
Winter Research Result 2024-2025

Jonathan Huang (Shao-Kai Huang)
Physics Department, National Taiwan University

IMB, Academia Sinica

February 13, 2025

1 Improved Effective Bounds For SAPs
Definition 1.1. Define the (𝑛 − 1)-order polynomial 𝑃𝑛 over the positive reals:

𝑃𝑛(𝑠) ≡ (1 + 𝑠
𝑎1

) (1 + 𝑠
𝑎2

) ⋯ (1 + 𝑠
𝑎𝑛−1

) =
𝑛−1
∏
𝑘=1

(1 + 𝑠
𝑎𝑘

) . (1)

1.1 The 𝑛 = 3 Case

Figure 1: Example of a LRN with three
nodes (𝑛 = 3).

The system is described by the figure ??. The long term
growth rate 𝜆 satisfies the equation

𝜆 = 𝐴(𝜆) = 𝑏 (𝑎1
𝑎1 + 𝜆) (𝑎2

𝑎2 + 𝜆) .

This is simply 𝑏/𝜆 = 𝑃3(𝜆), and finding a solution is equiva-
lent to solving for the largest (modulus-wise) solution of the
cubic

𝜆3 + (𝑎1 + 𝑎2)𝜆2 + 𝑎1𝑎2𝜆 − 𝑎1𝑎2𝑏 = 0.
The solution is

𝜆0 = 1
3 3√2

(Δ + √Δ2 + 4𝐵3)
1/3

−
3√2
3

𝐵
(Δ +

√
Δ2 + 4𝐵3)1/3 − 1

3 (𝑎1 + 𝑎2) ∈ ℝ, (2a)

𝜆± = − 1
6 3√2

(1 ∓ 𝑖
√

3) (Δ + √Δ2 + 4𝐵3)
1/3

+
3√2
6 (1 ± 𝑖

√
3) 𝐵

(Δ +
√

Δ2 + 4𝐵3)1/3 − 1
3 (𝑎1 + 𝑎2) ∈ ℂ,

(2b)

where
Δ ≡ (𝑎1 + 𝑎2)3 − 3(𝑎3

1 + 𝑎3
2) + 27𝑎1𝑎2𝑏, 𝐵 ≡ 3𝑎1𝑎2 − (𝑎1 + 𝑎2)2.

Since the desired solution must be real, the growth rate is given by 𝜆0.

1

Simple Autocatalytic Pathways (SAPs) Jonathan Huang (Shao-Kai Huang)

1.2 Effective Bounds For SAPs
The current upper and lower bounds for an effective one-step chain are (Lin)

𝑎−1
𝐿 = (𝐴(𝑏) − 1) /𝑏, (3a)

𝑎−1
𝑈 = 𝑎−1

1 + ⋯ + 𝑎−1
𝑛−1. (3b)

For the following paragraph, refer to figure ??. Notice that 𝑃 ′
𝑛(0) = 1

𝑎𝑈
, so the current bound yields

the optimal upper bound for 𝜆𝑈 , if we require that 𝑃U(𝑥), 𝑃n(𝑥) for all 𝑥 > 0. However, this needs not
be true, since we can introduce a cutoff 𝑐 ∈ (0, 𝜆) to make the bound stricter, such that. 𝑃𝑈(𝑥) < 𝑃𝑛(𝑥)
only when 𝑐 < 𝑥 < 𝜆.

Figure 2: Geometric interpretation of 𝜆 in the case 𝑛 = 3.

Here I propose a simple algorithm to derive stricter bounds by means of iteration. We continue to
use the geometric interpretation of 𝜆 as the intersection of the polynomial 𝑃𝑛(𝑥) and the hyperbola 𝑏/𝑥
in our analysis.

For the 𝑛 = 2 case, we can solve explicitly for 𝜆𝑈 using the equation for a one-step chain:

𝑏
𝜆𝑈

= 𝑎 + 𝜆𝑈
𝑎𝑈

⟹ 𝜆𝑈 = −1 + √1 + 4𝑏/𝑎𝑈
2/𝑎𝑈

.

A similar procedure can be done for 𝜆𝐿, but this is not important for the following analysis. Define
𝜆(0)

𝑈 = 𝜆𝑈 and consider the following lines

⎧{{{{{
⎨{{{{{⎩

𝑈 (0) ∶ 1 + 𝑚(0)
𝑈 𝑥, 𝑚(0)

𝑈 = 1
𝑎𝑈

= 1
𝑎1

+ ⋯ + 1
𝑎𝑛−1

,

𝐿(1) ∶ 1 + 𝑚(1)
𝐿 𝑥, 𝑚(1)

𝐿 =
𝑃𝑛 (𝜆(0)

𝑈) − 1
𝜆(0)

𝑈
,

𝑈 (1) ∶ 1 + 𝑚(1)
𝑈 𝑥, 𝑚(1)

𝑈 =
𝑃𝑛 (𝜆(1)

𝐿) − 1
𝜆(1)

𝐿
.

Going from the first equation to the second, I solved for 𝜆(1)
𝐿 again using the solution for the 𝑛 = 2 case:

𝜆(1)
𝐿 =

−1 + √1 + 4𝑏𝑚(1)
𝐿

2𝑚(1)
𝐿

, 𝑚(1)
𝐿 =

𝑃𝑛 (𝜆(0)
𝑈) − 1

𝜆(0)
𝑈

.

2

Simple Autocatalytic Pathways (SAPs) Jonathan Huang (Shao-Kai Huang)

This is demonstrated in figure ??. Geometrically it is interpreted as extending the line 𝑥 = 𝜆(0)
𝑈 upwards

to intersect with 𝑦 = 𝑃𝑛(𝑥), and using that point and (0, 1) to construct 𝐿(1). Similarly, going from the
second equation to the third requires solving for

𝜆(1)
𝑈 =

−1 + √1 + 4𝑏𝑚(1)
𝑈

2𝑚(1)
𝑈

, 𝑚(1)
𝑈 =

𝑃𝑛 (𝜆(1)
𝐿) − 1

𝜆(1)
𝐿

.

This is interpreted as using 𝑐 = 𝜆(1)
𝐿 as the cutoff point for 𝑈 (1), which is key to making the iteration

scheme work.

Using the equation of the lines 𝐿(1) and 𝑈 (1), we can derive the effective coefficient 𝑎(𝑛)
𝑈 and 𝑎(𝑛)

𝐿 by
noticing that

𝑎(𝑛)
𝐿 = 1

𝑚(𝑛)
𝐿

, 𝑎(𝑛)
𝑈 = 1

𝑚(𝑛)
𝑈

. (4)

This process can be continued indefinitely, with the upper and lower bounds closing in on the true
value 𝜆. The main result is summarized as follows:

𝑚(𝑗)
𝐿 =

𝑃 (𝜆(𝑗−1)
𝑈) − 1
𝜆(𝑗−1)

𝑈
, 𝑎(𝑗)

𝐿 = 1
𝑚(𝑗)

𝐿
, 𝜆(𝑗)

𝐿 =
−1 + √1 + 4𝑏𝑚(𝑗)

𝐿

2𝑚(𝑗)
𝐿

,

𝑚(𝑗)
𝑈 =

𝑃 (𝜆(𝑗)
𝐿) − 1
𝜆(𝑗)

𝐿
, 𝑎(𝑗)

𝑈 = 1
𝑚(𝑗)

𝑈
, 𝜆(𝑗)

𝑈 =
−1 + √1 + 4𝑏𝑚(𝑗)

𝑈

2𝑚(𝑗)
𝑈

,

𝜆(0)
𝑈 = −1 + √1 + 4𝑏/𝑎𝑈

2/𝑎𝑈
, 𝑗 = 1, 2, 3, … .

(5a)

(5b)

(5c)

This process is illustrated in figure ??, where the pink lines represent the original bounds.

To decouple the recurrence relations, notice that the map 𝜂 ∶ ℝ≥0 → ℝ≥0 defined by

𝑥 ↦ 1
2

⎛⎜
⎝

−1 +
√√√
⎷

1 + 4𝑏 [
𝑃𝑛 ((−1 + √1 + 4𝑏 [𝑃𝑛(𝑥) − 1] /𝑥) /([𝑃𝑛(𝑥) − 1] /𝑥)) − 1

(−1 + √1 + 4𝑏 [𝑃𝑛(𝑥) − 1] /𝑥) /([𝑃𝑛(𝑥) − 1] /𝑥)
]⎞⎟

⎠

× [
𝑃𝑛 ((−1 + √1 + 4𝑏 [𝑃𝑛(𝑥) − 1] /𝑥) /([𝑃𝑛(𝑥) − 1] /𝑥)) − 1

(−1 + √1 + 4𝑏 [𝑃𝑛(𝑥) − 1] /𝑥) /([𝑃𝑛(𝑥) − 1] /𝑥)
]

−1

,

(6)

where

𝑃𝑛(𝑥) =
𝑛−1
∏
𝑝=1

(1 + 𝑥
𝑎𝑝

) , (7)

maps 𝜆(𝑗)
𝐿 to 𝜆(𝑗+1)

𝐿 and 𝜆(𝑗)
𝑈 to 𝜆(𝑗+1)

𝑈 . Therefore, the equation (5) can be recast in the following form:

𝜆(𝑗+1)
𝐿 = 𝜂 (𝜆(𝑗)

𝐿) , 𝜆(𝑗+1)
𝑈 = 𝜂 (𝜆(𝑗)

𝑈) , 𝑗 = 1, 2, … . (8)

3

Simple Autocatalytic Pathways (SAPs) Jonathan Huang (Shao-Kai Huang)

Figure 3: Illustration of the iteration shceme. Each color represents a different order of approximation,
higher order approximations bound the true value 𝜆 more tightly.

1.3 Example Calculations
Example 1.1. We apply the above bounds to a system with 𝑛 = 5, where 𝑎1 = 2, 𝑎2 = 4, 𝑎3 = 5, 𝑎4 =
3, 𝑏 = 6, and compare them with the original bounds 𝑎𝑈 and 𝑎𝐿. The exact solution according to
WolframAlpha is 𝜆 = 1.3966432600825643010, and the following python code gives the order one to
order three bounds according to my theory:

import numpy as np

n = 5
a_1, a_2, a_3, a_4, b = 2, 4, 5, 3, 6
arr = [a_1, a_2, a_3, a_4, b]
sumarray = 1/a_1 + 1/a_2 + 1/a_3 + 1/a_4
exact = 1.3966432600825643010

def P(s): # defines the polynomial P(s)
return (1 + s/a_1)*(1 + s/a_2)*(1 + s/a_3)*(1 + s/a_4)

lambda 0
mu0 = sumarray
lu0 = (-1 + np.sqrt(1 + 4*b*mu0)) / (2*mu0)

In the following code, "m" is the reciprocal of the corresponding "a" coefficients
lambda 1
ml1 = (P(lu0) - 1) / lu0
ll1 = (-1 + np.sqrt(1 + 4*b*ml1)) / (2*ml1)
mu1 = (P(ll1) - 1) / ll1
lu1 = (-1 + np.sqrt(1 + 4*b*mu1)) / (2*mu1)

4

Simple Autocatalytic Pathways (SAPs) Jonathan Huang (Shao-Kai Huang)

lambda 2
ml2 = (P(lu1) - 1) / lu1
ll2 = (-1 + np.sqrt(1 + 4*b*ml2)) / (2*ml2)
mu2 = (P(ll2) - 1) / ll2
lu2 = (-1 + np.sqrt(1 + 4*b*mu2))/ (2*mu2)

lambda 3
ml3 = (P(lu2) - 1) / lu2
ll3 = (-1 + np.sqrt(1 + 4*b*ml3)) / (2*ml3)
mu3 = (P(ll3) - 1) / ll3
lu3 = (-1 + np.sqrt(1 + 4*b*mu3))/ (2*mu3)

lambda 4
ml4 = (P(lu3) - 1) / lu3
ll4 = (-1 + np.sqrt(1 + 4*b*ml4)) / (2*ml4)
mu4 = (P(ll4) - 1) / ll4
lu4 = (-1 + np.sqrt(1 + 4*b*mu4))/ (2*mu4)

print out the result
print("the 1st order lower bound is ", ll1)
print("the 2nd order lower bound is ", ll2)
print("the 3rd order lower bound is ", ll3)
print("the 4th order lower bound is ", ll4)
print("the exact solution is ", exact)
print("the 4th order upper bound is ", lu4)
print("the 3rd order upper bound is ", lu3)
print("the 2nd order upper bound is ", lu2)
print("the 1st order upper bound is ", lu1)
print("the 0th order upper bound is ", lu0)

print("\nThe corresponding a_U's are: ")
print("a_U = ", 1 / mu0)
print("a^(1)_U =", 1 / mu1)
print("a^(2)_U =", 1 / mu2)
print("a^(3)_U =", 1 / mu3)
print("a^(4)_U =", 1 / mu4)

print("\nThe corresponding a_L's are: ")
print("a^(1)_L =", 1 / ml1)
print("a^(2)_L =", 1 / ml2)
print("a^(3)_L =", 1 / ml3)
print("a^(4)_L =", 1 / ml4)

The result of computation is summarized:

5

Simple Autocatalytic Pathways (SAPs) Jonathan Huang (Shao-Kai Huang)

Figure 4: Calculation result for 𝑛 = 5, bounds on 𝜆.

Figure 5: Calculation result for 𝑛 = 5, effective coefficients.

1.4 Convergence
From construction we make the following observation: for all 𝑛 ≥ 1, we have

𝜆 ≤ 𝜆(𝑛+1)
𝑈 ≤ 𝜆(𝑛)

𝑈 , (9a)

𝜆(𝑛)
𝐿 ≤ 𝜆(𝑛+1)

𝐿 ≤ 𝜆, (9b)

𝑎𝑈 ≥ 𝑎(𝑛)
𝑈 ≥ 𝑎(𝑛+1)

𝑈 , (9c)

𝑎(1)
𝐿 ≤ 𝑎(𝑛)

𝐿 ≤ 𝑎(𝑛+1)
𝐿 . (9d)

In particular, notice that (𝜆(𝑛)
𝑈)

𝑛∈ℕ
is a decreasing sequence, while (𝜆(𝑛)

𝐿)
𝑛∈ℕ

is an increasing se-
quence.

Theorem 1.1 (Monotone Convergence Theorem). If (𝑎𝑛)𝑛∈ℕ is a monotone sequence of real numbers,
then this sequence has a finite limit if and only if the sequence is bounded. In particular, if the sequence
is increasing, then it converges to its supremum; if the sequence is decreasing, then it converges to its
infimum.

By the above theorem, we know that each of the sequences (𝜆(𝑛)
𝑈)

𝑛∈ℕ
and (𝜆(𝑛)

𝐿)
𝑛∈ℕ

converges to 𝜆.

1.5 Topics To Be Explored
Consider the simple case of 𝑛 = 3. We can analyze 𝜆 as a function of the three variables 𝑎1, 𝑎2, 𝑏, so

that
𝜆 = 𝜆(𝑎1, 𝑎2, 𝑏) = 𝑏 ⋅ 𝑓 (𝑎1

𝑏 , 𝑎2
𝑏) , (10)

6

Simple Autocatalytic Pathways (SAPs) Jonathan Huang (Shao-Kai Huang)

where 𝜆 satisfies 𝜆 = 𝐴(𝜆).
The function 𝑓 of two variables (or, more generally, 𝑛 − 1 variables), should satisfy the following

conditions:

1. 𝑓(𝑝1, 𝑝2) = 𝑓(𝑝2, 𝑝1) (symmetry): The network exhibits no branching, so every process has to pass
through 𝑎1 and 𝑎2 no matter the order. More generally, let

𝜆 = 𝜆(𝑎1, … , 𝑎𝑛−1, 𝑏) ≡ 𝑓 (𝑎1
𝑏 , … , 𝑎𝑛−1

𝑏) ,

then for all permutations 𝜋 ∈ 𝑆𝑛−1 we have 𝑓(p) = 𝑓(𝜋p).
2. 𝜆 is an increasing function of 𝑎1, 𝑎2, 𝑏, so 𝑓 is an increasing function of 𝑎1 and 𝑎2. More generally,

𝑓 (𝑎1
𝑏 , … , 𝑎𝑛−1

𝑏)

is an increasing function of 𝑎1, … , 𝑎𝑛−1.

7

	Improved Effective Bounds For SAPs
	The n=3 Case
	Effective Bounds For SAPs
	Example Calculations
	Convergence
	Topics To Be Explored

