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1 Improved Effective Bounds For SAPs

Definition 1.1. Define the (n — 1)-order polynomial P, over the positive reals:

Pn(8)5<1+;1> (1+;)-~-(1+ )::ﬁ<1+;> (1)

1.1 The n =3 Case

The system is described by the figure ??. The long term
growth rate \ satisfies the equation

S
Ap—1

b = qx, @ = ax.,
_ _ a4 ay ¢ = bx; .
’\_A()‘)_b<a1+/\> (a2+A>' ’

. . S % ® o]
This is simply b/A = P5(\), and finding a solution is equiva- - @ — @ _ @

lent to solving for the largest (modulus-wise) solution of the

cubic
3 2 B _ Figure 1: Example of a LRN with three
A%+ (ag + a9) A + ajas\ — agasb = 0. nodes (n = 3).
The solution is
1 3 2 B 1
Ao = \?’[(A+\/A2+4B3) —% VE —§(a1 +ay) €R, (2a)
3V2 (A + VAZ +457)
1 1/3
- ; 2 3
ro=—os (1Fiv3) (A + VA2 +455)
V2 B 1 (2b)
+%<1ii\/§) — = (a; +ay) €C,

(A + VA2 + 433)1/3 :

where
A = (ay + ay)3 — 3(a} + a3) + 27a,ayb, B = 3aja, — (a; + ay)?.

Since the desired solution must be real, the growth rate is given by .
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1.2 Effective Bounds For SAPs
The current upper and lower bounds for an effective one-step chain are (Lin)
az! = (A(b) — 1) /b, (38)
ag' = a;t +otaly (3b)

ai, so the current bound yields
U

the optimal upper bound for A, if we require that Py(z), P,(z) for all > 0. However, this needs not
be true, since we can introduce a cutoff ¢ € (0, A) to make the bound stricter, such that. P, (z) < P, (x)

only when ¢ < x < A.

For the following paragraph, refer to figure ??7. Notice that P, (0) =

SN L S NS

/ - 1+
(o) e Ty =

N A A"

Figure 2: Geometric interpretation of A in the case n = 3.

Here I propose a simple algorithm to derive stricter bounds by means of iteration. We continue to
use the geometric interpretation of A as the intersection of the polynomial P,(z) and the hyperbola b/x
in our analysis.

For the n = 2 case, we can solve explicitly for A;; using the equation for a one-step chain:
b A —1+4++/1+4b/a
a+Y = Ay = / Z.

E B ay 2/ay

A similar procedure can be done for A;, but this is not important for the following analysis. Define

)\g)) = Ay and consider the following lines

11 1
UO: 1+m¥z, m¥ = —=— 4.4 —,
ay Ap—1
p, (A" —1
LV: 14mWe md) = () ,
NG
U
P, (AM) -1
1 (1) 1 _ AL
U . 1+my'z, my _T
L

Going from the first equation to the second, I solved for )\<Ll) again using the solution for the n = 2 case:

(1) (0
A(l)_—1+\/1+4me (U_PH(AU)—l-

= , my =
: 2] : AP
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This is demonstrated in figure ?7?7. Geometrically it is interpreted as extending the line x = )\g)) upwards
to intersect with y = P, (), and using that point and (0,1) to construct L. Similarly, going from the
second equation to the third requires solving for

&) W
o Tl yiEdmy) o Py (AL )—1_

= s m =
v 2m§]1) v )\(Ll)

This is interpreted as using ¢ = )\<Ll) as the cutoff point for UM, which is key to making the iteration
scheme work.

Using the equation of the lines L") and U™, we can derive the effective coefficient agw and a(Ln> by

noticing that

Ch

This process can be continued indefinitely, with the upper and lower bounds closing in on the true
value A\. The main result is summarized as follows:

(3-1) - (4)
o P11 g Tl ey (5a)
L )\gq) Pk m(Lj) P Qm(Lj) 7
@\ 7 (4)
o PO -1 g1 L4yl dbmy (5b)
v o T G om0 ’
L U U
/\(0)_—14—\/14—4[)/&[] ,_123 5
U — 2/aU ) j_ ) Sy Ty e (C)

This process is illustrated in figure 7?7, where the pink lines represent the original bounds.

To decouple the recurrence relations, notice that the map 1 : R,y — R, defined by
! (_1 . J Loy [P (L VISR — 1) /(1P () — 1) /2)) — 1])
2 (—1+ V1440 [P, () — 1] [z) /([P,(2) — 1] /)

P, ((-14 T+ 4 [P,(x) = 1] /z) /([P,(x) — 1] /z)) — 11 -
(—1+ T+ 40P, () — 1] Jz) /([P (2) — 1] /) ’

X

where o
Pn(as):}:[l (1+;;>, (7)

maps ) to AY an ) to AU erefore, the equation (5) can be recast in the following form:
A9 10 AT and AY to AUTY. Therefore, th 5) can b he foll f

A =g (09), AGY = (A, j=1,2,... (8)
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Figure 3: Illustration of the iteration shceme. Each color represents a different order of approximation,
higher order approximations bound the true value A more tightly.

1.3 Example Calculations

Example 1.1. We apply the above bounds to a system with n = 5, where a; = 2,a9 = 4,a3 = 5,a, =
3,b = 6, and compare them with the original bounds a;; and a;. The exact solution according to
WolframAlpha is A = 1.3966432600825643010, and the following python code gives the order one to
order three bounds according to my theory:

import numpy as np

#n=>5

a_l, a2, a3, a4, b=2,4,5, 3, 6
arr = [a_1, a_2, a_3, a_4, bl

sumarray = 1/a_1 + 1/a_2 + 1/a_3 + 1/a_4
exact = 1.3966432600825643010

def P(s): # defines the polynomial P(s)
return (1 + s/a_1)*(1 + s/a_2)*(1 + s/a_3)*(1 + s/a_4)

# lambda O

mu0 = sumarray

1u0 = ( -1 + np.sqrt(l + 4*xbxmu0)) / (2*mu0)
# In the following code, "m"
# lambda 1

mll = ( P(1u0) - 1) / 1u0

is the reciprocal of the corresponding "a" coefficients

111 = (-1 + np.sqrt(1l + 4%b*ml1)) / (2*ml1)
mul = ( P(111) - 1) / 111
lul = (-1 + np.sqrt(l + 4*b*mul)) / (2*mul)
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# lambda 2
ml2 = ( P(lul)
112 = (-1 + np.
mu2 = ( P(112)
1u2 = (-1 + np.
# lambda 3

ml3 = ( P(lu2)

113 = (-1 + np.

mu3 = ( P(113)
1u3 = (-1 + np.
# lambda 4

ml4 = ( P(1lu3)
114 = (-1 + np.
mud = ( P(114)
lud = (-1 + np.

-1) / 1lut
sqrt (1 + 4xb*ml2)) / (2*xml2)
-1) /112
sqrt (1 + 4*bxmu2))/ (2*mu2)

-1)/ 1u2
sqrt (1 + 4xb*ml3)) / (2*ml3)
-1) /113
sqrt (1 + 4*xb*mu3))/ (2*mu3)

-1)/ 1u3
sqrt (1 + 4xb*ml4)) / (2*xml4)
-1) /114
sqrt (1 + 4xb¥mu4))/ (2*mud)

# print out the result

print("the 1st order lower bound is ", 111)
print("the 2nd order lower bound is ", 112)
print("the 3rd order lower bound is ", 113)
print("the 4th order lower bound is ", 114)
print("the exact solution is " exact)
print("the 4th order upper bound is ", lu4)
print("the 3rd order upper bound is ", 1lu3)
print ("the 2nd order upper bound is ", 1lu2)
print("the 1st order upper bound is ", lul)
print("the Oth order upper bound is ", 1u0)

print ("\nThe corresponding a_U's are: ")

print("a_U =

print("a~(1)_U
print("a~(2)_U
print("a~(3)_U
print("a~(4)_U

", 1 / mu0)
=" mul)
mu2)
mu3)
mu4)

=n
b

=n
b

1
1
1
1

NN NN

print("\nThe corresponding a_L's are: ")

print("a~(1)_L =", 1 / mll)
print("a~(2)_L =", 1 / ml2)
print("a~(3)_L =", 1 / ml3)
print("a~(4)_L =", 1 / ml4)

The result of computation is summarized:
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the 1st order lower bound is 1.299583559601074
the 2nd order lower bound is 1.3906073366962926
the 3rd order lower bound is 1.3962709994738929
the exact solution is 1.32966432600825642
the 3rd order upper bound is 1.396735687054176
the 2nd order upper bound is 1.3981429249149382
the 1st order upper bound is 1.421026861073852
the @th order upper bound is 1.8874605994605224

Figure 4: Calculation result for n = 5, bounds on A.

The corresponding a U's are:

al = 0.7792207792207793
ar(1) U = 8.440997856643241

ar(2) U = 8.4247858215921593
a~(3)_U = ©.42380155621397647
ar(4) U = 8.4237409425602482

The corresponding a_L's are:
a*(1)_L = ©.35931229707600142
ar(2) L = ©.4195322260715242
ar(3) L ©.42347686055131173
ar(4)_L = ©8.4237209249695411

Figure 5: Calculation result for n = 5, effective coefficients.

1.4 Convergence

From construction we make the following observation: for all n > 1, we have

A< AT <A, (9a)
AP <A <) (9b)
ag > agl) > ag}lﬂ), (9¢)
a(Ll) < a(Ln) < a<L"+1). (9d)

In particular, notice that (/\([;l)

quence.

is a decreasing s while (A{”) s an increasing s
N S a decreasing sequence, 11e L N 1S an Icreasing se-
ne n

Theorem 1.1 (Monotone Convergence Theorem). If (a,,),en &5 a monotone sequence of real numbers,
then this sequence has a finite limit if and only if the sequence is bounded. In particular, if the sequence
1s increasing, then it converges to its supremum; if the sequence is decreasing, then it converges to its
infimum.
By the above theorem, we know that each of the sequences ()\81)) N and ()\(L">) , converges to A.
ne

ne

1.5 Topics To Be Explored

Consider the simple case of n = 3. We can analyze A as a function of the three variables aq, a,, b, so
that

A:)\(al,ag,b):b~f<%7%2>, (10)
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where A satisfies A = A(\).

The function f of two variables (or, more generally, n — 1 variables), should satisfy the following
conditions:

1. f(p1,ps) = f(pe,py) (symmetry): The network exhibits no branching, so every process has to pass
through a; and a, no matter the order. More generally, let

A= May, o a, ,b) = f (%,...,a”’l) :

then for all permutations 7 € S,,_; we have f(p) = f(7p).

2. X is an increasing function of aq, as,b, so f is an increasing function of a; and a,. More generally,

7 L)

is an increasing function of a4, ..., a,,_;.
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