is isomorphic), because one can create a one­
to-one correspondence 0 +-+ 0, 1 +-+ I, 2 +-+ I I, etc. which maps 
the zero of the Hindu-Arabic system with the zero of the Roman 
system, and which is preserved by the increment operation (e.g., 
if 2 corresponds to I I, then 2++ will correspond to I I++). For 
a more precise statement of this type of equivalence, see Exer­
cise 3.5.13. Since all versions of the natural number system are 
equivalent, there is no point in having distinct natural number 
systems, and. we will just use a single natural number system to 
do mathematics. 

yve will not prove Assumption 2.6 (though we will eventually 
include it in our axioms for set theory, see Axiom 3.7), and it will 
be the only assumption we will ever make about our numbers. 
A remarkable accomplishment of modern analysis is that just by 
starting from these five very primitive axioms, and some additional 
axioms from set theory, we can build all the other number systems, 
create functions, and do all the algebra and calculus that we are 
used to. 

Remark 2.1.13. (Informal) One interesting feature about the 
natural numbers is that while each individual natural number is 
finite, the set of natural numbers is infinite; i.e., N is infinite 
but consists of individually finite elements. (The whole is greater 
than any of its parts.) There are no infinite natural numbers; one 
can even prove this using Axiom 2.5, provided one is comfortable 
with the notions of finite and infinite. (Clearly 0 is finite. Also, 
if n is finite, then clearly n++ is also finite. Hence by Axiom 
2.5, all natural numbers are finite.) So the natural numbers can 
approach infinity, but never actually reach it; infinity is not one 
of the natural numbers. (There are other number systems which 
admit "infinite" numbers, such as the cardinals, ordinals, and p­
adics, but they do not obey the principle of induction, and in any 
event are beyond the scope of this text.) 

Remark 2.1.14. Note that our definition of the natural num­
bers is axiomatic rather than constructive. We have not told you 
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what the natural numbers are (so we do not address such ques­
tions as what the numbers are made of, are they physical objects, 
what do they measure, etc.) - we have only listed some things 
you can do with them (in fact, the only operation we have defined 
on them right now is the increment one) and some of the prop­
erties that they have. This is how mathematics works- it treats 
its objects abstra~tly, caring only about what properties the ob­
jects have, not what the objects are or what they mean. If one 
wants to do mathematics, it does not matter whether a natural 
number means a certain arrangement of beads on an abacus, or 
a certain organization of bits in a computer's memory, or some 
more abstract concept with no physical substance; as long as you 
can increment them, see if two of them are equal, and later on do 
other arithmetic operations such as add and multiply, they qual­
ify as numbers for mathematical purposes (provided they obey the 
requisite axioms, of course). It is possible to construct the natural 
numbers from other mathematical objects - from sets, for instance 
- but there are multiple ways to construct a working model of the 
natural numbers, and it is pointless, at least from a mathemati­
cian's standpoint, as to argue about which model is the "true" one 
- as long as it obeys all the axioms and does all the right things, 
that's good enough to do maths. 

Remark 2.1.15. Historically, the realization that numbers could 
be treated axiomatically is very recent, not much more than a 
hundred years old. Before then, numbers were generally under­
stood to be inextricably connected to some external concept, such 
as counting the cardinality of a set, measuring the length of a 
line segment, or the mass of a physical object, etc. This worked 
reasonably well, until one was forced to move from one number 
system to another; for instance, understanding numbers in terms 
of counting beads, for instance, is great for conceptualizing the 
numbers 3 and 5, but doesn't work so well for -3 or 1/3 or v'2 or 
3+4i; thus each great advance in the theory of numbers- negative 
numbers, irrational numbers, complex numbers, even the number 
zero - led to a lot of unnecessary philosophical anguish. The great 
discovery of the late nineteenth century was that numbers can be 
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understood abstractly via axioms, without necessarily needing a 
concrete model; of course a mathematician can use any of these 
models when it is convenient, to aid his or her intuition and un­
derstanding, but they can also be just as easily discarded when 
they begin to get in the way. 

One consequence of the axioms is that we can now define se­
quences recursively. Suppose we want to build a sequence ao, a1, 
a2, ... of numbers by first defining ao to be some base value, e.g., 
ao := c for some number c, and then by letting a1 be some func­
tion of ao, a1 := /o(ao), a2 be some function of a1, a2 := fi(a1-), 
and so forth. In general, we set an++ := fn(an) for some func­
tion f n from N to N. By using all the axioms together we will 
now conclude that this procedure will give a single value to the 
sequence element an for each natural number n. More precisely3 : 

Proposition 2.1.16 (Recursive definitions). Suppose for each 
natural number n, we have some function fn : N ---... N from 
the natural numbers to the natural numbers. Let c be a natural 
number. Then we can assign a unique natural number an to each 
natural number n, such that ao = c and an++ = fn(an) for each 
natural number n. 

Proof. (Informal) We use induction. We first observe that this 
procedure gives a single value to ao, namely c. (None of the other 
definitions an++ := fn(an) will redefine the value of ao, because 
of Axiom 2.3.) Now suppose inductively that the procedure gives 
a single value to an. Then it gives a single value to an++, namely 
an++ := fn(an). (Nolle of the other definitions llm++ := fm(am) 
will redefine the value of an++, because of Axiom 2.4.) This com­
pletes the induction, and so an is defined for each natural number 
n, with a single value assigned to each an. D 

3 Strictly speaking, this proposition requires one to define the notion of 
a function, which we shall do in the next chapter. However, this will not 
be circular, as the concept of a function does n_ot require the Peano axioms. 
Proposition 2.1.16 can be formalized more rigourously in the language of set 
theory; see Exercise 3.5.12. 
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Note how all of the axioms had to be used here. In a system 
which had some sort of wrap-around, recursive definitions would 
not work because some elements of the sequence would constantly 
be redefined. For instance, in Example 2.1.5, in which 3++ = 0, 
then there would be (at least) two conflicting definitions for ao, 
either c or /3(a3)). In a system which had superfluous elements 
such as 0.5, the element ao.s would never be defined. 

Recursive definitions are very powerful; for instance, we can 
use them to define addition and multiplication, to which we now 
turn. 

2.2 Addition 

The natural number system is very bare right now: we have only 
one operation - increment - and a handful of axioms. But now we 
can build up more complex operations, such as addition. 

The way it works is the following. To add three to five should 
be the same as incrementing five three times - this is one increment 
more than adding two to five, which is one increment more than 
adding one to five, which is one increment more than adding zero 
to five, which should just give five. So we give a recursive definition 
for addition as follows. 

Definition 2.2.1 (Addition of natural numbers). Let m be a 
natural number. To add zero to m, we define 0 + m := m. Now 
suppose inductively that we have defined how to add n to m. Then 
we can add n++ tom by defining (n++) + m := (n + m)++. 

Thus 0 + m is m, 1 + m = (0++) + m is m++; 2 + m 
(1++) +m = (m++ )++; and so forth; for instance we have 2+3 = 
(3++ )++ = 4++ = 5. From our discussion of recursion in the 
previous section we see that we have defined n + m for every 
integer n. Here we are specializing the previous general discussion 
to the setting where an = n + m and fn(an) =an++· Note that 
this definition is asymmetric: 3 + 5 is incrementing 5 three times, 
while 5 + 3 is incrementing 3 five times. Of course, they both 
yield the same value of 8. More generally, it is a fact (which we 
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shall prove shortly) that a+ b = b + a for all natural numbers a, b, 
although this is not immediately clear from the definition. 

Notice that we can prove easily, using Axioms 2.1, 2.2, and 
induction (Axiom 2.5), that the sum of two natural numbers is 
again a natural number (why?). 

Right now we only have two facts about addition: that O+m = 
m, and that (n++) +m = (n+m)++. Remarkably, this turns out 
to be enough to deduce everything else we know about addition. 
We begin with some basic lemmas4 . 

Lemma 2.2.2. For any natural number n, n + 0 = n. 

Note that we cannot deduce this immediately from O+m = m 
because we do not know yet that a + b = b + a. 

Proof. We use induction. The base case 0 + 0 = 0 follows since 
we kno~ that 0 + m = m for every natural number m, and 0 
is a natural number. Now suppose inductively that n + 0 = n. 
We wish to show that (n++) + 0 = n++. But by definition of 
addition, ( n++) + 0 is equal to ( n + 0) ++, which is equal to n++ 
since n + 0 = n. This closes the induction. 0 

Lemma 2.2.3. For a:ny natural numbers n and m, n + ( m++) = 

(n+m)++. 

Again, we cannot deduce this yet from (n++)+m = (n+m)++ 
because we do not know yet that a + b = b + a. 

Proof. We induct on n (keeping m fixed). We first consider the 
base case n = 0. In this case we have to prove 0 + (m++) = (0 + 

4 From a logical point of view, there is no difference between a lemma, 
proposition, theorem, or corollary - they are all claims waiting to be proved. 
However, we use these terms to suggest different levels of importance and 
difficulty. A lemma is an easily proved claim which is helpful for proving 
other propositions and theorems, but is usually not particularly interesting in 
its own right. A proposition is a statement which is interesting in its own right, 
while a theorem is a more important statement than a proposition which says 
something definitive on the subject, and often takes more effort to prove than 
a proposition or lemma. A corollary is a quick consequence of a proposition 
or theorem that was proven recently. 
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m)++· But by definition of addition, 0 + (m++) = m++ and 0 + 
m = m, so both sides are equal to m++ and are thus equal to each 
other. Now we assume inductively that n+(m++) = (n+m)++; 
wenowhavetoshowthat (n++)+(m++) = ((n++)+m)++. The 
left-hand side is (n + (m++ ))++ by definition of addition, which 
is equal to ((n+m)++ )++by the inductive hypothesis. Similarly, 
we have (n++ )+m = (n+m)++ by the definition of addition, and 
so the right-hand side is also equal to ((n+m)++)++. Thus both 
sides are equal to each other, and we have closed the induction. D 

As a particular corollary of Lemma 2.2.2 and Lemma 2.2.3 we 
see that n++ = n f 1 (why?). 

As promised earlier, we can now prove that a+ b = b +a. 

Proposition 2.2.4 (Addition is commutative). For any natural 
numbers n and m, n + m = m + n. 

Proof. We shall use induction on n (keeping m fixed). First we do 
the base case n = 0, i.e., we show O+m = m+O. By the definition 
of addition, 0 + m = m, while by Lemma 2.2.2, m + 0 = m. Thus 
the base case is done. Now suppose inductively that n+m = m+n, 
now we have to prove that ( n++) + m = m + ( n++) to close the 
induction. By the definition of addition, (n++) +m = (n+m)++. 
By Lemma 2.2.3, m + (n++) = (m + n)++, but this is equal to 
(n + m)++ by the inductive hypothesis n + m = m + n. Thus 
( n++) + m = m + ( n++) and we have closed the induction. D 

Proposition 2.2.5 (Addition is associative). For any natural 
numbers a, b, c, we have (a+ b)+ c =a+ (b +c). 

Proof. See Exercise 2.2.1. D 

Because of this associativity we can write sums such as a+b+c 
without having to worry about which order the numbers are being 
added together. 

Now we develop a cancellation law. 

Proposition 2.2.6 (Cancellation law). Let a, b, c be natural num­
bers such that a + b = a + c. Then we have b = c. 
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Note that we cannot use subtraction or negative numbers yet 
to prove this proposition, because we have not developed these 
concepts yet. In fact, this cancellation law is crucial in letting 
us define subtraction (and the integers) later on in these notes, 
because it allows for a sort of ''virtual subtraction" even before 
subtraction is officially defined. 

Proof. We prove this by induction on a. First consider the base 
case a = 0. Then we have 0 + b = 0 + c, which by definition of 
addition implies that b =cas desired. Now suppose inductively 
that we have the cancellation law for a (so that a+b = a+c implies 
b = c); we now have to prove the cancellation law for a++. In other 
words, we assume that (a++) + b = (a++) + c and need to show 
that b =c. By the definition of addition, (a++)+ b =(a+ b)++ 
and (a++) +c = (a+c)++ and so we have (a+b)++ = (a+c)++. 
By Axiom 2.4, we have a + b = a + c. Since we already have the 
cancellation law for a, we thus have b = c as C.esired. This closes 
the induction. 0 

We now discuss how addition interacts with positivity. 

Definition 2.2.7 (Positive natural numbers). A natural number 
n is said to be positive iff it is not equal to 0. ("iff" is shorthand 
for "if and only if" - see Section A.l). 

Proposition 2.2.8. If a is positive and b is a natural number, 
then a + b is positive (and hence b + a is also, by Proposition 
2.2.4). 

Proof. We use induction ·on b. If b = 0, then a + b = a + 0 = 
a, which is positive, so this proves the base case. Now suppose 
inductively that a+ b is positive. Then a+ (b++) =(a+ b)++, 
which cannot be zero by Axiom 2.3, and is hence positive. This 
closes the induction. 0 

Corollary 2.2.9. If a and bare natural numbers such that a+b = 
0, then a = 0 and b = 0. 



2. 2. Addition 31 

Proof. Suppose for sake of contradiction that a =/: 0 or b =/: 0. 
If a -::f 0 then a is positive, and hence a+ b = 0 is positive by 
Proposition 2.2.8, a contradiction. Similarly if b =/: 0 then b is 
positive, and again a + b = 0 is positive by Proposition 2.2.8, a 
contradiction. Thus a and b must both be zero. D 

Lemma 2.2.10. Let a be a positive number. Then there exists 
exactly one natuml number b such that b++ =a. 

Proof. See Exercise 2.2.2. D 

Once we have a notion of addition, we can begin defining a 
notion of order. 

Definition 2.2.11 (Ordering of the natural numbers). Let nand 
m be natural numbers. We say that n is greater than or equal to 
m, and write n ~ m or m ~ n, iff we have n = m + a for some 
natural number a. We say that n is strictly greater than m, and 
write n > m or m < n, iff n ~ m and n =/: m. 

Thus for instance 8 > 5, because 8 = 5 + 3 and 8 =/: 5. Also 
note that n++ > n for any n; thus there is no largest natural 
number n, because the next number n++ is always larger still. 

Proposition 2.2.12 (Basic properties of order for natural num­
bers). Let a, b, c be natuml numbers. Then 

(a) (Order is reflexive) a ~ a. 

(b) (Order is tmnsitive) If a ~ b and b ~ c, then a ~ c. 

(c) (Order is anti-symmetric) If a ~ b and b ~ a, then a = b. 

(d) (Addition preserves order) a ~ b if and only if a + c ~ b + c. 

(e) a< b if and only if a++~ b. 

(!) a < b if and only if b = a + d for some positive number d. 

Proof. See Exercise 2.2.3. D 
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Proposition 2.2.13 (Trichotomy of order for natural numbers). 
Let a and b be natural numbers. Then exactly one of the following 
statements is true: a< b, a= b, or a> b. 

Proof. This is only a sketch of the proof; the gaps will be filled in 
Exercise 2.2.4. 

First we show that we cannot have more than one of the state­
ments a < b, a = b, a > b holding at the same time. If a < b 
then a =/:. b by definition, and if a > b then a =/:. b by definition. 
If a > b and a < b then by Proposition 2.2.12 we have a = b, a 
contradiction. Thus no more than one of the statements is true. 

Now we show that at least one of the statements is true. We 
keep b fixed and induct on a. When a = 0 we have 0 ::; b for 
all b (why?), so we have either 0 = b or 0 < b, which proves the 
base case. Now suppose we have proven the proposition for a, and 
now we prove the proposition for a++. From the trichotomy for 
a, there are three cases: a < b, a = b, and a > b. If a > b, then 
a++ > b (why?). If a = b, then a++ > b (why?). Now suppose 
that a< b. Then by Proposition 2.2.12, we have a++::; b. Thus 
either a++ = b or a++ < b, and in either case we are done. This 
closes the induction. D 

The properties of order allow one to obtain a stronger version 
of the principle of induction: 

Proposition 2.2.14 (Strong principle of induction). Let m0 be 
a natural number, and Let P( m) be a property pertaining to an 
arbitrary natural number m. Suppose that for each m ~ mo, we 
have the following implication: if P( m') is true for all natural 
numbers mo ::=;; m' < m, then P( m) is also true. (In particular, 
this means that P(mo) is true, since in this case the hypothesis is 
vacuous.) Then we can conclude that P( m) is true for all natural 
numbers m ~ mo. 

Remark 2.2.15. In applications we usually use this principle 
with mo = 0 or mo = 1. 

Proof. See Exercise 2.2.5. 0 
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Exercise 2.2.1. Prove Proposition 2.2.5. (Hint: fix two of the variables 
and induct on the third.) 

Exercise 2.2.2. Prove Lemma 2.2.10. (Hint: use induction.) 

Exercise 2.2.3. Prove Proposition 2.2.12. (:aint: you will need many of 
the preceding propositions, corollaries, and lemmas.) 

Exercise 2.2.4. Justify the three statements marked (why?) in the proof 
of Proposition 2.2.13. 

Exercise 2.2.5. Prove Proposition 2.2.14. (Hint: define Q(n) to be the 
property that P(m) is true for all mo ::::; m < n; note that Q(n) is 
vacuously true when n <mo.) 

Exercise 2.2.6. Let n be a natural number, and let P(m) be a property 
pertaining to the natural numbers such that whenever P( m++) is true, 
then P(m) ·is true. Suppose that P(n) is also true. Prove that P(m) 
is true for all natural numbers m ::::; n; this is known as the principle of 
backwards induction. (Hint: apply induction to the variable n.) 

2.3 Multiplication 

In the previous section we have proven all the basic facts that we 
know to be true about addition and order. To save space and 
to avoid belaboring the obvious, we will now allow ourselves to 
use all the rules of algebra concerning addition and order that we 
are familiar with, without further comment. Thus for instance 
we may write things like a + b + c = c + b + a without supplying 
any further justification. Now we introduce multiplication. Just 
as addition is the iterated increment operation, multiplication is 
iterated addition: 

Definition 2.3.1 (Multiplication of natural numbers). Let m be 
a natural number. To multiply zero tom, we define 0 x m := 0. 
Now suppose inductively that we have defined how to multiply n 
to m. Then we can multiply n++ to m by defining ( n++) x m := 
(n x m) +m. 

Thus for instance 0 x m = 0, 1 x m = O+m, 2 x m = O+m+m, 
etc. By induction one can easily verify that the product of two 
natural numbers is a natural number. 
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Lemma 2.3.2 (Multiplication is commutative). Let n, m be nat­
uml numbers. Then n x m = m x n. 

Proof. See Exercise 2.3.1. 0 

We will now abbreviate n x m as nm, and use the usual con­
vention that multiplication takes precedence over addition, thus 
for instance ab + c means (ax b)+ c, not ax (b +c). (We will 
also use the usual notational conventions of precedence for the 
other arithmetic operations when they are defined later, to save 
on using parentheses all the time.) 

Lemma 2.3.3 (Natural numbers have no zero divisors). Let n, m 
be natuml numbers. Then n x m = 0 if and only if at least one of 
n, m is equal to zero. In particular, if n and m are both positive, 
then nm is also positive. 

Proof. See Exercise 2.3.2. 0 

Proposition 2.3.4 (Distributive law). For any natuml numbers 
a, b, c, we have a(b +c) = ab + ac and (b + c)a = ba +ca. 

Proof. Since multiplication is commutative we only need to show 
the first identity a(b + c) = ab + ac. We keep a and b fixed, 
and use induction on c. Let's prove the base case c = 0, i.e., 
a(b + 0) = ab + aO. The left-hand side is ab, while the right-hand 
side is ab + 0 = ab, so we are done with the base case. Now let us 
suppose inductively that a(b +c) = ab + ac, and let us prove that 
a(b + (c++)) = ab + a(c++ ). The left-hand side is a((b +c)++)= 
a(b+c) +a, while the right-hand side is ab+ac+a = a(b+c) +a by 
the induction hypothesis, and so we can close the induction. 0 

Proposition 2.3.5 (Multiplication is associative). For any nat­
uml numbers a, b, c, we have (ax b) x c =ax (b x c). 

Proof. See Exercise 2.3.3. 0 

Proposition 2.3.6 (Multiplication preserves order). If a, b are 
natuml numbers 1 such that a < b, and c is positive, then ac < be. 
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Proof. Since a < b, we have b = a + d for some positive d. Multi­
plying by c and using the distributive law we obtain be = ae +de. 
Since d is positive, and c is positive, de is positive, and hence 
ac < be as desired. D 

Corollary 2.3. 7 (Cancellation law). Let a, b, e be natural numbers 
such that ac = be and e is non-zero. Then a = b. 

Remark 2.3.8. Just as Proposition 2.2.6 will allow for a "vir-· 
tual subtraction" which will eventually let us define genuine sub­
traction, this corollary provides a "virtual division" which will be 
needed to define genuine division later on. 

Proof. By. the trichotomy of order (Proposition 2.2.13), we have 
three cases: a < b, a = b, a > b. Suppose first that a < b, then by 
Proposition 2.3.6 we have ae <be, a contradiction. We can obtain 
a similar contradiction when a > b. Thus the only possibility is 
that a = b, as desired. D 

With these propositions it is easy to deduce all the familiar 
rules of algebra involving addition and multiplication, see for in­
stance Exercise 2.3.4. 

Now that we have the familiar operations of addition and mul­
tiplication, the more primitive notion of increment will begin to 
fall by the wayside, and we will see it rarely from now on. In any 
event we can always use addition to describe incrementation, since 
n++ = n+ 1. 

Proposition 2.3.9 . (Euclidean algorithm). Let n be a natural 
number, and let q be a positive number. Then there exist natural 
numbers m, r such that 0 ~ r < q and n = mq + r. 

Remark 2.3.10. In other words, we can divide a natural number 
n by a positive number q to obtain a quotient m (which is another 
natural number) and a remainder r (which is less than q). This 
algorithm marks the beginning of number theory, which is a beau­
tiful and important subject but one which is beyond the scope of 
this text. 
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Proof. See Exercise 2.3.5. 0 

Just like one uses the increment operation to recursively define 
addition, and addition to recursively define multiplication, one can 
use multiplication to recursively define exponentiation: 

Definition 2.3.11 (Exponentiation for natural numbers). Let m 
be a natural number. To raise m to the power 0, we define m0 := 
1. Now suppose recursively that mn has been defined for some 
natural number n, then we define mn++ := mn x m. 

Examples 2.3.12. Thus for instance x1 = x0 x x = 1 x x = x; 

x2 = x1 x x = x x x; x3 = x2 x x = x x x x x; and so forth. By 
induction we see that this recursive definition defines xn for all 
natural numbers n. 

We will not develop the theory of exponentiation too deeply 
here, but instead wait until after we have defined the integers and 
rational numbers; see in particular Proposition 4.3.10. 

Exercise 2.3.1. Prove Lemma 2.3.2. (Hint: modify the proofs of Lemmas 
2.2.2, 2.2.3 and Proposition 2.2.4.) 

Exercise 2.3.2. Prove Lemma 2.3.3. (Hint: prove the second statement 
first.) 

Exercise 2.3.3. Prove Proposition 2.3.5. (Hint: modify the proof of 
Proposition 2.2.5 and use the distributive law.) 

Exercise 2.3.4. Prove the identity (a+ b )2 = a2 + 2ab + b2 for all natural 
numbers a, b. 

Exercise 2.3.5. Prove Proposition 2.3.9. (Hint: fix q and induct on n.) 



Chapter 3 

Set theory 

Modern analysis, like most of modern mathematics, is concerned 
with numbers, sets, and geometry. We have already introduced 
one type of number system, the natural numbers. We will intro­
duce the other number systems shortly, but for now we pause to 
introduce the concepts and notation of set theory, as they will be 
used increasingly heavily in later chapters. (We will not pursue a 
rigourous description of Euclidean geometry in this text, prefer­
ring instead to describe that geometry in terms of the real number 
system by means of the Cartesian co-ordinate system.) 

While set theory is not the main focus of this text, almost 
every other branch of mathematics relies on set theory as part of 
its foundation, so it is important to get at least some grounding in 
set theory before doing other advanced areas of mathematics. In 
this chapter we present the more elementary aspects of axiomatic 
set theory, leaving more a4vanced topics such as a discussion of 
infinite sets and the axiom of choice to Chapter 8. A full treatment 
of the finer subtleties of set theory (of which there are many!) is 
unfortunately well beyond the scope of this text. 

3.1 Fundamentals 

In this section we shall set out some axioms for sets, just as we did 
for the natural numbers. For pedagogical reasons, we will use a 
somewhat overcomplete list of axioms for set theory, in the sense 
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that some of the axioms can be used to deduce others, but there is 
no real harm in doing this. We begin with an informal description 
of what sets should be. 

Definition 3.1.1. (Informal) We define a set A to be any un­
ordered collection of objects, e.g., {3, 8, 5, 2} is a set. If x is 
an object, we say that x is an element of A or x E A if x lies 
in the collection; otherwise we say that x ¢ A. For instance, 
3 E {1, 2, 3, 4, 5} but 7 ¢ {1, 2, 3, 4, 5}. 

This definition is intuitive enough, but it doesn't answer a 
number of questions, such as which collections of objects are con­
sidered to be sets, which sets are equal to other sets, and how one 
defines operations on sets (e.g., unions, intersections, etc.). Also, 
we have no axioms yet on what sets do, or what their elements 
do. Obtaining these axioms and defining these operations will be 
the purpose of the remainder of this section. 

We first clarify one point: we consider sets themselves to be a 
type of object. 

Axiom 3.1 (Sets are objects). If A is a set, then A is also an 
object. In particular, given two sets A and B, it is meaningful to 
ask whether A is also an element of B. 

Example 3.1.2. (Informal) The set {3, {3, 4}, 4} is a set of three 
distinct elements, one of which happens to itself be a set of two 
elements. See Example 3.1.10 for a more formal version of this 
example. However, not all objects ru:e sets; for instance, we typ­
ically do not consider a natural number such as 3 to be a set. 
(The more accurate statement is that natural numbers can be the 
cardinalities of sets, rather than necessarily being sets themselves. 
See Section 3.6.) 

Remark 3.1.3. There is a special case of set theory, called "pure 
set theory", in which all objects are sets; for instance the number 0 
might be identified with the empty set 0 = {}, the number 1 might 
be identified with {0} = { {} }, the number 2 might be identified 
with {0, 1} = { {}, { {} }}, and so forth. From a logical point of 
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view, pure set theory is a simpler theory, since one only has to 
deal with sets and not with objects; however, from a conceptual 
point of view it is often easier to deal with impure set theories 
in which some objects are not considered to be sets. The two 
types of theories are more or less equivalent for the purposes of 
doing mathematics, and so we shall take an agnostic position as 
to whether all objects are sets or not. 

To summarize so far, among all the objects studied in mathe­
matics, some of the objects happen to be sets; and if xis an object 
and A is a set, then either x E A is true or x E A is false. (If A is 
not a set, we leave the statement x E A undefined; for instance, 
we consider the statement 3 E 4 to neither be true or false, but 
simply meaningless, since 4 is not a set.) 

Next, we define the notion of equality: when are two sets con­
sidered to be equal? We do not consider the order of the ele­
ments inside a set to be important; thus we think of {3, 8, 5, 2} 
and {2, 3, 5, 8} as the same set. On the other hand, {3, 8, 5, 2} 
and {3, 8, 5, 2, 1} are different sets, because the latter set contains 
an element that the former one does not, namely the element 1. 
For similar reasons {3, 8, 5, 2} and {3, 8, 5} are different sets. We 
formalize this as a definition: 

Definition 3.1.4 (Equality of sets). Two sets A and Bare equal, 
A = B, iff every element of A is an element of B and vice versa. 
To put it another way, A = B if and only if every element x of A 
belongs also to B, and every element y of B belongs also to A. 

Example 3.1.5. Thus, for instance, {1, 2, 3, 4, 5} and {3, 4, 2, 1, 5} 
are the same set, since they contain exactly the same elements. 
(The set {3, 3, 1, 5, 2, 4, 2} is also equal to {1, 2, 3; 4, 5}; the rep­
etition of 3 and 2 is irrelevant as it does not further change the 
status of 2 and 3 being elements of the set.) 

One can easily verify that this notion of equality is reflexive, 
symmetric, and transitive (Exercise 3.1.1). Observe that if x E A 
and A = B, then x E B, by Definition 3.1.4. Thus the "is an 
element of" relation E obeys the axiom of substitution (see Section 
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A.7). Because of this, any new operation we define on sets will 
also obey the axiom of substitution, as long as we can define that 
operation purely in terms of the relation E. This is for instance the 
case for the remaining definitions in this section. (On the other 
hand, we cannot use the notion of the "first" or "last" element 
in a set in a well-defined manner, because this would not respect 
the axiom of substitution; for instance the sets {1, 2, 3, 4, 5} and 
{3, 4, 2, 1, 5} are the same set, but have different first elements.) 

Next, we turn to the issue of exactly which objects are sets 
and which objects are not. The situation is analogous to how we 
defined the natural numbers in the previous chapter; we started 
with a single natural number, 0, and started building more num­
bers out of 0 using the increment operation. We will try something 
similar here, starting with a single set, the empty set, and building 
more sets out of the empty set by various operations. We begin 
by postulating the existence of the empty set. 

Axiom 3.2 (Empty set). There exists a set 0, known as the empty 
set, which contains no elements, i.e., for every object x we have 
X ¢0. 

The empty set is also denoted {}. Note that there can only 
be one empty set; if there were two sets 0 and 0' which were both 
empty, then by Definition 3.1.4 they would be equal to each other 
(why?). 

If a set is not equal to the empty set, we call it non-empty. The 
following statement is very simple, but worth stating nevertheless: 

Lemma 3.1.6 (Single choice). Let A be a non-empty set. Then 
there exists an object x such that x EA. 

Proof. We prove by contradiction. Suppose there does not exist 
any object x such that x E A. Then for all objects x, we have 
x ¢A. Also, by Axiom 3.2 we have x ¢0. Thus x E A {:::=:=> x E 0 
(both statements are equally false), and so A = 0 by Definition 
3.1.4, a contradiction. 0 

Remark 3.1.7. The above Lemma asserts that given any non­
empty set A, we are allowed to "choose" an element x of A which 
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demonstrates this non-emptyness. Later on (in Lemma 3.5.12) 
we will show that given any finite number of non-empty sets, say 
Ab ... , An, it is possible to choose one element x1, ... , Xn from 
each set A1, ... , An; this is known as "finite choice". However, in 
order to choose elements from an infinite number of sets, we need 
an additional axiom, the axiom of choice, which we will discuss in 
Section 8.4. 

Remark 3.1.8. Note that the empty set is not the same thing 
as the natural number 0. One is a set; the other is a number. 
However, it is true that the cardinality of the empty set is 0; see 
Section 3.6. 

If Axiom 3.2 was the only axio~ that set theory had, then set 
theory could be quite boring, as there might be just a single set 
in existence, the empty set. We now present further axioms to 
enrich the class of sets available. 

Axiom 3.3 (Singleton sets and pair sets). If a is an object, then 
there exists a set {a} whose only element is a, i.e., for every object 
y, we have y E {a} if and only if y =a; we refer to {a} as the 
singleton set whose element is a. Furthermore, if a and b are 
objects, then there exists a set {a, b} whose only elements are a 
and b; i.e., for every object y, we have y E {a, b} if and only if 
y = a or y = b; we refer to this set as the pair set formed by a 
and b. 

Remarks 3.1.9. Just as there is only one empty set, there is 
only one singleton set for each object a, thanks to Definition 3.1.4 
(why?). Similarly, given any two objects a and b, there is only 
one pair set formed by a and b. Also, Definition 3.1.4 also ensures 
that {a, b} = {b, a} (why?) and {a, a} = {a} (why?). Thus the 
singleton set axiom is in fact redundant, being a consequence of 
the pair set axiom. Conversely, the pair set axiom will follow from 
the singleton set axiom and the pairwise union axiom below (see 
Lemma 3.1.13). One may wonder why we don't go furthe! and 
create triplet axioms, quadruplet axioms, etc.; however there will 
be no need for this once we introduce the pairwise union axiom 
below. 
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Examples 3.1.10. Since 0 is a set (and hence an object), so is 
singleton set {0}, i.e., the set whose only element is 0, is a set 
(and it is not the same set as 0, {0} =/= 0 (why?). Similarly, the 
singleton set { {0}} and the pair set {0, {0}} are also sets. These 
three sets are not equal to each other (Exercise 3.1.2). 

As the above examples show, we can now create quite a few 
sets; however, the sets we make are still fairly small (each set that 
we can build consists of no more than two elements, so far). The 
next axiom allows us to build somewhat larger sets than before. 

Axiom 3.4 (Pairwise union). Given any two sets A, B, there 
exists a set A U B, called the union A U B of A and B, whose 
elements consists of all the elements which belong to A or B or 
both. In other words, for any object x, 

x E AU B {::=::9- (x E A or x E B). 

Recall that "or" refers by default in mathematics to inclusive 
or: "X or Y is true" means that "either X is true, or Y is true, 
or both are true". See Section A.l. 

Example 3.1.11. The set {1, 2}U{2, 3} consists of those elements 
which either lie on {1, 2} or in {2, 3} or in both, or in other words 
the elements of this set are simply 1, 2, and 3. Because of this, 
we denote this set as {1, 2} U {2, 3} = {1, 2, 3}. 

Remark 3.1.12. If A, B, A' are sets, and A is equal to A', then 
AU B is equal to A' U B (why? One needs to use Axiom 3.4 and 
Definition 3.1.4). Similarly if B' is a set which is equal to B, then 
A U B is equal to A U B'. Thus the operation of union obeys the 
axiom of substitution, and is thus well-defined on sets. 

We now give some basic properties of unions. 

Lemma 3.1.13. If a and b are objects, then {a, b} ={a} U {b}. 
If A, B, C are sets, then the union operation is commutative (i.e., 
AUB = BUA) and associative (i.e., (AUB)UC = AU(BUC)). 
Also, we have AU A = AU 0 = 0 U A = A. 
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proof We prove just the associativity identity (AU B) U C = 
Au ( B U C), and leave the remaining claims to Exercise 3.1.3. By 
Definition 3.1.4, we need to show that every element x of (AUB)U 
C is an element of A U ( B U C), and vice versa. So suppose first 
that xis an element of (AU B) U C. By Axiom 3.4, this means 
that at least one of x E AU B or x E Cis true. We now divide 
into two cases. If x E C, then by Axiom 3.4 again x E B U C, and 
so by Axiom 3.4 again we have x E AU (B U C). Now suppose 
instead x E A U B, then by Axiom 3.4 again x E A or x E B. 
If x E A then x E AU (B U C) by Axiom 3.4, while if x E B 
then by consecutive applications of Axiom 3.4 we have x E B U C 
and hence x E A U ( B U C). Thus in all cases we see that every 
element of (AU B) U C lies in AU (B U C). A similar argument 
shows that every element of A U ( B U C) lies in (A U B) U C, and 
so (AU B) U C =AU (B U C) as desired. 0 

Because of the above lemma, we do not need to use parentheses 
to denote multiple unions, thus for instance we can write AUBUC 
instead of (AU B) U C or AU ( B U C). Similarly for unions of four 
sets, Au B U CUD, etc. 

Remark 3.1.14. While the operation of union has some simi­
larities with addition, the two operations are not identical. For 
instance, {2} U {3} = {2, 3} and 2 + 3 = 5, whereas {2} + {3} is 
meaningless (addition pertains to numbers, not sets) and 2 U 3 is 
also meaningless (union pertains to sets, not numbers). 

This axiom allows us to define triplet sets, quadruplet sets, and 
so forth: if a, b, care three objects, we define {a, b, c} := {a}U{b}U 
{ c }; if a, b, c, d are four objects, then we define {a, b, c, d} := {a} U 
{b}U{c}U{d}, and so forth. On the other hand, we are not yet in a 
position to define sets consisting of n objects for any given natural 
number n; this would require iterating the above construction 
"n times", but the concept of n-fold iteration has not yet been 
rigourously defined. For similar reasons, we cannot yet define sets 
consisting of infinitely many objects, because that would require 
iterating the axiom of pairwise union infinitely often, and it is 
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not clear at this stage that one can do this rigourously. Later on, 
we will introduce other axioms of set theory which allow one to 
construct arbitrarily large, and even infinite, sets. 

Clearly, some sets seem to be larger than others. One way to 
formalize this concept is through the notion of a subset. 

Definition 3.1.15 (Subsets). Let A, B be sets. We say that A is 
a subset of B, denoted A ~ B, iff every element of A is also an 
element of B, i.e. 

For any object x, x E A ====} x E B. 

We say that A is a proper subset of B, denoted A S: B, if A ~ B 
and A=/: B. 

Remark 3.1.16. Because these definitions involve only the no­
tions of equality and the "is an element of" relation, both of which 
already obey the axiom of substitution, the notion of subset also 
automatically obeys the axiom of substitution. Thus for instance 
if A ~ B and A = A', then A' ~ B. 

Examples 3.1.17. We have {1, 2, 4} ~ {1, ~' 3, 4, 5}, because 
every element of {1, 2, 4} is also an element of {1, 2, 3, 4, 5}. In fact 
"'"e also have {1, 2, 4} S: {1, 2, 3, 4, 5}, since the two sets {1, 2, 4} 
and {1, 2, 3, 4, 5} are not equal. Given any set A, we always have 
A~ A (why?) and 0 ~A (why?). 

The notion of subset in set theory is similar to the notion of 
"less than or equal to" for numbers, as the following Proposition 
demonstrates (for a more precise statement, see Definition 8.5.1): 

Proposition 3.1.18 (Sets are partially ordered by set inclusion). 
Let A, B, C be sets. If A ~ B and B ~ C then A ~ C. If A ~ B 
and B ~ A, then A = B. Finally, if A S: B and B S: C then 
AS: C. 

Proof. We shall just prove the first claim. Suppose that A ~ B 
and B ~ C. To prove that A ~ C, we have to prove that every 
element of A is an element of C. So, let us pick an arbitrary 
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element x of A. Then, since A ~ B, x must then be an element 
of B. But then since B ~ C, x is an element of C. Thus every 
element of A is indeed an element of C, as claimed. , 0 

Remark 3.1.19. There is a relationship between subsets and 
unions: see for instance Exercise 3.1.7. 

Remark 3.1.20. There is one important difference between the 
subset relation s;; and the less than relation <. Given any two 
distinct natural numbers n, m, we know that one of them is smaller 
than the other (Proposition 2.2.13); however, given two distinct 
sets, it is not in general true that one of them is a subset of the 
other. For instance, take A:= {2n: n EN} to be the set of even 
natural nu~bers, and B := {2n + 1: n EN} to be the set of odd 
natural numbers. Then neither set is a subset of the other. This 
is why we say that sets are only partially ordered, whereas the 
natural numbers are totally ordered (see Definitions 8.5.1, 8.5.3). 

Remark 3.1.21. We should also caution that the subset relation 
~ is not the same as the element relation E. The number 2 is 
an element of {1, 2, 3} but not a subset; thus 2 E {1, 2, 3}, but 
2 Cf:. {1, 2, 3}. Indeed, 2 is not even a set. Conversely, while {2} 
is a subset of {1, 2, 3}, it is not an element; thus {2} ~ {1, 2, 3} 
but {2} ¢ {1, 2, 3}. The point is that the number 2 and the set 
{2} are distinct objects. It is important to distinguish sets from 
their elements, as they can have different properties. For instance, 
it is possible to have an infinite set consisting of finite numbers 
(the set N of natural numbers is one such example), and it is also 
possible to have a finite set consisting of infinite objects (consider 
for instance the finite set {N, Z, Q, R}, which has four elements, 
all of which are infinite). 

We now give an axiom which easily allows us to create subsets 
out of larger sets. 

Axiom 3.5 (Axiom of specification). Let A be a set, and for each 
x E A, let P(x) be a property pertaining to x (i.e., P(x) is either 
a true statement or a false statement). Then there exists a set, 
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called {x E A: P(x) is true} (or simply {x E A: P(x)} for short), 
whose elements are precisely the elements x in A for which P(x) 
is true. In other words, for any object y, 

y E {x E A: P(x) is true} ~ (yEA and P(y) is true). 

This axiom is also known as the axiom of separation. Note that 
{x E A: P(x) is true} is always a subset of A (why?), though it 
could be as large as A or as small as the empty set. One can 
verify that the axiom of substitution works for specification, thus 
if A= A' then {x E A: P(x)} = {x E A': P(x)} (why?). 

Example 3.1.22. LetS:= {1, 2, 3, 4, 5}. Then the set {n E 8: 
n < 4} is the set of those elements n in 8 for which n < 4 is true, 
i.e., {n E 8: n < 4} = {1,2,3}. Similarly, the set {n E 8: n < 7} 
is the same as 8 itself, while { n E 8 : n < 1} is the empty set. 

. We sometimes write {x E A'P(x)} instead of {x E A: P(x)}; 
this is useful when we are using the colon ":" to denote something 
else, for instance to denote the range and domain of a function 
f: X~ Y). 

We can use this axiom of specification to define some further 
operations on sets, namely intersections and difference sets. 

Definition 3.1.23 (Intersections). The intersection 81 n 82 of 
two sets is defined to be the set 

In other words, 81 n 82 consists of all the elements which belong 
to both 81 and 82. Thus, for all objects x, 

X E 81 n 82 ~ X E 81 anrl X E 82. 

Remark 3.1.24. Note that this definition is well-defined (i.e., it 
obeys the axiom of substitution, see Section A. 7) because it is 
defined in terms of more primitive operations which were already 
known to obey the axi<?m of substitution. Similar remarks apply to 
future definitions in this chapter and will usually not be mentioned 
explicitly again. 
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Examples 3.1.25. We have {1, 2, 4} n {2, 3, 4} = {2, 4}, {1, 2} n 
{3, 4} = 0, {2, 3} u 0 = {2, 3}, and {2, 3} n 0 = 0. 

Remark 3.1.26. By the way, one should be careful with the 
English word "and": rather confusingly, it can mean either union 
or intersection, depending on context. For instance, if one talks 
about a set of "boys and girls" , one means the union of a set of 
boys with a set of girls, but if one talks about the set of people who 
are single and male, then one means the intersection of the set of 
single people with the set of male people. (Can you work out the 
rule of grammar that determines when "and" means union and 
when "and" means intersection?) Another problem is that "and" 
is also used in English to denote addition, thus for instance one 
could say that "2 and 3 is 5" , while also saying that "the elements 
of {2} and the elements of {3} form the set {2, 3}" and "the el­
ements in {2} and {3} form the set 0". This can certainly get 
confusing! One reason we resort to mathematical symbols instead 
of English words such as "and" is that mathematical symbols al­
ways have a precise and unambiguous meaning, whereas one must 
often look very carefully at the context in order to work out what 
an English word means. 

Two sets A, B are said to be disjoint if A n B = 0. Note 
that this is not the same concept as being distinct, A f=. B. For 
instance, the sets {1, 2, 3} and {2, 3, 4} are distinct (there are el­
ements of one set which are not elements of the other) but not 
disjoint (because their intersection is non-empty). Meanwhile, the 
sets 0 and 0 are disjoint but not distinct (why?). 

Definition 3.1.27 (Difference sets). Given two sets A and B, we 
define the set A- B or A\B to be the set A with any elements of 
B removed: 

A\B := {x E A: x ¢ B}; 

for instance, {1,2,3,4}\{2,4,6} = {1,3}. In many cases B will 
be a subset of A, but not necessarily. 

We now give some basic properties of unions, intersections, 
and difference sets. 
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Proposition 3.1.28 (Sets form a boolean algebra). Let A, B, 0 
be sets, and let X be a set containing A, B, C as subsets. 

(a) {Minimal element) We have AU 0 =A and An 0 = 0. 

(b) {Maximal element) We have AU X= X and An X= A. 

(c) {Identity) We have An A= A and AU A= A. 

(d) (Commutativity) We have AUB = BUA and AnB = BnA. 

(e) {Associativity) We have (AU B) U C = AU (B U C) and 
(An B) n C =An (B n C). 

(f) {Distributivity) We have An (B U C) = (An B) U (An 0) 
and Au (B n C)= (Au B) n (Au C). 

(g) {Partition) We have AU (X\A) =X and An (X\A) = 0. 

(h) {De Morgan laws) We have X\(A U B) = (X\A) n (X\B) 
and X\(A n B)= (X\A) u (X\B). 

Remark 3.1.29. The de Morgan laws are named after the lo­
gician Augustus De Morgan (1806-1871), who identi~ed them as 
one of the basic laws of set theory. 

Proof. See Exercise 3.1.6. 0 

Remark 3.1.30. The reader may observe a certain symmetry in 
the above laws between U and n, and between X and 0. This is 
an example of duality- two distinct properties or objects being 
dual to each other. In this case, the duality is manifested by 
the complementation relation A ~ X\A; the de Morgan laws. 
assert that this relation converts unions into intersections and vice 
versa. (It also interchanges X and the empty set.) The above laws 
are collectively known as the laws of Boolean algebra, after the 
mathematician George Boole (1815-1864), and are also applicable 
to a number of other objects other than sets; it plays a particularly 
important role in logic. 
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We have now accumulated a number of axioms and results 
about sets, but there are still many things we are not able to do 
yet. One of the basic things we wish to do with a set is take each of 
the objects of that set, and somehow transform each such object 
into a new object; for instance we may wish to start with a set 
of numbers, say {3, 5, 9}, and increment each one, creating a new 
set { 4, 6, 10}. This is not something we can do directly using only 
the axioms we already have, so we need a new axiom: 

Axiom 3.6 (Replacement). Let A be a set. For any object x E 
A, and any object y, suppose we have a statement P(x, y) per­
taining to x and y, such that for each x E A there is at most 
one y for which P(x, y) is true. Then there exists a set {y 
P(x, y) is true for some x E A}, such that for any object z, 

z E{y: P(x, y) is true for some x E A} 
¢::::::} P(x, z) is true for some x EA. 

Example 3.1.31. Let A:= {3, 5, 9}, and let P(x, y) be the state­
ment y = x++, i.e., y is the successor of x. Observe that for every 
x E A, there is exactly one y for which P(x, y) is true - specifi­
cally, the successor of x. Thus the above axiom asserts that the 
set {y : y = x++ for some x E {3, 5, 9}} exists; in this case, it is 
clearly the same set as {4, 6, 10} (why?). 

Example 3.1.32. Let A= {3, 5, 9}, and let P(x, y) be the state­
ment y = 1. Then again for every x E A, there is exactly one y 
for which P(x, y) is true- specifically, the number 1. In this case 
{y : y = 1 for some x E {3, 5, 9}} is just the singleton set {1}; 
we have replaced each element 3, 5, 9 of the original set A by the 
same object, namely 1. Thus this rather silly example shows that 
the set obtained by the above axiom can be "smaller" than the 
original set. 

We often abbreviate a set of the forrri 

{y : y = f ( x) for some x E A} 
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as {f(x) : x E A} or {f(x)lx E A}. Thus for instance, if 

A = {3, 5, 9}, then {x-++ : x E A} is the set {4, 6, 10}. We 
can of course combine the axiom of replacement with the ax­
iom of specification, thus for instance we can create sets such as 
{!(x) : x E A; P(x) is true} by starting with the set A, using the 
axiom of specification to create the set { x E A : P( x) is true}, 
and then applying the axiom ofreplacement to create {f(x) : x E 
A; P(x) is true}. Thus for instance {n-++ : n E {3, 5, 9}; n < 6} == 
{4, 6}. 

In many of our examples we have implicitly assumed that nat­
ural numbers are in fact objects. Let us formalize this as follows. 

Axiom 3. 7 (Infinity). There exists a set N, whose elements are 
called natural numbers, as well as an object 0 in N, and an object 
n-++ assigned to every natural number n E N, such that the Peano 
axioms (Axioms 2.1 - 2. 5) hold. 

This is the more formal version of Assumption 2.6. It is called 
the axiom of infinity because it introduces the most basic example 
of an infinite set, namely the set of natural numbers N. (We will 
formalize what finite and infinite mean in Section 3.6.) From the 
axiom of infinity we see that numbers such as 3, 5, 7, etc. are 
indeed objects in set theory, and so (from the pair set axiom and 
pairwise union axiom) we can indeed legitimately construct sets 
such as {3, 5, 9} as we have been doing in our examples. 

One has to keep the concept of a set distinct from the elements 
of that set; for instance, the set {n + 3: n EN, 0 ~ n ~ 5} is not 
the same thing as the expression or function n + 3. We emphasize 
this with an example: 

Example 3.1.33. (Informal) This example requires the notion 
of subtraction, which has not yet been formally introduced. The 
following two sets are equal, 

{n + 3: n E N,O ~ n ~ 5} = {8- n: n EN, 0 ~ n ~ 5}, (3.1) 
I 

(see below), even though the expressions n + 3 and 8 - n are 
never equal to each other for any natural number n. Thus, it 
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is a good idea to remember to use those curly braces {} when 
you talk about sets, lest you accidentally confuse a set with its 
elements. One reason for this counter-intuitive situation is that 
the letter n is being used in two different ways on the two sides 
of (3.1). To clarify the situation, let us rewrite the set {8 - n : 
n EN, 0::; n::; 5} by replacing the letter n by the letter m, thus 
giving {8- m: mEN, 0 ::; m::; 5}. This is exactly the same set 
as before (why?), so we can rewrite (3.1) as 

{n + 3: n EN, 0::; n::; 5} = {8- m: mEN, 0::; m::; 5}. 

Now it is easy to see (using (3.1.4)) why this identity is true: every 
number of the form n + 3, where n is a natural number between 
0 and 5, is also of the form 8- m where m := 5- n (note that m 
is therefore also a natural number between 0 and 5); conversely, 
every number of the form 8- m, where n is a natural number 
between 0 and 5, is also of the form n + 3, where n : = 5 - m (note 
that n is therefore a natural number between 0 and 5). Observe 
how much more confusing the above explanation of (3.1) would 
have been if we had not changed one of then's to an m first! 

Exercise 3.1.1. Show that the definition of equality in (3.1.4) is reflexive, 
symmetric, and transitive. 

Exercise 3.1.2. Using only Definition 3.1.4, Axiom 3.2, and Axiom 3.3, 
prove that the sets 0, {0}, { {0} }, and {0, {0}} are all distinct (i.e., no 
two of them are equal to each other). 

Exercise 3.1.3. Prove the remaining claims in Lemma 3.1.13. 

Exercise 3.1.4. Prove the remaining claims in Proposition 3.1.18. 

Exercise 3.1.5. Let A, B be sets. Show that the three statements A ~ B, 
AU B = B, An B = A are logically equivalent (any one of them implies 
the other two). 

Exercise 3.1.6. Prove Proposition 3.1.28. (Hint: one can use some of 
these claims to prove others. Some of the claims have also appeared 
previously in Lemma 3.1.13.) 

Exercise 3.1.7. Let A, B, C be sets. Show that AnB ~A and AnB ~B. 
Furthermore, show that C ~ A and C ~ B if and only if C ~ An B. In 
a similar spirit, show that A~ AU Band B ~AU B, and furthermore 
that A ~ C and B ~ C if and only if AU B ~ C. 
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Exercise 3.1.8. Let A, B be sets. Prove the absorption laws An(AUB):::::: 
A and AU (An B) = A. 

Exercise 3.1.9. Let A, B, X be sets such that AUB =X and AnB = 0. 
Show that A = X\B and B = X\A. 

Exercise 3.1.10. Let A and B be sets. Show that the three sets A\B, 
An B, and B\A are disjoint, and that their union is AU B. 

Exercise 3.1.11. Show that the axiom of replacement implies the axiom 
of specification. 

3.2 Russell's paradox (Optional) 

Many of the axioms introduced in the previous section have a 
similar flavor: they both allow us to form a set consisting of all the 
elements which have a certain property. They are both plausible, 
but one might think that they could be unified, for instance by 
introducing the following axiom: 

Axiom 3.8 (Universal specification). (Dangerous!) Suppose for 
every object x we have a property P(x) pertaining to x (so that 
for every x, P( x) is either a true statement or a false statement). 
Then there exists a set { x : P( x) is true} such that for every object 
y, 

y E {x: P(x) is true} -¢::=> P(y) is true. 

This axiom is also known as the axiom of comprehension. It as­
serts that every property corresponds to a set; if we assumed that 
axiom, we could talk about the set of all blue objects, the set of all 
natural numbers, the set of all sets, and so forth. This axiom also 
implies most of the axioms in the previous section (Exercise 3.2.1). 
Unfortunately, this axiom cannot be introduced into set theory, 
because it creates a logical contradiction known as Russell's para­
dox, discovered by the philosopher and logician Bertrand Russell 
(1872-1970) in 1901. The paradox runs as follows. Let P(x) be 
the statement 

P(x) -¢::=> "xis a set, and x ¢ x"; 
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i.e., P(x) is true only when xis a set which does not contain itself. 
For instance, P({2,3,4}) is true, since the set {2,3,4} is not one 
of the three elements 2, 3, 4 of {2, 3, 4}. On the other hand, if we 
let S be the set of all sets (which we would know to exist from 
the axiom of universal specification), then since S is itself a set, 
it is an element of S, and so P(S) is false. Now use the axiom of 
universal specification to create the set 

f2 := {X : P( X) is true} = {X : X is a set and X ~ X}, 

i.e., the set of all sets which do not contain themselves. Now ask 
the question: does 0 contain itself, i.e. is 0 E 0? If 0 did contain 
itself, then by definition this means that P(n) is true, i.e., n is 
a set and. n ~ n. On the other hand, if n did not contain itself, 
then P(O) would be true, and hence 0 E 0. Thus in either case 
we have both 0 E 0 and 0 ~ 0, which is absurd. 

The problem with the above axiom is that it creates sets which 
are far too "large" - for instance, we can use that axiom to talk 
about the set of all objects (a so-called "universal set"). Since 
sets are themselves objects (Axiom 3.1), this means that sets are 
allowed to contain themselves, which is a somewhat silly state of 
affairs. One way to informally resolve this issue is to think of 
objects as being arranged in a hierarchy. At the bottom of the 
hierarchy are the primitive objects- the objects that are not sets1, 

such as the natural number 37. Then on the next rung of the 
hierarchy there are sets whose elements consist only of primitive 
objects, such as {3, 4, 7} or the empty set 0; let's call these "primi­
tive sets" for now. Then there are sets whose elements consist only 
of primitive objects and primitive sets, such as {3, 4, 7, {3, 4, 7} }. 
Then we can form sets out of these objects, and so forth. The 
point is that at each stage of the hierarchy we only see sets whose 
elements consist of objects at lower stages of the hierarchy, and so 
at no stage do we ever construct a set which contains itself. 

To actually formalize the above intuition of a hierarchy of ob­
jects is actually rather complicated, and we will not do so here. 

1 In pure set theory, there will be no primitive objects, but there will be 
one primitive set 0 on the next rung of the hierarchy. 
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Instead, we shall simply postulate an axiom which ensures that 
absurdities such as Russell's paradox do not occur. 

Axiom 3.9 (Regularity). If A is a non-empty set, then there is 
at least one element x of A which is either not a set, or is disjoint 
from A. 

The point of this axiom (which is also known as the axiom 
of foundation) is that it is asserting that at least one of the el­
ements of A is so low on the hierarchy of objects that it does 
not contain any of the other elements of A. For instance, if 
A= {{3, 4}, {3, 4, {3, 4}} }, then the element {3, 4} E A does not 
contain any of the elements of A (neither 3 nor 4 lies in A), al­
though the element {3, 4, {3, 4} }, being somewhat higher in the 
hierarchy, does contain an element of A, namely {3, 4}. One par­
ticular consequence of this axiom is that sets are no longer allowed 
to contain themselves (Exercise 3.2.2). 

One can legitimately ask whether we really need this axiom 
in our set theory, as it is certainly less intuitive than our other 
axioms. For the purposes of doing analysis, it turns out in fact 
that this axiom is never needed; all the sets we consider in analysis 
are typically very low on the hierarchy of objects, for instance 
being sets of primitive objects, or sets of sets of primitive objects, 
or at worst sets of sets of sets of primitive objects. However it is 
necessary to include this axiom in order to perform more advanced 
set theory, and so we have included this axiom in the text (but in 
an optional section) for sake of completeness. 

Exercise 3.2.1. Show that the universal specification axiom, Axiom 3.8, 
if assumed to be true, would imply Axioms 3.2, 3.3, 3.4, 3.5, and 3.6. (If 
we assume that all natural numbers are objects, we also obtain Axiom 
3.7.) Thus, this axiom, if permitted, would simplify the foundations of 
set theory tremendously (and can be viewed as one basis for an intuitive 
model of set theory known as "naive set theory"). Unfortunately, as we 
have seen, Axiom 3.8 is "too good to be true"! 

Exercise 3.2.2. Use the axiom of regularity (and the singleton set axiom) 
to show that if A is a set, then A f/. A. Furthermore, show that if A and 
Bare two sets, then either A f/. B orB f/. A (or both). 
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Exercise 3.2.3. Show (assuming the other axioms of set theory) that 
the universal specification axiom, Axiom 3.8, is equivalent to an axiom 
postulating the existence of a "universal set" n consisting of all objects 
(i.e., for all objects x, we have X E n). In other words, if Axiom 3.8 is 
true, then a universal set exists, and conversely, if a universal set exists, 
then Axiom 3.8 is true. (This may explain why Axiom 3.8 is called the 
axiom of universal specification). Note that if a universal set n existed, 
then we would haven E n by Axiom 3.1, contradicting Exercise 3.2.2. 
Thus the axiom of foundation specificBlly rules out the axiom of universal 
specification. 

3.3 Functions 

In order to do analysis, it is not particularly useful to just have 
the notion of a set; we also need the notion of a function from one 
set to another. Informally, a function f : X ~ Y from one set 
X to another set Y is an operation which assigns to each element 
(or "input") x in X, a single element (or "output") f(x) in Y; we 
have already used this informal concept in the previous chapter 
when we discussed the natural numbers. The formal definition is 
as follows. 

Definition 3.3.1 (Functions). Let X, Y be sets, and let P(x, y) 
be a property pertaining to an object x EX and an object y E Y, 
such that for every x E X, there is exactly one y E Y for which 
P(x, y) is true (this is sometimes known as the vertical line test). 
Then we define the function f : X ~ Y defined by P on the 
domain X and range Y to be the object which, given any input 
x E X, assigns an output f ( x) E Y, defined to be the unique 
object f(x) for which P(x, f(x)) is true. Thus, for any x EX and 
yEY, 

y = f(x) -<====? P(x, y) is true. 

Functions are also referred to as maps or transformations, de­
pending on the context. They are also sometimes called mor­
phisms, although to be more precise, a morphism refers to a more 
general class of object, which may or may not correspond to actual 
functions, depending on the context. 
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Example 3.3.2. Let X = N, Y = N, and let P(x,y) be the 
property that y = x-++. Then for each x E N there is exactly one 
y for which P(x, y) is true, namely y = x-++. Thus we can define 
a function f : N ---t N associated to this property, so that f ( x) = 
x-++ for all x; this is the increment function on N, which takes 
a natural number as input and returns its increment as output. 
Thus for instance /(4) = 5, f(2n + 3) = 2n + 4 and so forth. 
One might also hope to define a decrement function g : N ---t 

N associated to the property P(x, y) defined by y-++ = x, i.e., 
g(x) would be the number whose increment is x. Unfortunately 
this does not define a function, because when x = 0 there is no 
natural number y whose increment is equal to x (Axiom 2.3). On 
the other hand, we can legitimately def..ne a decrement function 
h : N\{0} ---t N associated to the property P(x, y) defined by 
y-++ = x, because when x E N\{0} there is indeed exactly one 
natural number y such that y-++ = x, thanks to Lemma 2.2.10. 
Thus for instance h(4) = 3 and h(2n+3) = h(2n+2), but h(O) is 
undefined since 0 is not in the domain N\ { 0}. 

Example 3.3.3. (Informal) This example requires the real num­
bers R, which we will define in Chapter 5. One could try to define 
a square root function ....; : R ---t R by associating it to the property 
P(x, y) defined by y2 = x, i.e., we would want ...jX to be the num­
ber y such that y2 = x. Unfortunately there are two problems 
which prohibit this definition from actually creating a function. 
The first is that there exist real numbers x for which P(x, y) is 
never true, for instance if x = -1 then there is no real number 
y such that y2 = x. This problem however can be solved by re­
stricting the domain from R to the right half-line [0, +oo). The 
second problem is that even when x E [0, +oo), it is possible for 
there to be more than one y in the range R for which y2 = x, for 
instance if x = 4 then both y = 2 andy= -2 obey the property 
P(x, y), i.e., both +2 and -2 are square roots of 4. This problem 
can however be solved by restricting the range of R to [0, +oo). 
Once one does this, then one can correctly define a square root 
function ....; : [0, +oo) ---t [0, +oo) using the relation y2 = x, thus 
...jX is the unique number y E [0, +oo) such that y2 = x. 
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One common way to define a function is simply to specify its 
domain, its range, and how one generates the output f(x) from 
each input; this is known as an explicit definition of a function. 
For instance, the function f in Example 3.3.2 could be defined 
explicitly by saying that f has domain and range equal to N, 
and f(x) := x-++ for all x EN. In other cases we only define a 
function f by specifying what property P(x, y) links the input x 
with the output f(x); this is an implicit definition of a function. 
For instance, the square root function ..jX in Example 3.3.3 was 
defined implicitly by the relation ( ..fii)2 = x. Note that an implicit 
definition is only valid if we know that for every input there is 
exactly one output which obeys the implicit relation. In many 
cases we ?mit specifying the domain and range of a function for 
brevity, and thus for instance we could refer to the function f in 
Example 3.3.2 as "the function f(x) := x-++", "the function x t--t 

x-++", "the function x-++", or even the extremely abbreviated 
"++". However, .too much of this abbreviation can be dangerous; 
sometimes it is important to know what the domain and range of 
the function is. 

We observe that functions obey the axiom of substitution: if 
x = x', then f(x) = f(x') (why?). In other words, equal in­
puts imply equal outputs. On the other hand, unequal inputs do 
not necessarily ensure unequal outputs, as the following example 
shows: 

Example 3.3.4. Let X = N, Y = N, and let P(x, y) be the 
property that y = 7. Then certainly for every x E N there is 
exactly one y for which P(x, y) is true, namely the number 7. Thus 
we can create a function f : N --t N associated to this property; 
it is simply the constant function which assigns the output of 
f(x) = 7 to each input x E N. Thus it is certainly possible for 
different inputs to generate the same output. 

Remark 3.3.5. We are now using parentheses() to denote several 
different things in mathematics; on one hand, we are using them to 
clarify the order of operations (compare for instance 2 + (3 x 4) = 
14 with (2 + 3) x 4 = 20), but on the other hand we also use 
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parentheses to enclose the argument f ( x) of a function or of a 
property such as P(x). However, the two usages of parentheses 
usually are unambiguous from context. For instance, if a is a 
number, then a(b +c) denotes the expression ax (b +c), whereas 
iff is a function, then f(b +c) denotes the output off when the 
input is b + c. Sometimes the argument of a function is denoted 
by subscripting instead of parentheses; for instance, a sequence of 
natural numbers ao, a1, a2, a3, ... is, strictly speaking, a function 
from N to N, but is denoted by n t---t an rather than n t---t a( n). 

Remark 3.3.6. Strictly speaking, functions are not sets, and sets 
are not functions; it does not make sense to ask whether an object 
x is an element of a function f, and it does not make sense to 
apply a set A to an input x to create an output A( x). On the 
other hand, it is possible to start with a function f : X ~ Y 
and construct its graph {(x, f(x)) : x E X}, which describes. the 
function completely: see Section 3.5. 

We now define some basic concepts and notions for functions. 
The first notion is that of equality. 

Definition 3.3. 7 (Equality offunctions). Two functions f: X~ 
Y, g : X ~ Y with the same domain and range are said to be 
equal, f = g, if and only if f(x) = g(x) for all x E X. (If f(x) 
and g(x) agree for some values of x, but not others, then we do 
not consider f and g to be equal2.) 

Example 3.3.8. The functions x t---t x2 + 2x + 1 and x t---t ( x + 1 )2 

are equal on the domain R. The functions x t---t x and x t---t lxl 
are equal on the positive real axis, but are not equal on R; thus 
the concept of equality of functions can depend on the choice of 
domain. 

Example 3.3.9. A rather boring example of a function is the 
empty function f : 0 ~ X from the empty set to an arbitrary 
set X. Since the empty set has no elements, we do not need 

2In Chapter 19, we shall introduce a weaker notion of equality, that of two 
functions being equal almost everywhere. 
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to specify what f does to any input. Nevertheless, just as the 
empty set is a set, the empty function is a function, albeit not 
a particularly interesting one. Note that for each set X, there is 
onlY one function from 0 to X, since Definition 3.3. 7 asserts that 
all functions from 0 to X are equal (why?). 

This notion of equality obeys the usual axioms (Exercise 3.3.1). 
A fundamental operation available for functions is composition. 

Definition 3.3.10 (Composition). Let f: X ---t Y and g: Y ---t Z 
be two functions, such that the range off is the same set as the 
domain of g. We then define the composition go f : X ---t Z of the 
two functions g and f to be the function defined explicitly by the 
formula 

(go f)(x) := g(f(x)). 

If the range off does not match the domain of g, we leave the 
composition g o f undefined. 

It is easy to check that composition obeys the axiom of sub­
stitution (Exercise 3.3.1). 

Example 3.3.11. Let f : N ---t N be the function f(n) := 2n, 
and let g : N ---t N be the function g( n) := n + 3. Then g o f is 
the function 

go f(n) = g(f(n)) =.g(2n) = 2n + 3, 

thus for instance go f(1) = 5, go f(2) = 7, and so forth. Mean­
while, f o g is the function 

f o g(n) = f(g(n)) = f(n + 3) = 2(n + 3) = 2n + 6, 

thus for instance f o g(1) = 8, f o g(2) = 10, and so forth. 

The above example shows that composition is not commuta­
tive: fog and go f are not necessarily the same function. However, 
composition is still associative: 

Lemma 3.3.12 (Composition is associative). Let f : X --t Y, g : 
Y ---t Z, and h: Z ---t W be functions. Then fo(goh) = (fog)oh. 
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Proof. Since g o h is a function from Y to W, f o (g o h) is a 
function from X toW. Similarly fog is a function from X to Z, 
and hence(! o g) o his a function from X toW. Thus f o (go h) 
and (! o g) o h have the same domain and range. In order to check 
that they are equal, we see from Definition 3.3. 7 that we have to 
verify that (! o (go h))(x) = ((! o g) o h)(x) for all x EX. But by 
Definition 3.3.10 

as desired. 

(! o (go h))(x) = f((g o h)(x)) 
= f(g(h(x)) 
= (! o g)(h(x)) 
= ((! o g) o h)(x) 

0 

Remark 3.3.13. Note that while g appears to the left off in the 
expression go f, the function go f applies the right-most function 
f first, before applying g. This is often confusing at first; it arises 
because we traditionally place a function f to the left of its input x 
rather than to the right. (There are some alternate mathematical 
notations in which the function is placed to the right of the input, 
thus we would write x f instead of f ( x), but this notation has 
often proven to be more confusing than clarifying, and has not as 
yet become particularly popular.) 

We now describe certain special types of functions: one-to-one 
functions, onto functions, and invertible functions. 

Definition 3.3.14 (One-to-one functions). A function f is one­
to-one (or injective) if different elements map to different elements: 

x =/: x' ====> f(x) =/: f(x'). 

Equivalently, a function is one-to-one if 

f(x) = f(x') ====> x = x'. 
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Example 3.3.15. (Informal) The function f : Z ~ Z defined 
by f(n) := n 2 is not one-to-one because the distinct elements 
-1, 1 map to the same element 1. On the other hand, if we 
restrict this function to the natural numbers, defining the function 
g: N ~ Z by g(n) := n 2 , then g is now a one-to-one function. 
Thus the notion of a one-to-one function depends not just on what 
the function does, but also what its domain is. 

Remark 3.3.16. If a function f : X ~ Y is not one-to-one, 
then one can find distinct x and x' in the domain X such that 
f(x) = f(x'), thus one can find two inputs which map to one 
output. Because of this, we say that f is two-to-one instead of 
one-to-one. 

Definition 3.3.1 7 (Onto functions). A function f is onto (or sur­
jective) if f(X) = Y, i.e., every element in Y comes from applying 
f to some element in X: 

For every y E Y, there exists x E X such that f ( x) = y. 

Example 3.3.18. (Informal) The function f : Z ~ Z defined 
by f(n) := n 2 is not onto because the negative numbers are not 
in the image of f. However, if we restrict the range Z to the set 
A := { n2 : n E Z} of square numbers, then the function g : Z ~ A 
defined by g(n) := n 2 is now onto. Thus the notion of an onto 
function depends not just on what the function does, but also 
what its range is. 

Remark 3.3.19. The concepts of injectivity and surjectivity are 
in many ways dual to each other; see Exercises 3.3.2, 3.3.4, 3.3.5 
for some evidence of this. 

Definition 3.3.20 (Bijective functions). Functions f : X ~ Y 
which are both one-to-one and onto are also called bijective or 
invertible. 

Example 3.3.21. Let f : {0, 1, 2} ~ {3, 4} be the function 
f(O) := 3, /(1) := 3, /(2) := 4. This function is not bijec­
tive because if we set y = 3, then there is more than one x in 
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{0, 1, 2} such that f(x) = y (this is a failure of injectivity). Now 
let g : {0, 1} ~ {2, 3, 4} be the function g(O) := 2, g(1) := 3; 
then g is not bijective because if we set y = 4, then there is no 
x for which g(x) = y (this is a failure of surjectivity). Now let 
h : {0, 1, 2} ~ {3, 4, 5} be the function h(O) := 3, h(1) := 4, 
h(2) := 5. Then his bijective, because each of the elements 3, 4, 
5 comes from exactly one element from 0, 1, 2. 

Example 3.3.22. The function f : N ~ N\{0} defined by 
f(n) := n++ is a bijection (in fact, this fact is simply restating 
Axioms 2.2, 2.3, 2.4). On the other hand, the function g : N ~ N 
defined by the same definition g(n) := n++ is not a bijection. 
Thus the notion of a bijective function depends not just on what 
the function does, but also what its range (and domain) are. 

Remark 3.3.23. If a function x ~ f(x) is bijective, then we 
sometimes call f a perfect matching or a one-to-one correspon­
dence (not to be confused with the notion of a one-to-one func­
tion), and denote the action of f using the notation x +--? f(x) 
instead of x ~ f ( x). Thus for instance the function h in t_he 
above example is the one-to-one correspondence 0 +--? 3, 1 +--? 4, 
2 +--? 5. 

Remark 3.3.24. A common error is to say that a function f : 
X ~ Y is bijective iff "for every x in X, there is exactly one 
y in Y such that y = f(x)." This is not what it means for f 
to be bijective; rather, this is merely stating what it means for 
f to be a function. A function cannot map one element to two 
different elements, for instance one cannot have a function f for 
which f(O) = 1 and also f(O) = 2. The functions f, g given in the 
previous example are not bijective, but they are still functions, 
since each input still gives exactly one output. 

If f is bijective, then for every y E Y, there is exactly one x 
such that f(x) = y (there is at least one because of surjectivity, 
and at most one because ofinjectivity). This value of xis denoted 
f- 1(y); thus f- 1 is a function from Y to X. We call f- 1 the 
inverse of f. 
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Exercise 3.3.1. Show that the definition of equality in Definition 3.3.7 is 
reflexive, s:rmmetric, and transitive. Also verify the substitution proP: 
erty: if f, f : X -+ Y an_9. g, g : Y -+ Z are functions such that f = f 
and g = g, then f o g = f o g. 
Exercise 3.3.2. Let f : X -+ Y and g : Y -+ Z be functions. Show that 
iff and g are both injective, then so is go f; similarly, show that iff 
and g are both surjective, then so is g o f. 
Exercise 3.3.3. When is the empty function injective? surjective? bijec­
tive? 
Exercise 3.3.4. In this section we give some cancellation laws for com­
position. Let f : X -+ Y, J : X -+ _Y, g : Y -+ Z, and g : Y -+ ~ be 
functions. Show that if go f =go f and g is injective, then f =f. Is 
the same statement true if g is not injective? Show that if go f =go f 
and- f is surjective, then g = g. Is the same statement true if f is not 
surjective? 

Exercise 3.3.5. Let f : X -+ Y and g : Y -+ Z be functions. Show that 
if g o f is injective, then f must be injective. Is it true that g must also 
be injective? Show that if go f is surjective, then g must be surjective. 
Is it true that f must also be surjective? 

Exercise 3.3.6. Let f : X -+ Y be a bijective function, and let f- 1 : 

Y-+ X be its inverse. Verify the cancellation laws f- 1(/(x)) = x for 
all x EX and f(f- 1(y)) = y for ally E Y. Conclude that f- 1 is also 
invertible, and has f as its inverse (thus u-1)-1 =f). 

Exercise 3.3.7. Let f: X-+ Y and g: Y-+ Z be functions. Show that if 
f and g are bijective, then so is go f, and we have (gof)- 1 = f- 1 og-1 . 

Exercise 3.3.8. If X is a subset of Y, let tx-+Y :X-+ Y be the inclusion 
map from X to Y, defined by mapping x ~-t x for all x E X, i.e., 
tx-+y(x) := x for all x EX. The map tx-+X is in particular called the 
identity map on X. • 

(a) Show that if X~ Y ~ Z then ty-+z o tx-+Y = tx-+Z· 

(b) Show that iff : A -+ B is any function, then f = f o tA-+A = 
£B-+B 0 f. 

(c) Show that, iff : A -+ B is a bijective function, then f o f- 1 = 
£B-+B and f- 1 0 f = tA-+A· 

(d) Show that if X and Y are disjoint sets, and f : X -+ Z and 
g : Y -+ Z are functions, then there is a unique function h 
XU Y-+ Z such that h o tx-+XUY = f and h o tY-+XUY =g. 
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3.4 Images and inverse images 

We know that a function f : X ---t Y from a set X to a set Y can 
take individual elements x EX to elements f(x) E Y. FUnctions 
can also take subsets in X to subsets in Y: 

Definition 3.4.1 (Images of sets). If f : X ---t Y is a function 
from X to Y, and S is a set in X, we define f ( S) to be the set 

f(S) := {f(x) :xES}; 

this set is a subset of Y, and is sometimes called the image of S 
under the map f. We sometimes call f(S) the forward image of 
S to distinguish it from the concept of the inverse image f- 1(8) 
of S, which is defined below. 

Note that the set f ( S) is well-defined thanks to the axiom 
of replacement (Axiom 3.6). One can also define f(S) using the 
axiom of specification (Axiom 3.5) instead of replacement, but we 
leave this as a challenge to the reader. 

Example 3.4.2. Iff : N ---t N is the map f(x) = 2x, then the 
forward image of {1, 2, 3} is {2, 4, 6}: 

f( {1, 2, 3}) = {2, 4, 6}. 

More informally, to compute f(S), we take every element x of S, 
and apply f to each element individually, and then put all the 
resulting objects together to form a new set. 

In the above example, the image had the same size as the 
original set. But sometimes the image can be smaller, because f 
is not one-to-one (see Defi~1ition 3.3.14): 

Example 3.4.3. (Informal) Let Z be the set of integers (which 
we will define rigourously in the next section) and let f : Z ---t Z 
be the map f(x) = x2 , then 

f( { -1, 0, 1, 2}) = {0, 1, 4}. 

Note that f is not one-to-one because f( -1) = f(1). 
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Note that 
x E 8 ====> f(x) E f(S) 

but in general 
f(x) E f(S) =I? x E S; 

for instance in the above informal example, !( -2) lies in the set 
/({-1,0,1,2}), but -2 is not in {-1,0,1,2}. The correct state­
ment is 

y E f(S) <==> y = f(x) for some xES 

(why?). 

Definition 3.4.4 (Inverse images). If U is a subset of Y, we define 
the set f- 1(U) to be the set 

f- 1(U) := {x EX: f(x) E U}. 

In other words, f- 1(U) consists of all the elements of X which 
map into U: 

f(x) E U <==> x E f- 1(U). 

We call f- 1(U) the inverse image of U. 

Example 3.4.5. If f : N ---+ N is the map f(x) = 2x, then 
/({1,2,3}) = {2,4,6}, but f-1({1,2,3}) = {1}. Thustheforward 
image of {1, 2, 3} and the backwards image of {1, 2, 3} are quite 
different sets. Also note that 

J(f-1({1,2,3})) i= {1,2,3} 

(why?). 

Example 3.4.6. (Informal) Iff: Z---+ Z is the map f(x) = x 2, 

then 
J-1({0,1,4}) = {-2,-1,0,1,2}. 

Note that f does not have to be invertible in order for f- 1(U) 
to make sense. Also note that images and inverse images do not 
quite invert each other, for instance we have 

J-1(!({-1,0,1,2})) i= {-1,0,1,2} 

(why?). 
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Remark 3.4. 7. Iff is a bijective function, then we have defined 
f-1 in two slightly different ways, but this is not an issue becaUse 
both definitions are equivalent (Exercise 3.4.1). 

As remarked earlier, functions are not sets. However, we do 
consider functions to be a type of object, and in particular we 
should be able to consider sets of functions. In particular, we 
should be able to consider the set of all functions from a set X 
to a set Y. To do this we need to introduce another axiom to set 
theory: 

Axiom 3.10 (Power set axiom). Let X andY be sets. Then there 
exists a set, denoted Y x, which consists of all the functions from 
X toY, thus 

f E Y x {:::=:=> (! is a function with domain X and range Y). 

Example 3.4.8. Let X = {4, 7} andY= {0, 1}. Then the set 
Y X consists of four functions: the function that maps 4 ~ 0 and 
7 ~ 0; the function that maps 4 ~ 0 and 7 ~ 1; the function 
that maps 4 ~ 1 and 7 ~ 0; and the function that maps 4 ~ 1 
and 7 ~ 1. The reason we use the notation Y X to denote this set 
is that if Y has n elements and X has m elements, then one can 
show that yx has nm elements; see Proposition 3.6.14(f). 

One consequence of this axiom is 

Lemma 3.4.9. Let X be a set. Then the set 

{Y : Y is a subset of X} 

is a set. 

Proof. See Exercise 3.4.6. 0 

Remark 3.4.10. The set {Y : Y is a subset of X} is known as 
the power set of X and is denoted 2x. For instance, if a, b, c are 
distinct objects, we have 

2{a,b,c} = {0, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }. 



9.4. Images and inverse images 67 

Note that while {a, b, c} has 3 elements, 2{a,b,c} has 23 = 8 ele­
IIlents. This gives a hint as to why we refer to the power set of X 
as 2X; we return to this issue in Chapter .8. 

For sake of completeness, let us now add one further axiom to 
our set theory, in which we enhance the axiom of pairwise union 
to allow unions of much larger collections of sets. 

Axiom 3.11 (Union). Let A be a set, all of whose elements are 
themselves sets. Then there exists a set U A whose elements are 
precisely those objects which are elements of the elements of A, 
thus for all objects x 

x E UA <==> (xES for someS E A). 

Example 3.4.11. If A= {{2,3},{3,4},{4,5}}, then UA­
{2, 3, 4, 5} (why?). 

The axiom of union, combined with the axiom of pair set, 
implies the axiom of pairwise union (Exercise 3.4.8). Another 
important consequence of this axiom is that if one has some set 
I, and for every element a E I we have some set Aa, then we can 
form the union set Uael Aa by defining 

U Aa := U{Aa: a E I}, 
aEI 

which is a set thanks to the axiom of replacement and the axiom 
of union. Thus for instance, if I = {1, 2, 3}, A1 := {2, 3}, A2 := 

{3,4}, and A3 := {4,5}, then Uae{l,2,3}Aa = {2,3,4,5}. More 
generally, we see that for any object y, 

y E U Aa <==> (y E Aa for some a E I). (3.2) 
aEJ 

In situations like this, we often refer to I as an index set, and the 
elements a of this index set as labels; the sets Aa are then called 
a family of sets, and are indexed by the labels a E A. Note that 
if I was empty, then Uael Aa would automatically also be empty 
(why?). 
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We can similarly form intersections of families of sets, as long 
as the index set is non-empty. More specifically, given any non­
empty set I, and given an assignment of a set Aa to each a E I, we 
can define the intersection naEI Aa by first choosing some element 
f3 of I (which we can do since I is non-empty), and setting 

n Aa := {x E A,a: X E Aa for all a E I}, (3.3) 
aEI 

which is a set by the axiom of specification. This definition may 
look like it depends on the choice of {3, but it does not (Exercise 
3.4.9). Observe that for any object y, · 

y E n Aa {:::::> (y E Aa for all a E I) (3.4) 
aEI 

(compare with (3.2)). 

Remark 3.4.12. The axioms of set theory that we have intro­
duced (Axioms 3.1-3.11, excluding the dangerous Axiom 3.8) are 
known as theZermelo-Fraenkel axioms of set theoryf, after Ernest 
Zermelo (1871-1953) and Abraham Fraenkel (1891-1965). There 
is one further axiom we will eventually need, the famous axiom 
of choice (see Section 8.4), giving rise to the Zermelo-Fraenkel­
Choice ( ZFC) axioms of set theory, but we will not need this 
axiom for some time. 

Exercise 3.4.1. Let f : X --+ Y be a bijective function, and let f- 1 : 

Y --+ X be its inverse. Let V be any subset of Y. Prove that the forward 
image of V under f- 1 is the same set as the inverse image of V under 
f; thus the fact that both sets are denoted by f- 1 (V) will not lead to 
any inconsistency. 

Exercise 3.4.2. Let f: X--+ Y be a function from one set X to another 
set Y, let S be a subset of X, and let U be a subset of Y. What, in 
general, can one say about f- 1(!(8)) and S? What about f(f- 1(U)) 
and U? 

3These axioms are formulated slightly differently in other texts, but all the 
formulations can be shown to be equivalent to each other. 
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Exercise 3.4.3. Let A, B be two subsets of a set X, and let f: X --+ Y 
be a function. Show that f(A n B) ~ f(A) n f(B), that f(A)\f(B) ~ 
f(A\B), f(A U B) = f(A) U f(B). For the first two statements, is it 
true that the~ relation can be improved to=? 

Exercise 3.4.4. Let f : X --+ Y be a function from one set X to another 
set Y, and let U, V be subsets of Y. Show that f- 1(U U V) = r 1(U) U 
r1(V), that f- 1(U n V) = f-1(U) n f- 1 (V), and that f- 1(U\V) = 
r1(U)\f-1(V). 

Exercise 3.4.5. Let f: X--+ Y be a function from one set X to another 
set Y. Show that f(f- 1(8)) = 8 for every 8 ~ Y if and only iff is 
surjective. Show that f- 1(!(8)) = 8 for every 8 ~X if and only iff is 
injective. 
Exercise 3.4.6. Prove Lemma 3.4.9. (Hint: start with the set {0, 1}x 
and .apply ~he replacement axiom, replacing each function f with the 
object f- 1({1}).) See also Exercise 3.5.11. 

Exercise 3.4.7. Let X, Y be sets. Define a partial function from X to 
y to be any function f : X' --+ Y' whose domain X' is a subset of X, 
and whose range. Y' is a subset of Y. Show that the collection of all 
partial functions from X to Y is itself a set. (Hint: use Exercise 3.4.6, 
the power set axiom, the replacement axiom, and the union axiom.) 

Exercise 3.4.8. Show that Axiom 3.4 can be deduced from Axiom 3.3 
and Axiom 3.11. 

Exercise 3.4.9. Show that if {3 and {3' are two elements of a set I, and 
to each a E I we assign a set Ao:, then 

{x E Ap : x E Aa: for all a E I} = {x E Aw : x E Aa: for all a E I}, 

and so the definition of na:ei Ao: defined in (3.3) does not depend on {3. 
Also explain why (3.4) is true. 

Exercise 3.4.10. Suppose that I and J are two sets, and for all a E IUJ 
let Aa: be a set. Show that (Ua:ei Aa:) U (Ua:eJ Aa:) = Ua:e~uJ Aa:. If I 
and J are non-empty, show that (na:ei Ao:) n (na:eJ Ao:) = na:eiUJ Ao:. 
Exercise 3.4.11. Let X be a set, let I be a non-empty set, and for all 
a E I let Aa: be a subset of X. Show that 

X\ U Aa: = n (X\Aa:) 
a:El a:El 

and 
X\ n Aa: = U (X\Aa:). 

a:El a:El 
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This should be compared with de Morgan's laws in Proposition 3.1.28 
(although one cannot derive the above identities directly from de Mor. 
gan's laws, as I could be infinite). 

3.5 Cartesian products 

In addition to the basic operations of union, intersection, and 
differencing, another fundamental operation on sets is that of the 
Cartesian product. 

Definition 3.5.1 (Ordered prur). If x andy are any objects (pos­
sibly equal), we define the ordered pair (x, y) to be a new object, 
consisting of x as its first component and y as its second compo­
nent. Two ordered pairs ( x, y) and ( x', y') are considered equal if 
and only if both their components match, i.e. 

(x, y) = (x', y') -¢:=:::> (x = x' and y = y'). (3.5) 

This obeys the usual axioms of equality (Exercise 3.5.3). Thus for 
instance, the pair (3, 5) is equal to the pair (2 + 1, 3 + 2), but is 
distinct from the pairs (5, 3), (3, 3), and (2, 5). (This is in contrast 
to sets, where {3, 5} and {5, 3} are equal.) 

Remark 3.5.2. Strictly speaking, this definition is partly an ax­
iom, because we have simply postulated that given any two objects 
x and y, that an object of the form (x, y) exists. However, it is 
possible to define an ordered pair using the axioms of set theory 
in such a way that we do not need any further postulates (see 
Exercise 3.5.1). 

Remark 3.5.3. We have now "overloaded" the parenthesis sym­
bols () once again; they now are not only used to denote grouping 
of operators and arguments of functions, but also to enclose or­
dered pairs. This is usually not a problem in practice as one can 
still determine what usage the symbols () were intended for from 
context. 

Definition 3.5.4 (Cartesian product). If X andY are sets, then 
we define the Cartesian product X x Y to be the collection of 
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ordered pairs, whose first component lies in X and second com­
ponent lies in Y, thus 

X x Y = {(x,y): x E X,y E Y} 

or equivalently 

a E (X x Y) {=:=::} (a= (x,y) for some x EX andy E Y). 

Remark 3.5.5. We shall simply assume that our notion of or­
dered pair is such that whenever X and Y are sets, the Cartesian 
product X x Y is also a set. This is however not a problem in 
practice; see Exercise 3.5.1. 

E~ampie 3.5.6. If X:= {1, 2} andY:= {3, 4, 5}, then 

X X Y = { (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)} 

and 
Y X X = {(3, 1), ( 4, 1), (5, 1), (3, 2), ( 4, 2), (5, 2)}. 

Thus, strictly speaking, X x Y and Y x X are different sets, al­
though they are very similar. For instance, they always have the 
same number of elements (Exercise 3.6.5). 

Let f : X x Y --+ Z be a function whose domain X x Y is a 
Cartesian product of two other sets X and Y. Then f can either be 
thought of as a function of one variable, mapping the single input 
of an ordered pair (x, y) in X x Y to an output f(x, y) in Z, or as 
a function of two variables, mapping an input X E X and another 
input y E Y to a single output f(x, y) in Z. While the two notions 
are technically different, we will not bother to distinguish the two, 
and think of f simultaneously as a function of one variable with 
domain X x Y and as a function of two variables with domains X 
and Y. Thus for instance the addition operation + on the natural 
numbers can now be re-interpreted as a function+: N x N--+ N, 
defined by (x, y) ~---+ x + y. 

One can of course generalize the concept of ordered pairs to 
ordered triples, ordered quadruples, etc: 
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Definition 3.5.7 (Ordered n-tuple and n-fold Cartesian prod~ 
uct). Let n be a natural number. An ordered n-tuple (xih:Si:Sn 
(also denoted (x1, ... , xn)) is a collection of objects Xi, one for 
every natural number i between 1 and n; we refer to Xi as the ith 

component of the ordered n-tuple. Two ordered n-tuples (xi) 1 <i<n 

and (Yih <i<n are said to be equal iff Xi = Yi for all 1 ~ i ~ ;;:. If 
(Xih:Si:Sn is an ordered n-tuple of sets, we define their Cartesian 
product rrl:Si:Sn xi (also denoted rr~=l xi or xl X ••• X Xn) by 

II xi:= {(xih:Si:Sn: Xi E xi for all1 ~ i ~ n}. 
l:Si:Sn 

Again, this definition simply postulates that an ordered n­
tuple and a Cartesian product always exist when needed, but using 
the axioms of set theory one can explicitly construct these objects 
(Exercise 3.5.2). 

Remark 3.5.8. One can show that f11<i<nXi is indeed a set. 
Indeed, from the power set axiom we can consider the set of all 
functions i 1--t Xi from the domain { 1 ~ i ~ n} to the range 
ul<i<n xi, and then we can restrict using the axiom of specifica­
tion to restrict to those functions i 1--t Xi for which Xi E Xi for 
all 1 ~ i ~ n. One can generalize this construction to infinite 
Cartesian products, see Definition 8.4.1. 

Example 3.5.9. Let a1, b1, a2, b2, a3, b3 be objects, and let X1 := 
{ar,b1}, X2 := {a2,b2}, and X3 := {a3,b3}. Then we have 

X1 X X2 X X3 ={(al, a2, a3), (al, a2, b3), (al, b2, a3), (al, b2, b3), 

(bl,a2,a3),(bl,a2,b3),(bl,b2,a3),(bl,b2,b3)} 

(X1 x X2) x x3 = 

{((a1, a2), a3),((a1, a2), b3), ((ar, b2), a3), ((a1, b2), b3), 

((br, a2), a3),((b1, a2), b3), ((b1, b2), a3), ((b1, b2), b3)} 

x1 x (X2 x X3) = 

{(a1, (a2, a3)),(a1, (a2, b3)), (a1, (b2, a3)), (a1, (b2, b3)), 

(bi,(a2,a3)),(b1, (a2,b3)),(bi,(b2,a3)),(bl,(b2,b3))}. 
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Thus, strictly speaking, the sets XI xX2 xX3, (XI xX2) xX3, and 
x1 x (X2 x X3) are distinct. However, they are clearly very related 
to each other (for instance, there are obvious bijections between 
any two of the three sets), and it is common in practice to neglect 
the minor distinctions between these sets and pretend that they 
are in fact equal. Thus a function f: XI X X2 X X3 ~ Y can be 
thought of as a function of one variable (x1, x2, x3) E XI xX2 xX3, 
or as a function of three variables Xt E X1, X2 E X2, X3 E X3, 
or as a function of two variables XI E XI, (x2, X3) E X3, and SO 

forth; we will not bother to distinguish between these different 
perspectives. 

Remark 3.5.10. An ordered n-tuple x1, ... , Xn of objects is also 
calied an ·ordered sequence of n elements, or a finite sequence for 
short. In Chapter 5 we shall also introduce the very useful concept 
of an infinite sequence. 

Example 3.5~11. If xis an object, then (x) is a 1-tuple, which 
we shall identify with x itself (even though the two are, strictly 
speaking, not the same object). Then if X 1 is any set, then the 
Cartesian product Ilt<i<l Xi is just X1 (why?). Also, the empty 
Cartesian product IJ1-::i-::o Xi gives, not the empty set {}, but 
rather the singleton set[()} whose only element is the 0-tuple (), 
also known as the empty tuple. 

If n is a natural number, we often write xn as shorthand 
for then-fold Cartesian product xn := Ilt<i<nX. Thus XI is 
essentially the same set as X (if we ignore the distinction between 
an object X and the 1-tuple (x)), while X 2 is the Cartesian product 
X x X. The set X 0 is a singleton set { ()} (why?). 

We can now generalize the single choice lemma (Lemma 3.1.6) 
to allow for multiple (but finite) number of choices. 

Lemma 3.5.12 (Finite choice). Let n ~ 1 be a natural number, 
and for each natural number 1 :::; i :::; n, let Xi be a non-empty 
set. Then there exists ann-tuple (xih~i~n such that Xi E Xi for 
all 1 :::; i :::; n. In other words, if each Xi is non-empty, then the 
set rrl~i~n xi is also non-empty. 
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Proof. We induct on n (starting with the base case n = 1; the 
claim is also vacuously true with n = 0 but is not particularly 
interesting in that case). When n = 1 the claim follows from 
Lemma 3.1.6 (why?). Now suppose inductively that the claim has 
already been proven for some n; we will now prove it for n++. 
Let X 1 , ... , Xn++ be a collection of non-empty sets. By induction 
hypothesis, we can find ann-tuple (xi)I~i~n such that Xi E Xi for 
all1 ~ i ~ n. Also, since Xn++ is non-empty, by Lemma 3.1.6 we 
may find an object a such that a E Xn++· If we thus define the 
n++-tuple (Yih~i~n++ by setting Yi := Xi when 1 ~ i ~ n and 
Yi :=a when i = n++ it is clear that Yi E Xi for all1 ~ i ~ n++, 
thus closing the induction. 0 

Remark 3.5.13. It is intuitively plausible that this lemma should 
be extended to allow for an infinite number of choices, but this 
cannot be done automatically; it requires an additional axiom, the 
axiom of choice. See Section 8.4. 

Exercise 3.5.1. Suppose we define the ordered pair (x, y) for any objects 
x and y by the formula ( x, y) := {{ x}, { x, y}} (thus using several appli­
cations of Axiom 3.3). Thus for instance (1, 2) is the set {{1 }, {1, 2}}, 
(2, 1) is the set {{2}, {2, 1}}, and (1, 1) is the set {{1}}. Show that such 
a definition indeed obeys the property (3.5), and also whenever X andY 
are sets, the Cartesian product X x Y is also a set. Thus this definition 
can be validly used as a definition of an ordered pair. For an additional 
challenge, show that the alternate definition (x,y) := {x,{x,y}} also 
verifies (3.5) and is thus also an acceptable definition of ordered pair. 
(For this latter task one needs the axiom of regularity, and in particular 
Exercise 3.2.2.) 

Exercise 3.5.2. Suppose we define an ordered n-tuple to be a surjective 
function x : { i E N : 1 :::; i :::; n} --+ X whose range is some arbitrary set 
X (so different ordered n-tuples are allowed to have different ranges); 
we then write Xi for x(i), and also write x as (xih<i<n· Using this 
definition, verify that we have (xih~i~n = (Yih~i~n if Md only if Xi = 
Yi for all 1 :::; i :::; n. Also, show that if (Xih~i~n are an ordered n-tuple 
of sets, then the Cartesian product, as defined in Definition 3.5.7, is 
indeed a set. (Hint: use Exercise 3.4.7 and the axiom of specification.) 
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Exercise 3.5.3. Show that the definitions of equality for ordered pair and 
ordered n-tuple obey the reflexivity, symmetry, and transitivity axioms. 

Exercise 3.5.4. Let A, B, C be sets. Show that A x ( B U C) = (A x B) U 
(Ax C), that Ax (B n C) = (Ax B) n (Ax C), and that Ax (B\C) = 
(Ax B)\(A x C). (One can of course prove similar identities in which the 
roles of the left and right factors of the Cartesian product are reversed.) 

Exercise 3.5.5. Let A, B, C, D be sets. Show that (A x B) n ( C x D) = 
(An C) x (BnD). Is it true that (Ax B)U (C x D)= (AUG) x (BUD)? 
Is it true that (Ax B)\(C x D)= (A\C) x (B\D)? 

Exercise 3.5.6. Let A, B, C, D be non-empty sets. Show that A x B ~ 
C x D if and only if A ~ C and B ~ D, and that A x B = C x D if 
and only if A= C and B =D. What happens if the hypotheses that 
the A, B, C, Dare all non-empty are removed? 

Exercise 3.5.7. Let X, Y be sets, and let rrxxY-+X : X x Y ---+ X 
and 1l'XxY-+Y : X X Y --+ Y be the maps rrxxY-+x(x, y) := x and 
11xxY-+Y(x, y) := y; these maps are known as the co-ordinate functions 
on X x Y. Show that for any functions f : Z --+ X and g : Z --+ Y, there 
exists a unique function h: Z--+ X x Y such that rrxxY-+X o h = f and 
1l'XxY-+Y o h =g. (Compare this to the last part of Exercise 3.3.8, and 
to Exercise 3.1.7.) This function his known as the direct sum off and 
g and is denoted h = f $g. 

Exercise 3.5.8. Let X 1, ... , Xn be sets. Show that the Cartesian product 
n~=l xi is empty if and only if at least one of the xi is empty. 

Exercise 3.5.9. Suppose that I and J are two sets, and for all a E I let 
Aa be a set, and for all {3 E J let Bf3 be a set. Show that (UaEI Ao) n 
(U(3EJ B(3) = U(o,{3)ElxJ(Ao n B(3)· 
Exercise 3.5.10. If f : X --+ Y is a function, define the graph of f to 
be the subset of X x Y defined by {(x, f(x)) : x EX}. Show that two 
functions f : X --+ Y, J : X --+ Y are equal if and only if they have the 
same graph. Conversely, if G is any subset of X x Y with the property 
that for each x E X, the set {y E Y : (x, y) E G} has exactly one 
element (or in other words, G obeys the vertical line test), show that 
there is exactly one function f: X--+ Y whose graph is equal to G. 
Exercise 3.5.11. Show that Axiom 3.10 can in fact be deduced from 
Lemma 3.4.9 and the other axioms of set theory, and thus Lemma 3.4.9 
can be used as an alternate formulation of the power set axiom. (Hint: 
for any two sets X and Y, use Lemma 3.4.9 and the axiom of specification 
to construct the set of all subsets of X x Y which obey the vertical line 
test. Then use Exercise 3.5.10 and the axiom of replacement.) 
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Exercise 3.5.12. This exercise will establish a rigourous version ofPropo. 
sition 2.1.16. Let f : N x N --t N be a function, and let c be a natural 
number. Show that there exists a function a: N --t N such that 

a(O) = c 

and 
a(n++) = f(n, a(n)) for all n EN, 

and furthermore that this function is unique. (Hint: first show induc­
tively, by a modification of the proof of Lemma 3.5.12, that for every 
natural number N E N, there exists a unique function aN : { n E N : 
n ~ N} --t N such that aN(O) = c and aN(n++) = f(n,a(n)) for all 
n E N such that n < N.) For an additional challenge, prove this re­
sult without using any properties of the natural numbers other than the 
Peano axioms directly (in particular, without using the ordering of the 
natural numbers, and without appealing to Proposition 2.1.16). (Hint: 
first show inductively, using only the Peano axioms and basic set theory, 
that for every natural number N E N, there exists a unique pair AN, B N 

of subsets of N which obeys the following properties: (a) ANn BN = 0, 
(b) AN U BN = N, (c) 0 E AN, (d) N++ E BN, (e) Whenever n E BN, 
we have n++ E BN. (f) Whenever n E AN and n =/= N, we have 
n++ E AN. Once one obtains these sets, use AN as a substitute for 
{n EN: n ~ N} in the previous argument.) 

Exercise 3.5.13. The purpose of this exercise is to show that there is 
essentially only one version of the natural number system in set theory 
(cf. the discussion in Remark 2.1.12). Suppose we have a set N' of 
"alternative natural numbers", an "alternative zerp" O', and an "alter­
native increment operation" which takes any alternative natural number 
n' E N' and returns another alternative natural number n' ++' E N', 
such that the Peano axioms (Axioms 2.1-2.5) all hold with the natural 
numbers, zero, and increment replaced by their alternative counterparts. 
Show that there exists a bijection f : N --t N' from the natural num­
bers to the alternative natural numbers such that f(O) = O', and such 
that for any n E N and n' E N', we have f(n) = n' if and only if 
f(n++) = n'++'. (Hint: use Exercise 3.5.12.) 

3.6 Cardinality of sets 

In the previous chapter we defined the natural numbers axiomati­
cally, assuming that they were equipped with a 0 and an increment 
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operation, and assuming five axioms on these numbers. Philosoph­
ically, this is quite different from one of our main conceptualiza­
tions of natural numbers - that of cardinality, or measuring how 
many elements there are in a set. Indeed, the Peano axiom ap­
proach treats natural numbers more like ordinals than cardinals. 
(The cardinals are One, Two, Three, ... , and are used to count 
how many things there are in a set. The ordinals are First, Sec­
ond, Third, ... , and are used to order a sequence of objects. There 
is a subtle difference between the two, especially when compar­
ing infinite cardinals with infinite ordinals, but this is beyond the 
scope of this text). We paid a lot of attention to what number 
came next after a given number n - which is an operation which 
is quite na~ural for ordinals, but less so for cardinals - but did not 
address the issue of whether these numbers could be used to count 
sets. The purpose of this section is to address this issue by noting 
that the natural numbers can be used to count the cardinality of 
sets, as long as·the set is finite. 

The first thing is to work out when two sets have the same 
size: it seems clear that the sets {1, 2, 3} and { 4, 5, 6} have the 
same size, but that both have a different size from { 8, 9}. One 
way to define this is to say that two sets have the same size if they 
have the same number of elements, but we have not yet defined 
what the "number of elements" in a set is. Besides, this runs into 
problems when a set is infinite. 

The right way to define the concept of "two sets having the 
same size" is not immediately obvious, but can be worked out 
with some thought. One intuitive reason why the sets {1, 2, 3} and 
{4, 5, 6} have the same size is that one can match the elements of 
the first set with the elements in the second set in a one-to-one 
correspondence: 1 ~ 4, 2 ~ 5, 3 ~ 6. (Indeed, this is how we 
first learn to count a set: we correspond the set we are trying to 
count with another set, such as a set of fingers on your hand). 
We will use this intuitive understanding as our rigourous basis for 
"having the same size". 

Definition 3.6.1 (Equal cardinality). We say that two sets X 
and Y have equal cardinality iff there exists a bijection f : X ~ Y 
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from X toY. 

Example 3.6.2. The sets {0, 1, 2} and {3, 4, 5} have equal car. 
dinality, since we can find a bijection between the two sets. Note 
that we do not yet know whether {0, 1, 2} and {3, 4} have equal 
cardinality; we know that one of the functions f from {0, 1, 2} to 
{3, 4} is not a bijection, but we have not proven yet that there 
might still be some other bijection from one set to the other. (It 
turns out that they do not have equal cardinality, but we will 
prove this a little later). Note that this definition makes sense 
regardless of whether X is finite or infinite (in fact, we haven't 
even defined what finite means yet). 

Remark 3.6.3. The fact that two sets have equal cardinality. 
does not preclude one of the sets from containing the other. For 
instance, if X is the set of natural numbers and Y is the set of even 
natural numbers, then the map f: X~ Y defined by f(n) := 2n 
is a bijection from X toY (why?), and so X andY have equal 
cardinality, despite Y being a subset of X and seeming intuitively 
as if it should only have "half" of the elements of X. 

The notion of having equal cardinality is an equivalence rela­
tion: 

Proposition 3.6.4. Let X, Y, Z be sets. Then X has equal 
cardinality with X. If X has equal cardinality with Y, then Y has 
equal cardinality with X. If X has equal cardinality with Y and Y 
has equal cardinality with Z, then X has equal cardinality with Z. 

Proof. See Exercise 3.6.1. D 

Let n be a natural number. Now we want to say when a set 
X has n elements. Certainly we want the set { i E N : 1 ~ i ~ 
n} = {1, 2, ... , n} to haven elements. (This is true even when 
n = 0; the set {i EN: 1 ~ i ~ 0} is just the empty set.) Using 
our notion of equal cardinality, we thus define: 

Definition 3.6.5. Let n be a natural number. A set X is said to 
have cardinality n, iff it has equal cardinality with { i E N : 1 ~ 
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i ~ n}. We also say that X has n elements iff it has cardinality 

fl,. 

Remark 3.6.6. One can use the set { i E N : i < n} instead 
of { i E N : 1 :::; i :::; n}, since these two sets clearly have equal 
cardinality. (Why? What is the bijection?) 

Example 3.6. 7. Let a, b, c, d be distinct objects. Then {a, b, c, d} 
bas the same cardinality as {i EN: i < 4} = {0,1,2,3} or 
{i E N : 1 :::; i :::; 4} = {1, 2, 3, 4} and thus has cardinality 4. 
Similarly, the set {a} has cardinality 1. 

There might be one problem with this definition: a set might 
have two different cardinalities. But this is not possible: 

Proposition 3.6.8 (Uniqueness of cardinality). Let X be a set 
with some cardinality n. Then X cannot have any other cardinal­
ity, i.e., X cannot have cardinality m for any m # n. 

Before we prove this proposition, we need a lemma. 

Lemma 3.6.9. Suppose that n ~ 1, and X has cardinality n. 
Then X is non-empty, and if x is any element of X, then the 
set X - { x} (i.e., X with the element x removed) has cardinality 
n-1. 

Proof. If X is empty then it clearly cannot have the same car­
dinality as the non-empty set { i E N : 1 :::; i :::; n}, as there 
is no bijection from the empty set to a non-empty set (why?). 
Now let x be an element of X. Since X has the same cardinal­
ity as { i E N : 1 :::; i :::; N}, we thus have a bijection f from 
X to {i E N : 1 :::; i :::; n}. In particular, f(x) is a natural 
number between 1 and n. Now define the function g : X- { x} to 
{ i E N : 1 :::; i :::; n- 1} by the following rule: for any y E X - { x}, 
we define g(y) := f(y) if f(y) < f(x), and define g(y) := f(y) -1 
if f(y) > f(x). (Note that f(y) cannot equal f(x) sin:ce y # x 
and f is a bijection.) It is easy to check that this map is also 
a bijection (why?), and so X - { x} has equal cardinality with 
{i E N : 1 :::; i :::; n - 1 }. In particular X- { x} has cardinality 
n- 1, as desired. 0 
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Now we prove the proposition. 

Proof of Proposition 3.6.8. We induct on n. First suppose that 
n = 0. Then X must be empty, and so X cannot have any non-zero 
cardinality. Now suppose that the proposition is already proven 
for some n; we now prove it for n-t+. Let X have cardinality n++ , 
and suppose that X also has some other cardinality m =f. n++. 
By Proposition 3.6.4, X is non-empty, and if x is any element 
of X, then X - { x} has cardinality n and also has cardinality 
m -1, by Lemma 3.6.9. By induction hypothesis, this means that 
n = m- 1, which implies that m = n-t+, a contradiction. This 
closes the induction. 0 

Thus, for instance, we now know, thanks to Propositions 3.6.4 
and 3.6.8, that the sets {0, 1, 2} and {3, 4} do not have equal 
cardinality, since the first set has cardinality 3 and the second set 
has cardinality 2. 

Definition 3.6.10 (Finite sets). A set is finite iff it has cardinality 
n for some natural number n; otherwise, the set is called infinite. 
If X is a finite set, we use #(X) to denote the cardinality of X. 

Example 3.6.11. The sets {0, 1, 2} and {3, 4} are finite, as is 
the empty set (0 is a natural number), and #( {0, 1, 2}) = 3, 
#( {3, 4}) = 2, and #(0) = 0. 

Now we give an example of an infinite set. 

Theorem 3.6.12. The set of natural numbers N is infinite. 

Proof. Suppose for sake of contradiction that the set of natural 
numbers N was finite, so it had some cardinality #(N) = n. Then 
there is a bijection f from {i EN : 1.:::; i ~ n} toN. One can 
show that the sequence f(1), f(2), ... , f(n) is bounded, or more 
precisely that there exists a natural number M such that f ( i) ~ M 
for all 1 ~ i ~ n (Exercise 3.6.3). But then the natural number 
M + 1 is not equal to any of the f ( i), contradicting the hypothesis 
that f is a bijection. 0 
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aemark 3.6.13. One can also use similar arguments to show 
that any unbounded set is infinite; for instance the rationals Q 
and the reals R (which we will construct in later chapters) are 
infinite. However, it is possible for some sets to be "more" infinite 
than others; see Section 8.3. 

Now we relate cardinality with the arithmetic of natural num­

bers. 

Proposition 3.6.14 (Cardinal arithmetic). 

(a) Let X be a finite set, and let x be an object which is not an 
element of X. Then XU {x} is finite and #(XU {x}) = 
#(X)+ 1. 

(b) Let X and Y be finite sets. Then X U Y is finite and # (XU 
Y) ~ #(X)+ #(Y). If in addition X andY are disjoint 
(i.e., X n Y = 0), then #(XU Y) =#(X)+ #(Y). 

(c) Let X be a finite set, and let Y be a subset of X. Then Y 
is finite, and #(Y) ~#(X). If in addition Y :f: X (i.e., Y 
is a proper subset of X), then we have #(Y) <#(X). 

(d) If X is a finite set, and f : X ---t Y is a function, then f (X) 
is a finite set with #(f(X)) ~ #(X). If in addition f is 
one-to-one, then #(f(X)) =#(X). 

(e) Let X and Y be finite sets. Then Cartesian product X x Y 
is finite and #(X x Y) =#(X) x #(Y). 

(f) Let X and Y be finite sets. Then the set Y x (defined in 
Axiom 3.10) is finite and #(Yx) = #(Y)#(X). 

Proof. See Exercise 3.6.4. D 

Remark 3.6.15. Proposition 3.6.14 suggests that there is an­
other way to define the arithmetic ~perations of natural numbers; 
not defined recursively as in Definitions 2.2.1, 2.3.1, 2.3.11, but 
instead using the notions of union, Cartesian product, and power 
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set. This is the basis of cardinal arithmetic, which is an alternative 
foundation to arithmetic than the Peano arithmetic we have devet. 
oped here; we will not develop this arithmetic in this text, but we 
give some examples of how one would work with this arithmetic 
in Exercises 3.6.5, 3.6.6. 

This concludes our discussion of finite sets. We shall discuss 
infinite sets in Chapter 8, once we have constructed a few more 
examples of infinite sets (such as the integers, rationals and reals). 

Exercise 3.6.1. Prove Proposition 3.6.4. 

Exercise 3.6.2. Show that a set X has cardinality 0 if and only if X is 
the empty set. 

Exercise 3.6.3. Let n be a natural number, and let f: {i EN: 1 :::=; i ~ 
n} --+ N be a function. Show that there exists a natural number M such 
that f(i) :::=; M for all1 ::::; i :::=; n. (Hint: induct ·on n. You may also want 
to peek at Lemma 5.1.14.) Thus finite subsets of the natural numbers 
are bounded. 

Exercise 3.6.4. Prove Proposition 3.6.14. 

Exercise 3.6.5. Let A and B be sets. Show that Ax B and B x A 
have equal cardinality by constructing an explicit bijection between the 
two sets. Then use Proposition 3.6.14 to conclude an alternate proof of 
Lemma 2.3.2. 

Exercise 3.6.6. Let A, B, C be sets. Show that the sets (A8 ) 0 and 
ABxC have equal cardinality by constructing an explicit bijection be­
tween the two sets. Conclude that (ab)c =abc for any natural numbers 
a, b, c. Use a similar argument to also conclude ab x ac = ab+c. 

Exercise 3.6.7. Let A and B be sP-ts. Let us say that A has lesser or 
equal cardinality to B if there exists an injection f : A --+ B from A 
to B. Show that if A and B are finite sets, then A has lesser or equal 
cardinality to B if and only if #(A) :::=; #(B). 

Exercise 3.6.8. Let A and B be sets sucl1 that there exists an injection 
f : A --+ B from A to B (i.e., A has lesser or equal cardinality to B). 
Show that there then exists a surjection g : B --+ A from B to A. (The 
converse to this statement requires the axiom of choice; see Exercise 
8.4.3.) 

Exercise 3.6.9. Let A and B be finite sets. Show that AU B and An B 
are also finite sets, and that #(A)+ #(B) =#(Au B)+ #(An B). 
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Exercise 3.6.10. Let A1, ... , An be finite sets such that #(Uie 
n. Show that there exists i E { 1, ... , n} such that # ( Ai) ~ 
known as the pigeonhole principle.) 



Chapter 4 

Integers and rationals 

4.1 The integers 

In Chapter 2 we built up most of the basic properties of the natural 
number system, but we have reached the limits of what one can 
do with just addition and multiplication. We would now like to 
introduce a new operation, that of subtraction, but to do that 
properly we will have to pass from the natural number system to 
a larger number system, that of the integers. 

Informally, the integers are what you can get by subtracting 
two natural numbers; for instance, 3- 5 should be an integer, as 
should 6 - 2. This is not a complete definition of the integers, be­
cause (a) it doesn't say when two differences are equal (for instance 
we should know why 3-5 is equal to 2-4, but is not equal to 1-6), 
and (b) it doesn't say how to do arithmetic on these differences 
(how does one add 3-5 to 6- 2?). Furthermore, (c) this definition 
is circular because it requires a notion of subtraction, which we 
can only adequately define once the integers are constructed. For­
tunately, because of our prior experience with integers we know 
what the answers to these questions should be. To answer (a), we 
know from our advanced knowledge in algebra that a - b = c - d 
happens exactly when a+d = c+b, so we can characterize equality 
of differences using only the concept of addition. Similarly, to an­
swer (b) we know from algebra that (a-b)+(c-d) = (a+c)-(b+d) 
and that (a-b)(c-d) = (ac+bd)-(ad+bc). So we will take advan-
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tage of our foreknowledge by building all this into the definition 
of the integers, as we shall do shortly. 

We still have to resolve (c). To get around this problem we will 
use the following work-around: we will temporarily write integers 
not as a difference a - b, but instead use a new notation a-b 
to define integers, where the - is a meaningless place-holder, 
similar to the comma in the Cartesian co-ordinate notation (x, y) 
for points in the plane. Later when we define subtraction we will 
see that a-b is in fact equal to a- b, and so we can discard 
the notation -; it is only needed right now to avoid circularity. 
(These devices are similar to the scaffolding used to construct a 
building; they are temporarily essential to make sure the building 
is built cprrectly, but once the building is completed they are 
thrown away and never used again.) This may seem unnecessarily 
complicated in order to define something that we already are very 
familiar with, but we will use this device again to construct the 
rationals, and knowing these kinds of constructions will be very 
helpful in later chapters. 

Definition 4.1.1 (Integers). An integer is an expression1 of the 
form a-b, where a and bare natural numbers. Two integers are 
considered to be equal, a-b = c-d, if and only if a+ d = c +b. 
We let Z denote the set of all integers. 

Thus for instance 3-5 is an integer, and is equal to 2-4, 
because 3 + 4 = 2 + 5. On the other hand, 3-5 is not equal to 
2-3 because 3 + 3 =/: 2 + 5. This notation is strange looking, and 
has a few deficiencies; for instance, 3 is not yet an integer, because 
it is not of the form a-b! We will rectify these problems later. 

1In the language of set theory, what we are doing here is starting with the 
space N x N of ordered pairs (a, b) of natural numbers. Then we place an 
equivalence relation"' on these pairs by declaring (a, b)"' (c, d) iff a+d = c+b. 
The set-theoretic interpretation of the symbol a-b is that it is the space of all 
pairs equivalent to (a, b): a-b := {(c, d) EN x N: (a, b)"' (c, d)}. However, 
this interpretation plays no role in how we manipulate the integers and we 
will not refer to it again. A similar set-theoretic interpretation can be given 
to the construction of the rational numbers later in this chapter, or the real 
numbers in the next chapter. 
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We have to check that this is a legitimate notion of equal. 
ity. We need to verify the reflexivity, symmetry, transitivity, and 
substitution axioms (see Section A.7). We leave reflexivity and 
symmetry to Exercise 4.1.1 and instead verify the transitivity ax­
iom. Suppose we know that a-b = c-d and c-d = e-j. 
Then we have a + d = c + b and c + f = d + e. Adding the two 
equations together we obtain a+d+c+ f = c+b+d+e. By Propo­
sition 2.2.6 we can cancel the c and d, obtaining a+ f = b+e, i.e., 
a-b = e-f. Thus the cancellation law was needed to make 
sure that our notion of equality is sound. As for the substitu­
tion axiom, we cannot verify it at this stage because we have not 
yet defined any operations on the integers. However, when we 
do define our basic operations on the integers, such as addition, 
multiplication, and order; we will have to verify the substitution 
axiom at that time in order to ensure that the definition is valid. 
(We will only need to do this for the basic operations; more ad­
vanced operations on the integers, such as exponentiation, will 
be defined in terms of the basic ones, and so we do not need to 
re-verify the substitution axiom for the advanced operations.) 

Now we define two basic arithmetic operations on integers: 
addition and multiplication. 

Definition 4.1.2. The sum of two integers, (a-b)+ (c-d), is 
defined by the formula 

(a-b)+ (c-d) :=(a+ c)-(b +d). 

The product of two integers, (a-b) x (c-d), is defined by 

(a-b) x (c-d) := (ac + bd)-(ad +be). 

Thus for instance, (3-5) + (1-4) is equal to (4-9). There 
is however one thing we have to check before we can accept these 
definitions - we have to check that if we replace one of the integers 
by an equal integer, that the sum or product does not change. For 
instance, (3-5) is equal to (2-4), so (3-5) + (1-4) ought 
to have the same value as (2-4) + (1-4), otherwise this would 
not give a consistent definition of addition. Fortunately, this is 
the case: 
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Lemma 4.1.3 (Addition and multiplication are well-defined). Let 
a, b, a', b', c, d be natural numbers. If (a-b) = ( a'-b'), then 
(a-b)+ (c-d) = (a'-b') + (c-d) and (a-b) x (c-d) = 
(a'-b') x (c-d), and also (c-d)+(a-b) = (c-d)+(a'-b') 
and ( c-d) X (a-b) = ( c-d) X ( a'-b'). Thus addition and 
multiplication are well-defined operations (equal inputs give equal 
outputs). 

Proof. To prove that (a-b)+ (c-d) = (a'-b') + (c-d), we 
evaluate both sides as (a+ c)-(b +d) and (a'+ c)-(b' +d). 
Thus we need to show that a + c + b' + d = a' + c + b + d. But 
since (a-· -b) = (a'-b'), we have a+ b' = a'+ b, and so by 
adding c + d to both sides we obtain the claim. Now we show 
that (a-· b) x (c-d) = (a'-b') x (c-d). Both sides evaluate 
to ( ac + bd)-(ad + be) and (a' c + b' d)-(a' d + b' c), so we have 
to show that ac + bd + a'd + b'c = a'c + b'd +ad+ be. But the 
left-hand side factors as c( a+ b') + d( a'+ b), while the right factors 
as c(a' +b) + d(a + b'). Since a+ b' = a'+ b, the two sides are 
equal. The other two identities are proven similarly. D 

The integers n-0 behave in the same way as the natural 
numbers n; indeed one can check that (n-0) + (m-0) = (n + 
m)-0 and (n-0) x (m-0) = nm-0. Furthermore, (n-0) 
is equal to (m-0) if and only if n = m. (The mathematical 
term for this is that there is an isomorphism between the natural 
numbers '!" and those integers of the form n-0.) Thus we may 
identify the natural numbers with integers by setting n = n-0; 
this does not affect our definitions of addition or multiplication or 
equality since they are consistent with each other. For instance 
the natural number 3 is now considered to be the same as the 
integer 3-0, thus 3 = 3-0. In particular 0 is equal to 0-0 
and 1 is equal to 1-0. Of course, if we set n equal to n-0, then 
it. will also be equal to any other integer which is equal to n-0, 
for instance 3 is equal not only to 3-0, but also to 4-1, 5-2, 
etc. 

We can now define incrementation on the integers by defining 
x++ := x + 1 for any integer x; this is of course consistent with 
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our definition of the increment operation for natural numbers. 
·However, this is no longer an important operation for us, as it has 
been now superceded by the more general notion of addition. 

Now we consider some other basic operations on the integers. 

Definition 4.1.4 (Negation of integers). If (a-b) is an integer, 
we define the negation -(a-b) to be the integer (b-a). In 
particular if n = n-0 is a positive natural number, we can define 
its negation -n = 0-n. 

For instance -(3-5) =(5-3). One can check this definition 
is well-defined (Exercise 4.1. 2). 

We can now show that the integers correspond exactly to what 
we expect. 

Lemma 4.1.5 (Trichotomy of integers). Let x be an integer. Then 
exactly one of the following three statements is true: (a) x is zero; 
(b) x is equal to a positive natural number n; or (c) x is the 
negation -n of a positive natural number n. 

Proof. We first show that at least one of (a), (b), (c) is true. By 
definition, x = a-b for some natural numbers a, b. We have three 
cases: a > b, a = b, or a < b. If a > b then a = b + c for some 
positive natural number c, which means that a-b = c-0 = c, 
which is (b). If a= b, then a-b =a-a= 0-0 = 0, which 
is (a). If a < b, then b > a, so that b-a = n for some natural 
number n by the previous reasoning, and thus a-. b = -n, which 
is (c). 

Now we show that no more than one of (a), (b), (c) can hold 
at a time. By definition, a positive natural number is non-zero, 
so (a) and (b) cannot simultaneously be true. If (a) and (c) were 
simultaneously true, then 0 = -n for some positive natural n; 
thus (0-0) = (0-n), so that 0 + n = 0 + 0, so that n = 0, 
a contradiction. If (b) and (c) were simultaneously true, then 
n = -m for some positive n, m, so that (n-O) = (0-m), so 
that n + m = 0 + 0, which contradicts Proposition 2.2.8. Thus 
exactly one of (a), (b), (c) is true for any integer x. D 
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Jfn is a positive natural number, we call-n a negative integer. 
Thus every integer is positive, zero, or negative, but not more than 
one of these at a time. 

One could well ask why we don't use Lemma 4.1.5 to define 
the integers; i.e., why didn't we just say an integer is anything 
which is either a positive natural number, zero, or the negative of 
a natural number. The reason is that if we did so, the rules for 
adding and multiplying integers would split into many different 
cases (e.g., negative times positive equals positive; negative plus 
positive is either negative, positive, or zero, depending on which 
term is larger, etc.) and to verify all the properties would end up 
being much messier. 

We noy.r summarize the algebraic properties of the integers. 

Proposition 4.1.6 (Laws of algebra for integers). Let x, y, z be 
integers. Then we have 

x+y=y+x 

(X + y) + Z = X + (y + Z) 

x+O=O+x=x 

x + ( -x) = ( -x) + x = 0 

xy=yx 

(xy)z = x(yz) 

xl = lx = x 

x(y + z) = xy + xz 

(y + z)x = yx + zx. 

Remark 4.1. 7. The above set of nine identities have a name; 
they are asserting that the integers form a commutative ring. (If 
one deleted the identity xy = yx, then they would only assert 
that the integers form a ring). Note that some of these identities 
were already proven for the natural numbers, but this does not 
automatically mean that they also hold for the integers because 
the integers are a larger set than the natural numbers. On the 
other hand, this proposition supercedes many of the propositions 
derived earlier for natural numbers. 
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Proof. There are two ways to prove these identities. One is to use 
Lemma 4.1.5 and split into a lot of cases depending on whether 
x, y, z are zero, positive, or negative. This becomes very messy. A 
shorter way is to write x = (a-b), y = ( c-d), and z = ( e-f) 
for some natural numbers a, b, c, d, e, J, and expand these identi­
ties in terms of a, b, c, d, e, f and use the algebra of the natural 
numbers. This allows each identity to be proven in a few lines. 
We shall just prove the longest one, namely (xy)z = x(yz): 

(xy)z = ((a-b)(c-d)) (e-f) 

= ((ac + bd)-(ad +be)) (e-f) 

=((ace+ bde + adf + bcf)-(acf + bdf + ade +bee)); 

x(yz) =(a-b) ((c-d)(e-f)) 

=(a-b) ((ce + df)-(cf +de)) 

=((ace+ adf + bcf + bde)-(acf + ade +bee+ bdf)) 

and so one can see that (xy)z and x(yz) are equal. The other 
identities are proven in a similar fashion; see Exercise 4.1.4. 0 

We now define the operation of subtraction x -y of two integers 
by the formula 

x-y:=x+(-y). 

We do not need to verify the substitution axiom for this operation, 
since we have defined subtraction in terms of two other operations 
on integers, namely addition and negation, and we have already 
verified that those operations are well-defined. 

One can easily check now that if a and b are natural numbers, 
then 

a- b =a+ -b = (a-0) + (0-b) = a-b, 

and so a-b is just the same thing as a - b. Because of this we 
can now discard the - notation, and use the familiar operation 
of subtraction instead. (As remarked before, we could not use 
subtraction immediately because it would be circular.) 

We can now generalize Lemma 2.3.3 and Corollary 2.3. 7 from 
the natural numbers to the integers: 
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proposition 4.1.8 (Integers have no zero divisors). Let a and b 
be integers such that ab = 0. Then either a = 0 orb = 0 (or both). 

Proof. See Exercise 4.1.5. D 

Corollary 4.1.9 (Cancellation law for integers). If a, b, c are 
integers such that ac =be and c is non-zero, then a= b. 

Proof. See Exercise 4.1.6. D 

We now extend the notion of order, which was defined on the 
natural numbers, to the integers by repeating the definition ver­
batim: 

Definition 4.1.10 (Ordering of the integers). Let n and m be 
integers. We say that n is greater than or equal to m, and write 
n ;:::: m or m ~ n, iff we have n = m + a for some natural number 
a. We say that n is strictly greater than m, and write n > m or 
m < n, iff n ~ m and n # m. 

Thus for instance 5 > -3, because 5 = -3 + 8 and 5 # -3. 
Clearly this definition is consistent with the notion of order on the 
natural numbers, since we are using the same definition. 

Using the laws of algebra in Proposition 4.1.6 it is not hard to 
show the following properties of order: 

Lemma 4.1.11 (Properties of order). Let a, b, c be integers. 

(a) a > b if and only if a - b is a positive natural number. 

(b) (Addition preserves order) If a> b, then a+ c > b +c. 

(c) (Positive multiplication preserves order) If a > b and c is 
positive, then ac > be. 

(d) (Negation reverses order) If a> b, then -a< -b. 

(e) (Order is transitive) If a > b and b > c, then a > c. 

(!) (Order trichotomy) Exactly one of the statements a > b, 
a< b, or a= b is true. 
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Proof. See Exercise 4.1.7. 0 

Exercise 4.1.1. Verify that the definition of equality on the integers is 
both reflexive and symmetric. 

Exercise 4.1.2. Show that the definition of negation on the integers is 
well-defined in the sense that if (a-b) = (a'-b'), then -(a-b) ::: 
-(a'-b') (so equal integers have equal negations). 

Exercise 4.1.3. Show that ( -1) x a= -a for every integer a. 

Exercise 4.1.4. Prove the remaining identities in Proposition 4.1.6. (Hint: 
one can save some work by using some identities to prove others. For 
instance, once you know that xy = yx, you get for free that x1 = 1x, 
and once you also prove x(y + z) = xy + xz, you automatically get 
(y + z)x = yx + zx for free.) 

Exercise 4.1.5. Prove Proposition 4.1.8. (Hint: while this proposition 
is not quite the same as Lemma 2.3.3, it is certainly legitimate to use 
Lemma 2.3.3 in the course of proving Proposition 4.1.8.) 

Exercise 4.1.6. Prove Corollary 4.1.9. (Hint: there are two ways to do 
this. One is to use Proposition 4.1.8 to conclude that a- b must be zero . 
.Another way is to combine Corollary 2.3.7 with Lemma 4.1.5.) 

Exercise 4.1.7. Prove Lemma 4.1.11. (Hint: use the first part of this 
lemma to prove all the others.) 

Exercise 4.1.8. Show that the principle of induction (Axiom 2.5) does 
not apply directly to the integers. More precisely, give an example of 
a property P(n) pertaining to an integer n such that P(O) is true, and 
that P(n) implies P(n++) for all integers n, but that P(n) is not true 
for all integers n. Thus induction is not as useful a tool for dealing with 
the integers as it is with the natural numbers. (The situation becomes 
even worse with the rational and real numbers, which we shall define 
shortly.) 

4.2 The rationals 

We have now constructed the integers, with the operations of ad­
dition, subtraction, multiplication, and order and verified all the 
expected algebraic and order-theoretic propertiesr Now we will 
use a similar construction to build the rationals, adding division 
to our mix of operations. 
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Just like the integers were constructed by subtracting two nat­
ural numbers, the rationals can be constructed by dividing two 
integers, though of course we have to make the usual cave,at that 
the denominator should be non-zero2 . Of course, just as two dif­
ferences a-bande-d can be equal if a+d = e+b, we know (from 
more advanced knowledge) that two quotients afb and e/d can be 
equal if ad = be. Thus, in analogy with the integers, we create a 
new meaningless symbol // (which will eventually be superceded 
by division), and define 

Definition 4.2.1. A rational number is an expression of the form 
a/ jb, where a and b are integers and b is non-zero; af /0 is not 
considered to be a rational number. Two rational numbers are 
considered· to be equal, a/ /b = ef jd, if and only if ad= eb. The 
set of all rational numbers is denoted Q. 

Thus for .instance 3//4 = 6//8 = -3//-4, but 3//4 =/: 4//3. 
This is a valid definition of equality (Exercise 4.2.1). Now we 
need a notion of addition, multiplication, and negation. Again, 
we will take advantage of our pre-existing knowledge, which tells 
us that afb + efd should equal (ad+ be)/(bd) and that afb * ejd 
should equal aefbd, while -(a/b) equals ( -a)fb. Motivated by 
this foreknowledge, we define 

Definition 4.2.2. If a/ /b and e/ / d are rational numbers, we de­
fine their sum 

(a/ /b)+ (e/ /d):= (ad+ be)/ /(bd) 

their product 
(a/ /b)* (e/ /d):= (ae)/ /(bd) 

and the negation 
-(a/ /b) := (-a)/ jb. 

2There is no reasonable way we can divide by zero, since one cannot have 
both the identities (a/b)*b =a and C*O = 0 hold simultaneously if b is allowed 
to be zero. However, we can eventually get a reasonable notion of dividing 
by a quantity which approaches zero - think of L'Hopital's rule (see Section 
10.5), which suffices for doing things like defining differentiation. 
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Note that if b and d are non-zero, then bd is also non-zero 
' by Proposition 4.1.8, so the sum or product of a rational number 

remains a rational number. 

Lemma 4.2.3. The sum, product, and negation operations on 
rational numbers are well-defined, in the sense that if one replace, 
aj jb with another rational number a'/ /b' which is equal to aj /b, 
then the output of the above operations remains unchanged, and 
similarly for cj /d. 

Proof. We just verify this for addition; we leave the remaining 
claims to Exercise 4.2.2. Suppose a/ jb = a'/ /b', so that b and 
b' are non-zero and ab' = a'b. We now show that a/ /b + cj jd::: 
a'/ /b' +c/ jd. By definition, the left-hand side is (ad+ be)/ /bd and 
the right-hand side is (a'd + b'c)/ /b'd, so we have to show that 

(ad+ bc)b'd = (a'd + b' c)bd, 

which expands to 

ab' d2 + bb' cd = a'bd2 + bb' cd. 

But since ab' = a'b, the claim follows. Similarly if one replaces 
cjjdbydjjd'. 0 

We note that the rational numbers aj /1 behave in a manner 
identical to the integers a: 

(a/ /1) + (b/ /1) =(a+ b)/ /1; 
(a/ /1) x (b/ /1) = (abj /1); 

-(a//1) = (-a)//1. 

Also, aj /1 and b/ /1 are only equal when a and b are equal. Be­
cause of this, we will identify a with a/ /1 for each integer a: 
a= a/ /1; the above identities then guarantee that the arithmetic 
of the integers is consistent with the arithmetic of the rationals. 
Thus just as we embedded the natural numbers inside the integers, 
we embed the integers inside the rational numbers. In particular, 
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all natural numbers are rational numbers, for instance 0 is equal 
to 0//1 and 1 is equal to 1//1. 

Observe that a rational number aj /b is equal to 0 = 0//1 if 
and only if a x 1 = b x 0, i.e., if the numerator a is equal to 0. 
Thus if a and bare non-zero then so is aj jb. 

We now define a new operation on the rationals: reciprocal. If 
:c:::::: a/ jb is a non-zero rational (so that a, b =/: 0) then we define 
the reciprocal x-1 of x to be the rational number x-1 := b/ /a. It 
is easy to check that this operation is consistent with our notion 
of equality: if two rational numbers aj jb, a'/ /b' are equal, then 
their reciprocals are also equal. (In contrast, an operation such as 
"numerator" is not well-defined: the rationals 3//4 and 6//8 are 
equal, but have unequal numerators, so we have to be careful when 
referring to such terms as "the numerator of x".) We however 
leave the reciprocal of 0 undefined. 

We now summarize the algebraic properties of the rationals. 

Proposition 4.2.4 (Laws of algebra for rationals). Let x, y, z be 
rotionals. Then the following laws of algebra hold: 

x+y=y+x 

(X + y) + Z = X + (y + Z) 

x+O=O+x=x 

X + (-X) = (-X) + X = 0 

xy=yx 

(xy)z = x(yz) 

x1 = 1x = x 

x(y + z) = xy + xz 

(y+z)x=yx+zx. 

If x is non-zero, we also have 

XX-I= X-IX= 1. 

Remark 4.2.5. The above set of ten identities have a name; 
they are asserting that the rationals Q form a field. This is bet­
ter than being a commutative ring because of the tenth identity 
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xx-1 = x-1x = 1. Note that this proposition supercedes Propo. 
sition 4.1.6. 

Proof. To prove this identity, one writes x = a/ jb, y = cj /d, 
z = ef / f for some integers a, c, e and non-zero integers b, d, f, 
and verifies each identity in turn using the algebra of the integers. 
We shall just prove the longest one, namely (x+y)+z = x+(y+z): 

(x + y) + z = ( ( af /b) + ( cf /d)) + ( e/ /f) 

= ((ad+ be)/ /bd) + (e/ /!) 
= (adf + bcf + bde)/ /bdf; 

x + (y + z) =(a/ /b)+ ((c/ /d)+ (e/ / !)) 
=(a/ /b)+ ((cf +de)/ /df) 

= (adf + bcf + bde)/ /bdf 

and so one can see that (x + y) + z and x + (y + z) are equal. 
The other identities are proven in a similar fashion and are left to 
Exercise 4.2.3. 0 

We can now define the quotient xjy of two rational numbers 
x andy, provided that y is non-zero, by the formula 

xjy :=X X y-1. 

Thus, for instance 

(3/ /4)/(5/ /6) = (3/ /4) X (6/ /5) = (18/ /20) = (9/ /10). 

Using this formula, it is easy to see that a/b = a/ /b for every 
integer a and every non-zero integer b. Thus we can now discard 
the // notation, and use the more customary afb instead of a/ jb. 

Proposition 4.2.4allows us to use all the normal rules of alge­
bra; we will now proceed to do so without further comment. 

In the previous section we organized the integers into positive, 
zero, and negative numbers. We now do the same for the rationals. 

Definition 4.2.6. A rational number x is said to be positive iff 
we have x = afb for some positive integers a and b. It is said to 
be negative iff we have x = -y for some positive rational y (i.e., 
x = ( -a)/b for some positive integers a and b). 
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Thus for instance, every positive integer is a positive rational 
nUIIlber, and every negative integer is a negative rational number, 

80 our new definition is consistent with our old one. 

Lemma 4.2. 7 (Trichotomy of rationals). Let x be a rational num­
ber. Then exactly one of the following three statements is true: 
(a) x is equal to 0. (b) x is a positive rational number. (c) x is a 
negative rational number. 

proof. See Exercise 4.2.4. D 

Definition 4.2.8 (Ordering of the rationals). Let x and y be 
rational numbers. We say that x > y iff x- y is a positive rational 
number, and x < y iff x.- y is a negative rational number. We 
write x;:::: y iff either x > y or x = y, and similarly define x ~ y. 

Proposition 4.2.9 (Basic properties of order on the rationals). 
Let x, y, z be rational numbers. Then the following properties hold. 

(a) (Order trichotomy) Exactly one of the three statements x = 
y, x < y, or x > y is true. 

(b) (Order is anti-symmetric) One has x < y if and only if 
y>x. 

(c) (Order is transitive) If x < y andy< z, then x < z. 

(d) (Addition preserves order) If x < y, then x + z < y + z. 

(e) (Positive multiplication preserves order) If x < y and z is 
positive, then xz < yz. 

Proof See Exercise 4.2.5. D 

Remark 4.2.10. The above five properties in Proposition 4.2.9, 
combined with the field axioms in Proposition 4.2.4, have a name: 
they assert that the rationals Q form an ordered field. It is impor­
tant to keep in mind that Proposition 4.2.9(e) only works when z 
is positive, see Exercise 4.2.6. 
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Exercise 4.2.1. Show that the definition of equality for the rational mun­
bers is reflexive, symmetric, and transitive. (Hint: for transitivity, USe 
Corollary 2.3.7.) 
Exercise 4.2.2. Prove the remaining components of Lemma 4.2.3. 
Exercise 4.2.3. Prove the remaining components of Proposition 4.2.4. 
(Hint: as with Proposition 4.1.6, you can save some work by using some 
identities to prove others.) 
Exercise 4.2.4. Prove Lemma 4.2.7. (Note that, as in Proposition 2.2.13, 
you have to prove two different things: firstly, that at least one of (a), 
(b), (c) is true; and secondly, that at most one of (a), (b), (c) is true.) 
Exercise 4.2.5. Prove Proposition 4.2.9. 
Exercise 4.2.6. Show that if x, y, z are real numbers such that x < y 
and z is negative, then xz > yz. 

4.3 Absolute value and exponentiation 

We have already introduced the four basic arithmetic operations 
of addition, subtraction, multiplication, and division on the ra­
tionals. (Recall that subtraction and division came -from the 
more primitive notions of negation and reciprocal by the formulae 
x- y := x + (-y) and xjy := x x y-1.) We also have a notion 
of order <, and have organized the rationals into the positive ra­
tionals, the negative rationals, and zero. In short, we have shown 
that the rationals Q form an ordered field. 

One can now use these basic operations to construct more 
operations. There are many such operations we can construct, 
but we shall just introduce two particularly useful ones: absolute 
value and exponentiation. 

Definition 4.3.1 (Absolute value). If xis a rational number, the 
absolute value lxl of x is defined as follows. If x is positive, then 
JxJ := x. If xis negative, then JxJ := -x. If xis zero, then JxJ := 0. 

Definition 4.3.2 (Distance). Let x andy be real numbers. The 
quantity Jx - yJ is called the distance between x and y and is 
sometimes denoted d( x, y), thus d( x, y) := J x - yJ. For instance, 
d(3,5) = 2. 
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proposition 4.3.3 (Basic properties of absolute value and dis­
tance). Let x, y, z be rational numbers. 

(a) (Non-degeneracy of absolute value) We have !xi ~ 0. Also, 
!xi = 0 if and only if x is 0. 

(b) ('I'riangle inequality for absolute value) We have lx + Yi ::; 

lxi+IYI· 
(c) We have the inequalities -y ::; x ::; y if and only if y ~ !xi. 

In particular, we have -!xi ::; x::; !xi. 

(d) (Multiplicativity of absolute value) We have !xyi = !xi IYI· 
In particular, I -xi = !xi. 

(e) (Non-degeneracy of distance) We have d(x,y) ~ 0. Also, 
d(x, y) = 0 if and only if x = y. 

(f) (Symmetry of distance) d(x, y) = d(y, x). 

(g) ('I'riangle inequality for distance) d(x,z)::; d(x,y) +d(y,z). 

Proof. See Exercise 4.3.1. D 

Absolute value is useful for measuring how "close" two num­
bers are. Let us make a somewhat artificial definition: 

Definition 4.3.4 {c-closeness). Let c > 0, and x, y be rational 
numbers. We say that y is £-close to x iff we have d(y, x) ::; c. 

Remark 4.3.5. This definition is not standard in mathematics 
textbooks; we will use it as "scaffolding" to construct the more 
important notions of limits (and of Cauchy sequences) later on, 
and once we have those more advanced notions we will discard the 
notion of c-close. 

Examples 4.3.6. The numbers 0.99 and 1.01 are 0.1-close, but 
they are not 0.01 close, because d(0.99, 1.01) = 10.99-1.011 = 0.02 
is larger than 0.01. The numbers 2 and 2 are c-close for every 
positive c. 
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We do not bother defining a notion of c--close when c is zero or 
negative, because if c is zero then x and y are only c--close when 
they are equal, and when c is negative then x and y are never c­

close. (In any event it is a long-standing tradition in analysis that 
the Greek letters c-, 5 should only denote small positive numbers.) 

Some basic properties of c--closeness are the following. 

Proposition 4.3. 7. Let x, y, z, w be rational numbers. 

(a) If x = y, then x is €-close toy for every c > 0. Conversely, 
if x is €-close toy for every c > 0, then we have x = y. 

(b) Let c > 0. Ifx is €-close toy, then y is c--close to x. 

(c) Let c-, 5 > 0. If x is c--close toy, andy is 5-close to z, then 
x and z are (c- + 5)-close. 

(d) Let c-, 5 > 0. If x andy are €-close, and z and w are 5-close, 
then x + z and y + w are ( c + 5) -close, and x - z and y - w 
are also ( c + 5) -close. 

(e) Let c > 0. If x and y are €-close, they are also c-1 -close for 
every c-1 >c. 

(f) Let c > 0. If y and z are both €-close to x, and w is between 
y and z (i.e., y ~ w ~ z or z ~ w ~ y), then w is also 
c--close to x. 

(g) Let c > 0. If x andy are €-close, and z is non-zero, then 
xz and yz are c-lzl-close. 

(h) Let c-, 5 > 0. If x andy are €-close, and z and w are 5-close, 
then xz and yw are (c-lzl + 5lxl + c-5)-close. 

Proof. We only prove the most difficult one, (h); we leave (a)-(g) 
to Exercise 4.3.2. Let c-, 5 > 0, and suppose that x and y are 
c--close. If we write a:= y- x, then we have y = x +a and that 
Ia! ~c. Similarly, if z and ware 5-close, and we define b := w- z, 
then w = z +band lbl ~ 5. 



4.3. Absolute value and exponentiation 101 

Since y = x + a and w = z + b, we have 

yw = ( x + a)( z + b) = xz + az + xb + ab. 

Thus 

!yw-xzl = iaz+bx+abl:::; iazi+lbxl+iabi = iallzi+lbllxl+iallbl. 

Since iai :::; c and lbl :::; 8, we thus have 

iyw- xzi :::; clzl + 8lxl + c8 

and thus that yw and xz are (clzl + 8lxl + c8)-clos~. D 

Remark 4.3.8. One should compare statements (a)-(c) of this 
proposition with the reflexive, symmetric, and transitive axioms 
of equality. It is often useful to think of the notion of "c-close" as 
an approximate substitute for that of equality in analysis. 

Now we recursively define exponentiation for natural number 
exponents, extending the previous definition in Definition 2.3.11. 

Definition 4.3.9 (Exponentiation to a natural number). Let x 
be a rational number. To raise x to the power 0, we define x0 := 1. 
Now suppose inductively that xn has been defined for some natural 
number n, then we define xn+l := xn x x. 

Proposition 4.3.10 (Properties of exponentiation, I). Let x, y be 
rational numbers, and let n, m be natural numbers. 

(a) We have xnxm = xn+m, (xn)m = xnm, and (xy)n = xnyn. 

(b) We have xn = 0 if and only if x = 0. 

(c) If x;:::: y;:::: 0, then xn;:::: yn ;:::: 0. If x > y;:::: 0 and n > 0, 
then xn > yn ;:::: 0. 

Proof. See Exercise 4.3.3. D 
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Now we define exponentiation for negative integer exponents. 

Definition 4.3.11 (Exponentiation to a negative number). Let 
x be a non-zero rational number. Then for any negative integer 
-n, we define x-n := 1/xn. 

Thus for instance x-3 = 1jx3·= 1/(x x x x x): We now have 
xn defined for any integer n, whether n is positive, negative, or 
zero. Exponentiation with integer exponents has the following 
properties (which supercede Proposition 4.3.10): 

Proposition 4.3.12 (Properties of exponentiation, II). Let x,y 
be non-zero rational numbers, and let n, m be integers. 

(b) If x ~ y > 0, then xn ~ yn > 0 if n is positive, and 0 < 
xn ~ yn if n is negative. 

(c) Ifx,y > 0, n =/: 0, and xn = yn, then x = y. 

Proof. See Exercise 4.3.4. 0 

Exercise 4.3.1. Prove Proposition 4.3.3. (Hint: while all of these claims 
can be proven by dividing into cases, such as when x is positive, negative, 
or zero, several parts of the proposition can be proven without such a 
tedious division into cases. For instance one can use earlier parts of the 
proposition to prove later ones.) 

Exercise 4.3.2. Prove the remaining claims in Proposition 4.3.7. 

Exercise 4.3.3. Prove Proposition 4.3.10. (Hint: use induction.) 

Exercise 4.3.4. Prove Proposition 4.3.12. (Hint: induction is not suit­
able here. Instead, use Proposition 4.3.10.) 

Exercise 4.3.5. Prove that 2N 2:: N for all positive integers N. (Hint: 
use induction.) 
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4.4 Gaps in the rational numbers 

Imagine that we arrange the rationals on a line, arranging x to the 
right of y if x > y. (This is a non-rigourous arrangement, since 
we have not yet defined the concept of a line, but this discussion 
is only intended to motivate the more rigourous propositions be­
low.) Inside the rationals we have the integers, which are thus 
also arranged on the line. Now we work out how the rationals are 
arranged with respect to the integers. 

Proposition 4.4.1 (Interspersing of integers by rationals). Let 
x be a rational number. Then there exists an integer n such that 
n ~ x < n + 1. In fact, this integer is unique (i.e., for each x there 
is only one n for which n ~ x < n + 1). In particular, there exists 
a natural number N such that N > x (i.e., there is no such thing 
as a rational number which is larger than all the natural numbers). 

Remark 4.4.2. The integer n for which n ~ x < n + 1 is some­
times referred to as the integer part of x and is sometimes denoted 
n = LxJ. 
Proof. See Exercise 4.4.1. 0 

Also, between every two rational numbers there is at least one 
additional rational: 

Proposition 4.4.3 (Interspersing of rationals by rationals). If x 
and y are two rationals such that x < y, then there exists a third 
rational z such that x < z < y. 

Proof. We set z := (x + y)/2. Since x < y, and 1/2 = 1//2 is 
positive, we have from Proposition 4.2.9 that x/2 < yj2. If we add 
y/2 to both sides using Proposition 4.2.9 we obtain xj2 + y/2 < 
y/2 + y/2, i.e., z < y. If we instead add x/2 to both sides we 
obtain x/2 + x/2 < y/2 + x/2, i.e., x < z. Thus x < z < y as 
desired. 0 

Despite the rationals having this denseness property, they are 
still incomplete; there are still an infinite number of "gaps" or 
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"holes" between the rationals, although this denseness property 
does ensure that these holes are in some sense infinitely small. 
For instance, we will now show that the rational numbers do not 
contain any square root of two. 

Proposition 4.4.4. There does not exist any ratio~al number x 
for which x 2 = 2. 

Proof. We only give a sketch of a proof; the gaps will be filled in 
Exercise 4.4.3. Suppose for sake of contradiction that we had a 
rational number x for which x2 = 2. Clearly x is not zero. We 
may assume that x is positive, for if x were negative then we could 
just replace x by -x (since x2 = ( -x)2 ). Thus x = pjq for some 
positive integers p, q, so (pjq) 2 = 2, which we can rearrange as 
p2 = 2q2. Define a natural number p to be even if p = 2k for some 
natural number k, and odd if p = 2k + 1 for some natural number 
k. Every natural number is either even or odd, but not both 
(why?). If pis odd, then p2 is also odd (why?), which contradicts 
p2 = 2q2. Thus pis even, i.e., p = 2k for some natural number k. 
Since p is positive, k must also be positive. Inserting p = 2k into 
p2 = 2q2 we obtain 4k2 = 2q2 , so that q2 = 2k2 . 

To summarize, we started with a pair (p, q) of positive integers 
such that p2 = 2q2 , and ended up with a pair (q, k) of positive 
integers such that q2 = 2k2 . Since p2 = 2q2 , we have q < p 
(why?). If we rewrite p' := q and q' := k, we thus can pass from 
one solution (p, q) to the equation p2 = 2q2 to a new solution 
(p', q') to the same equation which has a smaller value of p. But 
then we can repeat this procedure again and again, obtaining a 
sequence (p", q") , (p"', q"'), etc. of solutions to p2 = 2q2 , each 
one with a smaller value of p than the previous, and each one 
consisting of positive integers. But this contradicts the principle 
of infinite descent (see Exercise 4.4.2). This contradiction shows 
that we could not have had a rational x for which x2 = 2. D 

On the other hand, we can get rational numbers which are 
arbitrarily close to a square root of 2: 
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proposition 4.4.5. For every rational number£ > 0, there exists 
a non-negative rational number x such that x2 < 2 < ( x + £) 2 . 

proof. Let £ > 0 be rational. Suppose for sake of contradiction 
that there is no non-negative rational number x for which x2 < 
2 < (x + c)2 . This means that whenever x is non-negative and 
x2 < 2, we must also have (x + £)2 < 2 (note that (x + c)2 cannot 
equal 2, by Proposition 4.4.4). Since 02 < 2, we thus have £ 2 < 2, 
which then implies (2£)2 < 2, and indeed a simple induction shows 
that ( n£ )2 < 2 for every natural number n. (Note that nc is non­
negative for every natural number n - why?) But, by Proposition 
4.4.1 we can find an integer n such that n > 2/£, which implies 
that nc > 2, which implies that ( n£ )2 > 4 > 2, contradicting the 
claim that ( n£ )2 < 2 for all natural numbers n. This contradiction 
gives the proof. D 

Example 4.4.6. If3 £ = 0.001, we can take x = 1.414, since 
x2 = 1.999396 and (x + c)2 = 2.002225. 

Proposition 4.4.5 indicates that, while the set Q of rationals 
does not actually have J2 as a member, we can get as close as we 
wish to J2. For instance, the sequence of rationals 

1.4, 1.41, 1.414, 1.4142, 1.41421, ... 

seem to get closer and closer to J2, as their squares indicate: 

1.96, 1.9881, 1.99396, 1.99996164, 1.9999899241, ... 

Thus it seems that we can create a square root of 2 by taking a 
"limit" of a sequence of rationals. This is how we shall construct 
the real numbers in the next chapter. (There is another way to 
do so, using something called "Dedekind cuts", which we will not 
pursue here. One can also proceed using infinite decimal expan­
sions, but there are some sticky issues when doing so, e.g., one 

3We· will use the decimal system for defining terminating decimals, for 
instance 1.414 is defined to equal the rational number 1414/1000. We defer 
the formal discussion on the decimal system to an Appendix (§B). 
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has to make 0.999 ... equal to 1.000 ... , and this approach, de­
spite being the most familiar, is actually more complicated than 
other approaches; see the Appendix §B.) 

Exercise 4.4.1. Prove Proposition 4.4.1. (Hint: use Proposition 2.3.9.) 

Exercise 4.4.2. A definition: a sequence ao, ar, a2, .. ; of numbers (nat­
ural numbers, integers, rationals, or reals) is said to be in infinite descent 
if we have an> an+l for all natural numbers n (i.e., ao > a1 > a2 > ... ). 

(a) Prove the principle of infinite descent: that it is not possible to 
have a sequence of natural numbers which is in infinite descent. 
(Hint: assume for sake of contradiction that you c~ find a se­
quence of natural numbers which is in infinite descent. Since all 
the an are natural numbers, you know that an ~ 0 for all n. Now 
use induction to show in fact that an ~ k for all k E N and all 
n E N, and obtain a contradiction.) 

(b) Does the principle of infinite descent work if the sequence at, ~' 
a3, ... is allowed to take integer values instead of natural number 
values? What about if it is allowed to take positive rational values 
instead of natural numbers? Explain. 

Exercise 4.4.3. Fill in the gaps marked (why?) in the proof of Proposi­
tion 4.4.4. 



Chapter 5 

The real numbers 

To review our progress to date, we have rigourously constructed 
three fundamental number systems: the natural number system 
N, the integers Z, and the rationals Q1. We defined the natural 
numbers using the five Peano axioms, and postulated that such a 
number system existed; this is plausible, since the natural num­
bers correspond to the very intuitive and fundamental notion of 
sequential counting. Using that number system one could then re­
cursively define addition and multiplication, and verify that they 
obeyed the usual laws of algebra. We then constructed the integers 
by taking formal2 differences of the natural numbers, a-b. We 
then constructed the rationals by taking formal quotients of the 
integers, aj jb, although we need to exclude division by zero in or­
der to keep the laws of algebra reasonable. (You are of course free 
to design your own number system, possibly including one where 
division by zero is permitted; but you will have to give up one 

1The symbols N, Q, and R stand for "natural", "quotient", and "real" 
respectively. Z stands for "Zahlen", the German word for number. There is 
also the complex numbers C, which obviously stands for "complex". 

2 Formal means "having the form of" ; at the beginning of our construction 
the expression a-b did not actually mean the difference a - b, since the 
symbol - was meaningless. It only had the form of a difference. Later on 
we defined subtraction and verified that the formal difference was equal to the 
actual difference, so this eventually became a non-issue, and our symbol for 
formal differencing was discarded. Somewhat confusingly, this use of the term 
"formal" is unrelated to the notions of a formal argument and an informal 
argument. 
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or more of the field axioms from Proposition 4.2.4, among other 
things, and you will probably get a less useful number system in 
which to do any real-world problems.) 

The rational system is already sufficient to do a lot of math­
ematics - much of high school algebra, for instance, works just 
fine if one only knows about the rationals. However, there is a 
fundamental area of mathematics where the rational number sys­
tem does not suffice - that of geometry (the study of lengths, areas, 
etc.). For instance, a right-angled triangle with both sides equal to 
1 gives a hypotenuse of J2, which is an irrational number, i.e., not 
a rational number; see Proposition 4.4.4. Things get even worse 
when one starts to deal with the sub-field of geometry known as 
trigonometry, when one sees numbers such as 1r or cos(l), which 
turn out to be in some sense "even more" irrational than v'2. 
(These numbers are known as transcendental numbers, but to dis­
cuss this further would be far beyond the scope of this text.) Thus, 
in order to have a number system which can adequately describe 
geometry - or even something as simple as measuring lengths on 
a line- one needs to replace the rational number.system with the 
real number system. Since differential and integral calculus is also 
intimately tied up with geometry - think of slopes of tangents, or 
areas under a curve- calculus also requires the real number system 
in order to function properly. 

However, a rigourous way to construct the reals from the ra­
tionals turns out to be somewhat difficult - requiring a bit more 
machinery than what was needed to pass from the naturals to the 
integers, or the integers to the rationals. In those two construc­
tions, the task was to introduce one more algebraic operation to 
the number system- e.g., one can get integers from naturals by 
introducing subtraction, and get the rationals from the integers 
by introducing division. But to get the reals from the rationals 
is to pass from a "discrete" system to a "continuous" one, and 
requires the introduction of a somewhat different notion - that of 
a limit. The limit is a concept which on one level is quite intu­
itive, but to pin down rigourously turns out to be quite difficult. 
(Even such great mathematicians as Euler and Newton had diffi-
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culty with this concept. It was only in the nineteenth century that 
rnathematicians such as Cauchy and Dedekind figured out how to 
deal with limits rigourously.) 

In Section 4.4 we explored the "gaps" in the rational numbers; 
now we shall fill in these gaps using limits to create the real num­
bers. The real number system will end up being a lot like the 
rational numbers, but will have some new operations - notably 
that of supremum, which can then be used to define limits and 
thence to everything else that calculus needs. 

The procedure we give here of obtaining the real numbers as 
the limit of sequences of rational numbers may seem rather com­
plicated. However, it is in fact an instance of a very general and 
useful procedure, that of completing one metric space to form an­
other; see Exercise 12.4.8. 

5.1 Cauchy sequences 

Our construction of the real numbers shall rely on the concept of 
a Cauchy sequence. Before we define this notion formally, let us 
first define the concept of a sequence. 

Definition 5.1.1 (Sequences). Let m be an integer. A sequence 
(an)~=m of rational numbers is any function from the set {n E 

Z : n ~ m} to Q, i.e., a mapping which assigns to each integer n 
greater than or equal tom, a rational number an. More informally, 
a sequence ( an)~=m of rational numbers is a collection of rationals 
am, am+l, am+2, .... 

Example 5.1.2. The sequence (n2)~=0 is the collection 0, 1, 4, 
9, ... of natural numbers; the sequence (3)~=0 is the collection 3, 
3, 3, ... of natural numbers. These sequences are indexed starting 
from 0, but we can of course make sequences starting from 1 or 
any other number; for instance, the sequence ( an)~=3 denotes the 
sequence a3, a4, as, ... , so (n2 )~=3 is the collection 9, 16, 25, ... of 
natural numbers. 

We want to define the real numbers as the limits of sequences 
of rational numbers. To do so, we have to distinguish which se-
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quences of rationals are convergent and which ones are not. For 
instance, the sequence 

1.4, 1.41, 1.414, 1.4142, 1.41421, ... 

looks like it is trying to converge to something, as does 

0.1, 0.01, 0.001, 0.0001, ... 

while other sequences such as 

1, 2, 4, 8, 16, ... 

or 
1, 0, 1, 0, 1, ... 

do not. To do this we use the definition of c-closeness defined 
earlier. Recall from Definition 4.3.4 that two rational numbers x, 
yare c-close if d(x, y) = lx- Yl :::; c. 

' ' 

Definition 5.1.3 (c-steadiness). Let c > 0. A sequence (an)~=O 
is said to be c-steady iff each pair aj, ak of sequence elements is 
c-close for every natural number j, k. In other words, the sequence 
ao, a1, a2, ... is c-steady iff d(aj, ak) :::; c for all j, k. 

Remark 5.1.4. This definition is not standard in the literature; 
we will not need it outside of this section; similarly for the concept 
of "eventual €-steadiness" below. We have defined €-steadiness 
for sequences whose index starts at 0, but clearly we can make 
a similar notion for sequences whose indices start from any other 
number: a sequence aN, aN+l, ... is c-steady if one has d(aj, ak) ~ 
c for all j, k 2: N. 

Example 5.1.5. The sequence 1, 0, 1, 0, 1, ... is 1-steady, but is 
not 1/2-steady. The sequence 0.1, 0.01, 0.001, 0.0001, ... is 0.1-
steady, but is not 0.01-steady (why?). The sequence 1, 2, 4, 8, 
16, ... is not c-steady for any c (why?). The sequence 2, 2, 2, 2, ... 
is c-steady for every c > 0. 
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The notion of €-steadiness of a sequence is simple, but does not 
reallY capture the limiting behavior of a sequence, because it is too 
sensitive to the initial members of the sequence. For instance, the 
sequence 

10, 0, 0, 0, 0, 0, ... 

is 10-steady, but is not c:-steady for any smaller value of c, despite 
the sequence converging almost immediately to zero. So we need 
3 more robust notion of steadiness that does not care about the 
initial members of a sequence. 

Definition 5.1.6 (Eventual €-steadiness). Let c > 0. A se­
quence ( an)~=O is said to be eventually c:-steady iff the sequence 
aN, aN+b aN+2, ... is c:-steady for some natural number N ~ 0. 
1n other words, the sequence ao, a1, a2, ... is eventually c:-steady 
iff there exists an N ~ 0 such that d( aj, ak) ::; c for all j, k ~ N. 

Example 5.1.7. The sequence a1,a2, ... defined by an := 1/n, 
(i.e., the sequence 1, 1/2, 1/3, 1/4, ... ) is not 0.1-steady, but is 
eventually 0.1-steady, because the sequence aw, au, a12, ... (i.e., 
1/10,1/11,1/12, ... ) is 0.1-steady. The sequence 10, 0, 0, 0, 0, ... 
is not c:-steady for any c less than 10, but it is eventually c:-steady 
for every c > 0 (why?). 

Now we can finally define the correct notion of what it means 
for a sequence of rationals to "want" to converge. 

Definition 5.1.8 (Cauchy sequences). A sequence (an)~=O of ra­
tional numbers is said to be a Cauchy sequence iff for every rational 
c > 0, the sequence ( an)~=O is eventually c:-steady. In other words, 
the sequence ao, a1, a2, ... is a Cauchy sequence iff for every c > 0, 
there exists anN~ 0 such that d(aj, ak) ::; c for all j, k ~ N. 

Remark 5.1.9. At present, the parameter c is restricted to be 
a positive rational; we cannot take c to be an arbitrary positive 
real number, because the real numbers have not yet been con­
structed. However, once we do construct the real numbers, we 
shall see that the above definition will not change if we require c: 
to be real instead of rational (Proposition 6.1.4). In other words, 
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we will eventually prove that a sequence is eventually ~::-steady for 
every rational c > 0 if and only if it is eventually ~::-steady for 
every real c > 0; see Proposition 6.1.4. This rather subtle distinc. 
tion between a rational c and a real c turns out not to be very 
important in the long run, and the reader is ac:;l.vised not to pay 
too much attention as to what type of number c should be. 

Example 5.1.10. (Informal) Consider the sequence 

1.4, 1.41, 1.414, 1.4142, ... 

mentioned earlier. This sequence is already 1-steady. If one dis­
cards the first element 1.4, then the remaining sequence 

1.41, 1.414, 1.4142, ... 

is now 0.1-steady, which means that the original sequence was 
eventually 0.1-steady. Discarding the next element gives the 0.01-
steady sequence 1.414, 1.4142, ... ; thus the original sequence was 
eventually 0.01-steady. Continuing in this way it seems plausible 
that this sequence is in fact ~::-steady for every c > 0, which seems 
to suggest that this is a Cauchy sequence. However, this discus­
sion is not rigourous for several reasons, for instance we have not 
precisely defined what this sequence 1.4, 1.41, 1.414, ... really is. 
An example of a rigourous treatment follows next. 

Proposition 5.1.11. The sequence a1, a2, a3, ... defined by an:= 
1/n (i.e., the sequence 1, 1/2, 1/3, .. . ) is a Cauchy sequence. 

Proof. We have to show that for every c > 0, the sequence a1, 

a2, ... is eventually ~::-steady. So let c > 0 be arbitrary. We 
now have to find a number N ~ 1 such that the sequence aN, 

aN+l, ... is ~::-steady. Let us see what this means. This means 
that d(aj,ak) ~ c for every j,k ~ N, i.e. 

11/i- 1/kl ~ c for every j, k ~ N. 

Now since j, k ~ N, we know that 0 < 1/j, 1/k ~ 1/N, so that 
11/i -1/kl ~ 1/N. So in order to force 11/i -1/kl to be less than 
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or equal to c, it would be sufficient for 1/N to be less than c. So 
all we need to do is choose anN such that 1/N is less than c, or 
in other words that N is greater than 1/c. But this can be done 
thanks to Proposition 4.4.1. D 

As you can see, verifying from first principles (i.e., without 
using any of the machinery of limits, etc.) that a sequence is 
a Cauchy sequence requires some effort, even for a sequence as 
simple as 1/n. The part about selecting an N can be particu­
larly difficult for beginners - one has to think in reverse, work­
ing out what conditions on N would suffice to force the sequence 
aN, aN+l, aN+2, ... to be €-steady, and then finding an N which 
obeys those conditions. Later we will develop some limit laws 
which allow us to determine when a sequence is Cauchy more 
easily. 

We now relate the notion of a Cauchy sequence to another 
basic notion, that of a bounded sequence. 

Definition 5.1.12 (Bounded sequences). Let M ~ 0 be rational. 
A finite sequence a1, a2, ... , an is bounded by M iff !ail :::; M for 
all 1 :::; i :::; n. An infinite sequence ( an)~=l is bounded by M iff 
1~1 ::=; M for all i ~ 1. A sequence is said to be bounded iff it is 
bounded by M for some rational M ~ 0. 

Example 5.1.13. The finite sequence 1, -2, 3, -4 is bounded (in 
this case, it is bounded by 4, or indeed by any M greater than 
or equal to 4). But the infinite sequence 1, -2, 3, -4, 5, -6, ... is 
unbounded. (Can you prove this? Use Proposition 4.4.1.) These­
quence 1, -1, 1, -1, ... is bounded (e.g., by 1), but is not a Cauchy 
sequence. 

Lemma 5.1.14 (Finite sequences are bounded). Every finite se­
quence a1, a2, ... , an is bounded. 

Proof. We prove this by induction on n. When n = 1 the se­
quence a1 is clearly bounded, for if we choose M := !a1! then 
clearly we have !ail :::; M for all 1 :::; i :::; n. Now suppose 
that we have already proved the lemma for some n ~ 1; we now 



114 5. The real numbers 

prove it for n + 1, i.e., we prove every sequence a1, a2, ... , an+l is 
bounded. By the induction hypothesis we know that a1, a2, ... ,ftn 
is bounded by some M ~ 0; in partic;mlar, it must be bounded 
by M + lan+II· On the other hand, an+l is also bounded by 
M + lan+ll· Thus a1, a2, ... , an, an++ is bounded by M + lanHI, 
and is hence bounded. This closes the induction. [] 

Note that while this argument shows that every finite sequence 
is bounded, no matter how long the finite sequence is, it does not 
say anything about whether an infinite sequence is bounded or 
not; infinity is not a natural number. However, we have 

Lemma 5.1.15 (Cauchy sequences are bounded). Every Cauchy 
sequence ( an)~=l is bounded. 

Proof. See Exercise 5.1.1. 0 

Exercise 5.1.1. Prove Lemma 5.1.15. (Hint: use the fact that an is 
eventually 1-steady, and thus can be split into a finite sequence and 
a 1-steady sequence. Then use Lemma 5.1.14 for the finite part. Note 
there is nothing special about the number 1 used here; any other positive 
number would have sufficed.) 

5.2 Equivalent Cauchy sequences 

Consider the two Cauchy sequences of rational numbers: 

1.4, 1.41, 1.414, 1.4142, 1.41421, ... 

and 
1.5, 1.42, 1.415, 1.4143, 1.41422, ... 

Informally, both of these sequences seem to be converging to the 
same number, the square root J2 = 1.41421 ... (though this state­
ment is not yet rigourous because we have not defined real num­
bers yet). If we are to define the real numbers from the rationals 
as limits of Cauchy sequences, we have to know when two Cauchy 
sequences of rationals give. the same limit, without first defining 
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3 real number (since that would be circular). To do this we use a 
sirnilar set of definitions to those used to define a Cauchy sequence 
in the first place. 

Definition 5.2.1 (c-close sequences). Let (an)~=O and (bn)~=O be 
two sequences, and let c > 0. We say that the sequence (an)~=O 
is 6-close to (bn)~=O iff an is c-close to bn for each n E N. In 
other words, the sequence ao, a1, a2, ... is c-close to the sequence 
bo, b1, b2, · · · iff ian- bni :::; c for all n = 0, 1, 2, .... 

Example 5.2.2. The two sequences 

1, -1, 1, -1, 1, ... 

and 
1.1, -1.1, 1.1, -1.1, 1.1, ... 

are 0.1-close to each other. (Note however that neither of them 
are 0.1-steady). 

Definition 5.2.3 (Eventually c-close sequences). Let (an)~=O and 
(bn)~0 be two sequences, and let c > 0. We say that the sequence 
(an)~=O is eventually c-close to (bn)~=O iff there exists ~ N ~ 0 
such that the sequences (an)~=N and (bn)~=N are c-close. In other 
words, ao, a1, a2, ... is eventually c-close to bo, b1, b2, ... iff there 
exists anN~ 0 such that ian- bni :::; c for all n ~ N. 

Remark 5.2.4. Again, the notations for c-close sequences and 
eventually c-close sequences are not standard in the literature, 
and we will not use them outside of this section. 

Example 5.2.5. The two sequences 

1.1, 1.01, 1.001, 1.0001, ... 

and 
0.9, 0.99, 0.999, 0.9999, ... 

are not 0.1-close (because the first elements of both sequences 
are not 0.1-close to each other). However, the sequences are still 
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eventually 0.1-close, because if we start from the second elements 
onwards in the sequence, these sequences are 0.1-close. A similar 
argument shows that the two sequences are eventually 0.01-close 
(by starting from the third element onwards), and so forth. 

Definition 5.2.6 (Equivalent sequences). T~o sequences (an)~==O 
and (bn)~=O are equivalent iff for each rational c > 0, the se-. 
quences (an)~=O and (bn)~=O are eventually c-close. In other 
words, ao, a1, a2, ... and bo, b1, b2, ... are equivalent iff for every 
rationalE > 0, there exists an N ~ 0 such that ian- bnl ::; c for 
all n ~ N. 

Remark 5.2.7. As with Definition 5.1.8, the quantity E > 0 is 
currently restricted to be a positive rational, rather than a positive 
real. However, we shall eventually see that it makes no difference 
whether c ranges over the positive rationals or positive reals; see 
Exercise 6.1.10. 

From Definition 5.2.6 it seems that the two sequences given 
in Example 5.2.5 appear to be equivalent. We now prove this 
rigourously. 

Proposition 5.2.8. Let (an)~=l and (bn)~=l be the sequences 
an = 1 + 10-n and bn = 1 - 10-n. Then the sequences an, bn are 
equivalent. 

Remark 5.2.9. This Proposition, in decimal notation, asserts 
that 1.0000 ... = 0.9999 ... ; see Proposition B.2.3. 

Proof. We need to prove that for every c > 0, the two sequences 
(an)~=l and (bn)~=l are eventually c-close to each other. So we 
fix an E > 0. We need to find anN > 0 such that (an)~=N and 
(bn)~=N are c-close; in other words, we need to find an N > 0 
such that 

However, we have 
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Since w-n is a decreasing function of n (i.e., w-m < w-n when­
ever m > n; this is easily proven by induction), and n ~ N, we 
have 2 X w-n ~ 2 X w-N. Thus we have 

ian- bni ~ 2 X w-N for all n ~ N. 

Thus in order to obtain ian- bni ~ c for all n ~ N, it will be 
sufficient to choose N so that 2 X w-N ~ c. This is easy to 
do using logarithms, but we have not yet developed logarithms 
yet, so we will use a cruder method. First, we observe lON is 
always greater than N for any N ~ 1 (see Exercise 4.3.5). Thus 
10-N ~ 1IN, and so 2 X w-N ~ 2IN. Thus to get 2 X w-N ~ c, 
it will suffice to choose N so that 2IN ~ c, or equivalently that 
N ~ 2lc. But by Proposition 4.4.1 we can always choose such an 
N, and the claim follows. D 

Exercise 5.2.1. Show that if (an)~=l and (bn)~=l are equivalent se­
quences of rationals, then (an)~=l is a Cauchy sequence if and only 
if (bn)~=l is a Cauchy sequence. 

Exercise 5.2.2. Let c > 0. Show that if (an)~=l and (bn)~=l are eventu­
ally c-close, then (an)~=l is bounded if and only if (bn)~=l is bounded. 

5.3 The construction of the real numbers 

We are now ready to construct the real numbers. We shall intro­
duce a new formal symbol LIM, similar to the formal notations -
and I I defined earlier; as the notation suggests, this will eventu­
ally match the familiar operation of lim, at which point the formal 
limit symbol can be discarded. 

Definition 5.3.1 (Real numbers). A real number is defined to 
be an object of the form LIMn-+ooan, where (an)~=l is a Cauchy 
sequence of rational numbers. Two real numbers LIMn-+ooan and 
LIMn-+oobn are said to be equal iff (an)~=l and (bn)~=l are equiv­
alent Cauchy sequences. The set of all real numbers is denoted 
R. 
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Example 5.3.2. (Informal) Let a1, a2, a3, ... denote the sequence 

1.4, 1.41, 1.414, 1.4142, 1.41421, ... 

and let b1, b2, b3, ... denote the sequence 

1.5, 1.42, 1.415, 1.4143, 1.41422, ... 

then LIMn-+ooan is a real number, and is the same real number as 
LIMn-+oobn, because (an)~=l and (bn)~=l are equivalent Cauchy 
sequences: LIMn-+ooan = LIMn-+oobn. 

We will refer to LIMn-+ooan as the formal limit of the sequence 
( an)~=l· Later on we will define a genuine notion of limit, and 
show that the formal limit of a Cauchy sequence is the same as 
the limit of that sequence; after that, we will not need formal 
limits ever again. (The situation is much like what we did with 
formal subtraction - and formal division I I.) 

In order to ensure that this definition is valid, we need to check 
that the notion of equality in the definition obeys the first three 
laws of equality: 

Proposition 5.3.3 (Formal limits are well-defined). Let x = 
LIMn-+ooan, y = LIMn-+oobn, and z = LIMn-+ooCn be real num­
bers. Then, with the above definition of equality for real numbers, 
we have x = x. Also, if x = y, then y = x. Finally, if x = y and 
y = z, then x = z. 

Proof. See Exercise 5.3.1. 0 

Because of this proposition, we know that our definition of 
equality between two real numbers is legitimate. Of course, when 
we define other operations on the reals, we have to check that they 
obey the law of substitution: two real number inputs which are 
equal should give equal outputs when applied to any operation on 
the real numbers. 

Now we want to define on the real numbers all the usual arith­
metic operations, such as addition and multiplication. We begin 
with addition. 



5.3. The construction of the real numbers 119 

Definition 5.3.4 (Addition of reals). Let x = LIMn-.ooan and 
y == LIMn-.oobn be real numbers. Then we define the sum x + y 
to be X+ Y := LIMn-.oo(an + bn)· 

Example 5.3.5. The sum ofLIMn--.001+1/n and LIMn--.002+3/n 
is LIMn-.oo3 + 4/n. 

We now check that this definition is valid. The first thing we 
need to do is to confirm that the sum of two real numbers is in 
fact a real number: 

Lemma 5.3.6 (Sum of Cauchy sequences is Cauchy). Let x = 
LIMn-.ooan and y = LIMn-.oobn be real numbers. Then x + y is 
also a real number (i.e., (an+ bn)~=l is a Cauchy sequence of 
rationals ) . 

Proof. We need to show that for every c > 0, the sequence (an + 
bn)~=l is eventually c-steady. Now from hypothesis we know that 
(an)~=l is eventually c-steady, and (bn)~=l is eventually c-steady, 
but it turns out that this is not quite enough (this can be used 
to imply that (an+ bn)~=l is eventually 2c-steady, but that's not 
what we want). So we need to do a little trick, which is to play 
with the value of c. 

We know that ( an)~=l is eventually 5-steady for every value of 
5. This implies not only that (an)~=l is eventually c-steady, but 
it is also eventually c/2-steady. Similarly, the sequence (bn)~=l 
is also eventually c/2-steady. This will turn out to be enough to 
conclude that (an+ bn)~=l is eventually c-steady. 

Since (an)~=l is eventually c/2-steady, we know that there 
exists an N;:::: 1 such that (an)~=N is c/2-steady, 'i.e., an and am 
are c/2-close for every n, m;:::: N. Similarly there exists an M;:::: 1 
such that (bn)~=M is c/2-steady, i.e., bn and bm are c/2-close for 
every n,m;:::: M. 

Let max(N, M) be the larger of N and M (we know from 
Proposition 2.2.13 that one has to be greater than or equal to 
the other). If n, m ;:::: max( N, M), then we know that an and am 
are c /2-close, and bn and bm are c /2-close, and so by Proposi­
tion 4.3. 7 we see that an + bn and am + bm are c-close for every 
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n, m ;:::: max( N, M). This implies that the sequence (an + bn)~1 
is eventually c--close, as desired. 0 

The other thing we need to check is the axiom of substitution 
(see Section A. 7): if we replace a real number x by. another number 
equal to x, this should not change the sum x + y (and similarly if 
we substitute y by another number equal toy). 

Lemma 5.3. 7 (Sums of equivalent Cauchy sequences are equiva­
lent). Let X= LIMn-+ooan, y = LIMn-+oobn, and x' = LIMn-+ooa~ 
be real numbers. Suppose that x = x'. Then we have x+y = x' +y. 

Proof. Since x and x' are equal, we know that the Cauchy se­
quences (an)~=l and (a~)~=l are equivalent, so in other words 
they are eventually c--close for each c > 0. We need to show that 
the sequences (an+ bn)~=l and (a~+ bn)~=l are eventually c--close 
for each c > 0. But we already know that there is an N ;:::: 1 such 
that (an)~=N and (a~)~=N are €-close, i.e., that an and a~ are 
c--close for each n;:::: N. Since bn is of course 0-close to bn, we thus 
see from Proposition 4.3. 7 that an + bn and a~ + bn are €-close for 
each n;:::: N. This implies that (an+ bn)~=l and (a~+ bn)~=l are 
eventually c--close for each c > 0, and we are done. D 

Remark 5.3.8. The above lemma verifies the axiom of substi­
tution for the "x" variable in x + y, but one can similarly prove 
the axiom of substitution for the "y" variable. (A quick way is 
to observe from the definition of x + y that we certainly have 
X + y = y + x, since an + bn = bn +an.) 

We can define multiplication of real numbers in a manner sim­
ilar to that of addition: 

Definition 5.3.9 (Multiplication of reals). Let x = LIMn-+ooan 
and y = LIMn-+oobn be real numbers. Then we define the product 
xy to be xy := LIMn-+ooanbn. 

The following Proposition ensures that this definition is valid, 
and that the product of two real numbers is in fact a real number: 
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Proposition 5.3.10 (Multiplication is well defined). Let x = 
LIMn-+ooan, Y = LIMn-+oobn, and x' = LIMn-+ooa~ be real num­
bers. Then xy is also a real number. Furthermore, if x = x', then 

' xy = xy. 

Proof. See Exercise 5.3.2. D 

Of course we can prove a similar substitution rule when y is 
replaced by a real number y' which is equal toy. 

At this point we embed the rationals back into the reals, by 
equating every rational number q with the real number LIMn-+ooQ· 
For instance, if a1, a2, a3, ... is the sequence 

0.5, 0.5, 0.5, 0.5, 0.5, ... 

then we set limn-+oo an equal to 0.5. This embedding is consistent 
with our definitions of addition and multiplication, since for any 
rational numbers a, b we have 

(LIMn-+ooa) + (LIMn-+oob) = LIMn-+oo(a +b) and 

(LIMn-+ooa) X (LIMn-+oob) = LIMn-+oo(ab); 

this means that when one wants to add or multiply two rational 
numbers a, b it does not matter whether one thinks of these num­
bers as rationals or as the real numbers LIMn-+ooa, LIMn-+oob. 
Also, this identification of rational numbers and real numbers is 
consistent with our definitions of equality (Exercise 5.3.3). 

We can now easily define negation -x for real numbers x by 
the formula 

-X:= (-1) X X, 

since -1 is a rational number and is hence real. Note that this 
is clearly consistent with our negation for rational numbers since 
we have -q = ( -1) x q for all rational numbers q. Also, from our 
definitions it is clear that 
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(why?). Once we have addition and negation, we can define sub­
traction as usual by 

x-y:=x+(-y), 

note that this implies 

We can now easily show that the real numbers obey all the 
usual rules of algebra (except perhaps for the laws involving divi­
sion, which we shall address shortly): 

Proposition 5.3.11. All the laws of algebra from Proposition 
4.1.6 hold not only for the integers, but for the reals as well. 

Proof. We illustrate this with one such rule: x(y + z) = xy + xz. 
Let X = LIMn-+ooan, y = LIMn-+oobn, and z = LIMn-+ooCn be 
real numbers. Then by definition, xy = LIMn-+ooanbn and xz = 
LIMn-+ooanCn, and so xy+xz = LIMn-+oo(anbn +anen). A similar 
line ofreasoning shows that x(y + z) = LIMn-+ooan(bn +en). But 
we already know that an(bn + Cn) is equal to anbn + anCn for the 
rational numbers an, bn, en, and the claim follows. The other laws 
of algebra are proven similarly. 0 

The last basic arithmetic operation we need to define is recip­
rocation: x ----+ x-1. This one is a little more subtle. On obvious 
first guess for how to proceed would be define 

but there are a few problems with this. For instance, let a1, a2, 

a3, ... be the Cauchy sequence 

0.1, 0.01, 0.001, 0.0001, ... ' 

and let x := LIMn-+ooan. Then by this definition, x-1 would be 
LIMn-+oobn, where b1, b2, b3, ... is the sequence 

10,100,1000,10000, ... 
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but this is not a Cauchy sequence (it isn't even bounded). Of 
course, the problem here is that our original Cauchy sequence 
(an)~=l was equivalent to the zero sequence (O)~=l (why?), and 
hence that our real number x was in fact equal to 0. So we should 
only allow the operation of reciprocal when x is non-zero. 

However, even when we restrict ourselves to non-zero real num­
bers, we have a slight problem, because a non-zero real number 
might be the formal limit of a Cauchy sequence which contains 
zero elements. For instance, the number 1, which is rational and 
hence real, is the formal limit 1 = LIMn-+ooan of the Cauchy se­
quence 

0, 0.9, 0.99, 0.999, 0.9999, ... 

but using our naive definition of reciprocal, we cannot invert the 
real number 1, because we can't invert the first element 0 of this 
Cauchy sequence! 

To get around these problems we need to keep our Cauchy 
sequence away from zero. To do this we first need a definition. 

Definition 5.3.12 (Sequences bounded away from zero). A se­
quence (an)~=l of rational numbers is said to be bounded away 
from zero iff there exists a rational number c > 0 such that I an I ;::: c 
for all n;::: 1. 

Examples 5.3.13. The sequence 1, -1, 1, -1, 1, -1, 1, ... is 
bounded away from zero (all the coefficients have absolute value 
at least 1). But the sequence 0.1, 0.01, 0.001, ... is not bounded 
away from zero, and neither is 0, 0.9, 0.99, 0.999, 0.9999,. . .. The 
sequence 10,100,1000, ... is bounded away from zero, but is not 
bounded. 

We now show that every non-zero real number is the formal 
limit of a Cauchy sequence bounded away from zero: 

Lemma 5.3.14. Let x be a non-zero real number. Then x = 
LIMn-+ooan for some Cauchy sequence ( an)~=l which is bounded 
away from zero. 
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Proof. Since x is real, we know that x = LIMn-+oobn for sorne 
Cauchy sequence (bn)~= 1 . But we are not yet done, because we 
do not know that bn is bounded away from zero. On the other 
hand, we are given that x i= 0 = LIMn-+ooO, w~ich means that the 
sequence (bn)~= 1 is not equivalent to (0)~= 1 . Thus the sequence 
(bn)~=1 cannot be eventually €-close to (0)~=1 for every c > 0. 
Therefore we can find an c > 0 such that (bn)~=1 is not eventually 
c--close to (0)~= 1 . 

Let us fix this c. We know that (bn)~= 1 is a Cauchy sequence, 
so it is eventually c--steady. Moreover, it is eventually c-/2-stead.y, 
since c-/2 > 0. Thus there is anN;:::: 1 such that Ibn- bml ~ c/2 
for all n, m ;:::: N. 

On the other hand, we cannot have Ibn I ~ c for all n ;:::: N, since 
this would imply that (bn)~=1 is eventually c--close to (0)~=1 . Thus 
there must be some no ;:::: N for which lbn0 I > c-. Since we already 
know that I bn0 - bn I ~ c /2 for all n ;:::: N, we thus conclude from 
the triangle inequality (how?) that lbnl ;:::: c-/2 for all n;:::: N. 

This almost proves that (bn)~=1 is bounded away from zero. 
Actually, what it does is show that (bn)~= 1 is eventually bounded 
away from zero. But this is easily fixed, by defining a new sequence 
an, by setting an := c/2 if n < N and an := bn if n ;:::: N. Since 
bn is a Cauchy sequence, it is not hard to verify that an is also 
a Cauchy sequence which is equivalent to bn (because the two 
sequences are eventually the same), and so x = LIMn-+ooan. And 
since lbnl ;:::: c/2 for all n ;:::: N, we know that lanl ;:::: c-/2 for all 
n;:::: 1 (splitting into the two cases n;:::: Nand n < N separately). 
Thus we have a Cauchy sequence which is bounded away from 
zero (by c/2 instead of c-, but that's still OK since c-/2 > 0), and 
which has x as a formal limit, and so we are done. D 

Once a sequence is bounded away from zero, we can take its 
reciprocal without any difficulty: 

Lemma 5.3.15. Suppose that (an)~=1 is a Cauchy sequence which 
is bounded away from zero. Then the sequence (a~ 1 )~= 1 is also a 
Cauchy sequence. 
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proof. Since (an)~=l is bounded away from zero, we know that 
there is a c > 0 such that lanl ;:::: c for all n;:::: 1. Now we need to 
shoW that (a;;-1 )~=l is eventually €-steady for each c > 0. Thus 
let us fix an c > 0; our task is now to find an N ;:::: 1 such that 
~~1- a;11 ~ c for all n, m;:::: N. But 

la-1 _a-ll= 
1
am- ani~ lam- ani 

n m aman c2 

(since laml, lanl ;:::: c), and so to make la;;-1 - a;11 less than or 
equal to c-, it will suffice to make lam- ani less than or equal to 
r?c. But since (an)~=l is a Cauchy sequence, and c2c- > 0, we can 
certainly find anN such that the sequence (an)~=N is c2c--steady, 
i.e., lam- ani ~ c2c- for all n;:::: N. By what we have said above, 
this shows that I an - am I ~ c for all m, n ;:::: N, and hence the 
sequence (a;;- 1 )~=l is eventually €-steady. Since we have proven 
this for every c-, we have that (a;;-1 )~=l is a Cauchy sequence, as 
desired. D 

We are now ready to define reciprocation: 

Definition 5.3.16 (Reciprocals ofreal numbers). Let x be a non­
zero real number. Let ( an)~=l be a Cauchy sequence bounded 
away from zero such that x = LIMn-+ooan (such a sequence exists 
by Lemma 5.3.14). Then we define the reciprocal x-1 by the 
formula x-1 := LIMn-+ooa;;-1. (From Lemma 5.3.15 we know that 
x-1 is a real number.) 

We need to check one thing before we are sure this defin­
ition makes sense: what if there are two different Cauchy se­
quences (an)~=l and (bn)~=l which have x as their formal limit, 
x = LIMn-+ooan = LIMn-+oobn. The above definition might con­
ceivably give two different reciprocals x-1, namely LIMn-+ooa;;-1 

and LIMn-+oob;;-1. Fortunately, this never happens: 

Lemma 5.3.17 (Reciprocation is well defined). Let (an)~=l and 
(bn)~=l be two Cauchy sequences bounded away from zero such that 
LIMn-+ooan = LIMn-+oobn (i.e., the two sequences are equivalent). 
Then LIMn-+ooa;;-1 = LIMn-+oob;;-1. 
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Proof. Consider the following product P of three real numbers: 

P := (L1Mn-+ooa~ 1 ) X (LIMn-+ooan) X (L1Mn-+oob~ 1 ). 

If we multiply this out, we obtain 

On the other hand, since LIMn-+ooan = LIMn-+oobn, we can write 
P in another way as 

(cf. Proposition 5.3.10). Multiplying things out again, we get 

Comparing our different formulae for P we see that LIMn-+ooa~1 ::: 
LIMn-+oob;;1, as desired. 0 

Thus reciprocal is well-defined (for each non-zero real number 
x, we have exactly one definition of the reciprocal x-1 ). Note 
it is clear from the definition that xx-1 = x-1x = 1 (why?); 
thus all the field axioms (Proposition 4.2.4) apply to the reals as 
well as to the rationals. We of course cannot give 0 a reciprocal, 
since 0 multiplied by anything gives 0, not 1. Also note that 
if q is a non-zero rational, and hence equal to the real number 
LIMn-+ooq, then the reciprocal ofLIMn-+ooq is LIMn--+ooq-1 = q-I; 
thus the operation of reciprocal on real numbers is consistent with 
the operation of reciprocal on rational numbers. 

Once one has reciprocal, one can define division xjy of two 
real numbers x, y, provided y is non-zero, by the formula 

xjy :=X X y-1, 

just as we did with the rationals. In particular, we have the can­
cellation law: if x, y, z are real numbers such that xz = yz, and z 
is non-zero, then by dividing by z we conclude that x = y. Note 
that this cancellation law does not work when z is zero. 
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We now have all four of the basic arithmetic operations on the 
reals: addition, subtraction, multiplication, and division, with all 
the usual rules of algebra. Next we turn to the notion of order on 

the reals. 

Exercise 5.3.1. Prove Proposition 5.3.3. (Hint: you may find Proposition 
4.3. 7 to be useful.) 
Exercise 5.3.2. Prove Proposition 5.3.10. (Hint: again, Proposition 4.3.7 
!IlaY be useful.) 
Exercise 5.3.3. Let a, b be rational numbers. Show that a = b if and 
only if LIMn-+ooa = LIMn-+oob (i.e., the Cauchy sequences a, a, a, a, ... 
and b, b, b, b . .. equivalent if and only if a = b). This allows us to embed 
the rational numbers inside the real numbers in a well-defined manner. 

Exercise 5.3.4. Let (an)~=O be a sequence of rational numbers which is 
bounded. Let (bn)~0 be another sequence of rational numbers which is 
equivalent to (an)~=O· Show that (bn)~=O is also bounded. 

Exercise 5.3.5. Show that LIMn-+ool/n = 0. 

5.4 Ordering the reals 

We know that every rational number is positive, negative, or zero. 
We now want to say the same thing for the reals: each real number 
should be positive, negative, or zero. Since a real number xis just 
a formal limit of rationals an, it is tempting to make the following 
definition: a real number x = LIMn-+ooan is positive if all of the 
an are positive, and negative if all of the an are negative (and 
zero if all of the an are zero). However, one soon realizes some 
problems with this definition. For instance, the sequence (an)~=l 
defined by an:= w-n, thus 

0.1, 0.01, 0.001, 0.0001, ... 

consists entirely of positive numbers, but this sequence is equiv­
alent to the zero sequence 0, 0, 0, 0, ... and thus LIMn-+ooan = 0. 
Thus even though all the rationals were positive, the real formal 
limit of these rationals was zero rather than positive. Another 
example is 

0.1, -0.01, 0.001, -0.0001, ... ; 
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this sequence is a hybrid of positive and negative numbers, but 
again the formal limit is zero. 

The trick, as with the reciprocals in the previous section, is to 
limit one's attention to sequences which are bounded away from 
zero. 

Definition 5.4.1. Let (an)~==l be a sequence of rationals. We 
say that this sequence is positively bounded away from zero iff we 
have a positive rational c > 0 such that an ~ c for all n ~ 1 
(in particular, the sequence is entirely positive). The sequence is 
negatively bounded away from zero iff we have a negative rational 
-c < 0 such that an ::; -c for all n ~ 1 (in particular, the sequence 
is entirely negative). 

Examples 5.4.2. The sequence 1.1, 1.01, 1.001, 1.0001, ... is posi­
tively bounded away from zero (all terms are greater than or equal 
to 1). The sequence -1.1, -1.01, -1.001,-1.0001, ... is negatively 
bounded away from zero. The sequence 1, -1, 1, -1, 1, -1, ... is 
bounded away from zero, but is neither positively bounded away 
from zero nor negatively bounded away from zero. 

It is clear that any sequence which is positively or negatively 
bounded away from zero, is bounded away from zero. Also, a 
sequence cannot be both positively bounded away from zero and 
negatively bounded. away from zero at the same time. 

Definition 5.4.3. A real number x is said to be positive iff it 
can be written as x = LIMn-+ooan for some Cauchy sequence 
( an)~==l which is positively bounded away from zero. x is said 
to be negative iff it can be written as x = LIMn-+ooan for some 
sequence ( an)~==l which is negatively bounded away from zero. 

Proposition 5.4.4 (Basic properties of positive reals). For every 
real number x, exactly one of the following three statements is 
true: (a) x is zero; (b) x is positive; (c) x is negative. A real 
number x is negative if and only if -x is positive. If x and y are 
positive, then s"o are x + y and xy. 

Proof. See Exercise 5.4.1. 0 
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Note that if q is a positive rational number, then the Cauchy 
sequence q, q, q, ... is positively bounded away from zero, and 
hence LIMn-+ooq = q is a positive real number. Thus the no­
tion of positivity for rationals is consistent with that for reals. 
Similarly, the notion of negativity for rationals is consistent with 
that for reals. 

Once we have defined positive and negative numbers, we can 
define absolute value and order. 

Definition 5.4.5 (Absolute value). Let x be a real number. We 
define the absolute value Jxl of x to equal x if x is positive, -x 
when x is negative, and 0 when x is zero. 

Definition 5.4.6 (Ordering of the real numbers). Let x andy be 
real numbers. We say that xis greater than y, and write x > y, if 
x- y is a positive real number, and x < y iff x- y is a negative 
real number. We define x ~ y iff x > y or x = y, and similarly 
define x:::; y. 

Comparing this with the definition of order on the rationals 
from Definition 4.2.8 we see that order on the reals is consistent 
with order on the rationals, i.e., if two rational numbers q, q' are 
such that q is less than q' in the rational number system, then 
q is still less than q' in the real number system, and similarly 
for "greater than". In the same way we see that the definition 
of absolute value given here is consistent with that in Definition 
4.3.1. 

Proposition 5.4. 7. All the claims in Proposition 4.2.9 which held 
for rationals, continue to hold for real numbers. 

Proof. We just prove one of the claims and leave the rest to Exer­
cise 5.4.2. Suppose we have x < y and z a positive real, and want 
to conclude that xz < yz. Since x < y, y - x is positive, hence 
by Proposition 5.4.4 we have (y - x )z = yz - xz is positive, hence 
xz < yz. D 

As an application of these propositions, we prove 
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Proposition 5.4.8. Let x be a positive real number. Then x-1 
is also positive. Also, if y is another positive number and x > y, 
then x- 1 < y-1 . 

Proof. Let x be positive. Since xx-1 = 1, the real number x-1 
cannot be zero (since xO = 0 =/: 1). Also, from Proposition 5.4.4 
it is easy to see that a positive number times a negative number 
is negative; this shows that x-1 cannot be negative, since this 
would imply that xx-1 = 1 is negative, a contradiction. Thus, by 
Proposition 5.4.4, the only possibility left is that x-1 is positive. 

Now let y be positive as well, so x-1 and y-1 are also positive. 
If x-1 ;::=: y-1, then by Proposition 5.4.7 we have xx-1 > yx-1 > 
yy-1, thus 1 > 1, which is a contradiction. Thus we must ha; 
x-1 < y-1. 0 

Another application is that the laws of exponentiation (Propo­
sition 4.3.12) that were previously proven for rationals, are also 
true for reals; see Section 5.6. 

We have already seen that the formal limit of positive ra­
tionals need not be positive; it could be zero, as the example 
0.1, 0.01, 0.001, ... showed. However, the formal limit of non­
negative rationals (i.e., rationals that are either positive or zero) 
is non-negative. 

Proposition 5.4.9 (The non-negative reals are closed). Let at, 
a2, a3 , ... be a Cauchy sequence of non-negative rational numbers. 
Then LIMn-+ooan is a non-negative real number. 

Eventually, we will see a better explanation of this fact: the 
set of non-negative reals is closed, whereas the set of positive reals 
is open. See Section 12.2. 

Proof. We argue by contradiction, and suppose that the real num­
ber x := LIMn-+ooan is a negative number. Then by definition of 
negative real number, we have x = LIMn-+oobn for some sequence 
bn which is negatively bounded away from zero, i.e., there is a 
negative rational -c < 0 such that bn ~ -c for all n ;::::: 1. On the 
other hand, we have an;::::: 0 for all n;::::: 1, by hypothesis. Thus the 
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numbers an and bn are never c/2-close, since c/2 < c. Thus the 
sequences (an)~=l and (bn)~=l are not eventually c/2-close. Since 
c/2 > 0, this implies that (an)~=l and (bn)~=l are not equivalent. 
But this contradicts the fact that both these sequences have x as 
their formal limit. D 

Corollary 5.4.10. Let (an)~=l and (bn)~=l be Cauchy sequences 
of rationals such that an ;:::: bn for all n ;:::: 1. Then LIMn-+ooan ;:::: 
LIMn-+oobn. 

Proof. Apply Proposition 5.4.9 to the sequence an- bn. D 

Remark 5.4.11. Note that the above Corollary does not work 
if the ;:::: signs are replaced by >: for instance if an : = 1 + 1/ n 
and bn := 1- 1/n, then an is always strictly greater than bn, but 
the formal limit of an is not greater than the formal limit of bn, 
instead they are equal. 

We now define distance d(x, y) := lx- Yl just as we did for the 
rationals. In fact, Propositions 4.3.3 and 4.3.7 hold not only for 
the rationals, but for the reals; the proof is identical, since the real 
numbers obey all the laws of algebra and order that the rationals 
do. 

We now observe that while positive real numbers can be ar­
bitrarily large or small, they cannot be than all of the positive 
integers, or smaller in magnitude than all of the positive ratio­
nals: 

Proposition 5.4.12 (Bounding of reals by rationals). Let x be a 
positive real number. Then there exists a positive rational number 
q such that q :S x, and there exists a positive integer N such that 
x:S N. 

Proof. Since x is a positive real, it is the formal limit of some 
Cauchy sequence ( an)~=l which is positively bounded away from 
zero. Also, by Lemma 5.1.15, this sequence is bounded. Thus we 
have rationals q > 0 and r such that q :S an :S r for all n ;:::: 1. 
But by Proposition 4.4.1 we know that there is some integer N 
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such that r ~ N; since q is positive and q ~ r ~ N, we see that 
N is positive. Thus q ~an~ N for all n;::::: 1. Applying Corollary 
5.4.10 we obtain that q ~ x ~ N, as desired. 0 

Corollary 5.4.13 (Archimedean property). Let x and c be any 
positive real numbers. Then there exists a positive integer M such 
that Me> x. 

Proof. The number x / c is positive, and hence by Proposition 
5.4.12 there exists a positive integer N such that x/c ~ N. If 
we set M := N + 1, then xfc < M. Now multiply by c. 0 

This property is quite important; it says that no matter how 
large x is and how small c is, if one keeps adding c to itself, one 
will eventually overtake x. 

Proposition 5.4.14. Given any two real numbers x < y, we can 
find a rational number q such that x < q < y. 

Proof. See Exercise 5.4.5. 0 

We have now completed our construction of the real num­
bers. This number system contains the rationals, and has almost 
everything that the rational number system has: the arithmetic 
operations, the laws of algebra, the laws of ord_er. However, we 
have not yet demonstrated any advantages that the real numbers 
have over the rationals; so far, even after much effort, all we have 
done is shown that they are at least as good as the rational num­
ber system. But in the next few sections we show that the real 
numbers can do more things than rationals: for example, we can 
take square roots in a real number system. 

Remark 5.4.15. Up until now, we have not addressed the fact 
that real numbers can be expressed using the decimal system. For 
instance, the formal limit of 

1.4, 1.41, 1.414, 1.4142, 1.41421, ... 

is more conventionally represented as the decimall.41421 .... We 
will address this in an Appendix (§B), but for now let us just 
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remark that there are some subtleties in the decimal system, for 
instance 0.9999 ... and 1.000 ... are in fact the same real number. 

Exercise 5.4.1. Prove Proposition 5.4.4. (Hint: if x is not zero, and x 
is the formal limit of some sequence (an)~=1 , then this sequence cannot 
be eventually c-close to the zero sequence (O)~=l for every single c > 0. 
Use this to show that the sequence ( an)~=l is eventually either positively 
bounded away from zero or negatively bounded away from zero.) 

Exercise 5.4.2. Prove the remaining claims in Proposition 5.4.7. 

Exercise 5.4.3. Show that for every real number x there is exactly one 
integer N such that N :::; x < N + 1. (This integer N is called the integer 
part of x, and is sometimes denoted N = l x J.) 

Exercise 5.4.4. Show that for any positive real number x > 0 there exists 
a positive integer N such that x > 1/N > 0. 

Exercise 5.4.5. Prove Proposition 5.4.14. (Hint: use Exercise 5.4.4. You 
may also need to argue by contradiction.) 

Exercise 5.4.6. Let x, y be real numbers and let c > 0 be a positive real. 
Show that lx-yl < c if and only if y-c < x < y+c, and that lx-yl:::; c 
if and only if y- c :::; x :::; y +c. 

Exercise 5.4.7. Let x andy be real numbers. Show that x :::; y + c for 
all real numbers c > 0 if and only if x:::; y. Show that lx- Yl :::; c for all 
real numbers c > 0 if and only if x = y. 

Exercise 5.4.8. Let (an)~=! be a Cauchy sequence of rationals, and let x 
be a real number. Show that if an :::; x for all n 2:: 1, then LIMn-+oo an :::; 
x. Similarly, show that if an 2:: x for all n 2:: 1, then LIMn-+ooan 2:: x. 
(Hint: prove by contradiction. Use Proposition 5.4.14 to find a rational 
between LIMn_,00 an and x, and then use Proposition 5.4.9.) 

5.5 The least upper bound property 

We now give one of the most basic advantages of the real numbers 
over the rationals; one can take the least upper bound sup(E) of 
any subset E of the real numbers R. 

Definition 5.5.1 (Upper bound). Let E be a subset of R, and 
let M be a real number. We say that M is an upper bound forE, 
iff we have x ~ M for every element x in E. 
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Example 5.5.2. Let E be the intervalE:= {x E R: 0 ~ x ~ 1}. 
Then 1 is an upper bound for E, since every element of E is less 
than or equal to 1. It is also true that 2 is an upper bound for E 

' and indeed every number greater or equal to 1 is an upper bound 
for E. On the other hand, any other number, such as 0.5, is not an 
upper bound, because 0.5 is not larger than every element in E. 
(Merely being larger than some elements of E is not necessarily 
enough to make 0.5 an upper bound.) 

Example 5.5.3. Let R+ be the set of positive reals: R+ := {x E 

R: x > 0}. Then R+ does not have any upper bounds3 at all 
(why?). 

Example 5.5.4. Let 0 be the empty set. Then every number M 
is an upper bound for 0, because M is greater than every element 
of the empty set (this is a vacuously true statement, but still true). 

It is clear that if M is an upper bound of E, then any larger 
number M' ~ M is also an upper bound of E. On the other 
hand, it is not so clear whether it is also possible for any number 
smaller than M to also be an upper bound of E. This..motivates 
the following definition: 

Definition 5.5.5 (Least upper bound). Let E be a subset of R, 
and M be a real number. We say that M is a least upper bound 
forE iff (a) M is an upper bound forE, and also (b) any other 
upper bound M' for E must be larger than or equal to M. 

Example 5.5.6. Let E be the intervalE:= {x E R: 0 ~ x ~ 1}. 
Then, as noted before, E has many upper bounds, indeed every 
number greater than or equal to 1 is an upper bound. But only 1 
is the least upper bound; all other upper bounds are larger than 
1. 

Example 5.5. 7. The empty set does not have a least upper bound 
(why?). 

3 More precisely, R + has no upper bounds which are real numbers. In 
Section 6.2 we shall introduce the extended real number system R •, which 
allows one to give the upper bound of +oo for sets such as R+. 
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proposition 5.5.8 (Uniqueness of least upper bound). Let E be 
a subset of R. Then E can have at most one least upper bound. 

proof. Let M1 and M2 be two least upper bounds, say M1 and 
M2. Since M1 is a least upper bound and M2 is an upper bound, 
then by definition of least upper bound we have M2 ~ M1. Since 
M2 is a least upper bound and M1 is an upper bound, we similarly 
have M1 ~ M2. Thus M1 = M2. Thus there is at most one least 
~&~~. D 

Now we come to an important property of the real numbers: 

Theorem 5.5.9 (Existence of least upper bound). Let E be a 
non-empty subset of R. If E has an upper bound, (i.e., E has 
some upper bound M), then it must have exactly one least upper 
bound. 

Proof. This theorem will take quite a bit of effort to prove, and 
many of the steps will be left as exercises. 

Let E be a non-empty subset of R with an upper bound M. 
By Proposition 5.5.8, we know that E has at most one least upper 
bound; we have to show that E has at least one least upper bound. 
Since E is non-empty, we can choose some element xo in E. 

Let n ~ 1 be a positive integer. We know that E has an upper 
bound M. By the Archimedean property (Corollary 5.4.13), we 
can find an integer K such that KIn ~ M, and hence KIn is also 
an upper bound for E. By the Archimedean property again, there 
exists another integer L such that Lin < xo. Since xo lies in E, 
we see that Lin is not an upper bound for E. Since Kin is an 
upper bound but Lin is not, we see that K ~ L. 

Since Kin is an upper bound forE and Lin is not, we can find 
an integer L < mn ~ K with the property that mnln is an upper 
bound for E, but (mn- 1)ln is not (see Exercise 5.5.2). In fact, 
this integer mn is unique (Exercise 5.5.3). We subscript mn by n 
to emphasize the fact that this integer m depends on the choice of 
n. This gives a well-defined (and unique) sequence m1, m2, mg, ... 
of integers, with each of the mnln being upper bounds and each 
of the (mn- 1)ln not being upper bounds. 
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Now let N 2: 1 be a positive integer, and let n, n' 2: N be 
integers larger than or equal toN. Since mnfn is an upper bound 
forE and (mn' -1)/n' is not, we must have mn/n > (mn' -1)/n' 
(why?). After a little algebra, this implies that · 

ffln mn' 1 1 --->-->--. 
n n' n'- N 

Similarly, since ffln' fn' is an upper bound forE and (mn- 1)/n 
is not, we have mn' /n' > (mn- 1)/n, and hence 

mn mn' 1 1 ---<-<-. 
n n' - n- N 

Putting these two bounds together, we see that 

lmn mn'l 1 1 - - - < - for all n n > N > 1. n n' -N '- -

This implies that ~ is a Cauchy sequence (Exercise 5.5.4). Since 
the ~ are rational numbers, we can now define the real number 
Sas 

mn 
S := LIMn-+oo-· 

n 
From Exercise 5.3.5 we conclude that 

mn-1 
S = LIMn-+oo --­

n 

To finish the proof of the theorem, we need to show that S is the 
least upper bound for E. First we show that it is an upper bound. 
Let x be any element of E. Then, since mn/n is an upper bound 
forE, we have x::::; mn/n for all n 2: 1. Applying Exercise 5.4.8, 
we conclude that x ::::; LIMn-+oomn/n = S. Thus Sis indeed an 
upper bound for E. 

Now we show it is a least upper bound. Suppose y is an upper 
bound for E. Since ( mn -1) fn is not an upper bound, we conclude 
that y 2: (mn - 1)/n for all n 2: 1. Applying Exercise 5.4.8, we 

conclude that y 2: LIMn-+oo(mn- 1)/n = S. Thus the upper 
bound S is less than or equal to every upper bound of E, and S 
is thus a least upper bound of E. 0 
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Definition 5.5.10 (Supremum). Let E be a subset of the real 
numbers. If E is non-empty and has some upper bound, we define 
sup(E) to be the least upper bound of E (this is well-defined 
by Theorem 5.5.9). We introduce two additional symbols, +oo 
and -oo. If E is non-empty and has no upper bound, we set 
sup(E) := +oo; if E is empty, we set sup(E) := -oo. We refer tq 
sup( E) as the supremum of E, and also denote it by sup E. 

Remark 5.5.11. At present, +oo and -oo are meaningless sym­
bols; we have no operations on them at present, and none of our 
results involving real numbers apply to +oo and -oo, because 
these are not real numbers. In Section 6.2 we add +oo and -oo 
to the reals to form the extended real number system, but this sys­
tem is not as convenient to work with as the real number system, 
because many of the laws of algebra break down. For instance, it 
is not a good idea to try to define +oo + -oo; setting this equal 
to 0 causes some problems. 

Now we give an example of how the least upper bound property 
is useful. 

Proposition 5.5.12. There exists a positive real number x such 
that x2 = 2. 

Remark 5.5.13. Comparing this result with Proposition 4.4.4, 
we see that certain numbers are real but. not rational. The proof 
of this proposition also shows that the rationals Q do not obey the 
least upper bound property, otherwise one could use that property 
to construct a square root of 2, which by Proposition 4.4.4 is not 
possible. 

Proof. Let E be the set {y E R : y ;:::: 0 and y2 < 2}; thus E is 
the set of all non-negative real numbers whose square is less than 
2. Observe that E has an upper bound of 2 ·(because if y > 2, 
then y 2 > 4 > 2 and hence y ¢ E). Also, E is non-empty (for 
instance, 1 is an element of E). Thus by the least upper bound 
property, we have a real number x := sup(E) which is the least 
upper bound of E. Then x is greater than or equal to 1 (since 
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1 E E) and less than or equal to 2 (since 2 is an upper bound for 
E). Sox is positive. Now we show that x2 = 2. 

We argue this by contradiction. We show that both x2 < 2 
and x2 > 2 lead to contradictions. First suppose that x2 < 2. Let 
0 < c < 1 be a small number; then we have 

(x + c )2 = x2 + 2cx + c2 ~ x2 + 4c + c = x2 + 5c 

since x ~ 2 and c2 ~c. Since x2 < 2, we see that we can choose 
an 0 < c < 1 such that x2 + 5c < 2, thus (x + c)2 < 2. By 
construction of E, this means that x + c E E; but this contradicts 
the fact that xis an upper bound of E. 

Now suppose that x2 > 2. Let 0 < c < 1 be a small number; 
then we have 

since x ~ 2 and c2 ~ 0. Since x2 > 2, we can choose 0 < c < 1 
such that x 2 - 4c > 2, and thus (x- c)2 > 2. But then this 
implies that x- c ~ y for ally E E. (Why? If x- c < y then 
(x- c)2 < y2 ~ 2, a contradiction.) Thus x- c is an upper 
bound for E, which contradicts the fact that x is the least upper 
bound of E. From these two contradictions we see that x2 = 2, 
as desired. 0 

Remark 5.5.14. In Chapter 6 we will use the least upper bound 
property to develop the theory of limits, which allows us to do 
many more things than just take square roots. 

Remark 5.5.15. We can of course talk about lower bounds, and 
greatest lower bounds, of sets E; the greatest lower bound of a 
set E is also known as the infimum4 of E and is denoted inf(E) 
or inf E. Everything we say about suprema has a counterpart for 

4 Supremum means "highest" and infimum means "lowest", and the plurals 
are suprema and infima. Supremum is to superior, and infimum to inferior, as 
maximum is to major, and minimum to minor. The root words are "super", 
which means "above", and "infer", which means "below" (this usage only 
survives in a few rare English words such as "infernal", with the Latin prefix 
"sub" having mostly replaced "infer" in English). 
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iofuna; we will usually leave such statements to the reader. A 
precise relationship between the two notions is given by Exercise 
5.5.1. See also Section 6.2. 

Exercise 5.5.1. Let E be a subset of the real numbers R, and suppose 
that E has a least upper bound M which is a real number, i.e., M = 
sup(E). Let -E be the set 

-E:={-x:xEE}. 

Show that -M is the greatest lower bound of -E, i.e., -M = inf( -E). 

Exercise 5.5.2. Let E be a non-empty subset of R, let n 2 1 be an 
integer, and let L < K be integers. Suppose that Kfn is an upper 
bound forE, but that L/n is not an upper bound for E. Without using 
Theorem 5.5.9, show that there exists an integer L < m :::=; K such that 
m/n is an upper bound forE, but that (m-1)/n is not an upper bound 
for E. (Hint: prove by contradiction, and use induction. It may also 
help to draw a picture of the situation.) 

Exercise 5.5.3. Let E be a non-empty subset of R, let n 2 1 be an 
integer, and let m,m' be integers with the properties that m/n and 
m'/n are upper bounds forE, but (m- 1)/n and (m'- 1)/n are not 
upper bounds for E. Show that m = m'. This shows that the integer m 
constructed in Exercise 5.5.2 is unique. (Hint: again, drawing a picture 
will be helpful.) 

Exercise 5.5.4. Let Qb q2, q3, ... be a sequence of rational numbers with 
the property that lqn - Qn' I :::=; k whenever M 2 1 is an integer and 
n, n' 2 M. Show that q11 q2, q3, ... is a Cauchy sequence. Furthermore, 
if S := LIMn_,00qn, show that lqM - Sl :::=; k for every M 2 1. (Hint: 
use Exercise 5.4.8.) 

5.6 Real exponentiation, part I 

In Section 4.3 we defined exponentiation xn when x is rational 
and n is a natural number, or when x is a non-zero rational and 
n is an integer. Now that we have all the arithmetic operations 
on the reals (and Proposition 5.4. 7 assures us that the arithmetic 
properties of the rationals that we are used to, continue to hold 
for the reals) we can similarly define exponentiation of the reals. 
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Definition 5.6.1 (Exponentiating 1a real by a natural number). 
Let x be a real number. To raise x to the power 0, we define 
x0 := 1. Now suppose recursively that xn has been defined for 
some natural number n, then we define xn+l :== xn x x. 

Definition 5.6.2 (Exponentiating a real by an integer). Let x 
be a non-zero real number. Then for any negative integer -n, we 
define x-n := 1/xn. 

Clearly these definitions are consistent with the definition of 
rational exponentiation given earlier. We can then assert 

Proposition 5.6.3. All the properties in Propositions 4.3.10 and 
4.3.12 remain valid if x and y are assumed to be real numbers 
instead of rational numbers. 

Instead of giving an actual proof of this proposition, we shall 
give a meta-proof (an argument appealing to the nature of proofs, 
rather than the nature of real and rational numbers). 
Meta-proof. If one inspects the proof of Propositions 4.3.10 and 
4.3.12 we see that they rely on the laws of algebra and the laws 
of order for the rationals (Propositions 4.2.4 and 4.2.9). But by 
Propositions 5.3.11, 5.4.7, and the identity xx-1 = x-1x = 1 we 
know that all these laws of algebra and order continue to hold for 
real numbers as well as rationals. Thus we can modify the proof 
of Proposition 4.3.10 and 4.3.12 to hold in the case when x andy 
are real. 0 

Now we consider exponentiation to exponents which are not 
integers. We begin with the notion of an nth root, which we can 
define using our notion of supremum. 

Definition 5.6.4. Let x > 0 be a positive real, and let n ;::::: 1 be 
a positive integer. We define x 1fn, also known as the nth root of 
x, by the formula 

x 1fn := sup{y E R: y ;::::: 0 and yn ~ x }. 

We often write ..,jX for x112. 
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Note we do not define the nth root of zero at this point, nor 
do we define the nth root of a negative number. The former issue 
will be addressed presently; as for the latter, we will leave the nth 
roots of negative numbers undefined for the rest of the text (one 
can define these nth roots once one defines the complex numbers, 
but we shall refrain from doing so). 

Lemma 5.6.5 (Existence of nth roots). Let x > 0 be a positive 
real, and let n ~ 1 be a positive integer. Then the set E := {y E 
R : y ~ 0 and yn :::; x} is non-empty and is also bounded above. 
In particular, xlfn is a real number. 

Proof The set E contains 0 (why?), so it is certainly not empty. 
Now we show it has an upper bound. We divide into two cases: 
:c ~ 1 and x > 1. First suppose that we are in the case where 
:c ~ 1. Then we claim that the set E is bounded above by 1. 
To see this, suppose for sake of contradiction that there was an 
element y E E for which y > 1. But then yn > 1 (why?), and 
hence yn > x, a contradiction. Thus E has an upper bound. Now 
suppose that we are in the case where x > 1. Then we claim 
that the set E is bounded above by x. To see this, suppose for 
contradiction that there was an element y E E for which y > x. 
Since x > 1, we thus have y > 1. Since y > x and y > 1, we 
have yn > x (why?), a contradiction. Thus in both cases E has 
an upper bound, and so x 1fn is finite. D 

We list some basic properties of nth root below. 

Lemma 5.6.6. Let x, y > 0 be positive reals, and let n, m ~ 1 be 
positive integers. 

(a) Ify = x 1fn, then yn = x. 

(b) Conversely, if yn = x, then y = x 1fn. 

(c) x 1fn is a positive real number. 

(d) We have x > y if and only if x 1fn > y11n. 
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(e) 
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If x > 1, then x 1fk is a decreasing function of k. If x < 1 
then x 1fk is an increasing function of k. i) x = 1, the~ 
x 1fk = 1 for all k. 

(f) We have (xy) 1fn = x 1fnylfn. 

Proof. See Exercise 5.6.1. 0 

The observant reader may note that this definition of x11n 
might possibly be inconsistent with our previous notion of xn when 
n = 1, but it is easy to check that x 111 = x = x 1 (why?), so there 
is no inconsistency. 

One consequence of Lemma 5.6.6(b) is the following cancella­
tion law: if y and z are positive and yn = zn, then y = z. (Why 
does this follow from Lemma 5.6.6(b)?) Note that this only works 
when y and z are positive; for instance, ( -3)2 = 32 , but we cannot 
conclude from this that -3 = 3. 

Now we define how to raise a positive number x to a rational 
exponent q. 

Definition 5.6. 7. Let x > 0 be a positive real number, and let 
q be a rational number. To define xq, we write q = ajb for some 
integer a and positive integer b, and define 

Note that every rational q, whether positive, negative, or zero, 
can be written in the form ajb where a is an integer and b is 
positive (why?). However, the rational number q can be expressed 
in the form ajb in more than one way, for instance 1/2 can also 
be expressed as 2/4 or 3/6. So to ensure that this definition is 
well-defined, we need to check that different expressions ajb give 
the same formula for xq: 

Lemma 5.6.8. Let a, a' be integers and b, b' be positive integers 
such that ajb = a' jb', and let x be a positive real number. Then 
we have (x1fb')a' = (x1fb)a. 
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proof. There are three cases: a = 0, a > 0, a < 0. If a = 0, then 
we must have a'= 0 (why?) and so both (x1fb')a' and (x1fb)a are 
equal to 1, so we are done. 

Now suppose that a > 0. Then a' > 0 (why?), and ab' 
ba'. Write y := x1f(ab') = x1f(ba'). By Lemma 5.6.6(g) we have 
y == (xlfb') 1fa andy= (x1fb)lfa'; by Lemma 5.6.6(a) we thus have 
ya == xlfb' and ya' = x1fb. Thus we have 

(xlfb')a' = (ya)a' = Yaa' = (ya')a = (xlfb)a 

as desired. 
Finally, suppose that a< 0. Then we have (-a)/b = (-a')/b. 

But -a is positive, so the previous case applies and we have 
(xlfb')-a' = (x1fb)-a. Taking the reciprocal of both sides we ob­
tain the result. D 

Thus xq is well-defined for every rational q. Note that this new 
definition is consistent with our old definition for x 1fn (why?) and 
is also consistent with our old definition for xn (why?). 

Some basic facts about rational exponentiation: 

Lemma 5.6.9. Let x, y > 0 be positive reals, and let q, r be ratio­
nals. 

(a) xq is a positive real. 

(b) xq+r = xqxr and (xqY = xqr. 

(c) x-q = 1/xq. 

(d) Ifq > 0, then x > y if and only ifxq > yq. 

(e) If x > 1, then xq > xr if and only if q > r. If x < 1, then 
xq > xr if and only if q < r. 

Proof. See Exercise 5.6.2. D 

We still have to do real exponentiation; in other words, we still 
have to define xY where x > 0 and y is a real number - but we will 
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defer that until Section 6. 7, once we have form~lized the concept 
of limit. 

In the rest of the text we shall now just assume the real num. 
hers to obey all the usual laws of algebra, order,· and exponentia­
tion. 

Exercise 5.6.1. Prove Lemma 5.6.6. (Hints: review the proof of Propo­
sition 5.5.12. Also, you will find proof by contradiction a useful tool 

' especially when combined with the trichotomy of order in Proposition 
5.4.7 and Proposition 5.4.12. The earlier parts of the lemma can be used 
to prove later parts of the lemma. With part (e), first show that if x > 1 
then x 11n > 1, and if x < 1 then xl/n < 1.) 

Exercise 5.6.2. Prove Lemma 5.6.9. (Hint: you should rely mainly on 
Lemma 5.6.6 and on algebra.) 

Exercise 5.6.3. If x is a real number, show that lxl = (x2 ) 112 • 



Chapter 6 

Limits of sequences 

6.1 Convergence and limit laws 

In the previous chapter, we defined the real numbers as formal 
limits of rational (Cauchy) sequences, and we then defined var­
ious operations on the real numbers. However, unlike our work 
in constructing the integers (where we eventually replaced formal 
differences with actual differences) and rationals (where we even­
tually replaced formal quotients with actual quotients), we never 
really finished the job of constructing the real numbers, because 
we never got around to replacing formal limits LIMn_,00an with 
actual limits limn->oo an. In fact, we haven't defined limits at all 
yet. This will now be rectified. 

We begin by repeating much of the machinery of c--close se­
quences, etc. again - but this time, we do it for sequences of 
real numbers, not rational numbers. Thus this discussion will su­
percede what we did in the previous chapter. First, we define 
distance for real numbers: 

Definition 6.1.1 (Distance between two real numbers). Given 
two real numbers x and y, we define their distance d(x, y) to be 
d(x, y) := Jx- yJ. 

Clearly this definition is consistent with Definition 4.3.2. Fur­
ther, Proposition 4.3.3 works just as well for real numbers as it 
does for rationals, because the real numbers obey all the rules of 
algebra that the rationals do. 
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Definition 6.1.2 (c--close real numbers). Let 17 > 0 be a rea} 
number. We say that two real numbers x, yare c--close iff we have 
d(y,x)::; c. 

Again, it is clear that this definition of c--close is consistent 
with Definition 4.3.4. 

Now let (an)~=m be a sequence of real numbers; i.e., we assign 
a real number an for every integer n ~ m. The starting index m 
is some integer; usually this will be 1, but in some cases we will 
start from some index other than 1. (The choice . of label used 
to index this sequence is unimportant; we could use for instance 
( ak)k=m and this would represent exactly the same sequence as 
(an)~=m·) We can define the notion of a Cauchy sequence in the 
same manner as before: 

Definition 6.1.3 (Cauchy sequences of reals). Let c > 0 be a 
real number. A sequence (an)~=N of real numbers starting at 
some integer index N is said to be £-steady iff ai and ak are£­
close for every j, k ~ N. A sequence (an)~=m starting at some 
integer index m is said to be eventually £-steady iff there exists an 
N ~ m such that (an)~=N is £-steady. We say that (an)~=m is a 
Cauchy sequence iff it is eventually £-steady for every c > 0. 

To put it another way, a sequence (an)~=m of real numbers is 
a Cauchy sequence if, for every real c > 0, there exists an N ~ m 
such that Jan -an' J ::; c for all n, n' ~ N. These definitions are 
consistent with the corresponding definitions for rational numbers 
(Definitions 5.1.3, 5.1.6, 5.1.8), although verifying consistency for 
Cauchy sequences takes a little bit of care: 

Proposition 6.1.4. Let (an)~=m be a sequence of rational num­
bers starting at some integer index m. Then ( an)~=m is a Cauchy 
sequence in the sense of Definition 5.1.8 if and only if it is a 
Cauchy sequence in the sense of Definition 6.1. 3. 

Proof. Suppose first that (an)~=m is a Cauchy sequence in the 
sense of Definition 6.1.3; then it is eventually £-steady for every 
real c > 0. In particular, it is eventually c--steady for every rational 
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£ > O, which makes it a Cauchy sequence in the sense of Definition 

5J.8. 
Now suppose that (an)~=m is a Cauchy sequence in the sense 

of Definition 5.1.8; then it is eventually c--steady for every rational 
e > 0. If c > 0 is a real number, then there exists a rational 
e' > 0 which is smaller than c-, by Proposition 5.4.14. Since c-1 

is rational, we know that (an)~=m is eventually c-'-steady; since 
e' < c-, this implies that (an)~=m is eventually c--steady. Since cis 
an arbitrary positive real number, we thus see that (an)~=m is a 
Cauchy sequence in the sense of Definition 6.1.3. D 

Because of this proposition, we will no longer care about the 
distinction between Definition 5.1.8 and Definition 6.1.3, and view 
the concept of a Cauchy sequence as a single unified concept. 

Now we talk about what it means for a sequence of real num­
bers to converge to some limit L. 

Definition 6.1.5 (Convergence of sequences). Let c > 0 be a real 
number, and let L be a real number. A sequence (an)~=N of real 
numbers is said to be €-close to L iff an is c--close to L for every 
n;::: N, i.e., we have ian- Ll ~ c for every n;::: N. We say that 
a sequence ( an)~=m is eventually €-close to L iff there exists an 
N ;::: m such that ( an)~=N is €-close to L. We say that a sequence 
(an)~=m converges to L iff it is eventually c--close to L for every 
real c > 0. 

One can unwrap all the definitions here and write the concept 
of convergence more directly; see Exercise 6.1.2. 

Examples 6.1.6. The sequence 

0.9, 0.99, 0.999, 0.9999, ... 

is 0.1-close to 1, but is not 0.01-close to 1, because of the first 
element of the sequence. However, it is eventually 0.01-close to 1. 
In fact, for every real c > 0, this sequence is eventually c--close to 
1, hence is convergent to 1. 
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Proposition 6.1. 7 (Uniqueness of limits). Let (P.n)~=m be a real 
sequence starting at some integer index m, and let L f=. L' be 
two distinct real numbers. Then it is not possible for ( an)~==m to 
converge to L while also converging to L'. , 

Proof. Suppose for sake of contradiction that ( an)~=m was con­
verging to both Land L'. Let£= JL- L'J/3; note that£ is pos­
itive since L f=. L'. Since ( an)~=m converges to L, we know that 
( an)~=m is eventually £-close to L; thus there is an N ~ m such 
that d(an, L) ~ £ for all n ~ N. Similarly, there ~s an M ~ m 
such that d(an, L') ~ £ for all n ~ M. In particular, if we set 
n := max(N, M), then we have d(an, L) ~ £ and d(an, L') :5 £, 

hence by the triangle inequality d(L, L') ~ 2£ = 2JL- L'J/3. But 
then we have JL - L'l ~ 2JL- L'J/3, which contradicts the fact 
that JL- L'l > 0. Thus it is n_ot possible to converge to both L 
and L'. 0 

Now that we know limits are unique, we can set up notation 
to specify them: 

Definition 6.1.8 (Limits of sequences). If a sequence (an)~==m 
converges to some real number L, we say that (an)~=m is conver­
gent and that its limit is L; we write 

L = lim an n-+oo 

to denote this fact. If a sequence (an)~=m is not converging to 
any real number L, we say that the sequence ( an)~=m is divergent 
and we leave limn-+oo an undefined. 

Note that Proposition 6.1.7 ensures that a sequence can have 
at most one limit. Thus, if the limit exists, it is a single real 
number, otherwise it is undefined. 

Remark 6.1.9. The notation limn-+oo an does not give any indi­
cation about the starting index m of the sequence, but the starting 
index is irrelevant (Exercise 6.1.3). Thus in the rest of this discus­
sion we shall not be too careful as to where these sequences start, 
as we shall be mostly focused on their limits. 
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We sometimes use the phrase "an ---+ x as n ---+ oo" as an 
alternate way of writing the statement "( an)~=m converges to x". 
Bear in mind, though, that the individual statements an ---+ x and 
n - oo do not have any rigourous meaning; this phrase is just a 
convention, though of course a very suggestive one. 

Remark 6.1.10. The exact choice of letter used to denote the 
index (in this case n) is irrelevant: the phrase limn-+oo an has 
exactly the same meaning as limk-+oo ak, for instance. Sometimes 
it will be convenient to change the label of the index to avoid 
conflicts of notation; for instance, we might want to change n to 
k because n is simultaneously being used for some other purpose, 
and we want to reduce confusion. See Exercise 6.1.4. 

As an example of a limit, we present 

Proposition 6.1.11. We have limn-+oo 1/n = 0. 

Proof. We have to show that the sequence (an)~=l converge~ to 
0, where an := 1/n. In other words, for every c > 0, we need to 
show that the sequence ( an)~=l is eventually c-close to 0. So, let 
c > 0 be an arbitrary real number. We have to find anN such 
that ian- Oi ~ c for every n;::::: N. But if n;::::: N, then 

ian- Oi = il/n- Oi = 1/n ~ 1/N. 

Thus, if we pick N > 1/c (which we can do by the Archimedean 
principle), then 1/N < c, and so (an)~=N is c-close to 0. Thus 
(an)~=l is eventually c-close to 0. Since c was arbitrary, (an)~=l 
converges to 0. D 

Proposition 6.1.12 (Convergent sequences are Cauchy). Sup­
pose that ( an)~=m is a convergent sequence of reai numbers. Then 
(an)~=m is also a Cauchy sequence. 

Proof. See Exercise 6.1.5. D 

Example 6.1.13. The sequence 1, -1, 1, -1, 1, -1, ... is not a 
Cauchy sequence (because it is not eventually !-steady), and is 
hence not a convergent sequence, by Proposition 6.1.12. 
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Remark 6.1.14. For a converse to Proposition,6.1.12, see TheO­
rem 6.4.18 below. 

Now we show that formal limits can be superceded by actual 
limits, just as formal subtraction was superceded by actual sub.. 
traction when constructing the integers, and formal division su­
perceded by actual division when constructing the rational num­
bers. 

Proposition 6.1.15 (Formal limits are genuine limits). Suppose 
that (an)~=l is a Cauchy sequence of mtional numbers. Then 
(an)~=l converges to LIMn-+ooan, i.e. 

Proof. See Exercise 6.1.6. 0 

Definition 6.1.16 (Bounded sequences). A sequence (an)~=m of 
real. numbers is bounded by a real number M iff we have I ani ~ M 
for all n ;:::: m. We say that ( an)~=m is bounded iff it is bounded 
by M for some real number M > 0. 

This definition is consistent with Definition 5.1.12; see Exercise 
6.1.7. 

Recall from Lemma 5.1.15 that every Cauchy sequence of ra­
tional numbers is bounded. An inspection of the proof of that 
Lemma shows that the same argument works for real numbers; 
every Cauchy sequence of real numbers is bounded. In particular, 
from Proposition 6.1.12 we see have 

Corollary 6.1.17. Every convergent sequence of real numbers is 
bounded. 

Example 6.1.18. The sequence 1, 2, 3, 4, 5, ... is not bounded, 
and hence is not convergent. 

We can now prove the usual limit laws. 

Theorem 6.1.19 (Limit Laws). Let (an)~=m and (bn)~=m be con­
vergent sequences of real numbers, and let x, y be the real numbers 
X:= limn-+oo an andY:= limn-+oo bn. 
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(a) The sequence (an+bn)~=m converges to x+y; in other words, 

lim (an+ bn) = lim an+ lim bn. 
n~oo n~oo n~oo 

(b) The sequence (anbn)~=m converges to xy; in other words, 

lim (anbn) = ( lim an)( lim bn)· 
n~oo n~oo n~oo 

(c) For any real number c, the sequence ( can)~=m converges to 
ex; in other words, 

lim (can) = c lim an. 
n~oo n~oo 

(d) The sequence (an-bn)~=m converges to x-y; in other words, 

lim (an- bn) = lim an- lim bn. 
n~oo n~oo n~oo 

(e) Suppose that y =f. 0, and that bn =f. 0 for all n ~ m. Then 
the sequence (b;;: 1 )~=m converges to y-1; in other words, 

lim b;;1 = ( lim bn)-1. 
n~oo n~oo 

(f) Suppose that y =f. 0, and that bn =f. 0 for all n ~ m. Then 
the sequence (an/bn)~=m converges to xjy; in other words, 

(g) The sequence (max( an, bn))~=m converges to ma.x(x, y); in 
other words, 

lim max( an, bn) =max( lim an, lim bn)· 
n~oo n~oo n~oo 

(h) The sequence (min( an, bn))~=m converges to min(x, y); in 
other words, 

lim min( an, bn) =min( lim an, lim bn)· 
n~oo n~oo n~oo 
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Proof. See Exercise 6.1.8. 0 

Exercise 6.1.1. Let (an)~=O be a sequence of real numbers, such that 
an+l > an for each natural number n. Prove that whenever n and rn 
are natural numbers such that m > n, then we have am > an. (We refer 
to these sequences as increasing sequences.) 

Exercise 6.1.2. Let (an)~=m be a sequence of real numbers, and let L be 
a real number. Show that (an)~=m converges to L if and only if, given 
any real c > 0, one can find an N ~ m such that ian- Ll ~ c for all 
n~N. 

Exercise 6.1.3. Let (an)~=m be a sequence of real numbers, let c be areal 
number, and let m' ~ m be an integer. Show that (an)~=m converges 
to c if and only if (an)~=m' converges to c. 

Exercise 6.1.4. Let (an)~=m be a ~equence ofreal numbers, let c be a real 
number, and let k ~ 0 be a non-negative integer. Show that (an)~=m 
converges to c if and only if (an+k)~=m converges to c. 

Exercise 6.1.5. Prove Proposition 6.1.12. (Hint: use the triangle in­
equality, or Proposition 4.3. 7.) 

Exercise 6.1.6. Prove Proposition 6.1.15, using the following outline. Let 
(an)~=m be a Cauchy sequence of rationals, and write L := LIMn-+ooan. 
We have to show that (an)~=m converges to L. Let c > 0. Assume for 
sake of contradiction that sequence an is not eventually c-close to L. 
Use this, and the fact that (an)~=m is Cauchy, to show that there is an 
N ~ m such that either an > L + c/2 for all n ~ N, or an< L- c/2 
for all n ~ N. Then use Exercise 5.4.8. 

Exercise 6.1.7. Show that Definition 6.1.16 is consistent with Definition 
5.1.12 (i.e., prove an analogue of Proposition 6.1.4 for bounded sequences 
instead of Cauchy sequences). 

Exercise 6.1.8. Prove Theorem 6.1.19. (Hint: you can use some parts of 
the theorem to prove others, e.g., (b) can be used to prove (c); (a),( c) can 
be used to prove (d); and (b), (e) can be used to prove (f). The proofs 
are similar to those of Lemma 5.3.6, Proposition 5.3.10, and Lemma 
5.3.15. For (e), you may need to first prove the auxiliary result that 
any sequence whose elements are non-zero, and which converges to a 
non-zero limit, is bounded away from zero.) 

Exercise 6.1.9. Explain why Theorem 6.1.19(f) fails when the limit of 
the denominator is 0. (To repair that problem requires L'Hopital's rule, 
see Section 10.5.) 
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Exercise 6.1.10. Show that the concept of equivalent Cauchy sequence, 
as defined in Definition 5.2.6, does not change if c is required to be 
positive real instead of positive rational. More precisely, if ( an)~=O and 
(bn)~=O are sequences ofreals, show that (an)~=O and (bn)~=O are even­
tually c-close for every rational c > 0 if and only if they are eventually 
E-close for every real c > 0. (Hint: modify the proof of Proposition 
6.1.4.) 

6.2 The extended real number system 

There are some sequences which do not converge to any real num­
ber, but instead seem to be wanting to converge to +oo or -oo. 
For instance, it seems intuitive that the sequence 

1,2,3,4,5, ... 

should be converging to +oo, while 

-1, -2, -3, -4, -5, ... 

should be converging to -oo. Meanwhile, the sequence 

1, -1, 1, -1, 1, -1, ... 

does not seem to be converging to anything (although we shall see 
later that it does have +1 and -1 as "limit points" - see below). 
Similarly the sequence 

1, -2, 3, -4, 5, -6, ... 

does not converge to any real number, and also does not appear to 
be converging to +oo or converging to -oo. To make this precise 
we need to talk about something called the extended real number 
system. 

Definition 6.2.1 (Extended real number system). The extended 
real number system R* is the real lineR with two additional ele­
ments attached, called +oo and -oo. These elements are distinct 
from each other and also distinct from every real number. An 
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extended real number x is called finite iff it is a real number, and 
infinite iff it is equal to +oo or -oo. (This definition is not di­
rectly related to the notion of finite and infinite sets in Section 
3.6, though it is of course similar in spirit.) 

These new symbols, +oo and -oo, at present do not have much 
meaning, since we have no oper~tions to manipulate them (other 
than equality= and inequality f:). Now we place a few operations 
on the extended real number system. 

Definition 6.2.2 (Negation of extended reals). The operation 
of negation x ~ -x on R, we now extend to R * by defining 
-'-( +oo) := -oo and -( -oo) := +oo. 

Thus every extended real number x has a negation, and - ( -x) 
is always equal to x. 

Definition 6.2.3 (Ordering of extended reals). Let x and y be 
extended real numbers. We say that x:::; y, i.e., xis less than or 
equal to y, iff one of the following three statements is true: 

(a) x andy are real numbers, and x:::; y as real numbers. 

(b) y = +oo. 

(c) x = -oo. 

We say that x < y if we have x :::; y and x f: y. We sometimes 
write x < y as y > x, and x :::; y as y ~ x. 

Examples 6.2.4. 3 :::; 5, 3 < +oo, and -oo < +oo, but 3 1:. -oo. 

Some basic properties of order and negation on the extended 
real number system: 

Proposition 6.2.5. Let x, y, z be extended real numbers. Then 
the following statements are true: 

(a) (Reflexivity) We have x:::; x. 
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(b) (Trichotomy) Exactly one of the statements x < y, x = y, 
or x > y is true. 

(c) (Transitivity) If x ~ y andy~ z, then x ~ z. 

(d) (Negation reverses order) If x ~ y, then -y ~ -x. 

proof. See Exercise 6.2.1. D 

One could also introduce other operations on the extended 
real number system, such as addition, multiplication, etc. How­
ever, this is somewhat dangerous as these operations will almost 
certainly fail to obey the familiar rules of algebra. For instance, 
to define addition it seems reasonable (given one's intuitive notion 
of infinity) to set +oo + 5 = +oo and +oo + 3 = +oo, but then 
this implies that +oo + 5 = +oo + 3, while 5 =/= 3. So things like 
the cancellation law begin to break down once we try to operate 
involving infinity. To avoid these issues we shall simply not define 
any arithmetic operations on the extended real number system 
other than negation and order. 

Remember that we defined the notion of supremum or least 
upper bound of a set E of reals; this gave an extended real number 
sup(E), which was either finite or infinite. We now extend this 
notion slightly. 

Definition 6.2.6 (Supremum of sets of extended reals). Let E 
be a subset of R *. Then we define the supremum sup(E) or least 
upper bound of E by the following rule. 

(a) If E is contained in R (i.e., +oo and -oo are not elements 
of E), then we let sup(E) be as defined in Definition 5.5.10. 

(b) If E contains +oo, then we set sup(E) := +oo. 

(c) If E does not contain +oo but does contain -oo, then we 
set sup( E) := sup(E- { -oo}) (which is a subset of R and 
thus falls under case (a)). 
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We also define the infimum inf(E) of E (al~o known as the 
greatest lower bound of E by the formula 

inf(E) :=-sup( -E) 

where -E is the set -E := { -x: x E E}. 

Example 6.2.7. Let E be the negative integers, together with 
-oo: 

E = { -1, -2, -3, -4, ... } U { -oo}. 

Then sup(E) = sup(E- {-oo}) = -1, while. 

inf(E) = -sup(-E) = -(+oo) = -oo. 

Example 6.2.8. The set {0.9, 0.99, 0.999, 0.9999, ... } has infi­
mum 0.9 and supremum 1. Note that in this case the supremum 
does not actually belong to the set, but it is in some sense "touch­
ing it" from the right. 

Example 6.2.9. The set {1, 2, 3, 4, 5 ... } has infimum 1 and 
supremum +oo. 

Example 6.2.10. Let E be the empty set. Then sup(E) = -oo 
and inf(E) = +oo (why?). This is the only case in which the 
supremum can be less than the infimum (why?). 

One can intuitively think of the supremum of E as follows. 
Imagine the real line with +oo somehow on the far right, and -oo 
on the far left. Imagine a piston at +oo moving leftward until it 
is stopped by the presence of a set E; the location where it stops 
is the supremum of E. Similarly if one imagines a piston at -oo 
moving rightward until it is stopped by the presence of E, the 
location where it stops is the infimum of E. In the case when E is 
the empty set, the pistons pass through each other, the supremum 
landing at -oo and the infimum landing at +oo. 

The following theorem justifies the terminology "least upper 
bound" and "greatest lower bound" : 

Theorem 6.2.11. Let E be a subset of R*. Then the following 
statements are true. 
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(a) For every x E E we have x ~ sup(E) and x;:::: inf(E). 

(b) Suppose that M is an upper bound for E, i.e., x ~ M for 
all x E E. Then we have sup(E) ~ M. 

(c) Suppose that M is a lower bound for E, i.e., x ;:::: M for all 
x E E. Then we have inf(E);:::: M. 

Proof. See Exercise 6.2.2. D 

Exercise 6.2.1. Prove Proposition 6.2.5. (Hint: you may need Proposi­
tion 5.4.7.) 

Exercise 6.2.2. Prove Proposition 6.2.11. (Hint: you may need to break 
into cases depending on whether +oo or -oo belongs to E. You can 
of course use Definition 5.5.10, provided that E consists only of real 
numbers.) 

6.3 Suprema and infima of sequences 

Having defined the notion of a supremum and infimum of sets of 
reals, we can now also talk about the supremum and infimum of 
sequences. 

Definition 6.3.1 (Sup and inf of sequences). Let (an)~=m be a 
sequence of real numbers. Then we define sup(an)~=m to be the 
supremum of the set {an: n;:::: m}, and inf(an)~=m to the infimum 
of the same set {an: n;:::: m}. 

Remark 6.3.2. The quantities sup(an)~=m and inf(an)~=m are 
sometimes written as supn~m an and infn~m an respectively. 

Example 6.3.3. Let an:= (-1)n; thus (an)~=l is the sequence 
-1, 1, -1, 1,.. .. Then the set {an : n ;:::: 1} is just the two­
element set { -1, 1}, and hence sup(an)~=l is equal to 1. Similarly 
inf(an)~=l is equal to -1. 
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Example 6.3.4. Let an := 1/n; thus (an)~=~ is the sequence 
1, 1/2,1/3, .... Then the set {an : n ;::::: 1} is the countable set 
{1, 1/2, 1/3, 1/4, ... }. Thus sup(an)~=l = 1 and inf(an)~=l :::: 0 
(Exercise 6.3.1). Notice here that the infimum of the sequence is 
not actually a member of the sequence, though it becomes very 
close to the sequence eventually. (So it is a little inaccurate to 
think of the supremum and infimum as the "largest element of the 
sequence" and "smallest element of the sequence" respectively.) 

Example 6.3.5. Let an := n; thus (an)~=l is the sequence 1, 2, 
3, 4, . . . . Then the set {an : n ;::::: 1} is just the positive integers 
{1, 2, 3, 4, ... }'. Then sup(an)~=l = +oo and inf(an)~=l = 1. 

As the last example shows, it is possible for the supremum or 
infimum of a sequence to be +oo or -oo. However, if a sequence 
(an)~=m is bounded, say bounded by M, then all the elements 
an of the sequence lie between - M and M, so that the set {an : 
n ;::::: m} has M as an upper bound and - M as a lower bound. 
Since this set is clearly non-empty, we can thus conclude that the 
supremum and infimum of a bounded sequence are real numbers 
(i.e., not +oo and -oo). 

Proposition 6.3.6 (Least upper bound property). Let (an)~=m 
be a sequence of real numbers, and let x be the extended real num­
ber x := sup(an)~=m· Then we have an :S x for all n;::::: m. Also, 
whenever M E R * is an upper bound for an (i.e., an :S M for all 
n ;::::: m}, we have x :S M. Finally, for every extended real num­
ber y for which y < x, there exists at least one n ;::::: m for which 
Y <an :S x. 

Proof. See Exercise 6.3.2. 0 

Remark 6.3.7. There is a corresponding Proposition for infima, 
but with all the references to order reversed, e.g., all upper bounds 
should now be lower bounds, etc. The proof is exactly the same. 

Now we give an application of these concepts of supremum 
and infimum. In the previous section we saw that all convergent 
sequences are bounded. It is natural to ask whether the converse is 
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true: are all bounded sequences convergent? The answer is no; for 
instance, the sequence 1, -1, 1, -1, ... is bounded, but not Cauchy 
and hence not convergent. However, if we make the sequence both 
bounded and monotone (i.e., increasing or decreasing), then it is 
true that it must converge: 

proposition 6.3.8 (Monotone bounded sequences converge). Let 
(an)~=m be a sequence of real numbers which has some finite upper 
bound M E R, and which is also increasing (i.e., an+l ;:::: an for 
all n ;::=: m). Then ( an)~=m is convergent, and in fact 

lim an = sup(an)~=m :::; M. n-+oo 

Proof. See Exercise 6.3.3. D 

One can similarly prove that if a sequence (an)~=m is bounded 
below and decreasing (i.e., an+l :::; an), then it is convergent, and 
that the limit is equal to the infimum. 

A sequence is said to be monotone if it is either increasing or 
decreasing. From Proposition 6.3.8 and Corollary 6.1.17 we see 
that a monotone sequence converges if and only if it is bounded. 

Example 6.3.9. The sequence 3, 3.1, 3.14, 3.141, 3.1415, ... is in­
creasing, and is bounded above by 4. Hence by Proposition 6.3.8 
it must have a limit, which is a real number less than or equal to 
4. 

Proposition 6.3.8 asserts that the limit of a monotone sequence 
exists, but does not directly say what that limit is. Nevertheless, 
with a little extra work one can often find the limit once one is 
given that the limit does exist. For instance: 

Proposition 6.3.10. Let r < X < 1. Then we have limn-+oo xn = 
0. 

Proof. Since 0 < x < 1, one can show that the sequence (xn)~=l is 
decreasing (why?). On the other hand, the sequence (xn)~=l has a 
lower bound of 0. Thus by Proposition 6.3.8 (for infima instead of 
suprema) the sequence (xn)~=l converges to some limit L. Since 
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xn+l = x x xn, w~ thus see from the limit law,s (Theorem 6.1.19) 
that (xn+l )~=1 converges to xL. But the sequence (xn+l )~1 is 
just the sequence (xn)~=2 shifted by one, and so they must have 
the same limits (why?). So xL = L. Since x # 1, we can solve for 
L to obtain L = 0. Thus (xn)~=1 converges to 0. 0 

Note that this proof does not work when x > 1 (Exercise 
6.3.4). 

Exercise 6.3.1. Verify the claim in Example 6.3.4. 

Exercise 6.3.2. Prove Proposition 6.3.6. (Hint: use Theorem 6.2.11.) 

Exercise 6.3.3. Prove Proposition 6.3.8. (Hint: use Proposition 6.3.6, 
together with the assumption that an is increasing, to show that an 
converges to sup(an)~=m·) 

Exercise 6.3.4. Explain why Proposition 6.3.10 fails when x > 1. In 
fact, show that the sequence (xn)~=l diverges when x > 1. (Hint: prove 
by contradiction and use the identity (1/x)nxn = 1 and the limit laws 
in Theorem 6.1.19.) Compare this with the argument in Example 1.2.3; 
can you now explain the flaws in the reasoning in that example? 

6.4 Limsup, liminf, and limit points 

Consider the sequence 

1.1, -1.01, 1.001, -1.0001, 1.00001, .... 

If one plots this sequence, then one sees (informally, of course) 
that this sequence does not converge; half the time the sequence 
is getting close to 1, and half the time the sequence is getting 
close to -1, but it is not converging to either of them; for instance, 
it never gets eventually 1/2-close to 1, and never gets eventually 
1/2-close to -1. However, even though -1 and +1 are not quite 
limits of this sequence, it does seem that in some vague way they 
"want" to be limits. To make this notion precise we introduce the 
notion of a limit point. 

Definition 6.4.1 (Limit points). Let (an)~=m be a sequence of 
real numbers, let x be a real number, and let c > 0 be a real 
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nuxnber. We say that xis €-adherent to (an)~=m iff there exists an 
n 2: m such that an is €-close to x. We say that x is continually 
&-adherent to (an)~=m iff it is €-adherent to (an)~=N for every 
N 2: m. We say that xis a limit point or adherent point of (an)~=m 
iff it is continually €-adherent to ( an)~=m for every c > 0. 

Remark 6.4.2. The verb "to adhere" means much the same as 
"to stick to" ; hence the term "adhesive". 

Unwrapping all the definitions, we see that x is a limit point 
of (an)~=m if, for every c > 0 and every N ~ m, there exists an 
n 2: N such that !an- x! :::; c. (Why is this the same definition?) 
Note the difference between a sequence being €-close to L (which 
means that all the elements of the sequence stay within a distance 
e of L) and L being €-adherent to the sequence (which only needs 
a single element of the sequence to stay within a distance c of 
L). Also, for L to be continually €-adherent to (an)~=m, it has 
to be €-adherent to (an)~=N for all N ~ m, whereas for (an)~=m 
to be eventually €-close to L, we only need (an)~=N to be €-close 
to L for some N ~ m. Thus there are some subtle differences in 
quantifiers between limits and limit points. 

Note that limit points are only defined for finite real numbers. 
It is also possible to rigourously define the concept of +oo or -oo 
being a limit point; see Exercise 6.4.8. 

Example 6.4.3. Let (an)~=l denote the sequence 

0.9, 0.99, 0.999, 0.9999, 0.99999, .... 

The number 0.8 is 0.1-adherent to this sequence, since 0.8 is 0.1-
close to 0.9, which is a member of this sequence. However, it 
is not continually 0.1-adherent to this sequence, since once one 
discards the first element of this sequence there is no member of 
the sequence to be 0.1-close to. In particular, 0.8 is not a limit 
point of this sequence. On the other hand, the number 1 is 0.1-
adherent to this sequence, and in fact is continually 0.1-adherent 
to this sequence, since no matter how many initial members of the 
sequence one discards, there is still something for 1 to be 0.1-close 
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to. In fact, it is continually c:-adherent for every c:, and is hence a 
limit point of this sequence. 

Example 6.4.4. Now consider the sequence 

1.1, -1.01, 1.001, -1.0001, 1.00001, .... 

The number 1 is 0.1-adherent to this sequence; in fact it is contin­
ually 0.1-adherent to this sequence, because no matter how many 
elements of the sequence one discards, there are some elements of 
the sequence that 1 is 0.1-close to. (As discussed earlier, one does 
not need all the elements to be 0.1-close to 1, just some; thus 0.1-
adherent is weaker than 0.1-close, and continually 0.1-adherent is 
a different notion from eventually 0.1-close.) In fact, for every 
c: > 0, the number 1 is continually c:-adherent to this sequence, 
and is thus a limit point of this sequence. Similarly -1 is a limit 
point of this sequence; however 0 (say) is not a limit point of this 
sequence, since it is not continually 0.1-adherent to it. 

Limits are of course a special case of limit points: 

Proposition 6.4.5 (Limits are limit points). Let (an)~=m be a 
sequence which converges to a real number c. Then c is a limit 
point of (an)~=m' and in fact it is the only limit point of (an)~=m· 

Proof. See Exercise 6.4.1. 0 

Now we will look at two special types of limit points: the limit 
superior (lim sup) and limit inferior (lim inf). 

Definition 6.4.6 (Limit superior and limit inferior). Suppose 
that (an)~=m is a sequence. We define a new sequence (a"t)'N=m 
by the formula 

a"t := sup(an)~=N· 

More informally, a "t is the supremum of all the elements in the 
sequence from aN onwards. We then define the limit superior of 
the sequence (an)~=m' denoted limsupn-+oo an, by the formula 

lim sup an:= inf(a"t)<N=m· 
n-+oo 
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Similarly, we can define 

and define the limit inferior of the sequence (an)~=m• denoted 
lim infn-+oo an, by the formula 

lim inf an:= sup(a_N )N=m· n-+oo 

Example 6.4.7. Let a1, a2, a3, ... denote the sequence 

1.1, -1.01, 1.001, -1.0001,1.00001, .... 

+ + + . th Then a1 , a2 , a3 , ... 1S e sequence 

1.1, 1.001, 1.001, 1.00001, 1.00001, ... 

(why?), and its infimum is 1. Hence the limit superior of this 
sequence is 1. Similarly, a1, a2, a3, ... is the sequence 

-1.01, -1.01, -1.0001,-1.0001,-1.000001, ... 

(why?), and the supremum of this sequence is -1. Hence the limit 
inferior of this sequence is -1. One should compare this with the 
supremum and infimum of the sequence, which are 1.1 and -1.01 
respectively. 

Example 6.4.8. Let a1, a2, a3, ... denote the sequence 

1, -2, 3, -4, 5, -6, 7, -8, ... 

Then af, at, ... is the sequence 

+oo, +oo, +oo, +oo, ... 

(why?) and so the limit superior is +oo. Similarly, a1, a2, ... is 
the sequence 

-oo, -oo, -oo, -oo, ... 

and so the limit inferior is -oo. 
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Example 6.4.9. Let a1, a2, a3, ... denote the sequence 
" 

1,-1/2,1/3,-1/4,1/5,-1/6, ... 

Then at, at, ... is the sequence 

1,1/3,1/3,1/5,1/5,1/7, ... 

which has an infimum of 0 (why?), so the limit superior is 0. 
Similarly, a1, a2, ... is the sequence 

-1/2,-1/2,-1/4,-1/4,-1/6,-1/6 

which has a supremum of 0. So the limit inferior is also 0. 

Example 6.4.10. Let a1, a2, a3, ... denote the sequence 

1,2,3,4,5,6, ... 

Then at, at, ... is the sequence 

+oo, +oo, +oo, ... 

so the limit superior is +oo. Similarly, a1, a2, ... is the sequence 

1, 2, 3, 4, 5, ... 

which has a supremum of +oo. So the limit inferior is also +oo. 

Remark 6.4.11. Some authors use the 'notation limn-+ooan in­
stead of limsupn-+oo an, and liffin-+ooan instead of liminfn-+oo an. 
Note that the starting index m of the sequence is irrelevant (see 
Exercise 6.4.2). 

Returning to the piston analogy, imagine a piston at +oo mov­
ing leftward until it is stopped by the presence of the sequence 
a1, a2, .. .. The place it will stop is the supremum of a 1, a2, a3, .. . , 
which in our new notation is at. Now let us remove the first 
element a1 from the sequence; this may cause our piston to slip 
leftward, to a new point at (though in many cases the piston will 
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not move and at will just be the same as at). Then we remove 
the second element a2, causing the piston to slip a little more. If 
we keep doing this the piston will keep slipping, but there will be 
some point where it cannot go any further, and this is the limit 
superior of the sequence. A similar analogy can describe the limit 
inferior of the sequence. 

We now describe some basic properties of limit superior and 
limit inferior. 

Proposition 6.4.12. Let (an)~=m be a sequence of real numbers, 
let L + be the limit superior of this sequence, and let L- be the 
limit inferior of this sequence (thus both L + and L- are extended 
real numbers). 

(a) For every x > L +, there exists an N ~ m such that an < x 
for all n ~ N. (In other words, for every x > £+, the 
elements of the sequence (an)~=m are eventually less than 
x.) Similarly, for every y < L- there exists anN~ m such 
that an > y for all n ~ N. 

(b) For every x < £+, and every N ~ m, there exists ann~ N 
such that an > x. (In other words, for every x < L +, the 

· elements of the sequence ( an)~=m exceed x infinitely often.) 
Similarly, for every y > L- and every N ~ m, there exists 
an n ~ N such that an < y. 

(d) If c is any limit point of (an)~=m' then we have L- ~ c ~ 
£+. 

(e) If L + is finite, then it is a limit point of ( an)~=m. Similarly, 
if L- is finite, then it is a limit point of ( an)~=m. 

I 

(f) Let c be a real number. If (an)~=m converges to c, then we 
must have L + = L- = c. Conversely, if L + = L- = c, then 
( an)~=m converges to c. 



166 6. Limits of sequences 

Proof. We shall pro~e (a) and (b), and leave t~e remaining Parts 
to the exercises. Suppose first that x > £+. Then by definition of 
£+,we have x > inf(aJt)N=m· By Proposition 6.3.6, there must 
then exist an integer N 2: m such that x > aJt. By definition of 
aJt, this means that x > sup(an)~=N· Thus by Proposition 6.3.6 
again, we have x > an for all n 2: N, as desired. This proves the 
first part of (a); the second part of (a) is proven similarly. 

Now we prove (b). Suppose that x < £+. Then we have 
x < inf(aJt)N=m· If we fix any N 2: m, then by Proposition 
6.3.6, we thus have x < aJt. By definition of aJt, this means that 
x < sup(an)~=N· By Proposition 6.3.6 again, there must thus 
exist n 2: N such that an > x, as desired. This proves the first 
part of (b), the second part of (b) is proven similarly. 

The proofs of (c), (d), (e), (f) are left to Exercise 6.4. 3. 0 

Parts (c) and (d) of Proposition 6.4.12 say, in particular, that 
£+ is the largest limit point of (an)~=m, and L- is the smallest 
limit point (providing that L + and L- are finite. Proposition 
6.4.12 (f) then says that if£+ and L- coincide (so there is only 
one limit point), then the sequence in fact converges. This gives 
a way to test if a sequence converges: compute i~s limit superior 
and limit inferior, and see if they are equal. 

We now give a basic comparison property of limit superior and 
limit inferior. 

Lemma 6.4.13 (Comparison principle). Suppose that (an)~=m 
and (bn)~=m are two sequences of real numbers such that an ~ bn 
for all n 2: m. Then we have the inequalities 

sup(an)~=m ~ sup(bn)~=m 

inf(an)~=m ~ inf(bn)~=m 

lim sup an ~ lim sup bn 
n-+oo n-+oo 

lim inf an ~ lim inf bn 
n-+oo n-+oo 

Proof. See Exercise 6.4.4. 0 
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Corollary 6.4.14 (Squeeze test). Let (an)~=m' (bn)~=m' and 
(Cn)~=m be sequences of real numbers such that 

for all n ~ M. Suppose also that (an)~=m and (Cn)~=m both 
converge to the same limit L. Then (bn)~=m is also convergent to 
L. 

Proof. See Exercise 6.4.5. 0 

Example 6.4.15. We already know (see Proposition 6.1.11) that 
limn-.oo 1ln = 0. By the limit laws (Theorem 6.1.19), this also 
implies that limn-.oo 2ln = 0 and limn--.00 -2ln = 0. The squeeze 
test then shows that any sequence (bn)~=l for which 

-2 In :::; bn :::; 2 In for all n ~ 1 

is convergent to 0. For instance, we can use this to show that the 
sequence ( -1)n In+ 1ln2 converges to zero, or that 2-n converges 
to zero. Note one can use induction to show that 0:::; 2-n :::; 1ln 
for all n ~ 1. 

Remark 6.4.16. The squeeze t~t, combined with the limit laws 
and the principle that monotone bounded sequences always have 
limits, allows to compute a large number of limits. We give some 
examples in the next chapter. 

One commonly used consequence of the squeeze test is 

Corollary 6.4.17 (Zero test for sequences). Let (an)~=M be a 
sequence of real numbers. Then the limit limn-.oo an exists and 
is equal to zero if and only if the limit limn-.oo !ani exists and is 
equal to zero. 

Proof. See Exercise 6.4.7. 0 

We close this section with the following improvement to Propo­
sition 6.1.12. 
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Theorem 6.4.18 (Completeness of the re~ls). A sequence (an)~1 
of real numbers is a Cauchy sequence if and only if it is convergent. 

Remark 6.4.19. Note that while this is very similar in spirit 
to Proposition 6.1.15, it is a bit more general, since Proposition 
6.1.15 refers to Cauchy sequences ofrationals instead ofreal num­
bers. 

Proof. Proposition 6.1.12 already tells us that every convergent 
sequence is Cauchy, so it suffices to show that every Cauchy se­
quence is convergent. 

Let (an)~=l be a Cauchy sequence. We know from Corollary 
6.1.17 that the sequence (an)~=l is bounded; by Lemma 6.4.13 
(or Proposition 6.4.12(c)) this implies that L- := liminfn-+oo ~ 
and£+:= limsupn-+oo an of the sequence are both finite. To show 
that the sequence converges, it will suffice by Proposition 6.4.12(f) 
to show that L- = £+. 

Now let c > 0 be any ~al number. Since (an)~=l is a Cauchy 
sequence, it must be everl.tually £-steady, so in particular there 

\ 
exists anN ~ 1 such that 1 the sequence (an)~=N is £-steady. In 
particular, we have aN- c ~ an ~ aN+ c for all n ~ N. By 
Proposition 6.3.6 (or Lemma 6.4.13) this implies that 

and hence by the definition of L- and L + (and Proposition 6.3.6 
again) 

Thus we have 
0 ~ L+- L- ~ 2c. 

But this is true for all c > 0, and L + and L- do not depend on c; 
so we must therefore have L + = L-. (If L + > L- then we could 
set c := (L+ -L-)/3 and obtain a contradiction.) By Proposition 
6.4.12(f) we thus see that the sequence converges. D 

Remark 6.4.20. In the language of metric spaces (see Chapter 
12), Theorem 6.4.18 asserts that the real numbers are a complete 
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metric space - that they do not contain "holes" the same way 
the rationals do. (Certainly the rationals have lots of Cauchy se­
quences which do not converge to other rationals; take for instance 
the sequence 1, 1.4, 1.41, 1.414, 1.4142, ... which converges to the 
irrational v'2.) This property is closely related to the least upper 
bound property (Theorem 5.5.9), and is one of the principal char­
acteristics which make the real numbers superior to the rational 
numbers for the purposes of doing analysis (taking limits, taking 
derivatives and integrals, finding zeroes of functions, that kind of 
thing), as we shall see in later chapters. 

Exercise 6.4.1. Prove Proposition 6.4.5. 

Exercise 6.4.2. State and prove analogues of Exercises 6.1.3 and 6.1.4 
for limit points, limit superior, and limit inferior. 

Exercise 6.4.3. Prove parts (c),(d),(e),(f) of Proposition 6.4.l2. (Hint: 
you can use earlier parts of the proposition to prove later ones.) 

Exercise 6.4.4. Prove Lemma 6.4.13. 

Exercise 6.4.5. Use Lemma 6.4.13 to prove Corollary 6.4.14. 

Exercise 6.4.6. Give an example of two bounded sequences (an)~=l 
and (bn)~=l such that an < bn for all n 2:: 1, but that sup(an)~=l f.. 
sup(bn)~=l· Explain why this does not contradict Lemma 6.4.13. 

Exercise 6.4. 7. Prove Corollary 6.4.17. Is the corollary still true if we 
replace zero in the statement of this Corollary by some other number? 

Exercise 6.4.8. Let us say that a sequence (an)~=M of real numbers has 
+oo as a limit point iff it has no finite upper bound, and that it has -oo 
as a limit point iff it has no finite lower bound. With this definition, show 
that limsupn-+ao an is a limit point of (an)~=M• and furthermore that it 
is larger than all the other limit points of (an)~=M; in other words, the 
limit superior is the largest limit point of a sequence. Similarly, show 
that the limit inferior is the smallest limit point of a sequence. (One can 
use Proposition 6.4.12 in the course of the proof.) 

Exercise 6.4.9. Using the definition in Exercise 6.4.8, construct a se­
quence (an)~=l which has exactly three limit points, at -oo, 0, and 
+oo. 

Exercise 6.4.10. Let (an)~=N be a sequence of real numbers, and let 
(bm)~=M be another sequence of real numbers such that each bm is a 
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limit point of (an)~=N· Let c be a limit point of (bm):=M· Prove that 
cis also a limit point of (an)~=N· (In other words, limit points of limit 
points are themselves limit points of the original sequence.) 

6.5 Some standard limits 

Armed now with the limit laws and the squeeze test, we can now 
compute a large number of limits. 

A particularly simple limit is that of the constant sequence 
c, c, c, c, ... ; we clearly have 

for any constant c (why?). 

limc=c 
n-+oo 

Also, in Proposition 6.1.11, we proved that limn-+oo 1/n = 0. 
This now implies 

Corollary 6.5.1. We have limn-+oo 1/nl/k = 0 for every integer 
k;:::: 1. 

Proof. From Lemma 5.6.6 we know that 1jn11k is a decreasing 
function of n, while being bounded below by 0. By Proposition 
6.3.8 (for decreasing sequences instead of increasing sequences) we 
thus know that this sequence converges to some limit L ;:::: 0: 

L = lim 1/nl/k. 
n-+oo 

Raising this to the kth power and using the limit laws (or more 
precisely, Theorem 6.1.19(b) and induction), we obtain 

Lk = lim 1/n. 
n-+oo 

By Proposition 6.1.11 we thus have Lk = 0; but this means that 
L cannot be positive (else Lk would be positive), soL = 0, and 
we are done. D 

Some other basic limits: 
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Lemma 6.5.2. Let x be a real number. Then the limit lilll.n-+oo xn 
exi,sts and is equal to zero when lxl < 1, exists and is equal to 1 
when x = 1, and diverges when x = -1 or when lxl > 1. 

proof. See Exercise 6.5.2. D 

Lemma 6.5.3. For any x > 0, we have limn-+oo x1fn = 1. 

Proof. See Exercise 6.5.3. D 

We will derive a few more standard limits later on, once we 
develop the root and ratio tests for series and for sequences. 

Exercise 6.5.1. Show that limn-+oo 1/nq = 0 for any rational q > 0. 
(Hint: use Corollary 6.5.1 and the limit laws, Theorem 6.1.19.) Conclude 
that the limit limn-+oo nq does not exist. (Hint: argue by contradiction 
using Theorem 6.1.19(e).) 

Exercise 6.5.2. Prove Lemma 6.5.2. (Hint: use Proposition 6.3.10, Ex­
ercise 6.3.4, and the squeeze test.) 

Exercise 6.5.3. Prove Lemma 6.5.3. (Hint: you may need to treat the 
cases x 2 1 and x < 1 separately. You might wish to first use Lemma 
6.5.2 to prove the preliminary result that for every c > 0 and every real 
number M > 0, there exists ann such that M 11n ~ 1 +c.) 

6.6 Subsequences 

This chapter has been devoted to the study of sequences ( an)~=l of 
real numbers, and their limits. Some sequences were convergent to 
a single limit, while others had multiple limit points. For instance, 
the sequence 

1.1, 0.1, 1.01, 0.01, 1.001, 0.001, 1.0001, ... 

has two limit points at 0 and 1 (which are incidentally also the 
lim inf and lim sup respectively), but is not actually convergent 
(since the lim sup and lim inf are not equal). However, while 
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this sequence is not convergent, it does appear to contain con­
vergent components; it seems to be a mixture 6£ two convergent 
subsequences, namely 

1.1, 1.01, 1.001, ... 

and 
0.1, 0.01, 0.001, .... 

To make this notion more precise, we need a notion of subse­
quence. 

Definition 6.6.1 (Subsequences). Let (an)~=O and (bn)~=O be 
sequences of real numbers. We say that (bn)~=O is a subsequence 
of ( an)~=O iff there exists a function f : N ---... N which is strictly 
increasing (i.e., f(n + 1) > f(n) for all n EN) such that 

bn = af(n) for all n E N. 

Example 6.6.2. If (an)~=O is a sequence, then (a2n)~=O is a sub­
sequence of (an)~=O' since the function f : N ---... N defined by 
f(n) := 2n is a strictly increasing function from N to N. Note 
that we do not assume f to be bijective, although. it is necessarily 
injective (why?). More informally, the sequence 

is a subsequence of 

Example 6.6.3. The two sequences 

1.1, 1.01, 1.001, ... 

and 
0.1, 0.01, 0.001, ... 

mentioned earlier are both subsequences of 

1.1, 0.1, 1.01, 0.01, 1.001, 1.0001, ... 
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The property of being a subsequence is reflexive and transitive, 
though not symmetric: 

Lemma 6.6.4. Let (an)~=O' (bn)~=O' and (Cn)~=O be sequences 
ofreal numbers. Then (an)~=O is a subsequence of(an)~=~· Fur­
thermore, if(bn)~=O is a subsequence of(an)~=O' and (Cn)~=O is a 
subsequence of (bn)~=O' then (Cn)~=O is a subsequence of (an)~=O· 

Proof. See Exercise 6.6.1. D 

We now relate the concept of subsequences to the concept of 
]imits and limit points. 

Proposition 6.6.5 (Subsequences related to limits). Let (an)~=O 
be a sequence of real numbers, and let L be a real number. Then the 
following two statements are logically equivalent (each one implies 
the other) : · 

(a) The sequence (an)~=O converges to L. 

(b) Every subsequence of (an)~=O converges to L. 

Proof. See Exercise 6.6.4. D 

Proposition 6.6.6 (Subsequences related to limit points). Let 
(an)~=O be a sequence of real numbers, and let L be a real number. 
Then the following two statements are logically equivalent. 

(a) L is a limit point of (an)~=O· 

(b) There exists a subsequence of ( an)~=O which converges to L. 

Proof. See Exercise 6.6.5. D 

Remark 6.6. 7. The above two propositions give a sharp contrast 
between the notion of a limit, and that of a limit point. When 
a sequence has a limit L, then all subsequences also converge to 
L. But when a sequence has L as a limit point, then only some 
subsequences converge to L. 
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We can now prove an important theorem in real analysis 
' . ' due to Bernard Bolzano (1781-1848) and Karl Weierstrass (1815-

1897): every bounded sequence has a convergent subsequence. 

Theorem 6.6.8 (Bolzano-Weierstrass theorem). Let (an)~=O be a 
bounded sequence (i.e., there exists a real number M > 0 such that 
I ani ~ M for all n E N). Then there is at least one subsequence 
of ( an)~=O which converges. 

Proof. Let L be the limit superior of the sequence (an)~=o· Since 
we have - M ~ an ~ M for all natural numbers n, it follows from 
the comparison principle (Lemma 6.4.13) that -M ~ L ~ M. In 
particular, Lis a real number (not +oo or -oo). By Proposition 
6.4.12(e), Lis thus a limit point of (an)~=o· Thus by Proposition 
6.6.6, there exists a subsequence of ( an)~=O which converges (in 
fact, it converges to L). 0 

Note that we could as well have used the limit inferior instead 
of the limit superior in the above argument. 

Remark 6.6.9. The Bolzano-Weierstrass theorem says that if 
a sequence is bounded, then eventually it has no choice but to 
converge in some places; it has "no room" to spread out and stop 
itself from acquiring limit points. It is not true for unbounded 
sequences; for instance, the sequence 1, 2, 3, ... has no convergent 
subsequences whatsoever (why?). In the language of topology, 
this means that the interval { x E R : - M ~ x ~. M} is compact, 
whereas an unbounded set such as the real line R is not compact. 
The distinction between compact sets and non-compact sets will 
be very important in later chapters - of similar importance to the 
distinction between finite sets and infinite sets. 

Exercise 6.6.1. Prove Lemma 6.6.4. 

Exercise 6.6.2. Can you find two sequences (an)~=O and (bn)~=O which 
are not the same sequence, but such that each is a subsequence of the 
other? 



6. 1. Real exponentiation, part II 175 

Ezercise 6.6.3. Let (an)~=O be a sequence which is not bounded. Show 
that there exists a subsequence (bn)~=O of (an)~=O such that limn->oo 1/bn 
6,osts and is equal to zero. (Hint: for each natural number j, introduce 
the quantity n; := min{n EN : lanl 2::: j}, first explaining why the set 
{n EN: !ani 2 j} is non-empty. Then set b; := anr) 

F}.&ercise 6.6.4. Prove Proposition 6.6.5. (Note that one of the two im­
plications has a very short proof.) 

Bzercise 6.6.5. Prove Proposition 6.6.6. (Hint: to show that (a) implies 
(b), define the numbers n; for each natural numbers j by the formula 
n· := min{n EN: !an- Ll :5 1/j}, explaining why the set {n EN: 
1~- Ll :5 1/j} is non-empty. Then consider the sequence anr) 

6. 7 Real exponentiation, part II 

We finally return to the topic of exponentiation of real numbers 
that we started in Section 5.6. In that seCtion we defined xq for all 
rational q and positive real numbers x, but we have not yet defined 
'Jl'- when a is real. We now rectify this situation using limits (in a 
similar way as to how we defined all the other standard operations 
on the real numbers). First, we need a·lemma: 

Lemma 6. 7.1 (Continuity of exponentiation). Let x > 0, and let 
a: be a real number. Let ( qn)~= 1 be any sequence of rational num­
bers converging to a. Then (xqn )~=1 is also a convergent sequence. 
Furthermore, if ( q~)~=1 is any other sequence of rational numbers 
converging to a, then (xq~ )~=1 has the same limit as (xqn )~=1 : 

lim xqn = lim xq~. 
n-+oo n-+oo 

Proof. There are three cases: x < 1, x = 1, and x > 1. The case 
x = 1 is rather easy (because then xq = 1 for all rational q). We 
shall just do the case x > 1, and leave the case x < 1 (which is 
very similar) to the reader. 

Let us first prove that (xqn )~=1 converges. By Proposition 
6.4.18 it is enough to show that (xqn )~=1 is a Cauchy sequence. 

To do this, we need to estimate the distance between xqn and 
xqm; let us say for the time being that qn 2: qm, so that xqn 2: xqm 
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(since x > 1). We have 

Since ( qn)~=1 is a convergent sequence, it has some upper bound 
M; since x > 1, we have xqm ~ xM. Thus -

Now let c > 0. We know by Lemma 6.5.3 that the sequence 
(x1/k)~1 is eventually cx-M-close to 1. Thus there exists some 
K ~ 1 such that 

lx1/K- 11 ~ cX-M. 

Now since (qn)~=1 is convergent, it is a Cauchy sequence, and 
so there is an N ~ 1 such that qn and qm are 1/ K -close for all 
n,m ~ N. Thus we have 

for every n, m ~ N such that qn ~ qm. By symmetry we also 
have this bound when n, m ~ N and qn ~ qm. ·Thus the sequence 
(xqn )~=N is c-steady. Thus the sequence (xqn )~=1 is eventually c­
steady for every c > 0, and is thus a Cauchy sequence as desired. 
This proves the convergence of (xqn )~= 1 . 

Now we prove the second claim. It will suffice to show that 

since the claim would then follow from limit laws (since xqn = 
I I xqn -qn xqn). 

Write rn := qn- q~; by limit laws we know that (rn)~= 1 con­
verges to 0. We have to show that for every c > 0, the sequence 
(xrn )~= 1 is eventually c-close to 1. But from Lemma 6.5.3 we 
know that the sequence (x11k)~1 is eventually c-close to 1. Since 
limk-+oo x-1/k is also equal to 1 by Lemma 6.5.3, we know that 
(x- 11k)~1 is also eventually c-close to 1. Thu~ we can find a 
K such that x 11K and x-1/K are both c-close to 1. But since 
(rn)~=1 is convergent to 0, it is eventually 1/K-close to 0, so that 
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eventually -1/K ~ rn ~ 1/K, and thus x-1/K ~ xrn ~ x11K 
In particular xrn is also eventually c-close to 1 (see Proposition 
4.3.7(f)), as desired. D 

We may now make the following definition. 

Definition 6.7.2 (Exponentiation to a real exponent). Let x > 0 
be real, and let a be a real number. We define the quantity xa 
by the formula xa = liiDn-+oo xqn, where ( qn)~=l is any sequence 
of rational numbers converging to a. 

Let us check that this definition is well-defined. First of all, 
given any real number a we always have at least one sequence 
(qn)~=l of rational numbers converging to a, by the definition of 
real numbers (and Proposition 6.1.15). Secondly, given any such 
sequence (qn)~=l• the limit limn-+oo xqn exists by Lemma 6. 7.1. 
Finally, even though there can be multiple choices for the sequence 
(qn)~=l• they all give the same limit by Lemma 6.7.1. Thus this 
definition is well-defined. 

If a is not just real but rational, i.e., a= q for some rational 
q, then this definition could in principle be inconsistent with our 
earlier definition of exponentiation in Section 6.7. But in this 
case a is clearly the limit of the sequence (q)~=l• so by definition 
xa = limn-+oo xq = xq. Thus the new definition of exponentiation 
is consistent with the old one. 

Proposition 6. 7 .3. All the results of Lemma 5. 6. 9, which held 
for rational numbers q and r, continue to hold for real numbers q 
and r. 

Proof. We demonstrate this for the identity xq+r = xqxr (i.e., the 
first part of Lemma 5.6.9(b)); the other parts are similar and are 
left to Exercise 6.7.1. The idea is to start with Lemma 5.6.9 for 
rationals and then take limits to obtain the corresponding results 
for reals. 

Let q and r be real numbers. Then we can write q = limn-+oo qn 
and r = limn-+oo rn for some sequences (qn)~=l and (rn)~=l of ra­
tionals, by the definition ofreal numbers (and Proposition 6.1.15). 
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Then by the limit laws, q + r is the limit of J qn + rn)~=l· By def. 
inition of real exponentiation, we have 

Xq+r = lim Xqn +rn j Xq = lim Xqn j XT = lim XTn. 
n~oo n-+oo n-+oo 

But by Lemma 5.6.9(b) (applied to mtional exponents) we have 
xqn+rn = xqnxTn. Thus by limit laws we have xq+r = xqxr, as 
desired. 0 

Exercise 6.7.1. Prove the remaining components of Proposition 6.7.3. 
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Series 

Now that we have developed a reasonable theory of limits of se­
quences, we will use that theory to develop a theory of infinite 

series 
00 

z:.:: an = am + am+l + am+2 + .... 
n=m 

But before we develop infinite series, we must first develop the 
theory of finite series. 

7.1 Finite series 

Definition 7.1.1 (Finite series). Let m, n be integers, and let 
(lli)f=m be a finite sequence of real numbers, assigning a real 
number ai to each integer i between m and n inclusive (i.e., 
m ::; i ::; n) . Then we define the finite sum (or finite series) 
E~=m ai by the recursive formula 

n 

L ai := 0 whenever n < m; 
i=m 

n+l ( n ) 
~ ai := ~ ai + an+l whenever n ~ m - 1. 

Thus for instance we have the identities 
m-2 m-1 

Lai=O; L ai = 0; 
i=m i=m 
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m+l m+2 
L ai = am+ am+li L ai =am +-am+l + am+2 
i=m i=m 

(why?). Because of this, we sometimes express L::~=m ai less for­
mally as 

n 

L ai = am + am+l + ... +an. 
i=m 

Remark 7.1.2. The difference between "sum" and "series" is a 
subtle linguistic one. Strictly speaking, a series is an expression 
of the form L::~=m ai; this series is mathematically (but not se­
mantically) equal to a real number, which is then the sum of that 
series. For instance, 1 + 2 + 3 + 4 + 5 is a series, whose sum is 
15; if one were to be very picky about semantics, one would not 
consider 15 a series and one would not consider 1 + 2 + 3 + 4 + 5 a 
sum, despite the two expressions having the same value. However, 
we will not be very careful about this distinction as it is purely 
linguistic and has no bearing on the mathematics; the expressions 
1+2+3+4+5 and 15 are the same number, and thus mathemati­
cally interchangeable, in the sense of the axiom of substitution (see 
Section A. 7), even if they are not semantically interchangeable. 

Remark 7.1.3. Note that the variable i (sometimes called the in­
dex of summation) is a bound variable (sometimes called a dummy 
variable); the expression L::~=m ai does not actually depend on 
any quantity named i. In particular, one can replace the index of 
summation i with any other symbol, and obtain the same sum: 

n n 

Lai= Lai. 
i=m j=m 

We list some basic properties of summation below. 

Lemma 7.1.4. 

(a) Let m ::; n < p be integers, and let ai be a real number 
assigned to each integer m::; i::; p. Then we have 

n P P 

L ai + L ai = L ai. 
i=m i=n+l i=m 
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(b) Let m ~ n be integers, k be another integer, and let ai be a 
real number assigned to each integer m :::;; i :::;; n. Then we 
have 

n n+k 

Lai= L aj-k· 
i=m j=m+k 

(c) Let m ~ n be integers, and let ai, bi be real numbers assigned 
to each integer m :::;; i :::;; n. Then we have 

(d) Let m :::;; n be integers, and let ai be a real number assigned 
to each integer m :::;; i :::;; n, and let c be another real number. 
Then we have 

(e) (Triangle inequality for finite series) Let m :::;; n be integers, 
and let ai be a real number assigned to each integer m ~ i :::;; 
n. Then we have 

n n 

ILail:::;; L !ail· 
i=m i=m 

(f) (Comparison test for finite series) Let m :::;; n be integers, 
and let ai, bi be real numbers assigned to each integer m :::;; 
i :::;; n. Suppose that ai :::;; bi for all m :::;; i :::;; n. Then we 
have 

i=m i=m 

Proof. See Exercise 7 .1.1. D 
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Remark 7.1.5. In the future we may omit some of the parenthe.. 
ses in series expressions, for instance we may write L:?=m ( ai + bi) 
simply as l:~=m ai + bi. This is reasonably safe from being mis­
interpreted, because the alternative interpretat~on (l:?=m ai) + bi 
does not make any sense (the index i in bi is meaningless outside 
of the summation, since i is only a dummy variable). 

One can use finite series to also define summations over finite 
sets: 

Definition 7.1.6 (Summations over finite sets). Let X be a finite 
set with n elements (where n E N), and let f : X ---... R be a 
function from X to the real numbers (i.e., f assigns a real number 
f(x) to each element x of X). Then we can define the finite 
sum l:xex f(x) as follows. We first select any bijection 9 from 
{ i E N : 1 ~ i ~ n} to X; such a bijection exists since X is 
assumed to have n elements. We then define 

n 

I: J(x) := I:!(9(i)). 
xEX i=l 

Example 7.1. 7. Let X be the three-element set X := {a, b, c}, 
where a, b, c are distinct objects, and let f : X ---... R be the func­
tion f(a) := 2, f(b) := 5, f(c) := -1. In order to compute the sum 
l:xex f(x), we select a bijection 9: {1, 2, 3}---... X, e.g., 9(1) :=a, 
9(2) := b, 9(3) := c. We then have 

3 

L f(x) = L f(9(i)) = f(a) + f(b) + f(c) = 6. 
xEX i=l 

One could pick another bijection from {1, 2, 3} to X, e.g., h(1) := 
c, h(2) := b, h(3) = c, but the end result is still the same: 

3 

L f(x) = L f(h(i)) = f(c) + f(b) + f(a) = 6. 
xEX i=l 

To verify that this definition actually does give a single, well­
defined value to Exex f(x), one has to check that different bijec­
tions 9 from {i E N : 1 ~ i ~ n} to X give the same sum. In 
other words, we must prove 
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proposition 7.1.8 (Finite summations are well-defined). Let X 
be a finite set with n elements (where n E N), let f : X ~ R be 
a Junction, and let g : { i E N : 1 ::; i ::; n} ~ X and h : { i E N : 
1 :=; i ::; n} ~ X be bijections. Then we have 

n n 

I: J(g(i)) =I: J(h(i)). 
i=l i=l 

Remark 7.1.9. The issue is somewhat more complicated when 
summing over infinite sets; see Section 8.2. 

Proof. We use induction on n; more precisely, we let P(n) be 
the assertion that "For any set X of n elements, any function 
f: X~ R, and any two bijections g, h from {i EN: 1::; i::; n} 
to X, ~e have L:~=l f(g(i)) = L:~=l f(h(i))". (More informally, 
P(n) is the assertion that Proposition 7.1.8 is true for that value 
of n.) We want to prove that P( n) is true for all natural numbers 
n. 

We first check the base case P(O). In this case L:?=l f(g(i)) 
and L:?=l f(h(i)) both equal to 0, by definition of finite series, so 
we are done. 

Now suppose inductively that P( n) is true; we now prove that 
P( n + 1) is true. Thus, let X be a set with n + 1 elements, let 
f : X ~ R be a function, and let g and h be bijections from 
{i EN: 1::; i::; n + 1} to X. We have to prove that 

n+l n+l 
L:J(g(i)) = L:J(h(i)). (7.1) 
i=l i=l 

Let x := g(n + 1); thus x is an element of X. By definition of 
finite series, we can expand the left-hand side of (7.1) as 

n+l ( n ) 
~ f(g(i)) = ~ f(g(i)) + x. 

Now let us look at the right-hand side of (7.1). Ideally we would 
like to have h( n + 1) also equal to x - this would allow us to use 
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the inductive hypothesis P(n) much more easily- but we cannot 
assume this. However, since h is a bijection; we do know that 
there is some index j, with 1 ~ j ~ n + 1, for which h(j) = x. We 
now use Lemma 7.1.4 and the definition of finite_ series to write 

n+l ( j ) ( n+l ) t; f(h(i)) = t; f(h(i)) + i~l f(h(i)) 

~ (~ f(h(i))) + f(h(j)) + (.~.'(h(i))) 

~ (~f(h(i))) +x+ (~f(h(i+ !))) 
We now define the function h: {i EN: 1 ~ i ~ n}----+ X- {x} by 
setting h(i) := h(i) when i < j and h(i) := h(i + 1) when i ~ j. 
We can thus write the right-hand side of (7.1) as 

where we have used Lemma 7.1.4 once again. Thus to finish the 
proof of (7.1) we have to show that 

n n 

I: t(g(i)) =I: t(h(i)). (7.2) 
i=l i=l 

But the function g (when restricted to { i E N : 1 ~ i ~ n}) 
is a bijection from {i E N : 1 ~ i ~ n} ----+ X- {x} (why?). 
The function h is also a bijection from { i E N : 1 ~ i ~ n} ----+ 
X- {x} (why? cf. Lemma 3.6.9). Since X- {x} has n elements 
(by Lemma 3.6.9), the claim 7.2 then follows directly from the 
induction hypothesis P( n). 0 

Remark 7.1.10. Suppose that X is a set, that P(x) is a property 
pertaining to an element x of X, and f : {y E X : P(y) is true} ----+ 
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R is a function. Then we will often abbreviate 

L f(x) 
xE{yEX:P(y) is true} 

as ExeX:P(x) is true f(x) or even as 'L:P(x) is true f(x) when there 
is no chance of confusion. For instance, 'L:neN:2<n<4 f(x) or 
E2~n::;4 f(x) is short-hand for 'L:ne{2,3,4} f(x) = ff2f + f(3) + 
f(4). 

The following properties of summation on finite sets are fairly 
obvious, but do require a rigourous proof: 

Proposition 7.1.11 (Basic properties of summation over finite 
sets). 

(a) If X is empty, and f : X ---? R is a function (i.e., f is the 
empty function}, we have 

L f(x) = 0. 
xEX 

(b) If X consists of a single element, X= {xo}, and f: X ---7 R 
is a function, we have 

L f(x) = f(xo). 
xEX 

(c) (Substitution, part I) If X is a finite set, f : X ---7 R is a 
function, and g : Y ---? X is a bijection, then 

L f(x) = L f(g(y)). 
xEX yEY 

(d) (Substitution, part II) Let n :::; m be integers, and let X be 
the set X := {i E Z : n :::; i :::; m}. If ai is a real number 
assigned to each integer i E X, then we have 

m 

Lai = Lai. 
i=n iEX 
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(e) Let X, Y be disjoint finite sets (so X n Y = 0), and f: 
X U Y ~ R is a function. Then we have 

L f(z) = (z= f(x)) + (2:: f(y)) · 
zEXUY xEX yEY 

(!) (Linearity, part I) Let X be a finite set, and let f : X ~ R 
and g : X ~ R be functions. Then 

L (!(x) + g(x)) = L f(x) + L g(x). 
xEX xEX xEX 

(g) (Linearity, part II) Let X be a finite set, let f : X ~ R be 
a function, and let c be a real number. Then 

L cf(x) = c L f(x). 
xEX xEX 

(h) (Monotonicity) Let X be a finite set, and let f : X ~ R 
and g : X ~ R be functions such that f(x) ~ g(x) for all 
x EX. Then we have 

L f(x) ~ L g(x). 
xEX xEX 

( i) (Triangle inequality) Let X be a finite set, and let f : X --+ 

R be a function, then 

I L f(x)l ~ L lf(x)l. 
xEX xEX 

Proof. See Exercise 7.1.2. 0 

Remark 7.1.12. The substitution rule in Proposition 7.1.1l(c) 
can be thought of as making the substitution x := g(y) (hence the 
name). Note that the assumption that g is a bijection is essential; 
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can you see why the rule will fail when g is not one-to-one or not 
onto? From Proposition 7.1.11(c) and (d) we see that 

m m 

l:ai = Laf(i) 
i=n i=n 

for any bijection f from the set { i E Z : n ~ i ~ m} to itself. 
Informally, this means that we can rearrange the elements of a 
finite sequence at will and still obtain the same value . 

. Now we look at double finite series - finite series of finite series 
_and how they connect with Cartesian products. 

Lemma 7.1.13. Let X, Y be finite sets, and let f: X x Y ---t R 
be a function. Then 

L(Lf(x,y)) = I: J(x,y). 
xEX yEY (x,y)EXxY 

Proof. Let n be the number of elements in X. We will use induc­
tion on n (cf. Proposition 7.1.8); i.e., we let P(n) be the assertion 
that Lemma 7.1.13 is true for any set X with n elements, and any 
finite set Y and any function f : X x Y ---t R. We wish to prove 
P( n) for all natural numbers n. 

The base case P(O) is easy, following from Proposition 7.1.11(a) 
(why?). Now suppose that P(n) is true; we now show that P(n+1) 
is true. Let X be a set with n + 1 elements. In particular, by 
Lemma 3.6.9, we can write X= X'U{xo}, where xo is an element 
of X and X':= X- {xo} has n elements. Then by Proposition 
7.l.ll(e) we have 

L (L f(x,y)) = ( L (L f(x,y))) + (:2:: f(xo,y)); 
zEX yEY xEX' yEY yEY 

by the induction hypothesis this is equal to 

L f(x,y) + (L f(xo,y)). 
(x,y)EX'xY yEY 
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By Proposition 7.1.11(c) this is equal to 

L f(x,y) + ( f(x, y)). 
(z,y)EX'xY (z,y)E{zo}xY 

By Proposition 7.1.11(e) this is equal to 

L f(x,y) 
(z,y)EXxY 

(why?) as desired. 0 

Corollary 7.1.14 (Fubini's theorem for finite series). Let X, y 
be finite sets, and let f : X x Y ~ R be a function. Then 

zEX yEY (z,y)EXXY 

L f(x,y) 
(y,z)EYxX 

= L(L t(x,y)). 
yEY zEX 

Proof. In light of Lemma 7.1.13, it suffices to show that 

L f(x, y) = L f(x, y). 
(z,y)EXxY (y,z)EYxX 

But this follows from Proposition 7.1.11(c) by applying the bijec­
tion h: X x Y ~ Y x X defined by h(x,y) := (y,x). (Why is this 
a bijection, and why does Proposition 7.1.11(c) give us what we 
want?) 0 

Remark 7.1.15. This should be contrasted with Example 1.2.5; 
thus we anticipate something interesting to happen when we move 
from finite sums to infinite sums. However, see Theorem 8.2.2. 

Exercise 7.1.1. Prove Lemma 7.1.4. (Hint: you will need to use induc­
tion, but the base case might not necessarily be at 0.) 
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Ezercise 7.1.2. Prove Proposition 7.1.11. (Hint: this is not as lengthy as 
it roay first appear. It is largely a matter of choosing the right bijections 
to turn these sums over sets into finite series, and then applying Lemma 

7J.4.) 
Ezercise 7.1.3. Form a definition for the finite products TI~=l ai and 
flzeX f(x). Which of the above results for finite series have analogues 
for finite products? (Note that it is dangerous to apply logarithms be­
cause some of the ai or f(x) could be zero or negative. Besides, we 
haven't defined logarithms yet.) 

Exercise 7.1.4. Define the factorial function n! for natural numbers n 
by the recursive definition 0! := 1 and (n + 1)! := n! x (n + 1). If x and 
y are real numbers, prove the binomial formula 

n 
( n _"' n! j n-j 
x+y) -L...J·t( _.) 1xy 

j=OJ.n J· 

for all natural numbers n. (Hint: induct on n.) 

Exercise 7.1.5. Let X be a finite set, let m be an integer, and for each 
x EX let (an(x))~=m be a convergent sequence of real numbers. Show 
that the sequence CExeX an(x))~=m is convergent, and 

lim "'an(x) = "' lim an(x). 
n-+oc L...J L...J n--+oo 

zEX zEX 

(Hint: induct on the cardinality of X, and use Theorem 6.1.19(a).) Thus 
we may always interchange finite sums with convergent limits. Things 
however get trickier with infinite sums; see Exercise 19.2.11. 

7.2 Infinite series 

We are now ready to sum infinite series. 

Definition 7.2.1 (Formal infinite series). A (formal) infinite se­
ries is any expression of the form 

00 

n=m 

where m is an integer, and an is a real number for any integer 
n 2:: m. We sometimes write this series as 
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At present, this series is only defined formally; we have not 
set this sum equal to any real number; th~ notation am + ~+ 1 + 
am+2 + . . . is of course designed to look very suggestively like a 
sum, but is not actually a finite sum beca~se of the " ... " symbol. 
To rigourously define what the series actually sums to, we need 
another definition. 

Definition 7.2.2 (Convergence of series). Let I:~=m an be a for­
mal infinite series. For any integer N ~ m, we define the Nth 

partial sum SN of this series to be SN := I:;;'=m an; of course, 
SN is a real number. If the sequence (SN )~=m converges to some 
limit Las N ---too, then we say that the infinite series I:~=m an is 
convergent, and converges to L; we also write L = I:~=m ~'and 
say that Lis the sum of the infinite series I:~=m an. If the partial 
sums SN diverge, then we say that the infinite series I:~=m an 
is divergent, and we do not assign any real number value to that 
series. 

Remark 7.2.3. Note that Proposition 6.1.7 shows that if a series 
converges, then it has a unique sum, so it is safe to talk about the 
sum L = I:~=m an of a convergent series. 

Examples 7.2.4. Consider the formal infinite series 

00 L 2-n = 2-1 + 2-2 + 2-3 + .... 
n=1 

The partial sums can be verified to equal 

N 

SN = L 2-n = 1 -TN 
n=1 

by an easy induction argument (or by Lemma 7.3.3 below); the 
sequence 1- 2-N converges to 1 as N ---t oo, a:nd hence we have 

00 

L2-n = 1. 
n=1 
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In particular, this series is convergent. On the other hand, if we 
consider the series 

00 

L 2n = 21 + 22 + 23 + ... 
n=1 

then the partial sums are 

N 

SN = L2n = 2N+l_ 2 
n=1 

and this is easily shown to be an unbounded sequence, and hence 
divergent. Thus the series 2:~=1 2n is divergent. 

Now we address the question of when a series converges. The 
following proposition shows that a series converges iff the "tail" 
of the sequence is eventually less than c for any c > 0: 

Proposition 7.2.5. Let l:~=m D.n be a formal series of real num­
bers. Then l:~=m D.n converges if and only if, for every real num­
ber c > 0, there exists an integer N ~ m such that 

q 

I L ani :S c for all p, q ~ N. 
n=p 

Proof. See Exercise 7.2.2. D 

This Proposition, by itself, is not very handy, because it is 
not so easy to compute the partial sums l:~=p an in practice. 
However, it has a number of useful corollaries. For instance: 

Corollary 7.2.6 (Zero test). Let l:~=m an be a convergent series 
of real numbers. Then we must have limn-+oo an = 0. To put this 
another way, iflimn-+oo an is non-zero or divergent, then the series 
E:m an is divergent. 

Proof. See Exe1dse 7.2.3. 0 



192 7. Series 

Example 7 .2. 7. The sequence an := 1 d~es not converge to 0 
as n ~ oo, so we know that E~=l 1 is a divergent series. (Note 
however that 1, 1, 1, 1, ... is a convergent sequence; convergence of 
series is a different notion from convergenc~ of sequences.) Si.m. 
ilarly, the sequence an:= (-1)n diverges, and in particular does 
not converge to zero; thus the series E~=l ( -1) n is also divergent. 

If a sequence (o.n)~=m does converge to zero, then the series 
E~=m an may or may not be convergent; it depends on the series. 
For instance, we will soon see that the series E~1 1/n is divergent 
despite the fact that 1/n converges to 0 as n ~ oo. 

Definition 7.2.8 (Absolute convergence). Let E~=m an be a for­
mal series of real numbers. We say that this series is absolutely 
convergent iff the series E~=m ian I is convergent. 

In order to distinguish convergence from absolute convergence, 
we sometimes refer to the former as conditional convergence. 

Proposition 7.2.9 (Absolute convergence test). Let E~=man 
be a formal series of real numbers. If this series is absolutely 
convergent, then it is also conditionally convergent. Furthermore, 
in this case we have the triangle inequality 

n=m n=m 

Proof. See Exercise 7.2.4. 0 

Remark 7.2.10. The converse to this proposition is not true; 
there exist series which are conditionally convergent but not ab­
solutely convergent. See Example 7.2.13. 

Remark 7.2.11. We consider the class of conditionally conver­
gent series to include the class of absolutely convergent series as 
a subclass. Thus when we say a statement sue~ as "E~=m an is 
conditionally convergent", this does not automatically mean that 
E~=m an is not absolutely convergent. If we wish to say that a 
series is conditionally convergent but not absolutely convergent, 
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then we will instead use a phrasing such as "E~=m an is only con­
ditionally convergent" , or "l:~=m an converges conditionally, but 
not absolutely". 

proposition 7.2.12 (Alternating series test). Let (an)~=m be a 
sequence of real numbers which are non-negative and decreasing, 
thus an ~ 0 and an ~ an+l for every n ~ m. Then the series 
E~==m( -!)nUn is convergent if and only if the sequence an con­
verges to 0 as n ~ oo. 

proof. From the zero test, we know that if l:~=m(-l)nUn is a 
convergent series, then the sequence ( -1 )nan converges to 0, which 
i.Inplies that an also converges to 0, since (-!)nan and an have the 
same distance from 0. 

Now suppose conversely that an converges to 0. For each N, 
Jet BN be the partial sum SN := l:~=m ( -1 )nan; our job is to 
show that SN converges. Observe that 

SN+2 = SN + ( -l)N+laN+l + ( -l)N+2aN+2 

= SN + ( -l)N+l(aN+l- aN+2)· 

But by hypothesis, (aN+l- aN+2) is non-negative. Thus we have 
SN+2 ~ SN when N is odd and SN+2 ~ SN if N is even. 

Now suppose that N is even. From the above discussion and 
induction we see that S N +2k ~ S N for all natural numbers k 
(why?). Also we have SN+2k+l ~ SN+l = SN - aN+l (why?). 
Finally, we have SN+2k+l = SN+2k - aN+2k+l :::; SN+2k (why?). 
Thus we have 

SN- aN+l ~ SN+2k+l ~ SN+2k ~ SN 

for all k. In particular, we have 

SN- aN+l ~ Sn ~ SN for all n ~ N 

(why?). In particular, the sequence Sn is eventually aN+1-steady. 
But the sequence aN converges to 0 as N ~ oo, thus this implies 
that Sn is eventually c:-steady for every c: > 0 (why?). Thus Sn 
converges, and so the series E~=m( -!)nan is convergent. D 
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Example 7.2.13. The sequence (1/n)~=l is--non-negative, de­
creasing, and converges to zero. Thus E~=l ( -1)n /n is convergent 
(but it is not absolutely convergent, because E~=1 1/n diverges 
see Corollary 7.3.7). Thus absolute divergence does not impl; 
conditional divergence, even though absolute convergence implies 
conditional convergence. 

Some basic identities concerning convergent series are collected 
below. 

Proposition 7.2.14 (Series laws). 

(a) If E~=m an is a series of real numbers converging to x, and 
E~=m bn is a series of real numbers converging toy, then 
E~=m (an+ bn) is also a convergent series, and converges to 
x + y. In particular, we have 

00 00 00 

L(an+bn)= :Lan+ Lbn. 
n=m n=m n=m 

(b) If E~=m an is a series of real numbers converging to x, and 
c is a real number, then E~=m ( ca~) is also a convergent 
series, and converges to ex. In particular, we have 

n=m n=m 

(c) Let E~=m an be a series of real numbers, and let k ~ 0 be an 
integer. If one of the two series E~=m an and E~=m+k lln 
are convergent, then the other one is also, and we have the 
identity 

oo m+k-1 oo 
Lan= L an+ L an. 
n=m n=m n=m+k 

(d) Let E~=m an be a series of real numbers converging to x, 
and let k be an integer. Then E~=m+k an-k also converge3 
to x. 
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proof. See Exercise 7.2.5. 0 

From Proposition 7.2.14(c) we see that the convergence of a se­
ries does not depend on the first few elements of the series (though 
of course those elements do influence which value the series con­
verges to). Because of this, we will usually not pay much attention 
as to what the initial index m of the series is. 

There is one type of series, called telescoping series, which are 
easy to sum: 

Lemma 7.2.15 (Telescoping series). Let (an)~=O be a sequence 
of real numbers which converge to 0, i.e., limn-+oo an = 0. Then 
the series E~=0(an- an+l) converges to ao. 

Proof. See Exercise 7.2.6. D 

Exercise 7.2.1. Is the series E:'=l ( -1)n convergent or divergent? Justify 
your answer. Can you now resolve the difficulty in Exan1ple 1.2.2? 

Exercise 7.2.2. Prove Proposition 7.2.5. (Hint: use Proposition 6.1.12 
and Theorem 6.4.18.) 

Exercise 7.2.3. Use Proposition 7.2.5 to prove Corollary 7.2.6. 

Exercise 7.2.4. Prove Proposition 7.2.9. (Hint: use Proposition 7.2.5 
and Proposition 7.1.4(e).) 

Exercise 7.2.5. Prove Proposition 7.2.14. (Hint: use Theorem 6.1.19.) 

Exercise 7.2.6. Prove Lemma 7.2.15. (Hint: First work out what the 
partial sums E::=o(an -an+l) should be, and prove your assertion using 
induction.) 

7.3 Sums of non-negative numbers 

Now we specialize the preceding discussion in order to consider 
sums E~=m an where all the terms an are non-negative. This 
situation comes up, for instance, from the absolute convergence 
test, since the absolute value JanJ of a real number an is always 
non-negative. Note that when all the terms in a series are non­
negative, there is no distinction between conditional convergence 
and absolute convergence. 
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Suppose 'L:~=m an is a series of non-neg..ative numbers. Then 
the partial sums SN := 'L:~=m an are increasing, i.e., SN+l ;::: SN 
for all N ;:::: m (why?). From Proposition 6.3.8 and Corollary 
6.1.17, we thus see that the sequence (SN ).~=m is convergent if 
and only if it has an upper bound M. In other words, we have 
just shown 

Proposition 7.3.1. Let 'L:~=m an be a formal series of non­
negative real numbers. Then this series is convergent if and only 
if there is a real number M such that 

N 

I: an ~ M for all integers N ;:::: m. 
n=m 

A simple corollary of this is 

Corollary 7.3.2 (Comparison test). Let 'L:~=m an and 'L:~=m bn 
be two formal series of real numbers, and suppose that !ani ~ bn 
for all n ;:::: m. Then if 'L:~=m bn is convergent, then 'L:~=m an is 
absolutely convergent, and in fact 

00 00 00 

I I: ani ~ I: !ani ~ I: bn· 
n=m n=m n=m 

Proof. See Exercise 7.3.1. D 

We can also run the comparison test in the contrapositive: if 
we have I an I ~ bn for all n ;:::: m, and 'L:~=m an is not absolutely 
convergent, then 'L:~=m bn is conditionally divergent. (Why does 
this follow immediately from Corollary 7.3.2?) 

A useful series to use in the comparison test is the geometric 
series 

00 

I.:xn, 
n=O 

where x is some real number: 
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Leiilma 7.3.3 (Geometric series). Let x be a real number. If 
Jzl2: 1, then the series 'L:~=O xn is divergent. If however JxJ < 1, 
_then the series is absolutely convergent and 

00 

l:xn = 1/(1-x). 
n=O 

proof. See Exercise 7.3.2. D 

We now give a useful criterion, known as the Cauchy criterion, 
to test whether a series of non-negative but decreasing terms is 
convergent. 

proposition 7.3.4 (Cauchy criterion). Let (an)~=1 be a decreas­
ing sequence of non-negative real numbers (so an ;:::: 0 and an+l ~ 
an for all n ;:::: 1). Then the series 2::~=1 an is convergent if and 
only if the series 

is convergent. 

00 

I: 2k a2k = a1 + 2a2 + 4a4 + 8as + ... 
k=O 

Remark 7.3.5. An interesting feature of this criterion is that it 
only uses a small number of elements of the sequence an (namely, 
those elements whose index n is a power of 2, n = 2k) in order to 
determine whether the whole series is convergent or not. 

Proof. Let SN := 2::;:=1 an be the partial sums of 2::~=1 an, and let 
TK := L::f=o 2ka2k be the partial sums of L::f=o 2ka2k. In light of 
Proposition 7.3.1, our task is to show that the sequence (SN)N=l 
is bounded if and only if the sequence (TK )'K=o is bounded. To 
do this we need the following claim: 

Lemma 7.3.6. For any natural number K, we have S2K+L; ~ 
TK ~ 282K· 

Proof. We use induction on K. First we prove the claim when 
K = 0, i.e. 
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This becomes 
a1 ~ a1 ~ 2a1 

which is clearly true, since a1 is non-negative. 

7. Series 

Now suppose the claim has been proven forK, and now we 
try to prove it forK+ 1: 

Clearly we have 

Also, we have (using Lemma 7.1.4(a) and (f), and the hypothesis 
that the an are decreasing) 

2K+l 

S2K+1 = S2K + L 

and hence 

Similarly we have 

2K+2_1 

S 2K+L 1 = s2K+L1 + L an 
n=2K+l 

2K+2_1 

~ S 2K+LI + L a 2K+l 

n=2K+l 

S 2K+l 
= 2K+1-l + a 2K+l· 

Combining these inequalities with the induction hypothesis 

we obtain 
S2K+Ll ~ TK+l ~ 2S2K+l 

as desired. This proves the claim. 0 
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From this claim we see that if (SN )N=l is bounded, then 
(S2K )J(=o is bounded, and hence (TK )K=O is bounded. Conversely, 
if (TK )K'=o is bounded, then the claim implies that S2KH_1 is 
bounded, i.e., there is an M such that S2KH_ 1 :::; M for all nat­
ural numbers K. But one can easily show (using induction) that 
2K+1 - 1 ;:::: K + 1, and hence that SK+l :::; M for all natural 
numbers K, hence (SN )N=l is bounded. D 

Corollary 7.3. 7. Let q > 0 be a rational number. Then the series 
E~=1 1/nq is convergent when q > 1 and divergent when q :::; 1. 

Proof. The sequence (1/nq)~=l is non-negative and decreasing (by 
Lemma 5.6.9(d)), and so the Cauchy criterion applies. Thus this 
series is convergent if and only if 

is convergent. But by the laws of exponentiation (Lemma 5.6.9) 
we can rewrite this as the geometric series 

As mentioned earlier, the geometric series L~o xk converges if 
and only if JxJ < 1. Thus the series I::'=1 1/nq will converge 
if and only if J21-qJ < 1, which happens if and only if q > 1 
(why? Try proving it just using Lemma 5.6.9, and without using 
logarithms). D 

In particular, the series I::'=1 1/n (also known as the har­
monic series) is divergent, as claimed earlier. However, the series 
E:'=1 1/n2 is convergent. 

Remark 7.3.8. The quantity I::'=1 1/nq, when it converges, is 
called ((q), the Riemann-zeta function of q. This function is very 
important in number theory, and in particular in the distribution 
of the primes; there is a very famous unsolved problem regarding 
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this function, called the Riemann hypothes~, but to discuss it 
further is far beyond the scope of this text. I will mention however 
that there is a US$ 1 million prize - and instant fame among all 
mathematicians - attached to the solution to this problem. 

Exercise 7.3.1. Use Proposition 7.3.1 to prove Corollary 7.3.2. 

Exercise 7.3.2. Prove Lemma 7.3.3. (Hint: for the first part, use the zero 
test. For the second part, first use induction to establish the geometric 
series formula 

N 

L xn = (1- xN+l)/(1- x) 
n=O 

and then apply Lemma 6.5.2.) 

Exercise 7.3.3. Let E::'=o an be an absolutely convergent series of real 
numbers such that E::'=o lanl = 0. Show that an= 0 for every natural 
number n. 

7.4 Rearrangement of series 

One feature of finite sums is that no matter how one rearranges 
the terms in a sequence, the total sum is the same. For instance, 

A more rigourous statement of this, involving bijections, has al­
ready appeared earlier, see Remark 7.1.12. 

One can ask whether the same thing is true for infinite series. 
If all the terms are non-negative, the answer is yes: 

Proposition 7 .4.1. Let :E~=O an be a convergent series of non­
negative real numbers, and let f : N ~ N be a bijection. Then 
:E~=O a f(m) is also convergent, and has the same sum: 

00 00 

L:an = L af(m)· 
n=O m=O 



7.4· Rearrangement of series 201 

proof. We introduce the partial sums SN := ~:=o an and TM := 

'E~=Oaf(m)· We know that the sequences (SN)~=O and (TM)~=O 
are increasing. Write L := sup(SN )~=O and L' := sup(TM )~=o· 
By Proposition 6.3.8 we know that L is finite, and in fact L = 

'E:'=o an; by Proposition 6.3.8 again we see that we will thus be 
done as soon as we can show that L' = L. 

Fix M, and let Y be the set Y :={mEN: m::; M}. Note 
that f is a bijection between Y and f(Y). By Proposition 7.1.11, 
we have 

M 

TM = L af(m) = L af(m) = L an. 
m=O mEY nE/(Y) 

The sequence (f(m))f'!=o is finite, hence bounded, i.e., there exists 
an N such that f ( m) ::; N for all m ::; N. In particular f (Y) is 
a subset of { n E N : n ::; N}, and so by Proposition 7.1.11 again 
(and the assumption that all the an are non-negative) 

N 

TM= L an::; L an=Lan=SN. 
nEf(Y) nE{nEN:n~N} n=O 

But since (SN )1V=o has a supremum of L, we thus see that SN ::; L, 
and hence that TM ::; L for all M. Since L' is the least upper 
bound of (TM )'M=o' this implies that L' ::; L. 

A very similar argument (using the inverse f-1 instead of f) 
shows that every S N is bounded above by L', and hence L ::; L'. 
Combining these two inequalities we obtain L = L', as desired. D 

Example 7.4.2. From Corollary 7.3.7 we know that the series 

00 

L 1/n2 = 1 + 1/4 + 1/9 + 1/16 + 1/25 + 1/36 + ... 
n=l 

is convergent. Thus, if we interchange every pair of terms, to 
obtain 

1/4 + 1 + 1/16 + 1/9 + 1/36 + 1/25 + ... 
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we know that this series is also convergent, and has the same sum. 
(It turns out that the value of this sum is ((2) ~ 1r2 /6, a fact which 
we shall prove in Exercise 16.5.2.) 

Now we ask what happens when the series is not non-negative. 
Then as long as the series is absolutely convergent, we can still do 
rearrangements: 

Proposition 7 .4.3 (Rearrangement of series). Let L~=O an be an 
absolutely convergent series of real numbers, and let f : N ~ N be 
a bijection. Then I::=o a/(m) is also absolutely convergent, and 
has the same sum: 

00 00 

I: an= 2: a/(m)· 
n=O m=O 

Proof. (Optional) We apply Proposition 7.4.1 to the infinite s& 
ries L~=O lanl, which by hypothesis is a convergent series of non­
negative numbers. If we write L := L~=O lanl, then by Proposi­
tion 7.4.1 we know that I::=o la/(m)l also converges to L. 

Now write L' := I:~=O an. We have to show that I::=o a/(m) 
also converges to L'. In other words, given any c > 0, we have to 
find an M such that I:~~o a/(m) is c-close to L' for every M' ~ M. 

Since L~=O lanl is convergent, we can use Proposition 7.2.5 
and find an N1 such that L~=p I ani ~ c/2 for all p, q ~ N1. Since 

L~=O an converges to L', the partial sums I::=o an also converge 
to L', and so there exists N ~ N1 such that I::=oan is c/2-close 
to L'. 

Now the sequence (f-1(n));[=O is finite, hence bounded, so 
there exists an M such that f- 1(n) ~ M for all 0 ~ n ~ N. In 
particular, for any M' ~ M, the set {f(m) : m EN; m ~ M'} 
contains {n E N : n ~ N}(why?). So by Proposition 7.1.11, for 
any M' ~ M 

M' 

2: a/(m) = 
m=O nE{/(m):mEN;m~M'} n=O nEX 
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where X is the set 

X= {f(m): mE N;m::; M'}\{n EN: n::; N}. 

The set X is finite, and is therefore bounded by some natural 
nUIIlber q; we must therefore have 

X~ {n EN: N + 1::; n::; q} 

(why?). Thus 

q 

I L ani ::; L lanl ::; L lanl ::; c/2 
nEX nEX n=N+l 

by our choice of N. Thus L:~~o af(m) is c/2-close to L:~=O an, 

which as mentioned before is c/2-close to L'. Thus L:~~o af(m) is 
g-elose to L for all M' ~ M, as desired. 0 

Surprisingly, when the series is not absolutely convergent, then 
the rearrangements are very badly behaved. 

Example 7 .4.4. Consider the series 

1/3- 1/4 + 1/5- 1/6 + 1/7- 1/8 + .... 

This series is not absolutely convergent (why?), but is condition­
ally convergent by the alternating series test, and in fact the sum 
can be seen to converge to a positive number (in fact, it con­
verges to ln(2)- 1/2 = 0.193147 ... , see Example 15.5.7). Basi­
cally, the reason why the sum is positive is because the quantities 
(1/3- 1/4), (1/5- 1/6), (1/7- 1/8) are all positive, which can 
then be used to show that every partial sum is positive. (Why? 
you have to break into two cases, depending on whether there are 
an even or odd number of terms in the partial sum.) 

If, however, we rearrange the series to have two negative terms 
to each positive term, thus 

1/3- 1/4- 1/6 + 1/5- 1/8 -1/10 + 1/7- 1/12-1/14 + ... 
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then the partial sums quickly become negative (this is because 
(1/3 -1/4 -1/6), (1/5 -1/8 -1/9), and more generally (1/(2n+ 
1)-1/4n-1/(4n+2)) are all negative), and so this series converges 
to a negative quantity; in fact, it converges to 

(ln(2)- 1)/2 = -.153426 .... 

There is in fact a surprising result of Riemann, which shows that 
a series which is conditionally convergent but not absolutely con~ 
vergent can in fact be rearranged to converge to any value (or 
rearranged to diverge, in fact - see Exercise 8.2.6); see Theorem 
8.2.8. 

To summarize, rearranging series is safe when the series is ab­
solutely convergent, but is somewhat dangerous otherwise. (This 
is not to say that rearranging an absolutely divergent series nee~ 
essarily gives you the wrong answer - for instance, in theoretical 
physics one often performs similar maneuvres, and one still ( usu~ 
ally) obtains a correct answer at the end- but doing so is risky, 
unless it is backed by a rigourous result such as Proposition 7.4.3.) 

Exercise 7.4.1. Let E:=o an be an absolutely convergent series of real 
numbers. Let f: N--+ N be an increasing function (i.e., f(n+l) > f(n) 
for all n E N). Show that E:=o af(n) is also an absolutely convergent 
series. (Hint: try to compare each partial sum of E:=o af(n) with a 
(slightly different) partial sum of E:=o an.) 

7.5 The root and ratio tests 

Now we can state and prove the famous root and ratio tests for 
convergence. 

Theorem 7.5.1 (Root test). Let L:~=m an be a series of real 
numbers, and let a:= limsupn-+oo lanl 11n. 

(a) If a < 1, then the series L:~=m an is absolutely convergent 
(and hence conditionally convergent). 
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(b) If a > 1, then the series L:~=m an is conditionally divergent 
(and hence cannot be absolutely convergent). 

(c) If a= 1, we cannot assert any conclusion. 

proof. First suppose that a < 1. Note that we must have a ~ 0, 
since lanl 1/n ~ 0 for every n. Then we can find an c > 0 such that 
0 < a+c < 1 (for instance, we can set c := (1-a)/2). By Proposi­
tion 6.4.12(a), there exists anN~ m such that lanl 1/n ~ a+c for 
all n ~ N. In other words, we have I ani ~ (a+ c)n for all n ~ N. 
But from the geometric series we have that L:~=N(a + c)n is ab­
solutely convergent, since 0 < a+ c < 1 (note that the fact that 
we start from N is irrelevant by Proposition 7.2.14(c)). Thus by 
the comparison test, we see that :E~=N an is absolutely conver­
gent, and thus :E~=m an is absolutely convergent, by Proposition 
7.2.14(c) again. 

Now suppose that a > 1. Then by Proposition 6.4.12(b), 
we see that for every .N ~ m there exists an n ~ N such that 
lanl 1/n ~ 1, and hence that lanl ~ 1. In particular, (an)~=N is 
not 1-close to 0 for any N, and hence (an)~=m is not eventually 
1-close to 0. In particular, (an)~=m does not converge to zero. 
Thus by the zero test, :E~=m an is conditionally divergent. 

For a= 1, see Exercise 7.5.3. D 

The root test is phrased using the limit superior, but of course 
iflimn-+oo lanl 1/n converges then the limit is the same as the limit 
superior. Thus one can phrase the root test using the limit instead 
of the limit superior, but only when the limit exists. 

The root test is sometimes difficult to use; however we can 
replace roots by ratios using the following lemma. 

Lemma 7 .5.2. Let ( en)~=m be a sequence of positive numbers. 
Then we have 

lim inf Cn+1 ~ lim inf cljn ~ lim sup cljn ~ lim sup Cn+l . 
n-+oo Cn n-+oo n-+oo n-+oo Cn 

Proof. There are three inequalities to prove here. The middle 
inequality follows from Proposition 6.4.12(c). We shall prove the 
last inequality, and leave the first one to Exercise 7.5.1. 
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Write L := limsupn-+oo ~1 • If L = +oo,then there is nothing 
to prove (since x ~ +oo for every extended real number x), so we 
may assume that Lis a finite real number. (Note that L cannot 
equal -oo; why?). Since ~:1 is always positive, we know that 
L?: 0. 

Let c > 0. By Proposition 6.4.12(a), we know that there exists 
anN?: m such that ~1 ~ L+c for all n?: N. This implies that 
Cn+1 ~ en(L +c) for all n?: N. By induction this implies that 

Cn ~ CN(L + c)n-N for all n?: N 

(why?). If we write A:= CN(L + c)-N, then we have 

and thus 
c;/n ~ Alfn(L +c) 

for all n?: N. But we have 

lim A11n(L+c)=L+c 
n-+oo 

by the limit laws (Theorem 6.1.19) and Lemma 6.5.3. Thus by 
the comparison principle (Lemma 6.4.13) we have 

lim sup c;/n ~ L +c. 
n-+oo 

But this is true for all c > 0, so this must imply that 

lim sup c;/n. ~ L 
n-+oo 

(why? prove by contradiction), as desired. 0 

From Theorem 7.5.1 and Lemma 7.5.2 (and Exercise 7.5.3) we 
have 

Corollary 7.5.3 (Ratio test). Let L:~=m an be a series of non­
zero numbers. (The non-zero hypothesis is required so that the 
ratios lan+II/Ianl appearing below are well-defined.) 
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• If limsupn--+oo ~~~:t 1 < 1, then the series L~=m an is ab­
solutely convergent (hence conditionally convergent). 

• If lim infn--+oo ~~~!t 1 > 1, then the series L~=m an is con­
ditionally divergent (and thus cannot be absolutely conver­
gent). 

• In the remaining cases, we cannot assert any conclusion. 

Another consequence of Lemma 7.5.2 is the following limit: 

Proposition 7.5.4. We have limn--+oo n 11n = 1. 

Proof. By Lemma 7.5.2 we have 

lim sup n11n ~lim sup (n + 1)/n =lim sup 1 + 1/n = 1 
n--+oo n--+oo n--+oo 

by Proposition 6.1.11 and limit laws (Theorem 6.1.19). Similarly 
we have 

lim inf n11n ;:::: lim inf (n + 1)/n =lim inf 1 + 1/n = 1. 
n-+oo n--+oo n-+oo 

The claim then follows from Proposition 6.4.12(c) and (f). D 

Remark 7 .5.5. In addition to the ratio and root tests, another 
very useful convergence test is the integml test, which we will cover 
in Proposition 11.6.4. 

Exercise 7.5.1. Prove the first inequality in Lemma 7.5.2. 

Exercise 7.5.2. Let x be a real number with JxJ < 1, and q be a real 
number. Show that the series I::'=l nqxn is absolutely convergent, and 
that limn-+oo nqxn = 0. 

Exercise 7.5.3. Give an example of a divergent series I::'= I an of positive 

numbers an such that limn-+oo an+lfan = limn-+oo alJn = 1, and give 
an example of a convergent series I::'=l bn of positive ~umbers bn such 

that limn-+oo bn+l/bn = limn-+oo blJn = 1. (Hint: use Corollary 7.3.7.) 
This shows that the ratio and root tests can be inconclusive even when 
the summands are positive and all the limits converge. 



Chapter 8 

Infinite sets 

We now return to the study of set theory, and specifically to the 
study of cardinality of sets which are infinite (i.e., sets which do 
not have cardinality n for any natural number n), a topic which 
was initiated in Section 3.6. 

8.1 Countability 

From Proposition 3.6.14(c) we know that if X is a finite set, and 
Y is a proper subset of X, then Y does not have equal cardinal­
ity with X. However, this is not the case for infinite sets. For 
instance, from Theorem 3.6.12 we know that the set N of natural 
numbers is infinite. The set N- {0} is also infinite, thanks to 
Proposition 3.6.14(a) (why?), and is a proper subset of N. How­
ever, the set N- {0}, despite being "smaller" than N, still has 
the same cardinality as N, because the function f: N -t N- {0} 
defined by f(n) := n+l, is a bijection from N toN -{0}. (Why?) 
This is one characteristic of infinite sets; see Exercise 8.1.1. 

We now distinguish two types of infinite sets: the countable 
sets and the uncountable sets. 

Definition 8.1.1 (Countable sets). A set X is said to be countably 
infinite (or just countable) iff it has equal cardinality with the 
natural numbers N. A set X is said to be at most countable iff it 
is either countable or finite. We say that a set is uncountable if it 
is infinite but not countable. 
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Jtelllark 8.1.2. Countably infinite sets are also called denumer­
able sets. 

Exam.Ples 8.1.3. From the preceding discussion we see that N 
is countable, and so is N- {0}. Another example of a countable 
set is the even natural numbers {2n: n EN}, since the function 
f(n) := 2n provides a bijection between N and the even natural 
numbers (why?). 

Let X be a countable set. Then, by definition, we know that 
there exists a bijection f : N -t X. Thus, every element of X 
can be written in the form f(n) for exactly one natural number 
11• Informally, we thus have 

X= {f(O), /(1), /(2), /(3), ... }. 

Thus, a countable set can be arranged in a sequence, so that we 
have a zeroth element f(O), followed by a first element /(1), then 
a. second element f(2), and so forth, in such a way that all these 
elements f ( 0) , f ( 1), f ( 2), . . . are all distinct, and together they fill 
out all of X. (This is why these sets are called countable; because 
we can literally count them one by one, starting from f(O), then 
/(1), and so forth.) 

Viewed in this way, it is clear why the natural numbers 

N={0,1,2,3, ... }, 

the positive integers 

N- {0} = {1, 2,3, ... }, 

and the even natural numbers 

{0, 2, 4, 6, 8, ... } 

are countable. However, it is not as obvious whether the integers 

z = { ... , -3, -2, -1, 0, 1, 2, 3, ... } 

or the rationals 
Q = {0, 1/4,-2/3, ... } 
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or the reals 
R = {0, .J2, -1r, 2.5, ... } 

are countable or not; for instance, it is not yet clear whether we 
can arrange the real numbers in a sequence f(O), f(1), f(2), .... 
We will answer these questions shortly. 

From Proposition 3.6.4 and Theorem 3.6.12, we know that 
countable sets are infinite; however it is not so clear whether all 
infinite sets are countable. Again, we will answer those questions 
shortly. We first need the following important principle. 

Proposition 8.1.4 (Well ordering principle). Let X be a non­
empty subset of the natural numbers N. Then there exists exactly 
one element n E X such that n ::=:; m for all m E X. In other 
words, every non-empty set of natural numbers has a minimum 
element. 

Proof. See Exercise 8.1.2. 0 

We will refer to the element n given by the well-ordering prin­
ciple as the minimum of X, and write it as min(X). Thus for in­
stance the minimum of the set {2, 4, 6, 8, ... } is 2. This minimum 
is clearly the same as the infimum of X, as defined in Definition 
5.5.10 (why?). 

Proposition 8.1.5. Let X be an infinite subset of the natural 
numbers N. Then there exists a unique bijection f : N ---... X which 
is increasing, in the sense that f(n + 1) > f(r{) for all n EN. In 
particular, X has equal cardinality with N and is hence countable. 

Proof. We will give an incomplete sketch of the proof, with some 
gaps marked by a question mark (?); these gaps will be filled in 
Exercise 8.1.3. 

We now define a sequence ao, a1, a2, ... of natural numbers 
recursively by the formula 

an := min { x E X : x =J am for all m < n}. 

Intuitively speaking, ao is the smallest element of X; a1 is the 
second smallest element of X, i.e., the smallest element of X once 
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ao is removed; a2 is the third smallest element of X; and so forth. 
Observe that in order to define an, one only needs to know the 
values of am for all m < n, so this definition is recursive. Also, 
gince X is infinite, the set { x E X : x =/: am for all m < n} is 
infinite(?), hence non-empty. Thus by the well-ordering principle, 
the minimum, min{x E X : x =/: am for all m < n} is always 
well-defined. 

One can show(?) that an is an increasing sequence, i.e. 

and in particular that(?) an =/: am for all n =/: m. Also, we have(?) 
an E X for each natural number n. 

Now define the function f: N---... X by f(n) :=an. From the 
previous paragraph we know that f is one-to-one. Now we show 
that f is onto. In other words, we claim that for every x E X, 
there exists an n such that an = x. 

Let x E X. Suppose for sake of contradiction that an =/: x 
for every natural number n. Then th!; <lhpties(?) that x is an 
element of the set { x E X : x =/: am for all m < n} for all n. By 
definition of an, this implies that x ~ an for every natural number 
~.~However, since an is an increasing sequence, we have an :;:::::: n 
(?), and hence x ~ n for every natural number n. In particular 
we have x ~ x + 1, which is a contradiction. Thus we must have 
an = x for some natural number n, and hence f is onto. 

Since f : N ---... X is both one-to-one and onto, it is a bijection. 
We have thus found at least one increasing bijection f from N 
to X. Now suppose for sake of contradiction that there was at 
least one other increasing bijection g from N to X which was not 
equal to f. Then the set {n E N : g(n) =/: f(n)} is non-empty, 
and define m := min{n E N : g(n) =/: f(n)}, thus in particular 
g(m) =/: f(m) =am, and g(n) = f(n) =an for all n < m. But we 
then must have(?) 

g(m) = min{x EX: x =/:at for all t < m} =am, 

a contradiction. Thus there is no other increasing bijection from 
N to X other than f. D 
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Since finite sets are at most countable by definition, we thUs 
haye 

Corollary 8.1.6. All subsets of the natural numbers are at most 
countable. 

Corollary 8.1. 7. If X is an at most countable set, and Y is a 
subset of X, then Y is at most countable. 

Proof. If X is finite then this follows from Proposition 3.6.14(c), 
so assume X is countable. Then there is a bijection f : X ---+ N 
between X and N. Since Y is a subset of X, and f is a bijection 
from X and N, then when we restrict f to Y, we obtain a bijection 
between Y and f(Y). (Why is this a bijection?) Thus f(Y) has 
equal cardinality withY. But f(Y) is a subset of N, and hence 
at most countable by Corollary 8.1.6. Hence Y is also at most 
countable. 0 

Proposition 8.1.8. Let Y be a set, and let f N ~ Y be a 
function. Then f (N) is at most countable. 

Proof. See Exercise 8.1.4. 0 

Corollary 8.1.9. Let X be a countable ~et, and let f : X~ Y 
be a function. Then f (X) is at most countable. 

Proof. See Exercise 8.1.5. 0 

Proposition 8.1.10. Let X be a countable set, and let Y be a 
countable set. Then X U Y is a countable set. 

Proof. See Exercise 8.1.7. 0 

To summarize, any subset or image of a countable set is at most 
countable, and any finite union of countable sets is still countable. 
We can now establish countability of the integers. 

Corollary 8.1.11. The integers Z are countable. 
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proof. We already know that the set N = {0, 1, 2, 3, ... } of natural 
nUIDbers are countable. The set - N defined by 

- N := { -n : n E N} = { 0, -1, -2, -3, ... } 

is also countable, since the map f(n) := -n is a bijection between 
Nand this set. Since the integers are the union of N and -N, 
the claim follows from Proposition 8.1.10 D 

To establish countability of the rationals, we need to relate 
countability with Cartesian products. In particular, we need to 
show that the set N x N is countable. We first need a preliminary 
lemma: 

Lemma 8.1.12. The set 

A:= {(n, m) EN x N: 0:::; m:::; n} 

is countable. 

Proof. Define the sequence ao, a1, a2, ... recursively by setting 
ao := 0, and an+l := an + n + 1 for all natural numbers n. Thus 

ao = 0; a1 = 0 + 1; a2 = 0 + 1 + 2; a3 = 0 + 1 + 2 + 3; .... 

By induction one can show that an is increasing, i.e., that an> am 
whenever n > m (why?). 

Now define the function f: A~ N by 

f(n, m) :=an+ m. 

We claim that f is one-to-one. In other words, if (n, m) and 
( n', m') are any two distinct elements of A, then we claim that 
f(n, m) =/: f(n', m'). 

To prove this claim, let ( n, m) and ( n', m') be two distinct 
elements of A. There are three cases: n' = n, n' > n, and n' < n. 
First suppose that n' = n. Then we must have m =/: m', otherwise 
( n, m) and ( n', m') would not be distinct. Thus an + m =/: an + m', 
and hence f ( n, m) =/: f ( n', m'), as desired. 
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Now suppose that n' > n. Then n' ~ n + 1, and hence 

f(n', m') = G.n' + m' ~an' ~ an+l = G.n + n + 1. 

But since (n, m) E A, we have m ~ n < n + 1, and hence 

f(n', m') ~an+ n + 1 > G.n + m = f(n, m), 

and thus f(n', m') =/: f(n, m). 
The case n' < n is proven similarly, by switching the roles of 

nand n' in the previous argument. Thus we have shown that f 
is one-to-one. Thus f is a bijection from A to f(A), and so A has 
equal cardinality with f(A). But f(A) is a subset of N, and hence 
by Corollary 8.1.6 f(A) is at most countable. Therefore A is at 
most countable. But, A is clearly not finite. (Why? Hint: if A was 
finite, then every subset of A would hP fi11.ite, and in particular 
{(n, 0) : n E N} wm"' ~ be finite, but this is clearly countably 

( 

infinite, a contradictiO..£.) Thus, A must be countable. 0 

Corollary 8.1.13. The set N x N is countable. 

Proof. We already know that the set 

A:= {(n, m) EN x N: 0 ~ m ~ n} 

is countable. This implies that the set 

B := {(n,m) EN x N: 0 ~ n ~ m} 

is also countable, since the map f : A --+ B given by f(n, m) := 
(m, n) is a bijection from A to B (why?). But since N x N is the 
union of A and B (why?), the claim then follows from Proposition 
8.1.10. 0 

Corollary 8.1.14. If X and Y are countable, then X x Y is 
countable. 

Proof. See Exercise 8.1.8. D 

Corollary 8.1.15. The rationals Q are countable. 
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proof. We already know that the integers Z are countable, which 
iznplieg that the non-zero integers Z- {0} are countable (why?). 
By Corollary 8.1.14, the set 

Z x (Z- {0}) ={(a, b): a,b E Z,b =/= 0} 

is thus countable. If one lets f: Z x (Z-{0}) ~ Q be the function 
J(a, b) := afb (note that f is well-defined since we prohibit b from 
being equal to 0), we see from Corollary 8.1.9 that f(Z x (Z- {0} )) 
is at most countable. But we have f(Z x (Z- {0})) = Q (why? 
This is basically the definition of the rationals Q). Thus Q is at 
most countable. However, Q cannot be finite, since it contains 
the infinite set N. Thus Q is countable. D 

Remark 8.1.16. Because the rationals are countable, we know 
in principle that it is possible to arrange the rational numbers as 
a sequence: 

Q = {ao, a1, a2, a3, ... } 

such that every element of the sequence is different from every 
other element, and that the elements of the sequence exhaust Q 
(i.e., every rational number turns up as one of the elements an 
of the sequence). However, it is quite difficult (~hough not im­
possible) to actually try and come up with an explicit sequence 
ao, a~, ... which doeg this; see Exercise 8.1.10. 

Exercise 8.1.1. Let X be a set. Show that X is infinite if and only if 
there exists a proper subset Y £; X of X which has the same cardinality 
as X. 

Exercise 8.1.2. Prove Proposition 8.1.4. (Hint: you can either use in­
duction, or use the principle of infinite descent, Exercise 4.4.2, or use the 
least upper bound (or greatest lower bound) principle, Theorem 5.5.9.) 
Does the well-ordering principle work if we replace the natural numbers 
by the integers? What if we replace the natural numbers by the positive 
rationals? Explain. 

Exercise 8.1.3. Fill in the gaps marked (?) in Proposition 8.1.5. 
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Exercise 8.1.4. Prove Proposition 8.1.8. (Hint: the basic problem here 
is that f is not assumed to be one-to-one. Define A to be the set 

A:= {n EN: f(m) =f f(n) for all 0:::; m < n}; 

informally speaking, A is the set of natural numbers n for which f(n) 
does not appear in the sequence f(O), f(1), ... f(n). Prove that when 
f is restricted to A, it becomes a bijection from A to f(N). Then use 
Proposition 8.1.5.) 
Exercise 8.1.5. Use Proposition 8.1.8 to prove Corollary 8.1.9. 

Exercise 8.1.6. Let A be a set. Show that A is at most countable if and 
only if there exists an injective map f : A -+ N from A to N. 

Exercise 8.1.7. Prove Proposition 8.1.10. (Hint: by hypothesis, we have 
a bijection f : N -+ X, and a bijection g : N -+ Y. Now define 
h: N-+ XUY by setting h(2n) := f(n) and h(2n+ 1) := g(n) for every 
natural number n, and show that h(N) = X U Y. Then use Corollary 
8.1.9, and show that XU Y cannot possibly be finite.) 

Exercise 8.1.8. Use Corollary 8.1.13 to prove Corollary 8.1.14. 

Exercise 8.1.9. Suppose that I is an at most countable set, and for each 
a E I, let AO< be an at most countable set. Show that the set UO<EJ AO< 
is also at most countable. In particular, countable unions of countable 
sets are countable. 

Exercise 8.1.10. Find a bijection f: N-+ Q from the natural numbers 
to the rationals. (Warning: this is actually rather tricky to do explicitly; 
it is difficult to get f to be simultaneously injective and surjective.) 

8.2 Summation on infinite sets 

We now introduce the concept of summation on countable sets, 
which will be well-defined provided that the sum is absolutely 
convergent. 

Definition 8.2.1 (Series on countable sets). Let X be a countable 
set, and let f : X --+ R be a function. We say that the series 
I:xex f(x) is absolutely convergent iff for some bijection g : N--+ 
X, the sum I::=o f(g(n)) is absolutely convergent. We then define 
the sum of I:xex f ( x) by the formula 

00 

L f(x) = Lf(g(n)). 
xEX n=O 
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From Proposition 7.4.3 (and Proposition 3.6.4), one can show 
that these definitions do not depend on the choice of g, and so are 
well defined. 

We can now give an important theorem about double summa-

tions. 

Theorem 8.2.2 (Fubini's theorem for infinite sums). Let f: N x 
N-+ R be a function such that E(n,m)EN xN f(n, m) is absolutely 
convergent. Then we have 

00 00 

L:(E f(n,m)) = f(n,m) 
n=O m=O (n,m)ENxN 

L f(n,m) 
(m,n)ENxN 

00 00 

= L(Lf(n,m)). 
m=O n=O 

In other words, we can switch the order of infinite sums pro­
vided that the entire sum is absolutely convergent. You should go 
back and compare this with Example 1.2.5. 

Proof. (A sketch only; this proof is considerably more complex 
than the other proofs, and is optional reading.) The second equal­
ity follows easily from Proposition 7.4.3 (and Proposition 3.6.4). 
We shall just prove the first equality, as the third is very similar 
(basically one switches the role of n and m). 

Let us first consider the case when f ( n, m) is always non­
negative (we will deal with the general case later). Write 

L ·-.- f(n,m); 
(n,m)ENxN 

our task is to show that the series E~=O (E:=o f ( n, m)) converges 
to L. 

One can easily show that E(n,m)EX f(n, m) :::; L for all finite 
sets X c N x N. (Why? Use a bijection g between N x Nand N, 
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and then use the fact that g(X) is finite, hence bounded.) In par-
'M ticular, for every n EN and MEN we have ~m=O f(n, m) :5 L, 

which implies by Proposition 6.3.8 that ~:=o f(n, m) is conver­
gent for each m. Similarly, for any N E N and M E N we have 
(by Corollary 7 .1.14) 

N M 

L L f(n,m) :5 L f(n,m) :5 L 
n=O m=O (n,m)EX 

where X is the set {(n,m) EN x N: n :5 N,m :5 M} which is 
finite by Proposition 3.6.14. Taking suprema of this as M ~ oo 
we have (by limit laws, and an induction on N) 

N oo 

L L f(n,m) :5 L. 
n=Om=O 

By Proposition 6.3.8, this implies that ~~=O ~:=o f(n, m) con­
verges, and 

00 00 

L L f(n,m) :5 L. 
n=Om=O 

To finish the proof, it will suffice to show that 

00 00 

L L f(n,m) ~ L-c: 
n=Om=O 

for every c: > 0. (Why will this be enough? Prove by contradic­
tion.) So, let c: > 0. By definition of L, we can then find a finite 
set X ~ N x N such that ~(n,m)EX f(n, m) ~ L- c:. (Why?) 
This set, being finite, must be contained in some set of the form 
Y := {(n, m) EN x N: n :5 N; m :5 M}. (Why? use induction.) 
Thus by Corollary 7.1.14 

N M 

L L f(n,m) = L f(n,m) ~ L f(n,m) ~ L-c: 
n=Om=O (n,m)EY (n,m)EX 
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and hence 

~ oo N oo N M 

L: L f(n,m) ~ L L f(n,m) ~ L L f(n,m) ~ L -€ 

n==O m=O n=O m=O n=O m=O 

as desired. 
This proves the claim when the f(n, m) are all non-negative. 

A similar argument works when the f(n, m) are all non-positive 
(in fact, one can simply apply the result just obtained to the 
function- f(n, m), and then use limit laws to remove the-. For 
the general case, note that any function f(n, m) can be written 
(why?) as f+(n, m) + f-(n, m), where f+(n, m) is the positive 
part of f(n, m) (i.e., it equals f(n, m) when f(n, m) is positive, 
and 0 otherwise), and f _ is the negative part of f ( n, m) (it equals 
f( n, m) when f ( n, m) is negative, and 0 otherwise). It is easy to 
show that if L:(n,m)ENxN f(n,m) is absolutely convergent, then 

so are L:(n,m)ENxN f+(n,m) and L:(n,m)ENxN f-(n, m). So now 
one applies the results just obtained to f + and to f _ and adds 
them together using limit laws to obtain the result for a general 

f D 

There is another characterization of absolutely convergent se­
ries. 

Lemma 8.2.3. Let X be an at most countable set, and let f : 
X ---+ R be a function. Then the series L:xEX f ( x) is absolutely 
convergent if and only if 

sup {I: lf(x)l :A~ X, A finite} < oo. 
xEA 

Proof. See Exercise 8.2.1. D 

Inspired by this lemma, we may now define the concept of 
an absolutely convergent series even when the set X could be 
uncountable. (We give some examples of uncountable sets in the 
next section.) 
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Definition 8.2.4. Let X be a set (which could be uncountable) 
' ' and let f : X ---+ R be a function. We say that the series 

ExEX f(x) is absolutely convergent iff 

sup {z= lf(x)l: A~ X, A finite}.< oo. 
xEA 

Note that we have not yet said what the seri!3S ExEX f(x) is 
equal to. This shall be accomplished by the following lemma. 

Lemma 8.2.5. Let X be a set (which could be uncountable), and 
let f : X ---+ R be a function such that the series ExEX f(x) is 
absolutely convergent. Then the set {x EX: f(x) =/: 0} is at most 
countable. 

Proof. See Exercise 8.2.2. 0 

Because of this, we can define the value of ExEX f(x) for any 
absolutely convergent series on an uncountable set X by the for­
mula 

L f(x) := L f(x), 
xEX xEX:f(x)#O 

since we have replaced a sum on an uncountable set X by a sum 
on the countable set {x E X : f(x) =/: 0}. (Note that if the 
former sum is absolutely convergent, then the latter one is also.) 
Note also that this definition is consistent with the definitions we 
already have for series on countable sets. 

We give some laws for absolutely convergent series on arbitrary 
sets. 

Proposition 8.2.6 (Absolutely convergent series laws). Let X 
be an arbitrary set (possibly uncountable), and let f : X ---+ R 
and g : X ---+ R be functions such that the series Ex EX f ( x) and 
ExEX g(x) are both absolutely convergent. 

(a) The series Ex EX(! ( x) + g ( x)) is absolutely convergent, and 

LU(x) + g(x)) = L f(x) + L g(x). 
xEX xEX xEX 
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(b) Ifc is a real number, then Exex cf(x) is absolutely conver­
gent, and 

L cf(x) ==; c L f(x). 
xEX xEX 

(c) If X = X1 U X2 for some disjoint sets X1 and X2, then 
Exex1 f(x) and Exex2 f(x) are absolutely convergent, and 

L f(x) = L f(x) + L f(x). 
xEX2 

Conversely, if h : X -t R is such that Exex1 h(x) and 
Exex2 h(x) are absolutely convergent, then Exex1ux2 h(x) 
is also absolutely convergent, and 

L h(x) = L h(x) + L h(x). 

(d) If Y is another set, and ¢ : Y -t X is a bijection, then 
EyeY f(tf>(y)) is absolutely convergent, and 

L:: f(t~>(y)) = L:: f(x). 
yEY xEX 

Proof. See Exercise 8.2.3. D 

Recall in Example 7 .4.4 that if a series was conditionally con­
vergent, but not absolutely convergent, then its behaviour with 
respect to rearrangements was bad. We now analyze this phe­
nomenon further. 

Lemma 8.2.7. Let E:=o an be a series of real numbers which 
is conditionally convergent, but not absolutely convergent. Define 
the sets A+ := {n E N : an ;:::: 0} and A_ := {n EN : an < 0}, 
thus A+ U A_ = N and A+ n A_ = 0. Then both of the series 
LneA+ an and EneA- an are not conditionally convergent (and 
thus not absolutely convergent). 

Proof. See Exercise 8.2.4. 
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We are now ready to present a remarkabl~ theorem of Georg 
Riemann (1826-1866), which asserts that a series which converges 
conditionally but not absolutely can be rearranged to converge to 
any value one pleases! 

Theorem 8.2.8. Let L::=o an be a series which is conditionally 
convergent, but not absolutely convergent, and let L be any real 
number. Then there exists a bijection f : N --+ N such that 
L:::=o af(m) converges conditionally to L. 

Proof. (Optional) We give a sketch of the proof, leaving the de­
tails to be filled in in Exercise 8.2.5. Let A+ and A_ be the sets 
in Lemma 8.2.7; from that lemma we know that 'L:nEA+ an and 
'L:nEA- an are both absolutely divergent. In particular A+ and 
A_ are infinite (why?). By Proposition 8.1.5 we can then find 
increasing bijections f + : N --+ A+ and f _ : N --+ A_. Thus the 
sums L:::=o af+(m} and L:::=o af-(m) are both absolutely diver­
gent (why?). The plan shall be to select terms from the divergent 
series L:::=o af+(m) and L:::=o a,_.(m} in a well-chosen order in 
order to keep their difference converging towards L. 

We define the sequence no, n1, n2, ... of natural numbers re­
cursively as follows. Suppose that j is a natural number, and that 
ni has already been defined for all i < j (this is vacuously true if 
j = 0). We then define ni by the following rule: 

(I) If 'L:o~i<j ani < L, then we set 

ni := min{n E A+: n =/:~for all i < j}. 

(II) If instead 'L:oSi<i ani ~ L, then we set 

ni := min{n E A_ : n =/: ni for all i < j}. 

Note that this recursive definition is well-defined because A+ 
and A_ are infinite, and so the sets { n E A+ : n =/: ni for all i < j} 
and ni := min{n E A_ : n =/: ni for all i < j} are never empty. 
(Intuitively, we add a non-negative number to the series whenever 
the partial sum is too low, and add a negative number when the 
sum is too high.) One can then verify the following claims: 
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• The map j ~ ni is injective. (Why?) 

• Case I occurs an infinite number of times, and Case II also 
occurs an infinite number of times. (Why? prove by contra­
diction.) 

• The map j ~ ni is surjective. (Why?) 

• We have limj-+oo an; = 0. (Why? Note from Corollary 7.2.6 
that liiDn-+oo an = 0.) 

• We have limj-+oo l:o:::;i<j ani = L. (Why?) 

The claim then follows by setting f(i) := ni for all i. 0 

Exercise 8.2.1. Prove Lemma 8.2.3. (Hint: you may find Exercise 3.6.3 
to be useful.) 

Exercise 8.2.2. Prove Lemma 8.2.5. (Hint: first show if M is the quan­
tity 

M := sup{L lf(x)l: A~ X, A finite} 
xEA 

then the sets {x EX: lf(x)l > 1/n} are finite with cardinality at most 
Mn for every positive integer n. Then use Exercise 8.1.9.) 

Exercise 8.2.3. Prove Proposition 8.2.6. (Hint: you may of course use 
all the results from Chapter 7 to do this.) 

Exercise 8.2.4. Prove Lemma 8.2.7. (Hint: prove by contradiction, and 
use limit laws.) 

Exercise 8.2.5. Explain the gaps marked (why?) in the proof of Theorem 
8.2.8. 

Exercise 8.2.6. Let 'L:'=o an be a series which is conditionally conver­
gent, but not absolutely convergent. Show that there exists a bijection 
f: N-+ N such that L::=oaf(m) diverges to +oo, or more precisely 
that 

00 00 

liminf L af(m) =lim sup L af(m) = +oo. 
N-+oo m=N N-+oo m=N 

(Of course, a similar statement holds with +oo replaced by -oo.) 
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8.3 Uncountable sets 

We have just shown that a lot of infinite sets are countable _ 
even such sets as the rationals, for which it is not obvious how 
to arrange as a sequence. After such examples, one may begin 
to hope that other infinite sets, such as the real numbers, are 
also countable - after all, the real numbers are nothing more than 
(formal) limits of the rationals, and we've already shown the ra­
tionals are countable, so it seems plausible that the reals are also 
countable. 

It was thus a great shock when Georg Cantor (1845-1918) 
showed in 1873 that certain sets - including the real numbers R 
are in fact uncountable - no matter how hard you try, you can­
not arrange the real numbers R as a sequence ao, a1, a2, .... (Of 
course, the real numbers R can contain many infinite sequences, 
e.g., the sequence 0, 1, 2, 3, 4, .... However, what Cantor proved is 
that no such sequence can ever exhaust the real numbers; no mat­
ter what sequence of real numbers you choose, there will always 
be some real numbers that are not covered by that sequence.) 

Recall from Remark 3.4.10 that if X is a set, then the power 
set of X, denoted 2x :={A: A~ X}, is the set of all subsets of 
X. Thus for instance 2{1,2} = {0, {1}, {2}, {1, 2} }. The reason for 
the notation 2X is given in Exercise 8.3.1. 

Theorem 8.3.1 (Cantor's theorem). Let X be an arbitrary set 
(finite or infinite). Then the sets X and 2x cannot have equal 
cardinality. 

Proof. Suppose for sake of contradiction that the sets X and 2x 
had equal cardinality. Then there exists a bijection f : X ---+ 2x 
between X and the power set of X. Now consider the set 

A:= {x EX: x ~ f(x)}. 

Note that this set is well-defined since f ( x) is an element of 2x 
and is hence a subset of X. Clearly A is a subset of X, hence is an 
element of 2x. Since f is a bijection, there must therefore exist 
x E X such that f ( x) = A. There are now two cases, depending 
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on whether x E A or x ¢ A. If x E A, then by definition of A we 
have x ¢ f(x), hence x ¢A, a contradiction. But if x ¢A, then 
x rf. f(x), hence by definition of A we have x E A, a contradiction. 
Thus in either case we have a contradiction. 0 

Remark 8.3.2. The reader should compare the proof of Can­
tor's theorem with the statement of Russell's paradox (Section 
3.2). The point is that a bijection between X and 2X would come 
dangerously close to the concept of a set X "containing itself" 

Corollary 8.3.3. 2N is uncountable. 

Proof. By Theorem 8.3.1, 2N cannot have equal cardinality with 
N, hence is either uncountable or finite. However, 2N contains 
as a subset the set of singletons { {n} : n EN}, which is clearly 
bijective to N and hence countably infinite. Thus 2N cannot be 
finite (by Proposition 3.6.14), and is hence uncountable. 0 

Cantor's theorem has the following important (and unintu­
itive) consequence. 

Corollary 8.3.4. R is uncountable. 

Proof. Let us define the map f : 2N ~ R by the formula 

f(A) := L 10-n. 
nEA 

Observe that since E~=O 10-n is an absolutely convergent series 
(by Lemma 7.3.3), the series EneA 10-n is also absolutely con­
vergent (by Proposition 8.2.6(c)). Thus the map f is well de­
fined. We now claim that f is injective. Suppose for sake of 
contradiction that there were two distinct sets A, B E 2N such 
that f(A) = f(B). Since A =1- B, the set (A\B) U (B\A) is a 
non-empty subset of N. By the well-ordering principle (Propo­
sition 8.1.4), we can then define the minimum of this set, say 
no:= min(A\B) U (B\A). Thus no either lies in A\B or B\A. By 
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symmetry we may assume it lies in A\B. T!len no E A, n0 fl. B 
' and for all n < no we either haven E A, Born f/. A, B. Thus 

0 = f(A) - f(B) 

= L 10-n - L 10-n 

nEA nEB 

= ( L 10-n + 10-no + L 10-n) 
n<no:nEA n>no:nEA 

- ( L 10-n + L 10-n) 
n<no:nEB n>no:nEB 

= 10-no + L 10-n - L 10-n 

n>no:nEA n>no:nEB 

~ 10-no + 0 - L 10-n 

n>no 

> 10-no _ ~ 10-no 
- 9 
> 0, 

a contradiction, where we have used the geometric series lemma 
(Lemma 7.3.3) to sum 

00 00 1 L 10-n = L 10-(no+l+m) = 10-no-1 L 10-m = 910-no. 

n>no m=O m=O 

Thus f is injective, which means that /(2N) has the same car­
dinality as 2N and is thus uncountable. Since f(2N) is a subset 
of R, this forces R to be uncountable also (otherwise this would 
contradict Corollary 8.1. 7), and we are done. D 

Remark 8.3.5. We will give another proof of this result using 
measure theory in Exercise 18.2.6. 

Remark 8.3.6. Corollary 8.3.4 shows that the reals have strictly 
larger cardinality than the natural numbers (in the sense of Exer­
cise 3.6.7). One could ask whether there exist any sets which have 
strictly larger cardinality than the natural numbers, but strictly 
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siilaller cardinality than the reals. The Continuum Hypothesis 
asserts that no such sets exist. Interestingly, it was shown in sep­
arate works of Kurt Godel (1906-1978) and Paul Cohen (1934-) 
that this hypothesis is independent of the other axioms of set the­
ory; it can neither be proved nor disproved in that set of axioms 
(unless those axioms are inconsistent, which is highly unlikely). 

Exercise 8.3.1. Let X be a finite set of cardinality n. Show that 2x is 
a finite set of cardinality 2n. (Hint: use induction on n.) 

Exercise 8.3.2. Let A, B, C be sets such that A~ B ~ C, and suppose 
that there is a bijection f : C -+ A. Define the sets Do, D1, D2, ... 
recursively by setting Do := B\A, and then Dn+l := f(Dn) for all 
natural numbers n. Prove that the sets Do, Db . .. are all disjoint from 
each other (i.e., Dn n Dm = 0 whenever n =1- m). Also show that 
if g : A -+ B is the function defined by setting g(x) := f(x) when 
X E u:=o Dn, and g(x) := X when X fl. u:=o Dn, then g does indeed 
map A to Band is a bijection between the two. In particular, A and B 
have the same cardinality. 

Exercise 8.3.3. Recall from Exercise 3.6.7 that a set A is said to have 
lesser or equal cardinality than a set B iff there is an injective map 
f: A-+ B from A to B. Using Exercise 8.3.2, show that if A, Bare sets 
such that A has lesser or equal cardinality to B and B has lesser or equal 
cardinality to A, then A and B have equal cardinality. (This is known as 
the Schroder-Bemstein theorem, after Ernst Schroder (1841-1902) and 
Felix Bernstein (1878-1956).) 

Exercise 8.3.4. Let us say that a set A has strictly lesser cardinality than 
a set B if A has lesser than or equal cardinality to B (in the sense of 
Exercise 3.6.7) but A does not have equal cardinality to B. Show that 
for any set X, that X has strictly lesser cardinality than 2x. Also, show 
that if A has strictly lesser cardinality than B, and B has strictly lesser 
cardinality than C, then A has strictly lesser cardinality than C. 

Exercise 8.3.5. Show that no power set (i.e., a set of the form 2x for 
some set X) can be countably infinite. 

8.4 The axiom of choice 

We now discuss the final axiom of the standard Zermelo-Fraenkel­
Choice system of set theory, namely the axiom of choice. We 
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have delayed introducing this axiom for a w]jlile now, to demon. 
strate that a large portion of the foundations of analysis can be 
constructed without appealing to this axiom. However, in many 
further developments of the theory, it is very convenient (and in 
some cases even essential) to employ this powerful axiom. On the 
other hand, the axiom of choice can lead to a number of unin­
tuitive consequences (for instance the Banach-Tarski paradox, a 
simplified version of which we will encounter in Section 18.3), and 
can lead to proofs that are philosophically somewhat unsatisfying. 
Nevertheless, the axiom is almost universally accepted by mathe­
maticians. One reason for this confidence is a theorem due to the 
great logician Kurt Godel, who showed that a result proven using 
the axiom of choice will never contradict a result proven without 
the axiom of choice (unless all the other axioms of set theory are 
themselves inconsistent, which is highly unlikely). More precisely, 
Godel demonstrated that the axiom of choice is undecidable; it can 
neither be proved nor disproved from the other axioms of set the­
ory, so long as those axioms are themselves consistent. (From a set 
of inconsistent axioms one can prove that every statement is both 
true and false.) In practice, this means that any "real-life" appli­
cation of analysis (more precisely, any application involving only 
"decidable" questions) which can be rigourously supported using 
the axiom of choice, can also be rigourously supported without 
the axiom of choice, though in many cases it would take a much 
more complicated and lengthier argument to do so if one were not 
allowed to use the axiom of choice. Thus one can view the axiom 
of choice as a convenient and safe labour-saving device in analysis. 
In other disciplines of mathematics, notably in set theory in which 
many of the questions are not decidable, the issue of whether to 
accept the axiom of choice is more open to debate, and involves 
some philosophical concerns as well as mathematical and logical 
ones. However, we will not discuss these issues in this text. 

We begin by generalizing the notion of finite Cartesian prod­
ucts from Definition 3.5. 7 to infinite Cartesian products. 

Definition 8.4.1 (Infinite Cartesian products). Let I be a set 
(possibly infinite), and for each a E I let X 0 be a set. We then 
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define the Cartesian product fll<EI X a to be the set 

II Xa = { (xa)aEI E ( U X[3) 1 : Xa E Xa for all a E I} , 
aEI {3El 

where we recall (from Axiom 3.10) that (UaEI X 01 )f is the set of all 
functions (xa)aEI which assign an element Xa E u{3El Xf3 to each 
a E I. Thus TiaEI Xa is a subset of that set of functions, con­
sisting instead of those functions (xa)aEI which assign an element 
Xa E Xa to each a E I. 

Example 8.4.2. For any sets I and X, we have TiaEI X = X 1 

(why?). If I is a set of the form I := {i E N : 1 ~ i ~ n}, 
then TiaEI Xa is the same set as the set nl<i<N xi defined in 
Definition 3.5.7 (why?). - -

Recall from Lemma 3.5.12 that if X1, ... , Xn were any finite 
collection of non-empty sets, then the finite Cartesian product 
fl1 <i<n Xi was also non-empty. The Axiom of choice asserts that 
this statement is also true for infinite Cartesian products: 

Axiom 8.1 (Choice). Let I be a set, and for each a E I, let X 01 

be a non-empty set. Then TiaEI X 01 is also non-empty. In other 
words, there exists a function (x 01 )aEI which assigns to each a E I 
an element X01 E X 01 • 

Remark 8.4.3. The intuition behind this axiom is that given a 
(possibly infinite) collection of non-empty sets X 01 , one should be 
able to choose a single element x 01 from each one, and then form 
the possibly infinite tuple (xa)aEI from all the choices one has 
made. On one hand, this is a very intuitively appealing axiom; in 
some sense one is just applying Lemma 3.1.6 over and over again. 
On the other hand, the fact that one is making an infinite num­
ber of arbitrary choices, with no explicit rule as to how to make 
these choices, is a little disconcerting. Indeed, there are many 
theorems proven using the axiom of choice which assert the ab­
stract existence of some object x with certain properties, without 
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saying at all what that object is, or how to ~onstruct it. Thus the 
axiom of choice can lead to proofs which are non-constructive _ 
demonstrating existence of an object without actually construct­
ing the object explicitly. This problem is not unique to the axio:rn 
of choice- it already appears for instance in Lemma 3.1.6- but the 
objects shown to exist using the axiom of choice tend to be rather 
extreme in their level of non-constructiveness. However, as long 
as one is aware of the distinction between a non-constructive exis­
tence statement, and a constructive existence statement (with the 
latter being preferable, but not strictly necessary in many cases), 
there is no difficulty here, except perhaps on a philosophical level. 

Remark 8.4.4. There are many equivalent formulations of the 
axiom of choice; we give some of these in the exercises below. 

In analysis one often does not need the full power of the axiom 
of choice. Instead, one often only needs the axiom of countable 
choice, which is the same as the axiom of choice but with the 
index set I restricted to be at most countable. We give a typical 
example of this below. 

Lemma 8.4.5. Let E be a non-empty subset of the real line with 
sup(E) < oo (i.e., E is bounded from above). Then there ex­
ists a.sequence (an)~=l whose elements an all lie in E, such that 
limn-+~ an= sup(E). 

Proof. For each positive natural number n, let Xn denote the set 

Xn := {x E E: sup(E) -1/n ~ x ~ sup(E)}. 

Since sup(E) is the least upper bound forE, then sup(E)- 1/n 
cannot be an upper bound forE, and so Xn is non-empty for each 
n. Using the axiom of choice (or the axiom of countable choice), we 

can then find a sequence (an)~=l such that an E Xn for all n ~ 1. 
In particular an E E for all n, and sup(E) - 1/n ~ an ~ sup(E) 
for all n. But then we have limn-+oo an= sup( E) by the squeeze 
test (Corollary 6.4.14). 0 
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Jtemark 8.4.6. In many special cases, one can obtain the con­
clusion of this lemma without using the axiom of choice. For 
jnStance, if Eisa closed set (Definition 12.2.12) then one can de­
fine an without choice by the formula an := inf(Xn); the extra 
hypothesis that E is closed will ensure that an lies in E. 

Another formulation of the axiom of choice is as follows. 

Proposition 8.4. 7. Let X and Y be sets, and let P(x, y) be a 
property pertaining to an object x E X and an object y E Y such 
that for every x E X there is at least one y E Y such that P( x, y) is 
true. Then there exists a function f : X ~ Y such that P( x, f ( x)) 
is true for all x EX. 

Proof. See Exercise 8.4.1. D 

Exercise 8.4.1. Show that the axiom of choice implies Proposition 8.4.7. 
(Hint: consider the sets Yx := {y E y: P(x,y) is true} for each x EX.) 
Conversely, show that if Proposition 8.4. 7 is true, then the axiom of 
choice is also true. 

Exercise 8.4.2. Let I be a set, and for each a E I let X 01 be a non­
empty set. Suppose that all the sets X 01 are disjoint from each other, 
i.e., X 01 n Xf3 = 0 for all distinct a, {3 E I. Using the axiom of choice, 
show that there exists a set Y such that #(Y n X01 ) = 1 for all a E I 
(i.e., Y intersects each X 01 in exactly one element). Conversely, show 
that if the above statement was true for an arbitrary choice of sets 
I and non-empty disjoint sets X 01 , then the axiom of choice is true. 
(Hint: the problem is that in Axiom 8.1 the sets X 01 are not assumed 
to be disjoint. But this can be fixed by the trick by looking at the sets 
{a} X X 01 = {(a,x): x E X 01 } instead.) 

Exercise 8.4.3. Let A and B be sets such that there exists a surjection 
g : B -t A. Using the axiom of choice, show that there then exists an 
injection f : A -t B; in other words A has lesser or equal cardinality 
to B in the sense of Exercise 3.6. 7. (Hint: consider the inverse images 
y-1 ( {a}) for each a E A.) Compare this with Exercise 3.6.8. Conversely, 
show that if the above statement is true for arbitrary sets A, B and 
surjections g : B -t A, then the axiom of choice is true. (Hint: use 
Exercise 8.4.2.) 
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8.5 Ordered sets 

The axiom of choice is intimately connected to the theory of or. 
dered sets. There are actually many types of ordered sets; we Will 
concern ourselves with three such types, the partially ordered sets 

' the totally ordered sets, and the well-ordered sets. 

Definition 8.5.1 (Partially ordered sets). A partially ordered set 
(or poset) is a set X, together1 with a relation :Sx on X (thus 
for any two objects x, y E X, the statement x :Sx y is either a 
true statement or a false statement). Furthermore, this relation 
is assumed to obey the following three properties: 

• (Reflexivity) For any x E X, we have x :Sx x. 

• (Anti-symmetry) If x, y E X are such that x :Sx y and 
y :Sx x, then x = y. 

• (Transitivity) If x, y, z EX are such that x :Sx y andy :::;x 
z, then x :Sx z. 

We refer to :::;x as the ordering relation. In most situations it is 
understood what the set X is from context, and in those cases we 
shall simply write :::; instead of :Sx. We write x <x y (or x < y 
for short) if x :Sx y and x =f. y. 

Examples 8.5.2. The natural numbers N together with the usual 
less-than-or-equal-to relation :::; (as defined in Definition 2.2.11) 
forms a partially ordered set, by Proposition 2.2.12. Similar argu­
ments (using the appropriate definitions and propositions) show 
that the integers Z, the rationals Q, the reals R, and the extended 
reals R * are also partially ordered sets. Meanwhile, if X is any 
collection of sets, and one uses the relation of is-a-subset-of~ (as 
defined in Definition 3.1.15) for the ordering relation :::;x, then X 

1 Strictly speaking, a partially ordered set is not a set X, but rather a pair 
(X, $x ). But in many cases the ordering $x will be clear from context, and 
so we shall refer to X itself as the partially ordered set even though this is 
technically incorrect. 
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is also partially ordered (Proposition 3.1.18). Note that it is cer­
tainly possible to give these sets a different partial ordering than 
the standard one; see for instance Exercise 8.5.3. 

Definition 8.5.3 (Totally ordered set). Let X be a partially or­
dered set with some order relation ~x. A subset Y of X is said 
to be totally ordered if, given any two y, y' E Y, we either have 
y 5x y' or y' ~x y (or both). If X itself is totally ordered, we say 
that X is a totally ordered set (or chain) with order relation ~X· 

Examples 8.5.4. The natural numbers N, the integers Z, the ra­
tionals Q, reals R, and the extended reals R *, all with the usual 
ordering relation ~' are totally ordered (by Proposition 2.2.13, 
Lemma 4.1.11, Proposition 4.2.9, Proposition 5.4.7, and Proposi­
tion 6.2.5 respectively). Also, any subset of a totally ordered set 
is again totally ordered (why?). On the other hand, a collection 
of sets with the ~ relation is usually not totally ordered. For 
instance, if X is the set { {1, 2}, {2}, {2, 3}, {2, 3, 4}, {5} }, ordered 
by the set inclusion relation~' then the elements {1, 2} and {2, 3} 
of X are not comparable to each other (i.e., {1, 2} g {2, 3} and 
{2, 3} g {1, 2} ). 

Definition 8.5.5 (Maximal and minimal elements). Let X be a 
partially ordered set, and let Y be a subset of X. We say that y 
is a minimal element ofY if y E Y and there is no element y' E Y 
such that y' < y. We say that y is a maximal element of Y if 
y E Y and there is no element y' E Y such that y < y'. 

Example 8.5.6. Using the set X from the previous example, {2} 
is a minimal element, {1, 2} and {2, 3, 4} are maximal elements, 
{5} is both a minimal and a maximal element, and {2, 3} is nei­
ther a minimal nor a maximal element. This example shows that 
a partially ordered set can have multiple maxima and minima; 
however, a totally ordered set cannot (Exercise 8.5.7). 

Example 8.5. 7. The natural numbers N (ordered by ~) has a 
minimal element, namely 0, but no maximal element. The set of 
integers Z has no maximal and no minimal element. 
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Definition 8.5.8 (Well-ordered sets). Let IX be a partially or­
dered set, and let Y be a totally ordered subset of X. We say that 
Y is well-ordered if every non-empty subset of Y has a mini:rnal 
element min(Y). 

Examples 8.5.9. The natural numbers N are well-ordered by 
Proposition 8.1.4. However, the integers Z, the rationals Q, and 
the real numbers R are not (see Exercise 8.1.2). Every finite 
totally ordered set is well-ordered (Exercise 8.5.8). Every subset 
of a well-ordered set is again well-ordered (why?). 

One advantage of well-ordered sets is that they automatically 
obey a principle of strong induction (cf. Proposition 2.2.14): 

Proposition 8.5.10 (Principle of strong induction). Let X be a 
well-ordered set with an ordering relation ~' and let P(n) be a 
property pertaining to an element n E X (i.e., for each n E X, 
P(n) is either a true statement or a false statement). Suppose 
that for every n EX, we have the following implication: if P(m) 
is true for all mE X with m <x n, then P(n) is also true. Prove 
that P(n) is true for all n EX. 

Remark 8.5.11. It may seem strange that there is no "base" 
case in strong induction, corresponding to the hypothesis P(O) in 
Axiom 2.5. However, such a base case is automatically included 
in the strong induction hypothesis. Indeed, if 0 is the minimal 
element of X, then by specializing the hypothesis "if P(m) is true 
for all mE X with m <x n, then P(n) is also true" to then= 0 
case, we automatically obtain that P(O) is true. (Why?) 

Proof. See Exercise 8.5.10. D 

So far we have not seen the axiom of choice play any role. This 
will come in once we introduce the notion of an upper bound and 
a strict upper bound. 

Definition 8.5.12 (Upper bounds and strict upper bounds). Let 
X be a partially ordered set with ordering relation ~' and let Y 
be a subset of X. If x E X, we say that x is an upper bound for 
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y iffy:::; x for ally E Y. If in addition x fj Y, we say that x is a 
strict upper bound for Y. Equivalently, x is a strict upper bound 
for Y iff y < x for all y E Y. (Why is this equivalent?) 

Example 8.5.13. Let us work in the real number system R with 
the usual ordering :::;. Then 2 is an upper bound for the set { x E 
R : 1 :::; x :::; 2} but is not a strict upper bound. The number 3, 
on the other hand, is a strict upper bound for this set. 

Lemma 8.5.14. Let X be a partially ordered set with ordering 
relation ~, and let xo be an element of X. Then there is a well­
ordered subset Y of X which has xo as its minimal element, and 
which has no strict upper bound. 

Proof. The intuition behind this lemma is that one is trying to 
perform the following algorithm: we initalize Y := {xo}. If Y has 
no strict upper bound, then we are done; otherwise, we choose a 
strict upper bound and add it to Y. Then we look again to see if Y 
has a strict upper bound or not. If not, we are done; otherwise we 
choose another strict upper bound and add it toY. We continue 
this algorithm "infinitely often" until we exhaust all the strict 
upper bounds; the axiom of choice comes in because infinitely 
many choices are involved. This is however not a rigourous proof 
because it is quite difficult to precisely pin down what it means to 
perform an algorithm "infinitely often". Instead, what we will do 
is that we will isolate a collection of "partially completed" sets Y, 
which we shall call good sets, and then take the union of all these 
good sets to obtain a "completed" object Y 00 which will indeed 
have no strict upper bound. 

We now begin the rigourous proof. Suppose for sake of con­
tradiction that every well-ordered subset Y of X which has xo as 
its minimal element has at least one strict upper bound. Using 
the axiom of choice (in the form of Proposition 8.4. 7), we can thus 
assign a strict upper bound s(Y) EX to each well-ordered subset 
Y of X which has xo as its minimal element. 

Let us define a special class of subsets Y of X. We say that 
a subset Y of X is good iff it is well-ordered, contains xo as its 
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minimal element, and obeys the property that 

x = s({y E Y: y < x}) for all X· E Y\{xo}. 

Note that if x E Y\{xo} then the set {y E Y: y < x} is a subset 
of X which is well-ordered and contains xo as its minimal element. 
Let 0 := {Y ~X: Y is good} be the collection of all good subsets 
of X. This collection is not empty, since the subset { xo} of X is 
clearly good (why?). 

We make the following important observation: if Y and Y' are 
two good subsets of X, then every element of Y'\ Y is a strict upper 
bound for Y, and every element of Y\ Y' is a strict upper bound 
for Y'. (Exercise 8.5.13). In particular, given any two good sets 
Y andY', at least one of Y'\Y and Y\Y' must be empty (since 
they are both strict upper bounds of each other). In other words, 
n is totally ordered by set inclusion: given any two good sets y 
andY', either Y ~ Y' or Y' ~ Y. 

Let Yeo:= UO, i.e., Yeo is the set of all elements of X which 
belong to at least one good subset of X. Clearly xo E Yeo· Also, 
since each good subset of X has xo as its minimal element, the 
set Yeo also has xo as its minimal element (why?). 

Next, we show that Yeo is totally ordered. Let x, x' be two 
elements of Yeo. By definition of Yeo, we know that x lies in some 
good set Y and x' lies in some good set Y'. But since n is totally 
ordered, one of these good sets contains the other. Thus x, x' are 
contained in a single good set (either Y or Y'); since good sets 
are totally ordered, we thus see that either x ~ x' or x' ~ x as 
desired. 

Next, we show that Yeo is well-ordered. Let A be any non­
empty subset of Yeo. Then we can pick an element a E A, which 
then lies in Yeo. Therefore there is a good set Y such that a E Y. 
Then AnY is a non-empty subset of Y; since Y is well-ordered, 
the set AnY thus has a minimal element, call it b. Now recall 
that for any other good set Y', every element of Y'\ Y is a strict 
upper bound for Y, and in particular is larger than b. Since b is 
a minimal element of AnY, this implies that b is also a minimal 
element of AnY' for any good set Y' (why?). Since every element 
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of A belongs to Y oo and hence belongs to at least one good set 
y', we thus see that b is a minimal element of A. Thus Y 00 is 
well-ordered as claimed. 

Since Y 00 is well-ordered with xo as its minimal element, it 
has a strict upper bound s(Yoo)· But then Yoo U {s(Y00)} is well­
ordered (why? see Exercise 8.5.11) and has xo as its minimal 
element (why?). Thus this set is good, and must therefore be 
contained in Yoo. But this is a contradiction since s(Yoo) is a 
strict upper bound for Y 00 • Thus we have constructed a set with 
no strict upper bound, as desired. D 

The above lemma has the following important consequence: 

Lemma 8.5.15 (Zorn's lemma). Let X be a non-empty partially 
ordered set, with the property that every totally ordered subset Y 
of X has an upper bound. Then X contains at least one maximal 
element. 

Proof. See Exercise 8.5.14. D 

We give some applications of Zorn's lemma (also called the 
principle of transfinite induction) in the exercises below. 

Exercise 8.5.1. Consider the empty set 0 with the empty order relation 
~0 (this relation is vacuous because the empty set has no elements). Is 
this set partially ordered? totally ordered? well-ordered? Explain. 

Exercise 8.5.2. Give examples of a set X and a relation :::=; such that 

(a) The relation :::=; is reflexive and anti-symmetric, but not transitive; 

(b) The relation :::=; is reflexive and transitive, but not anti-symmetric; 

(c) The relation:::=; is anti-symmetric and transitive, but not reflexive. 

Exercise 8.5.3. Given two positive integers n, m E N\ {0}, we say that 
n divides m, and write nlm, if there exists a positive integer a such that 
m = na. Show that the set N\{0} with the ordering relation I is a 
partially ordered set but not a totally ordered one. Note that this is a 
different ordering relation from the usual :::=; ordering of N\ { 0}. 

Exercise 8.5.4. Show that the set of positive reals R+ := {x E R: x > 
0} have no minimal element. 
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Exercise 8.5.5. Let f: X---+ Y be a function fiiom one set X to another 
set Y. Suppose that Y is partially ordered with some ordering relation 
::=;y. Define a relation :::;x on X by defining x :::;x x' if and only if 
f(x) ::=;y f(x'). Show that this relation :::;x turns X into a partially 
ordered set. If we know in addition that the relation :::; y makes y 
totally ordered, does this mean that the relation :::;x makes X totally 
ordered also? If not, what additional assumption needs to be made on 
fin order to ensure that :::;x makes X totally ordered? 

Exercise 8.5.6. Let X be a partially ordered set. For any x in X, define 
the order ideal (x) c X to be the set (x) := {y E X : y :::; x}. Let 
(X) := {(x) : x EX} be the set of all order ideals, and let f: X---+ (X) 
be the map f(x) := (x) that sends every element of x to its order ideal. 
Show that f is a bijection, and that given any x, y E X, that x :::;x y if 
and only if f(x) ~ f(y). This exercise shows that any partially ordered 
set can be represented by a collection of sets whose ordering relation is 
given by set inclusion. 

Exercise 8.5.7. Let X be a partially ordered set, and let Y be a totally 
ordered subset of X. Show that Y can have at most one maximum and 
at most one m~nimum. 

Exercise 8.5.8. Show that every finite non-empty subset of a totally or­
dered set has a minimum and a maximum. (Hint: use induction.) Con­
clude in particular that every finite totally ordered set is well-ordered. 

Exercise 8.5.9. Let X be a totally ordered set such that every non-empty 
subset of X has both a minimum and a maximum. Show that X is finite. 
(Hint: assume for sake of contradiction that X is infinite. Start with 
the minimal element xo of X and then construct an increasing sequence 
xo < x1 < ... in X.) 

Exercise 8.5.10. Prove Proposition 8.5.10, without using the axiom of 
choice. (Hint: consider the set 

Y := {n EX: P(m) is false for some mE X with m :::;x n}, 

and show that Y being non-empty would lead to a contradiction.) 

Exercise 8.5.11. Let X be a partially ordered set, and let Y and Y' be 
well-ordered subsets of X. Show that Y U Y' is well-ordered if and only 
if it is totally ordered. 

Exercise 8.5.12. Let X and Y be partially ordered sets with ordering 
relations :::;x and ::=;y respectively. Define a relation :::;xxY on the Carte­
sian product X x Y by defining (x,y) :::;xxY (x',y') if x :::;x x', or if 
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:c === x' and y ~ y y'. (This is called the lexicographical ordering on 
X x Y, and is similar to the alphabetical ordering of words; a word w 
appears earlier in a dictionary than another word w' if the first letter 
of w is earlier in the alphabet than the first letter of w', or if the first 
letters match and the second letter of w is earlier than the second letter 
of w', and so forth.) Show that ~x x y defines a partial ordering on 
X x Y. Furthermore, show that if X and Y are totally ordered, then so 
is X x Y, and if X and Y are well-ordered, then so is X x Y. 

Exercise 8.5.13. Prove the claim in the proof of Lemma 8.5.14, namely 
that every element of Y'\ Y is an upper bound for Y and vice versa. 
(Hint: Show using Proposition 8.5.10 that 

{y E Y: y ~a}= {y E Y': y ~a}= {y E Y n Y': y ~a} 

for all a E Y n Y'. Conclude that Y n Y' is good, and hence s(Y n Y') 
exists. Show that s(Y n Y') = min(Y'\Y) if Y'\Y is non-empty, and 
similarly withY andY' interchanged. Since Y'\Y and Y\Y' are disjoint, 
one can then conclude that one of these sets is empty, at which point 
the claim becomes easy to establish.) 

Exercise 8.5.14. Use Lemma 8.5.14 to prove Lemma 8.5.15. (Hint: first 
show that if X had no maximal elements, then any subset of X which 
has an upper bound, also has a strict upper bound.) 

Exercise 8.5.15. Let A and B be two non-empty sets such that A does 
not have lesser or equal cardinality to B. Using the principle of transfi­
nite induction, prove that B has lesser or equal cardinality to A. (Hint: 
for every subset X~ B, let P(X) denote the property that there exists 
an injective map from X to A.) This exercise (combined with Exercise 
8.3.3) shows that the cardinality of any two sets is comparable, as long 
as one assumes the axiom of choice. 

Exercise 8.5.16. Let X be a set, and let P be the set of all partial 
orderings of X. (For instance, if X:= N\{0}, then both the usual partial 
ordering ~. and the partial ordering in Exercise 8.5.3, are elements of 
P.) We say that one partial ordering ~E P is coarser than another 
partial ordering ~' E P if for any x, y E P, we have the implication 
(x ~ y) :::::::} (x ~' y). Thus for instance the partial ordering in 
Exercise 8.5.3 is coarser than the m.mal ordering ~. Let us write ~:S~' 
if ~ is coarser than ~'. Show that ::S turns P into a partially ordered 
set; thus the set of partial orderings on X is itself partially ordered. 
There is exactly one minimal element of P; what is it? Show that the 
maximal elements of P are precisely the total orderings of P. Using 
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Zorn's lemma, show that given any partial ordering :::=; of X there exists 
a total ordering :::=;' such that :::=; is coarser than :::=;'. 

Exercise 8.5.17. Use Zorn's lemma to give anoth~r proof of the claim in 
Exercise 8.4.2. (Hint: let n be the set of all Y ~ UaEI X"' such that 
#(Y n Xa) :::=; 1 for all a E J, i.e., all sets which intersect each Xo. in at 
most one element. Use Zorn's lemma to locate a maximal element of O.) 
Deduce that Zorn's lemma and the axiom of choice are in fact logically 
equivalent (i.e., they can be deduced from each other). 

Exercise 8.5.18. Using Zorn's lemma, prove Hausdorff's maximality prin­
ciple: if X is a partially ordered set, then there exists a totally ordered 
subset Y of X which is maximal with respect to set inclusion (i.e. there 
is no other totally ordered subset Y' of X which contains Y. Conversely, 
show that if Hausdorff's maximality principle is true, then Zorn's lemma 
is true. Tthus by Exercise 8.5.17, these two statements are logically 
equivalent to the axiom of choice. 

Exercise 8.5.19. Let X be a set, and let n be the space of all pairs 
(Y, :::=;),where Y is a subset of X and:::=; is a well-ordering of Y. If (Y, :::=;) 
and (Y', :::=;') are elements of n, we say that (Y, :::=;) is an initial segment 
of (Y', :::=;') if there exists an x E Y' such that Y := {y E Y' : y < x} 
(so in particular Y s;; Y'), and for any y, y' E Y, y :::=; y' if and only if 
y :::=;' y'. Define a relation :::5 on n by defining (Y, ::::;) :::5 (Y', ::::;') if either 
(Y, ::;) = (Y', :::=;'),or if (Y, :::=;)is an initial segment of (Y', :::=;'). Show that 
:::5 is a partial ordering of n. There is exactly one minimal element of 0; 
what is it? Show that the maximal elements of n are precisely the well­
orderings (X,:::=;) of X. Using Zorn's lemma, conclude the well ordering 
principle: every set X has at least one well-ordering. Conversely, use the 
well-ordering principle to prove the axiom of choice, Axiom 8.1. (Hint: 
place a well-ordering :::=; on UaEI X"', and then consider the minimal 
elements of each Xa.) We thus see that the axiom of choice, Zorn's 
lemma, and the well-ordering principle are all logically equivalent to 
each other. 

Exercise 8.5.20. Let X be a set, and let n c 2x be a collection of 
subsets of X. Using Zorn's lemma, show that there is a subcollection 
n' ~ n such that all the elements of n' are disjoint from each other 
(i.e., An B = 0 whenever A, B are distinct elements of 0'), but that 
all the elements of n intersect at least one element of n' (i.e., for all 
C E n there exists A E n' such that C n A -:/: 0). (Hint: consider all the 
subsets of n whose elements are all disjoint from each other, and locate 
a maximal element of this collection.) Conversely, if the above claim is 
true, show that it implies the claim in Exercise 8.4.2, and thus this is 
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yet another claim which is logically equivalent to the axiom of choice. 
(llint: let n be the set of all pair sets of the form {(0, a), (1, xa)}, where 
a E I and X a E X a.) 



Chapter 9 

Continuous functions on R 

In previous chapters we have been focusing primarily on sequences. 
A sequence (an)~=O can be viewed as a function from N toR, 
i.e., an object which assigns a real number an to each natural 
number n. We then did various things with these functions from 
N to R, such as take their limit at infinity (if the function was 
convergent), or form suprema, infima, etc., or computed the sum 
of all the elements in the sequence (again, assuming the series was 
convergent). 

_Now we will look at functions not on the natural numbers N, 
which are "discrete" , but instead look at functions on a contin­
uum1 such as the real line R, or perhaps on an interval such as 
{ x E R : a ~ x ~ b}. Eventually we will perform a number of 
operations on these functions, including taking limits, computing 
derivatives, and evaluating integrals. In this chapter we will focus 
primarily on limits of functions, and on the closely related concept 
of a continuous function. 

Before we discuss functions, though, we must first set out some 
notation for subsets of the real line. 

1 We will not rigourously define the notion of a discrete set or a continuum 
in this text, but roughly speaking a set is discrete if each element is separated 
from the rest of the set by some non-zero distance, whereas a set is a continuum 
if it is connected and contains no "holes". 
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9.1 Subsets of the real line 

Very often in analysis we do not work on the whole real line R, 
but on certain subsets of the real line, such as the positive real axis 
{x E R: x > 0}. Also, we occasionally work with the extended 
real lineR* defined in Section 6.2, or in subsets of that extended 
real line. 

There are of course infinitely many subsets of the real line; 
indeed, Cantor's theorem (Theorem 8.3.1; see also Exercise 8.3.4) 
shows that there are even more such sets than there are real num­
bers. However, there are certain special subsets of the real line 
(and the extended real line) which arise quite often. One such 
family of sets are the intervals. 

Definition 9.1.1 (Intervals). Let a, bE R* be extended real num­
bers. We define the closed interval [a, b] by 

[a,b] := {x E R*: a::; x::; b}, 

the half-open intervals [a, b) and (a, b] by 

[a, b):= {x E R*: a::; x < b}; (a, b] := {x E R*: a< x::; b}, 

and the open intervals (a, b) by 

(a, b):= {x E R* :a< x < b}. 

We call a the left endpoint of these intervals, and b the right end­
point. 

Remark 9.1.2. Once again, we are overloading the parenthesis 
notation; for instance, we are now using (2, 3) to denote both 
an open interval from 2 to 3, as well as an ordered pair in the 
Cartesian plane R 2 := R x R. This can cause some genuine 
ambiguity, but the reader should still be able to resolve which 
meaning of the parentheses is intended from context. In some 
texts, this issue is resolved by using reversed brackets instead of 
parenthesis, thus for instance [a, b) would now be [a, b[, (a, b] would 
be ]a, b], and (a, b) would be ]a, b[. 
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Examples 9.1.3. If a and b are real numbers (i.e., not equal to 
+oo or -oo) then all of the above intervals are subsets of the real 
line, for instance [2, 3) = {x E R : 2 ::; ·x < 3}. The positive 
real axis {x E R: x > 0} is the open inter:WU (0, +oo), while the 
non-negative real axis { x E R : x ~ 0} is the half-open inter­
val [0, +oo). Similarly, the negative real axis {x E R: x < 0} is 
( -oo, 0), and the non-positive real axis {x E R: x::; 0} is ( -oo, OJ. 
Finally, the real line R itself is the open interval ( -oo, +oo), while 
the extended real line R* is the closed interval [-oo, +oo]. We 
sometimes refer to an interval in which one endpoint is infinite ( ei­
ther +oo or -oo) as half-infinite intervals, and intervals in which 
both endpoints are infinite as doubly-infinite intervals; all other 
intervals are bounded intervals. Thus [2, 3) is a bou~ded interval, 
the positive and negative real axes are half-infinite intervals, and 
Rand R* are infinite intervals. 

Example 9.1.4. If a> b then all four of the intervals [a, b], [a, b), 
(a, b], and (a, b) are the empty set (why?). If a= b, then the three 
intervals [a,b), (a,b], and (a, b) are the empty set, while [a,b] is 
just the singleton set {a} (why?). Because of this, we call these 
intervals degenerate; most (but not all) of our analysis will be 
restricted to non-degenerate intervals. 

Of course intervals are not the only interesting subsets of the 
real line. Other important examples include the natural numbers 
N, the integers Z, and the rationals Q. One can form additional 
sets using such operations as union and intersection (see Section 
3.1), for instance one could have a disconnected union of two inter­
vals such as (1, 2) U [3, 4], or one could consider the set [-1, 1] n Q 
of rational numbers between -1 and 1 inclusive. Clearly there 
are infinitely many possibilities of sets one could create by such 
operations. 

Just as sequences of real numbers have limit points, sets of 
real numbers have adherent points, which we now define. 

Definition 9.1.5 (c--adherent points). Let X be a subset of R, 
let c > 0, and let x E R. We say that x is £-adherent to X iff 
there exists ayE X which is c--close to x (i.e., ix- Yi ::; c). 
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:aemark 9.1.6. The terminology "c--adherent" is not standard in 
the literature. However, we shall shortly use it to define the notion 
of an adherent point, which is standard. 

Example 9.1. 7. The point 1.1 is 0.5-adherent to the open interval 
(0, 1), but is not 0.1-adherent to this interval:;:.(why?). The point 
1.1 is 0.5-adherent to the finite set {1, 2, 3}. The point 1 is 0.5-
adherent to {1, 2, 3} (why?). 

Definition 9.1.8 (Adherent points). Let X be a subset of R, 
and ·let x E R. We say that x is an adherent point of X iff it is 
&-adherent to X for every c > 0. 

Example 9.1.9. The number 1 is c--adherent to the open inter­
val (0, 1) for every c > 0 (why?), and is thus an adherent point 
of (0, 1). The point 0.5 is similarly an adherent point of (0, 1). 
However, the number 2 is not 0.5-adherent (for instance) to (0, 1), 
and is thus not an adherent point to (0, 1). 

Definition 9.1.10 (Closure). Let X be a subset ofR. The closure 
of X, sometimes denoted X is defined to be the set of all the 
adherent points of X. 

Lemma 9.1.11 (Elementary properties of closures). Let X and 
Y be arbitrary subsets of R. Then X ~ X, X U Y = X U Y, and 
X n Y ~ X n Y. If X ~ Y, then X ~ Y. 

Proof. See Exercise 9.1.2. 0 

We now compute some closures. 

Lemma 9.1.12 (Closures of intervals). Let a< b be real numbers, 
and let I be any one of the four intervals (a, b), (a, b], [a, b), or 
[a, b]. Then the closure of I is [a, b]. Similarly, the closure of 
(a, oo) or [a, oo) is [a, oo), while the closure of ( -oo, a) or ( -oo, a] 
is ( -oo, a]. Finally, the closure of ( -oo, oo) is ( -oo, oo). 

Proof. We will just show one of these facts, namely that the clo­
sure of (a, b) is [a, b]; the other results are proven similarly (or one 
can use Exercise 9 .1.1). 
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First let us show that every element of [a, b] is adherent to 
(a, b). Let x E [a, b]. If x E (a, b) then it is definitely adherent to 
(a, b). If x = b then x is also adherent to (a, b). (why?). Similarly 
when x =a. Thus every point in [a, b] is adherent to (a, b). 

Now we show that every point x that is adherent to (a, b) lies 
in [a, b]. Suppose for sake of contradiction that x does not lie in 
[a, b], then either x > b or x < a. If x > b then x is not (x- b)­
adherent to (a, b) (why?), and is hence not an adherent point to 
(a, b). Similarly, if x <a, then xis not (a-x)-adherent to (a-b), 
and is hence not an adherent point to (a, b). This contradiction 
shows that xis in fact in [a, b] as claimed. 0 

Lemma 9.1.13. The closure of N is N. The closure of Z is z. 
The closure of Q is R, and the closure of R is R. The closure of 
the empty set 0 is 0. 

Proof. See Exercise 9.1.3. 0 

The following lemma shows that adherent points of a set X 
can be obtained as the limit of elements in X: 

Lemma 9.1.14. Let X be a subset of R, and let x E R. Then 
x is an adherent point of X if and only if there exists a sequence 
(an)~=O' consisting entirely of elements in X, which converges to 
X. 

Proof. See Exercise 9.1.5. 0 

Definition 9.1.15. A subset E ~ R is said to be closed if E = E, 
or in other words that E contains all of its adherent points. 

Examples 9.1.16. From Lemma 9.1.12 we see that if a < b are 
real numbers, then [a, b], [a, +oo ), ( -oo, a], and ( -oo, +oo) are 
closed, while (a, b), (a, b], [a, b), (a, +oo), and ( -oo, a) are not. 
From Lemma 9.1.13 we see that N, Z, R, 0 are closed, while Q is 
not. 

From Lemma 9.1.14 we can define closure in terms of se­
quences: 
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Corollary 9.1.17. Let X be a subset of R. If X is closed, and 
( an)~=O is a convergent sequence consisting of elements in X, then 
lillln->oo an also lies in X. Conversely, if it is true that every 
convergent sequence (an)~=O of elements in X has its limit in X 
as well, then X is necessarily closed. 

When we study differentiation in the next chapter, we shall 
need to replace the concept of an adherent point by the closely 
related notion of a limit point. 

Definition 9.1.18 (Limit points). Let X be a subset of the real 
line. We say that x is a limit point (or a cluster point) of X iff it 
.is an adherent point of X\ { x}. We say that x is an isolated point 
of X if x EX and there exists some c > 0 such that lx- Yi > c 
for ally E X\{x}. 

Example 9.1.19. Let X be the set X = (1, 2) U {3}. Then 3 is 
an adherent point of X, but it is not a limit point of X, since 3 
is not adherent to X- {3} = (1, 2); instead, 3 is an isolated point 
of X. On the other hand, 2 is still a limit point of X, since 2 is 
adherent to X- {2} =X; but it is not isolated (why?). 

Remark 9.1.20. From Lemma 9.1.14 we see that x is a limit 
point of X iff there exists a sequence (an)~=O' consisting entirely 
of elements in X that are distinct from x, and such that (an)~=O 
converges to x. It turns out that the set of adherent points splits 
into the set of limit points and the set of isolated points (Exercise 
9.1.9). 

Lemma 9.1.21. Let I be an interval (possibly infinite), i.e., I 
is a set of the form (a, b), (a, b], [a, b), [a, b], (a, +oo), [a, +oo), 
( -oo, a), or ( -oo, a]. Then every element of I is a limit point of 
I. 

Proof. We show this for the case I = [a, b]; the other cases are 
similar and are left to the reader. Let x E I; we have to show that 
xis a limit point of I. There are three cases: x =a, a< x < b, 
and x = b. If x = a, then consider the sequence ( x + ~ )~=N· This 
sequence converges to x, and will lie inside I- {a}= (a, b] if N is 
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chosen large enough (why?). Thus by Remark 9.1.20 we see that 
x = a is a limit point of [a, b]. A similar argument works when 
a< x <b. When x =bone has to use the sequence (x- ~)~N 
instead (why?) but the argument is otherwise the same. 0 

Next, we define the concept of a bounded set. 

Definition 9.1.22 (Bounded sets). A subset X of the real line is 
slfid to be bounded if we have X c [-M, M] for some real number 
M>O. 

Example 9.1.23. For any real numbers a, b, the interval [a·, b] 
is bounded, because it is contained inside [-M, M], where M ::::: 
max(JaJ, Jbl). However, the half-infinite interval [0, +oo) is un­
bounded (why?). In fact, no half-infinite interval or doubly infi­
nite interval can be bounded. The sets N, Z, Q, and Rare all 
unbounded (why?). 

A basic property of closed and bounded sets is the following. 

Theorem 9.1.24 (Heine-Borel theorem for the line). Let X be a 
subset of R. Then the following two statements are equivalent: 

(a) X is closed and bounded. 

(b) Given any sequence ( u.n)~=O of real numbers which takes val­
ues in X (i.e., an E X for all n), there exists a subsequence 
(ani)~0 of the original sequence, which converges to some 
number L in X. 

Proof. See Exercise 9.1.13. 0 

Remark 9.1.25. This theorem shall play a key role in subsequent 
sections of this chapter. In the language of metric space topology, 
it asserts that every subset of the real line which is closed and 
bounded, is also compact; see Section 12.5. A more general version 
of this theorem, due to Eduard Heine (1821-1881) and Emile Borel 
(1871-1956), can be found in Theorem 12.5.7. 
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Exercise 9.1.1. Let X be any subset of the real line, and let Y be a set 
such that X~ Y ~X. Show that Y =X. 

Exercise 9.1.2. Prove Lemma 9.1.11. 

Exercise 9.1.3. Prove Lemma 9.1.13. (Hint: for computing the closure 
of Q, you will need Proposition 5.4.14.) 

Exercise 9.1.4. Give an example of two subsets X, Y of the real line such 
that X n Y =/: X n Y. 

Exercise 9.1.5. Prove Lemma 9.1.14. (Hint: in order to prove one of the 
two implications here you will need axiom of choice, as in Lemma 8.4.5.) 

Exercise 9.1.6. Let X be a subset of R. Show that X is closed (i.e., 

X= X). Furthermore, show that if Y is any closed set that contains X, 
then Y also contains X. Thus the closure X of X is the smallest closed 
set which contains X. 

Exercise 9.1.7. Let n 2 1 be a positive integer, and let X1, ... , Xn be 
closed subsets of R. Show that X1 U X2 U ... U Xn is also closed. 

Exercise 9.1.8. Let I be a set (possibly infinite), and for each a E I 
let X a be a closed subset of R. Show that the intersection naEI X a 

(defined in (3.3)) is also closed. 

Exercise 9.1.9. Let X be a subset of the real line, and x be a real number. 
Show that every adherent point of X is either a limit point or an isolated 
point of X, but cannot be both. Conversely, show that every limit point 
and every isolated point of X is an adherent point of X. 

Exercise 9.1.10. If X is a non-empty subset of R, show that X is 
bounded if and only if inf(X) and sup(X) are finite. 

Exercise 9.1.11. Show that if X is a bounded subset of R, then the 
closure X is also bounded. 

Exercise 9.1.12. Show that the union of any finite collection of bounded 
subsets of R is still a bounded set. Is this conclusion still true if one 
takes an infinite collection of bounded subsets of R? 

Exercise 9.1.13. Prove Theorem 9.1.24. (Hint: ~o show (a) implies (b), 
use the Bolzano-Weierstrass theorem (Theorem 6.6.8) and Corollary 
9.1.17. To show (b) implies (a), argue by contradiction, using Corol­
lary 9 .1.17 to establish that X is closed. You will need the axiom of 
choice to show that X is bounded, as in Lemma 8.4.5.) 

Exercise 9.1.14. Show that any finite subset of R is closed and bounded. 
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Exercise 9.1.15. Let E be a bounded subset of Rl, and letS := sup(E) be 
the least upper bound of E. (Note from the least upper bound principle, 
Theorem 5.5.9, that S is a real number.) Show that Sis an adherent 
point of E, and is also an adherent point of R\E. 

9.2 The algebra of real-valued functions 

You are familiar with many functions f : R--+ R from the real 
line to the real line. Some examples are: f(x) := x2 + 3x + 5; 
f(x) := 2x /(x2 + 1); f(x) := sin(x) exp(x) (we will define sin and 
exp formally in Chapter 15). These are functions from R toR 
since to every real number x they assign a single real number f(x). 
We can also consider more exotic functions, e.g. 

f(x) := { ~ ifx E Q 
if X¢ Q. 

This function is not algebraic (i.e., it cannot be expressed in terms 
of x purely by using the standard algebraic operations of+, -, 
x, /, ...;, etc.; we will not need this notion in this text), but it is 
still a function from R to R, because it still assigns a real number 
f(x) to each x E R. 

We can take any one of the previous functions f : R --+ R 
defined on all of R, and restrict the domain to a smaller set X ~ 
R, creating a new function, sometimes called fix, from X toR. 
This is the same function as the original function f, but is only 
defined on a smaller domain. (Thus flx(x) := f(x) when x EX, 
and flx(x) is undefined when x ¢ X.) For instance, we can 
restrict the function f(x) := x2 , which is initially defined from R 
to R, to the interval [1, 2], thus creating a new function !1[1,2] : 

[1, 2] --+ R, which is defined as fl[l,2j(x) = x2 when x E [1, 2] but 
is undefined elsewhere. 

One could also restrict the range from R to some smaller subset 
Y of R, provided of course that all the values of f ( x) lie inside 
Y. For instance, the function f : R--+ R defined by f(x) := x2 

could also be thought of as a function from R to [0, oo), instead 
of a function from R to R. Formally, these two functions are 
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different functions, but the distinction between them is so minor 
that we shall often be careless about the range of a function in 
our discussion. 

Strictly speaking, there is a distinction between a function f, 
and its value f(x) at a point x. f is a function; but f(x) is a 
number (which depends on some free variable x). This distinction 
is rather subtle and we will not stress it too much, but there are 
times when one has to distinguish between the two. For instance, 
iff : R---+ R is the function f(x) := x2 , and g := !1[1,2] is the 
restriction off to the interval [1, 2], then f and g both perform the 
operation of squaring, i.e., f(x) = x2 and g(x) = x2 , but the two 
functions f and g are not considered the same function, f =f. g, 
because they have different domains. Despite this distinction, we 
shall often be careless, and say things like "consider the function 
x2+2x+3" when really we should be saying "consider the function 
f: R---+ R defined by f(x) := x2+2x+3". (This distinction makes 
more of a difference when we start doing things like differentiation. 
For instance, if f : R ---+ R is the function f ( x) = x2 , then of 
course f(3) = 9, but the derivative of f at 3 is 6, whereas the 
derivative of 9 is of course 0, so we cannot simply "differentiate 
both sides" of f(3) = 9 and conclude that 6 = 0.) 

If X is a subset of R, and f : X ---+ R is a function, we 
can form the graph {(x, f(x)) : x E X} of the function f; this 
is a subset of X x R, and hence a subset of the Euclidean plane 
R2 = R x R. One can certainly study a function through its 
graph, by using the geometry of the plane R 2 (e.g., employing such 
concepts as tangent lines, area, and so forth). We however will 
pursue a more "analytic" approach, in which we rely instead on 
the properties of the real numbers to analyze these functions. The 
two approaches are complementary; the geometric approach offers 
more visual intuition, while the analytic approach offers rigour and 
precision. Both the geometric intuition and the analytic formalism 
become useful when extending analysis of functions of one variable 
to functions of many variables (or possibly even infinitely many 
variables). 

Just as numbers can be manipulated arithmetically, so can 
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functions: the sum of two functions is a function, the product of 
two functions is a function, and so forth. 

Definition 9.2.1 (Arithmetic operations on functions). Given 
two functions f :X ---t Rand 9: X ---t R, we can define their.su:rn 
f + 9 : X ---t R by the formula 

(! + g)(x) := f(x) + g(x), 

their difference f - g_ : X ---t R by the formula 

(!- g)(x) := f(x)- g(x), 

their maximum max(!, g): X ---t R by 

max(!, g)(x) := max(f(x), g(x)), 

their minimum min(!, g) :X ---t R by 

min(!, g)(x) := min(f(x), g(x)), 

their product fg: X ---t R (or f · g: X ---t R) by the formula 

(fg)(x) := f(x)g(x), 

and (provided that g(x) =/: 0 for all x E X) the quotient f /g : 
X ---t R by the formula 

(! jg)(x) := f(x)/g(x). 

Finally, if cis a real number, we can define the function cf :X---. 
R (or c · f: X ---t R) by the formula 

(cf)(x) := c x f(x). 

Example 9.2.2. Iff : R ---t R is the function f(x) := x2 , and 
g : R ---t R is the function g(x) := 2x, then f + g : R ---t R is the 
function (! + g)(x) := x2 + 2x, while fg: R ---t R is the function 
fg(x) = 2x3 . Similarly f -g : R ---t R is the function(! -g)(x) := 
x2 - 2x, while 6f: R ---t R is the function (6f)(x) = 6x2• Observe 
that fg is not the same function as fog, which-maps x ~--+ 4x2, 

nor is it the same as go j, which maps x ~--+ 2x2 (why?). Thus 
multiplication of functions and composition of functions are two 
different operations. 
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Exercise 9.2.1. Let f: R--+ R, g: R--+ R, h: R--+ R. Which of the 
following identities are true, and which ones are false? In the former 
case, give a proof; in the latter case, give a counterexample. 

(f +g) 0 h = (f 0 h)+ (g 0 h) 

f 0 (g +h)= (f 0 g)+ (f 0 h) 

(f + g) . h = (f . h) + (g . h) 

f . (g + h) = (f . g) + (f . h) 

9.3 Limiting values of functions 

In Chapter 6 we defined what it means for a sequence (an)~=O to 
converge to a limit L. We now define a similar notion for what it 
means for a function f defined on the real line, or on some subset 
of the real line, to converge to some value at a point. Just as we 
used the notions of c:-closeness and eventual c:-closeness to deal 
with limits of sequences, we shall need a notion of c:-closeness and 
local c:-closeness to deal with limits of functions .. 

Definition 9.3.1 (c:-closeness). Let X be a subset of R, let f : 
X --+ R be a function, let L be a real number, and let c: > 0 be a 
real number. We say that the function f is c:-close to L iff f(x) is 
c:-close to L for every x E X. 

Example 9.3.2. When the function f(x) := x 2 is restricted to 
the interval [1, 3], then it is 5-close to 4, since when x E [1, 3] 
then 1 ~ f(x) ~ 9, and hence lf(x)- 41 ~ 5. When instead it 
is restricted to the smaller interval [1.9, 2.1], then it is 0.41-close 
to 4, since if x E [1.9, 2.1], then 3.61 ~ f(x) ~ 4.41, and hence 
lf(x) - 41 ~ 0.41. 

Definition 9.3.3 (Local c:-closeness). Let X be a subset of R, 
let f : X --+ R be a function, let L be a real number, xo be an 
adherent point of X, and c: > 0 be a real number. We say that f 
is c:-close to L near xo iff there exists a 8 > 0 such that f becomes 
c:-close to L when restricted to the set {x EX: lx- xol < 8}. 
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Example 9.3.4. Let f : [1, 3] ---+ R be 'the function f(x) :== x2 

restricted to the interval [1, 3]. This function is not 0.1-close t~ 
4, since for instance /(1) is not 0.1-close to 4. However, f is 0.1. 
close to 4 near 2, since when restricted to the set { x E [1, 3] : 
lx - 21 < 0.01 }, the function f is indeed 0.1-close to 4. This is 
because when lx- 21 < 0.01, we have 1.99 < x < 2.01, and hence 
3.9601 < f(x) < 4.0401, and in particular f(x) is 0.1-close to 4. 

Example 9.3.5. Continuing with the same function fused in the 
previous example, we observe that f is not 0.1-close to 9, since 
for instance /(1) is not 0.1-close to 9. However, f is 0.1-close to 9 
near 3, since when restricted to the set { x E [1, 3] : lx- 31 < 0.01} 
-which is the same as the half-open interval (2.99, 3] (why?), the 
function f becomes 0.1-close to 9 (since if 2.99 < x ~ 3, then 
8.9401 < f(x) ~ 9, and hence f(x) is 0.1-close to 9). 

Definition 9.3.6 (Convergence of functions at a point). Let X be 
a subset of R, let f : X ---+ R be a function, let E be a subset of X, 
xo be an adherent point of E, and let L be a real number. We say 
that f converges_jo L at xo in E, and write limx-+zo;zEE f(x) = L, 
iff f is c:-close to L near xo for every c: > 0. Iff does not converge 
to any number L at xo, we say that f diverges at xo, and leave 
limx-+zo;zEE f(x) undefined. 

In other words, we have limx-+zo;zEE f(x) = L iff for every 
c: > 0, there exists a 8 > 0 such that lf(x)- Ll ~ c: for all x E E 
such that lx- xol < 8. (Why is this definition equivalent to the 
one given above?) 

Remark 9.3. 7. In many cases we will omit the set E from the 
above notation (i.e., we will just say that f converges to L at xo, or 
that limx-+zo f ( x) = L), although this is slightly dangerous. For 
instance, it sometimes makes a difference whether E actually con­
tains xo or not. To give an example, if f : R ---+ R is the function 
defined by setting f(x) = 1 when x = 0 and f(x) = 0 when x #- 0, 
then one has limz-+O;zER\{O} f(x) = 0, but limz-+O;zeRf(x) is 
undefined. Some authors only define the limit limx-+zo;zEE f(x) 
when E does not contain xo (so that x0 is now a limit point of E 



g,S. Limiting values of functions 255 

rather than an adherent point), or would use limx-+xo;:z:EE f(x) to 
denote what we would callliffixexo;:z:EE\{:z:o} f(x), but we have cho­
sen a slightly more general notation, which allows the possibility 
that E contains xo. 

Example 9.3.8. Let f : [1, 3] ---... R be the function f(x) := x2. 

We have seen before that f is 0.1-close to 4 near 2. A similar 
argument shows that f is 0.01-close to 4 near 2 (one just has to 
pick a smaller value of 8). 

Definition 9.3.6 is rather unwieldy. However, we can rewrite 
this definition in terms of a more familiar one, involving limits of 
sequences. 

Proposition 9.3.9. Let X be a subset of R, let f : X ---... R be 
a function, let E be a subset of X, let xo be an adherent point of 
E, and let L be a real number. Then the following two statements 
are logically equivalent: 

(a) f converges to L at xo in E. 

(b) For every sequence ( an)~=O which consists entirely of ele­
ments of E, which converges to xo, the sequence (f(an))~=O 
converges to f(xo). 

Proof. See Exercise 9.3.1. D 

In view of the above proposition, we will sometimes write 
"f(x) ---... L as x ---... xo in E" or "f has a limit L at xo in E" 
instead of "f converges to L at xo", or "limx-+xo f(x) = L". 

Remark 9.3.10. With the notation of Proposition 9.3.9, we have 
the following corollary: if limx-+:z:o;:z:EE f ( x) = L, and limn-+oo an = 
xo, then limn-+oo f(an) = L. 

Remark 9.3.11. We only consider limits of a function f at xo in 
the case when x 0 is an adherent point of E. When xo is not an 
adherent point then it is not worth it to define the concept of a 
limit. (Can you see why there will be problems?) 
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Remark 9.3.12. The variable x used to denote a limit is a 
dummy variable; we could replace it by any other variable and ob.. 
tain exactly the same limit. For instance, if limx-+xo;xEE f(x):::: L, 
then limy-+xo;yEE f(y) = L, and conversely (why?). 

Proposition 9.3.9 has some immediate corollaries. For instance 
' we now know that a function can have at most one limit at each 

point: 

Corollary 9.3.13. Let X be a subset of R, let E be a subset of 
X, let xo be an adherent point of E, and let f : X ---7 R be a 
function. Then f can have at most one limit at xo in E. 

Proof. Suppose for sake of contradiction that there are two dis­
tinct numbers L and L' such that f has a limit L at xo in E, 
and such that f also has a limit L' at xo in E. Since x0 is an 
adherent point of E, we know by Lemma 9.1.14 that there is a 
sequence ( an)~=O consisting of elements in E which converges to 
xo. Since f has a limit L at xo in E, we thus see by Proposition 
9.3.9, that (f(an))~=O converges to L. But since f also has a limit 
L' at xo in E, we see that (f(an))~=O also converges to L'. But 
this contradicts the uniqueness of limits of sequences (Proposition 
6.1.7). 0 

Using the limit laws for sequences, one can now deduce the 
limit laws for functions: 

Proposition 9.3.14 (Limit laws for functions). Let X be a subset 
of R, let E be a subset of X, let xo be an adherent point of E, 
and let f : X ---7 R and g : X ---7 R be functions. Suppose that f 
has a limit L at xo in E, and g has a limit M at xo in E. Then 
f + g has a limit L + M at xo in E, f - g has a limit L - M at 
xo in E, max(!, g) has a limit max(L, M) at xo in E, min(!, g) 
has a limit min( L, M) at xo in E and f g has a limit LM at xo 
in E. If c is a real number, then cf has a limit cL at xo in E. 
Finally, if g is non-zero on E (i.e., g( x) =/= 0 for all x E E) and 
M is non-zero, then f /g has a limit L/M at xo in E. 
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proof. We just prove the first claim (that f +g has a limit L+M); 
the others are very similar and are left to Exercise 9.3.2. Since xo 
is an adherent point of E, we know by Lemma 9.1.14 that there is 
3 sequence (an)~=O consisting of elements in E, which converges 
to x0. Since f has a limit L at xo in E, we thus see by Proposi­
tion 9.3.9, that (f(an))~=O converges to L. Similarly (g(an))~=O 
converges toM. By the limit laws for sequences (Theorem 6.1.19) 
we conclude that ((!+g) (an) )~=O converges to L + M. By Propo­
sition 9.3.9 again, this implies that f + g has a limit L + M at 
xo in E as desired (since (an)~=O was an arbitrary sequence in E 
converging to xo). D 

Remark 9.3.15. One can phrase Proposition 9.3.14 more infor­
mally as saying that 

lim(!± g)(x) = lim f(x) ± lim g(x) 
x-+xo x-+xo x-+xo 

lim max(!, g)(x) =max (lim f(x), lim g(x)) 
x-+xo x-+xo x-+xo 

lim min(f,g)(x) =min (lim f(x), lim g(x)) X-+XQ X-+XQ X-+XQ 

lim (fg)(x) = lim f(x) lim g(x) 
x-+xo x-+xo x-+xo 

lim (! / g)(x) = l~mx-+xo f(x) 
x-+xo hmx-+xo g(x) 

(where we have dropped the restriction x E E for brevity) but 
bear in mind that these identities are only true when the right­
hand side makes sense, and furthermore for the final identity we 
need g to be non-zero, and also limx-+xo g(x) to be non-zero. (See 
Example 1.2.4 for some examples of what goes wrong when limits 
are manipulated carelessly.) 

Using the limit laws in Proposition 9.3.14 we can already de­
duce several limits. First of all, it is easy to check the basic limits 

lim c = c 
x-+xo;xeR 
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lim x = xo 
x-+xo;xER 

for any real numbers xo and c. (Why? use Proposition 9.3.9.) By 
the limit laws we can thus conclude that 

lim x2 = x~ 
x-+xo;xER 

lim ex= exo 
x-+xo;xER 

lim x2 + ex + d = x~ + exo + d 
x-+xo;xER 

etc., where c, dare arbitrary real numbers. 
Iff converges to L at xo in X, andY is any subset of X such 

that xo is still an adherent point of Y, then f will also converge 
to L at xo in Y (why?). Thus convergence on a large set implies 
convergence on a smaller set. The converse, however, is not true: 

Example 9.3.16. Consider the signum function sgn : R ---t R, 
defined by 

sgn(x) := { ~ 
-1 

if X> 0 
if X= 0 
if X< 0 

Then limx-+O;xE(O,oo) sgn(x) = 1 (why?), whereas limx-+O;xE(-oo,O) = 
-1 (why?) and limx-+O;xER sgn( x) is undefined (why?). Thus it 
is sometimes dangerous to drop the set X from the notation of 
limit. However, in many cases it is safe to do so; for instance, 
since we know that limx-+xo;xER x2 = x~, we know in fact that 
limxExo;xEX x2 = x~ for any set X with xo as an adherent point 
(why?). Thus it is safe to write limx-+xo x 2 = x~. 

Example 9.3.17. Let f(x) be the function 

f(x) := { ~ if X= 0 
if X :f 0. 
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Then limz-+O;xeR-{O} f(x) = 0 (why?), but limz-+O;xeR f(x) is 
undefined (why). (When this happens, we say that f has a "re­
rnovable singularity" or "removable discontinuity" at 0. Because 
of such singularities, it is sometimes the convention when writ­
ing liffix-+zo f(x) to automatically exclude xo from the set; for 
instance, in the textbook, limx-+xo f(x) is used as shorthand for 
lirnx--+zo;xEX -{zo} f(x ). ) 

On the other hand, the limit at xo should only depend on the 
values of the function near xo; the values away from xo are not 
relevant. The following proposition reflects this intuition: 

Proposition 9.3.18 (Limits are local). Let X be a subset ofR, let 
E be a subset of X, let xo be an adherent point of E, let f : X --+ R 
be a function, and let L be a real number. Let 8 > 0. Then we 
have 

lim f(x) = L 
x-+xo;xEE 

if and only if 

lim f(x) = L. 
z-+xo;xEEn(xo-5,zo+5) 

Proof. See Exercise 9.3.3. D 

Informally, the above proposition asserts that 

lim f(x) = lim f(x). 
z-+zo;zEE x-+zo;zEEn(xo-5,zo+5) 

Thus the limit of a function at x0 , if it exists, only depends on the 
values off near xo; the values far away do not actually influence 
the limit. 

We now give a few more examples of limits. 

Example 9.3.19. Consider the functions f : R --+ R and g : 

R --+ R defined by f(x) := x + ~ and g(x) := x + 1. Then 
limz-+2;zER f(x) = 4 and limz-+2;xeRg(x) = 3. We would like to 
use the limit laws to conclude that limz-+2;zeRf(x)/g(x) = 4/3, 

or in other words that limx-+2;xeR ~$~ = l Strictly speaking, 
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we cannot use Proposition 9.3.14 to ensure this, because x + 1 is 
zero at x = -1, and so f(x)/9(x) is not defined. However, this is 
easily solved, by restricting the domain of f and 9 from R to a 
smaller domain, such as R- {1}. Then Proposition 9.3.14 does 

1 d h 1. xt2 _ 4 
app y, an we ave lmx-+2;xER-{1} xt1 - 3·. 

Example 9.3.20. Consider the function f : R- {1} ---+ R de-. 
fined by f ( x) := ( x2 - 1) / ( x - 1). This function is well-defined 
for every real number except 1, so /(1) is undefined. However 

' 1 is still an adherent point of R- {1} (why?), and the limit 
limx-+1;xER-{1} f(x) is still defined. This is because on the do­

main R- {1} we have the identity (x2 -1)/(x -1) = (x + 1)(x-
1)/(x- 1) = x + 1, and limx-+l;xER-{1} x + 1 = 2. 

Example 9.3.21. Let f: R---+ R be the function 

f(x) := { ~ ifx E Q 
if X¢ Q. 

We will show that f(x) has no limit at 0 in R. Suppose for sake 
of contradiction that f(x) had some limit L at 0 in R. Then we 
would have limn-+oo f(an) = L whenever (an)~=O is a sequence 
of non-zero numbers converging to 0. Since (1/n)~=O is such a 
sequence, we would have 

L = lim /(1/n) = lim 1 = 1. n-+oo n-+oo 

On the other hand, since ( v"i/n)~=O is another sequence of non­
zero numbers converging to 0 - but now these numbers are irra­
tional instead of rational - we have 

L = lim f( v"i/n) = lim 0 = 0. 
n-+oo n-+oo 

Since 1 =f. 0, we have a contradiction. Thus this function does not 
have a limit at 0. 

Exercise 9.3.1. Prove Proposition 9.3.9. 

Exercise 9.3.2. Prove the remaining claims in Proposition 9.3.14. 

Exercise 9.3.3. Prove Lemma 9.3.18. 
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g.4 Continuous functions 

We now introduce one of the most fundamental notions in the 
theory of functions - that of continuity. 

Definition 9.4.1 (Continuity). Let X be a subset of R, and let 
J : X ---7 R be a function. Let xo be an element of X. We say 
that f is continuous at xo iff we have 

lim f(x) = f(xo); 
x-+xo;xEX 

in other words, the limit of f(x) as x converges to xo in X exists 
and is equal to f(xo). We say that f is continuous on X (or simply 
continuous) iff f is continuous at xo for every xo E X. We say 
that f is discontinuous at xo iff it is not continuous at xo. 

Example 9.4.2. Let c be a real number, and let f : R ---7 R 
be the constant function f ( x) : = c. Then for every real number 
xo E R, we have · 

lim f(x) = lim c = c = f(xo), 
x-+xo;xER x-+xo;xER 

thus f is continuous at every point xo E R, or in other words f is 
continuous on R. 

Example 9.4.3. Let f: R ---7 R be the identity function f(x) := 
x. Then for every real number xo E R, we have 

lim f(x) = lim x = xo = f(xo), 
x-+xo;xER xoEx;xER 

thus f is continuous at every point xo E R, or in other words f is 
continuous on R. 

Example 9.4.4. Let sgn : R ---7 R be the signum function defined 
in Example 9.3.16. Then sgn(x) is continuous at every non-zero 
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value of x; for instance, at 1, we have (using Proposition 9.3.18) 

lim sgn( x) = lim sgn( x) 
x-+l;xER x-+l;xE(0.9,1.1) 

lim 1 
x-+l;xE(0.9,1.1) 

=1 

= sgn(1). 

On the other hand, sgn is not continuous at 0, since the limit 
limx-+O;xER sgn(x) does not exist. 

Example 9.4.5. Let f: R--+ R be the function 

f(x) := { ~ ifx E Q 
if X¢ Q. 

Then by the discussion in the previous section, f is not continuous 
at 0. In fact, it turns out that f is not continuous at any real 
number xo (can you see why?). 

Example 9.4.6. Let f : R --+ R be the function 

f(x) := { ~ if X;:::: 0 
if X< 0. 

Then f is continuous at every non-zero real number (why?), but 
is not continuous at 0. However, if we restrict f to the right­
hand line [0, oo), then the resulting function fl(o,oo) now becomes 
continuous everywhere in its domain, including 0. Thus restrict­
ing the domain of a function can make a discontinuous function 
continuous again. 

There are several ways to phrase the statement that "f is 
continuous at xo": 

Proposition 9.4. 7 (Equivalent formulations of continuity). Let 
X be a subset of R, let f : X --+ R be a function, and let xo be an 
element of X. Then the following three statements are logically 
equivalent: 
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(a) f is continuous at xo. 

(b) For every sequence ( an)~=O consisting of elements of X with 
limn-+oo an= xo, we have limn-+oo f(an) = f(xo). 

(c) For every c > 0, there exists a 8 > 0 such that if(x)­
f(xo)i < c for all x EX with ix- xoi < 8. 

Proof. See Exercise 9.4.1. 0 

Remark 9.4.8. A particularly useful consequence of Proposition 
9.4.7 is the following: if f is continuous at xo, and an ---+ xo 
as n---+ oo, then f(an) ---+ f(xo) as n ---+ oo (provided that all the 
elements of the sequence (an )~=O lie in the domain of f, of course). 
Thus continuous functions are very useful in computing limits. 

The limit laws in Proposition 9.3.14, combined with the defi­
nition of continuity in Definition 9.4.1, immediately imply 

Proposition 9.4.9 (Arithmetic preserves continuity). Let X be 
a subset of R, and let f : X ---+ R and g : X ---+ R be functions. 
Let xo E X. Then iff and g are both continuous at xo, then the 
functions f + g, f- g, max(!, g), min(!, g) and fg are also con­
tinuous at xo. If g is non-zero on X, then f jg is also continuous 
at xo. 

In particular, the sum, difference, maximum, minimum, and 
product of continuous functions are continuous; and the quotient 
of two continuous functions is continuous as long as the denomi­
nator does not become zero. 

One can use Proposition 9.4.9 to show that a lot of func­
tions are continuous. For instance, just by starting from the fact 
that constant functions are continuous, and the identity function 
f(x) = x is continuous (Exercise "9.4.2), one can show that the 
function g(x) := max(x3 + 4x2 + x + 5, x 4 - x 3 )j(x2 - 4), for in­
stance, is continuous at every point of R except the two points 
x = +2, x = -2 where the denominator vanishes. 

Some other examples of continuous functions are given below. 
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Proposition 9.4.10 (Exponentiation is cqntinuous, I). Let a> 0 
be a positive real number. Then the function f : R ~ R defined 
by f(x) :=ax is continuous. 

Proof. See Exercise 9.4.3. 0 

Proposition 9.4.11 (Exponentiation is continuous, II). Let p be 
a real number. Then the function f : (0, oo) ~ R defined by 
f(x) := xP is continuous. 

Proof. See Exercise 9.4.4. 0 

There is a stronger statement than Propositions 9.4.10, 9.4.11, 
namely that exponentiation is jointly continuous in both the expo­
nent and the base, but this is harder to show; see Exercise 15.5.10. 

Proposition 9.4.12 (Absolute value is continuous). The function 
f: R ~ R defined by f(x) := lxl is continuous. 

Proof. This follows since lxl = max(x, -x) and the functions 
x, -x are already continuous. 0 

The class of continuous functions is not only closed under ad­
dition, subtraction, multiplication, and division, but is also closed 
under composition: 

Proposition 9.4.13 (Composition preserves continuity). Let X 
and Y be subsets of R, and let f : X ~ Y and g : Y ~ R be 
functions. Let xo be a point in X. Iff is continuous at xo, and 
g is continuous at f(xo), then the composition go f : X ~ R is 
continuous at xo. 

Proof. See Exercise 9.4.5. 0 

Example 9.4.14. Since the function f(x) := 3x+1 is continuous 
on all of R, and the function g(x) := 5x is continuous on all of R, 
the function go f ( x) = 53x+l is continuous on all of R. By several 
applications of the above propositions, one can show that far more 
complicated functions, e.g., h(x) := lx2 - 8x + 7lv'2 j(x2 + 1), are 
also continuous. (Why is this function continuous?) There are still 
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a few functions though that are not yet easy to test for continuity, 
such as k(x) := xx; this function can be dealt with more easily 
once we have the machinery of logarithms, which we will see in 
Section 15.5. 

Exercise 9.4.1. Prove Proposition 9.4.7. (Hint: this can largely be done 
by applying the previous propositions and lemmas. Note that to prove 
(a),(b), and (c) are equivalent, you do not have to prove all six equiva­
lences, but you do have to prove at least three; for instance, showing that 
(a) implies (b), (b) implies (c), and (c) implies (a) will suffice, although 
this is not necessarily the shortest or simplest way to do this question.) 

Exercise 9.4.2. Let X be a subset of R, and let c E R. Show that the 
constant function f : X --+ R defined by f(x) := cis continuous, and 
show that the identity function g: X--+ R defined by g(x) := x is also 
continuous. 

Exercise 9.4.3. Prove Proposition 9.4.10. (Hint: you can use Lemma 
6.5.3, combined with the squeeze test (Corollary 6.4.14) and Proposition 
6.7.3.) 

Exercise 9.4.4. Prove Proposition 9.4.11. (Hint: from limit laws (Propo­
sition 9.3.14) one can show that limx-+1 xn = 1 for all integers n. From 
this and the squeeze test (Corollary 6.4.14) deduce that limx-+1 xP = 1 
for all real numbers p. Finally, apply Proposition 6.7.3.) 

Exercise 9.4.5. Prove Proposition 9.4.13. 

Exercise 9.4.6. Let X be a subset of R, and let f : X --+ R be a 
continuous function. If Y is a subset of X, show that the restriction 
fly : Y --+ R of f to Y is also a continuous function. (Hint: this is a 
simple result, but it requires you to follow the definitions carefully.) 

Exercise 9.4.7. Let n ~ 0 be an integer, and for each 0 ~ i ~ n let c; be 
a real number. Let P : R --+ R be the function 

n 

P(x) := Lc;xi; 
i=O 

such a function is known as a polynomial of one variable; a typical ex­
ample is P(x) = 6x4 - 3x2 + 4. Show that Pis continuous. 
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9.5 Left and right limits 

We now introduce the notion of left and right limits, which can 
be thought of as two seperate "halves" of the complete limit 
limx-+xo;xEX f(x). 

Definition 9.5.1 (Left and right limits). Let X be a subset of 
R, f: X~ R be a function, and let xo be a real number. If x0 

is an adherent point of X n ( xo, oo), then we define the right limit 
f(xo+) off at xo by the formula 

f(xo+) := lim f(x), 
x-+xo;xEXn(xo,oo) 

provided of course that this limit exists. Similarly, if xo is an ad­
herent point of X n ( -oo, xo), then we define the left limit f(x0-) 

of f at xo by the formula 

f(xo-) := lim f(x), 
x-+xo;xEXn( -oo,xo) 

again provided that the limit exists. (Thus in many cases f(xo+) 
and f ( xo-) will not be defined.) 

Sometimes we use the shorthand notations 

lim f(x) := lim f(x); 
x-+xo+ x-+xo;xEXn(xo,oo) 

lim f(x) := lim f(x) 
x-+xo- x-+xo;xEXn(-oo,xo) 

when the domain X of f is clear from context. 

Example 9.5.2. Consider the signum function sgn R ~ R 
defined in Example 9.3.16. We have 

sgn(O+) = lim sgn(x) = lim 1 = 1 
x-+xo;xERn(O,oo) x-+xo;xERn(O,oo) 

and 

sgn(O-) = lim sgn(x) = lim -1 = -1, 
x-+xo;xERn( -oo,O) x-+xo;xERn( -oo,O) 

while sgn(O) = 0 by definition. 
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Note that f does not necessarily have to be defined at x0 in 
order for f(xo+) or f(xo-) to be defined. For instance, if f : 
R- {0} -t R is the function f(x) := xjJxJ, then /(0+) = 1 and 
f(O-) = -1 (why?), even though f(O) is undefined. 

From Proposition 9 .4. 7 we see that if the right limit f ( xo+) 
exists, and ( an)~=O is a sequence in X converging to xo from the 
right (i.e., an > xo for all n EN), then limn-+oo f(an) = f(xo+). 
Similarly, if (bn)~=O is a sequence converging to xo from the left 
(i.e., an < xo for all n EN) then limn-+oo f(an) = f(xo- ). 

Let Xo be an adherent point of both X n (xo, 00) and X n 
(-oo, xo). Iff is continuous at xo, it is clear from Proposition 
9.4.7 that f(xo+) and f(xo-) both exist and are equal to f(xo). 
(Can you see why?) A converse is also true (compare this with 
Proposition 6.4.12( f)): 

Proposition 9.5.3. Let X be a subset of R containing a real 
number xo, and suppose that xo is an adherent point of both X n 
(x0,oo) and X n (-oo,xo). Let f :X -t R be a function. If 
f(xo+) and f(xo-) both exist and are both equal to f(xo), then f 
is continuous at xo. 

Proof. Let us write L := f(x0). Then by hypothesis we have 

lim f(x) = L 
x-+xo;xEXn(xo ,oo) 

(9.1) 

and 
lim f(x) = L. 

x-+xo ;xEXn( -oo,xo) 
(9.2) 

Let c > 0 be given. From (9.1) and Proposition 9.4.7, we know 
that there exists a c5+ > 0 such that Jf(x) - Ll < c for all x E 

X n (xo, oo) for which Jx- xoJ < 8+. From (9.2) we similarly 
know that there exists a L > 0 such that Jf(x) - Ll < c for 
all x E X n (-oo,xo) for which Jx- xol < L. Now let c5 := 
min(L, c5+)i then c5 > 0 (why?), and suppose that x EX is such 
that Jx -xoJ < c5. Then there are three cases: x > xo, x = xo, and 
x < xo, but in all three cases we know that Jf(x)- Ll <c. (Why? 
the reason is different in each of the three cases.) By Proposition 
9.4.7 we thus have that f is continuous at xo, as desired. 0 
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As we saw with the signum function in Example 9.3.16, it is 
possible for the left and right limits f(xo- ), f(xo+) of a function 
f at a point xo to both exist, but not be equal to each other; when 
this happens, we say that f has a jump discontinuity at xo. Thus 

' for instance, the signum function has a jump discontinuity at zero. 
Also, it is possible for the left and right limits f(xo-), f(xo+) to 
exist and be equal each other, but not be equal to f ( xo); when this 
happens we say that f has a removable discontinuity (or removable 
singularity) at xo. For instance, if we take f : R---+ R to be the 
function 

f(x) := { ~ if X= 0 
if X =f 0, 

then f(O+) and f(O-) both exist and equal 0 (why?), but f(O) 
equals 1; thus f has a removable discontinuity at 0. 

Remark 9.5.4. Jump discontinuities and removable discontinu­
ities are not the only way a function can be discontinuous. An­
other way is for a function to go to infinity at the discontinuity: 
for instance, the function f : R- { 0} ---+ R defined by f ( x) : = 1 f x 
has a discontinuity at 0 which is neither a jump discontinuity or 
a removable singularity; informally, f(x) converges to +oo when 
x approaches 0 from the right, and converges to -oo when x ap­
proaches 0 from the lett. These types of singularities are some­
times known as asymptotic discontinuities. There are also oscil­
latory discontinuities, where the function remains bounded but 
still does not have a limit near xo. For instance, the function 
f : R ---+ R defined by 

f(x) := { ~ ifx E Q 
ifx ¢ Q 

has an oscillatory discontinuity at 0 (and in fact at any other real 
number also). This is because the function do~s not have left or 
right limits at 0, despite the fact that the function is bounded. 

The study of discontinuities (also called singularities) contin­
ues further, but is beyond the scope of this text. For instance, 
singularities play a key role in complex analysis. 
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E:cercise 9.5.1. Let E be a subset of R, let f : E ---+ R be a function, 
and let xo be an adherent point of E. Write down a definition of what 
it would mean for the limit limx-+xo;xEE f(x) to exist and equal +oo or 
-00· Iff: R\{0}---+ R is the function f(x) := 1/x, use your definition 
to conclude f(O+) = +oo and f(O-) = -oo. Also, state and prove some 
analogue of Proposition 9.3.9 when L = +oo or L = -oo. 

9.6 The maximum principle 

In the previous two sections we saw that a large number of func­
tions were continuous, though certainly not all functions were con­
tinuous. We now show that continuous functions enjoy a number 
of other useful properties, especially if their domain is a closed 
interval. It is here that we shall begin exploiting the full power of 
the Heine-Borel theorem (Theorem 9.1.24). 

Definition 9.6.1. Let X be a subset of R, and let f : X ---+ R be 
a function. We say that f is bounded from above if there exists a 
real number M such that f(x) ~ M for all x EX. We say that f 
is bounded from below if there exists a real number M such that 
f(x) ~ -M for all x EX. We say that f is bounded if there exists 
areal number M such that if(x)l ~ M for all x EX. 

Remark 9.6.2. A function is bounded if and only if it is bounded 
both from above and below. (Why? Note that one part of the "if 
and only if" is slightly trickier than the other.) Also, a function 
f: X---+ R is bounded if and only if its image f(X) is a bounded 
set in the sense of Definition 9.1.22 (why?). 

Not all continuous functions are bounded. For instance, the 
function f(x) := x on the domain R is continuous but unbounded 
(why?), although it is bounded on some smaller domains, such 
as [1, 2]. The function f(x) := 1/x is continuous but unbounded 
on (0, 1) (why?), though it is continuous and bounded on [1, 2] 
(why?). However, if the domain of the continuous function is a 
closed and bounded interval, then we do have boundedness: 



270 9. Continuous functions on a 

Lemma 9.6.3. Let a < b be real numbf}_rs, and let f : [a, b] --+ a 
be a function continuous on [a, b]. Then f .is a bounded function. 

Proof. Suppose for sake of contradiction that f is not bounded. 
Thus for every real number M there exists an element x E [a, b] 
such that lf(x)l ~ M. 

In particular, for every natural number n, the set { x E [a, b] : 
lf(x)l ~ n} is non-empty. We can thus choose2 a sequence (xn)~0 
in [a, b] such that lf(xn) I ~ n for all n. This sequence lies in [a, b], 
and so by Theorem 9.1.24 there exists a subsequence (xn3 )~0 
which converges to some limit L E [a, b], where no < n1 < n2 < ... 
is an increasing sequence of natural numbers. In particular, we 
see that ni ~ j for all j EN (why? use induction). 

Since f is continuous on [a,.b], it is continuous at L, and in 
particular we see that 

.lim f(xn.) = f(L ). 
J-+00 J 

Thus the sequence (f(xn1 ))f=0 is convergent, and hence it is bounded. 
On the other hand, we know from the construction that If ( Xn3) I 2: 
ni ~ j for all j, and hence the sequence (! ( Xn;)) f=o is not bounded, 
a contradiction. 0 

Remark 9.6.4. There are two things about this proof that are 
worth noting. Firstly, it shows how useful the Reine-Borel theorem 
(Theorem 9.1.24) is. Secondly, it is an indirect proof; it doesn't say 
how to find the bound for f, but it shows that having f unbounded 
leads to a contradiction. 

We now improve Lemma 9.6.3 to say something more. 

Definition 9.6.5 (Maxima and minima). Let f : X --+ R be a 
function, and let xo EX. We say that f attains its maximum at 
xo if we have f(xo) ~ f(x) for all x E X (i.e., the value off at 

2Strictly speaking, this requires the axiom of choice, as in Lemma 8.4.5. 
However, one can also proceed without the axiom of choice, by defining Xn := 
sup{x E [a,b] : lf(x)l ;:::: n}, and using the continuity off to show that 
lf(xn)l;:::: n. We leave the details to the reader. 
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the point xo is larger than or equal to the value of f at any other 
point in X). We say that f attains its minimum at xo if we have 
J(xo) ~ f(x). 

Remark 9.6.6. If a function attains its maximum somewhere, 
then it must be bounded from above (why?). Similarly if it attains 
its minimum somewhere, then it must be bounded from below. 
These notions of maxima and minima are global; local versions 
will be defined in Definition 10.2.1. 

Proposition 9.6.7 (Maximum principle). Let a< b be real num­
bers, and let f : [a, b] ---... R be a function continuous on [a, b]. 
Then f attains its maximum at some point Xmax E [a, b], and also 
attains its minimum at some point Xmin E [a, b]. 

Remark 9.6.8. Strictly speaking, "maximum principle" is a mis­
nomer, since the principle also concerns the minimum. Perhaps 
a more precise name would have been "extremum principle"; the 
word "extremum" is used to denote either a maximum or a mini­
mum. 

Proof. We shall just show that f attains its maximum somewhere; 
the proof that it attains its minimum also is similar but is left to 
the reader. 

From Lemma 9.6.3 we know that f is bounded, thus there 
exists an M such that -M ~ f(x) ~ M for each x E [a, b]. Now 
let E denote the set 

E := {f(x) : x E [a, b]}. 

(In other words, E := f([a, b]).) By what we just said, this set is 
a subset of [-M, M]. It is also non-empty, since it contains for 
instance the point f(a). Hence by the least upper bound principle, 
it has a supremum sup(E) which is a real number. 

Write m := sup(E). By definition of supremum, we know 
that y ~ m for all y E E; by definition of E, this means that 
f(x) ~ m for all x E [a, b]. Thus to show that f attains its 
maximum somewhere, it will suffice to find an Xmax E [a, b] such 
that f(xmax) = m. (Why will this suffice?) 
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Let n ~ 1 be any integer. Then m--,.- ~ < m = sup(E). Ap, 
sup(E) is the least upper bound forE, m.- ~cannot be an upper 
bound for E, thus there exists a y E E s~ch that m - ~ < y. By 
definition of E, this implies that there exists an x E [a, b] such 
that m- ~ < f(x). 

We now choose a sequence (xn)~=l by choosing, for each n, 
Xn to be an element of [a, b] such that m- ~ < f(xn)· (Again, 
this requires the axiom of choice; however it is possible to prove 
this principle without the axiom of choice. For instance, you will 
see a better proof of this proposition using the notion of compact­
ness in Proposition 13.3.2.) This is a sequence in [a, b]; by the 
Heine-Borel theorem (Theorem 9.1.24), we can thus find a subse­
quence (xn)~=l' where n1 < n2 < ... , which converges to some 
limit Xmax E [a, b]. Since (xn1 )~1 converges to Xmax, and f is 
continuous at Xmax, we have as before that 

.lim f(xn·) = f(Xmax)· 
J-+00 J 

On the other hand, by construction we know that 

1 1 
f( x . ) > m - - > m - -nJ - ., 

ni J 

and so by taking limits of both sides we see that 

1 
f(Xmax) = _lim f(xn.) ~ .lim m---:- = m. 

J-+00 J J-+00 J 

On the other hand, we know that f(x)::; m for all x E [a,b], so 
in particular f(xmax) ::; m. Combining these two inequalities we 
see that f (X max) = m as desired. 0 

Note that the maximum principle does not prevent a function 
from attaining its maximum or minimum at more than one point. 
For instance, the function f(x) := x2 on the inteml [-2, 2] attains 
its maximum at two different points, at -2 and at 2. 

Let us write sup:z:E[a,b] f(x) as short-hand for sup{f(x) : x E 
[a, b]}, and similarly define infxE[a,b] f(x). The maximum principle 
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thUS asserts that m := supxE[a,b] f(x) is a real number and is the 
maximum value off on [a, b], i.e., there is at least one point Xmax 
in [a, b] for which f(xmax) = m, and for every other x E [a, b], f(x) 
is less than or equal tom. Similarly infxe[a,b] f(x) is the minimum 
value off on [a, b]. 

We now know that on a closed interval, every continuous func­
tion is bounded and attains its maximum at least once and min­
imum at least once. The same is not true for open or infinite 
intervals; see Exercise 9.6.1. 

Remark 9.6.9. You may encounter a rather different "maximum 
principle" in complex analysis or partial differential equations, 
involving analytic functions and harmonic functions respectively, 
instead of continuous functions. Those maximum principles are 
not directly related to this one (though they are also concerned 
with whether maxima exist, and where the maxima are located). 

Exercise 9.6.1. Give examples of 

(a) a function f : (1, 2) ---+ R which is continuous and bounded, at­
tains its minimum somewhere, but does not attain its maximum 
anywhere; 

(b) a function f: [0, oo) ---+ R which is continuous, bounded, attains 
its maximum somewhere, but does not attain its minimum any­
where; 

(c) a function f: [-1, 1] ---+ R which is bounded but does not attain 
its minimum anywhere or its maximum anywhere. 

(d) a function f : [-1, 1] ---+ R which has no upper bound and no 
lower bound. 

Explain why none of the examples you construct viola.te the maximum 
principle. (Note: read the assumptions carefully!) 

9. 7 The intermediate value theorem 

We have just shown that a continuous function attains both its 
maximum value and its minimum value. We now show that f also 
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attains every value in between. To do this, we first prove a very 
intuitive theorem: 

Theorem 9. 7.1 (Intermediate value theorem). Let a < b, and 
let f: [a,b]---... R be a continuous function on [a,b]. Let y be a 
real number between f(a) and f(b), i.e., either f(a):::; y:::; f(b) or 
f(a);:::: y;:::: f(b). Then there exists c E [a, b] such that f(c) = y. 

Proof. We have two cases: f(a) :::; y :::; f(b) or f(a) ;:::: y ;:::: f(b). 
We will assume the former, that f(a) :::; y :::; f(b); the latter is 
proven similarly and is left to the reader. 

If y = f(a) or y = f(b) then the claim is easy, as one can 
simply set c =a or c = b, so we will assume that f(a) < y < f(b). 
Let E denote the set 

E := {x E [a,b]: f(x) < y}. 

Clearly E is a subset of [a, b], and is hence bounded. Also, since 
f (a) < y, we see that a is an element of E, so E is non-empty. By 
the least upper bound principle, the supremum 

c := sup(E) 

is thus finite. Since E is bounded by b, we know that c :::; b; since 
E contains a, we know that c ;:::: a. Thus we have c E [a, b]. To 
complete the proof we now show that f (c) = y. The idea is to 
work from the left of c to show that f(c) :::; y, and to work from 
the right of c to show that /(c);:::: y. 

Let n ;:::: 1 be an integer. The number c - ~ is less than 
c = sup(E) and hence cannot be an upper bound for E. Thus 
there exists a point, call it Xn, which lies in E and which is greater 
than c - ~. Also Xn :::; c since c is an upper bound for E. Thus 

1 
c--:::; Xn:::; c. 

n 

By the squeeze test (Corollary 6.4.14) we thus have limn-+oo Xn = 
c. Since f is continuous at c, this implies that liiDn-+oo f(xn) = 
f(c). But since Xn lies in E for every n, we have f(xn) < y for 
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every n. By the comparison principle (Lemma 6.4.13) we thus 
have f(c) ~ y. Since f(b) > f(c), we conclude c =!=b. 

Since c =/= b and c E (a, b], we must have c < b. In particular 
there is an N > 0 such that c + ~ < b for all n > N (since 
c + ~ converges to c as n ~ oo). Since c is the supremum of E 
and c + ~ > c, we thus have c + ~ ~ E for all n > N. Since 
c+ ~ E (a, b], we thus have f(c+ ~) ~ y for all n ~ N. But c+ ~ 
converges to c, and f ·is continuous at c, thus f (c) ~ y. But we 
already knew that f(c) ~ y, thus /(c)= y, as desired. 0 

The intermediate value theorem says that iff takes the val­
ues f(a) and f(b), then it must also take all the values in be­
tween. Note that iff is not assumed to be continuous, then the 
intermediate value theorem no longer applies. For instance, if 
f: (-1, 1] ~ R is the function 

{ 
-1 

f(x) := 1 
if X~ 0 
if X> 0 

then f( -1) = -1, and /(1) = 1, but there is no c E [-1, 1] for 
which f(c) = 0. Thus if a function is discontinuous, it can "jump" 
past intermediate values; however continuous functions cannot do 
so. 

Remark 9. 7.2. A continuous function may take an intermediate 
value multiple. times. For instance, if f : (-2, 2] ~ R is the 
function f(x) := x3 - x, then f( -2) = -6 and /(2) = 6, so 
we know that there exists a c E (-2, 2] for ,which f(c) = 0. In 
fact, in this case there exists three such values of c: we have 
/(-1) = f(O) = /(1) = 0. 

Remark 9. 7.3. The intermediate value theorem gives another 
way to show that one can take nth roots of a number. For instance, 
to construct the square root of 2, consider the function f : (0, 2] ~ 
R defined by f(x) = x2 . This function is continuous, with f(O) = 
0 and /(2) = 4. Thus there exists acE (0, 2] such that f(c) = 2, 
i.e., c2 = 2. (This argument does not show that there is just one 
square root of 2, but it does prove that there is at least one square 
root of 2.) 
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Corollary 9. 7.4 (Images of continuous flinctions). Let a < b 
and let f : [a, b] ~ R be a continuous function on [a, b]. Le~ 
M := supxE[a,b] f(x) be the maximum value of J, and let m :::::: 
infxE[a,b] f(x) be the minimum value. Let y be a real number be­
tween m and M (i.e., m ~ y ~ M). Then there exists acE [a,bJ 
such that f(c) = y. Furthermore, we have f([a, b]) = [m, M]. 

Proof. See Exercise 9.7.1. 0 

Exercise 9.7.1. Prove Corollary 9.7.4. (Hint: you may need Exercise 
9.4.6 in addition to the intermediate value theorem.) 

Exercise 9.7.2. Let f : [0, 1] ~ [0, 1] be a continuous function. Show 
that there exists a real number x in [0, 1] such that f(x) = x. (Hint: 
apply the intermediate value theorem to the function f(x) - x.) This 
point x is known as a fixed point of J, and this result is a basic example 
of a fixed point theorem, which play an important role in certain types 
of analysis. 

9.8 Monotonic functions 

We now discuss a class of functions which is distinct from the class 
of continuous functions, but has somewhat similar properties: the 
class of monotone (or monotonic) functions. 

Definition 9.8.1 (Monotonic functions). Let X he a subset of 
R, and let f : X ~ R be a function. We say that f is monotone 
increasing iff f(y) ~ f(x) whenever x,y EX andy> x. We say 
that f is strictly monotone increasing iff f(y) > f(x) whenever 
x, y E X andy > x. Similarly, we say f is monotone decreasing iff 
f(y) ~ f(x) whenever x,y EX andy> x, and strictly monotone 
decreasing iff f(y) < f(x) whenever x,y EX andy> x. We say 
that f is monotone if it is monotone increasing or monotone de­
creasing, and strictly monotone if it is strictly ·monotone increasing 
or strictly monotone decreasing. 

Examples 9.8.2. The function f(x) := x2 , when restricted to the 
domain [0, oo), is strictly monotone increasing (why?), but when 
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restricted instead to the domain ( -oo, OJ, is strictly monotone de­
creasing (why?). Thus the function is strictly monotone on both 
(-oo,O] and [O,oo), but is not strictly monotone (or monotone) 
on the full real line ( -oo, oo ). Note that if a function is strictly 
Illonotone on a domain X, it is automatically monotone as well 
on the same domain X. The constant function f(x) := 6, when 
restricted to an arbitrary domain X ~ R, is both monotone in­
creasing and monotone decreasing, but is not strictly monotone 
(unless X consists of at most one point- why?). 

Continuous functions are not necessarily monotone (consider 
for instance the function f ( x) = x2 on R), and monotone functions 
are not necessarily continuous; for instance, consider the function 
f: [-1, 1] -+ R defined earlier by 

{ 
-1 

f(x) := 1 
if X :::; 0 
if X> 0. 

Monotone functions obey the maximum principle (Exercise 9.8.1), 
but not the intermediate value principle (Exercise 9.8.2). On the 
other hand, it is possible for a monotone function to have many, 
many discontinuities (Exercise 9.8.5). 

If a function is both strictly monotone and continuous, then it 
has many nice properties. In particular, it is invertible: 

Proposition 9.8.3. Let a < b be real numbers, and let f: [a, b] -+ 

R be a function which is both continuous and strictly monotone 
increasing. Then f is a bijection from [a, b] to [!(a), f(b)], and the 
inverse f-1 : [f(a), f(b)] -+ [a, b] is also continuous and strictly 
monotone increasing. 

Proof. See Exercise 9.8.4. D 

There is a similar Proposition for functions which are strictly 
monotone decreasing; see Exercise 9.8.4. 

Example 9.8.4. Let n be a positive integer and R > 0. Since the 
function f(x) := xn is strictly increasing on the interval [0, R], we 
see from Proposition 9.8.3 that this function is a bijection from 
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[0, R] to [0, Rn], and hence there is an inverse ftom [0, Rn] to [0, R]. 
This can be used to give an alternate means to construct the nth 

root x 11n of a number x E [0, R] than what was done in Le:rruna 
5.6.5. 

Exercise 9.8.1. Explain why the maximum principle remains true if the 
hypothesis that f is continuous is replaced with f being monotone, or 
with f being strictly monotone. (You can use the same explanation for 
both cases.) 

Exercise 9.8.2. Give an example to show that the intermediate value 
theorem becomes false if the hypothesis that f is continuous is replaced 
with f being monotone, or with f being strictly monotone. (You can 
use the same counterexample for both cases.) 

Exercise 9.8.3. Let a < b be real numbers, and let f : [a, b] -+ R be a 
function which is both continuous and one-to-one. Show that f is strictly 
monotone. (Hint: divide into the three cases f(a) < f(b), f(a) = f(b), 
f (a) > f (b). The second case leads directly to a contradiction. In the 
first case, use contradiction and the intermediate value theorem to show 
that f is strictly monotone increasing; in the third case, argue similarly 
to show f is strictly monotone decreasing.) 

Exercise 9.8.4. Prove PropOGition 9.8.3. (Hint: to show that f- 1 is 
continuous, it is easiest to use the "epsilon-delta" definition of conti­
nuity, Proposition 9.4.7(c).) Is the proposition still true if the conti­
nuity assumption is dropped, or if strict monotonicity is replaced just 
by monotonicity? How should one modify the proposition to deal with 
strictly monotone decreasing functions instead of strictly monotone in­
creasing functions? 

Exercise 9.8.5. In this exercise we give an example of a function which 
has a discontinuity at every rational point, but is continuous at every 
irrational. Since the rationals are countable, we can write them as 
Q = {q(O),q(l),q(2), ... }, where q: N-+ Q is a bijection from N 
to Q. Now define a function g : Q -+ R by setting g(q(n)) := 2-n 
for each natural number n; thus g maps q(O) to 1, q(l) to 2-1, etc. 
Since E:'=o 2-n is absolutely convergent, we see that I:rEQ g(r) is also 
absolutely convergent. Now define the function f : R -+ R by 

f(x) := L g(r). 
rEQ:r<x 
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Since :ErEQ g(r) is absolutely convergent, we know that f(x) is well­
defined for every real number x. 

(a) Show that f is strictly monotone increasing. (Hint: you will need 
Proposition 5.4.14.) 

(b) Show that for every rational number r, f is discontinuous at r. 
(Hint: since r is rational, r = q( n) for some natural number n. 
Show that f(x) ~ f(r) + 2-n for all x > r.) 

(c) Show that for every irrational number x, f is continuous at x. 
(Hint: first demonstrate that the functions 

fn(x) := g(r) 
rEQ:r<x,g(r)~2-n 

are continuous at x, and that if(x)- fn(x)i ~ 2-n.) 

9.9 Uniform continuity 

We know that a continuous function on a closed interval [a, b] 
remains bounded (and in fact attains its maximum and minimum, 
by the maximum principle). However, if we replace the closed 
interval by an open interval, then continuous functions need not 
be bounded any more. An example is the function f: (0, 2) ---t R 
defined by f(x) := ljx. This function is continuous at every point 
in (0, 2), and is hence continuous at (0, 2), but is not bounded. 
Informally speaking, the problem here is that while the function 
is indeed continuous at every point in the open interval (0, 2), it 
becomes "less and less" continuous as one approaches the endpoint 
0. 

Let us analyze this phenomenon further, using the "epsilon­
delta" definition of continuity- Proposition 9.4.7(c). We know 
that iff: X ---t R is continuous at a point xo, then for every c > 0 
there exists a 6 such that f(x) will be €-close to f(xo) whenever 
x E X is 6-close to xo. In other words, we can force f(x) to be 
e-close to f(xo) if we ensure that x is sufficiently close to xo. One 
way of thinking about this is that around every point xo there is 
an "island of stability" (xo- 6,xo + 6), where the function f(x) 
doesn't stray by more than c from f(xo). 
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Exru:nple 9.9.1. Take the function f(x) := 1/".J; mentioned above 
at the point xo = 1. In order to ensure that f(x) is 0.1-close to 
f(xo), it suffices to take x to be 1/11-close to xa, since if xis 1/11-
close to xo then 10/11 < x < 12/11, and so 11/12 < f(x) < 11/10, 
and so f(x) is 0.1-close to f(xo). Thus the "5" one needs to make 
f(x) 0.1-close to f(xo) is about 1/11 or so, at the point xo = 1. 

Now let us look instead at the point xo = 0.1. The function 
f(x) = 1/x is still continuous here, but we shall see the continuity 
is much worse. In order to ensure that f(x) is 0.1-close to f(x0), 

we need x to be 1/1010-close to xo. Indeed, if x is 1/1010 close to 
xo, then 10/101 < x < 102/1010, and so 9.901 < f(x) < 10.1, so 
f(x) is 0.1-close to f(xo). Thus one needs a much smaller "5" for 
the same value of c- i.e., f(x) is much more "unstable" near 0.1 
than it is near 1, in the sense that there is a much smaller "island 
of stability" around 0.1 as there is around 1 (if one is interested 
in keeping f(x) 0.1-stable). 

On the other hand, there are other continuous functions which 
do not exhibit this behavior. Consider the function 9: (0, 2) ---t R 
defined by g(x) := 2x. Let us fix c = 0.1 as before, and investigate 
the island of stability around xo = 1. It is clear that if x is 0.05-
close to xo, then g(x) is 0.1-close to g(xo); in this case we can 
take 5 to be 0.05 at xo = 1. And if we move xo around, say if we 
set xo to 0.1 instead, the 5 does not change- even when xo is set 
to 0.1 instead of 1, we see that g(x) will stay 0.1-close to g(xo) 
whenever xis 0.05-close to xo. Indeed, the same 5 works for every 
xo. When this happens, we say that the function g is uniformly 
continuous. More precisely: 

Definition 9.9.2 (Uniform continuity). Let X be a subset of R, 
and let f : X ---t R be a function. We say that f is uniformly 
continuous if, for every c > 0, there exists a 5 > 0 such that f(x) 
and f(xo) are c-close whenever x, xo E X are t~o points in X 
which are 5-close. 

Remark 9.9.3. This definition should be compared with the no­
tion of continuity. From Proposition 9.4.7(c), we know that a 
function f is continuous if for every c > 0, and every xo E X,· 
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there is a 8 > 0 such that f(x) and f(xo) are c:-close whenever 
:& EX is &-close to xo. The difference between uniform continuity 
and continuity is that in uniform continuity one can take a single 
5 which works for all xo E X; for ordinary continuity, each xo E X 
rnight use a different 8. Thus every uniformly continuous function 
is continuous, but not conversely. 

Example 9.9.4. (Informal) The function f : (0, 2) ---+ R defined 
by f(x) := 1/x is continuous on (0, 2), but not uniformly continu­
ous, because the continuity (or more precisely, the dependence of 
5 on c:) becomes worse and worse as x ---+ 0. (We will make this 
more precise in Example 9.9.10.) 

Recall that the notions of adherent point and of continuous 
function had several equivalent formulations; both had "epsilon­
delta" type formulations (involving the notion of c:-closeness), and 
both had "sequential" formulations (involving the convergence of 
sequences); see Lemma 9.1.14 and Proposition 9.3.9. The concept 
of uniform continuity can similarly be phrased in a sequential for­
mulation, this time using the concept of equivalent sequences ( cf. 
Definition 5.2.6, but we now generalize to sequences of real num­
bers instead of rationals, and no longer require the sequences to 
be Cauchy): 

Definition 9.9.5 (Equivalent sequences). Let m be an integer, 
let ( an)~=m and ( bn)~=m be two sequences of real numbers, and let 
e > 0 be given. We say that (an)~=m is c:-close to (bn)~=m iff an is 
e-close to bn for each n ~ m. We say that ( an)~=m is eventually £­

close to ( bn)~=m iff there exists an N ~ m such that the sequences 
(an)~=N and (bn)~=N are c:-close. Two sequences (an)~=m and 
(bn)~=m are equivalent iff for each c: > 0, the sequences (an)~=m 
and (bn)~=m are eventually c:-close. 

Remark 9.9.6. One could debate whether c: should be assumed 
to be rational or real, but a minor modification of Proposition 
6.1.4 shows that this does not make any difference to the above 
definitions. 
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The notion of equivalence can be phrased more succinctly using 
our language of limits: 

Lemma 9.9. 7. Let (an)~=l and (bn)~=l be sequences of real num. 
bers (not necessarily bounded or convergent). Then (an)~=l and 
(bn)~=l are equivalent if and only ifliiDn-+oo(an- bn) = 0. 

Proof. See Exercise 9.9.1. 0 

Meanwhile, the notion of uniform continuity can be phrased 
using equivalent sequences: 

Proposition 9.9.8. Let X be a subset of R, and let f : X -4 R 
be a function. Then the following two statements are logically 
equivalent: 

(a) f is uniformly continuous on X. 

(b) Whenever (xn)~=O and (Yn)~=O are two equivalent sequences 
consisting of elements of X, the sequences (f(xn))~=O and 
(f(yn))~=O are also equivalent. 

Proof. See Exercise 9.9.2. 0 

Remark 9.9.9. The reader should compare this with Proposition 
9.3.9. Proposition 9.3.9 asserted that if f was continuous, then 
f maps convergent sequences to convergent sequences. In con­
trast, Proposition 9.9.8 asserts that iff is uniformly continuous, 
then f maps equivalent pairs of sequences to equivalent pairs of 
sequences. To see how the two Propositions are connected, ob­
serve from Lemma 9.9. 7 that (xn)~=O will converge to x* if and 
only if the sequences (xn)~=O and (x*)~=O are equivalent. 

Example 9.9.10. Consider the function f : (0, 2) -4 R defined 
by f(x) := 1/x considered earlier. From Lemma 9.9.7 we see that 
the sequence (1/n)~=l and (1/2n)~=l are equivalent sequences in 
(0, 2). However, the sequences (!(1/n))~=l and (f(1/2n))~=l are 
not equivalent (why? Use Lemma 9.9.7 again). So by Proposition 
9.9.8, f is not uniformly continuous. (These sequences start at 
1 instead of 0, but the reader can easily see that this makes no 
difference to the above discussion.) 
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Example 9.9.11. Consider the function f : R---+ R defined by 
f(x) := x2 . This is a continuous function on R, but it turns out 
not to be uniformly continuous; in some sense the continuity gets 
"worse and worse" as one approaches infinity. One way to quan­
tify this is via Proposition 9.9.8. Consider the sequences (n)~=1 
and (n+ ~)~=1 . By Lemma 9.9.7, these sequences are equivalent. 
But the sequences (f(n))~= 1 and (f(n + ~))~=1 are not equiv­
alent, since f(n + ~) = n2 + 2 + ;b- = f(n) + 2 + ~ does not 
become eventually 2-close to f(n). By Proposition 9.9.8 we can 
thus conclude that f is not uniformly continuous. 

Another property of uniformly continuous functions is that 
they map Cauchy sequences to Cauchy s~quences. 

Proposition 9.9.12. Let X be a subset ofR, and let f: X---+ R 
be a uniformly continuous function. Let (xn)~=O be a Cauchy 
sequence consisting entirely of elements in X. Then (f(xn) )~=O 
is also a Cauchy sequence. 

Proof. See Exercise 9.9.3. 0 

Example 9.9.13. Once again, we demonstrate that the function 
f: (0, 2) ---+ R defined by f(x) := 1/x is not uniformly continuous. 
The sequence (1/n)~=1 is a Cauchy sequence in (0, 2), but the 
sequence (!(1/n))~=1 is not a Cauchy sequence (why?). Thus by 
Proposition 9.9.12, f is not uniformly continuous. 

Corollary 9.9.14. Let X be a subset of R, let f : X ---+ R be a 
uniformly continuous function, and let xo be an adherent point of 
X. Then the limit limx--+xo ;xEX f ( x) exists (in particular, it is a 
real number). 

Proof. See Exercise 9.9.4. 0 

We now show that a uniformly continuous function will map 
bounded sets to bounded sets. 

Proposition 9.9.15. Let X be a subset ofR, and let f: X---+ R 
be a uniformly continuous function. Suppose that E is a bounded 
subset of X. Then f(E) is also bounded. 
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Proof. See Exercise 9.9.5. 0 

As we have just seen repeatedly, not all· continuous functions 
are uniformly continuous. However, if the domain of the function 
is a closed interval, then continuous functions are in fact uniformly 
continuous: 

Theorem 9.9.16. Let a < b be real numbers, and let f : [a, b] -
R be a function which is continuous on [a, b]. Then f is also 
uniformly continuous. 

Proof. Suppose for sake of contradiction that f is not uniformly 
continuous. By Proposition 9.9.8, there must therefore exist two 
equivalent sequences (xn)~=O and (Yn)~=O in [a, b] such that the 
sequences (f(xn))~=O and (f(yn))~=O are not equivalent. In par­
ticular, we can find an£> 0 such that (f(xn))~=O and {f(yn))~=O 
are not eventually £-close. 

Fix this value of£, and let E be the set 

E := {n EN: f(xn) and f(Yn) are not £-close}. 

We must have E infinite, since if E were finite then (f(xn) )~=O and 
(f(yn))~=O would be eventually £-close (why?). By Proposition 
8.1.5, E is countable; in fact from the proof of that proposition 
we see that we can find an infinite sequence 

consisting entirely of elements in E. In particular, we have 

lf(xn;) - f(Yn;) I > £ for all j E N. (9.3) 

On the other hand, the sequence (xn; )~0 is a sequence in [a, b], 
and so by the Heine-Borel theorem (Theorem. 9.1.24) there must 
be a subsequence (xnik )k:,0 which converges to some limit L in 
[a, b]. In particular, f is continuous at L, and so by Proposition 
9.4.7, 

lim f(xn· ) = f(L). 
k-+oo Jk 

(9.4) 
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Note that (xnik )~0 is a subsequence of (xn)~=O' and (YniJ~o is 
a subsequence of (Yn)~=0 , by Lemma 6.6.4. On the other hand, 
from. Lemma 9.9.7 we have 

lim (xn- Yn) = 0. 
n-+oo 

By Proposition 6.6.5, we thus have 

lim (xn. - Yn. ) = 0. 
k-+oo Jk Jk 

Since Xnik converges to L as k ~ oo, we thus have by limit laws 

lim Yn· = L 
k-+oo 3k 

and hence by continuity off at L 

lim f(Yni ) = f(L). 
k-+oo k 

Subtracting this from (9.4) using limit laws, we obtain 

lim (f(xni ) - f(yni )) = 0. 
k-+oo k k 

But this contradicts (9.3) (why?). From this contradiction we 
conclude that f is in fact uniformly continuous. 0 

Remark 9.9.17. One should compare Lemma 9.6.3, Proposition 
9.9.15, and Theorem 9.9.16 with each other. No two of these 
results imply the third, but they are all consistent with each other. 

Exercise 9.9.1. Prove Lemma 9.9.7. 

Exercise 9.9.2. Prove Proposition 9.9.8. (Hint: you should avoid Lemma 
9.9.7, and instead go back to the definition of equivalent sequences in 
Definition 9.9.5.) 

Exercise 9.9.3. Prove Proposition 9.9.12. (Hint: use Definition 9.9.2 
directly.) 

Exercise 9.9.4. Use Proposition 9.9.12 to prove Corollary 9.9.14. Use 
this corollary to give an alternate demonstration of the results in Exam­
ple 9.9.10. 
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Exercise 9.9.5. Prove Proposition 9.9.15. (Hint: mimic the proof of 
Lemma 9.6.3. At some point you will need eithe~ Proposition 9.9.12 or 
Corollary 9.9.14.) 

Exercise 9.9.6. Let X, Y, Z be subsets of R. Let f : X ---+ Y be a 
function which is uniformly continuous on X, and let 9 : Y ---+ Z be a 
function which is uniformly continuous on Y. Show that the function 
9 o f : X ---+ Z is uniformly continuous on X. 

9.10 Limits at infinity 

Until now, we have discussed. what it means for a function f : 
X ---+ R to have a limit as x---+ xo as long as xo is a real number. 
We now briefly discuss what it would mean to take limits when 
xo is equal to +oo or -oo. (This is part of a more general theory 
of continuous functions on a topological space; see Section 13.5.) 

First, we need a notion of what it means for +oo or -oo to be 
adherent to a set. 

Definition 9.10.1 (Infinite adherent points). Let X be a subset 
of R. We say that +oo is adherent to X iff for every M E R there 
exists an x EX such that x > M; we say that -oo is adherent to 
X iff for every M E R there exists an x E X such that x < M. 

In other words, +CX? is adherent to X iff X has no upper bound, 
or equivalently iff sup(X) = +oo. Similarly -oo is adherent to 
X iff X has no lower bound, or iff inf(X) = -oo. Thus a set is 
bounded if and only if +oo and -oo are not adherent points. 

Remark 9.10.2. This definition may seem rather different from 
Definition 9.1.8, but can be unified using the topological structure 
of the extended real line R *, which we will not discuss here. 

Definition 9.10.3 (Limits at infinity). Let X be a subset of R 
with +oo as an adherent point, and let f: X---+ R be a function. 
We say that f ( x) converges to L as x ---+ +oo in X, and write 
limx-++oo;xEX f(x) = L, iff for every£> 0 there exists an M such 
that f is £-close to Lon X n (J1.1, +oo) (i.e., if(x)- Ll ~£for all 
x EX such that x > M). Similarly we say that f(x) converges to 
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Las x---+ -oo iff for every c > 0 there exists an M such that f is 
c--close to Lon X n ( -oo, M). 

Example 9.10.4. Let f : (0, oo) ---+ R be the function f(x) := 

1/X· Then we have limx-++oo;xE(O,oo) 1/x = 0. (Can you see why, 
from the definition?) 

One can do many of the same things with these limits at in­
finity as we have been doing with limits at other points xo; for 
instance, it turns out that all of the limit laws continue to hold. 
However, as we will not be using these limits much in this text, 
we will not devote much attention to these matters. We will note 
though that this definition is consistent with the notion of a limit 
limn-+oo an of a sequence (Exercise 9.10.1). 

Exercise 9.10.1. Let (an)~=O be a sequence of real numbers, then an can 
also be thought of as a function from N to R, which takes each natural 
number n to a real number an. Show that 

lim an = lim an 
n-++oo;nEN n-+oo 

where the left-hand limit is defined by Definition 9.10.3 and the right­
hand limit is defined by Definition 6.1.8. More precisely, show that if one 
of the above two limits exists then so does the other, and then they both 
have the same value. Thus the two notions of limit here are compatible. 



Chapter 10 

Differentiation of functions 

10.1 Basic definitions 

We can now begin the rigourous treatment of calculus in earnest, 
starting with the notion of a derivative. We can now define deriva­
tives analytically, using limits, in contrast to the geometric defini­
tion of derivatives, which uses tangents. The advantage of working 
analytically is that (a) we do not need to know the axioms of geom­
etry, and (b) these definitions can be modified to handle functions 
of several variables, or functions whose values are vectors instead 
of scalar. Furthermore, one's geometric intuition becomes difficult 
to rely on once one has more than three dimensions in play. (Con­
versely, one can use one's experience in analytic rigour to extend 
one's geometric intuition to such abstract settings; as mentioned 
earlier, the two viewpoints complement rather than oppose each 
other.) 

Definition 10.1.1 (Differentiability at a point). Let X be a sub­
set of R, and let x0 E X be an element of X which is also a limit 
point of X. Let f : X ---+ R be a function. If the limit 

lim 
x-+xo;xEX -{xo} 

f(x)- f(xo) 
x-x0 

converges to some real number L, then we say that f is differ­
entiable at xo on X with derivative L, and write f'(xo) := L. If 
the limit does not exist, or if xo is not an element of X or not a 
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Jjl]lit point of X, we leave f'(xo) undefined, and say that f is not 
differentiable at xo on X. 

}temark 10.1.2. Note that we need xo to be a limit point in 
order for xo to be adherent to X - { xo}, otherwise the limit 

lim 
x-+xo;xEX -{xo} 

f(x)- f(xo) 
x-x0 

would automatically be undefined. In particular, we do not define 
the derivative of a function at an isolated point; for instance, if 
one restricts the function f : R ---+ R defined by f ( x) := x 2 to the 
domain X:= [1, 2]U{3}, then the restriction of the function ceases 
to be differentiable at 3. (See however Exercise 10.1.1 below.) In 
practice, the domain X will almost always be an interval, and so 
by Lemma 9.1.21 all elements xo of X will automatically be limit 
points and we will not have to care much about these issues. 

Example 10.1.3. Let f : R---+ R be the function f(x) := x2 , 

and let xo be any real number. To see whether f is differentiable 
at x0 on R, we compute the limit 

lim 
x-+xo;xER-{xo} 

f(x) - f(xo) 
x-x0 

lim 
x-+xo;xER-{xo} X - Xo · 

We can factor the numerator as (x2 -x5) = (x-xo)(x+xo). Since 
x E R - { x0}, we may legitimately cancel the factors of x - xo 
and write the above limit as 

lim x + xo 
x-+xo;xER-{xo} 

which by limit laws is equal to 2x0 . Thus the function f(x) is 
differentiable at xo and its derivative there is 2xo. 

Remark 10.1.4. This point is trivial, but it is worth mentioning: 
iff : X ---+ R is differentiable at xo, and 9 : X ---+ R is equal to 
f (i.e., 9(x) = f(x) for all x EX), then 9 is also differentiable at 
xo and 9'(xo) = f'(xo) (why?). However, if two functions f and 
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g merely have the same value at xo, i.e., g(xo) = f(xo), this does 
not imply that g'(xo) = f'(xo). (Can you s~e a counterexample?) 
Thus there is a big difference between two function~ being equal 
on their whole domain, and merely being equal at one point. 

Remark 10.1.5. One sometimes writes ~ instead off'. This 
notation is of course very familiar and convenient, but one has 
to be a little careful, because it is only safe to use as long as x 
is the only variable used to represent the input for f; otherwise 
one can get into all sorts of trouble. For instance, the function 
f: R---+ R defined by f(x) := x2 has derivative~= 2x, but the 
function g : R ---+ R defined by g(y) := y2 would seem to have 
derivative * = 0 if y and x are independent variables, despite 
the fact that g and f are exactly the same function. Because of 
this possible source of confusion, we will refrain from using the 
n~tation ~ whenever it could possibly lead to confusion. (This 
confusion becomes even worse in the calculus of several variables 
and the standard notation of ~ can lead to some 'Serious ambigu~ 
ities. There are ways to resolve these ambiguities, most notably 
by introducing the notion of differentiation along vector fields, but 
this is beyond the scope of this text.) 

Example 10.1.6. Let f : R ---+ R be the function f(x) := lxl, 
and let xo = 0. To see whether f is differentiable at 0 on R, we 
compute the limit 

lim 
x--+O;xER-{0} 

f(x)- f(O) 
x-0 

lim 
x-+O;xER-{o} x 

Now we take left limits and right limits. The right limit is 

lim El = lim x - lim 1 = 1, 
x-+O;xE(O,oo) X x-+O;xE(O,oo) X x-+O;xE;(O,oo) 

while the left limit is 

lim El = lim 
x-+O;xE( -oo,O) X x-+O;xE(O,oo) X 

-x 
- lim -1 = -1, 

x-+O;xE(O,oo) 
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and these limits do not match. Thus limx-+O;xER-{o} ~ does not 
EJJ{ist, and f is not differentiable at 0 on R. However, if one re­
stricts f to [0, oo), then the restricted function flro,oo) is differen­
tiable at 0 on [0, oo), with derivative 1: 

lim 
x--+O;xE[O,oo)-{0} 

f(x)- f(O) 

x-0 
lim ~ = 1. 

x-+O;xE(O,oo) X 

Similarly, when one restricts f to ( -oo, OJ, the restricted function 
/1(-oo,O] is differentiable at 0 on ( -oo, 0], with derivative -1. Thus 
even when a function is not differentiable, it is sometimes possible 
to restore the· differentiability by restricting the domain of the 
function. 

If a function is differentiable at xo, then it is approximately 
linear near xo: 

Proposition 10.1. 7 (Newton's approximation). Let X be a sub­
set ofR, let xo be a limit point of X, let f : X ---+ R be a function, 
and let L be a real number. Then the following statements are log­
ically equivalent: 

(a) f is differentiable at xo on X with derivative L. 

(b) For every £ > 0, there exists a 8 > 0 such that f(x) is 
clx - xol-close to f(xo) + L(x - xo) whenever x E X is 
&-close to xo, i.e., we have 

lf(x)- (f(xo) + L(x- xo))l ~ clx- xol 

whenever x EX and lx- xol ~ 8. 

Remark 10.1.8. Newton's approximation is of course named af­
ter the great scientist and mathematician Isaac .Newton (1642-
1727), one of the founders of differential and integral calculus. 

Proof. See Exercise 10.1.2. D 

Remark 10.1.9. We can phrase Proposition 10.1.7 in a more 
informal way: if f is differentiable at xo, then one has the approx­
imation f(x) ~ f(xo) + f'(xo)(x- xo), and conversely. 
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As the example of the function f: R ---t R defined by f(x) :'== 
lxl shows, a function can be continuous_ at a point without being 
differentiable at that point. However, the converse is true: 

Proposition 10.1.10 (Differentiability implies continuity). Let 
X be a subset ofR, let Xo be a limit point of X, and let f: X- a 
be a function. Iff is differentiable at xo, then f is also continuous 
at xo. 

Proof. See Exercise 10.1.3. 0 

Definition 10.1.11 (Differentiability on a domain). Let X be 
a subset of R, and let f : X ---t R be a function. We say that 
f is differentiable on X if, for every xo E X, the function f is 
differentiable at x0 on X. 

From Proposition 10.1.10 and the above definition we have an 
immediate corollary: 

Corollary 10.1.12. Let X be a subset ofR, and let f: X ---t R be 
a function which is differentiable on X. Then f is also continuous 
on X. 

Now we state the basic properties of derivatives which you are 
all familiar with. 

Theorem 10.1.13 (Differential calculus). Let X be a subset of 
R, let xo be a limit point of X, and let f : X ---t R and g : X ---t R 
be functions. 

(a) If f is a constant function, i.e., there exists a real number c 
such that f(x) = c for all x EX, then f is differentiable at 
xo and f'(xo) = 0. 

(b) Iff is the identity function, i.e., f(x) = x for all x E X, 
then f is differentiable at xo and f'(xo) = 1. 

(c) (Sum rule) If f and g are differentiable at xo, then f + g is 
also differentiable at xo, and (f + g)'(xo) = f'(xo) + g'(xo). 
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(d) (Product rule) If f and g are differentiable at xo, then f g 
is also differentiable at xo, and (fg)'(xo) = f'(xo)g(xo) + 
f(xo)g'(xo). 

(e) Iff is differentiable at xo and c is a real number, then cf is 
also differentiable at xo, and (cf)'(xo) = cf'(xo). 

(f) (Difference rule) Iff and g are differentiable at xo, then 
f- g is also differentiable at xo, and (f- g)'(xo) = f'(xo)­
g'(xo). 

(g) If g is differentiable at xo, and g is non-zero on X (i.e., 
g( x) =/:. 0 for all x E X), then 1 I g is also differentiable at 

xo, and (~)'(xo) =- ;~i:)~ · 
(h) (Quotient rule) Iff and g are differentiable at xo, and g is 

non-zero on X, then fIg is also differentiable at xo, and 

(f_ )'(xo) = f'(xo)g(xo)- f(xo)g'(xo) 
g g(xo) 2 

Remark 10.1.14. The product rule is also known as the Leib­
nitz rule, after Gottfried Leibnitz (1646-1716), who was the other 
founder of differential and integral calculus besides Newton. 

Proof. See Exercise 10.1.4. D 

As you are well aware, the above rules allow one to compute 
many derivatives easily. For instance, if f : R- {1} ---7 R is the 
function f(x) := ~=~, then it is easy to use the above rules to 
show that f'(xo) = (xo~l)2 for all xo E R- {1}. (Why? Note that 
every point xo in R- {1} is a limit point of R- {1}.) 

Another fundamental property of differentiable functions is the 
following: 

Theorem 10.1.15 (Chain rule). Let X, Y be subsets of R, let 
xo E X be a limit point of X, and let Yo E Y be a limit point of Y. 
Let f :X ---7 Y be a function such that f(xo) =yo, and such that 
f is differentiable at xo. Suppose that g : Y ---7 R is a function 



294 10. Differentiation of functions 

which is differentiable at yo. Then the function 9 o f : X --+ R is 
differentiable at xo, and 

(9 o f)'(xo) = 91(yo)f'(xo). 

Proof. See Exercise 10.1.7. 0 

Example 10.1.16. Iff : R- {1}--+ R is' the function f(x) :::: 
~=~·and 9: R--+ R is the function 9(y) := y2 , then 9 o f(x)::: 
(~=~)2 , and the chain rule gives 

(9 o f)'(xo) = 2 (:~ = ~) (xo ~ 1)2 . 

Remark 10.1.17. If one writes y for f(x), and z for 9(y), then 
the chain rule can be written in the more visually appealing man­
ner : = ~~ ~- However, this notation can be misleading (for 
instance it blurs the distinction between dependent variable and 
independent variable, especially for y), and leads one to believe 
that the quantities dz, dy, dx can be manipulated like real num­
bers. However, these quantities are not real numbers (in fact, 
we have not assigned any meaning to them at all), and treating 
them as such can lead to problems in the future. For instance, if 
f 'depends on x1 and x 2, which depend on t, then chain rule for 
several variables asserts that * = /t ~ + 31; ~, but this rule 
might seem suspect if one treated df, dt, etc. as real numbers. It 
is possible to think of dy, dx, etc. as "infinitesimal real numbers" 
if one knows what one is doing, but for those just starting out in 
analysis, I would not recommend this approach, especially if one 
wishes to work rigourously. (There is a way to make all of this 
rigourous, even for the calculus of several variables, but it requires 
the notion of a tangent vector, and the derivative map, both of 
which are beyond the scope of this text.) 

Exercise 10.1.1. Suppose that X is a subset of R, x0 is a limit point of X, 
and f: X -t R is a function which is differentiable at x0 • Let Y C X be 
such that xo is also limit point of Y. Pro;ve that the restricted function 
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fly: Y ~ R is also differentiable at x0 , and has the same derivative as 
f at xo. Explain why this does not contradict the discussion in Remark 
10.1.2. 

Exercise 10.1.2. Prove Proposition 10.1.7. (Hint: the cases x = x0 and 
x =1= x0 have to be treated separately.) 

Exercise 10.1.3. Prove Proposition 10.1.10. (Hint: either use the limit 
laws (Proposition 9.3.14), or use Proposition 10.1.7.) 

Exercise 10.1.4. Prove Theorem 10.1.13. (Hint: use the limit laws in 
Proposition 9.3.14. Use earlier parts of this theorem to prove the latter. 
For the product rule, use the identity 

f(x)g(x)- f(xo)g(xo) 

= f(x)g(x)- f(x)g(xo) + f(x)g(xo)- f(xo)g(xo) 

= f(x)(g(x)- g(xo)) + (f(x)- f(xo))g(xo); 

this trick of adding and subtracting an intermediate term is sometimes 
known as the "middle-man trick" and is very useful in analysis.) 

Exercise 10.1.5. Let n be a natural number, and let f: R ~ R be the 
function f(x) := xn. Show that f is differentiable on R and f'(x) = 
nxn-1 for all x E R. (Hint: use Theorem 10.1.13 and induction.) 

Exercise 10.1.6. Let n be a negative integer, and let f: R- {0} ~ R 
be the function f(x) := xn. Show that f is differentiable on R and 
f'(x) = nxn-1 for all x E R- {0}. (Hint: use Theorem 10.1.13 and 
Exercise 10.1.5.) 

Exercise 10.1.7. Prove Theorem 10.1.15. (Hint: one way to do this is 
via Newton's approximation, Proposition 10.1.7. Another way is to use 
Proposition 9.3.9 and Proposition 10.1.10 to convert this problem into 
one involving limits of sequences, however with the latter strategy one 
has to treat the case f'(xo) = 0 separately, as some division-by-zero 
subtleties can occur in that case.) 

10.2 Local maxima, local minima, and derivatives 

As you learnt in your basic calculus courses, one very common 
application of using derivatives is to locate maxima and minima. 
We now present this material again, but this time in a rigourous 
manner. 
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The notion of a function f : X ---7 R attaining a maximum or 
minimum at a point xo E X was defined in Definition 9.6.5. We 
now localize this definition: 

Definition 10.2.1 (Local maxima and mi:riima). Let f: X--+ R 
be a function, and let x E X. We say that f attains a local 
maximum at xo iff there exists a 5 > 0 such that the restriction 
flxn(xo-5,xo+5) of f to X n (xo - 5, xo + 5) attains a maximum 
at xo. We say that f attains a local minimum at xo iff there 
exists a 5 > 0 such that the restriction flxn(xo-5,xo+5) of f to 
X n (xo - 5, xo + 5) attains a minimum at xo. 

Remark 10.2.2. Iff attains a maximum at xo, we sometimes say 
that f attains a global maximum at xo, in order to distinguish it 
from the local maxima defined here. Note that iff attains a global 
maximum at xo, then it certainly also attains a local maximum 
at this xo, and similarly for minima. 

Example 10.2.3. Let f : R -t R denote the function f(x) := 
x2 - x4 . This function does not attain a global minimum at 0, 
since for example f(2) = -12 < 0 = f(O), however it does attain 
a local minimum, for if we choose 5 := 1 and restrict f to the 
interval ( -1, 1), then for all x E ( -1, 1) we have x4 :S x2 and thus 
f(x) = x2 - x4 ~ 0 = f(O), and so fl(- 1,1) has a local minimum 
at 0. 

Example 10.2.4. Let f : Z -t R be the function f(x) = x, 
defined on the integers only. Then f has no global maximum or 
global minimum (why?), but attains both a local maximum and 
local minimum at every integer n (why?). 

Remark 10.2.5. If f : X -t R attains a local maximum at a 
point xo in X, and Y c X is a subset of X which contains xo, 
then the restriction fly: Y -t R also attains a l~cal maximum at 
xo (why?). Similarly for minima. 

The connection between local maxima, minima and deriv~tives 
is the following. 
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Proposition 10.2.6 (Local extrema are stationary). Let a< b be 
real numbers, and let f : (a, b) ---t R be a function. If xo E (a, b), 
f is differentiable at xo, and f attains either a local maximum or 
local minimum at xo, then f'(xo) = 0. 

Proof. See Exercise 10.2.1. D 

Note that f must be differentiable for this proposition to work; 
see Exercise 10.2.2. Also, this proposition does not work if the 
open interval (a, b) is replaced by a closed interval [a, b]. For in­
stance, the function f : [1, 2] -+ R defined by f(x) := x has a 
local maximum at xo = 2 and a local minimum xo = 1 (in fact, 
these local extrema are global extrema), but at both points the 
derivative is f'(xo) = 1, not f'(xo) = 0. Thus the endpoints of 
an interval can be local maxima or minima even if the derivative 
is not zero there. Finally, the converse of this proposition is false 
(Exercise 10.2.3). 

By combining Proposition 10.2.6 with the maximum principle, 
one can obtain 

Theorem 10.2. 7 (Rolle's theorem). Let a < b be real numbers, 
and let g : [a, b] ---t R be a continuous function which is differen­
tiable on (a, b). Suppose also that g(a) = g(b). Then there exists 
an x E (a, b) such that g'(x) = 0. 

Proof. See Exercise 10.2.4. D 

Remark 10.2.8. Note that we only assume f is differentiable on 
the open interval (a, b), though of course the theorem also holds 
if we assume f is differentiable on the closed interval [a, b], since 
this is larger than (a, b). 

Rolle's theorem has an important corollary. 

Corollary 10.2.9 (Mean value theorem). Let a < b be real num­
bers, and let f : [a, b] ---t R be a function which is continuous on 
[a, b] and differentiable on (a, b). Then there exists an x E (a, b) 
such that f'(x) = f(bt_!(a). 
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Proof. See Exercise 10.2.5. 0 

Exercise 10.2.1. Prove Proposition 10.2.6. 

Exercise 10.2.2. Give an example of a function f : ( -1, 1) --+ R which 
is continuous and attains a global maximum at 0, but which is not 
differentiable at 0. Explain why this does not contradict Proposition 
10.2.6. 

Exercise 10.2.3. Give an example of a function f: ( -1, 1) --+ R which 
is differentiable, and whose derivative equals 0 at 0, but such that 0 is 
neither a local minimum nor a local maximum. Explain why this does 
not contradict Proposition 10.2.6. 

Exercise 10.2.4. Prove Theorem 10.2.7. (Hint: use Corollary 10.1.12 
and the maximum principle, Proposition 9.6.7, followed by Proposition 
10.2.6. Note that the maximum principle does not tell you whether 
the maximum or minimum is in the open interval (a, b) or is one of 
the boundary points a, b, so you have to divide into cases and use the 
hypothesis g(a) = g(b) somehow.) 

Exercise 10.2.5. Use Theorem 10.2.7 to prove Corollary 10.2.9. (Hint: 
consider a function of the form f ( x) - ex for some carefully chosen real 
number c.) 

Exercise 10.2.6. Let M > 0, and let f : [a, b] --+ R be a function which is 
continuous on [a, b] and differentiable on (a, b), and such that lf'(x)l ~ 
M for all x E (a, b) (i.e., the derivative off is bounded). Show that for 
any x, y E [a, b] we have the inequality lf(x)- f(y)l ~Mix- Yl· (Hint: 
apply the mean value theorem (Corollary 10.2.9) to a suitable restriction 
of f.) Functions which obey the bound lf(x) - f(y)l ~ Mix- Yl are 
known as Lipschitz continuous functions with Lipschitz constant M; thus 
this exercise shows that functions with bounded derivative are Lipschitz 
continuous. 

Exercise 10.2.7. Let f : R--+ R be a differentiable function such that 
f' is bounded. Show that f is uniformly continuous. (Hint: use the 
preceding exercise.) 

10.3 Monotone functions and derivatives 

In your elementary calculus courses, you may have come across 
the assertion that a positive derivative meant an increasing func­
tion, and a negative derivative meant a decreasing function. This 
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statement is not completely accurate, but it is pretty close; we 
now give the precise version of these statements below. 

Proposition 10.3.1. Let X be a subset of R, let xo be a limit 
point of X, and let f : X --t R be a function. If f is monotone 
increasing and f is differentiable at xo, then f'(xo) ;::: 0. If 
J is monotone decreasing and f is differentiable at xo, then 
f'(xo) ~ 0. 

Proof. See Exercise 10.3.1. D 

Remark 10.3.2. We have to assume that f is differentiable at xo; 
There exist monotone functions which are not always differentiable 
(see Exercise 10.3.2), and of course iff is not differentiable at xo 
we cannot possibly conclude that f'(xo) ;::: 0 or f'(xo) ~ 0. 

One might naively guess that iff were strictly monotone in­
creasing, and'/ was differentiable at xo, then the derivative f'(x0 ) 

would be strictly positive instead of merely non-negative. Unfor­
tunately, this is not always the case (Exercise 10.3.3). 

On the other hand, we do have a converse result: if function 
has strictly positive derivative, then it must be strictly monotone 
increasing: 

Proposition 10.3.3. Let a < b, and let f : [a, b] --t R be a 
differentiable function. If f'(x) > 0 for all x E [a, b], then f is 
strictly monotone increasing. If f'(x) < 0 for all x E [a,b], then 
f is strictly monotone decreasing. If f' ( x) = 0 for all x E [a, b], 
then f is a constant function. 

Proof. See Exercise 10.3.4. D 

Exercise 10.3.1. Prove Proposition 10.3.1. 

Exercise 10.3.2. Give an example of a function f : ( -1, 1) --t R which 
is continuous and monotone increasing, but which is not differentiable 
at 0. Explain why this does not contradict Proposition 10.3.1. 
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Exercise 10.3.3. Give an example of a function f : R --t R which is 
strictly monotone increasing and differentiable, but whose derivative at 
0 is zero. Explain why this does not contradict Proposition 10.3.1 or 
Proposition 10.3.3. (Hint: look at Exercise 10.2.3.) 

Exercise 10.3.4. Prove Proposition 10.3.3. {Hint: you do not have inte­
grals or the fundamental theorem of calculus yet, so these tools cannot be 
used. However, one can proceed via the mean-value theorem, Corollary 
10.2.9.) 

Exercise 10.3.5. Give an example of a subset X C R and a function f : 
X --t R which is differentiable on X, is such that f' ( x) > 0 for all x E X 

' but f is not strictly monotone increasing. {Hint: the conditions here are 
subtly different from those in Proposition 10.3.3. What is the difference, 
and how can one exploit that difference to obtain the example?) 

I 

10.4 Inverse functions and derivatives 

We now ask the following question: if we know that a function f : 
X---... Y is differentiable, and it has an inverse f-1 : Y---... X, what 
can we say about the differentiability of f- 1? This will be useful 
for many applicatioq.s, for instance if we want to differentiate the 
function f(x) := x 1fn. 

We begin with a preliminary result. 

Lemma 10.4.1. Let f : X ---... Y be an invertible function, with 
inverse f- 1 : Y---... X. Suppose that xo EX and Yo E Y are such 
that Yo = f(xo) (which also implies that xo = f- 1(yo)). Iff is 
differentiable at xo, and f- 1 is differentiable at Yo, then 

( -1)'( . ) 1 
f Yo = f'(xo) · 

Proof. From the chain rule (Theorem 10.1.15) we have 

u-1 0 f)'(xo) = u-1)'(yo)f'(xo). 

But f- 1 of is the identity function on X, and hence by Theorem 
10.1.13(b) (f-1 o f)'(xo) = 1. The claim follows. D 
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As a particular corollary of Lemma 10.4.1, we see that iff is 
differentiable at xo with f'(xo) = 0, then f- 1 cannot be differ­
entiable at Yo = f(xo), since 1/ f'(xo) is undefined in that case. 
Thus for instance, the function g : [0, oo) ~ [0, oo) defined by 
g(y) := y113 cannot be differentiable at 0, since this function is 
the inverse g = f- 1 of the function f : [0, oo) ~ [0, oo) defined by 
f(x) := x3 , and this function has a derivative of 0 at f- 1(0) = 0. 

If one writes y = f(x), so that x = f- 1(y), then one can 
write the conclusion. of Lemma 10.4.1 in the more appealing form 
dx/dy = 1/(dyjdx). However, as mentioned before, this way of 
writing things, while very convenient and easy to remember, can 
be misleading and cause errors if applied too carelessly (especially 
when one begins to work in the calculus of several variables). 

Lemma 10.4.1 seems to answer the question of how to differ­
entiate the inverse of a function, however it has one significant 
drawback: the lemma only works if one assumes a priori that f- 1 

is differentiable. Thus, if one does not already know that f- 1 

is differentiable, one cannot use Lemma 10.4.1 to compute the 
derivative of f- 1. 

However, the following improved version of Lemma 10.4.1 will 
compensate for this fact, by relaxing the requirement on f- 1 from 
differentiability to continuity. 

Theorem 10.4.2 (Inverse function theorem). Let f: X --t Y be 
an invertible function, with inverse f-1 : Y ~ X. Suppose that 
xo E X and Yo E Y are such that f(xo) = YO· Iff is differen­
tiable at xo, f-1 is continuous at y0 , and f'(x0 ) =/: 0, then f- 1 is 
differentiable at Yo and 

u-1)'(yo) = f'(~o). 
Proof. We have to show that 

lim 
y-+yo;yEY -{yo} 

f-1(y)- f-1(yo) 1 

Y- Yo = f'(xo)" 

By Proposition 9.3.9, it suffices to show that 

lim f-1 (Yn) - f-1 (yo) = _1_ 
n-+oo Yn- Yo f'(xo) 
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for any sequence (Yn)~=1 of elements in Y - {yo} which converge 
to YO· 

To prove this, we set Xn := f- 1(yn). Then (xn)~=1 is a se­
quence of elements in X - {xo}. (Why? Note that j-1 is a 
bijection) Since f-1 is continuous by assumption, we know that 
Xn = f- 1(yn) converges to /-1(yo) = xo as n ~ oo. Thus, since 
f is differentiable at xo, we have (by Proposition 9.3.9 again) 

1. J(xn) - f(xo) !'( ) 1m = x 0 . 
n-+oo Xn- Xo 

But since Xn =f. xo and f is a bijection, the fraction f(xn)- f(xo) is 
Xn-XO 

non-zero. Also, by hypothesis f'(xo) is non-zero. So by limit laws 

1. Xn- xo 1 
liD ---. 

n-+oo f(xn) - f(xo) f'(xo) 

But since Xn = f-1(yo) and xo = /-1(yo), we thus have 

lim J-1(Yn)- J-1(yo) = _1_ 
n-+oo Yn- Yo f'(xo) 

as desired. 0 

We give some applications of the inverse function theorem in 
the exercises below. 

Exercise 10.4.1. Let n ~ 1 be a natural number, and let 9 : (0, oo) -+ 

(0, oo) be the function 9(x) := x11n. 

(a) Show that 9 is continuous on (0, oo). (Hint: use Proposition 9.8.3.) 

(b) Show that 9 is differentiable on (O,oo), and that 9'(x) = ~x-k-l 
for all x E (0, oo ). (Hint: use the inverse function theorem and 
(a).) 

Exercise 10.4.2. Let q be a rational number, and let f : (0, oo) --+ R be 
the function f ( x) = xq. 

(a) Show that f is differentiable on (0, oo) and that f'(x) = qxq-l 
(Hint: use Exercise 10.4.1 and the laws of differential calculus in 
Theorem 10.1.13 and Theorem 10.1.15.) 
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(b) Show that limx-+1;xE(O,oo) xx9~{ = q for every rational number q. 

(Hint: use part (a) and Definition 10.1.1. An alternate route is to 

apply L'Hopital's rule from the next section.) 

Exercise 10.4.3. Let a be a real number, and let f: (0, oo)--+ R be the 

function f ( x) = xa · 

Sh th t 1. f(x)- f(1) (H" t E . 
(a) ow a lmx-+1;xE(O,oo) x-1 = a. m : use xerc1se 

10.4.2 and the comparison principle; you may need to consider 

right and left limits separately. Proposition 5.4.14 may also be 

helpful.) 

(b) Show that f is differentiable on (O,oo) and that f'(x) = axa-1 • 

(Hint: use (a), exponent laws (Proposition 6.7.3), and Definition 

10.1.1.) 

10.5 L'Hopital's rule 

Finally, we present a version of a rule you are all familiar with. 

Proposition 10.5.1 (L'Hopital's rule I). Let X be a subset ofR, 

let f : X ~ R and g : X ~ R be functions, and let xo be a limit 

point of X. Suppose that f(xo) = g(xo) = 0, that f and g are 

hoth differentiable at xo, but g'(xo) =Ao. Then there exists a 5 > 0 

mch that g(x) =I= 0 for all x E (X n (~- 5, xo + 5))- {xo}, and 

lim f(x) _ f'(xo) 

x-+xo;xE(Xn(xo-5,xo+5))-{xo} g(x) g'(xo) · 

Proof. See Exercise 10.5.1. D 

The presence of the 5 here may seem somewhat strange, but is 

needed because g(x) might vanish at some points other than xo, 

which would imply that quotient ~f:} is not necessarily defined at 

all points in X- {xo}. 
A more sophisticated version of L'Hopital's rule is the follow-

ing. 

Proposition 10.5.2 (L'Hopital's rule II). Let a < b be real num­

bers, let f : [a, b] ~ R and g : [a, b] ~ R be functions which 

are differentiable on [a, b]. Suppose that f(a) = g(a) = 0, that 
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g' is non-zero on [a, b] (i.e., g'(x) =/:. 0 for all x E [a, b]), and 
f'(x) . 

lilllx-+a;xE(a,b] g'(x) exists and equals L. Then g(x) =/:. 0 for all 

X E (a, b], and lilllx-+a;xE(a,b] ~f~? exists and equals L. 

Remark 10.5.3. This proposition only considers limits to the 
right of a, but one can easily state and prove a similar proposition 
for limits to the left of a, or around both sides of a. Speaking very 
informally, the proposition states that 

lim f(x) = lim f'(x)' 
x-+a g(x) x-+a g'(x) 

though one has to ensure all of the conditions of the proposition 
hold (in particular, that f(a) = g(a) = 0, and that the right-hand 
limit exists), before one can apply L'Hopital's rule. 

Proof. (Optional) We first show that g(x) =/:. 0 for all x E (a,b]. 
Suppose for sake of contradiction that g( x) = 0 for some x E (a, b]. 
But since g(a) is also zero, we can apply Rolle's theorem to obtain 
g'(y) = 0 for some a< y < x, but this contradicts the hypothesis 
that g' is non-zero on [a, b]. 

Now we show that limx-+a;xE(a,b] ~~~? = L. By Proposition 
9.3.9, it will suffice to show that 

lim f(xn) = L 
n-+oo g(xn) 

for any sequence (xn)~=l taking values in (a, b] which converges 
to x. 

Consider a single Xn, and consider the function hn : [a, Xn]-+ 
R defined by 

hn(x) := f(x)g(xn)- g(x)f(xn)· 

Observe that hn is continuous on [a, Xn] and equals 0 at both 
a and Xn, and is differentiable on (a,xn) with derivative h~(x) = 
f'(x)g(xn) -g'(x)f(xn)· (Note that f(xn) and g(xn) are constants 
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with respect to x.) By Rolle's theorem (Theorem 10.2.7), we can 
thUS find Yn E (a, Xn) such that h~ (Yn) = 0, which implies that 

Since Yn E (a,xn) for all n, and Xn converges to a as n ~ oo, we 
see from the squeeze test (Corollary 6.4.14) that Yn also converges 
to a as n ~ oo. Thus 1; Yn converges to L, and thus 1fx"~ also 

9 Yn 9Xn 
converges to L, as desire . 0 

Exercise 10.5.1. Prove Proposition 10.5.1. (Hint: to show that g(x) ::f. 
0 near xo, you may wish to use Newton's approximation (Proposition 
10.1.7). For the rest of the proposition, use limit laws, Proposition 
9.3.14.) 

Exercise 10.5.2. Explain why Exercise 1.2.12 does not contradict either 
of the propositions in this section. 



Chapter 11 

The Riemann integral 

In the previous chapter we reviewed differentiation- one of the two 
pillars of single variable calculus. The other pillar is, of course, in­
tegration, which is the focus of the current chapter. More precisely, 
we will turn to the definite integral, the integral of a function on 
a fixed interval, as opposed to the indefinite integral, otherwise 
known as the antiderivative. These two are of course linked by 
the Fundamental theorem of calculus, of which more will be said 
later. 

For us, the study of the definite integral will start with an 
interval I which could be open, closed, or half-open, and a function 
f : I --t R, and will lead us to a number JI f; we can write this 
integral as II f ( x) dx (of course, we could replace x by any other 
dummy variable), or if I has endpoints a and b, we shall also write 

this integral as I: for I: f(x) dx. 
To actually define this integral II f is somewhat delicate ( es­

pecially if one does not want to assume any axioms concerning 
geometric notions such as area), and not all functions f are in­
tegrable. It turns out that there are at least two ways to define 
this integral: the Riemann integral, named after Georg Riemann 
(1826-1866), which we will do here and which suffices for most ap­
plications, and the Lebesgue integral, named after Henri Lebesgue 
(1875-1941), which supercedes the Riemann integral and works 
for a much larger class of functions. The Lebesgue integral will be 
constructed in Chapter 19. There is also the Riemann-Steiltjes in-
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tegral f1 f(x) da(x), a generalization of the Riemann integral due 
to Thomas Stieltjes (1856-1894), which we will discuss in Section 
n.s. 

Our strategy in defining the Riemann integral is as follows. We 
begin by first defining a notion of integration on a very simple class 
of functions - the piecewise constant functions. These functions 
are quite primitive, but their advantage is that integration is very 
easY for these functions, as is verifying all the usual properties. 
Then, we handle more general functions by approximating them 
by piecewise constant functions. 

11.1 Partitions 

Before we can introduce the concept of an integral, we need to de­
scribe how one can partition a large interval into smaller intervals. 
In this chapter, all intervals will be bounded intervals (as opposed 
to the more general intervals defined in Definition 9.1.1). 

Definition 11.1.1. Let X be a subset of R. We say that X 
is connected iff the following property is true: whenever x, y are 
elements in X such that x < y, the bounded interval [x, y] is a 
subset of X (i.e., every number between x andy is also in X). 

Remark 11.1.2. Later on, in Section 13.4 we will define a more 
general notion of connectedness, which applies to any metric space. 

Examples 11.1.3. The set [1, 2] is connected, because if x < y 

both lie in [1, 2], then 1 ~ x < y ~ 2, and so every element 
between x andy also lies in [1, 2]. A similar argument shows that 
the set (1, 2) is connected. However, the set [1, 2] U [3, 4] is not 
connected (why?). The real line is connected (why?). The empty 
set, as well as singleton sets such as {3}, are connected, but for 
rather trivial reasons (these sets do not contain two elements x, y 

for which x < y). 

Lemma 11.1.4. Let X be a subset of the real line. Then the 
following two statements are logically equivalent: 
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(a) X is bounded and connected. 

(b) X is a bounded interval. 

Proof. See Exercise 11.1.1. 0 

Remark 11.1.5. Recall that intervals are allowed to be singleton 
points (e.g., the degenerate interval [2, 2] = {2} ), or even the 
empty set. 

Corollary 11.1.6. If I and J are bounded intervals, then the 
intersection I n J is also a bounded interval. 

Proof. See Exercise 11.1.2. 0 

Example 11.1. 7. The intersection of the bounded intervals [2, 4] 
and [4, 6] is { 4}, which is also a bounded interval. The intersection 
of (2, 4) and ( 4, 6) is 0. 

We now give each bounded interval a length. 

Definition 11.1.8 (Length of intervals). If I is a bounded inter­
val, we define the length of I, denoted III as follows. If I is one 
of the intervals [a, b], (a, b), [a, b), or (a, b] for some real numbers 
a < b, then we define III := b- a. Otherwise, if I is a point or the 
empty set, we define III = 0. 

Example 11.1.9. For instance, the length of [3, 5] is 2, as is the 
length of (3, 5); meanwhile, the length of {5} or the empty set is 
0. 

Definition 11.1.10 (Partitions). Let I be a bounded interval. A 
partition of I is a finite set P of bounded intervals contained in I, 
such that every x in I lies in exactly one of the bounded intervals 
J in P. 

Remark 11.1.11. Note that a partition is a set of intervals, while 
each interval is itself a set of real numbers. Thus a partition is a 
set consisting of other sets. 
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Examples 11.1.12. The set P = {{1 }, (1, 3), [3, 5), {5}, (5, 8], 0} 
of bounded intervals is a partition of [1, 8], because all the intervals 
in p lie in [1, 8], and each element of [1, 8]lies in exactly one inter­
val in P. Note that one could have removed the empty set from P 
and still obtain a partition. However, the set { [1, 4], [3, 5]} is not 
a partition of [1, 5] because some elements of [1, 5] are included in 
Illore than one interval in the set. The set {(1, 3), (3, 5)} is not a 
partition of (1, 5) because some elements of (1, 5) are not included 
in any interval in the set. The set {(0, 3), [3, 5)} is not a partition 
of (1, 5) because some intervals in the set are not contained in 
(1, 5). 

Now we come to a basic property about length: 

Theorem 11.1.13 (Length is finitely additive). Let I be a bounded 
interval, n be a natural number, and let P be a partition of I of 
cardinality n. Then 

III= Z:::IJI. 
JeP 

Proof. We prove this by induction on n. More precisely, we let 
P(n) be the property that whenever I is a bounded interval, and 
whenever P is a partition of I with cardinality n, that III = 
EJeP IJI. 

The base case P(O) is trivial; the only way that I can be 
partitioned into an empty partition is if I is itself empty (why?), 
at which point the claim is easy. The case P(1) is also very easy; 
the only way that I can be partitioned into a singleton set { J} is 
if J =I (why?), at which point the..,claim is again very easy. 

Now suppose inductively that P(n) is true for some n ~ 1, 
and now we prove P( n + 1). Let I be a bounded interval, and let 
P be a partition of I of cardinality n + 1. 

If I is the empty set or a point, then all the intervals in P 
must also be either the empty set or a point (why?), and so every 
interval has length zero and the claim is trivial. Thus we will 
assume that I is an interval of the form (a, b), (a, b], [a, b), or 
[a,b]. 
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Let us first suppose that bE I, i.e., I is either (a, b] or [a,b]. 
Since b E I, we know that one of the intervals K in P contains b. 
Since K is contained in I, it must therefore be of the form (c, b], 
[c, b], or {b} for some real number c, with a ~ c ~ b (in the latter 
case of K = {b}, we set c :=b). In particular, this means that the 
set I- K is also an interval of the form [a,.c], (a, c), (a, c], [a, c) 
when c > a, or a point or empty set when a = c. Either way, we 
easily see that 

III= IKI +II -KI. 
On the other hand, since P forms a partition of I, we see that 
P- {K} forms a partition of I- K (why?). By the induction 
hypothesis, we thus have 

II -KI = L IJI. 
JeP-{K} 

Combining these two identities (and using the laws of addition for 
finite sets, see Proposition 7.1.11) we obtain 

III= I:IJI 
JeP ' 

as desired. 
Now suppose that b ¢I, i.e., I is either (a, b) or [a, b). Then 

one of the intervals K also is of the form ( c, b) or [ c, b) (see Exercise 
11.1.3). In particular, this means that the set I- K is also an 
interval of the form [a, c], (a, c), (a, c], [a, c) when c >a, or a point 
or empty set when a = c. The rest of the argument then proceeds 
as~~. D 

There are two more things we need to do with partitions. One 
is to say when one partition is finer than another, and the other 
is to talk about the common refinement of two partitions. 

Definition 11.1.14 (Finer and coarser partitions). Let I be a 
bounded interval, and let P and P' be two partitions of I. We 
say that P' is finer than P (or equivalently, that P is coarser than 
P') if for every J in P', there exists a K in P such that J ~ K. 
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Example 11.1.15. The partition {[1, 2), {2}, (2, 3), [3, 4]} is finer 
than {[1, 2], (2, 4]} (why?). Both partitions are finer than {[1, 4]}, 
which is the coarsest possible partition of [1, 4]. Note that there 
is no such thing as a "finest" partition of [1, 4]. (Why? recall all 
partitions are assumed to be finite.) We do not compare partitions 
of different intervals, for instance if P is a partition of [1, 4] and 
P' is a partition of [2, 5] then we would not say that P is coarser 
or finer than P'. 

Definition 11.1.16 (Common refinement). Let I be a bounded 
interval, and let P and P' be two partitions of I. We define the 
common refinement P#P' of P and P' to be the set 

P#P' := {K n J: K E P and J E P'}. 

Example 11.1.17. Let P := {[1, 3), [3, 4]} and P' := {[1, 2], 
(2, 4]} be two partitions of [1, 4]. Then P#P' is the set {[1, 2], 
(2, 3), [3, 4], 0} (why?). 

Lemma 11.1.18. Let I be a bounded interval, and let P and P' 
be two partitions of I. Then P#P' is also a partition of I, and is 
both finer than P and finer than P'. 

Proof. See Exercise 11.1.4. D 

Exercise 11.1.1. Prove Lemma 11.1.4. (Hint: in order to show that (a) 
implies (b) in the case when X is non-empty, consider the supremum 
and infimum of X.) 

Exercise 11.1.2. Prove Corollary 11.1.6. (Hint: use Lemma 11.1.4, 
and explain why the intersection of two bounded sets is automatically 
bounded, and why the intersection of two connected sets is automatically 
connected.) 

Exercise 11.1.3. Let I be a bounded interval of the form I = (a, b) or 
I= [a, b) for some real numbers a< b. Let h, ... , In be a partition of I. 
Prove that one of the intervals I; in this partition is of the form I; = ( c, b) 
or I; = [c, b) for some a :5 c :5 b. (Hint: prove by contradiction. First 
show that if I; is not of the form (c, b) or [c, b) for any a :5 c :5 b, then 
sup I; is strictly less than b.) 

Exercise 11.1.4. Prove Lemma 11.1.18. 
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11.2 Piecewise constant functions 

We can now describe the class of "simple" functions which we can 
integrate very easily. 

Definition 11.2.1 (Constant functions). Let X be a subset ofR, 
and let f : X ~ R be a function. We say that f is constant iff 
there exists a real number c such that f ( x) = c for all x E X. If E 
is a subset of X, we say that f is constant on E if the restriction 
!IE off toE is constant, in other words there exists a real number 
c such that f(x) = c for all x E E. We refer to cas the constant 
value off on E. 

Remark 11.2.2. If Eisa non-empty set, then a function f which 
is constant on f can have only one constant value; it is not possible 
for a function to always equal 3 on E while simultaneously always 
equalling 4. However, if E is empty, every real number c is a 
constant value for f onE (why?). 

Definition 11.2.3 (Piecewise constant functions I). Let I be a 
bounded interval, let f : I ~ R be a function, and let P be a 
partition of I. We say that f is piecewise constant with respect to 
P if for every J E P, f is constant on J. 

Example 11.2.4. The function f : [1, 6] ~ R defined by 

{ 
7 if1:Sx<3 
4 ifx=3 

f(x)= 
2
5 if3<x<6 

if X= 6 

is piecewise constant with respect to the partition {[1, 3), {3}, 
(3, 6), {6}} of [1, 6]. Note that it is also piecewise constant with 
respect to some other partitions as well; for instance, it is piece­
wise constant with respect to the partition {[1, 2), {2}, (2, 3), {3}, 
(3, 5), [5, 6), {6}, 0}. 

Definition 11.2.5 (Piecewise constant functions II). Let I be a 
bounded interval, and let f : I ~ R be a function. We say that 
f is piecewise constant on I if there exists a partition P of I such 
that f is piecewise constant with respect to P. 
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Example 11.2.6. The function used in the previous example is 
piecewise constant on [1, 6]. Also, every constant function on a 
bounded interval I is automatically piecewise constant (why?). 

Lemma 11.2.7. Let I be a bounded interval, let P be a partition 
of I, and let f : I ---t R be a function which is piecewise constant 
with respect to P. Let P' be a partition of I which is finer than 
p. Then f is also piecewise constant with respect to P'. 

Proof. See Exercise 11.2.1. 0 

The space of piecewise constant functions is closed under al­
gebraic operations: 

Lemma 11.2.8. Let I be a bounded interval, and let f : I---t R 
and g : I ---t R be piecewise constant functions on I. Then the 
functions f + g, f- g, max(!, g) and f g are also piecewise constant 
functions on I. Here of course max(!, g): I---t R is the function 
max(f,g)(x) := max(f(x),g(x)). If g does not vanish anywhere 
on I (i.e., g(x) =!= 0 for all x E I) then f /g is also a piecewise 
constant function on I. 

Proof. See Exercise 11.2.2. 0 

We are now ready to integrate piecewise constant functions. 
We begin with a temporary definition of an integral with respect 
to a partition. 

Definition 11.2.9 (Piecewise constant integral I). Let I be a 
bounded interval, let P be a partition of I. Let f : I ---t R be a 
function which is piecewise constant with respect to P. Then we 
define the piecewise constant integral p.c. frpl f off with respect 
to the partition P by the formula 

p.c. ~ f := L CJIJI, 
[P] JEP 

where ~or each J in P, we let CJ be the constant value off on J. 
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Remark 11.2.10. This definition seems like it could be ill-defined 
' because if J is empty then every number CJ can be the constant 

value off on J, but fortunately in such cases IJI is zero and so 
the choice of CJ is irrelevant. The notation p.c. frpl f is rather ar­
tificial, but we shall only need it temporarily, en route to a more 
useful definition. Note that since P is finite, the sum 'L:JEP CJIJI 
is always well-defined (it is never divergent or infinite). 

Remark 11.2.11. The piecewise constant integral corresponds 
intuitively to one's notion of area, given that the area of a rectangle 
ought to be the product of the lengths of the sides. (Of course, 
iff is negative somewhere, then the "area" CJIJI would also be 
negative.) 

Example 11.2.12. Let f : [1, 4] ---+ R be the function 

if1~x<3 

ifx=3 
if3<x~4 

and let P := {[1, 3), {3}, (3, 4]}. Then 

p.c. jP] f = C[1,3) 1[1, 3)1 + c{3}1{3}1 + C(3,4JI(3, 4] I 

=2x2+4x0+6x1 
= 10. 

Alternatively, if we let P' := {[1, 2), [2, 3), {3}, (3, 4], 0} then 

p.c. jP'] f = C[1,2)1 [1, 2)1 + C[2,3)1[2, 3)1 + C{3}1{3}1 

+ C(3,4JI(3, 4]1 + £!0101 
=2x1+2x1+4x0+6x1+£!0X0 
= 10. 

This example suggests that this integral does not really depend 
on what partition you pick, so long as your function is piecewise 
constant with respect to that partition. That is indeed true: 
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proposition 11.2.13 (Piecewise constant integral is independent 
of partition). Let I be a bounded interval, and let f : I---t R be a 
Junction. Suppose that P and P' are partitions of I such that f is 
piecewise constant both with respect to P and with respect to P'. 
Then p.c. /rPJ f = p.c. frP'] f · 

Proof. See Exercise 11.2.3. D 

Because of this proposition, we can now make the following 
definition: 

Definition 11.2.14 (Piecewise constant integral II). Let I be 
a bounded interval, and let f : I ---t R be a piecewise constant 
function on I. We define the piecewise constant integral p.c. II f 
by the formula 

p.c. { f := p.c. { f, 
}I }[P] 

where P is any partition of I with respect to which f is piecewise 
constant. (Note that Proposition 11.2.13 tells us that the precise 
choice of this partition is irrelevant.) 

Example 11.2.15. Iff is the function given in Example 11.2.12, 
then p.c. Jr1,41 f = 10. 

We now give some basic properties of the piecewise constant 
integral. These laws will eventually be superceded by the corre­
sponding laws for the Riemann integral (Theorem 11.4.1). 

Theorem 11.2.16 (Laws of integration). Let I be a bounded in­
terval, and let f : I ---t R and g : I ---t R be piecewise constant 
functions on I. 

(a) We have p.c. IIU +g)= p.c. II f + p.c. II g. 

(b) For any real number c, we have p.c. II ( cf) = c(p.c. II f). 

(c) We have p.c. IIU- g)= p.c. II f- p.c. II g. 

(d) If f(x) ~ 0 for all x E I, then p.c. II f ~ 0. 
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(e) If f(x) ~ g(x) for all x E I, then p.c. f1 f ~ p.c. f1 g. 

(f) Iff is the constant function f(x) = c for all x in I, then 
p.c. fr f = cjij. 

(g) Let J be a bounded interval containing I {i.e., I~ J), and 
let F : J ---+ R be the function 

F(x) := { ~(x) ifx E I 
ifx ~I 

Then F is piecewise constant on J, and p;c. JJ F = p.c. J1 f. 

(h) Suppose that { J, K} is a partition of I into two intervals J 
and K. Then the functions fiJ: J---+ R and fiK : K---+ R 
are piecewise constant on J and K respectively, and we have 

p.c. if= p.c. h fiJ + p.c .. L fiK· 

Proof. See Exercise 11.2.4. 0 

This concludes our integration of piecewise constant functions. 
We now turn to the question of how to integrate bounded func­
tions. 

Exercise 11.2.1. Prove Lemma 11.2.7. 

Exercise 11.2.2. Prove Lemma 11.2.8. (Hint: use Lemmas 11.1.18 and 
11.2. 7 to make f and g piecewise constant with respect to the same 
partition of I.) 

Exercise 11.2.3. Prove Proposition 11.2.13. (Hint: first use Theorem 
11.1.13 to show that both integrals are equal to p.c. JrP#P'] f.) 

Exercise 11.2.4. Prove Theorem 11.2.16. (Hint: you can use earlier parts 
of the theorem to prove some of the later parts of the theorem. See also 
the hint to Exercise 11.2.2.) 
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11·3 Upper and lower Riemann integrals 

Now let f : I ----+ R be a bounded function defined on a bounded 
interval I. We want to define the Riemann integral II f. To do 
this we fi~t need to define the notion of upper and lower Riemann 
integrals I If and I f. These notions are related to the Riemann 

-I 
integral in much the same way that the lim sup and lim inf of a 
sequence are related to the limit of that sequence. 

Definition 11.3.1 (Majorization of functions). Let f : I ----+ R 
and g: I----+ R. We say that g majorizes f on I if we have g(x) ;:::: 
J(x) for all x E I, and that g minorizes f on I if g(x):::; f(x) for 
all X E J. 

The idea of the Riemann integral is to try to integrate a func­
tion by first majorizing or minorizing that function by a piecewise 
constant function (which we already know how to integrate). 

Definition 11.3.2 (Upper and lower Riemann integrals). Let f : 
I _... R be a bounded function defined on a bounded interval I. 
We define the upper Riemann integral J If by the formula 

I/:= inf{p.c. i g : g is a p.c. function on I which majorizes f} 

and the lower Riemann integral I f by the formula 
-I 

I If := sup{p.c. i g : g is a p.c. function on I which minorizes !} 

We give a crude but useful bound on the lower and upper 
integral: 

Lemma 11.3.3. Let f : I ----+ R be a function on a bounded 
interval I which is bounded by some real number M, i.e., - M :::; 
f(x):::; M for all x E J. Then we have 

-Mill:::;//:::;//:::; MIJI. 

In particular, both the lower and upper Riemann integrals are real 
numbers (i.e., they are not infinite). 
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Proof. The function g : I ---+ R defined by g(x) = M is con. 
stant, hence piecewise constant, and majorizes !; thus fif S 
p.c. II g = Mill by definition of the upper Riemann integral. A 
similar argument gives -Mill :::; [/· Finally, we have to show 

that [/ :::; J If. Let g be any piecewise constant function ma­
jorizing f, and let h be any piecewise constant function minoriz­
ing f. Then g majorizes h, and hence p.c. II h :::; p.c. II g. Taking 
suprema in h, we obtain that[/ :::; p.c. II g. Taking infima in g, 

we thus obtain[/:::; Jig, as desired. 0 

We now know that the upper Riemann integral is always at 
least as large as the lower Riemann integral. If the two integrals 
match, then we can define the Riemann integral: 

Definition 11.3.4 (Riemann integral). Let f : I ---+ R be a 
bounded function on a bounded interval I. If I f = J If, then we 

-I 
say that f is Riemann integrable on I and define 

If the upper and lower Riemann integrals are unequal, we say that 
f is not Riemann integrable. 

Remark 11.3.5. Compare this definition to the relationship be-­
tween the lim sup, lim inf, and limit of a sequence an that was 
established in Proposition 6.4.12(f); the lim sup is always greater 
than or equal to the lim inf, but they are only equal when the 
sequence converges, and in this case they are both equal to the 
limit of the sequence. The definition given above may differ from 
the definition you may have encountered in your calculus courses, 
based on Riemann sums. However, the two definitions turn out 
to be equivalent; this is the purpose of the next section. 

Remark 11.3.6. Note that we do not consider unbounded func­
tions to be Riemann integrable; an integral involving such func­
tions is known as an improper integral. It is possible to still eval­
uate such integrals using more sophisticated integration methods 
(such as the Lebesgue integral); we shall do this in Chapter 19. 
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The Riemann integral is consistent with (and supercedes) the 
piecewise constant integral: 

Lemma 11.3. 7. Let f : I ---+ R be a piecewise constant function 
on a bounded interval I. Then f is Riemann integrable, and II f = 
p.c.fi f. 

proof. See Exercise 11.3.3. 0 

aemark 11.3.8. Because of this lemma, we will not refer to the 
piecewise constant integral p.c. II again, and just use the Riemann 
integral II throughout (until this integral is itself superceded by 
the Lebesgue integral in Chapter 19). We observe one special case 
of Lemma 11.3. 7: if I is a point or the empty set, then II f = 0 
for all functions f : I ---+ R. (Note that all such functions are 
automatically constant.) 

We have just shown that every piecewise constant function 
is Riemann integrable. However, the Riemann integral is more 
general, and can integrate a wider class of functions; we shall see 
this shortly. For now, we connect the Riemann integral we have 
just defined to the concept of a Riemann sum, which you may 
have seen in other treatments of the Riemann integral. 

Definition 11.3.9 (Riemann sums). Let f: I---+ R be a bounded 
function on a bounded interval I, and let P be a partition of I. 
We define the upper Riemann sum U(f, P) and the lower Riemann 
sum L(f, P) by 

U(f, P) := L (sup f(x))IJI 
JeP:J-#0 xEJ 

and 
L(f,P) := " (inf f(x))IJI. ~ xEJ 

JeP:J-#0 

Remark 11.3.10. The restriction J =/: 0 is required because the 
quantities infxeJ f(x) and SUPxeJ f(x) are infinite (or negative 
infinite) if J is empty. 
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We now connect these Riemann sums to the upper and lower 
Riemann integral. 

Lemma 11.3.11. Let f : I ---+ R be a bounded function on a 
bounded interval I, and let g be a function which majorizes f and 
which is piecewise constant with respect to some partition P of I. 
Then 

p.c. i g ? U(f, P). 

Similarly, if h is a function which minorizes f and is piecewise 
constant with respect to P, then 

p.c. i h :S L(f, P). 

Proof. See Exercise 11.3.4. 0 

Proposition 11.3.12. Let f: I---+ R be a bounded function on a 
bounded interval I. Then 

and 

j / = inf{U(f, P) : P is a partition of I} 

J f = sup{ L(f, P) : P is a partition of I} 
-I 

Proof. See Exercise 11.3.5. 0 

Exercise 11.3.1. Let f: I--+ R, 9 :I--+ R, and h: I--+ R be functions. 
Show that if f majorizes 9 and 9 majorizes h, then f majorizes h. Show 
that iff and 9 majorize each other, then they must be equal. 

Exercise 11.3.2. Let f : I --+ R, 9 : I --+ R, and h : I --+ R be functions. 
Iff majorizes 9, is it true that f + h majorizes 9 + h? Is it true that 
f · h majorizes 9 · h? If cis a real number, is it "true that cf majorizes 
C9? 

Exercise 11.3.3. Prove Lemma 11.3.7. 

Exercise 11.3.4. Prove Lemma 11.3.11. 

Exercise 11.3.5. Prove Proposition 11.3.12. (Hint: you will need Lemma 
11.3.11, even though this Lemma will only do half of the job.) 
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11.4 Basic properties of the Riemann integral 

Just as we did with limits, series, and derivatives, we now give 
the basic laws for manipulating the Riemann integral. These laws 
will eventually be superceded by the corresponding laws for the 
Lebesgue integral (Proposition 19.3.3). 

Theorem 11.4.1 (Laws of Riemann integration). Let I be a 
bounded interval, and let f : I ---t R and g : I ---t R be Riemann 
integrable functions on I. 

(a) The function f+g is Riemann integrable, and we have f1(f+ 
g)= Jlf +Jig. 

(b) For any real number c, the function cf is Riemann inte­
grable, and we have f1(cf) = c(J1 f). 

(c) The function f-g is Riemann integrable, and we have J1(!-
g)=Jif-Jig. 

(d) If f(x);:::: 0 for all x E I, then f1 f;:::: 0. 

(e) If f(x);:::: g(x) for all x E I, then f1 f;:::: f1 g. 

(!) If f is the constant function f ( x) = c for all x in I, then 
f1f = ciii. 

(g) Let J be a bounded interval containing I (i.e., I ~ J), and 
let F : J ---t R be the function 

F(x) := { ~(x) ifx E I 
if x rf_ I 

Then F is Riemann integrable on J, and JJ F = f1 f. 

(h) Suppose that { J, K} is a partition of I into two intervals J 
and K. Then the functions fiJ: J ---t R and fiK: K ---t R 
are Riemann integrable on J and K respectively, and we 
have 
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Proof. See Exercise 11.4.1. 0 

Remark 11.4.2. We often abbreviate JJ fiJ as JJ f, even though 
f is really defined on a larger domain than just J. 

Theorem 11.4.1 asserts that the sum or difference of any two 
Riemann integrable functions is Riemann integrable, as is any 
scalar multiple cf of a Riemann integrable function f. We now 
give some further ways to create Riemann integrable functions. 

Theorem 11.4.3 (Max and min preserve integrability). Let I be a 
bounded interval, and let f : I -+ R and g : I -+ R be a Riemann 
integrable function. Then the functions max(!, g) : I -+ R and 
min(f,g): I-+ R defined bymax(f,g)(x) := max(f(x),g(x)) and 
min(!, g)(x) := min(f(x), g(x)) are also Riemann integrable. 

Proof. We shall just prove the claim for max(!, g), the case of 
min(!, g) being similar. First note that since j and g are bounded, 
then max(!, g) is also bounded. 

Let £ > 0. Since f1 f = J f, there exists a piecewise constant 
-I 

function 1 : I -+ R which minorizes f on I such that 

Similarly we can find a piecewise constant !!.. : I -+ R which mi­
norizes g on I such that 

and we can find piecewise functions ], g which majorize f, g 
respectively on I such that 

and 
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In particular, if h : I ----+ R denotes the function 

h = = a -D + (g - fl.) 

we have i h:::; 4c. 

On the other hand, max([_, fl.) is a piecewise constant function 
on I (why?) which minorizes max(f,g) (why?), while max(], g) 
is similarly a piecewise constant function on I which majorizes 
rnax(f, g). Thus 

i max(f_,f!.)::; JI max(f,g)::; JI max(f,g)::; i max(f,g), 

and so 

0::; J I max(!, g)- J I max(!, g) ::; i max(], g)- max(j_, fl.)· 

But we have 

f(x) = j_(x) +a- j)(x) ::; j_(x) + h(x) 

and similarly 

g(x) = f!.(x) + (g- !!.)(x) ::; f!.(x) + h(x) 

and thus 

max(f(x),g(x))::; max(j_(x),f!.(x)) + h(x). 

Inserting this into the previous inequality, we obtain 

0::; J I max(!, g)- J I max(!, g)::; i h::; 4c. 

To summarize, we have shown that 

0::; J I max(!, g)- J I max(!, g)::; 4c 
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for every c. Since J I max(!, g)- J max(!, g) does not depend on 
-I 

c, we thus see that 

II max(f,g)- II max(!, g)= 0 

and hence that max(!, g) is Riemann integrable. 0 

Corollary 11.4.4 (Absolute values preserve Riemann integrabil­
ity). Let I be a bounded interval. If f : I ----+ R is a Riemann 
integrable function, then the positive part f+ :=max(!, 0) and the 
negative part f- := min(!, 0) are also Riemann integrable on I. 
Also, the absolute value l/1 = f+- f- is also Riemann integrable 
on I. 

Theorem 11.4.5 (Products preserve Riemann integrability). Let 
I be a bounded interval. Iff : I ----+ R and g : I -t R are Riemann 
integrable, then f g : I ----+ R is also Riemann integrable. 

Proof. This one is a little trickier. We split f = f+ + f- and 
g = g+ + g_ into positive and negative parts; by Corollary 11.4.4, 
the functions f+, f-, g+, g_ are Riemann integrable. Since 

fg = f+g+ + f+g- + f-g+ + f_g_ 

then it suffices to show that the functions f+g+,J+g_, f-g+, f_g_ 
are individually Riemann integrable. We will just show this for 
f+g+; the other three are similar. 

Since f + and g+ are bounded and positive, there are M1, M2 > 
0 such that 

for all x E I. Now let c > 0 be arbitrary. Then, as in the proof of 
Theorem 11.4.3, we can find a piecewise constant function f+ m.i­
norizing f + on I, and a piecewise constant function f + majorizing 
f+ on I, such that 
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and h1+ ~ h1+ -£. 

Note that f + may be negative at places, but we can fix this by 
replacing /-;-by max(!+, 0), since this still minorizes f+ (why?) 
and still has integral greater than or equal to JI f+ -£(why?). So 
without loss of generality we may assum~ that f + ( x) ~ 0 for all 
:& E J. Similarly we may assume that f+(x) ~ M1 for all x E J; 

thus 

for all x E J. 
Similar reasoning allows us to find piecewise constant 9+ mi-

norizing 9+, and 9+ majorizing 9+, such that -

and 

and 

for all x E J. 

i9+ ~ i9+ +£ 

/, 9+ ~ /,9+- £, 
I- I 

Notice that 1+9+ is piecewise constant and minorizes 1+9+, 
while 1+9+ is piecewise constant and majorizes 1+9+· Thus 

0 ~ J /+9+- J 1+9+ ~ i 1+9+- 1+9+· 
-I 

However, we have 

f+(x)g+(x)- f+(x)g+(x) = f+(x)(9+-g+)(x)+g+(x)(!+- f+(x)) 

~ MI(9+- 9+)(x) + M2(!+- f+(x)) 

for all x E I, and thus 

0~ f/+9+- f/+9+~Ml i(g+-9+)+M2 i(!+-f+) 
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Again, since£ was arbitrary, we can conclude that f+9+ is Rie­
mann integrable, as before. Similar argument show that f+9-., 
f-9+, f-9- are Riemann integrable; combining them we obtain 
that f 9 is Riemann integrable. 0 

Exercise 11.4.1. Prove Theorem 11.4.1. (Hint: you may find Theorem 
11.2.16 to be useful. For part (b): First do the case c > 0. Then do the 
case c = -1 and c = 0 separately. Using these cases, deduce the case of 
c < 0. You can use earlier parts of the theorem to prove later ones.) 

Exercise 11.4.2. Let a < b be real numbers, and let f : [a, b] -+ R 
be a continuous, non-negative function (so f(x) ~ 0 for all x E [a,b]). 
Suppose that fra,b] f = 0. Show that f(x) = 0 for all x E [a, b]. (Hint: 
argue by contradiction.) 

Exercise 11.4.3. Let I be a bounded interval, let f : I -+ R be a Riemann 
integrable function, and let P be a partition of I. Show that 

/,J= ~ 1f. 
1 JEP J 

Exercise 11.4.4. Without repeating all the computations in the above 
proofs, give a short explanation as to why the remaining cases of The­
orem 11.4.3 and Theorem ).1.4.5 follow automatically from the cases 
presented in the text. (Hint: from Theorem 11.4.1 we know that iff is 
Riemann integrable, then so is -f.) 

11.5 Riemann integrability of continuous functions 

We have already said a lot about Riemann integrable functions 
so far, but we have not yet actually produced any such functions 
other than the piecewise constant ones. Now we rectify this by 
showing that a large class of useful functions are Riemann inte­
grable. We begin with the uniformly continuous functions. 

Theorem 11.5.1. Let I be a bounded interval, and let f be a 
function which is uniformly continuous on I. Then f is Riemann 
integrable. 
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Proof. From Proposition 9.9.15 we see that f is bounded. Now 
we have to show that J f =]If. 

-I 
If I is a point or the empty set then the theorem is trivial, so 

let us assume that I is one of the four intervals [a, b], (a, b), (a, b], 
or [a, b) for some real numbers a< b. 

Let c > 0 be arbitrary. By uniform continuity, there exists a 
8 > 0 such that lf(x)- f(y)l < c whenever x, y E I are such that 
lx- Yl < 8. By the Archimedean principle, there exists an integer 
N > 0 such that (b- a)jN < 8. 

Note that we can partition I into N intervals J1, ... , JN, each 
of length (b-a)jN. (How? One has to treat each of the cases [a, b], 
(a, b), (a, b], [a, b) slightly differently.) By Proposition 11.3.12, we 
thus have 

and 

so in particular 

- N I f- I f::; 2)sup f(x)- inf f(x))IJkl· 
I -I k=l xEJk xEJk 

However, we have lf(x)- f(y)l < c for all x, y E Jk, since IJk·l = 
(b- a)/N < 8. In particular we have 

f(x) < f(y) + c for all x, y E Jk. 

Taking suprema in x, we obtain 

sup f(x) ::; f(y) + c for ally E Jk, 
xEJk 

and then taking infima in y we obtain 

sup f(x) ::; inf f(y) +c. 
xEJk yEJk 
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Inserting this bound into our previous inequality, we obtain 

but by Theorem 11.1.13 we thus have 

f f- j f ~ c:(b- a). 
I -I 

But c: > 0 was arbitrary, while (b- a) is fixed. Thus fi!­
J f cannot be positive. By Lemma 11.3.3 and the definition of 
-I 
Riemann integrability we thus have that f is Riemann integrable. 

0 

Combining Theorem 11.5.1 with Theorem 9.9.16, we thus ob­
tain 

Corollary 11.5.2. Let [a, b] be a closed interval, and let f 
[a, b] --t R be continuous. Then f is Riemann integrable. 

Note that this Corollary is not true if [a, b] is replaced by 
any other sort of interval, since it is not even guaranteed then 
that continuous functions are bounded. For instance, the func­
tion f : (0, 1) --t R defined by f(x) := 1/x is continuous but not 
Riemann integrable. However, if we assume that a function is both 
continuous and bounded, we can recover Riemann integrability: 

Proposition 11.5.3. Let I be a bounded interval, and let f : I--t 
R be both continuous and bounded. Then f is Riemann integrable 
on I. 

Proof. If I is a point or an empty set then the claim is trivial; if 
I is a closed interval the claim follows from Corollary 11.5.2. So 
let us assume that I is of the form (a, b], (a, b), or [a, b) for some 
a< b. 

We have a bound M for J, so that -M ~ f(x) ~ M for all 
x E I. Now let 0 < c: < (b-a)/2 be a small number. The function 
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f when restricted to the interval [a+ c:, b- c:] is continuous, and 
hence Riemann integrable by Corollary 11.5.2. In particular, we 
can find a piecewise constant function h: [a+ c:, b- c:] ---t R which 
majorizes f on [a+ c:, b- c:] such that 

r h < r J +c:. 
lra+e,b-e] lra+e,b-e] 

Define h : I ---t R by 

- { h(x) h(x) := M 
if X E (a+ c:, b- c:] 
if X E I\[a + £, b- c:] 

Clearly his piecewise constant on I and majorizes f; by Theorem 
11.2.16 we have 

r;, = c:M + r h + c:M 5, r 1 +(2M+ 1)c:. 
JI lra+e,b-e] lra+e,b-e] 

In particular we have 

J J5, r J+(2M+1)c:. 
I lra+e,b-e] 

A similar argument gives 

J 1?:. r 1- (2M+ 1)c: 
-I lra+e,b-e] 

and hence 

J f - J f 5, ( 4M + 2)c:. 
I -I 

But c: is arbitrary, and so we can argue as in the proof of Theorem 
11.5.1 to conclude Riemann integrability. D 

This gives a large class of Riemann integrable functions al­
ready; the bounded continuous functions. But we can expand this 
class a little more, to include the bounded piecewise continuous 
functions. 
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Definition 11.5.4. Let I be a bounded interval, and let f: I-... 
R. We say that f is piecewise continuous on I iff there exists a 
partition P of I such that !IJ is continuous on J for all J E P. 

Example 11.5.5. The function f: [1, 3] ---+ R defined by 

if1~x<2 

if X= 2 
if2<x~3 

is not continuous on [1, 3], but it is piecewise continuous on [1, 3] 
(since it is continuous when restricted to [1, 2) or {2} or (2, 3], and 
those three intervals partition [1, 3]). 

Proposition 11.5.6. Let I be a bounded interval, and let f: I--... 
R be both piecewise continuous and bounded. Then f is Riemann 
integrable. · 

Proof. See Exercise 11.5.1. 0 

Exercise 11.5.1. Prove Proposition 11.5.6. (Hint: use Theorem 11.4.1(a) 
and (h).) 

11.6 Riemann integrability of monotone functions 

In addition to piecewise continuous functions, another wide class 
of functions is Riemann integrable, namely the monotone func­
tions. We give two instances of this: 

Proposition 11.6.1. Let [a, b] be a closed and bounded interval 
and let f: [a, b] ---+ R be a monotone function. Then f is Riemann 
integrable on [a, b]. 

Remark 11.6.2. From Exercise 9.8.5 we know that there exist 
monotone functions which are not piecewise continuous, so this 
proposition is not subsumed by Proposition 11.5.6. 
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proof. Without loss of generality we may take f to be monotone 
increasing (instead of monotone decreasing). From Exercise 9.8.1 
we know that f is bounded. Now let N > 0 be an integer, and 
partition [a, b] into N half-open intervals {[a+b:Na j, a+b.Jt(j+1)) : 
0 ~ j ~ N- 1} of length (b- a)jN, together with the point {b}. 
Then by Proposition 11.3.12 we have 

- N-1 

I f~ L( sup f(x))b-a, 
I j=O xE[a+bjV'"j,a+bjVa(j+1)) N 

(the point {b} clearly giving only a zero contribution). Since f is 
monotone increasing, we thus have 

- N-1 

I f ~ L f(a + b; a (j + 1)) b; a. 
I j=O 

Similarly we have 

N-1 

If~ L f(a+ b;aj)b;a. 
-I j=O 

Thus we have 

- N-1 

//-I/~ f;(f(a+ b;a(j+ 1))-f(a+ b;aj))b;a. 

Using telescoping series (Lemma 7.2.15) we thus have 

I I 
b-a b-a b-a 

f- f ~ (!(a+ -(N))- f(a + -0))-
I -I N N N 

b-a 
= (f(b)- f(a))--"N. 

But N was arbitrary, so we can conclude as in the proof of Theo­
rem 11.5.1 that f is Riemann integrable. D 

Corollary 11.6.3. Let I be a bounded interval, and let f : I ~ R 
be both monotone and bounded. Then f is Riemann integrable on 
I. 
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Proof. See Exercise 11.6.1. 0 

We now give the famous integral test for determining conver­
gence of monotone decreasing series. 

Proposition 11.6.4 (Integral test). Let f : [0, oo) ---+ R be a 
monotone decreasing function which is non-negative (i.e., f(x) ~ 
0 for all x ;:::: 0). Then the sum l:~=O f(n) is convergent if and 
only if sup N>O f[o,N] f is finite. 

Proof. See Exercise 11.6.3. 0 

Corollary 11.6.5. Let p be a real number. Then E~=l !v con­
verges absolutely when p > 1 and diverges when p ~ 1. 

Proof. See Exercise 11.6.5. 0 

Exercise 11.6.1. Use Proposition 11.6.1 to prove Corollary 11.6.3. (Hint: 
adapt the proof of Proposition 11.5.3.) 

Exercise 11.6.2. Formulate a reasonable notion of a piecewise monotone 
function, and then show that all bounded piecewise monotone functions 
are Riemann integrable. 

Exercise 11.6.3. Prove Proposition 11.6.4. (Hint: what is the relation­
ship between the sum L:::=l f(n), the sum L:::,::-01 f(n), and the integral 
f[o,N] f?) 

Exercise 11.6.4. Give examples to show that both directions of the in­
tegral test break down if f is not assumed to be monotone decreasing. 

Exercise 11.6.5. Use Proposition 11.6.4 to prove Corollary 11.6.5. 

11.7 A non-Riemann integrable function 

We have shown that there are large classes of bounded func­
tions which are Riemann integrable. Unfortunately, there do exist 
bounded functions which are not Riemann integrable: 
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proposition 11.7.1. Let f : [0, 1] ---+ R be the discontinuous 
Junction 

f(x) := { ~ ifx E Q 
if X rf_ Q 

considered in Example 9.3.21. Then f is bounded but not Riemann 
integrable. 

Proof. It is clear that f is bounded, so let us show that it is not 
Riemann integrable. 

Let P be any partition of [0, 1]. For any J E P, observe that 
if J is not a point or the empty set, then 

sup f(x) = 1 
xEJ 

(by Proposition 5.4.14). In particular we have 

(sup f(x))IJI = IJI. 
xEJ 

(Note this is also true when J is a point, since both sides are zero.) 
In particular we see that 

U(f,P) = L IJI = [0, 1] = 1 
JeP:J;f0 

by Theorem 11.1.13; note that the empty set does not contribute 
anything to the total length. In particular we have ] 10,11 f = 1, by 
Proposition 11.3.12. 

A similar argument gives that 

inf f(x) = 0 
xEJ 

for all J (other than points or the empty set), and so 

L(f, P) = L 0 = 0. 
JeP:J# 

In particular we have J1 ]f = 0, by Proposition 11.3.12. Thus 
-0,1 

the upper and lower Riemann integrals do not match, and so this 
function is not Riemann integrable. 0 
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Remark 11. 7.2. As you can see, it is only rather "artificial" 
bounded functions which are not Riemann integrable. Because 
of this, the Riemann integral is good enough for a large majority 
of cases. There are ways to generalize or improve this integral , 
though. One of these is the Lebesgue integral, which we will define 
in Chapter 19. Another is the Riemann-Stieltjes integral J1 fda:, 
where a : I ----+ R is a monotone increasing function, which we 
define in the next section. 

11.8 The Riemann-Stieltjes integral 

Let I be a bounded interval, let a : I ----+ R be a monotone in­
creasing function, and let f : I ----+ R be a function. Then there is 
a generalization of the Riemann integral, known as the Riemann­
Stieltjes integral. This integral is defined just like the Riemann 
integral, but with one twist: instead of taking the length IJI of 
intervals J, we take the a-length a[J], defined as follows. If J is 
a point or the empty set, then a[J] := 0. If J is an interval of the 
form [a, b], (a, b), (a, b], or [a, b), then a[J] := a(b) -a( a). Note 
that in the special case where a is the identity function a(x) := x, 
then a[J] is just the same as IJI. However, for more general 
monotone functions a, the a-length a[J] is a different quantity 
from IJI. Nevertheless, it turns out one can still do much of the 
above theory, but replacing IJI by a[J] throughout. 

Definition 11.8.1 (a-length). Let I be a bounded interval, and 
let a : X ----+ R be a function defined on some domain X which 
contains I. Then we define the a-length a[I] of I as follows. IT I 
is a point or the empty set, we set a[I] = 0. If I is an interval of 
the form [a, b], [a, b), (a, b], or (a, b) for some b > a, then we set 
a[I] = a(b)- a( a). · 

Example 11.8.2. Let a : R ----+ R be the function a(x) := x2• 

Then a[[2, 3]] = a(3)- a(2) = 9- 4 = 5, while a[( -3, -2)] = -5. 
Meanwhile a[{2}] = 0 and a[0] = 0. 

Example 11.8.3. Let a: R----+ R be the identity function a(x) := 
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:&· Then a[I] = III for all bounded intervals I (why?) Thus the 
notion of length is a special case of the notion of a-length. 

We sometimes write al~ or a(x)l;~~ instead of a[[a, b]]. 
One of the key theorems for the theory of the Riemann inte­

gral was Theorem 11.1.13, which concerned length and partitions, 
a.nd in particular showed that III = LJEP IJI whenever P was a 
partition of I. We now generalize this slightly. 

Lemma 11.8.4. Let I be a bounded interval, let a: X~ R be a 
Junction defined on some domain X which contains I, and let P 
be a partition of I. Then we have 

a[I] = L a[J]. 
JEP 

Proof. See Exercise 11.8.1. D 

We c.an now define a generalization of Definition 11.2.9. 

Definition 11.8.5 (P.c. Riemann-Stieltjes integral). Let I be a 
bounded interval, and let P be a partition of I. Let a :X~ R 
be a function defined on some domain X which contains I, and let 
f : I ~ R be a function which is piecewise constant with respect 
to P. Then we define 

p.c. f f da := L CJa[J] 
J[P] JEP 

where CJ is the constant value of f on J. 

Example 11.8.6. Let f : [1, 3] ~ R be the function 

f(x) = { ~ when x E [1, 2) 
when x E [2, 3], 

let a : R ~ R be the function a(x) := x2, and let P be the 
partition P := {[1, 2), [2, 3]}. Then 

p.c. jP] f da = C[1,2)a[[1, 2)] + C[2,3ja[[2, 3]] 

= 4(a(2)- a(1)) + 2(a(3)- a(2)) = 4 x 3 + 2 x 5 = 22. 
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Example 11.8.7. Let a: R ~ R be the identity function a(x) :::::: 
x. Then for any bounded interval I, any partition P of I, and any 
function f that is piecewise constant with respect to P, we have 
p.c. frpl fda= p.c. frpl f (why?). 

We can obtain an exact analogue of Proposition 11.2.13 by re­
placing all the integrals p.c. frpl f in the proposition with p.c. J[P] f 
(Exercise 11.8.2). We can thus define p.c. II fda for any piecewise 
constant function f : I ~ R and any a : X ~ R defined on a 
domain containing I, in analogy to before, by the formula 

p.c. r f da := p.c. r f da 
}I J[P] 

for any partition P on I with respect to which f is piecewise 
constant. 

Up until now we have made no assumption on a. Let us now 
assume that a is monotone increasing, i.e., a(y) ;:::: a(x) whenever 
x, y E X are such that y ;:::: x. This implies that a( I) ;:::: 0 for 
all intervals in X (why?). From this one can easily verify that 
all the results from Theorem 11.2.16 continue to hold when the 
integrals p.c. II fare replaced by p.c. II fda, and the lengths III 
are replaced by the a-lengths a(I); see Exercise 11.8.3. 

We can then define upper and lower Riemann-Stieltjes inte­
grals f If da and I f da whenever f : I ~ R is bounded and a 

-I 
is defined on a domain containing I, by the usual formulae 

I/ da := inf{p.c. i g da : g is p.c. on I and majorizes !} 

and 

I/ da := sup{p.c. i g da : g is p.c. on I and minorizes !}. 

We then say that f is Riemann-Stieltjes integrable on I with 
respect to a if the upper and lower Riemann-Stieltjes integrals 
match, in which case we set 

if da := I/ da = I/ da. 
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As before, when a is the identity function a(x) := x then the 
Riemann-Stieltjes integral is identical to the Riemann integral; 
thus the Riemann-Stieltjes integral is a generalization of the Rie­
mann integral. (We shall see another comparison between the two 
integrals a little later, in Corollary 11.10.3.) Because of this, we 
sometimes write f1 f as f1 f dx or f1 f(x) dx. 

Most (but not all) of the remaining theory of the Riemann 
integral then can be carried over without difficulty, replacing Rie­
mann integrals with Riemann-Stieltjes integrals and lengths with 
a-lengths. There are a couple results which break down; Theo­
rem 11.4.1(g), Proposition 11.5.3, and Proposition 11.5.6 are not 
necessarily true when a is discontinuous at key places (e.g., if f 
and a are both discontinuous at the same point, then J1 f da 
is unlikely to be defined. However, Theorem 11.5.1 is still true 
(Exercise 11.8 .4). 

Exercise 11.8.1. Prove Lemma 11.8.1. (Hint: modify the proof of The­
orem 11.1.13.) 

Exercise 11.8.2. State and prove a version of Proposition 11.2.13 for the 
Riemann-Stieltjes integral. 

Exercise 11.8.3. State and prove a version of Theorem 11.2.16 for the 
Riemann-Stieltjes integral. 

Exercise 11.8.4. State and prove a version of Theorem 11.5.1 for the 
Riemann-Stieltjes integral. (Hint: one has to be careful with the proof; 
the problem here is that some of the references to the length of IJkl 
should remain unchanged, and other references to the length of IJkl 
should be changed to the a-length a(Jk)- basically, all of the occurrences 
of IJkl which appear inside a summation should be replaced with a(Jk), 
but the rest should be unchanged.) 

Exercise 11.8.5. Let sgn: R--+ R be the signum function 

sgn(x) := { ,~ 
-1 

when x > 0 
when x = 0 
when x < 0. 

Let f: (-1, 1] --+ R be a continuous function. Show that f is Riemann­
Stieltjes integrable with respect to sgn, and that 

{ f dsgn = f(O). 
1[-1,1] 
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(Hint: for every c > 0, find piecewise constant functions majorizing and 
minorizing f whose Riemann-Stieltjes integral is c-close to f(O).) 

11.9 The two fundamental theorems of calculus 

We now have enough machinery to connect integration and differ­
entiation via the familiar fundamental theorem of calculus. Actu­
ally, there are two such theorems, one involving the derivative of 
the integral, and the other involving the integral of the derivative. 

Theorem 11.9.1 (First Fundamental Theorem of Calculus). Let 
a < b be real numbers, and let f : [a, b] --+ R be a Riemann 
integmble function. Let F: [a, b] --+ R be the function 

F(x) := { f. 
J[a,x] 

Then F is continuous. Furthermore, if xo E [a, b] and f is con­
tinuous at xo, then F is differentiable at xo, and F'(xo) = f(x0). 

Proof. Since f is Riemann integrable, it is bounded (by Definition 
11.3.4). Thus we have some real number M such that -M :5 
f(x) ~ M for all x E [a, b]. 

Now let x < y be two elements of [a, b]. Then notice that 

F(y)- F(x) = { f- { f = { f 
J[a,y] J[a,x] J[x,y] 

by Theorem 11.4.1 (h). By Theorem 11.4.1 (e) we thus have 

f f~ f M=p.c. f M=M(y-x) 
}~~ }~~ }~~ 

and 

f f?:. f -M=p.c. f -M=-M(y-x) 
J[x,y] J[x,y] J[x,y] 

and thus 
IF(y)- F(x)l ~ M(y- x). 
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This is for y > x. By interchanging x and y we thus see that 

IF(y)- F(x)l :S M(x- y) 

when x > y. Also, we have F(y)- F(x) = 0 when x = y. Thus 
in all three cases we have 

IF(y)- F(x)l :S Mix- Yi· 

Now let x E [a, b], and let (xn)~=O be any sequence in [a, b] con­
verging to x. Then we have 

-Mixn- xi :S F(xn)- F(x) :S Mlxn- xi 

for each n. But - Mlxn - xi and Mlxn - xi both converge to 0 
as n ---+ oo, so by the squeeze test F(xn) - F(x) converges to 0 
as n ---+ oo, and thus limn--+oo F(xn) = F(x). Since this is true 
for all sequences Xn E [a, b] converging to x, we thus see that F 
is continuous at x. Since x was an arbitrary element of [a, b], we 
thus see that F is continuous. 

Now suppose that xo E [a, b], and f is continuous at xo. 
Choose any c > 0. Then by continuity, we can find a 5 > 0 
such that if(x)- f(xo)l :S c for all x in the interval I := [xo-
5,xo + 5] n [a, b], or in other words 

f(xo)- c :S f(x) :S f(xo) + c for all x E I. 

We now show that 

IF(y)- F(xo)- f(xo)(y- xo)l :S elY- xol 

for all y E I, since Proposition 10.1.7 will then imply that F is 
differentiable at xo with derivative F'(xo) = f(xo) as desired. 

Now fix y E I. There are three cases. If y = xo, then F(y)­
F(xo)- f(xo)(y- xo) = 0 and so the claim is obvious. If y > xo, 
then 

F(y)- F(xo) = f f. 
J[xo,y] 



340 11. The Riemann integral 

Since xo, y E I, and I is a connected set, then [xo, y] is a subset 
of I, and thus we have 

f(xo)- c ~ f(x) ~ f(xo) + c for all x E [xo, y], 

and thus 

(f(xo) - c)(y- xo) ~ r f ~ (f(xo) + c)(y- xo) 
J[xo,y] 

and so in particular 

IF(y)- F(xo)- f(xo)(y- xo)l ~elY- xol 

as desired. The casey< x0 is similar and is left to the reader. 0 

Example 11.9.2. Recall in Exercise 9.8.5 that we constructed 
a monotone function f : R ---... R which was discontinuous at 
every rational and continuous everywhere else. By Proposition 
11.6.1, this monotone function is Riemann integrable on [0, 1]. If 
we define F: [0, 1]---... R by F(x) := f[o,x] /,then F is a continuous 
function which is differentiable at every irrational number. On the 
other hand, F is non-differentiable at every rational number; see 
Exercise 11.9 .1. 

Informally, the first fundamental theorem of calculus asserts 
that 

( r f)'(x) = f(x) 
J[a,x] 

given a certain number of assumptions on f. Roughly, this means 
that the derivative of an integral recovers the original function. 
Now we show the reverse, that the integral of a derivative recovers 
the original function. 

Definition 11.9.3 (Antiderivatives). Let I be a bounded interval, 
and let f : I ---... R be a function. We say that a function F : I ---... R 
is an antiderivative of f if F is differentiable on I and F' ( x) = f ( x) 
for all x E I. 
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Theorem 11.9.4 (Second Fundamental Theorem of Calculus). 
Let a < b be real numbers, and let f : [a, b] ---? R be a Riemann 
integrable function. If F : [a, b] ~ R is an antiderivative of f, 
then 

f f = F(b)- F(a). 
J[a,b] 

proof We will use Riemann sums. The idea is to show that 

U(f,P) ~ F(b)- F(a) ~ L(f,P) 

for every partition P of [a, b]. The left inequality asserts that 
F(b) - F(a) is a lower bound for {U(f, P) : P is a partition of 
[a,b]}, while the right inequality asserts that F(b)- F(a) is an 
upper bound for {L(f,P): Pis a partition of [a,b]}. But by 
Proposition 11.3.12, this means that 

I f ~ F(b)- F(a) ~I f, 
[a,b] -[a,b] 

but since f is assumed to be Riemann integrable, both the upper 
and lower Riemann integral equal /ra,b] f. The claim follows. 

We have to show the bound U(f, P) ~ F(b)- F(a) ~ L(f, P). 
We shall just show the first inequality U(f, P) ~ F(b)- F(a); the 
other inequality is similar. 

Let P be a partition of [a, b]. From Lemma 11.8.4 we have 

F(b)- F(a) = L F[J] = L F[J], 
JEP JeP:J-:10 

while from definition we have 

U(f,P) = L supf(x)IJI. 
xEJ 

JEP:J;60 

Thus it will suffice to show that 

F[J] ~sup f(x)IJI 
xEJ 
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for all J E P (other than the empty set). 
When J is a point then the claim is clear, since both sides are 

zero. Now suppose that J = [c,d],(c,d],[c,d), or (c,d) for so:rne 
c < d. Then the left-hand side is F[J] = F(d) - F(c). By the 
mean-value theorem, this is equal to (d- c)F'(e) for some e E J. 
But since F'(e) = f(e), we thus have 

F[J] = (d- c)f(e) = f(e)IJI ~sup f(x)IJI 
xEJ 

as desired. 0 

Of course, as you are all aware, one can use the second funda­
mental theorem of calculus to compute integrals relatively easily 
provided that you can find an anti-derivative of the integrand 
f. Note that the first fundamental theorem of calculus ensures 
that every continuous Riemann integrable function has an anti­
derivative. For discontinuous functions, the situation is more 
complicated, and is a graduate-level real analysis topic which will 
not be discussed here. Also, not every function with an anti­
derivative is Riemann integrable; as an example, consider the func­
tion F: [-1, 1]--+ R defined by F(x) := x2 sin(ljx3) when x =f. 0, 
and F(O) := 0. Then F is differentiable everywhere (why?), so F' 
has an antiderivative, but F' is unbounded (why?), and so is not 
Riemann integrable. 

We now pause to mention the infamous "+C" ambiguity in 
anti-derivatives: 

Lemma 11.9.5. Let I be a bounded interval, and let f : I--+ R be 
a function. Let F : I --+ R and G : I --+ R be two antiderivatives 
off. Then there exists a real number C such that F(x) = G(x)+C 
for all x E I. 

Proof. See Exercise 11.9.2. D 

Exercise 11.9.1. Let f : [0, 1] --+ R be the function in Exercise 9.8.5. 
Show that for every rational number q E Q n [0, 1], the function f is 
not differentiable at q. (Hint: use the mean-value theorem, Corollary 
10.2.9.) 
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Exercise 11.9.2. Prove Lemma 11.9.5. (Hint: apply the mean-value 
theorem, Corollary 10.2.9, to the function F- G. One can also prove 
this lemma using the second Fundamental theorem of calculus (how?), 
but one has to be careful since we do not assume f to be Riemann 
integrable.) 

Exercise 11.9.3. Let a < b be real numbers, and let f : [a, b] -t R be 
a monotone increasing function. Let F : [a, b] -t R be the function 
F(x) := f[a,x] f. Let Xo be an element of [a,b]. Show that F is differen­
tiable at xo if and only iff is continuous at xo. (Hint: one direction is 
taken care of by one of the fundamental theorems of calculus. For the 
other, consider left and right limits off and argue by contradiction.) 

11.10 Consequences of the fundamental theorems 

We can now give a number of useful consequences of the funda­
mental theorems of calculus (beyond the obvious application, that 
one can now compute any integral for which an anti-derivative is 
known). The first application is the familiar integration by parts 
formula. 

Proposition 11.10.1 (Integration by parts formula). Let I = 
[a, b], and let F : [a, b] ~ R and G : [a, b] ~ R be differentiable 
functions on [a, b] such that F' and G' are Riemann integrable on 
I. Then we have 

{ FG' = F(b)G(b)- F(a)G(a)- { F'G. 
J[a,b] J[a,b] 

Proof. See Exercise 11.10.1. D 

Next, we show that under certain circumstances, one can write 
a Riemann-Stieltjes integral as a Riemann integral. We begin with 
piecewise constant functions. 

Theorem 11.10.2. Let a : [a, b] ~ R be a monotone increasing 
function, and suppose that a is also differentiable on [a, b], with 
a' being Riemann integrable. Let f : [a, b] ~ R be a piecewise 
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constant function on [a, b]. Then fa' is Riemann integrable on 
[a,b], and 

{ fda= { fa'. 
J[a,b] J[a,b] 

Proof. Since f is piecewise constant, it is Riemann integrable, and 
since a' is also Riemann integrable, then fa' is Riemann integrable 
by Theorem 11.4.5. 

Suppose that f is piecewise constant with respect to some 
partition P of [a, b]; without loss of generality we may assume 
that P does not contain the empty set. Then we have 

f f da = p.c. f f da = L CJa[J] 
J[a,b] }[P] JEP 

where CJ is the constant value off on J. On the other hand, from 
Theorem 11.2.16(h) (generalized to partitions of arbitrary length 
- why is this generalization true?) we have 

1 fa' = L 1 fa' = L 1 CJa' = L CJ 1 a'. 
[a,b] JEP J JEP J JEP J 

But by the second fundamental theorem of calculus (Theorem 
11.9.4), JJ a'= a[J], and the claim follows. 0 

Corollary 11.10.3. Let a : [a, b] ~ R be a monotone increasing 
function, and suppose that a is also differentiable on [a, b], with a' 
being Riemann integrable. Let f : [a, b] ~ R be a function which 
is Riemann-Stieltjes integrable with respect to a on [a, b]. Then 
fa' is Riemann integrable on [a, b], and 

{ fda= { fa'. 
J[a,~ J[a,~ 

Proof. Note that since f and a' are bounded, then fa' must 
also be bounded. Also, since a is monotone increasing and dif­
ferentable, a' is non-negative. 
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Let c > 0. Then, we can find a piecewise constant function 
1 majorizing f on [a, b], and a piecewise constant function j_ mi­
norizing f on [a, b], such that 

f f da - c ~ f f da ~ { 1 da ~ { f da +c. 
J[a,b] J[a,b]- J[a,b] J[a,b] 

Applying Theorem 11.10.2, we obtain 

f f da- c ~ f fa/ ~ f 1 a' ~ { f da +c. 
J[a,b] J[a,b]- J[a,b] J[a,b] 

Since a' is non-negative and f minorizes f, then fa' minorizes 
fa'. Thus J[a,b]j_a' ~ i_[a,b/a' (;.hy?). Thus -

f f da - c < j fa'. 
J[a,b] -[a,b] 

Similarly we have 

J fa' < { f da + c. 
[a,~ J~.~ 

Since these statements are true for any c > 0, we must have 

-
{ fda< j fa'< j fa'< { fda 

J[a,b] -[a,b] [a,b] J[a,b] 

and the claim follows. D 

Remark 11.10.4. Informally, Corollary 11.10.3 asserts that fda 
is essentially equivalent to f:dx, when a is differentiable. How­
ever, the advantage of the Riemann-Stieltjes integral is that it still 
makes sense even when a is not differentiable. 

We now build up to the familiar change of variables formula. 
We first need a preliminary lemma. 
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Lemma 11.10.5 (Change of variables formula I). Let [a, b] be 
a closed interval, and let ¢ : [a, b] ~ [¢(a), ¢(b)] be a continuous 
monotone increasing function. Let f: [¢(a), ¢(b)] ~ R be a piece­
wise constant function on [¢(a), ¢(b)]. Then f o ¢: [a, b] ~ R is 
also piecewise constant on [a, b], and 

{ fo ¢ d¢ = { f. 
J[a,b] J[¢(a),¢(b)] 

Proof. We give a sketch of the proof, leaving the gaps to be filled 
in Exercise 11.10.2. Let P be a partition of [¢(a), ¢(b)] such that 
f is piecewise constant with respect toP; we may assume that p 
does not contain the empty set. For each J E P, let CJ be the 
constant value off on J, thus 

1 f= I:cJIJI. 
[¢(a),¢(b)] JeP 

For each interval J, let ¢-1(J) be the set ¢-1(J) := {x E [a,b]: 
¢(x) E J}. Then ¢-1(J) is connected (why?), and is thus an 
interval. Furthermore, CJ is the constant value off o ¢on ¢-1(J) 
(why?). Thus, if we define Q := {¢-1(J) : J E P} (ignoring 
the fact that Q has been used to represent the rational numbers), 
then Q partitions [a, b] (why?), and f o ¢ is piecewise constant 
with respect to Q (why?). Thus 

{ fo¢d¢= { fo¢d¢= LCJ¢[¢-1(J)]. 
J[a,b] J[Q] JeP 

But ¢[¢-1(J)] = IJI (why?), and the claim follows. D 

Proposition 11.10.6 (Change of variables formula II). Let [a, b] 
be a closed interval, and let¢: [a, b] ~ [¢(a), ¢(b)] be a continuous 
monotone increasing function. Let f : [¢(a), ¢(b)] ~ R be a Rie­
mann integrable function on [¢(a), ¢(b)]. Then f o ¢: [a, b] ~ R 
is Riemann-Stieltjes integrable with respect to¢ on [a, b], and 

{ fo¢d¢= { f. 
J[a,b] J[¢(a),¢(b)] 
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proof. This will be obtained from Lemma 11.10.5 in a similar 
Jllanner to how Corollary 11.10.3 was obtained from Theorem 
11.10.2. First observe that since f is Riemann integrable, it is 
bounded, and then f o <P must also be bounded (why?). 

Let c > 0. Then, we can find a piecewise constant function 7 
JD.ajorizing f on [¢(a), ¢(b)], and a piecewise constant function f 
JD.inorizing f on [¢(a), ¢(b)], such that -

l¢(a),¢(b)] J - c $ l¢(a),¢(b)] j_ $ lr¢(a),¢(b)] 1 $ lr¢(a),¢(b)] J +c. 

Applying Lemma 11.10.5, we obtain 

[ f- c ::; [ f 0 <P d¢ ::; [ 7 0 <P d¢ ::; { f +c. 
}[rfi(a),¢(b)] J[a,b]- J[a,b] J[¢(a),¢(b)] 

Since j_ o <P is piecewise constant and minorizes f o ¢, we have 

{ fo</Jd</J$1 fo</Jd</J 
J[a,b] - -[a,b] 

while similarly we have 

r 1 0 <P d¢ ~ J 1 0 <P d¢. 
J[a,b] [a,b] 

Thus 

[ f-c::;f fo¢d¢::;f fo</Jd</J$ { f+c. 
}[¢(a),¢(b)] -[a,b] [a,b] J[¢(a),¢(b)] 

Since c > 0 was arbitrary, this implies that 

{ J:=;j fo</Jd</J$1 fo</Jd</J$ { f 
J[¢(a),¢(b)] -[a,b] [a,b] J[¢(a),¢(b)] 

and the claim follows. D 

Combining this formula with Corollary 11.10.3, one immedi­
ately obtains the following familiar formula: 



348 11. The Riemann integral 

Proposition 11.10. 7 (Change of variables formula III). Let [a, b] 
be a closed interval, and let if>: [a, b] ~ [if>( a), rp(b)] be a differen­
tiable monotone increasing function such that if>' is Riemann inte­
grable. Let f : [if>( a), rp(b)] ~ R be a Riemann integrable function 
on [if>( a), rp(b)]. Then(! o ¢>)¢>': [a, b] ~ R is Riemann integrable 
on [a, b], and 

r u 0 r~> )if>' = r r 
J[a,b] J[tfJ(a),tfJ(b)] 

Exercise 11.10.1. Prove Proposition 11.10.1. (Hint: first use Corollary 
11.5.2 and Theorem 11.4.5 to show that FG' and F'G are Riemann 
integrable. Then use the product rule (Theorem 10.1.13(d)).) 

Exercise 11.10.2. Fill in the gaps marked (why?) in the proof of Lemma 
11.10.5. 

Exercise 11.10.3. Let a < b be real numbers, and let f : [a, b] ~ R 
be a Riemann integrable function. Let g: [-b, -a] --+ R be defined by 
g(x) := f( -x). Show that g is also Riemann integrable, and f[-b,-a) g = 

Ira,bJ f. 
Exercise 11.10.4. What is the analogue of Proposition 11.10.7 when 
¢ is monotone decreasing instead of monotone increasing? (When <P 

is neither monotone increasing or monotone decreasing, the situation 
becomes significantly more complicated.) 



Chapter A 

Appendix: the basics of mathematical logic 

The purpose of this appendix is to give a quick introduction to 
mathematical logic, which is the language one uses to conduct 
rigourous mathematical proofs. Knowing how mathematical logic 
works is also very helpful for understanding the mathematical way 
of thinking, which once mastered allows you to approach math­
ematical concepts and problems in a clear and confident way -
including many of the proof-type questions in this text. 

Writing logically is a very useful skill. It is somewhat related 
to, but not the same as, writing clearly, or efficiently, or convinc­
ingly, or informatively; ideally one would want to do all of these 
at once, but sometimes one has to make compromises, though 
with practice you'll be able to achieve more of your writing ob­
jectives concurrently. Thus a logical argument may sometimes 
look unwieldy, excessively complicated, or otherwise appear un­
convincing. The big advantage of writing logically, however, is 
that one can be absolutely sure that your conclusion will be cor­
rect, as long as all your hypotheses were correct and your steps 
were logical; using other styles of writing one can be reasonably 
convinced that something is true, but there is a difference between 
being convinced and being sure. 

Being logical is not the only desirable trait in writing, and in 
fact sometimes it gets in the way; mathematicians for instance 
often resort to short informal arguments which are not logically 
rigourous when they want to convince other mathematicians of a 
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statement without going through all of the long details, and the 
same is true of course for non-mathematicians as well. So saying 
that a statement or argument is "not logical" is not necessarily 
a bad thing; there are often many situations when one has good 
reasons not to be emphatic about being logical. However, one 
should be aware of the distinction between logical reasoning and 
more informal means of argument, and not try to pass off an 
illogical argument as being logically rigourous. In particular, if an 
exercise is asking for a proof, then it is expecting you to be logical 
in your answer. 

Logic is a skill that needs to be learnt like any other, but this 
skill is also innate to all of you - indeed, you probably use the 
laws of logic unconsciously in your everyday speech and in your 
own internal (non-mathematical) reasoning. However, it does take 
a bit of training and practice to recognize this innate skill and 
to apply it to abstract situations such as those encountered in 
mathematical proofs. Because logic is innate, the laws of logic 
that you learn should make sense - if you find yourself having 
to memorize one of the principles or laws of logic here, without 
feeling a mental "click" or comprehending why that law should 
work, then you will probably not be able to use that law of logic 
correctly and effectively in practice. So, please don't study this 
appendix the way you might cram before a final - that is going to 
be useless. Instead, put away your highlighter pen, and read 
and understand this appendix rather than merely studying it! 

A.l Mathematical statements 

Any mathematical argument proceeds in a sequence of mathe­
matical statements. These are precise statements concerning vari­
ous mathematical objects (numbers, vectors, functions, etc.) and 
relations between them (addition, equality, differentiation, etc.). 
These objects can either be constants or variables; more on this 
later. Statements1 are either true or false. 

1More precisely, statements with no free variables are either true or false. 
We shall discuss free variables later on in this appendix. 
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:E}xaiDPle A.l.l. 2 + 2 = 4 is a true statement; 2 + 2 = 5 is a 
false statement. 

Not every combination of mathematical symbols is a state­
IJlent. For instance, 

= 2++4=- = 2 

is not a statement; we sometimes call it ill-formed or ill-defined. 
The statements in the previous example are well-formed or well­
defined. Thus well-formed statements can be either true or f::llse; 
ill-formed statements are considered to be neither true nor false 
(in fact, they are usually not considered statements at all). A 
more subtle example of an ill-formed statement is 

0/0 = 1; 

division by zero is undefined, and so the above statement is ill­
formed. A logical argument should not contain any ill-formed 
statements, thus for instance if an argument uses a statement such 
as xfy = z, it needs to first ensure that y is not equal to zero. 
Many purported proofs of "0=1" or other false statements rely on 
overlooking this "statements must be well-formed" criterion. 

Many of you have probably written ill-formed or otherwise in­
accurate statements in your mathematical work, while intending 
to mean some other, well-formed and accurate statement. To a 
certain extent this is permissible - it is similar to misspelling some 
words in a sentence, or using a slightly inaccurate or ungrammati­
cal word in place of a correct one ("She ran good" instead of "She 
ran well" ) . In many cases, the reader (or grader) can detect this 
mis-step and correct for it. However, it looks unprofessional and 
suggests that you may not J,mow what you are talking about. And 
if indeed you actually do not know what you are talking about, 
and are applying mathematical or logical rules blindly, then writ­
ing an ill-formed statement can quickly confuse you into writing 
more and more nonsense- usually of the sort which receives no 
credit in grading. So it is important, especially when just learning 
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a subject, to take care in keeping statements well-formed and Pre-. 
cise. Once you have more skill and confidence, of course you can 
afford once again to speak loosely, because you will know what 
you are doing and won't be in as much danger of veering off into 
nonsense. 

One of the basic axioms of mathematical logic is that every 
well-formed statement is either true or false, but not both. (Though 
if there are free variables, the truth of a statement may depend on 
the values of these variables. More on this later.) Furthermore 

' the truth or falsity of a statement is intrinsic to the statement 
' and does not depend on the opinion of the person viewing the 

statement (as long as all the definitions and notations are agreed 
upon, of course). So to prove that a statement is true, it suffices to 
show that it is not false, while to show that a statement is false, it 
suffices to show that it is not true; this is the principle underlying 
the powerful technique of proof by contmdiction, which we discuss 
later. This axiom is viable as long as one is working with precise 
concepts, for which the truth or falsity can be determined (at least 
in principle) in an objective and consistent manner. However, if 
one is working in very non-mathematical situations, then this ax­
iom becomes much more dubious, and so it can be a mistake to 
apply mathematical logic to non-mathematical situations. (For 
instance, a statement such as "this rock weighs 52 pounds" is rea­
sonably precise and objective, and so it is fairly safe to use math­
ematical reasoning to manipulate it, whereas vague statements 
such as "this rock is heavy" , "this piece of music is beautiful" or 
"God exists" are much more problematic. So while mathematical 
logic is a very useful and powerful tool, it still does have some lim­
itations of applicability.) One can still attempt to apply logic (or 
principles similar to logic) in these cases (for instance, by creating 
a mathematical model of a real-life phenomenon), but this is now 
science or philosophy, not mathematics, and we will not discuss it 
further here. 

Remark A.1.2. There are other models of logic which attempt 
to deal with statements that are not definitely true or definitely 
false, such as modal logic, intuitionist logic, or fuzzy logic, but 
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,these are well beyond the scope of this text. 

Being true is different from being useful or efficient. For in­
stance, the statement 

2=2 

is true but unlikely to be very useful. The statement 

4~4 

is also true, but not very efficient (the statement 4 = 4 is more 
precise). It may also be that a statement may be false yet still be 
useful, for instance 

1f = 22/7 

is false, but is still useful as a first approximation. In mathe­
matical reasoning, we only concern ourselves with truth rather 
than usefulness or efficiency; the reason is that truth is objective 
(everybody can agree on it) and we can deduce true statements 
from precise rules, whereas usefulness and efficiency are to some 
extent matters of opinion, and do not follow precise rules. Also, 
even if some of the individual steps in an argument may not seem 
very useful or efficient, it is still possible (indeed, quite common) 
for the final conclusion to be quite non-trivial (i.e., not obviously 
true) and useful. 

Statements are different from expressions. Statements are true 
or false; expressions are a sequence of mathematical symbols which 
produces some mathematical object (a number, matrix, function, 
set, etc.) as its value. For instance 

is an expression, not a statement; it produces a number as its 
value. Meanwhile, 

is a statement, not an expression. Thus it does not make any 
sense to ask whether 2 + 3 * 5 is true or false. As with statements, 
expressions can be well-defined or ill-defined; 2+3/0, for instance, 
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is ill-defined. More subtle examples of ill-defined expressions arise 
when, for instance, attempting to add a. vector to a matrix, or 
evaluating a function outside of its domain, e.g., sin-1(2). 

One can make statements out of expressions by using relations 
such as =, <, :;:::::, E, c, etc. or by using properties (such as "is 
prime", "is continuous", "is invertible", etc.) For instance, "30+5 
is prime" is a statement, as is "30 + 5 ~ 42 - 7". Note that 
mathematical statements are allowed to contain English words. 

One can make a compound statement from more primitive 
statements by using logical connectives such as and, or, not, if­
then, if-and-only-if, and so forth. We give some examples below 

' in decreasing order of intuitiveness. 
Conjunction. If X is a statement and Y is a statement, the 

statement "X and Y" is true if X and Y are both true, and is false 
otherwise. For instance, "2 + 2 = 4 and 3 + 3 = 6" is true, while 
"2+2 = 4 and 3+3 = 5" is not. Another example: "2+2 = 4 and 
2 + 2 = 4" is true, even if it is a bit redundant; logic is concerned 
with truth, not efficiency. 

Due to the expressiveness of the English language, one can 
reword the statement "X andY" in many ways, e.g., "X and also 
Y", or "Both X and Y are true", etc. Interestingly, the statement 
"X, but Y" is logically the same statement as "X and Y", but 
they have different connotations (both statements affirm that X 
and Y are both true, but the first version suggests that X and 
Yare in contrast to each other, while the second version suggests 
that X and Y support each other). Again, logic is about truth, 
not about connotations or suggestions. 

Disjunction. If X is a statement and Y is a statement, the 
statement "X or Y" is true if either X or Y is true, or both. For 
instance, "2 + 2 = 4 or 3 + 3 = 5" is true, but "2 + 2 = 5 or 
3 + 3 = 5" is not. Also "2 + 2 = 4 or 3 + 3 = 6" is true (even 
if it is a bit inefficient; it would be a stronger statement to say 
"2 + 2 = 4 and 3 + 3 = 6"). Thus by default, the word "or" in 
mathematical logic defaults to inclusive or. The reason we do this 
is that with inclusive or, to verify "X or Y", it suffices to verify 
that just one of X or Y is true; we don't need to show that the 
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other one is false. So we know, for instance, that "2 + 2 = 4 or 
2353 + 5931 = 7284" is true without having to look at the second 
equation. As in the previous discussion, the statement "2 + 2 = 4 
or 2 + 2 = 4" is true, even if it is highly inefficient. 

If one really does want to use exclusive or, use a statement 
such as "Either X or Y is true, but not both" or "Exactly one of 
X or Y is true". Exclusive or does come up in mathematics, but 
nowhere near as often as inclusive or. 

Negation. The statement "X is not true" or "X is false", or 
"It is not the case that X", is called the negation of X, and is 
true if and only if X is false, and is false if and only if X is true. 
For instance, the statement "It is not the case that 2 + 2 = 5" is a 
true statement. Of course we could abbreviate this statement to 
"2+2 # 5". 

Negations convert "and" into "or". For instance, the negation 
of "Jane Doe has black hair and Jane Doe has blue eyes" is "Jane 
Doe doesn't have black hair or doesn't have blue eyes", not "Jane 
Doe doesn't have black hair and doesn't have blue eyes" (can you 
see why?). Similarly, if xis an integer, the negation of "xis even 
and non-negative" is "x is odd or negative", not "x is odd and 
negative". (Note how it is important here that or is inclusive 
rather than exclusive.) Or the negation of "x ;:::: 2 and x ::::; 6" 
(i.e., "2 ~ x ~ 6") is "x < 2 or x > 6", not "x < 2 and x > 6" or 
"2 <X> 6.". 

Similarly, negations convert "or" into "and". The negation of 
"John Doe has brown hair or black hair" is "John Doe does not 
have brown hair and does not have black hair;' , or equivalently 
"John Doe has neither brown nor black hair". If xis a real number, 
the negation of "x ;:::: 1 or x ~ -1" is "x < 1 and x > -1" (i.e., 
-1 <X< 1). 

It is quite possible that a negation of a statement will produce 
a statement which could not possibly be true. For instance, if x is 
an integer, the negation of "xis either even or odd" is "xis neither 
even nor odd", which cannot possibly be true. Remember, though, 
that even if a statement is false, it is still a statement, and it is 
definitely possible to arrive at a true statement using an argument 
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which at times involves false statements. (Proofs by contradiction 
' for instance, fall into this category. Another example is proof by 

dividing into cases. If one divides into three mutually exclusive 
cases, Case 1, Case 2, and Case 3, then at any given time two of 
the cases will be false and only one will be true, however this does 
not necessarily mean that the proof as a whole is incorrect or that 
the conclusion is false.) 

Negations are sometimes unintuitive to work with, especially 
if there are multiple negations; a statement such as "It is not the 
case that either x is not odd, or x is not larger than or equal to 
3, but not both" is not particularly pleasant to use. Fortunately, 
one rarely has to work with more than one or two negations at a 
time, since often negations cancel each other. For instance, the 
negation of "X is not true" is just "X is true", or more succinctly 
just "X". Of course one should be careful when negating more 
complicated expressions because of the switching of "and" and 
"or" , and similar issues. 

If and only if (iff). If X is a statement, andY is a statement, 
we say that "X is true if and only if Y is true", whenever X is 
true, Y has to be also, and whenever Y is true, X has to be also 
(i.e., X andY are "equally true"). Other ways of saying the same 
thing are "X and Y are logically equivalent statements", or "X 
is true iff Y is true", or "X ~ Y". Thus for instance, if x is a 
real number, then the statement "x = 3 if and only if 2x = 6" 
is true: this means that whenever x = 3 is true, then 2x = 6 is 
true, and whenever 2x -= 6 is true, then x = 3 is true. On the 
other hand, the statement "x = 3 if and only if x2 = 9" is false; 
while it is true that whenever x = 3 is true, x 2 = 9 is also true, 
it is not the case that whenever x 2 = 9 is true, that x = 3 is also 
automatically true (think of what happens when x = -3). 

Statements that are equally true, are also equally false: if X 
and Y are logically equivalent, and X is false, then Y has to be 
false also (because if Y were true, then X would also have to be 
true). Conversely, any two statements which are equally false will 
also be logically equivalent. Thus for instance 2 + 2 = 5 if and 
only if 4 + 4 = 10. 
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Sometimes it is of interest to show that more than two state­
ments are logically equivalent; for instance, one might want to 
assert that three statements X, Y, and Z are all logically equiv­
alent. This means whenever one of the statements is true, then 
all of the statements are true; and it also means that if one of the 
statements is false, then all of the statements are false. This may 
seem like a lot of logical implications to prove, but in practice, 
once one demonstrates enough logical implications between X, Y, 
and Z, one can often conclude all the others and conclude that 
they are alllogicallly equivalent. See for instance Exercises A.l.5, 
A.l.6. 

Exercise A.l.l. What is the negation of the statement "either X is true, 
or Y is true, but not both"? 

Exercise A.1.2. What is the negation of the statement "X is true if and 
only if Y is true"? (There may be multiple ways to phrase this negation). 

Exercise A.1.3. Suppose that you have shown that whenever X is true, 
then Y is true, and whenever X is false, then Y is false. Have you now 
demonstrated that X andY are logically equivalent? Explain. 

Exercise A.1.4. Suppose that you have shown that whenever X is true, 
then Y is true, and whenever Y is false, then X is false. Have you now 
demonstrated that X is true if and only if Y is true? Explain. 

Exercise A.1.5. Suppose you know that X is true if and only if Y is 
true, and you know that Y is true if and only if Z is true. Is this enough 
to show that X, Y, Z are all logically equivalent? Explain. 

Exercise A.1.6. Suppose you know that whenever X is true, then Y is 
true; that whenever Y is true, then Z is true; and whenever Z is true, 
then X is true. Is this enough to show that X, Y, Z are all logically 
equivalent? Explain. 

A.2 Implication 

Now we come to the least intuitive of the commonly used logical 
connectives - implication. If X is a statement, and Y is a state­
ment, then "if X, then Y" is the implication from X toY; it is 
also written "wlien X is true, Y is true", or "X implies Y" or 
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"Y is true when X is" or "X is true only if Y is true" (this last 
one takes a bit of mental effort to see). What this statement "if 
X, then Y" means depends on whether X is true or false. If X is 
true, then "if X, then Y" is true when Y is true, and false when y 
is false. If however X is false, then "if X, then Y" is always true 

' regardless of whether Y is true or false! To put it another way, 
when X is true, the statement "if X, then Y" implies that y is 
true. But when X is false, the statement "if X, then Y" offers no 
information about whether Y is true or not; the statement is true 

' but vacuous (i.e., does not convey any new information beyond 
the fact that the hypothesis is false). 

Examples A.2.1. If xis an integer, then the ~tatement "If x = 2, 
then x2 = 4" is true, regardless of whether x is actually equal to 
2 or not (though this statement is only likely to be useful when 
x is equal to 2). This statement does not assert that x is equal 
to 2, and does not assert that x2 is equal to 4, but it does assert 
that when and if x is equal to 2, then x2 is equal to 4. If xis not 
equal to 2, the statement is still true but offers no conclusion on 
x or x2 . 

Some special cases of the above implication: the implication 
"If 2 = 2, then 22 = 4" is true (true implies true). The implication 
"If 3 = 2, then 32 = 4" is true (false implies false). The implication 
"If -2 = 2, then ( -2)2 = 4" is true (false implies true). The latter 
two implications are considered vacuous - they do not offer any 
new information since their hypothesis is false. (Nevertheless, it 
is still possible to employ vacuous implications to good effect in 
a proof - a vacously true statement is still true. We shall see one 
such example shortly.) 

As we see, the falsity of the hypothesis does not destroy the 
truth of an implication, in fact it is just the opposite! (When 
a hypothesis is false, the implication is automatically true.) The 
only way to disprove an implication is to show that the hypothesis 
is true while the conclusion is false. Thus "If 2 + 2 = 4, then 
4 + 4 = 2" is a false implication. (True does not imply false.) 

One can also think of the statement "if X, then Y" as "Y is 
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at least as true as X" - if X is true, then Y also has to be true, 
but if X is false, Y could be as false as X, but it could also be 
true. This should be compared with "X if and only if Y", which 
asserts that X and Y are equally true. 

Vacuously true implications are often used in ordinary speech, 
sometimes without knowing that the implication is vacuous. A 
somewhat frivolous example is "If wishes were wings, then pigs 
would fly". (The statement "hell freezes over" is also a popular 
choice for a false hypothesis.) A more serious one is "If John had 
left work at 5pm, then he would be here by now." This kind 
of statement is often used in a situation in which the conclusion 
and hypothesis are both false; but the implication is still true 
regardless. This statement, by the way, can be used to illustrate 
the technique of proof by contradiction: if you believe that "If 
John had left work at 5pm, then he would be here by now", and 
you also know that "John is not here by now", then you can 
conclude that "John did not leave work at 5pm", because John 
leaving work at 5pm would lead to a contradiction. Note how a 
vacuous implication can be used to derive a useful truth. 

To summarize, implications are sometimes vacuous, but this 
is not actually a problem in logic, since these implications are 
still true, and vacuous implications can still be useful in logical 
arguments. In particular, one can safely use statements like "If 
X, then Y" without necessarily having to worry about whether the 
hypothesis X is actually true or not (i.e., whether the implication 
is vacuous or not). 

Implications can also be true even when there is no causal 
link between the hypothesis and conclusion. The statement "If 
1 + 1 = 2, then Washington D.C. is the capital of the United 
States" is true (true implies true), although rather odd; the state­
ment "If 2 + 2 = 3, then New York is the capital of the United 
States" is similarly true (false implies false). Of course, such a 
statement may be unstable (the capital of the United States may 
one ~ay change, while 1 + 1 will always remain equal to 2) but 
it is true, at least for the moment. While it is possible to use 
acausal implications in a logical argument, it is not recommended 
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as it can cause ~nneeded confusion. (Thus, for instance, while 
it is true that a false statement can be used to imply any other 
statement, true or false, doing so arbitrarily would probably not 
be helpful to the reader.) 

To prove an implication "If X, then Y" , the usual way to do 
this is to first assume that X is true, and use this (together with 
whatever other facts and hypotheses you have) to deduce Y. This 
is still a valid procedure even if X later turns out to be false· 

' the implication does not guarantee anything about the truth of 
X, and only guarantees the truth of Y conditionally on X first 
being true. For instance, the following is a valid proof of a true 
proposition, even though both hypothesis and conclusion of the 
proposition are false: 

Proposition A.2.2. If 2 + 2 = 5, then 4 = 10- 4. 

Proof. Assume 2 + 2 = 5. Multiplying both sides by 2, we obtain 
4 + 4 = 10. Subtracting 4 from both sides, we obtain 4 = 10 - 4 
as desired. 0 

On the other hand, a common error is to prove an implication 
by first assuming the conclusion and then arriving at the hypoth­
esis. For instance, the following Proposition is correct, but the 
proof is not: 

Proposition A.2.3. Suppose that 2x + 3 = 7. Show that x = 2. 

Proof. (Incorrect) x = 2; so 2x = 4; so 2x + 3 = 7. 0 

When doing proofs, it is important that you are able to dis­
tinguish the hypothesis from the conclusion; there is a danger of 
getting hopelessly confused if this distinction is not clear. 

Here is a short proof which uses implications which are possibly 
vacuous. 

Theorem A.2.4. Suppose that n is an integer. Then n(n + 1) is 
an even integer. 



A.2. Implication 361 

Proof. Since n is an integer, n is even or odd. If n is even, then 
n(n+ 1) is also e~en, since any multiple of an even number is even. 
If n is odd, then n + 1 is even, which again implies that n(n + 1) 
is even. Thus in either case n( n + 1) is even, and we are done. D 

Note that this proof relied on two implications: "if n is even, 
then n( n+ 1) is even" , and "if n is odd, then n( n+ 1) is even". Since 
n cannot be both odd and even, at least one of these implications 
has a false hypothesis and is therefore vacuous. Nevertheless, both 
these implications are true, and one needs both of them in order 
to prove the theorem, because we don't know in advance whether 
n is even or odd. And even if we did, it might not be worth the 
trouble to check it. For instance, as a special case of this theorem 
we immediately know 

Corollary A.2.5. Let n = (253 + 142) * 123 - ( 423 + 198)342 + 
538- 213. Then n(n + 1) is an even integer. 

In this particular case, one can work out exactly which parity 
n is -. even or odd - and then use only one of the two implications 
in the above Theorem, discarding the vacuous one. This may 
seem like it is more efficient, but it is a false economy, because 
one then has to determine what parity n is, and this requires a 
bit of effort - more effort than it would take if we had just left 
both implications, including the vacuous one, in the argument. 
So, somewhat paradoxically, the inclusion of vacuous, false, or 
otherwise "useless" statements in an argument can actually saV£1 
you effort in the long run! (I'm not suggesting, of course, that you 
ought to pack your proofs with lots of time-wasting and irrelevant 
statements; all I'm saying here is that you need not be unduly 
concerned that some hypotheses in your argument might not be 
correct, as long as your argument is still structured to give the 
correct conclusion regardless of whether those hypotheses were 
true or false.) 

The statement "If X, then Y" is not the same as "If Y, then 
X"; for instance, while "If x = 2, then x2 = 4" is true, "If x2 = 4, 
then x = 2" can be false if xis equal to -2. These two statements 
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are called converses of each other; thus the converse of a true 
implication is not necessarily another true implication. We use 
the statement "X if and only if Y" to denote the statement that 
"If X, then Y; and if Y, then X". Thus for instance, we can say 
that x = 2 if and only if 2x = 4, because if x = 2 then 2x = 4 

' while if 2x = 4 then x = 2. One way of thinking about an if-and-
only-if statement is to view "X if and only if Y" as saying that 
X is just as true as Y; if one is true then so is the other, and if 
one is false, then so is the other. For instance, the statement "If 
3 = 2, then 6 = 4" is true, since both hypothesis and conclusion 
are false. (Under this view, "If X, then Y" can be viewed as a 
statement that Y is at least as true as X.) Thus one could say 
"X andY are equally true" instead of "X if and only if Y". 

Similarly, the statement "If X is true, then Y is true" is not 
the same as "If X is false, then Y is false". Saying that "if x = 2, 
then x 2 = 4" does not imply that "if x of= 2, then x2 of= 4", and 
indeed we have x = -2 as a counterexample in this case. If-then 
statements are not the same as if-and-only-if statements. (If we 
knew that "X is true if and only if Y is true", then we would also 
know that "X is false if and only if Y is false".) The statement "If 
X is false, then Y is false" is sometimes called the inverse of "If 
X is true, then Y is true"; thus the inverse of a true implication 
is not necessarily a true implication. 

If you know that "If X is true, then Y is true", then it is also 
true that "If Y is false, then X is false" (because if Y is false, then 
X can't be true, since that would imply Y is true, a contradiction). 
For instance, if we knew that "If x = 2, then x2 = 4", then we 
also know that "If x2 of= 4, then x of= 2". Or if we knew "If John 
had left work at 5pm, he would be here by now", then we also 
know "If John isn't here now, then he could not have left work 
at 5pm". The statement "If Y is false, then X is false" is known 
as the contra positive of "If X, then Y" and both statements are 
equally true. 

In particular, if you know that X implies something which is 
known to be false, then X itself must be false. This is the idea 
behind proof by contradiction or reductio ad absurdum: to show 
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something must be false, assume first that it is true, and show 
that this implies something which you know to be false (e.g., that 
a statement is simultaneously true and not true). For instance: 

Proposition A.2.6. Suppose that x be a positive number such 
that sin(x) = 1. Then x ~ n/2. 

Proof. Suppose for sake of contraqiction that x < 1r /2. Since x 
is positive, we thus have 0 < x < n/2. Since sin(x) is increasing 
for 0 < x < n/2, and sin(O) .= 0 and sin(n/2) = 1, we thus 
have 0 < sin( x) < 1. But this contradicts the hypothesis that 
sin(x) = 1. Hence x ~ n/2. D 

Note that one feature of proof by contradiction is that at some 
point in the proof you assume a hypothesis (in this case, that 
x < 1r /2) which later turns out to be false. Note however that this 
does not alter the fact that the argument remains valid, and that 
the conclusion is true; this is because the ultimate conclusion does 
not rely on that hypothesis being true (indeed, it relies instead on 
it being false!). 

Proof by contradiction is particularly useful for showing "neg­
ative" statements - that X is false, that a is not equal to b, that 
kind of thing. But the line between positive and negative state­
ments is sort of blurry. (Is the statement x ~ 2 a positive or 
negative statement? What about its negation, that x < 2?) So 
this is not a hard and fast rule. 

Logicians often use special symbols to denote logical connec­
tives; for instance "X implies Y" can be written "X =} Y", 
"X is not true" can be written ""' X", "!X", or "•X", "X and 
Y" can be written "X 1\ Y" or "X &Y", and so forth. But for 
general-purpose mathematics, these symbols are not often used; 
English words are often more readable, and don't take up much 
more space. Also, using these symbols tends to blur the line be­
tween expressions and statements; it's not as easy to understand 
"((x = 3) 1\ (y = 5)) =} (x + y = 8)" as "If x = 3 andy= 5, 
then x + y = 8". So in general I would not recommend using 
these symbols (except possibly for =} , which is a very intuitive 
symbol). · 
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A.3 The structure of proofs 

To prove a statement, one often starts by assuming the hypothesis 
and working one's way toward a conclusion; this is the direct ap­
proach to proving a statement. Such a proof might look something 
like the following: 

Proposition A.3.1. A implies B. 

Proof. Assume A is true. Since A is true, C is true. Since C is 
true, D is true. Since D is true, B is true, as desired. 0 

An example of such a direct approach is 

Proposition A.3.2. If x = 1r, then si:n(x/2) + 1 = 2. 

Proof. Let x = 1r. Since x = 1r, 
x/2 = 1r /2, we have sin(x/2) = 1. 
sin(x/2) + 1 = 2. 

we have x/2 = 1rj2. Since 
Since sin(x/2) = 1, we have 

0 

In the above proof, we started at the hypothesis and moved 
steadily from there toward a conclusion. It is also possible to work 
backwards from the conclusion and seeing what it would take to 
imply it. For instance, a typical proof of Proposition A.3.1 of this 
sort might look like the following: 

Proof. To show B, it would suffice to show D. Since C implies D, 
we just need to show C. But C follows from A. D 

As an example of this, we give another proof of Proposition 
A.3.2: 

Proof. To show sin(x/2) + 1 = 2, it would suffice to show that 
sin(x/2) = 1. Since x/2 = 1r /2 would imply sin(x/2) = 1, we just 
need to show that x/2 = 1rj2. But this follows since x = 1r. D 

Logically speaking, the above two proofs of Proposition A.3.2 
are the same, just arranged differently. Note how this proof style 
is different from the (incorrect) approach of starting with the con­
clusion and seeing what it would imply (as in Proposition A.2.3); 
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instead, we start with the conclusion and see what would imply 
it. 

Another example of a proof written in this backwards style is 
the following: 

Proposition A.3.3. Let 0 < r < 1 be a real number. Then the 
series L:~=l nrn is convergent. 

Proof. To show this series is convergent, it suffices by the ratio 
test to show that the ratio 

rn+l ( n + 1) n + 1 
I rnn I =r-n-

converges to something less than 1 as n ~ oo. Since r is already 
less than 1, it will be enough to show that ntl converges to 1. 
But since ntl = 1 + ~' it suffices to show that ~ ~ 0. But this is 
clear since n ~ oo. D 

One could also do any combination of moving forwards from 
the hypothesis and backwards from the conclusion. For instance, 
the following would be a valid proof of Proposition A.3.1: 

Proof. To show B, it would suffice to show D. So now let us show 
D. Since we have A by hypothesis, we have C. Since C implies 
D, we thus have D as desired. D 

Again, from a logical point of view this is exactly the same 
proof as before. Thus there are many ways to write the same 
proof down; how you do so is up to you, but certain ways of writing 
proofs are more readable and natural than others, and different 
arrangements tend to emphasize different parts of the argument. 
(Of course, when you are just starting out doing mathematical 
proofs, you're generally happy to get some proof of a result, and 
don't care so much about getting the "best" arrangement of that 
proof; but the point here is that a proof can take many different 
forms.) 

The above proofs were pretty simple because there was just 
one hypothesis and one conclusion. When there are multiple hy­
potheses and conclusions, and the proof splits into cases, then 
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proofs can get more complicated. For instance a proof might look 
as tortuous as this: 

Proposition A.3.4. Suppose that A and B are true. Then c 
and D are true. 

Proof. Since A is true, E is true. From E and B we know that F 
is true. Also, in light of A, to show D it suffices to show G. There 
are now two cases: Hand I. If His true, then from F and H we 
obtain C, and from A and H we obtain G. If instead I is true, 
then from I we have G, and from I and G we obtain C. Thus in 
both cases we obtain both C and G, and hence C and D. 0 

Incidentally, the above proof could be rearranged into a much 
tidier manner, but you at least get the idea of how complicated a 
proof could become. To show an implication there are several ways 
to proceed: you can work forward from the hypothesis; you can 
work backward from the conclusion; or you can divide into cases 
in the hope to split the problem into several easier sub-problems. 
Another is to argue by contradiction, for instance you can have 
an argument of the form 

Proposition A.3.5. Suppose that A is true. Then B is false. 

Proof. Suppose for sake of contradiction that B is true. This 
would imply that C is true. But since A is true, this implies that 
D is true; which contradicts C. Thus B must be false. 0 

As you can see, there are several things to try when attempting 
a proof. With experience, it will become clearer which approaches 
are likely to work easily, which ones will probably work but require 
much effort, and which ones are probably going to fail. In many 
cases there is really only one obvious way to proceed. Of course, 
there may definitely be multiple ways to approach a problem, so 
if you see more than one way to begin a problem, you can just 
try whichever one looks the easiest, but be prepared to switch to 
another approach if it begins to look hopeless. 
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Also, it helps when doing a proof to keep track of which state­
Illents are known (either as hypotheses, or deduced from the hy­
potheses, or coming from other theorems and results), and which 
statements are desired (either the conclusion, or something which 
would imply the conclusion, or some intermediate claim or lemma 
which will be useful in eventually obtaining the conclusion). Mix­
ing the two up is almost always a bad idea, and can lead to one 
getting hopelessly lost in a proof. 

A.4 Variables and quantifiers 

One can get quite far in logic just by starting with primitive state­
ments (such as "2+2 = 4" or "John has·black hair"), then forming 
compound statements using logical connectives, and then using 
various laws of logic to pass from one's hypotheses to one's con­
clusions; this is known as propositional logic or Boolean logic. (It 
is possible to list a dozen or so such laws of propositional logic, 
which are sufficient to do everything one wants to do, but I have 
deliberately chosen not to do so here, because you might then be 
tempted to memorize that list, and that is not how one should 
learn how to do logic, unless one happens to be a computer or 
some other non-thinking device. However, if you really are cu­
rious as to what the formal laws of logic are, look up "laws of 
propositional logic" or something similar in the library or on the 
internet.) 

However, to do mathematics, this level of logic is insufficient, 
because it does not incorporate the fundamental concept of vari­
ables - those familiar symbols such as x or n which denote various 
quantities which are unknown, or set to some value, or assumed 
to obey some property. Indeed we have already sneaked in some 
of these variables in order to illustrate some of the concepts in 
propositional logic (mainly because it gets boring after a while to 
talk endlessly about variable-free statements such as 2 + 2 = 4 or 
"Jane has black hair"). Mathematical logic is thus the same as 
propositional logic but with the additional ingredient of variables 
added. 
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A variable is a symbol, such as nor x, which denotes a cer­
tain type of mathematical object- an integer, a vector, a matrix 
that kind of thing. In almost all circumstances, the type of objec~ 
that the variable represents should be declared, otherwise it will 
be difficult to make well-formed statements using it. (There are 
very few true statements that one can make about variables with­
out knowing the type of variables involved. For instance, given a 
variable x of any type whatsoever, it is true that x = x, and if we 
also know that x = y, then we can conclude that y = x. But one 
cannot say, for instance, that x + y = y + x, until we know what 
type of objects x andy are and whether they support the oper­
ation of addition; for instance, the above statement is ill-formed 
if x is a matrix and y is a vector. Thus if one actually wants to 
do some useful mathematics, then every variable should have an 
explicit type.) 

One can form expressions and statemen~s involving variables, 
for instance, if x is a real variable (i.e., a variable which is a real 
number), x + 3 is an expression, and x + 3 = 5 is a statement. 
But now the truth of a statement may depend on the value of the 
variables involved; for instance the statement x + 3 = 5 is true if 
x is equal to 2, but is false if x is not equal to 2. Thus the truth 
of a statement involving a variable may depend on the context of 
the statement - in this case, it depends on what x is supposed to 
be. (This is a modification of the rule for propositional logic, in 
which all statements have a definite truth value.) 

Sometimes we do not set a variable to be anything (other than 
specifying its type). Thus, we could consider the statement x+3 = 
5 where x is an unspecified real number. In such a case we call 
this variable a free variable; thus we are considering x + 3 = 5 with 
x a free variable. Statements with free variables might not have 
a definite truth value, as they depend on an unspecified variable. 
For instance, we have already remarked that x + 3 = 5 does not 
have a definite truth value if x is a free real variable, though of 
course for each given value of x the statement is either true or 
false. On the other hand, the statement (x + 1)2 = x2 + 2x + 1 is 
true for every real number x, and so we can regard this as a true 
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statement even when x is a free variable. 
At other times, we set a variable to equal a fixed value, by using 

a statement such as "Let x = 2" or "Set x equal to 2". In this 
case, the variable is known as a bound variable, and statements 
involving only bound variables and no free variables do have a 
definite truth value. For instance, if we set x = 342, then the 
statement "x + 135 = 4 77" now has a definite truth value, .whereas 
if x is a free real variable then "x + 135 = 477" could be either true 
or false, depending on what x is. Thus, as we have said before, 
the truth of a statement such as "x + 135 = 477" depends on the 
context - whether x is free or bound, and if it is bound, what it is 
bound to. 

One can also turn a free variable into a bound variable by 
using the quantifiers "for all" or "for some". For instance, the 
statement 

is a statement with one free variable x, and need not have a definite 
truth value, but the statement 

(x + 1)2 = x2 + 2x + 1 for all real numbers x 

is a statement with one bound variable x, and now has a definite 
truth value (in this case, the statement is true). Similarly, the 
statement 

x+3=5 

has one free variable, and does not have a definite truth value, but 
the statement 

x + 3 = 5 for some real number x 

is true, since it is true for x = 2. On the other hand, the statement 

x + 3 = 5 for all real numbers x 

is false, because there are some (indeed, there are many) real 
numbers x for which x + 3 is not equal to 5. 
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Universal quantifiers. Let P(x) be some statement depend~ 
ing on a free variable x. The statement "P(x) is true for all x of 
type T" means that given any x of type T, the statement P(x) is 
true regardless of what the exact value of x is. In other words, the 
statement is the same as saying "if x is of type T, then P( x) is 
true". Thus the usual way to prove such a statement is to let x be 
a free variable of type T (by saying something like "Let x be any 
object of type T"), and then proving P(x) for that object. The 
statement becomes false if one can produce even a single coun~ 
terexample, i.e., an element x which lies in T but for which P(x) 
is false. For instance, the statement "x2 is greater than x for all 
positive x" can be shown to be false by producing a single ex~ 
ample, such as x = 1 or x = 1/2, where x2 is not greater than 
X. 

On the other hand, producing a single example where P(x) is 
true will not show that P(x) is true for all x. For instance, just 
because the equation x + 3 = 5 has a solution when x = 2 does 
not imply that x + 3 = 5 for all real numbers x; it only shows 
that x + 3 = 5 is true for some real number x. (This is the source 
of the often-quoted, though somewhat inaccurate, slogan "One 
cannot prove a statement just by giving an example". The more 
precise statement is that one cannot prove a "for all" statement by 
examples, though one can certainly prove "for some" statements 
this way, and one can also disprove "for all" statements by a single 
counterexample.) 

It occasionally happens that there are in fact no variables x of 
type T. In that case the statement "P(x) is true for all x of type 
T' is vacuously true - it is true but has no content, similar to a 
vacuous implication. For instance, the statement 

6 < 2x < 4 for all 3 < x < 2 

is true, and easily proven, but is vacuous. (Such a vacuously true 
statement can still be useful in an argument, though this doesn't 
happen very often.) 

One can use phrases such as "For every" or "For each" instead 
of "For all", e.g., one can rephrase "(x + 1)2 = x2 + 2x + 1 for 
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all real numbers x" as "For each real number x, (x + 1)2 is equal 
to x2 + 2x + 1" . For the purposes of logic these rephrasings are 
equivalent. The symbol V can be used instead of "For all", thus 
{or instance "Vx E X : P(x) is true" or "P(x) is true Vx E X" is 
synonymous with "P(x) is true for all x EX". 

Existential quantifiers The statement "P( x) is true for some 
x of type T" means that there exists at least one x of type T for 
which P(x) is true, although it may be that there is more than 
one such x. (One would use a quantifier such as "for exactly 
one x" instead of "for some x" if one wanted both existence and 
uniqueness of such an x.) To prove such a statement it suffices to 
provide a single example of such an x. For instance, to show that 

x 2 + 2x - 8 = 0 for some real number x 

all one needs to do is find a single real number x for which x 2 + 
2x-8 = 0, for instance x = 2 will do. (One could also use x = -4, 
but one doesn't need to use both.) Note that one has the free­
dom to select x to be anything one wants when proving a for-some 
statement; this is in contrast to proving a for-all statement, where 
one has to let x be arbitrary. (One can compare the two state­
ments by thinking of two games between you and an opponent. 
In the first game, the opponent gets to pick what x is, and then 
you have to prove P(x); if you can always win this game, then 
you have proven that P(x) is true for all x. In the second game, 
you get to choose what xis, and then you prove P(x); if you can 
win this game, you have proven that P(x) is true for some x.) 

Usually, saying something is true for all x is much stronger 
than just saying it is true for some x. There is one exception 
though, if the condition on x is impossible to satisfy, then the 
for-all statement is vacuously true, but the for-some statement is 
false. For instance 

6 < 2x < 4 for all 3 < x < 2 

is true, but 
6 < 2x < 4 for some 3 < x < 2 
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is false. 
One can use phrases such as "For at least one" or "There 

exists ... such that" instead of "For some". For instance, one can 
rephrase "x2 + 2x-8 = 0 for some real number x" as "There exists 
a real number x such that x2 + 2x - 8 = 0". The symbol 3 can 
be used instead of "There exists ... such that", thus for instance 
"3x E X : P(x) is true" is synonymous with "P(x) is true for 
some x EX". 

A.5 Nested quantifiers 

One can nest two or more quantifiers together. For instance, con-
sider the statement · 

For every positive number x, there exists a 

positive number y such that y2 = x. 

What does this statement mean? It means that for each posi­
tive number x, the statement 

There exists a positive number y such that y 2 = x 

is true. In other words, one can find a positive square root of x 
for each positive number x. So the statement is saying that every 
positive number has a positive square root. 

To continue the gaming metaphor, suppose you play a game 
where your opponent first picks a positive number x, and then you 
pick a positive number y. You win the game if y2 = x. If you can 
always win the game regardless of what your opponent does, then 
you have proven that for every positive x, there exists a positive 
y such that y2 = x. 

Negating a universal statement produces an existential state­
ment. The negation of "All swans are white" is not "All swans 
are not white", but rather "There is some swan which is not 
white". Similarly, the negation of "For every 0 < x < 1r /2, we 
have cos(x) ~ 0" is "For some 0 < x < 7r/2, we have cos(x) < 0, 
not "For every 0 < x < 7r/2, we have cos(x) < 0". 
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Negating an existential statement produces a universal state­
ment. The negation of "There exists a black swan" is not "There 
exists a swan which is non-black", but rather "All swans are 
non-black". Similarly, the negation of "There exists a real num­
ber x such that x2 + x + 1 = 0" is "For every real number x, 
x2 + x + 1 f= 0", not "There exists a real number x such that 
x2 + x + 1 f= 0". (The situation here is very similar to how "and" 
and "or" behave with respect to negations.) 

If you know that a statement P(x) is true for all x, then you 
can set x to be anything you want, and P(x) will be true for that 
value of x; this is what "for all" means. Thus for instance if you 
know that 

(x + 1)2 = x2 + 2x + 1 for all real numbers x, 

then you can conclude for instance that 

(7r + 1)2 = 1!"2 + 21r + 1, 

or for instance that 

(cos(y) + 1)2 = cos(y)2 + 2 cos(y) + 1 for all real numbers y 

(because if y is real, then cos(y) is also real), and so forth. Thus 
universal statements are very versatile in their applicability - you 
can get P( x) to hold for whatever x you wish. Existential state­
ments, by contrast, are more limited; if you know that 

x2 + 2x - 8 = 0 for some real number x 

then you cannot simply substitute in any real number you wish, 
e.g., 1r, and conclude that 1r2 + 21r- 8 = 0. However, you can of 
course still conclude that x2 + 2x- 8 = 0 for some real number x, 
it's just that you don't get to pick which x it is. (To continue the 
gaming metaphor, you can make P(x) hold, but your opponent 
gets to pick x for you, you don't get to choose for yourself.) 

Remark A.5.1. In the history of logic, quantifiers were formally 
studied thousands of years before Boolean logic was. Indeed, Aris­
totlean logic, developed of course by Aristotle (384BC - 322BC) 



374 A. Appendix: the basics of mathematical logic 

and his school, deals with objects, their properties, and quantifiers 
such as "for all" and "for some". A typical line of reasoning (or 
syllogism) in Aristotlean logic goes like this: "All men are mortal. 
Socrates is a man. Hence, Socrates is mortal". Aristotlean logic is 
a subset of mathematical logic, but is not as expressive because it 
lacks the concept of logical connectives such as and, or, or if-then 
(although "not" is allowed), and also lacks the concept of a binary 
relation such as = or <. · 

Swapping the order of two quantifiers may or may not make 
a difference to the truth of a statement. Swapping two "for all" 
quantifiers is harmless: a statement such as 

For all real numbers a, and for all real numbers b, 

we have (a+ b) 2 = a2 + 2ab + b2 

is logically equivalent to the statement 

For all real numbers b, and for all real numbers a, 

we have (a + b )2 = a2 + 2ab + b2 

(why? The reason has nothing to do with whether the identity 
(a+b) 2 = a2 +2ab+b2 is actually true or not). Similarly, swapping 
two "there exists" quantifiers has no effect: 

There exists a real number a, and there exists a real number b, 

such that a2 + b2 = 0 

is logically equivalent to 

There exists a real number b, and there exists a real number a, 

such that a2 + b2 = 0. 

However, swapping a "for all" with a "there exists" makes a 
lot of difference. Consider the following two statements: 

(a) For every integer n, there exists an integer m which is larger 
than n. 
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(b) There exists an integer m such that m is larger than n for 
every integer n. 

Statement (a) is obviously true: if your opponent hands you 
an integer n, you can always find an integer m which is larger 
than n. But Statement (b) is false: if you choose m first, then 
you cannot ensure that m is larger than every integer n; your 
opponent can easily pick a number n bigger than m to defeat 
that. The crucial difference between the two statements is that in 
Statement (a), the integer n was chosen first, and integer m could 
then be chosen in a manner depending on n; but in Statement (b), 
one was forced to choose m first, without knowing in advance what 
n is going to be. In short, the reason why the order of quantifiers 
is important is that the inner variables may possibly depend on 
the outer variables, but not vice versa. 

Exercise A.5.1. What does each of the following statements mean, and 
which of them are true? Can you find gaming metaphors for each of 
these statements? 

(a) For every positive number x, and every positive number y, we 
have y2 = x. 

(b) There exists a positive number x such that for every positive num­
ber y, we have y 2 = x. 

(c) There exists a positive number x, and there exists a positive num­
ber y, such that y2 = x. 

(d) For every positive number y, there exists a positive number x such 
that y2 = x. 

(e) There exists a positive number y such that for every positive num­
ber x, we have y 2 = x. 

A.6 Some examples of proofs and quantifiers 

Here we give some simple examples of proofs involving the "for all" 
and "there exists" quantifiers. The results themselves are simple, 
but you should pay attention instead to how the quantifiers are 
arranged and how the proofs are structured. 
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Proposition A.6.1. For every c > 0 there exists a 8 > 0 such 
that 28 <c. 

Proof. Let c > 0 be arbitrary. We have to show that there exists a 
8 > 0 such that 28 <c. We only need to pick one such 8; choosing 
8 := c/3 will work, since one then has 28 = 2c/3 <c. 0 

Notice how c has to be arbitrary, because we are proving some­
thing for every c; on the other hand, 8 can be chosen as you wish, 
because you only need to show that there exists a 8 which does 
what you want. Note also that 8 can depend on c, because the 8-
quantifier is nested inside the €-quantifier. If the quantifiers were 
reversed, i.e., if you were asked to prove "There exists a 8 > 0 
such that for every c > 0, 28 < c", then you would have to select 
8 first before being given c. In this case it is impossible to prove 
the statement, because it is false (why?). 

Normally, when one has to prove a "There exists ... " statement, 
e.g., "Prove that there exists an c > 0 such that X is true", one 
proceeds by selecting c carefully, and then showing that X is true 
for that c. However, this sometimes requires a lot of foresight, 
and it is legitimate to defer the selection of c until later in the 
argument, when it becomes clearer what properties c needs to 
satisfy. The only thing to watch out for is to make sure that c 
does not depend on any of the bound variables nested inside X. 
For instance: 

Proposition A.6.2. There exists an c > 0 such that sin(x) > x/2 
for all 0 < x < c. 

Proof. We pick c > 0 to be chosen later, and let 0 < x < c. 
Since the derivative of sin(x) is cos(x), we see from the mean­
value theorem we have 

sin(x) = sin(x)- sin(O) = cos(y) 
x x-0 

for some 0 ~ y ~ x. Thus in order to ensure that sin(x) > xj2, 
it would suffice to ensure that cos(y) > 1/2. To do this, it would 
suffice to ensure that 0 ~ y < 1r /3 (since the cosine function 
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takes the value of 1 at 0, takes the value of 1/2 at 1r /3, and is 
decreasing in between). Since 0 ::; y ::; x and 0 < x < c:, we 
see that 0 ::; y < c:. Thus if we pick c: := 1r /3, then we have 
0 ::; y < 1r /3 as desired, and so we can ensure that sin( x) > x /2 
for all 0 < x < c:. D 

Note that the value of c: that we picked at the end did not 
depend on the nested variables x and y. This makes the above 
argument legitimate. Indeed, we can rearrange it so that we don't 
have to postpone anything: 

Proof. We choose c: := 1r /3; clearly c: > 0. Now we have to show 
that for all 0 < x < tr/3, we have sin(x) > xj2. So let 0 < x < tr/3 
be arbitrary. By the mean-value theorem we have 

sin(x) = sin(x)- sin(O) = cos(y) 
x x-0 

for some 0 ::; y ::; x. Since 0 ::; y ::; x and 0 < x < 1r /3, we 
have 0::; y < tr/3. Thus cos(y) > cos(tr/3) = 1/2, since cos is 
decreasing on the interval [O,tr/3]. Thus we have sin(x)/x > 1/2 
and hence sin(x) > xj2 as desired. D 

If we had chosen c: to depend on x and y then the argument 
would not be valid, because c: is the outer variable and x, y are 
nested inside it. 

A.7 Equality 

As mentioned before, one can create statements by starting with 
expressions (such as 2 x 3 + 5) and then asking whether an ex­
pression obeys a certain property, or whether two expressions are 
related by some sort of relation(=, ::;, E, etc.). There are many 
relations, but the most important one is equality, and it is worth 
spending a little time reviewing this concept. 

Equality is a relation linking two objects x, y of the same type 
T (e.g., two integers, or two matrices, or two vectors, etc.). Given 
two such objects x andy, the statement x = y may or may not 
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be true; it depends on the value of x and y and also on how 
equality is defined for the class of objects under consideration. 
For instance, as real numbers, the two numbers 0.9999 ... and 
1 are equal. In modular arithmetic with modulus 10 (in which 
numbers are considered equal to their remainders modulo 10), the 
numbers 12 and 2 are considered equal, 12 = 2, even though this 
is not the case in ordinary arithmetic. 

How equality is defined depends on the class T of objects under 
consideration, and to some extent is just a matter of definition. 
However, for the purposes of logic we require that equality obeys 
the following four axioms of equality: 

• (Reflexive axiom). Given any object x, we have x = x. 

• (Symmetry axiom). Given any two objects x and y of the 
same type, if x = y, then y = x. 

• (Transitive axiom). Given any three objects x, y, z of the 
same type, if x = y and y = z, then x = z. 

• (Substitution axiom). Given any two objects x and y of the 
same type; if x = y, then f(x) = f(y) for all functions or 
operations f. Similarly, for any property P(x) depending on 
x, if x = y, then P(x) and P(y) are equivalent statements. 

The first three axioms are clear, together, they assert that 
equality is an equivalence relation. To illustrate the substitution 
we give some examples. 

Example A. 7.1. Let x and y be real numbers. If x = y, then 
2x = 2y, and sin( x) = sin(y). Furthermore, x + z = y + z for any 
real number z. 

Example A.7.2. Let nand m be integers. lfn is odd and n = m, 
then m must also be odd. If we have a third integer k, and we 
know that n > k and n = m, then we also know that m > k. 

Example A. 7.3. Let x, y, z be real numbers. If we know that 
x = sin(y) and y = z2 , then (by the substitution axiom) we have 
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sin(y) = sin(z2), and hence (by the transitive axiom) we have 
x = sin(z2). 

Thus, from the point of view of logic, we can define equality 
on a class of objects however we please, so long as it obeys the 
reflexive, symmetry, and transitive axioms, and is consistent with 
all other operations on the class of objects under discussion in 
the sense that the substitution axiom was true for all of those 
operations. For instance, if we decided one day to modify the 
integers so that 12 was now equal to 2, one could only do so if one 
also made sure that 2 was now equal to 12, and that /(2) = /(12) 
for any operation f on these modified integers. For instance, we 
now need 2 + 5 to be equal to 12 + 5. (In this case, pursuing this 
line of reasoning will eventually lead to modular arithmetic with 
modulus 10.) 

Exercise A.7.1. Suppose you have four real numbers a, b, c, d and you 
know that a= band c =d. Use the above four axioms to deduce that 
a+d = b+c. 



Chapter B 

Appendix: the decimal system 

In Chapters 2, 4, 5 we painstakingly constructed the basic number 
systems of mathematics: the natural numbers, integers, rationals, 
and reals. Natural numbers were simply postulated to exist, and 
to obey five axioms; the integers then came via (formal) differences 
of the natural numbers; the rationals then came from (formal) 
quotients of the integers, and the reals then came from (formal) 
limits of the rationals. 

This is all very well and good, but it does seem somewhat 
alien to one's prior experience with these numbers. In particular, 
very little use was made of the decimal system, in which the digits 
0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are combined to represent these numbers. 
Indeed, except for a number of examples which were not essential 
to the main construction, the only decimals we really used were 
the numbers 0, 1, and 2, and the latter two can be rewritten as 
0++ and (0++ )++. 

The basic reason for this is that the decimal system itself is 
not essential to mathematics. It is very convenient for computa­
tions, and we have grown accustomed to it thanks to a thousand 
years of use, but in the history of mathematics it is actually a 
comparatively recent invention. Numbers have been around for 
about ten thousand years (starting from scratch marks on cave 
walls), but the modern Hindu-Arabic base 10 system for repre­
senting numbers only dates from the 11th century or so. Some 
early civilizations relied on other bases; for instance the Babyloni-
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ans used a base 60 system (which still survives in our time system 
of hours, minutes, and seconds, and in our angular system of de­
grees, minutes, and seconds). And the ancient Greeks were able 
to do quite advanced mathematics, despite the fact that the most 
advanced number representation system available to them was the 
Roman numeral system I, I I, I I I, IV, ... , which was horrendous 
for computations of even two-digit numbers. And of course mod­
ern computing relies on binary, hexadecimal, or byte-based (base 
256) arithmetic instead of decimal, while analog computers such 
as the slide rule do not really rely on any number representation 
system at all. In fact, now that computers can do the menial 
work of number-crunching, there is very little use for decimals in 
modern mathematics. Indeed, we rarely use any numbers other 
than one-digit numbers or one-digit fractions (as well as e, 1r, i) 
explicitly in modem mathematical work; any more complicated 
numbers usually get called more generic names such as n. 

Nevertheless, the subject of decimals does deserve an appen­
dix, because it is so integral to the way we use mathematics in our 
everyday life, and also because we do want to use such notation as 
3.14159 ... to refer to real numbers, as opposed to the far clunkier 
"LIMn-+ooan, where a1 = 3.1, a2 := 3.14, a3 := 3.141, ... ". 

We begin by reviewing how the decimal system works for the 
positive integers, and then turn to the reals. Note that in this 
discussion we shall freely use all the results from earlier chapters. 

B.l The decimal representation of natural numbers 

In this section we will avoid the usual convention of abbreviating 
a x b as ab, since this would mean that decimals such as 34 might 
be misconstrued as 3 x 4. 

Definition B.l.l (Digits). A digit is any one of the ten symbols 
0, 1, 2, 3, ... , 9. We equate these digits with natural numbers by 
the formulae 0 = 0, 1 = 0++, 2 = 1++, et<::. all the way up to 
9 = 8++. We also define the number ten by the formula ten := 
9++. (we· cannot use the decimal notation 10 to denote ten yet, 
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because that presumes knowledge of the decimal system and would 
be circular.) 

Definition B.1.2 (Positive integer decimals). A positive integer 
decimal is any string anan-1 ... ao of digits, where n ~ 0 is a 
natural number, and the first digit an is non-zero. Thus, for in­
stance, 3049 is a positive integer decimal, but 0493 or 0 is not. 
We equate each positive integer decimal with a positive integer by 
the formula 

n 

anan-1 ... ao = L ai X teni. 
i=O 

Remark B.1.3. Note in particular that this definition implies 
that 

10 = 0 x ten° + 1 x ten 1 = ten 

and thus we can write ten as the more familiar 10. Also, a single 
digit integer decimal is exactly equal to that digit itself, e.g., the 
decimal 3 by the above definition is equal to 

3 = 3 x ten° = 3 

so there is no possibility of confusion between a single digit, and 
a single digit decimal. (This is a subtle distinction, and not one 
which is worth losing much sleep over.) 

Now we show that this decimal system indeed represents the 
positive integers. It is clear from the definition that every posi­
tive decimal representation gives a positive integer, since the sum 
consists entirely of natural numbers, and the last term antenn is 
non-zero by definition. 

Theorem B.1.4 (Uniqueness and existence of decimal represen­
tations). Every positive integer m is equal to exactly one positive 
integer decimal. 

Proof. We shall use the principle of strong induction (Proposition 
2.2.14, with mo := 1). For any positive integer m, let P(m) denote 
the statement "m is equal to exactly one positive integer decimal". 
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Suppose we already know P(m') is true for all positive integers 
m' < m; we now wish to prove P(m). 

First observe that either m ~ten or mE {1, 2, 3, 4, 5, 6, 7, 8, 9}. 
(This is easily proved by ordinary induction.) Suppose first that 
m E {1, 2, 3, 4, 5, 6, 7, 8, 9}. Then m clearly is equal to a positive 
integer decimal consisting of a single digit, and there is only one 
single-digit decimal which is equal to m. Furthermore, no decimal 
consisting of two or more digits can equal m, since if an ... ao is 
such a decimal (with n > 0) we have 

n 

an ... ao = I.:ai X teni ~an X teni ~ten> m. 
i=O 

Now suppose that m ~ ten. Then by the Euclidean algorithm 
(Proposition 2.3.9) we can write 

m = s x ten+r 

where s is a positive integer, and r E {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. 
Since 

s < s x ten~ s x ten+r=m 

we can use the strong induction hypothesis and conclude that P(s) 
is true. In particular, s has a decimal representation 

p 

s = bp·· .bo = Lbi x teni. 
i=O 

Multiplying by ten, we see that 

p 

s x ten= Lbi x teni+1 = bp ... boO, 
i=O 

and then adding r we see that 

p 

m = s x ten+ r = L bi x teni+1 + r = bp ... bor. 
i=O 
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Thus m has at least one decimal representation. Now we need 
to show that m has at most one decimal representation. SuP­
pose for sake of contradiction that we have at least two different 
representations 

' ' m = an ... ao = an' ... a0. 

First observe by the previous computation· that 

an ... ao =(an ... a!) x ten+ ao 

and 
' ' ( ' ') t + ' an' ... a0 = an' ... a 1 x en a0 

and so after some algebra we obtain 

The right-hand side is a multiple of ten, while the left-hand side 
lies strictly between -ten and +ten. Thus both sides must be 
equal to 0. This means that ao = a~ and an ... a1 = a~, ... a~. 
But by previous arguments, we know that an ... a1 is a smaller 
integer than an ... ao. Thus by the strong induction hypothesis, 
the number an ... ao has only one decimal representation, which 
means that n' must equal n and a~ must equal ai for all i = 
1, ... , n. Thus the decimals an ... ao and a~, ... a~ are in ·fact 
identical, contradicting the assumption that they were different. 

0 

We refer to the decimal given by the above theorem as the 
decimal representation of m. Once one has this decimal represen­
tation, one can then derive the usual laws of long addition and 
long multiplication to connect the decimal representation of x + y 
or x x y to that of x or y (Exercise B.1.1). 

·. Once one has decimal representation of positive integers, one 
can of course represent negative integers decimally as well by using 
the - sign. Finally, we let 0 be a decimal as well. This gives 
decimal representations of all integers. Every rational is then the 
ratio of two decimals, e.g., 335/113 or -1/2 (with the denominator 
required to be non-zero, of course), though there may be more 
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than one way to represent a rational as such a ratio, e.g., 6/4 = 
3/2. 

Since ten= 10, we will now use 10 instead of ten throughout, 
as is customary. 

Exercise B.l.l. The purpose of this exercise is to demonstrate that the 
procedure of long addition taught to you in elementary school is actually 
valid. Let A = an ... ao and B = bm ... bo be positive integer decimals. 
Let us adopt the convention that ai = 0 when i > n, and bi = 0 
when i > m; for instance, if A = 372, then ao = 2, a 1 = 7, a2 = 3, 
a a = 0, a4 = 0, and so forth. Define the numbers eo, c1 , ... and co, c1 , ... 

recursively by the following long addition algorithm. 

• We set co := 0. 

• Now suppose that ci has already been defined for some i ~ 0. If 
ai + bi + ci < 10, we set Ci := ai + bi + ci and ci+1 := 0; otherwise, 
if ai + bi + ci ~ 10, we set Ci := ai + bi + ci - 10 and ci+l = 1. 
(The number ci+l is the "carry digit" from the ith decimal place 
to the (i + 1)th decimal place.) 

Prove that the numbers co, c1 , . . • are all digits, and that there ex­
ists an l such that Cz =I 0 and Ci = 0 for all i > l. Then show that 
ezcz-1 ... C1Co is the decimal representation of A+ B. 

Note that one could in fact use this algorithm to define addition, 
but it would look extremely complicated, and to prove even such simple 
facts as (a+ b) + c = a + ( b + c) would be rather difficult. This is one of 
the reasons why we have avoided the decimal system in our construction 
of the natural numbers. The procedure for long multiplication (or long 
subtraction, or long division) is even worse to lay out rigourously; we 
will not do so here. 

B.2 The decimal representation of real numbers 

We need a new symbol: the decimal point ".". 

Definition B.2.1 (Real decimals). A real decimal is any sequence 
of digits, and a decimal point, arranged as 
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which is finite to the left of the decimal point (so n is a natural 
number), but infinite to the right of the decimal point, where± 
is either + or -, and an ... ao is a natural number decimal (i.e., 
either a positive integer decimal, or 0). This decimal is equated 
to the real number 

n 

±an ... ao.a-la-2 ... = ±1 x 2::: ai x lOi. · 
i=-oo 

The series is always convergent (Exercise B.2.1). Next, we 
show that every real number has at least one decimal representa­
tion: 

Theorem B.2.2 (Existence of decimal representations). Every 
real number x has at least one decimal representation 

Proof. We first note that x = 0 has the decimal representation 
0.000. . . . Also, once we find a decimal representation for x, we 
automatically get a decimal representation for -x by changing 
the sign ±. Thus it suffices to prove the theorem for positive real 
numbers x (by Proposition 5.4.4). 

Let n ;:::: 0 be any natural number. From the Archimedean 
property (Corollary 5.4.13) we know that there is a natural num­
ber M such that M X w-n >X. Since 0 X w-n ~ x, we thus see 
that there must exist a natural number Sn such that Sn X 10-n ~ X 

and sn-H- x w-n > x. (If no such natural number existed, one 
could use induction to conclude that s x w-n ~ x for all natural 
numbers s, contradicting the Archimedean property.) 

Now consider the sequence so, s1, s2, .... Since we have 

Sn X 10-n ~ X < ( Sn + 1) X 10-n 

we thus have 

(10 X Sn) X 10-(n++) ~X< (10 X Sn + 10) X 10-(n++). 
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On the other hand, we have 

Sn+l X 10-(n+l) :::; X< (sn+l + 1) X 10-(n+l) 

and hence we have 

10 X Sn < Sn+l + 1 and Sn+l < 10 X Sn + 10. 

From these two inequalities we see that we have 

10 X Sn :::; Sn+l :::; 10 X Sn + 9 

and hence we can find a digit an+l such that 

Sn+ 1 = 10 X Sn + an 

and hence 

Sn+l X 10-(n+l) = Sn X 10-n + an+l X 10-(n+l). 

From this identity and induction, we can obtain the formula 
n 

Sn X w-n =so+ L lli X w-i. 

i=O 
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Now we take limits of both sides (using Exercise B.2.1) to obtain 

00 

lim Sn X 10-n = SO + """ lli X 10-i. 
n-+oo L.....J 

i=O 

On the other hand, we have 

X - w-n :::; Sn X w-n :::; X 

for all n, so by the squeeze test (Corollary 6.4.14) we have 

lim Sn X 10-n =X. 
n-+oo 

Thus we have 
00 

x =so+ Llli x w-i. 

i=O 

Since so already has a positive integer decimal representation by 
Theorem B.l.4, we thus see that x has a decimal representation 
as desired. 0 
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There is however one slight flaw with the decimal system: it is 
possible for one real number to have two decimal representations. 

Proposition B.2.3 (Failure of uniqueness of decimal represen­
tations). The number 1 has two different decimal representations: 
1.000 ... and 0.999 .... 

Proof. The representation 1 = 1.000 ... is clear. Now let's com­
pute 0.999 .... By definition, this is the limit of the Cauchy se­
quence 

0.9, 0.99, 0.999, 0.9999, .... 

But this sequence has 1 as a formal limit by Proposition 5.2.8. 0 

It turns out that these are the only two decimal representations 
of 1 (Exercise B.2.2). In fact, as it turns out, all real numbers 
have either one or two decimal representations - two if the real is 
a terminating decimal, and one otherwise (Exercise B.2.3). 

Exercise B.2.1. If an ... ao.a_1a-2 ... is a real decimal, show that the 
series L~=-oo ai x 10i is absolutely convergent. 

Exercise B.2.2. Show that the only decimal representations 

of 1 are 1 = 1.000 ... and 1 = 0.999 .... 

Exercise B.2.3. A real number x is said to be a terminating decimal if we 
have x = n/10-m for some integers n, m. Show that if x is a terminating 
decimal, then x has exactly two decimal representations, while if x is not 
at terminating decimal, then x has exactly one decimal representation. 

Exercise B.2.4. Rewrite the proof of Corollary 8.3.4 using the decimal 
system. 
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contraction, 558 
mapping theorem, 559 

contrapositive, 362 
convergence 

in £ 2 , 517 
of a function at a point, 

254, 441 
ofsequences,148,394,434 
of series, 190 
pointwise: see pointwise 

convergence 
uniform: see uniform con-

vergence 
converse, 362 
convolution, 466, 487, 522 
corollary, 28 
coset, 587 
cosine: see trigonometric func­

tions 
cotangent: see trigonometric 

functions 
countability, 208 

of the integers, 212 
of the rationals, 214 

cover, 578 
see also: open cover 

critical point, 572 

INDEX 

de Moivre· identities, 507 
de Morgan laws, 4 7 
decimal 

negative integer, 384 
non-uniqueness of repre-

sentation, 388 
point, 385 
positive integer, 384 
real, 385-386 

degree, 464 
denumerable: see countable 
dense, 465 
derivative, 288 

directional, 544 
in higher dimensions, 542, 

544, 546, 551 
partial, 546 
matrix, 551 
total, 542, 544 
uniqueness of, 542 

difference rule, 293 
difference set, 4 7 
differential matrix: see deriv­

ative matrix 
differentiability 

at a point, 288 
continuous, 556 
direc.tional, 544 
in higher dimensions, 542 
infinite, 4 78 
k-fold, 478, 556 

digit, 381 
dilation, 536 
diophantine, 616 
Dirac delta function, 466 
direct sum 



INDEX 

of functions, 75, 425 
discontinuity: see singularity 
discrete metric, 393 
disjoint sets, 47 
disjunction (or), 354 

inclusive vs. exclusive, 354 
distance 

inC, 499 
in Q, 98 
in R, 145, 391 

distributive law 
for natural numbers, 34 
for complex numbers, 497 
see also: laws of algebra 

divergence 
of series, 3, 190 
of sequences, 4 
see also: convergence 

divisibility, 237 
division 

by zero, 3 
formal (/ /), 93 
of functions, 252 
of rationals, 96 

domain, 55 
dominate: see majorize 

dominated convergence: see 
Lebesgue dominated 
convergence theorem 

doubly infinite, 244 
dummy variable: see bound 

variable 

e, 491 
Egoroff's theorem, 617 
empty 

Cartesian product, 73 

function, 58 
sequence, 73 
series, 185 
set, 40, 576, 579 

equality, 377 
for functions, 58 
for sets, 39 
of cardinality, 77 

equivalence 
of sequences, 116, 281 
relation, 378 

error-correcting codes, 392 
Euclidean algorithm, 35 
Euclidean metric, 391 
Euclidean space, 391 

v 

Euler's formula, 503, 506 
Euler's number: see e 
exponential function, 490, 501 
exponentiation 

of cardinals, 81 
with base and exponent 

inN, 36 
with base in Q and expo­

nent in Z, 101,102 
with base in Rand expo­

nent in Z, 140 
with base in R + and ex­

ponent in Q, 142 
with base in R+ and ex­

ponent in R, 177 
expression, 353 
extended real number system 

R*, 137, 153 
extremum: see maximum, min­

imum 
exterior (point), 401, 435 



VI 

factorial, 189 
family, 67 
Fatou's lemma, 614 
Fejer kernel, 524 
field, 95 

ordered, 97 
finite intersection property, 419 
finite set, 80 
fixed point theorem, 276, 559 
forward image: see image 
Fourier 

coefficients, 520 
inversion formula, 520 
series, 520 
series for ~rbitrary peri­

ods, 531 
theorem, 536 
transform, 520 

fractional part, 512 
free variable, 368 
frequency, 518 
Fubini's theorem, 624 

for finite series, 188 
for infinite series, 217 
see also: interchanging in­

tegrals/sums with in­
tegrals/ sums 

function, 55 
implicit definition, 57 

fundamental theorems of cal­
culus, 338, 341 

geometric series, 190, 196 
formula, 197, 200, 460 

geodesic, 394 
gradient, 550 
graph, 58, 75, 251, 568 

INDEX 

greatest lower bound: see least 
upper bound 

hairy ball theorem, 559 
half-infinite, 244 
half-open, 243 
half-space, 591 
harmonic series, 199 
Hausdorff space, 437, 438 
Hausdorff maximality princi-

ple, 240 
Reine-Borel theorem, 414 

for the real line, 248 
Hermitian form, 515 
homogeneity, 516, 535 
hypersurface, 568 

identity map (or operator), 63, 
536 

if: see implication 
iff (if and only if), 30 
ill-defined, 351,353 
image 

of sets, 64 
inverse image, 65 

imaginary, 498 
implication (if), 357 
implicit differentiation, 568 
implicit functi~n theorem, 568 
improper integral, 318 
inclusion map, 63 
inconsistent, 227, 228, 502 
index of summation: see dummy 

variable 
index set, 67 
indicator function: see char­

acteristic function 



INDEX 

induced 
metric, 391, 407 
topology, 407, 435 

induction: see Principle of math­
ematical induction 

infinite 
interval, 244 
set, 80 

infimum: see supremum 
injection: see one-to-one func-

tion 
inner product, 514 
integer part, 103, 133, 512 
integers Z 

definition, 85 
identification with ratio­

nals, 94 
interspersing with ratio­

nals, 103 
integral test, 332 
integration 

by parts, 343-345, 484 
laws, 315, 321 
piecewise constant, 313, 

315 
Riemann: see Riemann in­

tegral 
interchanging 

derivatives with derivatives, 
10, 556 

finite sums with finite sums, 
187, 188 

integrals with integrals, 7, 
614, 624 

limits with derivatives, 9, 
463 

VII 

limits with integrals, 9, 
462, 610, 619 

limits with length, 12 
limits with limits, 8, 9, 

450 
limits with sums, 617 
sums with derivatives, 463, 

476 
sums with integrals, 459, 

476, 613, 614, 616 
sums with sums, 6, 217 

interior (point), 401, 435 
intermediate value theorem, 

274, 432 
intersection 

pairwise, 46 
interval, 243 
intrinsic, 413 
inverse 

function theorem, 301,562 
image, 65 
in logic, 362 
of functions, 63 

invertible function: see bijec­
tion 

local, 562 
involution, 498 
irrationality, 108 

of J2, 104, 137 
isolated point, 247 
isometry, 406 

jump discontinuity, 268 

zl, z2, zoo, £1, £2, Loo, 391-
393, 516, 617 



VIII 

equivalence of in finite di­
mensions, 396 

see also: absolutely inte­
grable 

see also: supremum as norm 
L'Hopital's rule, 11, 303 
label, 67 
laws of algebra 

for complex numbers, 496, 
497 

for integers, 89 
for rationals, 95 
for reals, 122 

laws of arithmetic: see laws 
of algebra 

laws of exponentiation, 101, 
102,141,143,177,490 

least upper bound, 134 
least upper bound prop­

erty, 135, 158 
see also supremum 

Lebesgue dominated conver­
gence theorem, 619 

Lebesgue integral 
of absolutely integrable func­

tions, 618 
of nonnegative functions, 

608 
of simple functions, 604 
upper and lower, 620 
vs. the Riemann integral, 

622 
Lebesgue measurable, 590 
Lebesgue measure, 577 

motivation of, 575-577 
Lebesgue monotone convergence 

INDEX 

theorem, 610 
Leibnitz rule, 293, 554 
lemma, 28 
length of interval, 308 
limit 

at infinity, 286 
formal (LIM), 118, 150, 

412 
laws, 150, 256, 500 
left and right, 265 
limiting values of functions, 

5, 254, 441 
of sequences, 148 
pointwise, 444 
uniform, see uniform limit 
uniqueness of, 148, 256, 

397, 442 
limit inferior, see limit supe­

rior 
limit point 

of sequences, 160,409 
of sets, 247 

limit superior, 162 
linear combination, 535 
linearity 

approximate, 541 
of convolution, 471, 522 
of finite series, 186 
of limits, 151 
of infinite series, 194 
of inner product, 515 
of integration, 315, 321, 

606, 612 
of transformations, 535 

Lipschitz constant, 298 
Lipschitz continuous, 298 



INDEX 

logarithm (natural), 492 
power series of, 460, 492 

logical connective, 354 
lower bound: see upper bound 

majorize, 317, 608 
manifold, 572 
map: see function 
matrix, 536 

identification with linear 
transformations, 537-
540 

maximum, 233, 296 
local, 296 
of functions, 252, 271 
principle, 271, 427 

mean value theorem, 297 
measurability 

for functions, 597, 598 
for sets, 590 
motivation of, 57 4 
see also: Lebesgue mea­

sure, outer measure 
meta-proof, 140 
metric, 390 

ball: see ball 
on C, 499 
on R, 391 
space, 390 
see also: distance 

minimum, 233, 296 
local, 296 
of a set of natural num­

bers, 210 
of functions, 252, 271 

minorize: see majorize 
monomial, 518 

IX 

monotone (increasing or de­
creasing) 

convergence: see Lebesgue 
monotone convergence 
theorem 

function, 276, 336 
measure, 576, 581/) 
sequence, 159 

morphism: see function 
moving bump example, 446, 

614 
multiplication 

of cardinals, 81 
of complex numbers, 497 
of functions, 252 
of integers, 86 
of matrices, 536, 540 
of natural numbers, 33 
of rationals, 93, 94 
of reals, 120 

Natural numbers N 
are infinite, 80 
axioms: see Peano axioms 
identification with integers, 

87 
informal definition, 17 
in set theory: see Axiom 

of infinity 
uniqueness of, 76 

negation 
in logic, 355 
of extended reals, 154 
of complex numbers, 497 
of integers, 88 
of rationals, 93 
of reals, 121 



X 

negative: see negation, posi­
tive 

neighbourhood, 434 
Newton's approximation, 291, 

544 
non-constructive, 229 
non-degenerate, 516 
nowhere differentiable function, 

464, 508 

objects, 38 
primitive, 53 

one-to-one function, 61 
one-to-one correspondence: see 

bijection 
onto, 61 
open 

box, 578 
cover, 414 
interval, 243 
set, 403 

or: see disjunction 
order ideal, 238 
order topology, 437 
ordered pair, 70 

construction of, 7 4 
ordered n-tuple, 71 
ordering 

lexicographical, 239 
of cardinals, 227 
of orderings, 240 
of partitions, 310 
of sets, 233 
of the extended reals, 154 
of the integers, 91 
of the natural numbers, 

31 

INDEX 

of the rationals, 97 
of the reals, 129 

orthogonality, 516 
orthonormal, 519 
oscillatory discontinuity, 268 
outer measure, 579 

non-additivity of, 587, 589 

pair set, 41 
partial function, 69 
partially ordered set, 45, 232 
partial sum, 190 
Parseval identity, 531 

see also: Plancherel for-
mula 

partition, 308 
path-connected, 432 
Peano axioms, 18-21, 23 
perfect matching: see bijec-

tion 
periodic, 511 

extension, 512 
piecewise 

constant, 312 
constant Riemann-Stieltjes 

integral, 335 
continuous, 330 

pigeonhole principle, 83 
Plancherel formula (or theo­

rem), 520, 528 
pointwise convergence, 444 

of series, 456 
topology of, 455 

polar representation, 507 
polynomial, 265, 464 

and convolution, 467 
approximation by, 465,470 



INDEX 

positive 
complex number, 498, 502 
integer, 88 
inner product, 515 
measure, 576, 580 
natural number, 30 
rational, 96 
real, 128 

power series, 476 
formal, 474 
multiplication of, 487 
uniqueness of, 481 

power set, 66 
pre-image: see inverse image 
principle of infinite descent, 

106 
principle of mathematical in-

duction, 21 
backwards induction, 33 
strong induction, 32, 234 
transfinite, 237 

product rule, see Leibnitz rule 
product topology, 455 
projection, 536 
proof 

by contradiction, 352, 363 
abstract examples, 364-367, 

375-377 
proper subset, 44 
property, 354 
proposition, 28 
propositional logic, 367 
Pythagoras' theorem, 516 

quantifier, 369 
existential (for some), 371 
negation of, 372 

nested, 372 
universal (for all), 370 

Quotient: see division 
Quotient rule, 293, 555 

radius of convergence, 475 
range, 55 
ratio test, 206 
rational numbers Q 

XI 

definition, 93 
identification with reals, 

121 
interspersing with ratio­

nals, 103 
interspersing with reals, 

132 
real analytic, 478 
real numbers R 

are uncountable: see un­
countability of there­
als 

definition, 117 
real part, 498 
real-valued, 455 
rearrangement 

of absolutely convergent 
series, 202 

of divergent series, 203, 
222 

of finite series, 185 
of non-negative series, 200 

reciprocal 
of complex numbers, 499 
of rationals, 95 
of reals, 125 

recursive definitions, 26,76 



XII 

reductio ad absurdum: see proof 
by contradiction 

relative topology: see induced 
.topology 

removable discontinuity: see 
removable singularity 

removable singularity, 259, 268 
restriction of functions, 250 
Riemann hypothesis, 200 
Riemann integrability, 318 

closure properties, 321-326 
failure of, 332 
of bounded continuous func-

INDEX 

of functions, 252 
Schroder-Bernstein theorem, 

227 
sequence, 109 

finite, 74 
series 

finite, 179, 182 
formal infinite, 189 
laws, 194, 220 
of functions, 459 
on arbitrary sets, 220 
on countable sets, 216 
vs. sum, 180 

tions, 328 set 
of continuous functions on axioms: see axioms of set 

compacta, 328 theory 
of monotone functions, 330 informal definition, 38 
of piecewise continuous bounded signum function, 258 

functions, 329 simple function, 602 
of uniformly continuous func- sine: see trigonometric func-

tions, 326 tions 
Riemann integral, 318 singleton set, 41 

upper and lower, 317 singularity, 268 
Riemann sums (upper and lower), space, 390 

321 statement, 350 
Riemann zeta function, 199 sub-additive measure, 576, 580 
Riemann-Stieltjes integral, 336 
ring, 89 

commutative, 89, 497 
Rolle's theorem, 297 
root, 140 

mean square: see £ 2 

test, 204 
row vector, 533 
Russell's paradox, 52 

scalar multiplication, 533 

subset, 44 
subsequen~e, 172, 408 
substitution: see rearrange-

ment 
subtraction 

formal ( --), 86 
of functions, 252 
of integers, 91 

sum rule, 292 
summation by parts, 484 



INDEX 

sup norm: see supremum as 
norm 

support, 465 
supremum (and infimum) 

as metric, 393 
as norm, 393, 457 
of a set of extended reals, 

156, 157 
of a set of reals, '137, 139 
of sequences of reals, 158 

square root, 56 
square wave, 512, 518 
Squeeze test 

for sequences, 167 
Stone-Weierstrass theorem, 472, 

522 
strict upper bound, 235 
surjection: see onto 

taxi-cab metric, 392 
tangent: see trigonometric func­

tion 
Taylor series, 480 
Taylor's formula: see Taylor 

series 
telescoping series, 195 
ten, 381 
theorem, 28 
topological space, 433 
totally bounded, 418 
totally ordered set, 45, 233 
transformation: see function 
translation invariance, 577, 580, 

591 
transpose, 534 
triangle inequality 

in Euclidean space, 399 

XIII 

in inner product spaces, 
516 

in metric spaces, 390 
inC, 499 
in R, 99 
for finite series, 181, 186 
for integrals, 618 

trichotomy of order 
of extended reals, 155 
for natural numbers, 31 
for integers, 91 
for rationals, 97 
for reals, 129 

trigonometric functions, 503, 
509 

and Fourier series, 530 
trigonometric polynomi­

als, 518 
power series, 504, 508 

trivial topology, 437 
two-to-one function, 61 

uncountability, 208 
of the reals, 225 

undecidable, 228 
uniform continuity, 280, 428 
uniform convergence, 447 

and anti-derivatives, 462 
and derivatives, 451 
and integrals, 459 
and limits, 450 
and radius of convergence, 

476 
as a metric, 453, 514 
of series, 457 

uniform limit, 447 
of bounded functions, 451 



XIV 

of continuous functions, 450 
and Riemann integration, 

458 
union, 67 

pairwise, 42 
universal set, 53 
upper bound, 

of a set of reals, 133 
of a partially ordered set, 

234 
see also: least upper bound 

variable, 368 
vector space, 534 
vertical line test, 55, 76, 567 
volume, 578 

Weierstrass approximation the­
orem, 465, 470-471, 
521 

Weierstrass example: see nowhere 
differentiable function 

Weierstrass M-test, 457 
well-defined, 351 
well-ordered sets, 234 
well ordering principle 

for natural numbers, 210 
for arbitrary sets, 241 

Zermelo-Fraenkel(-Choice) ax­
ioms, 69 

see also axioms of set the­
ory 

zero test 
for sequences, 167 
for series. 191 

INDEX 

Zorn's lemma, 237 


	Contents
	Contents of Volume 2
	Preface
	1 Introduction
	1.1 What is analysis?
	1.2 Why do analysis?

	2 The natural numbers
	2.1 The Peano axioms
	2.2 Addition
	2.3 Multiplication

	3 Set theory
	3.1 Fundamentals
	3.2 Russell's paradox (Optional)
	3.3 Functions
	3.4 Images and inverse images
	3.5 Cartesian products
	3.6 Cardinality of sets

	4 Integers and rationals
	4.1 The integers
	4.2 The rationals
	4.3 Absolute value and exponentiation
	4.4 Gaps in the rational numbers

	5 The real numbers
	5.1 Cauchy sequences
	5.2 Equivalent Cauchy sequences
	5.3 The construction of the real numbers
	5.4 Ordering the reals
	5.5 The least upper bound property
	5.6 Real exponentiation, part I

	6 Limits of sequences
	6.1 Convergence and limit laws
	6.2 The extended real number system
	6.3 Suprema and infima of sequences
	6.4 Limsup, liminf, and limit points
	6.5 Some standard limits
	6.6 Subsequences
	6.7 Real exponentiation, part II

	7 Series
	7.1 Finite series
	7.2 Infinite series
	7.3 Sums of non-negative numbers
	7.4 Rearrangement of series
	7.5 The root and ratio tests

	8 Infinite sets
	8.1 Countability
	8.2 Summation on infinite sets
	8.3 Uncountable sets
	8.4 The axiom of choice
	8.5 Ordered sets

	9 Continuous functions on R
	9.1 Subsets of the real line
	9.2 The algebra of real-valued functions
	9.3 Limiting values of functions
	9.4 Continuous functions
	9.5 Left and right limits
	9.6 The maximum principle
	9.7 The intermediate value theorem
	9.8 Monotonic functions
	9.9 Uniform continuity
	9.10 Limits at infinity

	10 Differentiation of functions
	10.1 Basic definitions
	10.2 Local maxima, local minima, and derivatives
	10.3 Monotone functions and derivatives
	10.4 Inverse functions and derivatives
	10.5 L'Hopital's rule

	11 The Riemann integral
	11.1 Partitions
	11.2 Piecewise constant functions
	11.3 Upper and lower Riemann integrals
	11.4 Basic properties of the Riemann integral
	11.5 Riemann integrability of continuous functions
	11.6 Riemann integrability of monotone functions
	11.7 A non-Riemann integrable function
	11.8 The Riemann-Stieltjes integral
	11.9 The two fundamental theorems of calculus
	ll.lO Consequences of the fundamental theorems

	A Appendix: the basics of mathematical logic
	A.l Mathematical statements
	A.2 Implication
	A.3 The structure of proofs
	A.4 Variables and quantifiers
	A.5 Nested quantifiers
	A.6 Some examples of proofs and quantifiers
	A.7 Equality

	B Appendix: the decimal system
	B.l The decimal representation of natural numbers
	B.2 The decimal representation of real numbers

	Index

